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1. Introduction

First introduced by Bender and Knuth [2] in their study of enumerations of plane partitions and Schur polynomials,
the Bender-Knuth (BK) moves, a certain family of involutions on the set of column-strict (semi-standard) Young tableaux,
have seen a wide range of applications across different areas of combinatorics. They were shown to be equivalent to tableau
switching, an involution on pairs of column-strict tableaux, on horizontal border strips of two adjacent letters, together with
a swap of these labels [6,29]. Berenstein and Kirillov [3] studied an extension of these involutions, called piecewise-linear
BK moves, acting on Gelfand-Tsetlin patterns and the relations they satisfy. Other interpretations and applications of BK
moves appeared in the context of crystals for finite-dimensional complex reductive Lie algebras (e.g., [16]), shifted tableaux
(e.g., [39,30]), and Grothendieck polynomials (e.g., [18,14]).

Informally, the BK moves t; act on a column-strict tableau by fixing an i (resp. i + 1) when there is an i + 1 below (resp.
i above), and swapping the contents of the remaining letters i and i + 1 in each row. The (combinatorial) Berenstein-Kirillov
(BK) group BK is defined to be the free group generated by variables t; for all i € Z.o, modulo the relations satisfied by
the BK moves t; when acting on all column-strict tableaux. This group was formally introduced by Berenstein and Kirillov
[3], whose work also included a list of relations in this group. More recently, Chmutov, Glick, and Pylyavskyy [8] related the
BK moves to the cactus group Cp, the fundamental group of the moduli space of marked real genus zero stable curves (see,
e.g., [9,10,17,16]). They showed that the BK moves t; acting on all column-strict tableaux satisfy the defining relations of C,
giving a group homomorphism from C, to the subgroup BK, C B generated by {t1,...,t;—1} and yielding new relations
previously unknown in B/XC. The same subject was concurrently investigated by Berenstein and Kirillov [4] using a purely
group-theoretic approach. These results serve as one of the motivations for our work.

Recall that a linear extension of a poset P is a linear order that is compatible with P. Haiman [15] and Malvenuto and
Reutenauer [23] introduced an analog of the BK moves t; on linear extensions of a poset P, which swap two adjacent
letters i and i + 1 when they label incomparable elements of P and fix them otherwise, and used them to study promotion
and evacuation, operators on linear extensions first defined by Schiitzenberger [35,36]. A survey on basic properties and
generalizations of these operators can be found in [38].

An important tool to study BK moves on linear extensions is the linear extension graph of a poset P, the graph whose
vertices are labeled by linear extensions of P and edges are given by the BK moves that swap corresponding linear exten-
sions. Linear extension graphs were first introduced by Pruesse and Ruskey [26], and previously used in the study of linear
extension generation (see, e.g., [32,37,42,24,5]) as well as Markov chains on the set of linear extensions (e.g., [1]). A survey
on linear extension graphs can be found in [22].

In this context, we may define an analog of the Berenstein—Kirillov group on linear extensions of a given poset P, denoted
by BKp. The goal of this paper is to study properties of this group BKp, attempting to characterize the classes of posets P
for which BKp enjoys various properties.

1.1. Outline of the paper

Section 2 provides basic definitions and constructions that are fundamental to this paper, including column-strict
tableaux, linear extensions of posets, and BK moves on various combinatorial objects. Given a poset P, the Berenstein—Kirillov
group of P, BKp, is defined to be the permutation group generated by the BK moves t; on linear extensions of P.

In Section 3, we focus on the relations in BKp. In particular, we will identify the posets P for which the trivialization
relations (Proposition 3.1) and braid relations (Proposition 3.8) hold; note that the latter was previously observed by [1].
Progress is made towards understanding the posets P for which the cactus relations, fundamental relations in cactus groups,
hold in BKCp.

Finally, Sections 4 and 5 are dedicated to the study of the group BKp as a permutation group on the set £(P) of all
linear extensions of P. Section 4 focuses on understanding posets P for which BKp equals the full symmetric group on
L(P). More specifically, we classify all disconnected posets (Theorem 4.10) and series-parallel posets (Corollary 4.11), and
exhibit a few other families of connected posets with this property. Section 5 explores the cardinality of B/Cp.

1.2. Acknowledgments

We are indebted to Vic Reiner for initiating the subject of study and providing extremely valuable guidance. We would
like to thank Gregg Musiker and the 2022 University of Minnesota Combinatorics and Algebra REU staff for organizing the
program. Finally, we thank Pasha Pylyavskyy, Joel Kamnitzer, Iva Halacheva, Sylvester Zhang for helpful discussions, and the

referee for constructive feedback. This research was partially supported by RTG grant NSF/DMS-1745638.
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2. Basic definitions and constructions

In this section, we will provide the background on several algebraic and combinatorial objects that are fundamental to
this paper, including column-strict and standard Young tableaux, linear extensions, Bender-Knuth involutions, and poset
operations.

2.1. Column-strict tableaux and Bender-Knuth moves

Recall that a partition A of a positive integer N is a tuple of integers A = (A1, A2,...,Ay) suchthat A1 >y >...>21;>0
and 2?21 i = N. The Young diagram of shape X is a finite collection of boxes arranged in left-justified rows, where the it" row
has A; boxes. A column-strict (semi-standard) tableau T of shape A is a filling of the Young diagram of shape A that is weakly
increasing along the rows and strictly increasing along the columns. A tableau T is said to have content o = (¢, o2, ..., 0tp)
if there are «; occurrences of i in T for each i =1,...,n; when the content is « = (1,1, ..., 1), the tableau T is called a
standard Young tableau. Denote the set of all column-strict tableaux of shape A and content o by CST(%, «), and the set of
standard Young tableaux of shape A by SYT(%).

Example 2.1. The Young diagram of shape (3, 2) is

3.2)= ‘

The collection of column-strict tableaux of shape (3, 2) and content (1,2,1,1) is

CST((3,2),(1,2,1,1)) = [

122| 123\ 124|
4 214 1273 '

Meanwhile, that of standard Young tableaux of the same shape is

SYT((3,2)) = [

123|124125 134\135|
415 " 13]5 "13]4 1215 1214 |

The primary combinatorial object of interest in this paper is the Bender-Knuth moves (or BK moves for short), which were
originally defined on column-strict tableaux by Bender and Knuth [2] and further studied by several authors, e.g., [34,7,3,8].
Fix a partition A, and let T be a column-strict tableau of shape A and content o = (&1, ..., o).

Definition 2.2. The Bender-Knuth move t; for 1 <i <n — 1 is an involution (i.e.,, a permutation of order 2) of the set of
column-strict tableaux of shape A that sends T to the tableau obtained from the following procedure:

(1) Let S be the skew tableau obtained by taking only the boxes of T with entry equal i and i+ 1;
(2) Observe that each row of S contains
(a) a entries equal to i that lie directly above an i + 1,
(b) b entries equal to i that are alone in their columns,
(c) c entries equal to i 4+ 1 that are alone in their columns, and
(d) d entries equal to i + 1 that lie directly below an i
for some a, b, c,d > 0;
(3) Construct a skew tableau S’ by swapping b and c in each row of S;
(4) Define t;(T) to be the tableau obtained by replacing S with S’ in T.

Example 2.3. Consider the action of the BK move t; on the tableau

1111222|2|3\
T=1[212]3[3]3]4
3(4l4]5

The skew tableau S containing only boxes labeled 2 and 3 in T is

2(2]2]2]3]
s=[2]2]3]3]3
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Following Definition 2.2, observe that in the first row b =3 (yellow boxes?) and ¢ = 1 (pink boxes), so after swapping we
get b’ =1 and ¢’ = 3. The second row has b=1 and ¢ =2, so we turn a 3 into a 2, whereas the third row has b=c=0
and hence is fixed. The new skew tableau S’ obtained after this process has the form

2 2|3|3\3\
S/ = 22|2|33 ,

and hence

1[1]1]1]2]2]3[3]3]
to(Ty=|2]2[2]3[3]4

Let BKC, called the (combinatorial) Berenstein—Kirillov (BK) group, denote the free group generated by the variables t;
(i S Z>o) modulo the relations satisfied by the BK moves t; when acting on all column-strict tableaux of all possible shapes.
Note that there exist other variations of the BK moves, e.g., piecewise-linear BK moves on Gelfand-Tsetlin patterns [3] and
birational BK moves, which lead to different versions of the BK group. It is believed, but not proven, that they coincide. In
this paper, we restrict our attention to the combinatorial version of these objects.

The relations in BK were first studied in a foundational paper of Berenstein and Kirillov [3], which included the following
few:

(1) ?=1foralli>1;

(2) (titj)*> =1 for all i, j > 1 with |i — j| > 2;

(3) (t1g))* =1 for all i > 3, where q; = t1(t2t1) ... (titi—1 ...t1); and

(4) (t1t2)® =1.

More recently, Chmutov, Glick, and Pylyavskyy [8] found new relations in this group generalizing Relations (3):
(5) (tiqjk)z =1 whenever i +1 < j <k, where qjx = qr—1qk—jqk—1,

which interestingly give a group homomorphism from the cactus group C, (cf. [9,17,16]) to the subgroup B, Cc BK gen-
erated by {t1,...,ty—1}. For this reason, Relations (5) are called the cactus relations. It was remarked by [8] that Relation
(4) is the only known relation in BXC that does not follow from the relations in cactus groups. Similar observations were
made by Berenstein and Kirillov [4] using a purely group-theoretic approach. Note that g; consists of an iterated product
of 9j =t;...tat1; both of these have been previously studied as operators on column-strict tableaux, called evacuation and
promotion® respectively, notably by [34-36,3]. It is known that evacuation g; is an involution, and so is g jk- Thus the cactus
relations are equivalent to the commutativity of t; and qj, for all i +1 < j <k.

2.2. Bender-Knuth moves on linear extensions

Here, we define an analog of the Berenstein-Kirillov group acting on linear extensions of posets. This involves two steps.
First, we specialize the action of the BK moves on column-strict tableaux to standard Young tableaux. Then, we view
standard Young tableaux as linear extensions of a certain kind of poset. This allows us to generalize the BK moves on
standard Young tableaux to act on linear extensions of arbitrary posets. Thus, our analog of the Berenstein-Kirillov group on
linear extensions of posets is in one sense more specific and in another sense more general than the classical Berenstein-
Kirillov group on column-strict tableaux. Note that the first step may (and indeed does) introduce new relations satisfied by
the BK moves, whereas the second step may result in fewer relations. We discuss these claims in more detail below.

Let (P, <p) be an n-element poset.

Definition 2.4. A linear extension of P is a linear order (¢, <;) which extends P in the sense that x <p y implies x <; y.

More precisely, a linear extension £ of P is a bijection £: P — {1,...,n} =: [n] such that x <p y implies £(x) < £(y).
Alternatively, a linear extension ¢ of P can be interpreted as an ordered list ¢ = (p1,..., pn) of elements of P such that
pi < pj implies i < j; the index of an element p on this list is precisely its label £(p). The set of all linear extensions of P is

2 For interpretation of the references to colour please refer to the web version of this article.
3 More precisely, the operators 3; and q; as defined here are partial promotion and evacuation, as they act only on the subtableaux containing the entries
1,2,...,i+1, instead of the full tableaux.
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denoted by L£(P). The example below shows the poset P defined by the relations a, b < c, d (left) and a linear extension ¢ of
P (right). Observe that the labeling system on ¢ satisfies Definition 2.4. In the alternative notation, we have ¢ = (b, a,d, c).

Given a partition A = (A1, ..., Ay), the Young diagram of A is a subset D; of {1,2,...} x {1,2,...} defined by
Dy ={G ):1=<j=<xr}

The Ferrers poset F) of A is defined to be the set D, with a partial order generated by the covering relations (i, j) < (i, j+1)
and (i, j) < (i+ 1, j). It is well-known that there is a one-to-one correspondence between the standard Young tableaux of
shape A and the linear extensions of the corresponding Ferrers poset F,. The example below shows a standard Young
tableau of shape A = (4,2, 1) and its corresponding linear extension of the Ferrers poset F.

2]4]6]

|\1w—~
w

Observe that if T is a standard Young tableau, by Definition 2.2, the BK move t; acts on T by simply switching i and
i+ 1 if they label non-adjacent boxes and fixing T otherwise. Via the above bijection, there is an analog of the BK moves on
linear extensions of Ferrers posets, which naturally extends to any arbitrary poset. This generalization was first introduced
by Haiman [15] as well as Malvenuto and Reutenauer [23] to study promotion and evacuation on linear extensions, which
are analogs of operators on column-strict tableaux previously studied by Schiitzenberger [34-36].

Definition 2.5. For a given n-element poset P and 1 <i <n — 1, the Bender-Knuth move t; is an involution of £(P) that
sends ¢ = (p1,..., pn) tO

(p17~~~7pf+17pi7~~~7pn)

if p; and p;;1 are incomparable, and fixes ¢ otherwise.

As in the case with column-strict tableaux, two important operators generated by the BK moves are (partial) promotion
0j = tjti_1...t1 (by convention, dp = 1) and (partial) evacuation q; = 9997 ...9;. We refer the reader to [38] for a careful
analysis of these operators; note that the inclusion of the identity operator dp in g; is motivated by a procedural description
in the reference of the evacuation g; as a series of i + 1 partial promotions. For the purpose of this paper, we emphasize a
useful procedural description of the promotion operator 9;:

Definition 2.6. Given an n-element poset P and 1 <i <n — 1, the promotion operator 9; is a permutation of £(P) that
sends ¢ € L(P) to the linear extension of P obtained from the following procedure:

(1) Consider the subposet formed by the elements £~1(1),£71(2),..., €71+ 1);

(2) Let p; = £~1(1). Remove the label 1 from p;;

(3) Among the elements covering p1, let p, be the element with the smallest label ¢(p>);

(4) Slide this label down to p1;

(5) Repeat until we reach a maximal element py. Label p; with i + 2 and subtract all labels on the entire subposet by 1.

We call p1 < pa <... < pr a promotion chain. An immediate consequence of this interpretation is that when a promotion
operator 9; acts on a linear extension of a disjoint union of posets Py, ..., Py, the only component P; whose labels’ relative
order may be affected is the one containing £~ (1).

Given a finite poset P, its linear extension graph is the graph whose vertices are labeled by linear extensions of P and
edges are given by the BK moves that swap corresponding linear extensions (e.g., see Fig. 1). Linear extension graphs
were first introduced by Pruesse and Ruskey [26], and previously used in the study of linear extension generation (e.g.,
[32,37,42,24,5]) and Markov chains on L(P) (e.g., [1]).

We may define an analog of the BK group in this context.
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3 4 4 3
t3
c d
1 2 1 2
tq t1
3 4 4 3
a b t3
2 1 2 1

Fig. 1. Linear extension graph of the poset defined by the relations a,b < c,d.

Definition 2.7. For a given n-element poset P, the Berenstein—Kirillov group of P, denoted by Bp, is the permutation group
of the set £(P) generated by the BK moves ¢; (1 <i<n-—1).

Very few studies have investigated this group explicitly, e.g., [41,40]. Some relations are known to hold in BXp for all
posets P, including

(1) 2 =1 forall i > 1;
(2) (titj)*> =1 for all i, j > 1 with |i — j| >2; and
(3) (titiy1)® =1 for all i > 1 [38].

When P is a Ferrers poset, the inclusion of Relations (3) represents new relations satisfied by the generators of the classical
BK group when specialized to acting on standard Young tableaux. Furthermore, the result of [8] implies that the cactus
relations hold in BXCp in this case, alongside the above. Outside of these few exceptions, very little is known about the
group relations in BKp.

Note that there is no direct correspondence between the relations in the groups BX and BKp for arbitrary posets P.
This is because our definition of BXp involves first specializing the action of the BK moves to standard Young tableaux
(which may create more relations among the generators t;, e.g., Relations (3) above) then generalizing to an action on linear
extensions of arbitrary posets (which may eliminate some relations). This observation leads to the first motivating question
of our paper:

Question 2.8. What further relations hold in BKp, for which posets P? In particular, for which posets P do the cactus
relations hold in BKp?

This question will be addressed in Section 3. In general, one of the main takeaways from our investigation is that not all
relations in BK continue to hold in BKp for arbitrary posets P.

Similarly to its relations, very little has been established about the properties of B/Cp as a subgroup of the symmetric
group on L(P). The following fact about BXp as a permutation group of £(P) has been widely utilized in different forms
by, e.g., [25,21,12,11]. A proof was explicitly given by Ayyer, Klee, and Schilling (see Proposition 4.1 of [1]), by showing that
linear extension graphs are strongly connected.

Proposition 2.9. B/Cp is a transitive subgroup of & £ (p).
Another rare instance is Vershik and Tsilevich’s study of the BK groups of Ferrers posets in the form of permutation

groups on Young graphs [41]. Motivated by this lack of investigation, the second part of our paper will be guided by the
following question about BKp:

Question 2.10. For which posets P does Bp = & . (py? More generally, what can we say about the relative size of BKp as
a transitive subgroup of &z p)?

This question will be studied in Sections 4 and 5.
2.3. Poset operations

We fix the notations for various poset operations discussed in this paper. Let P and Q be finite posets. Let P & Q denote
the ordinal sum of P and Q, where each element of P is less than every element of Q. Note that the ordinal sum operation

6
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is not commutative; in general, P ® Q # Q @ P. Let P + Q denote the disjoint union of P and Q. On the contrary, this
operation is commutative. Finally, let P* be the dual of the poset P, defined by inverting the order of P in the sense that
x <p+ y if and only if y <p x.

3. Relations in BICp

In this section, we discuss the group relations in BKp, including the trivialization, braid, and cactus relations. The
most important findings are located in Section 3.2, where we study posets for which the cactus relations hold in their BK
groups and study their behaviors under disjoint union and ordinal sum operations, and Section 3.3, where we study several
potential families of such posets.

3.1. Relations in BICp and convex induced subposets

Let P be an n-element poset. Recall that a relation in B/Cp is an equation w = 1, where w is a word in the alphabet
{t1, ..., tn—1}. The first natural family of relations in BXp that we will discuss is the relations t; = 1, called the trivialization

of ti.

Proposition 3.1. For 1 <i <n — 1, the relation t; = 1 holds in BKCp if and only if P can be written as an ordinal sum P = Py & P>
where |P1| =1.

Proof. When P = P; & P, with |Pq| =i, every linear extension £ of P has ¢(P1) ={1,2,...,i} and £&(Py) ={i+1,i+
2,...,n}, 50 £~ 1) <p 71+ 1), and ¢t; fixes £.

Conversely, if P # Py @ P, whenever |Pq| =i, we claim that for any order ideal (lower set) I of P with cardinality |I| =1,
there exist a maximal element u of I and a minimal element v of the upper set P \ I such that u and v are incomparable.
Suppose not, then for every maximal element u of I and every minimal element v of P\ I, we have u <pv,asu>pv ¢l
is not allowed given that [ is an order ideal. Therefore, P =1 (P \ I), a contradiction.

Let I be an order ideal of P with cardinality |I| =i; for example, choose the inverse image I = f~1({1,2,...,i}) for
any f € L(P). We now construct a linear extension ¢ of P such that t;(¢) # ¢. By the previous claim, we may find an
incomparable pair of elements {u, v} of P where u is maximal in I and v is minimal in P \ I. Construct a linear extension
£ by first labeling ¢(u) =i and ¢(v) =i+ 1, then using arbitrary linear extensions to label I\ {u} with {1,2,...,i—1} and
(P\ D)\ {v} with {i+2,i43,...,n}. It is easy to check that t; swaps the labels of u and v in ¢, and hence t;(¢) #¢. O

Definition 3.2. A poset is (ordinally) indecomposable if it is not an ordinal sum of two or more non-empty posets.
Corollary 3.3. Let |P| =n. If P is indecomposable, then {t1, ..., ty—1} is an inclusion-minimal generating set in BXCp.

Proof. By Proposition 3.1, there is some linear extension ¢ on which t; is not in the stabilizer. Let |P| = n. Suppose for
contradiction that we¢ = t;¢ for some w € (t1,t2, ..., ..., ta—1). Then consider the order ideal I such that £(I) =[i], i.e.,
the elements of P with labels {1, 2, ..., i}. Then any action that is not t; preserves this image ¢(I), so i+1 ¢ w£(I). However,
we have i + 1 € t;¢(I), a contradiction. O

Next, we present a useful tool for studying the relations in BKp by examining the convex induced subposets of P. Recall
that an induced subposet Q C P is a subset of vertices in P such that for any x, y € Q, x <q y if and only if x <p y. A convex
induced subposet is an induced subposet such that if x,z€ Q and y € P satisfy x <p y <p z, then y € Q.

Definition 3.4. A relation type in BKp is a set of relations w; = 1, where w; is obtained from a fixed word w in {t1,...,th_1}
by translating the indices of all generators t; in w by an integer i, such that 1 <i+ j<n—1 for all j.

For example, (t1t3)® =1 is a relation, whereas the relations (tit;+1)® =1 form a relation type. The following proposition
gives a means to generate relation types in the BK groups for convex induced subposets.

Proposition 3.5. If a relation type holds in BICp, then it also holds in BKq for every convex induced subposet Q of P.
The proof of this statement makes use of the following lemma.

Lemma 3.6. Let Q be a convex induced subposet of P and ¢1 € £(Q). Then there is a linear extension £, € L(P) such that for some
i€Zso, L2(v)=L1(v)+iforallveQ.
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Proof. Disjointly decompose the poset P into three subposets I, Q, and F, where

I:={peP)\Q :thereexistsqe Q withq> p}, and F:=P\ (Q UI).

Then the subposet Q LI of P containing the elements of Q and I will be an order ideal of P, and because Q is convex, I
is an order ideal of Q U I. Letting i :=|I|,q:=|Q]|, and f :=|F|, one can therefore form a linear extension ¢, of P having
62’1 ({1, 2,...,i}) agree with any linear extension of I, having Z;l({i +1,i4+2,...,i+q}) agree with ¢; after adding i to the
values in ¢1, and having 62_1 {i+q+1,i+q+2,...,i+q+ f}) agree with any linear extension of F after adding i + q to
its values. O

Proof of Proposition 3.5. We prove the contrapositive. Suppose there is a convex induced subposet Q C P for which the

relation type does not hold in BKq. That is, there exists a relation w(tj, ..., t;1x) =1 of this type which fails on a linear
extension ¢; of Q. By Lemma 3.6, there is a linear extension ¢, € L(P) such that for some j € Z=g, £2(v) =£1(v) + j for
all v e Q. It is now easy to check that w(titj,..., titjtr) =1 failson €. O

Lemma 3.6 directly implies an interesting fact about convex induced subposets:
Corollary 3.7. If Q is a convex induced subposet of P, then there is an injection BKq — BICp.

As an application of Proposition 3.5, we examine a well-known relation type called the braid relations in BXCp for an
n-element poset P. Recall that the braid relations are of the form (tit,-+1)3 =1foralli=1,...,n—2. The following fact was
previously observed by Ayyer, Klee, and Schilling (see Proposition 2.2 of [1]), but with the proof omitted.

Proposition 3.8. The braid relations hold in B/Cp if and only if P is a disjoint union of chains.

Proof. One can check that the only posets of cardinality 3 that fail to satisfy the relation (t1t2)> =1 are defined by either
a>b < c (V-shaped) or a < b > c (inverted V-shaped). Any poset that contains one of these two posets as an induced
subposet contains it as a convex induced subposet, and hence will fail to satisfy (t;ti;1)> =1 for some i by Proposition 3.5.
The posets that do not contain one of these two posets are precisely disjoint unions of chains. Conversely, suppose, by
contradiction, that a disjoint union of chains fails to satisfy (tjtj;1)> =1 for some i. Then the induced subposet on the
elements with labels i, i + 1, and i + 2 fails to satisfy (t1t2)3 =1, and hence is one of the two posets mentioned above. But
a disjoint union of chains does not have such an induced subposet, so we have a contradiction. O

Since the braid relations are the defining relations of the symmetric group &, and the braid group B, it follows that
the natural map (of sets) that sends the generator o; of &, (resp. By) to t; for all 1 <i <n —1 gives a well-defined action
of &, (resp. By) on L£L(P) only when P is a disjoint union of chains.

3.2. Cactus relations in BXCp
Another important family of relations involving the generators t; is the cactus relations, which have the form (t;q jk)z =1,
where qjkx = qk—1qk—jqk—1 and q; =t1(tatq) ... (tjtj_q1...t1) for any i +1 < j <k. Recall that when P is a Ferrers poset, the

cactus relations hold in the group BKp for all i +1 < j <k < |P|. One reasonable question is whether the same statement
is true for an arbitrary poset. Unfortunately, that is not the case.

Example 3.9. On the 4-element posets, there is only one eligible cactus relation: (t1q34)% = 1. The only 4-element connected
posets for which this relation fails are the followings:

/I\I/I<\

For a counterexample with 5 elements, the following poset exhibits an interesting property that all eligible cactus rela-
tions fail in its BK group:



J.H.-H. Chiang, A.T.N. Hoang, M. Kendall et al. Discrete Mathematics 347 (2024) 114068

The fact that cactus relations do not hold in general on all linear extensions of all posets presents a major deviation
from the original BK group BXC on semi-standard Young tableaux, a subset of which-namely the standard Young tableaux-
corresponds to linear extensions of Ferrers posets. It remains of interest to examine when the cactus relations hold in BKp,
i.e., when there is a natural action of the cactus group Cp| on L(P). We have already encountered one family of posets for
which this holds true.

Theorem 3.10 (/8]). The cactus relations hold in BICp for all Ferrers posets P.

For the rest of this section, we will study properties of posets P for which the cactus relations hold in BXp. We will
also identify several sufficient conditions for such posets. As a preview, later in this section, we will show that starting with
an arbitrary poset P, we can force the cactus relations to hold or to not hold in BXp by taking an ordinal sum with a
sufficiently large chain (Proposition 3.20) or with a sufficiently large antichain (Proposition 3.19).

First, observe that Proposition 3.5 does not apply to the cactus relations, since they do not form a relation type: implicitly
qjk contains the operators q; = t1(tat1)...(t;tj—1...t1) which always involve t1. However, there is an analogous statement
for when the cactus relations hold in BKp.

Proposition 3.11. The cactus relations hold in B/Cp if and only if they hold in BK; for every order ideal I of P.

Proof. By contrapositive, suppose that there exists an order ideal I of P such that not all applicable cactus relations hold
in BK]. Let |I| =m, then there exists a triple (i, j, k) where 2 <i+1 < j <k <m and a linear extension ¢; of I, such that
(tqu'k)Z(K]) # {1. From {1, we can construct a linear extension ¢ of P by setting { =¢; on I and £ =¢;+m on P\ for some
linear extension ¢, of the induced subposet P \ I. Thus, by the above construction, (tjq jk)z(Z) # ¢, so the cactus relation
(tiqjk)2 =1 does not hold in B p. The converse immediately follows from the fact that P is an order ideal of itself. O

This result is especially useful in eliminating posets P for which some cactus relations do not hold in BXp by identifying
(small) ideals sitting in them for which the same holds.

3.2.1. Disjoint unions

Let P and Q be finite posets. We will show that if the cactus relations hold in BKp and BKq, then they hold in
BKp4q-

We first define the following map on linear extensions of the disjoint union P 4+ Q to help break down showing com-
mutativity of t; and g, on an entire linear extension of P + Q.

Definition 3.12. Let P and Q be posets with |P| =m and |Q | = n. Define the map

[m +n]>

n

<[m+n]> (
T:L(P+Q)— L(P) x L(Q) x o x

by > (Lp,£q.S(P),S(Q)),

where S(P) and S(Q) are the sets of labels in £ on P and Q, and ¢p and {q are independent linear extensions on P and
Q which agree with ¢, in the sense that for any p1, p2 € P, £p(p1) < £p(p>) if and only if £(py) < £(p2), and similarly for
Q.
It is not difficult to see that T is an injection. It is also straightforward to transfer the action of t; on £ to an action on
the tuple (¢p, €q, S(P), S(Q)). If ¢=1() isin P and £~1(i+ 1) is in Q or vice versa, then t; swaps the label i in S(P) with
i+1in S(Q) while keeping £p and €q the same. If i and i 4+ 1 are both in P, then ¢; stabilizes S(P), S(Q), and £q, while
acting on ¢p by ty where i’ = |S(P) N [i]].

Example 3.13. Consider the following linear extension £ of a disjoint union P + Q (where the posets P and Q underlie the
left and right components, respectively):

6 5 9
8 10
2 4 )4
1 3 7

The map T sends this linear extension to the tuple containing linear extensions £p and £q :

9
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5 4 6
3 4
N X
1 1 2
Lp Lg

and the sets of labels S(P)={1,2,4,5,6,9} and S(Q) ={3,7,8,10}.

Observe that if we act on ¢ by t3, the resulting £p and £o stays the same, while we have new label sets S'(P) =
{1,2,3,5,6,9} and S'(Q) = {4,7,8,10}, with 3 and 4 swapped. On the other hand, if we act on ¢ by ts, the resulting
S(P),S(Q), and £q stay the same while £}, =t4(£p).

The following lemma describes the action of g;_1 on the label sets S(P) and S(Q).

Lemma 3.14. Let P, Q be finite posets and fix a linear extension £ € L(P + Q). Let 1 <i < |P + Q|, then

i) Forall j<i, je S(P)ifandonly ifi — j+ 1 € (qi—1S)(P);
ii) Forall j >1i, j € S(P) ifand only if j € (qi—15S)(P).

Proof. The converse of each statement follows directly from the fact that g;_1 is an involution. Note that (ii) is immediate,
as gi—1 only affects the labels in [i], so j > i remains a label in (q;j—1S)(P). It remains to show (i).

Consider the action of qj_1 = 999192 ...9;—1 on a fixed linear extension £ € L(P + Q), where 9; = tjtj_1...t1 is the
promotion operator. Observe that by Definition 2.6, if 1 € S(P), then we have j + 1 € (9;5)(P). On the other hand, if
keS(P)and 1 <k < j, then k— 1€ (9;S)(P). Let j e S(P) where j <i. After applying the first j — 1 promotion operators
in gj_1, by this observation, we have 1 € (9;_j41...9i—29;—1S)(P). Thus, by applying the operator 3;_;, we have i — j+1¢
(3i—j-..9i—20i—15)(P). Since the label i — j 4 1 is fixed by all subsequent promotions 3, where k <i — j, it follows that
i—j+1€(qi—1S)(P) as desired. O

We also need the following lemma describing the action of g on £p and £q.

Lemma 3.15. Let £ € £L(P + Q), and let T(¢) = (€p, £q ., S(P), S(Q)). Then

T(jkl) = @m-nm©€p), Ak—m.k—j—n—-1{q), (@K S)(P), (qjkS)(Q)).
wherem = |S(P)N[k]| andn=|S(P)N[j, k]| —1.

Proof. First, we examine the induced action of qj, on £p. Consider the action of qx_1 = 1 ...0d—1 on £. The description
of promotion in Definition 2.6 implies that each operator 9; in qx_1 (0 <i <k —1) only acts on (¢;)p if 6;1(1) lies in the
component P and on (¢;)g otherwise, where ¢; = dj41...9—1(¢). The number of promotion operators in gx_; that act on
the labels of P therefore is equal to the number of linear extensions ¢; for which (Ei’])(P) lies in the component P, which
by the observation in the previous proof is precisely m = |S(P)N[k]|. Observe that by Definition 2.6, the action of promotion
on £p does not depend on the labels of £ on P, but only their relative order encoded by ¢p. Hence, we deduce that the
action on £ by qx_1 = 9991 ...0k_1 is mapped under T to the action on £p by gm—1.

Now we consider the action of qi_; on qx_1£. By the same argument above, the induced action of qx_; on gm(£p) is
equivalent to the action of ¢,y_1 on gm_1(£p), where n’ = |(qx—1S)(P) N[k — j +1]|. If c € S(P) and ¢ > k, by Lemma 3.14,
we have ¢ € (qx—1S)(P), which does not contribute to n’. Otherwise, if ¢ <k, by Lemma 3.14, we have k—c+1 € (qx—1S)(P).
Thus, n' = |[(qx—1S)(P) N[k — j+ 11| = [S(P) N [j, k]I

Finally, we act again by qx_1 on gr_jqr—1¢. The induced action of qx_; on q;_1Gm-1£p is equivalent to the action
of gny—1 on qy_1qm—1£p, where m’ = |(qx—jqr—1S)(P) N [k]|. However, by Lemma 3.14, we have |(qk—jqk—15)(P) N [k]| =
[(@k—1S)(P) N [k]] = |S(P) N [k]|. Thus, the action of gx_1 here is equivalent to the action of gn—1 on ¢y_1gm—1£€p, and as
the result, the action of g, on £ induces the action of ¢;—1qy—1qm—1 = Gm—n,m on £p, where n=n'—1=|S(P)N[j, k]| —1.

By symmetry, the induced action on £q is given by qp_p m Where m’ = |S(Q) N [k]| and n’ =|S(Q) N[j, k]| — 1. Since
IS(P)N[K]|+1S(Q)N[k]| =k and |S(P)N[j, k]| +1S(Q)N[j, k]| =k— j+1, we deduce that m' =k—m and n’ =k—j—n—1.
Hence

T(qjk8) = @m-nm®p); Qk—mk—j—n-1£q), (qjKkS)(P), (qjxS)(Q))
where m =|S(P)N[k]| and n=|S(P)N[j, k]| — 1, as desired. O

10
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Now we are ready to prove our main proposition.
Theorem 3.16. Let P and Q be finite posets. If the cactus relations hold in BKp and BK g, then they hold in BKp4q.

Proof. Let £ € L(P+ Q) be any linear extension of P+ Q, and let T(¢) = (£p, £q, S(P), S(Q)). Since the map T is injective,
it suffices to show that for all 2<i+1< j<k<|P+ Q| t; and qj; commute with respect to each of ¢p, £q, S(P), and
S(Q). We consider two general cases.

Case 1: Assume without loss of generality that i,i+ 1 € S(P). First we show that t; and g, commute with respect to
S(P) and S(Q). Observe that if i (or i + 1) is in S(P), by applying Lemma 3.14 three times, we have i (or i + 1) is also
in (qk—19k—jqr—15)(P) = (qjkS)(P). It follows that t; acts as the identity on both S(P) and (q;S)(P), so clearly t; and q
commute,

It remains to show that t; and qj, commute with respect to £p and £q. Since i,i+1 € (qjkS)(P), t; does not affect £q
and qji(£q). It then suffices to show that t; and g, commute with respect to £p. By Lemma 3.15, the induced actions of
tiqjx and qjxt; on £p are given by to tyqm—nm and gm_n mty, respectively, where m =|S(P) N [k]| and n=[S(P) N [j, k]| -1
and i’ = |S(P) N [i]|. Further note that

(m—n)—i'=[S(P)N[k]| — (IS(P)N[j, k]| — 1) — |S(P) N il
=|S(P)N[i+1,j—1]|+1>2

since i+1 € S(P), thus i’ +1 < m —n. Hence, we have tyqm—nm(p) = qm—n.mty ({p), following directly from the assumption
that BKCp satisfies the cactus relations.

Case 2: Assume without loss of generality that i € S(P) and i 4+ 1 € S(Q), which configuration we simply denote as
(i,i 4+ 1). We consider where the labels i,i 4 1 are taken under t; and qj,. When acting on £ by qjt;, by the above

observation we have (i,i+1) LN ({i+1,1) KLY (i+1,1). On the other hand, acting on ¢ by t;q . gives (i,i+1) LY @,i+1) LN
(i+1, 1), which agrees with the action of gxt;. A consequence is that the set of other labels are preserved by both t;q;, and
qjkti, and since t; fixes all other labels, we deduce that t; and qj commute with respect to S(P) and S(Q).

By a prior observation, we have i € (q,S)(P) and i+1 € (q%5)(Q). Thus, t; acts as the identity on each of £p, £q,qjk(£p),
and qjx(£q), as swapping elements i and i + 1 does not change the relative ordering within the label sets. Then clearly t;
and qj, commute with respect to £p and £q.

Hence, we conclude that t;q,(€£) = q;kti(¢) for all £ € L(P 4 Q), so the cactus relations hold in BKp,q. O

The converse of this proposition follows directly from Proposition 3.11. This property then allows us to narrow our focus
to studying connected posets whose BK groups satisfy the cactus relations.

3.2.2. Ordinal sums

In contrast with disjoint unions, ordinal sums of posets whose BK groups satisfy the cactus relations exhibit a more
complicated behavior. In particular, the BK group of an ordinal sum of two posets whose BK groups satisfy the cactus
relations may not satisfy the cactus relations.

Let P be an n-element poset. We next study the construction P +— Ap @ P, where Ay, is an antichain of m elements, and
ask whether the cactus relations are preserved in their BK groups.

Proposition 3.17. If the cactus relations hold in BKCp, then they hold in B4, gp.

Proof. Observe that there is a one-to-one correspondence between the sets of linear extensions of P and A1 & P: a linear
extension of A; @ P is simply a linear extension of P (with labels shifted up by 1) with the unique minimal element of
A1 @ P (namely the singleton in Aq) labeled 1. Thus ty is the identity. It follows that for any 3 <i+1<j<k—1<n+1,
the relation (t,-qjk)2 =1 on L(A; & P) reduces to a cactus relation on linear extensions of the convex induced subposet P
of A1 & P, which holds since the cactus relations hold in B/Cp. The only other cases are when i =1 or k= j + 1. When
i=1, (thjk)2 = q?k =1forall 2 <j<k<n+1,since qj is an involution. When k = j + 1, observe that

djk = Qk—19k—j9k—1 = Gk—1919k—1 = qk—1t19k—1 = CIﬁ,] =1,

since qi—1 is an involution. Thus g, =1, so that (tiqjk)2 = ti2 =1 as desired. O

Proposition 3.18. If the cactus relations hold in BK a,gp, then they hold in BICa,qp. Hence if the cactus relations hold in BICp, then
they hold in both BKCa,gp and BK a,ep.

Proof. Suppose A, ={p1}+{p2}, and let P; be the convex induced subposet of A, @ P of the form {p;} ® P. By assumption,
the cactus relations hold in each BKp,. Similar to the previous argument, observe that a linear extension of A, @ P is a

11
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linear extension of P (with labels shifted up by 2) with the labels of minimal elements p; and p, drawn from {1, 2}. Thus
ty is the identity. For j > 1, we have

q;j =t1(t2t1)...(tj[]’,] ... tp) =t1(t1)...(tj...l’3t1)
=] (t3)(tal3) ... (tjtj 1 ...t3) = t{q/j

where

q} = (t2)(t3t2)(tat3t2) ... (tjtj_1 ... t3t2) = (t3)(tat3) ... (tjtj—1...t3).

Since q; = t1, by definition g} = 1. Notice that ¢; and q/j always commute, so for 2 < j <k <n+ 2, we have

_ k—i _
Qjk = Qe—1Gk—jGk—1 = ¢ gt JQL_]-)(t’f 1%_]-)
!

_ k=i / / k=]
=t (@G jGh—1) =21 "qe

Since each q} commutes with t1, so does q/].k.
We show that the cactus relation (t,'qjk)2 =1 holds by considering the following cases:
Case 1:i =2. We have (t2qjx)? = q?k =1, since g} is an involution.
Case 2:i=1. We have t1qj, =t tl{_jq}k = tlf_jq/jkt] =qjkt1, S0 (t1qjx)> = 1.
Case 3:i >3 andk — j = 1. Recall that qL_j =qi=1,s0q=1t (q;(_l)2 = t1, which obviously commutes with t; if i > 3.

Case4:i>3andk— j > 2. We have (tiqjx)? = (tit$7]q§,()2 = (tlf*])z(tiq’jk)2 = (tiqy)?, so it suffices to show that (tiq;)* =
1 for all i > 3 and k — j > 2. This equation reduces to a cactus relation on linear extensions of either P; or P, which holds
since by assumption the cactus relations hold in each B/Cp,.

The second part follows immediately from Proposition 3.17 and the first part. O

Seeing Propositions 3.17 and 3.18, one might think that given any poset P for which the cactus relations hold in BKp,
they continue to hold in BK 4, gp for all m > 1. Unfortunately, this is not the case:

Proposition 3.19. For any non-empty finite poset P, some cactus relations do not hold in BK4,,qp for m > 3.

Proof. Observe that Ay, @ P always contains a copy of A, @ A1 as an order ideal. Thus, by Proposition 3.11, it suffices to
show that some cactus relations do not hold in B4, ¢4, for all m > 3. When m = 3, one can check that the cactus relation
(t1q34)2 =1 does not hold. When m > 4, we claim that the cactus relation (thm_Un_H)2 =1 does not hold. By studying
the evacuation q; on linear extensions of the poset Ay @ A1 (see, e.g., [38]), we observe that q;_1,my1 swaps the labels 1
and m — 1, while t; swaps the labels 1 and 2. These descriptions show that they do not commute. O

While taking the ordinal sum with sufficiently large antichains creates a source of posets whose BK groups do not satisfy
the cactus relations, the same operation with sufficiently long chains appears to have the exact opposite effect. Let Cp,
denote a chain of m elements.

Proposition 3.20. For any n-element poset P and for any m > n — 3, the cactus relations hold in BKc,,¢p-

Proof. By Proposition 3.17, it suffices to show that the cactus relations hold in BKc, ,op. The key observation is that
t; is the identity for all i <n — 3, since the element of P labeled by i lies inside the lower chain and thus is com-
parable to that labeled by i + 1. Consider the operators t; and qjk = qg—1qk—jqk—1 for 2 <i+ 1< j<k<2n-3.1If
i<n-—3,tj=1 obviously commutes with qj. If i >n —2, then j>n, so k— j<(@2n—3) —n=n—3. It follows that
qk—j =t1(tat1) ... (tk—jtk—j—1...t1) =1, therefore qjx = qi_l =1 which obviously commutes with t;. O

3.3. Minuscule, d-complete, and jeu-de-taquin posets

Starting with the singleton poset Aq, by iterating the constructs of disjoint union and ordinal sum P — Ay & P, we
produce the family of all rooted forest posets—disjoint unions of trees with a unique minimal element, whose BK groups satisfy
the cactus relations by Theorem 3.16 and Proposition 3.17. Knuth observed a famous hook-length formula for counting the
linear extensions of such forest posets [19]. The original motivation for this finding was the family of Ferrers posets for
which the Frame-Robinson-Thrall hook-length formula counts their linear extensions [13], another family of posets whose
BK groups satisfy the cactus relations. Motivated by these two families with hook formulas, Proctor introduced the family
of d-complete posets having such a hook-length formula for their linear extensions; we refer the readers to [28] and [20] for

12



J.H.-H. Chiang, A.T.N. Hoang, M. Kendall et al. Discrete Mathematics 347 (2024) 114068

the precise definitions and hook-length formulas. This raises the question of whether the BK groups of d-complete posets
satisfy the cactus relations.

Preliminary investigations point to an affirmative answer. Besides the above families, it is not too hard to show that the
BK groups of all shifted Ferrers posets, another motivating subfamily of d-complete posets, satisfy the cactus relations.

Theorem 3.21. The cactus relations hold in BICp for all shifted Ferrers posets P.

Proof. First, we embed standard shifted tableaux, which are in bijection with linear extensions of shifted Ferrers posets, by
“doubling” them into shift-symmetric column-strict tableaux [33]; see Example 3.22. Since the content of a standard shifted
tableau strictly increases across the column and row, the classical BK moves t; act the same on the resulting shift-symmetric
column-strict tableau restricting to the embedded standard shifted part as on the standard shifted tableau itself. That is,
the action of t; on the standard shifted tableau commute with the action of t; on the shift-symmetric tableau, where BK
moves satisfy the cactus relations. Therefore, the cactus relations hold in BKp for posets P of shifted Young diagram shape,
concluding the proof. O

Example 3.22. Below is an example construction of a shift-symmetric column-strict tableau from a standard shifted tableau.

1(1]2]3]4
1(2]3]4
S= 5|67 :>T—25567
o 5o “13|6(8|8]9
4|79

Another closely related family of posets is the minuscule posets, which first appeared in Lie theory. Proctor’s d-complete
posets contain all order ideals within minuscule posets as a motivating special case. Minuscule posets are classified into
three infinite families and two exceptional cases (see, e.g., [39,31]). The infinite families of minuscule posets are the rect-
angular Ferrers posets (whose order ideals contain all Ferrers posets), the triangular shifted Ferrers posets (whose order
ideals contain all shifted Ferrers posets), and ordinal sums of antichains A?" @ Ay @AﬁB”; all of whose BK groups satisfy the
cactus relations based on our results so far. By checking the cactus relations in the BK groups of the remaining exceptional
minuscule posets using SageMath, we have verified the following:

Theorem 3.23. The cactus relations hold in BICp for all minuscule posets P.
Based on the existing evidence, we make the following conjecture.
Conjecture 3.24. The cactus relations hold in BICp for all d-complete posets P.
This has been verified by SageMath for all d-complete posets of size at most 9.

Remark 3.25. In [27], Proctor also studied a large family of posets called jeu-de-taquin posets, which he showed includes all
d-complete posets. Informally, jeu-de-taquin posets are posets for which Schiitzenberger’s jeu-de-taquin on linear extensions
of posets, as discussed in [38], has an extra confluence property.

For such posets, we could show that g, only permutes the labels j, j+1, ...,k when acting on a linear extension. Thus,
it is more probable for t; and g, to commute because they affect disjoint subsets of the labels. Hence, one might hope that
the BK groups of jeu-de-taquin posets satisfy the cactus relations. However, this is not true; Fig. 2 shows a counterexample,
where the cactus relation (t3gs9)? =1 does not hold for this linear extension whose underlying poset is jeu-de-taquin.

Fig. 2. The smallest jeu-de-taquin poset whose BK group does not satisfy the cactus relations.

13



J.H.-H. Chiang, A.T.N. Hoang, M. Kendall et al. Discrete Mathematics 347 (2024) 114068

4. Posets with the full symmetric BK group

In this section, we will study the group BXp as a subgroup of the symmetric group on the set £(P). In particular, we
focus on understanding posets P for which BKp = &z (p).

4.1. Duals and ordinal sums
As in Section 3.2, we explore properties of posets whose BK groups equal the symmetric group on the set of their linear

extensions, particularly their behavior under poset operations such as taking duals and ordinal sums. Let P and Q be finite
posets, and let P* denote the dual or opposite poset to P.

Proposition 4.1. One has a group isomorphism BKp = BK p«. Hence BKp = & £ (py if and only if BICp+ = & £ (p+).
Proof. One has a bijection £(P) — L(P*) sending £ +— ¢ where ¢'(v) = |P| +1 — £(v) for all v € P. This induces an
isomorphism of symmetric groups &z py — Sz (px), which then restricts to an isomorphism BKp — BKp- sending t; —

tpj—i. O

Likewise, the BK group of the ordinal sum of two posets has a very nice description in terms of the BK groups of its
components.

Proposition 4.2. BKpgq = BKp x BKq.

Proof. Let
AL(P®Q)— L(P) x L(Q)
L (€1, £3),

where ¢7 is ¢ restricted to P and ¢, is £ — | P| restricted to Q. We have that A is a bijection. Now let

¥ BKpgq — BKp x BKq

t,'l—>tl/»,
where
(i, 1) ifi <|P|—1
t,f: 1,1 ifi=|P|

(1, timpp) Wi |P|+1.

We have that ¢ is an isomorphism of permutation groups as desired. O

This property leads to some useful tools for constructing and identifying posets with the full symmetric BK groups that
arise from ordinal sums.

Corollary 4.3. Let P be a finite poset. Then BIKCp = S (py if and only if BKc,erac, = S £(c,@pacy) for any chains Cq and C,.

Proof. This corollary follows directly from the previous proposition and the fact that for any chain C4, the set £(Cy) is a
singleton, so its BK group is trivial. O

Corollary 4.4.1f P and Q are posets such that BKpgq = S (pgq). then at least one of P or Q is a chain. As a consequence,
B’Cp = 6[([)) and B’CQ = G[,(Q)-

Proof. By assumption, BKpgq is a symmetric group. By Proposition 4.2, BKpgq can be written as a direct product of the
ordinal summands’ BK groups, i.e., BKpgq = BKp x BKq. Then at least one of the factors BXCp and B is the trivial
group. This happens when at least one of the posets P and Q has exactly one linear extension and hence is a chain. The
second part follows immediately from the previous corollary. O

Corollaries 4.3 and 4.4 are especially useful in identifying posets whose BK groups are the full symmetric group, as they
allow us to turn our attention to posets with neither a unique maximal nor minimal element.

14
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4.2. Primitive BK groups and disjoint unions of posets

The goal of this subsection is to prove a classification theorem for disconnected posets with the full symmetric BK
groups. En route to this result, we will first study a generalization of these posets. Recall that the action of a group G on
a set X is primitive if there is no partition of X that is preserved by G other than the trivial partitions (i.e., the finest and
coarsest partitions). Evidently, & (py is a primitive permutation group of £(P). In this subsection, we turn our attention to
posets whose BK groups are primitive.

Lemma 4.5. If an n-element poset P is a disjoint union of two or more non-empty chains, then BKp = &,,.

Proof. By Proposition 3.8, BKp is isomorphic to a quotient of &,. Thus, it suffices to show that the group is not trivial, is
not C, for n> 3, and is not &3 for n = 4. Each of these is easily checked. O

Lemma 4.6. Let P = Cy, + Cpy, + - - - + Cp,. Then, Stab(£) = &y, x Gy, X -+ X &y, forany £ € L(P).

Proof. We have Stab(£1) = Stab(¢,) for any ¢1, ¢, € L(P), so it suffices to consider only one linear extension. Let £ be the
linear extension that assigns consecutive labels to each chain beginning with Cy,. Then, t; € Stab(¢) if and only if i # Z’]‘-:1 nj
for all 1 <k <r — 1. Recall that by Lemma 4.5, t1, ..., t;—1 yield a presentation for the symmetric group &,,, where

;
n= an.
j=1
Thus, the group generated by {¢t; | i # Z’]‘-:1 n;j for all 1 <k <r — 1} is isomorphic to &y, x &y, X --- x &y,. It remains to
show that &, x &y, x --- x &y, exhausts Stab(¢), which follows from the following calculation:
|L(P)| - |Stab(6)| = |BKp|
n!
— |Stab(£)| =n!

nyl---ny
[Stab(f)| =n1!-- -l = |Gpy X Bpy X - X Gp,|. O

Lemma 4.7.If P = Py + Py, where |P1|, |P2| > 1 and Py is not a chain, then BICp is not a primitive permutation group.

Proof. Given ¢ € L(P), assign ¢ the set £(P1). This induces a partition on £(P). The conditions of the lemma imply that
the partition is nontrivial. It is easy to check that each t; preserves the partition. O

Theorem 4.8. If P is a disconnected poset, then BKp is a primitive permutation group if and only if P = Cn, + Cp,, where ny #ny or
n=ny=1.

Proof. First, if one component of P is not a chain, then BXCp is not primitive by Lemma 4.7. If P = Cy; +Cp, +- - - +Cy,, then
BKp =&, by Lemma 4.5 and Stab(£) = &y, x &y, x -+ x &y, for any £ € L(P) by Lemma 4.6. We have that &, x &, x
.-+ x Bp, is a maximal proper subgroup of &, if and only if r =2 and either ny #ny or ny =ny = 1. Since a permutation
group is primitive if and only if the stabilizer of any element is a maximal subgroup, this completes the proof. O

The first application of this theorem is a classification of series-parallel posets—posets that can be constructed from the
singleton A using the ordinal sum and disjoint union operations-with primitive BK groups.

Corollary 4.9. If P is a non-empty series-parallel poset, then BKp is a primitive permutation group if and only if P = Cp, @ (Cp, +
Cny) @ Cn,, where |na| # |n3| or [nz| = n3| = 1.

Proof. Every poset of the stated form is series-parallel with a primitive BK group by Theorem 4.8. Conversely, let P be a
non-empty series-parallel poset whose BK group is a primitive permutation group. If P = P1 + P,, where |Pq]|, |P2| > 1, then
P = Cp, + Cpy with the stated conditions by Theorem 4.8. If P = Py @ P, where |P1], |P2| > 1, then P =Cy, or P> =Cy,
by Proposition 4.2. Thus, P is of the desired form. O

We now return to disconnected posets whose BK groups are the full symmetric group. The proof of our classification
theorem in this case follows a similar logic as that of Theorem 4.8.

Theorem 4.10. If P is a disconnected poset, then BKCp = & o (p) if and only if P = Cp, + A1.
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Proof. First, if one component of P is not a chain, then BKp % &S, py by Lemma 4.7. If P = Cy, + Cp, + - + Cy,, then
BKp = &y, by Lemma 4.5. Thus, BKp = & (py if and only if |[£(P)| =n, which happens if and only if P is of the stated
form. O

Corollary 4.11. If P is a non-empty series-parallel poset P, then BKp = & (py ifand only if P = Cp; @ (Cyp + A1) ® Cps.
Proof. Every poset P of the form Cy, & (Cp, + A1) @ Cy, is series-parallel and satisfies BKp = & (py by Theorem 4.10.
Conversely, let P be a non-empty series-parallel poset such that BKp = &z (py. If P = Py + P, where |P1], |P2| > 1, then

P = Cp, + A1 by Theorem 4.10. If P = P1 @ P, where |P1],|P2| > 1, then P1 = Cy, or Py = Cp, by Proposition 4.2. Thus, P
is of the desired form. O

4.3. Families of connected posets
We next study non-series-parallel posets whose BK groups are the full symmetric group on the set of linear exten-

sions. Theorem 4.10 allows us to restrict our study to those which are connected. The following class of posets presents a
suggestive starting point:

Definition 4.12. For integers a,b,c > 1, the poset Ny . (Fig. 3) is defined to be a poset of a + b + ¢ elements with the
relations

Vi<Vy<:--<Vg41>Vg42> > Vgipyr1 < Va+b+2 << Vﬂ+b~‘rC+1’

Va+1 Vatb+c+1
/ \
1%
! Va+2 :
/ \ :
/ /
V2 - \ Va/+b+2
Vi Va+b+1

Fig. 3. The poset Ngp c.
In particular, every non-empty non-series-parallel poset contains a poset Ny 1 as a convex induced subposet.
Proposition 4.13. BKy, , , =62y, ) forallb > 1.

Proof. Letn=b+3,50 N1 1 =Vi <V2>V3>...>Vy_2>Vp_1<Vp.

For n € {4, 5}, the theorem is verified by a calculation. So suppose n > 6.

For i, j € [n], there is at most one linear extension £ with £(vq) =i and £(v,) = j. If it exists, we denote it ¢; ;.

First, we claim (t2t3)3 and (t,_3tn—)> are the transpositions (€3,1 €4,1) and (£n n—3 £y n—2) respectively. This follows from
the characterization of when the braid relations hold.

Now, it suffices to prove that BKy, , , is 2-transitive, which is equivalent to its point-stabilizers’ being transitive. Consider
Stab(£p,1). Note that ty,t3, ..., t,_2 € Stab(¢, 1). Hence, Stab(¢, 1) is transitive on each of {¢; j |i<n—1, j=>2}, {{;j]i<
n—1, j=1},and {¢; j|i=n, j=>2}. It remains to observe that

(€32 €n2) = (t1tn—1tn—2 ... ta) (t2t3)3(ta . . . ta_2tn_1t1) € Stab(€n,1)
(Cn-11Ln—1n-2) = (ta—1t1t2 . .. tn—a) (tn—3tn—2)> (tn—4 . . . E2t1ta_1) € Stab(€n,1),

so Stab(¢y 1) is transitive. O
Proposition 4.14. By, ; . = G (n; ) and BN, ;; = SN,y p) foralla,c > 1.

Proof. By duality, it suffices to prove the result for Ny jc. Letn=c+3,50 N{1c=Vi <V2>V3<Vg4<---<Vp.

For i € [n — 1] and j € [max{3,i+ 1}, n], there is exactly one linear extension £ with £(v{) =i and £¢(v,) = j, which we
denote ¢; ;.

First, we claim (tpt3)3 = (€1,3 £1,4). This follows from the characterization of when the braid relations hold.
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Now, it suffices to prove that By, , . is 2-transitive, which is equivalent to its point-stabilizers’ being transitive. Consider
Stab(£p—1,n). Note that tq, ta, ..., th_3, th_1 € Stab(£y_1,»). Hence, Stab(£y_1 ) is transitive on {¢; j | j <n—2} and {¢; j | j >
n—1, i <n—1}. It remains to observe that

(€13 €1.0—1) = (tn—2tn—3...t4) (t263)> (L4 . . . tn_3tn_2) € Stab(€n_1,n),
so Stab(£n_1 ) is transitive. O

By using the same proof strategy, we are able to prove that the BK groups of the following posets are the full symmetric
group on the set of linear extensions:

Va+2 Va

Fig. 4. The poset Mg p.

Proposition 4.15. For a,b > 2, let M, be a poset on a + b elements with the relations vi < vy <+ < Vg, Vgq1 < Vg2 < -+ <
Vatb, and Va_1 < Va2 (see Fig. 4). Then BKy, , = S, ,)-

Proof. First, let £* be the linear extension such that £*(v;) =i. Notice that

t1.ta, ...t ... tayp_1 € Stab(£*).

Further note that t, ¢ Stab(¢) if and only if £ € {£*, t,(£*)}, i.e., t; acts as the transposition (€* t;(€*)) on L(Mgp).
Thus, it suffices to show that Stab(£*) is transitive on £(Mgp) \ {€*}. This follows from the observations above and the
fact that BK groups are always transitive (Proposition 2.9). O

One way to generalize the poset M, is to replace the covering relation v4_1 < vg42 with another relation x < y, where
x and y are drawn from two disjoint chains. However, in general these posets do not have the full symmetric BK groups;
for example, we found a counterexample in the poset defined by the relations vi < vy < v3 < vg4, V5 < Vg < V7 < vg, and
V) < V7.

4.3.1. Conjectural families and computational results
A natural conjectural family of posets P for which BXCp = G, p) follows from our investigation above.

Conjecture 4.16. By, , . = &, foralla,b,c > 1.

a,b,c

Besides the subfamilies proved in Propositions 4.13 and 4.14, our preliminary computation by SageMath indicates that the
conjecture holds for all 1 <a, b, c <4. As a remark, the proofs of Propositions 4.13, 4.14, and 4.15 rely on an observational
analysis of the linear extension graphs of these posets. As the parameters (a, b, c) grow, the linear extension graph of the
poset Ngp . becomes significantly more complex; for example, its dimension increases as parameters a and ¢ grow, and it
is no longer apparent that we can generate a transposition on £(Ngp ) from BK moves. A different proof strategy may be
required for the general case.

Another family of posets that is closely related to N, . is also conjectured to have the full symmetric BK groups.

Conjecture 4.17. The zigzag-poset Z, (Fig. 5), defined to be a poset of n elements with the relations

Vi<V2>V3<V4>...>2Vp 3<Vp_2>Vp_1<Vp,

satisfies BKz, = & £(z,) when n is even.
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n n

vy Vs Vna v
SN/ NSNS
Vi v3 Vn_3 Vi—1

Fig. 5. The zigzag-poset Z, when n is even.

This conjecture is computationally checked by SageMath for all even n < 10. When n is odd, we found small counterex-
amples in Zs, Z7, and Zg. A potential common generalization of Conjectures 4.16 and 4.17 concerns the zig-zag posets of
the form Zg, . 4, for odd n, where g; is the length of the ith segment; however, we found a counterexample in 712222
whose BK group is not the full symmetric group. Finally, we remark that the linear extension graphs of zig-zag posets are
very complicated and high-dimensional, for which our observational analysis used in the proof of Proposition 4.13 is not
suitable.

Our final conjecture involves the Ferrers posets, whose BK groups-in contrast with the fact that they always satisfy the
cactus relations [8]-do not always equal the full symmetric group on the set of linear extensions.

Conjecture 4.18. The families of Ferrers posets F satisfy BKr, = & £ (r,) for the following partitions A:

(1) A=(m,n—2) foralln;
(2) A= (n,3) forn=#2 (mod 4); and
3) A=(n,2,2) forn#£0 (mod 4).

Observe that for any partition A and its conjugate A!, Fy = F,: are isomorphic posets, so Conjecture 4.18 in fact claims
that the same property holds for the conjugates of all listed families of Ferrers posets. These conjectural classes have been
computationally checked by SageMath for (1) n <10, (2) n <18, and (3) n < 16. The data set for this analysis was generously
provided by J. Kamnitzer.

5. Size of BK groups

In this final section, we explore a notion of size of the group B/Cp relative to the total number of linear extensions of a
given poset P.

Definition 5.1. For a poset P, its stabilizer size sp is defined to be

b |BKp|
L)

Our naming is suggestive: Since the subgroup BXp of & (p) is transitive, by the orbit-stabilizer theorem, sp is the size
of the stabilizer of any linear extension of P. In particular, sp is a positive integer.
Part (1) of Proposition 4.2 and the fact that |[L(P & Q)| = |L(P)| - |£(Q)| immediately imply the following.

Proposition 5.2. For any posets P and Q, one has spgq = Spsq.

We now consider what integers are possible values of sp. If

P=Cn]+Cn2+---+an,

where Cp; is a chain of size n;, then sp =nq!ny!...n,! by Lemma 4.6. In particular, any integer that can be expressed as

a product of factorials (a Jordan-Pélya number) is a possible value of sp. But this condition is not necessary. For example,

(A3 ® A1 ® A1) + A1 has sp =466560. Thus, we turn to establishing some necessary conditions on possible values of sp.
Recall that a poset is indecomposable if it is not an ordinal sum of two or more non-empty posets.

Lemma 5.3. If P is indecomposable and not a disjoint union of chains, then &4 < Stab(¢).

Proof. Since P is not a disjoint union of chains, P either has a V-shaped or inverted V-shaped induced subposet. By duality,
we may assume P has an inverted V-shaped induced subposet; that is, there are u, v, w € P with the only relations among
them being v < u and w < u. Since P is indecomposable, there is an immediate child of u incomparable to some x, where
x is incomparable with u. Without loss of generality, assume this immediate child is w. If x and v are incomparable, then
u, v, w, and x form a convex induced subposet of P with Stab(¢) = Z/2Z x S4. If x > v, then u, v, w, and x form a convex
induced subposet of P with Stab(£) = G4. In either case, the proposition follows by Corollary 3.7. O
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Theorem 5.4. If sp # 6, 12, 36, 27, then either (Z /27)? x &3 < Stab(£) or G4 < Stab(¢). In particular, sp = 6,12, 36, 2" or 24 | sp.

Proof. We may assume that P is indecomposable. If P is a disjoint union of chains, the theorem follows from Lemma 4.6.
Otherwise, the theorem follows from Lemma 5.3. O

If 241sp, then by Lemma 5.3

P=Pi®P,® ---® Py,

where P; is a disjoint union of chains. Then, by Proposition 5.2,

S5p =56p5p,...5pP,

where each sp; can be calculated with Lemma 4.6. This yields classifications of posets with a given sp not divisible by 24.
As a special case, we have the following proposition.

Proposition 5.5. We have sp = 1 (i.e., the group action is simply transitive) if and only if P is an ordinal sum of antichains.

In fact, the BK group of an ordinal sum of antichains A;; ® A;, ® --- @ A;, is the product of symmetric groups &;, x
Gj, x -+ x Gy,
We now define a poset parameter that gives us useful information about the stabilizer, including a lower bound for sp.

Definition 5.6. For a poset P and ¢ € L(P), define

c(P,0):=|{ie[1,|P|—1] 710 < i+ 1)}

Then, the comparability of P is
c(P):= m[ax c(P,?).
In other words, c(P) is the maximum number of t; such that t; € Stab(¢).

Definition 5.7. Let G be a group. We say a set S C G is independent if s ¢ (S \ {s}) for all s € S. Then, let m(G) be the
maximum size of an independent set of involutions in G.

Proposition 5.8. We have m(G) < log, (|G|).
Proof. Given an independent set {g1, ..., 8m()} € G, we have

(g1) < (g1, 82) <---< (81,82, .-, 8m(©G))>

where each subgroup is at least twice as large as the previous one by Lagrange’s theorem. O
Proposition 5.9. If P is indecomposable, then c(P) < m(Stab(¢)).

Proof. By Corollary 3.3, ¢ has at least c(P) independent involutions in Stab(¢). O

Corollary 5.10. If P is indecomposable, then sp > 2¢(P),

Proof. This immediate from Propositions 5.8 and 5.9. O

Proposition 5.11. We have h(P) —1 < c(P) < |P|— w(P), where h(P) is the height of P and w(P) is the width of P. As a consequence,
5p > 2(P)—1,

Proof. For the first inequality, let P’ be a subposet of P obtained by removing a maximum chain C from P, so |P'| =
|P| — h(P). We construct £ € L(P) as follows. At each step, if label i can be assigned to the least element in C without a
label, then do so; otherwise, assign the label i to any other element for which it is possible. If £=1(i), ¢~1(i + 1) € C, then
271() < €71 + 1). Further, if £-1()) € P’ and ¢~1(i+ 1) € C, then £-1(i) < £~'(i + 1). It follows that h(P) — 1 < c(P).

For the second inequality, let A be a maximum antichain in P. Let £ € £(P). Then, given x, y € A with £(x) < £(y), there
must be some i € [£(x), £(y) — 1] such that £-1(i) is incomparable to £~1(i + 1). It follows that c¢(P) < |P| — w(P). O
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