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1. Introduction

First introduced by Bender and Knuth [2] in their study of enumerations of plane partitions and Schur polynomials, 
the Bender–Knuth (BK) moves, a certain family of involutions on the set of column-strict (semi-standard) Young tableaux, 
have seen a wide range of applications across different areas of combinatorics. They were shown to be equivalent to tableau 
switching, an involution on pairs of column-strict tableaux, on horizontal border strips of two adjacent letters, together with 
a swap of these labels [6,29]. Berenstein and Kirillov [3] studied an extension of these involutions, called piecewise-linear 
BK moves, acting on Gelfand–Tsetlin patterns and the relations they satisfy. Other interpretations and applications of BK 
moves appeared in the context of crystals for finite-dimensional complex reductive Lie algebras (e.g., [16]), shifted tableaux 
(e.g., [39,30]), and Grothendieck polynomials (e.g., [18,14]).

Informally, the BK moves ti act on a column-strict tableau by fixing an i (resp. i + 1) when there is an i + 1 below (resp. 
i above), and swapping the contents of the remaining letters i and i + 1 in each row. The (combinatorial) Berenstein–Kirillov 
(BK) group BK is defined to be the free group generated by variables ti for all i ∈ Z>0 , modulo the relations satisfied by 
the BK moves ti when acting on all column-strict tableaux. This group was formally introduced by Berenstein and Kirillov 
[3], whose work also included a list of relations in this group. More recently, Chmutov, Glick, and Pylyavskyy [8] related the 
BK moves to the cactus group Cn , the fundamental group of the moduli space of marked real genus zero stable curves (see, 
e.g., [9,10,17,16]). They showed that the BK moves ti acting on all column-strict tableaux satisfy the defining relations of Cn , 
giving a group homomorphism from Cn to the subgroup BKn ⊂ BK generated by {t1, . . . , tn−1} and yielding new relations 
previously unknown in BK. The same subject was concurrently investigated by Berenstein and Kirillov [4] using a purely 
group-theoretic approach. These results serve as one of the motivations for our work.

Recall that a linear extension of a poset P is a linear order that is compatible with P . Haiman [15] and Malvenuto and 
Reutenauer [23] introduced an analog of the BK moves ti on linear extensions of a poset P , which swap two adjacent 
letters i and i + 1 when they label incomparable elements of P and fix them otherwise, and used them to study promotion

and evacuation, operators on linear extensions first defined by Schützenberger [35,36]. A survey on basic properties and 
generalizations of these operators can be found in [38].

An important tool to study BK moves on linear extensions is the linear extension graph of a poset P , the graph whose 
vertices are labeled by linear extensions of P and edges are given by the BK moves that swap corresponding linear exten-
sions. Linear extension graphs were first introduced by Pruesse and Ruskey [26], and previously used in the study of linear 
extension generation (see, e.g., [32,37,42,24,5]) as well as Markov chains on the set of linear extensions (e.g., [1]). A survey 
on linear extension graphs can be found in [22].

In this context, we may define an analog of the Berenstein–Kirillov group on linear extensions of a given poset P , denoted 
by BKP . The goal of this paper is to study properties of this group BKP , attempting to characterize the classes of posets P
for which BKP enjoys various properties.

1.1. Outline of the paper

Section 2 provides basic definitions and constructions that are fundamental to this paper, including column-strict 
tableaux, linear extensions of posets, and BK moves on various combinatorial objects. Given a poset P , the Berenstein–Kirillov 
group of P , BKP , is defined to be the permutation group generated by the BK moves ti on linear extensions of P .

In Section 3, we focus on the relations in BKP . In particular, we will identify the posets P for which the trivialization 
relations (Proposition 3.1) and braid relations (Proposition 3.8) hold; note that the latter was previously observed by [1]. 
Progress is made towards understanding the posets P for which the cactus relations, fundamental relations in cactus groups, 
hold in BKP .

Finally, Sections 4 and 5 are dedicated to the study of the group BKP as a permutation group on the set L(P ) of all 
linear extensions of P . Section 4 focuses on understanding posets P for which BKP equals the full symmetric group on 
L(P ). More specifically, we classify all disconnected posets (Theorem 4.10) and series-parallel posets (Corollary 4.11), and 
exhibit a few other families of connected posets with this property. Section 5 explores the cardinality of BKP .

1.2. Acknowledgments

We are indebted to Vic Reiner for initiating the subject of study and providing extremely valuable guidance. We would 
like to thank Gregg Musiker and the 2022 University of Minnesota Combinatorics and Algebra REU staff for organizing the 
program. Finally, we thank Pasha Pylyavskyy, Joel Kamnitzer, Iva Halacheva, Sylvester Zhang for helpful discussions, and the 
referee for constructive feedback. This research was partially supported by RTG grant NSF/DMS-1745638.
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2. Basic definitions and constructions

In this section, we will provide the background on several algebraic and combinatorial objects that are fundamental to 
this paper, including column-strict and standard Young tableaux, linear extensions, Bender–Knuth involutions, and poset 
operations.

2.1. Column-strict tableaux and Bender–Knuth moves

Recall that a partition λ of a positive integer N is a tuple of integers λ = (λ1, λ2, . . . , λn) such that λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0

and 
∑n

i=1 λi = N . The Young diagram of shape λ is a finite collection of boxes arranged in left-justified rows, where the ith row 
has λi boxes. A column-strict (semi-standard) tableau T of shape λ is a filling of the Young diagram of shape λ that is weakly 
increasing along the rows and strictly increasing along the columns. A tableau T is said to have content α = (α1, α2, . . . , αn)

if there are αi occurrences of i in T for each i = 1, . . . , n; when the content is α = (1, 1, . . . , 1), the tableau T is called a 
standard Young tableau. Denote the set of all column-strict tableaux of shape λ and content α by CST(λ, α), and the set of 
standard Young tableaux of shape λ by SYT(λ).

Example 2.1. The Young diagram of shape (3, 2) is

(3,2) = .

The collection of column-strict tableaux of shape (3, 2) and content (1, 2, 1, 1) is

CST((3,2), (1,2,1,1)) =

{
1 2 2

3 4
,

1 2 3

2 4
,

1 2 4

2 3

}
.

Meanwhile, that of standard Young tableaux of the same shape is

SYT((3,2)) =

{
1 2 3

4 5
,

1 2 4

3 5
,

1 2 5

3 4
,

1 3 4

2 5
,

1 3 5

2 4

}
.

The primary combinatorial object of interest in this paper is the Bender–Knuth moves (or BK moves for short), which were 
originally defined on column-strict tableaux by Bender and Knuth [2] and further studied by several authors, e.g., [34,7,3,8]. 
Fix a partition λ, and let T be a column-strict tableau of shape λ and content α = (α1, . . . , αn).

Definition 2.2. The Bender–Knuth move ti for 1 ≤ i ≤ n − 1 is an involution (i.e., a permutation of order 2) of the set of 
column-strict tableaux of shape λ that sends T to the tableau obtained from the following procedure:

(1) Let S be the skew tableau obtained by taking only the boxes of T with entry equal i and i + 1;

(2) Observe that each row of S contains

(a) a entries equal to i that lie directly above an i + 1,

(b) b entries equal to i that are alone in their columns,

(c) c entries equal to i + 1 that are alone in their columns, and
(d) d entries equal to i + 1 that lie directly below an i
for some a, b, c, d ≥ 0;

(3) Construct a skew tableau S ′ by swapping b and c in each row of S;
(4) Define ti(T ) to be the tableau obtained by replacing S with S ′ in T .

Example 2.3. Consider the action of the BK move t2 on the tableau

T =

1 1 1 1 2 2 2 2 3

2 2 3 3 3 4

3 4 4 5

.

The skew tableau S containing only boxes labeled 2 and 3 in T is

S =

2 2 2 2 3

2 2 3 3 3

3

.

3
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Following Definition 2.2, observe that in the first row b = 3 (yellow boxes2) and c = 1 (pink boxes), so after swapping we 
get b′ = 1 and c′ = 3. The second row has b = 1 and c = 2, so we turn a 3 into a 2, whereas the third row has b = c = 0

and hence is fixed. The new skew tableau S ′ obtained after this process has the form

S ′ =

2 2 3 3 3

2 2 2 3 3

3

,

and hence

t2(T ) =

1 1 1 1 2 2 3 3 3

2 2 2 3 3 4

3 4 4 5

.

Let BK, called the (combinatorial) Berenstein–Kirillov (BK) group, denote the free group generated by the variables ti(
i ∈ Z>0

)
modulo the relations satisfied by the BK moves ti when acting on all column-strict tableaux of all possible shapes. 

Note that there exist other variations of the BK moves, e.g., piecewise-linear BK moves on Gelfand–Tsetlin patterns [3] and 
birational BK moves, which lead to different versions of the BK group. It is believed, but not proven, that they coincide. In 
this paper, we restrict our attention to the combinatorial version of these objects.

The relations in BK were first studied in a foundational paper of Berenstein and Kirillov [3], which included the following 
few:

(1) t2i = 1 for all i ≥ 1;

(2) (tit j)
2 = 1 for all i, j ≥ 1 with |i − j| ≥ 2;

(3) (t1qi)
4 = 1 for all i ≥ 3, where qi = t1(t2t1) . . . (titi−1 . . . t1); and

(4) (t1t2)
6 = 1.

More recently, Chmutov, Glick, and Pylyavskyy [8] found new relations in this group generalizing Relations (3):

(5) (tiq jk)
2 = 1 whenever i + 1 < j < k, where q jk = qk−1qk− jqk−1 ,

which interestingly give a group homomorphism from the cactus group Cn (cf. [9,17,16]) to the subgroup BKn ⊂ BK gen-

erated by {t1, . . . , tn−1}. For this reason, Relations (5) are called the cactus relations. It was remarked by [8] that Relation 
(4) is the only known relation in BK that does not follow from the relations in cactus groups. Similar observations were 
made by Berenstein and Kirillov [4] using a purely group-theoretic approach. Note that qi consists of an iterated product 
of ∂ j = t j . . . t2t1; both of these have been previously studied as operators on column-strict tableaux, called evacuation and 
promotion3 respectively, notably by [34–36,3]. It is known that evacuation qi is an involution, and so is q jk . Thus the cactus 
relations are equivalent to the commutativity of ti and q jk for all i + 1 < j < k.

2.2. Bender–Knuth moves on linear extensions

Here, we define an analog of the Berenstein–Kirillov group acting on linear extensions of posets. This involves two steps. 
First, we specialize the action of the BK moves on column-strict tableaux to standard Young tableaux. Then, we view 
standard Young tableaux as linear extensions of a certain kind of poset. This allows us to generalize the BK moves on 
standard Young tableaux to act on linear extensions of arbitrary posets. Thus, our analog of the Berenstein–Kirillov group on 
linear extensions of posets is in one sense more specific and in another sense more general than the classical Berenstein–
Kirillov group on column-strict tableaux. Note that the first step may (and indeed does) introduce new relations satisfied by 
the BK moves, whereas the second step may result in fewer relations. We discuss these claims in more detail below.

Let (P , ≤P ) be an n-element poset.

Definition 2.4. A linear extension of P is a linear order (�, ≤�) which extends P in the sense that x ≤P y implies x ≤� y.

More precisely, a linear extension � of P is a bijection � : P → {1, . . . , n} =: [n] such that x <P y implies �(x) < �(y). 
Alternatively, a linear extension � of P can be interpreted as an ordered list � = (p1, . . . , pn) of elements of P such that 
pi < p j implies i < j; the index of an element p on this list is precisely its label �(p). The set of all linear extensions of P is 

2 For interpretation of the references to colour please refer to the web version of this article.
3 More precisely, the operators ∂i and qi as defined here are partial promotion and evacuation, as they act only on the subtableaux containing the entries 

1, 2, . . . , i + 1, instead of the full tableaux.

4
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denoted by L(P ). The example below shows the poset P defined by the relations a, b < c, d (left) and a linear extension � of 
P (right). Observe that the labeling system on � satisfies Definition 2.4. In the alternative notation, we have � = (b, a, d, c).

a b

c d

2 1

4 3

Given a partition λ = (λ1, . . . , λn), the Young diagram of λ is a subset Dλ of {1, 2, . . .} × {1, 2, . . .} defined by

Dλ = {(i, j) : 1 ≤ j ≤ λi}.

The Ferrers poset Fλ of λ is defined to be the set Dλ with a partial order generated by the covering relations (i, j) < (i, j +1)

and (i, j) < (i + 1, j). It is well-known that there is a one-to-one correspondence between the standard Young tableaux of 
shape λ and the linear extensions of the corresponding Ferrers poset Fλ . The example below shows a standard Young 
tableau of shape λ = (4, 2, 1) and its corresponding linear extension of the Ferrers poset Fλ .

1 2 4 6

3 5

7

←→

1

2 3

4 5 7

6

Observe that if T is a standard Young tableau, by Definition 2.2, the BK move ti acts on T by simply switching i and 
i +1 if they label non-adjacent boxes and fixing T otherwise. Via the above bijection, there is an analog of the BK moves on 
linear extensions of Ferrers posets, which naturally extends to any arbitrary poset. This generalization was first introduced 
by Haiman [15] as well as Malvenuto and Reutenauer [23] to study promotion and evacuation on linear extensions, which 
are analogs of operators on column-strict tableaux previously studied by Schützenberger [34–36].

Definition 2.5. For a given n-element poset P and 1 ≤ i ≤ n − 1, the Bender–Knuth move ti is an involution of L(P ) that 
sends � = (p1, . . . , pn) to

(p1, . . . , pi+1, pi, . . . , pn)

if pi and pi+1 are incomparable, and fixes � otherwise.

As in the case with column-strict tableaux, two important operators generated by the BK moves are (partial) promotion 
∂i = titi−1 . . . t1 (by convention, ∂0 = 1) and (partial) evacuation qi = ∂0∂1 . . . ∂i . We refer the reader to [38] for a careful 
analysis of these operators; note that the inclusion of the identity operator ∂0 in qi is motivated by a procedural description 
in the reference of the evacuation qi as a series of i + 1 partial promotions. For the purpose of this paper, we emphasize a 
useful procedural description of the promotion operator ∂i :

Definition 2.6. Given an n-element poset P and 1 ≤ i ≤ n − 1, the promotion operator ∂i is a permutation of L(P ) that 
sends � ∈L(P ) to the linear extension of P obtained from the following procedure:

(1) Consider the subposet formed by the elements �−1(1), �−1(2), . . . , �−1(i + 1);

(2) Let p1 = �−1(1). Remove the label 1 from p1;

(3) Among the elements covering p1 , let p2 be the element with the smallest label �(p2);

(4) Slide this label down to p1;

(5) Repeat until we reach a maximal element pk . Label pk with i + 2 and subtract all labels on the entire subposet by 1.

We call p1 < p2 < . . . < pk a promotion chain. An immediate consequence of this interpretation is that when a promotion 
operator ∂i acts on a linear extension of a disjoint union of posets P1, . . . , Pn , the only component P i whose labels’ relative 
order may be affected is the one containing �−1(1).

Given a finite poset P , its linear extension graph is the graph whose vertices are labeled by linear extensions of P and 
edges are given by the BK moves that swap corresponding linear extensions (e.g., see Fig. 1). Linear extension graphs 
were first introduced by Pruesse and Ruskey [26], and previously used in the study of linear extension generation (e.g., 
[32,37,42,24,5]) and Markov chains on L(P ) (e.g., [1]).

We may define an analog of the BK group in this context.

5
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a b

c d

2 1

3 4

t1

1 2

3 4

2 1

4 3

t1

1 2

4 3

t3

t3

Fig. 1. Linear extension graph of the poset defined by the relations a,b < c,d.

Definition 2.7. For a given n-element poset P , the Berenstein–Kirillov group of P , denoted by BKP , is the permutation group 
of the set L(P ) generated by the BK moves ti (1 ≤ i ≤ n − 1).

Very few studies have investigated this group explicitly, e.g., [41,40]. Some relations are known to hold in BKP for all 
posets P , including

(1) t2i = 1 for all i ≥ 1;

(2) (tit j)
2 = 1 for all i, j ≥ 1 with |i − j| ≥ 2; and

(3) (titi+1)
6 = 1 for all i ≥ 1 [38].

When P is a Ferrers poset, the inclusion of Relations (3) represents new relations satisfied by the generators of the classical 
BK group when specialized to acting on standard Young tableaux. Furthermore, the result of [8] implies that the cactus 
relations hold in BKP in this case, alongside the above. Outside of these few exceptions, very little is known about the 
group relations in BKP .

Note that there is no direct correspondence between the relations in the groups BK and BKP for arbitrary posets P . 
This is because our definition of BKP involves first specializing the action of the BK moves to standard Young tableaux 
(which may create more relations among the generators ti , e.g., Relations (3) above) then generalizing to an action on linear 
extensions of arbitrary posets (which may eliminate some relations). This observation leads to the first motivating question 
of our paper:

Question 2.8. What further relations hold in BKP , for which posets P? In particular, for which posets P do the cactus 
relations hold in BKP ?

This question will be addressed in Section 3. In general, one of the main takeaways from our investigation is that not all 
relations in BK continue to hold in BKP for arbitrary posets P .

Similarly to its relations, very little has been established about the properties of BKP as a subgroup of the symmetric 
group on L(P ). The following fact about BKP as a permutation group of L(P ) has been widely utilized in different forms 
by, e.g., [25,21,12,11]. A proof was explicitly given by Ayyer, Klee, and Schilling (see Proposition 4.1 of [1]), by showing that 
linear extension graphs are strongly connected.

Proposition 2.9. BKP is a transitive subgroup of SL(P ).

Another rare instance is Vershik and Tsilevich’s study of the BK groups of Ferrers posets in the form of permutation 
groups on Young graphs [41]. Motivated by this lack of investigation, the second part of our paper will be guided by the 
following question about BKP :

Question 2.10. For which posets P does BKP = SL(P )? More generally, what can we say about the relative size of BKP as 
a transitive subgroup of SL(P )?

This question will be studied in Sections 4 and 5.

2.3. Poset operations

We fix the notations for various poset operations discussed in this paper. Let P and Q be finite posets. Let P ⊕ Q denote 
the ordinal sum of P and Q , where each element of P is less than every element of Q . Note that the ordinal sum operation 

6
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is not commutative; in general, P ⊕ Q �= Q ⊕ P . Let P + Q denote the disjoint union of P and Q . On the contrary, this 
operation is commutative. Finally, let P∗ be the dual of the poset P , defined by inverting the order of P in the sense that 
x ≤P∗ y if and only if y ≤P x.

3. Relations in BKP

In this section, we discuss the group relations in BKP , including the trivialization, braid, and cactus relations. The 
most important findings are located in Section 3.2, where we study posets for which the cactus relations hold in their BK 
groups and study their behaviors under disjoint union and ordinal sum operations, and Section 3.3, where we study several 
potential families of such posets.

3.1. Relations in BKP and convex induced subposets

Let P be an n-element poset. Recall that a relation in BKP is an equation w = 1, where w is a word in the alphabet 
{t1, . . . , tn−1}. The first natural family of relations in BKP that we will discuss is the relations ti = 1, called the trivialization 
of ti .

Proposition 3.1. For 1 ≤ i ≤ n − 1, the relation ti = 1 holds in BKP if and only if P can be written as an ordinal sum P = P1 ⊕ P2

where |P1| = i.

Proof. When P = P1 ⊕ P2 with |P1| = i, every linear extension � of P has �(P1) = {1, 2, . . . , i} and �(P2) = {i + 1, i +
2, . . . , n}, so �−1(i) <P �−1(i + 1), and ti fixes �.

Conversely, if P �= P1 ⊕ P2 whenever |P1| = i, we claim that for any order ideal (lower set) I of P with cardinality |I| = i, 
there exist a maximal element u of I and a minimal element v of the upper set P \ I such that u and v are incomparable. 
Suppose not, then for every maximal element u of I and every minimal element v of P \ I , we have u <P v , as u >P v /∈ I

is not allowed given that I is an order ideal. Therefore, P = I ⊕ (P \ I), a contradiction.
Let I be an order ideal of P with cardinality |I| = i; for example, choose the inverse image I = f −1({1, 2, . . . , i}) for 

any f ∈ L(P ). We now construct a linear extension � of P such that ti(�) �= �. By the previous claim, we may find an 
incomparable pair of elements {u, v} of P where u is maximal in I and v is minimal in P \ I . Construct a linear extension 
� by first labeling �(u) = i and �(v) = i + 1, then using arbitrary linear extensions to label I \ {u} with {1, 2, . . . , i − 1} and 
(P \ I) \ {v} with {i + 2, i + 3, . . . , n}. It is easy to check that ti swaps the labels of u and v in �, and hence ti(�) �= �. �

Definition 3.2. A poset is (ordinally) indecomposable if it is not an ordinal sum of two or more non-empty posets.

Corollary 3.3. Let |P | = n. If P is indecomposable, then {t1, . . . , tn−1} is an inclusion-minimal generating set in BKP .

Proof. By Proposition 3.1, there is some linear extension � on which ti is not in the stabilizer. Let |P | = n. Suppose for 
contradiction that w� = ti� for some w ∈ 〈t1, t2, . . . , t̂i, . . . , tn−1〉. Then consider the order ideal I such that �(I) = [i], i.e., 
the elements of P with labels {1, 2, . . . , i}. Then any action that is not ti preserves this image �(I), so i +1 /∈ w�(I). However, 
we have i + 1 ∈ ti�(I), a contradiction. �

Next, we present a useful tool for studying the relations in BKP by examining the convex induced subposets of P . Recall 
that an induced subposet Q ⊆ P is a subset of vertices in P such that for any x, y ∈ Q , x ≤Q y if and only if x ≤P y. A convex 
induced subposet is an induced subposet such that if x, z ∈ Q and y ∈ P satisfy x ≤P y ≤P z, then y ∈ Q .

Definition 3.4. A relation type in BKP is a set of relations w i = 1, where w i is obtained from a fixed word w in {t1, . . . , tn−1}

by translating the indices of all generators t j in w by an integer i, such that 1 ≤ i + j ≤ n − 1 for all j.

For example, (t1t2)6 = 1 is a relation, whereas the relations (titi+1)
6 = 1 form a relation type. The following proposition 

gives a means to generate relation types in the BK groups for convex induced subposets.

Proposition 3.5. If a relation type holds in BKP , then it also holds in BKQ for every convex induced subposet Q of P .

The proof of this statement makes use of the following lemma.

Lemma 3.6. Let Q be a convex induced subposet of P and �1 ∈ L(Q ). Then there is a linear extension �2 ∈ L(P ) such that for some 
i ∈ Z≥0 , �2(v) = �1(v) + i for all v ∈ Q .

7



J.H.-H. Chiang, A.T.N. Hoang, M. Kendall et al. Discrete Mathematics 347 (2024) 114068

Proof. Disjointly decompose the poset P into three subposets I , Q , and F , where

I := {p ∈ P \ Q : there exists q ∈ Q with q > p}, and F := P \ (Q � I).

Then the subposet Q � I of P containing the elements of Q and I will be an order ideal of P , and because Q is convex, I
is an order ideal of Q � I . Letting i := |I|, q := |Q |, and f := |F |, one can therefore form a linear extension �2 of P having 
�−1
2 ({1, 2, . . . , i}) agree with any linear extension of I , having �−1

2 ({i + 1, i + 2, . . . , i + q}) agree with �1 after adding i to the 
values in �1 , and having �−1

2 ({i + q + 1, i + q + 2, . . . , i + q + f }) agree with any linear extension of F after adding i + q to 
its values. �

Proof of Proposition 3.5. We prove the contrapositive. Suppose there is a convex induced subposet Q ⊆ P for which the 
relation type does not hold in BKQ . That is, there exists a relation w(ti, . . . , ti+k) = 1 of this type which fails on a linear 
extension �1 of Q . By Lemma 3.6, there is a linear extension �2 ∈ L(P ) such that for some j ∈ Z≥0 , �2(v) = �1(v) + j for 
all v ∈ Q . It is now easy to check that w(ti+ j, . . . , ti+ j+k) = 1 fails on �2 . �

Lemma 3.6 directly implies an interesting fact about convex induced subposets:

Corollary 3.7. If Q is a convex induced subposet of P , then there is an injection BKQ ↪→ BKP .

As an application of Proposition 3.5, we examine a well-known relation type called the braid relations in BKP for an 
n-element poset P . Recall that the braid relations are of the form (titi+1)

3 = 1 for all i = 1, . . . , n −2. The following fact was 
previously observed by Ayyer, Klee, and Schilling (see Proposition 2.2 of [1]), but with the proof omitted.

Proposition 3.8. The braid relations hold in BKP if and only if P is a disjoint union of chains.

Proof. One can check that the only posets of cardinality 3 that fail to satisfy the relation (t1t2)3 = 1 are defined by either 
a > b < c (V-shaped) or a < b > c (inverted V-shaped). Any poset that contains one of these two posets as an induced 
subposet contains it as a convex induced subposet, and hence will fail to satisfy (titi+1)

3 = 1 for some i by Proposition 3.5. 
The posets that do not contain one of these two posets are precisely disjoint unions of chains. Conversely, suppose, by 
contradiction, that a disjoint union of chains fails to satisfy (titi+1)

3 = 1 for some i. Then the induced subposet on the 
elements with labels i, i + 1, and i + 2 fails to satisfy (t1t2)3 = 1, and hence is one of the two posets mentioned above. But 
a disjoint union of chains does not have such an induced subposet, so we have a contradiction. �

Since the braid relations are the defining relations of the symmetric group Sn and the braid group Bn , it follows that 
the natural map (of sets) that sends the generator σi of Sn (resp. Bn) to ti for all 1 ≤ i ≤ n − 1 gives a well-defined action 
of Sn (resp. Bn) on L(P ) only when P is a disjoint union of chains.

3.2. Cactus relations in BKP

Another important family of relations involving the generators ti is the cactus relations, which have the form (tiq jk)
2 = 1, 

where q jk = qk−1qk− jqk−1 and q j = t1(t2t1) . . . (t jt j−1 . . . t1) for any i + 1 < j < k. Recall that when P is a Ferrers poset, the 
cactus relations hold in the group BKP for all i + 1 < j < k ≤ |P |. One reasonable question is whether the same statement 
is true for an arbitrary poset. Unfortunately, that is not the case.

Example 3.9. On the 4-element posets, there is only one eligible cactus relation: (t1q34)2 = 1. The only 4-element connected 
posets for which this relation fails are the followings:

For a counterexample with 5 elements, the following poset exhibits an interesting property that all eligible cactus rela-
tions fail in its BK group:

8
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The fact that cactus relations do not hold in general on all linear extensions of all posets presents a major deviation 
from the original BK group BK on semi-standard Young tableaux, a subset of which–namely the standard Young tableaux–
corresponds to linear extensions of Ferrers posets. It remains of interest to examine when the cactus relations hold in BKP , 
i.e., when there is a natural action of the cactus group C|P | on L(P ). We have already encountered one family of posets for 
which this holds true.

Theorem 3.10 ([8]). The cactus relations hold in BKP for all Ferrers posets P .

For the rest of this section, we will study properties of posets P for which the cactus relations hold in BKP . We will 
also identify several sufficient conditions for such posets. As a preview, later in this section, we will show that starting with 
an arbitrary poset P , we can force the cactus relations to hold or to not hold in BKP by taking an ordinal sum with a 
sufficiently large chain (Proposition 3.20) or with a sufficiently large antichain (Proposition 3.19).

First, observe that Proposition 3.5 does not apply to the cactus relations, since they do not form a relation type: implicitly 
q jk contains the operators q j = t1(t2t1) . . . (t jt j−1 . . . t1) which always involve t1 . However, there is an analogous statement 
for when the cactus relations hold in BKP .

Proposition 3.11. The cactus relations hold in BKP if and only if they hold in BKI for every order ideal I of P .

Proof. By contrapositive, suppose that there exists an order ideal I of P such that not all applicable cactus relations hold 
in BKI . Let |I| =m, then there exists a triple (i, j, k) where 2 ≤ i + 1 < j < k ≤m and a linear extension �1 of I , such that 
(tiq jk)

2(�1) �= �1 . From �1 , we can construct a linear extension � of P by setting � = �1 on I and � = �2 +m on P \ I for some 
linear extension �2 of the induced subposet P \ I . Thus, by the above construction, (tiq jk)

2(�) �= �, so the cactus relation 
(tiq jk)

2 = 1 does not hold in BKP . The converse immediately follows from the fact that P is an order ideal of itself. �

This result is especially useful in eliminating posets P for which some cactus relations do not hold in BKP by identifying 
(small) ideals sitting in them for which the same holds.

3.2.1. Disjoint unions
Let P and Q be finite posets. We will show that if the cactus relations hold in BKP and BKQ , then they hold in 

BKP+Q .

We first define the following map on linear extensions of the disjoint union P + Q to help break down showing com-

mutativity of ti and q jk on an entire linear extension of P + Q .

Definition 3.12. Let P and Q be posets with |P | =m and |Q | = n. Define the map

T : L(P + Q ) → L(P ) ×L(Q ) ×

(
[m + n]

m

)
×

(
[m + n]

n

)

by � �→ (�P , �Q , S(P ), S(Q )),

where S(P ) and S(Q ) are the sets of labels in � on P and Q , and �P and �Q are independent linear extensions on P and 
Q which agree with �, in the sense that for any p1, p2 ∈ P , �P (p1) ≤ �P (p2) if and only if �(p1) ≤ �(p2), and similarly for 
Q .

It is not difficult to see that T is an injection. It is also straightforward to transfer the action of ti on � to an action on 
the tuple (�P , �Q , S(P ), S(Q )). If �−1(i) is in P and �−1(i + 1) is in Q or vice versa, then ti swaps the label i in S(P ) with 
i + 1 in S(Q ) while keeping �P and �Q the same. If i and i + 1 are both in P , then ti stabilizes S(P ), S(Q ), and �Q , while 
acting on �P by ti′ where i′ = |S(P ) ∩ [i]|.

Example 3.13. Consider the following linear extension � of a disjoint union P + Q (where the posets P and Q underlie the 
left and right components, respectively):

1

42

6 5 9

3 7

8 10

The map T sends this linear extension to the tuple containing linear extensions �P and �Q :

9
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1

32

5 4 6

1 2

3 4

�P �Q

and the sets of labels S(P ) = {1, 2, 4, 5, 6, 9} and S(Q ) = {3, 7, 8, 10}.
Observe that if we act on � by t3 , the resulting �P and �Q stays the same, while we have new label sets S ′(P ) =

{1, 2, 3, 5, 6, 9} and S ′(Q ) = {4, 7, 8, 10}, with 3 and 4 swapped. On the other hand, if we act on � by t5 , the resulting 
S(P ), S(Q ), and �Q stay the same while �′

P = t4(�P ).

The following lemma describes the action of qi−1 on the label sets S(P ) and S(Q ).

Lemma 3.14. Let P , Q be finite posets and fix a linear extension � ∈L(P + Q ). Let 1 ≤ i ≤ |P + Q |, then

i) For all j ≤ i, j ∈ S(P ) if and only if i − j + 1 ∈ (qi−1S)(P );

ii) For all j > i, j ∈ S(P ) if and only if j ∈ (qi−1S)(P ).

Proof. The converse of each statement follows directly from the fact that qi−1 is an involution. Note that (ii) is immediate, 
as qi−1 only affects the labels in [i], so j > i remains a label in (qi−1S)(P ). It remains to show (i).

Consider the action of qi−1 = ∂0∂1∂2 . . . ∂i−1 on a fixed linear extension � ∈ L(P + Q ), where ∂ j = t jt j−1 . . . t1 is the 
promotion operator. Observe that by Definition 2.6, if 1 ∈ S(P ), then we have j + 1 ∈ (∂ j S)(P ). On the other hand, if 
k ∈ S(P ) and 1 < k ≤ j, then k − 1 ∈ (∂ j S)(P ). Let j ∈ S(P ) where j ≤ i. After applying the first j − 1 promotion operators 
in qi−1 , by this observation, we have 1 ∈ (∂i− j+1 . . . ∂i−2∂i−1S)(P ). Thus, by applying the operator ∂i− j , we have i − j + 1 ∈
(∂i− j . . . ∂i−2∂i−1S)(P ). Since the label i − j + 1 is fixed by all subsequent promotions ∂k where k < i − j, it follows that 
i − j + 1 ∈ (qi−1S)(P ) as desired. �

We also need the following lemma describing the action of q jk on �P and �Q .

Lemma 3.15. Let � ∈L(P + Q ), and let T (�) = (�P , �Q , S(P ), S(Q )). Then

T (q jk�) = (qm−n,m(�P ),qk−m,k− j−n−1(�Q ), (q jk S)(P ), (q jk S)(Q )).

where m = |S(P ) ∩ [k]| and n = |S(P ) ∩ [ j, k]| − 1.

Proof. First, we examine the induced action of q jk on �P . Consider the action of qk−1 = ∂0∂1 . . . ∂k−1 on �. The description 
of promotion in Definition 2.6 implies that each operator ∂i in qk−1 (0 ≤ i ≤ k − 1) only acts on (�i)P if �−1

i (1) lies in the 
component P and on (�i)Q otherwise, where �i = ∂i+1 . . . ∂k−1(�). The number of promotion operators in qk−1 that act on 
the labels of P therefore is equal to the number of linear extensions �i for which (�−1

i )(P ) lies in the component P , which 
by the observation in the previous proof is precisely m = |S(P ) ∩[k]|. Observe that by Definition 2.6, the action of promotion 
on �P does not depend on the labels of � on P , but only their relative order encoded by �P . Hence, we deduce that the 
action on � by qk−1 = ∂0∂1 . . . ∂k−1 is mapped under T to the action on �P by qm−1 .

Now we consider the action of qk− j on qk−1�. By the same argument above, the induced action of qk− j on qm(�P ) is 
equivalent to the action of qn′−1 on qm−1(�P ), where n′ = |(qk−1S)(P ) ∩ [k − j + 1]|. If c ∈ S(P ) and c > k, by Lemma 3.14, 
we have c ∈ (qk−1S)(P ), which does not contribute to n′ . Otherwise, if c ≤ k, by Lemma 3.14, we have k − c+1 ∈ (qk−1S)(P ). 
Thus, n′ = |(qk−1S)(P ) ∩ [k − j + 1]| = |S(P ) ∩ [ j, k]|.

Finally, we act again by qk−1 on qk− jqk−1�. The induced action of qk−1 on qn′−1qm−1�P is equivalent to the action 
of qm′−1 on qn′−1qm−1�P , where m′ = |(qk− jqk−1S)(P ) ∩ [k]|. However, by Lemma 3.14, we have |(qk− jqk−1S)(P ) ∩ [k]| =
|(qk−1S)(P ) ∩ [k]| = |S(P ) ∩ [k]|. Thus, the action of qk−1 here is equivalent to the action of qm−1 on qn′−1qm−1�P , and as 
the result, the action of q jk on � induces the action of qm−1qn′−1qm−1 = qm−n,m on �P , where n = n′ −1 = |S(P ) ∩ [ j, k]| −1.

By symmetry, the induced action on �Q is given by qm′−n′,m′ where m′ = |S(Q ) ∩ [k]| and n′ = |S(Q ) ∩ [ j, k]| − 1. Since 
|S(P ) ∩[k]| +|S(Q ) ∩[k]| = k and |S(P ) ∩[ j, k]| +|S(Q ) ∩[ j, k]| = k − j +1, we deduce that m′ = k −m and n′ = k − j −n −1. 
Hence

T (q jk�) = (qm−n,m(�P ),qk−m,k− j−n−1(�Q ), (q jk S)(P ), (q jk S)(Q ))

where m = |S(P ) ∩ [k]| and n = |S(P ) ∩ [ j, k]| − 1, as desired. �
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Now we are ready to prove our main proposition.

Theorem 3.16. Let P and Q be finite posets. If the cactus relations hold in BKP and BKQ , then they hold in BKP+Q .

Proof. Let � ∈L(P + Q ) be any linear extension of P + Q , and let T (�) = (�P , �Q , S(P ), S(Q )). Since the map T is injective, 
it suffices to show that for all 2 ≤ i + 1 < j < k ≤ |P + Q |, ti and q jk commute with respect to each of �P , �Q , S(P ), and 
S(Q ). We consider two general cases.

Case 1: Assume without loss of generality that i, i + 1 ∈ S(P ). First we show that ti and q jk commute with respect to 
S(P ) and S(Q ). Observe that if i (or i + 1) is in S(P ), by applying Lemma 3.14 three times, we have i (or i + 1) is also 
in (qk−1qk− jqk−1S)(P ) = (q jk S)(P ). It follows that ti acts as the identity on both S(P ) and (q jk S)(P ), so clearly ti and q jk

commute.

It remains to show that ti and q jk commute with respect to �P and �Q . Since i, i + 1 ∈ (q jk S)(P ), ti does not affect �Q

and q jk(�Q ). It then suffices to show that ti and q jk commute with respect to �P . By Lemma 3.15, the induced actions of 
tiq jk and q jkti on �P are given by to ti′qm−n,m and qm−n,mti′ , respectively, where m = |S(P ) ∩ [k]| and n = |S(P ) ∩ [ j, k]| − 1

and i′ = |S(P ) ∩ [i]|. Further note that

(m − n) − i′ = |S(P ) ∩ [k]| − (|S(P ) ∩ [ j,k]| − 1) − |S(P ) ∩ [i]|

= |S(P ) ∩ [i + 1, j − 1]| + 1 ≥ 2

since i +1 ∈ S(P ), thus i′ +1 <m −n. Hence, we have ti′qm−n,m(�P ) = qm−n,mti′ (�P ), following directly from the assumption 
that BKP satisfies the cactus relations.

Case 2: Assume without loss of generality that i ∈ S(P ) and i + 1 ∈ S(Q ), which configuration we simply denote as 
(i, i + 1). We consider where the labels i, i + 1 are taken under ti and q jk . When acting on � by q jkti , by the above 

observation we have (i, i +1) 
ti
−→ (i +1, i) 

q jk
−→ (i +1, i). On the other hand, acting on � by tiq jk gives (i, i +1) 

q jk
−→ (i, i +1) 

ti
−→

(i +1, i), which agrees with the action of q jkti . A consequence is that the set of other labels are preserved by both tiq jk and 
q jkti , and since ti fixes all other labels, we deduce that ti and q jk commute with respect to S(P ) and S(Q ).

By a prior observation, we have i ∈ (q jk S)(P ) and i +1 ∈ (q jk S)(Q ). Thus, ti acts as the identity on each of �P , �Q , q jk(�P ), 
and q jk(�Q ), as swapping elements i and i + 1 does not change the relative ordering within the label sets. Then clearly ti
and q jk commute with respect to �P and �Q .

Hence, we conclude that tiq jk(�) = q jkti(�) for all � ∈L(P + Q ), so the cactus relations hold in BKP+Q . �

The converse of this proposition follows directly from Proposition 3.11. This property then allows us to narrow our focus 
to studying connected posets whose BK groups satisfy the cactus relations.

3.2.2. Ordinal sums

In contrast with disjoint unions, ordinal sums of posets whose BK groups satisfy the cactus relations exhibit a more 
complicated behavior. In particular, the BK group of an ordinal sum of two posets whose BK groups satisfy the cactus 
relations may not satisfy the cactus relations.

Let P be an n-element poset. We next study the construction P �→ Am ⊕ P , where Am is an antichain of m elements, and 
ask whether the cactus relations are preserved in their BK groups.

Proposition 3.17. If the cactus relations hold in BKP , then they hold in BKA1⊕P .

Proof. Observe that there is a one-to-one correspondence between the sets of linear extensions of P and A1 ⊕ P : a linear 
extension of A1 ⊕ P is simply a linear extension of P (with labels shifted up by 1) with the unique minimal element of 
A1 ⊕ P (namely the singleton in A1) labeled 1. Thus t1 is the identity. It follows that for any 3 ≤ i + 1 < j < k − 1 ≤ n + 1, 
the relation (tiq jk)

2 = 1 on L(A1 ⊕ P ) reduces to a cactus relation on linear extensions of the convex induced subposet P
of A1 ⊕ P , which holds since the cactus relations hold in BKP . The only other cases are when i = 1 or k = j + 1. When 
i = 1, (t1q jk)

2 = q2
jk

= 1 for all 2 < j < k ≤ n + 1, since q jk is an involution. When k = j + 1, observe that

q jk = qk−1qk− jqk−1 = qk−1q1qk−1 = qk−1t1qk−1 = q2k−1 = 1,

since qk−1 is an involution. Thus q jk = 1, so that (tiq jk)
2 = t2i = 1 as desired. �

Proposition 3.18. If the cactus relations hold in BKA1⊕P , then they hold in BKA2⊕P . Hence if the cactus relations hold in BKP , then 
they hold in both BKA1⊕P and BKA2⊕P .

Proof. Suppose A2 = {p1} +{p2}, and let P i be the convex induced subposet of A2 ⊕ P of the form {pi} ⊕ P . By assumption, 
the cactus relations hold in each BKP i

. Similar to the previous argument, observe that a linear extension of A2 ⊕ P is a 
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linear extension of P (with labels shifted up by 2) with the labels of minimal elements p1 and p2 drawn from {1, 2}. Thus 
t2 is the identity. For j ≥ 1, we have

q j = t1(t2t1) . . . (t jt j−1 . . . t1) = t1(t1) . . . (t j . . . t3t1)

= t
j
1(t3)(t4t3) . . . (t jt j−1 . . . t3) = t

j
1q

′
j

where

q′
j = (t2)(t3t2)(t4t3t2) . . . (t jt j−1 . . . t3t2) = (t3)(t4t3) . . . (t jt j−1 . . . t3).

Since q1 = t1 , by definition q′
1 = 1. Notice that t1 and q′

j always commute, so for 2 < j < k ≤ n + 2, we have

q jk = qk−1qk− jqk−1 = (tk−1
1 q′

k−1
)(t

k− j
1 q′

k− j
)(tk−1

1 q′
k− j

)

= t
k− j
1 (q′

k−1
q′
k− j

q′
k−1

) =: t
k− j
1 q′

jk
.

Since each q′
j commutes with t1 , so does q′

jk
.

We show that the cactus relation (tiq jk)
2 = 1 holds by considering the following cases:

Case 1: i = 2. We have (t2q jk)
2 = q2

jk
= 1, since q jk is an involution.

Case 2: i = 1. We have t1q jk = t1t
k− j
1 q′

jk
= t

k− j
1 q′

jk
t1 = q jkt1 , so (t1q jk)

2 = 1.

Case 3: i ≥ 3 and k − j = 1. Recall that q′
k− j

= q′
1 = 1, so q jk = t1(q

′
k−1

)2 = t1 , which obviously commutes with ti if i ≥ 3.

Case 4: i ≥ 3 and k − j ≥ 2. We have (tiq jk)
2 = (tit

k− j
1 q′

jk
)2 = (t

k− j
1 )2(tiq

′
jk
)2 = (tiq

′
jk
)2 , so it suffices to show that (tiq′

jk
)2 =

1 for all i ≥ 3 and k − j ≥ 2. This equation reduces to a cactus relation on linear extensions of either P1 or P2 , which holds 
since by assumption the cactus relations hold in each BKP i

.

The second part follows immediately from Proposition 3.17 and the first part. �

Seeing Propositions 3.17 and 3.18, one might think that given any poset P for which the cactus relations hold in BKP , 
they continue to hold in BKAm⊕P for all m ≥ 1. Unfortunately, this is not the case:

Proposition 3.19. For any non-empty finite poset P , some cactus relations do not hold in BKAm⊕P for m ≥ 3.

Proof. Observe that Am ⊕ P always contains a copy of Am ⊕ A1 as an order ideal. Thus, by Proposition 3.11, it suffices to 
show that some cactus relations do not hold in BKAm⊕A1 for all m ≥ 3. When m = 3, one can check that the cactus relation 
(t1q34)

2 = 1 does not hold. When m ≥ 4, we claim that the cactus relation (t1qm−1,m+1)
2 = 1 does not hold. By studying 

the evacuation q j on linear extensions of the poset Am ⊕ A1 (see, e.g., [38]), we observe that qm−1,m+1 swaps the labels 1
and m − 1, while t1 swaps the labels 1 and 2. These descriptions show that they do not commute. �

While taking the ordinal sum with sufficiently large antichains creates a source of posets whose BK groups do not satisfy 
the cactus relations, the same operation with sufficiently long chains appears to have the exact opposite effect. Let Cm

denote a chain of m elements.

Proposition 3.20. For any n-element poset P and for any m ≥ n − 3, the cactus relations hold in BKCm⊕P .

Proof. By Proposition 3.17, it suffices to show that the cactus relations hold in BKCn−3⊕P . The key observation is that 
ti is the identity for all i ≤ n − 3, since the element of P labeled by i lies inside the lower chain and thus is com-

parable to that labeled by i + 1. Consider the operators ti and q jk = qk−1qk− jqk−1 for 2 ≤ i + 1 < j < k ≤ 2n − 3. If 
i ≤ n − 3, ti = 1 obviously commutes with q jk . If i ≥ n − 2, then j ≥ n, so k − j ≤ (2n − 3) − n = n − 3. It follows that 
qk− j = t1(t2t1) . . . (tk− jtk− j−1 . . . t1) = 1, therefore q jk = q2

k−1
= 1 which obviously commutes with ti . �

3.3. Minuscule, d-complete, and jeu-de-taquin posets

Starting with the singleton poset A1 , by iterating the constructs of disjoint union and ordinal sum P �→ A1 ⊕ P , we 
produce the family of all rooted forest posets–disjoint unions of trees with a unique minimal element, whose BK groups satisfy 
the cactus relations by Theorem 3.16 and Proposition 3.17. Knuth observed a famous hook-length formula for counting the 
linear extensions of such forest posets [19]. The original motivation for this finding was the family of Ferrers posets for 
which the Frame–Robinson–Thrall hook-length formula counts their linear extensions [13], another family of posets whose 
BK groups satisfy the cactus relations. Motivated by these two families with hook formulas, Proctor introduced the family 
of d-complete posets having such a hook-length formula for their linear extensions; we refer the readers to [28] and [20] for 

12
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the precise definitions and hook-length formulas. This raises the question of whether the BK groups of d-complete posets 
satisfy the cactus relations.

Preliminary investigations point to an affirmative answer. Besides the above families, it is not too hard to show that the 
BK groups of all shifted Ferrers posets, another motivating subfamily of d-complete posets, satisfy the cactus relations.

Theorem 3.21. The cactus relations hold in BKP for all shifted Ferrers posets P .

Proof. First, we embed standard shifted tableaux, which are in bijection with linear extensions of shifted Ferrers posets, by 
“doubling” them into shift-symmetric column-strict tableaux [33]; see Example 3.22. Since the content of a standard shifted 
tableau strictly increases across the column and row, the classical BK moves ti act the same on the resulting shift-symmetric 
column-strict tableau restricting to the embedded standard shifted part as on the standard shifted tableau itself. That is, 
the action of ti on the standard shifted tableau commute with the action of ti on the shift-symmetric tableau, where BK 
moves satisfy the cactus relations. Therefore, the cactus relations hold in BKP for posets P of shifted Young diagram shape, 
concluding the proof. �

Example 3.22. Below is an example construction of a shift-symmetric column-strict tableau from a standard shifted tableau.

S =

1 2 3 4

5 6 7

8 9

⇒ T =

1 1 2 3 4

2 5 5 6 7

3 6 8 8 9

4 7 9

.

Another closely related family of posets is the minuscule posets, which first appeared in Lie theory. Proctor’s d-complete 
posets contain all order ideals within minuscule posets as a motivating special case. Minuscule posets are classified into 
three infinite families and two exceptional cases (see, e.g., [39,31]). The infinite families of minuscule posets are the rect-
angular Ferrers posets (whose order ideals contain all Ferrers posets), the triangular shifted Ferrers posets (whose order 
ideals contain all shifted Ferrers posets), and ordinal sums of antichains A⊕n

1 ⊕ A2 ⊕ A⊕n
1 ; all of whose BK groups satisfy the 

cactus relations based on our results so far. By checking the cactus relations in the BK groups of the remaining exceptional 
minuscule posets using SageMath, we have verified the following:

Theorem 3.23. The cactus relations hold in BKP for all minuscule posets P .

Based on the existing evidence, we make the following conjecture.

Conjecture 3.24. The cactus relations hold in BKP for all d-complete posets P .

This has been verified by SageMath for all d-complete posets of size at most 9.

Remark 3.25. In [27], Proctor also studied a large family of posets called jeu-de-taquin posets, which he showed includes all 
d-complete posets. Informally, jeu-de-taquin posets are posets for which Schützenberger’s jeu-de-taquin on linear extensions 
of posets, as discussed in [38], has an extra confluence property.

For such posets, we could show that q jk only permutes the labels j, j + 1, . . . , k when acting on a linear extension. Thus, 
it is more probable for ti and q jk to commute because they affect disjoint subsets of the labels. Hence, one might hope that 
the BK groups of jeu-de-taquin posets satisfy the cactus relations. However, this is not true; Fig. 2 shows a counterexample, 
where the cactus relation (t3q59)2 = 1 does not hold for this linear extension whose underlying poset is jeu-de-taquin.

1

2 3
4

5

67 8

9

Fig. 2. The smallest jeu-de-taquin poset whose BK group does not satisfy the cactus relations.

13
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4. Posets with the full symmetric BK group

In this section, we will study the group BKP as a subgroup of the symmetric group on the set L(P ). In particular, we 
focus on understanding posets P for which BKP =SL(P ) .

4.1. Duals and ordinal sums

As in Section 3.2, we explore properties of posets whose BK groups equal the symmetric group on the set of their linear 
extensions, particularly their behavior under poset operations such as taking duals and ordinal sums. Let P and Q be finite 
posets, and let P∗ denote the dual or opposite poset to P .

Proposition 4.1. One has a group isomorphism BKP
∼= BKP∗ . Hence BKP

∼= SL(P ) if and only if BKP∗ ∼= SL(P∗) .

Proof. One has a bijection L(P ) → L(P∗) sending � �→ �′ where �′(v) = |P | + 1 − �(v) for all v ∈ P . This induces an 
isomorphism of symmetric groups SL(P ) → SL(P∗) , which then restricts to an isomorphism BKP → BKP∗ sending ti �→

t|P |−i . �

Likewise, the BK group of the ordinal sum of two posets has a very nice description in terms of the BK groups of its 
components.

Proposition 4.2. BKP⊕Q
∼= BKP ×BKQ .

Proof. Let

λ : L(P ⊕ Q ) → L(P ) ×L(Q )

� �→ (�1, �2),

where �1 is � restricted to P and �2 is � − |P | restricted to Q . We have that λ is a bijection. Now let

ψ : BKP⊕Q → BKP × BKQ

ti �→ t′i,

where

t′i =

⎧
⎪⎨
⎪⎩

(ti,1) if i ≤ |P | − 1

(1,1) if i = |P |

(1, ti−|P |) if i ≥ |P | + 1.

We have that ψ is an isomorphism of permutation groups as desired. �

This property leads to some useful tools for constructing and identifying posets with the full symmetric BK groups that 
arise from ordinal sums.

Corollary 4.3. Let P be a finite poset. Then BKP
∼= SL(P ) if and only if BKCa⊕P⊕Cb

∼= SL(Ca⊕P⊕Cb) for any chains Ca and Cb .

Proof. This corollary follows directly from the previous proposition and the fact that for any chain Ca , the set L(Ca) is a 
singleton, so its BK group is trivial. �

Corollary 4.4. If P and Q are posets such that BKP⊕Q
∼= SL(P⊕Q ) , then at least one of P or Q is a chain. As a consequence, 

BKP
∼= SL(P ) and BKQ

∼=SL(Q ) .

Proof. By assumption, BKP⊕Q is a symmetric group. By Proposition 4.2, BKP⊕Q can be written as a direct product of the 
ordinal summands’ BK groups, i.e., BKP⊕Q

∼= BKP × BKQ . Then at least one of the factors BKP and BKQ is the trivial 
group. This happens when at least one of the posets P and Q has exactly one linear extension and hence is a chain. The 
second part follows immediately from the previous corollary. �

Corollaries 4.3 and 4.4 are especially useful in identifying posets whose BK groups are the full symmetric group, as they 
allow us to turn our attention to posets with neither a unique maximal nor minimal element.

14
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4.2. Primitive BK groups and disjoint unions of posets

The goal of this subsection is to prove a classification theorem for disconnected posets with the full symmetric BK 
groups. En route to this result, we will first study a generalization of these posets. Recall that the action of a group G on 
a set X is primitive if there is no partition of X that is preserved by G other than the trivial partitions (i.e., the finest and 
coarsest partitions). Evidently, SL(P ) is a primitive permutation group of L(P ). In this subsection, we turn our attention to 
posets whose BK groups are primitive.

Lemma 4.5. If an n-element poset P is a disjoint union of two or more non-empty chains, then BKP
∼= Sn .

Proof. By Proposition 3.8, BKP is isomorphic to a quotient of Sn . Thus, it suffices to show that the group is not trivial, is 
not C2 for n ≥ 3, and is not S3 for n = 4. Each of these is easily checked. �

Lemma 4.6. Let P = Cn1 + Cn2 + · · · + Cnr . Then, Stab(�) ∼= Sn1 ×Sn2 × · · · ×Snr for any � ∈L(P ).

Proof. We have Stab(�1) ∼= Stab(�2) for any �1, �2 ∈ L(P ), so it suffices to consider only one linear extension. Let � be the 
linear extension that assigns consecutive labels to each chain beginning with Cn1 . Then, ti ∈ Stab(�) if and only if i �=

∑k
j=1 n j

for all 1 ≤ k ≤ r − 1. Recall that by Lemma 4.5, t1, . . . , tn−1 yield a presentation for the symmetric group Sn , where

n =

r∑

j=1

n j .

Thus, the group generated by {ti | i �=
∑k

j=1 n j for all 1 ≤ k ≤ r − 1} is isomorphic to Sn1 × Sn2 × · · · × Snr . It remains to 
show that Sn1 ×Sn2 × · · · ×Snr exhausts Stab(�), which follows from the following calculation:

|L(P )| · |Stab(�)| = |BKP |

n!

n1! · · ·nr !
· |Stab(�)| = n!

|Stab(�)| = n1! · · ·nr ! = |Sn1 ×Sn2 × · · · ×Snr |. �

Lemma 4.7. If P = P1 + P2 , where |P1|, |P2| ≥ 1 and P1 is not a chain, then BKP is not a primitive permutation group.

Proof. Given � ∈ L(P ), assign � the set �(P1). This induces a partition on L(P ). The conditions of the lemma imply that 
the partition is nontrivial. It is easy to check that each ti preserves the partition. �

Theorem 4.8. If P is a disconnected poset, then BKP is a primitive permutation group if and only if P = Cn1 + Cn2 , where n1 �= n2 or 
n1 = n2 = 1.

Proof. First, if one component of P is not a chain, then BKP is not primitive by Lemma 4.7. If P = Cn1 +Cn2 +· · ·+Cnr , then 
BKP

∼= Sn by Lemma 4.5 and Stab(�) ∼= Sn1 ×Sn2 × · · · ×Snr for any � ∈ L(P ) by Lemma 4.6. We have that Sn1 ×Sn2 ×

· · · × Snr is a maximal proper subgroup of Sn if and only if r = 2 and either n1 �= n2 or n1 = n2 = 1. Since a permutation 
group is primitive if and only if the stabilizer of any element is a maximal subgroup, this completes the proof. �

The first application of this theorem is a classification of series-parallel posets–posets that can be constructed from the 
singleton A1 using the ordinal sum and disjoint union operations–with primitive BK groups.

Corollary 4.9. If P is a non-empty series-parallel poset, then BKP is a primitive permutation group if and only if P = Cn1 ⊕ (Cn2 +

Cn3 ) ⊕ Cn4 , where |n2| �= |n3| or |n2| = |n3| = 1.

Proof. Every poset of the stated form is series-parallel with a primitive BK group by Theorem 4.8. Conversely, let P be a 
non-empty series-parallel poset whose BK group is a primitive permutation group. If P = P1 + P2 , where |P1|, |P2| ≥ 1, then 
P = Cn2 + Cn3 with the stated conditions by Theorem 4.8. If P = P1 ⊕ P2 , where |P1|, |P2| ≥ 1, then P1 = Cn1 or P2 = Cn4

by Proposition 4.2. Thus, P is of the desired form. �

We now return to disconnected posets whose BK groups are the full symmetric group. The proof of our classification 
theorem in this case follows a similar logic as that of Theorem 4.8.

Theorem 4.10. If P is a disconnected poset, then BKP
∼=SL(P ) if and only if P = Cn1 + A1 .
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Proof. First, if one component of P is not a chain, then BKP � SL(P ) by Lemma 4.7. If P = Cn1 + Cn2 + · · · + Cnr , then 
BKP

∼= Sn by Lemma 4.5. Thus, BKP
∼= SL(P ) if and only if |L(P )| = n, which happens if and only if P is of the stated 

form. �

Corollary 4.11. If P is a non-empty series-parallel poset P , then BKP
∼= SL(P ) if and only if P = Cn1 ⊕ (Cn2 + A1) ⊕ Cn3 .

Proof. Every poset P of the form Cn1 ⊕ (Cn2 + A1) ⊕ Cn3 is series-parallel and satisfies BKP
∼= SL(P ) by Theorem 4.10. 

Conversely, let P be a non-empty series-parallel poset such that BKP
∼= SL(P ) . If P = P1 + P2 , where |P1|, |P2| ≥ 1, then 

P = Cn2 + A1 by Theorem 4.10. If P = P1 ⊕ P2 , where |P1|, |P2| ≥ 1, then P1 = Cn1 or P2 = Cn4 by Proposition 4.2. Thus, P
is of the desired form. �

4.3. Families of connected posets

We next study non-series-parallel posets whose BK groups are the full symmetric group on the set of linear exten-
sions. Theorem 4.10 allows us to restrict our study to those which are connected. The following class of posets presents a 
suggestive starting point:

Definition 4.12. For integers a, b, c ≥ 1, the poset Na,b,c (Fig. 3) is defined to be a poset of a + b + c elements with the 
relations

v1 < v2 < · · · < va+1 > va+2 > · · · > va+b+1 < va+b+2 < · · · < va+b+c+1.

v1

v2

va

va+1

va+2

va+b+1

va+b+2

va+b+c+1

Fig. 3. The poset Na,b,c .

In particular, every non-empty non-series-parallel poset contains a poset N1,b,1 as a convex induced subposet.

Proposition 4.13. BKN1,b,1
∼=SL(N1,b,1) for all b ≥ 1.

Proof. Let n = b + 3, so N1,b,1 = v1 < v2 > v3 > . . . > vn−2 > vn−1 < vn .

For n ∈ {4, 5}, the theorem is verified by a calculation. So suppose n ≥ 6.

For i, j ∈ [n], there is at most one linear extension � with �(v1) = i and �(vn) = j. If it exists, we denote it �i, j .
First, we claim (t2t3)3 and (tn−3tn−2)

3 are the transpositions (�3,1 �4,1) and (�n,n−3 �n,n−2) respectively. This follows from 
the characterization of when the braid relations hold.

Now, it suffices to prove that BKN1,b,1
is 2-transitive, which is equivalent to its point-stabilizers’ being transitive. Consider 

Stab(�n,1). Note that t2, t3, . . . , tn−2 ∈ Stab(�n,1). Hence, Stab(�n,1) is transitive on each of {�i, j | i ≤ n − 1, j ≥ 2}, {�i, j | i ≤
n − 1, j = 1}, and {�i, j | i = n, j ≥ 2}. It remains to observe that

(�3,2 �n,2) = (t1tn−1tn−2 . . . t4)(t2t3)
3(t4 . . . tn−2tn−1t1) ∈ Stab(�n,1)

(�n−1,1 �n−1,n−2) = (tn−1t1t2 . . . tn−4)(tn−3tn−2)
3(tn−4 . . . t2t1tn−1) ∈ Stab(�n,1),

so Stab(�n,1) is transitive. �

Proposition 4.14. BKN1,1,c
∼= SL(N1,1,c) and BKNa,1,1

∼= SL(Na,1,1) for all a, c ≥ 1.

Proof. By duality, it suffices to prove the result for N1,1,c . Let n = c + 3, so N1,1,c = v1 < v2 > v3 < v4 < · · · < vn .

For i ∈ [n − 1] and j ∈ [max{3, i + 1}, n], there is exactly one linear extension � with �(v1) = i and �(vn) = j, which we 
denote �i, j .

First, we claim (t2t3)3 = (�1,3 �1,4). This follows from the characterization of when the braid relations hold.
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Now, it suffices to prove that BKN1,1,c is 2-transitive, which is equivalent to its point-stabilizers’ being transitive. Consider 
Stab(�n−1,n). Note that t1 , t2, . . . , tn−3 , tn−1 ∈ Stab(�n−1,n). Hence, Stab(�n−1,n) is transitive on {�i, j | j ≤ n − 2} and {�i, j | j ≥
n − 1, i ≤ n − 1}. It remains to observe that

(�1,3 �1,n−1) = (tn−2tn−3 . . . t4)(t2t3)
3(t4 . . . tn−3tn−2) ∈ Stab(�n−1,n),

so Stab(�n−1,n) is transitive. �

By using the same proof strategy, we are able to prove that the BK groups of the following posets are the full symmetric 
group on the set of linear extensions:

v1

va−1

va

va+1

va+2

va+b

Fig. 4. The poset Ma,b .

Proposition 4.15. For a, b ≥ 2, let Ma,b be a poset on a + b elements with the relations v1 < v2 < · · · < va , va+1 < va+2 < · · · <

va+b , and va−1 < va+2 (see Fig. 4). Then BKMa,b
∼= SL(Ma,b

).

Proof. First, let �∗ be the linear extension such that �∗(v i) = i. Notice that

t1, t2, . . . , t̂a, . . . , ta+b−1 ∈ Stab(�∗).

Further note that ta /∈ Stab(�) if and only if � ∈ {�∗, ta(�∗)}, i.e., ta acts as the transposition (�∗ ta(�
∗)) on L(Ma,b).

Thus, it suffices to show that Stab(�∗) is transitive on L(Ma,b) \ {�∗}. This follows from the observations above and the 
fact that BK groups are always transitive (Proposition 2.9). �

One way to generalize the poset Ma,b is to replace the covering relation va−1 < va+2 with another relation x < y, where 
x and y are drawn from two disjoint chains. However, in general these posets do not have the full symmetric BK groups; 
for example, we found a counterexample in the poset defined by the relations v1 < v2 < v3 < v4 , v5 < v6 < v7 < v8 , and 
v2 < v7 .

4.3.1. Conjectural families and computational results
A natural conjectural family of posets P for which BKP = SL(P ) follows from our investigation above.

Conjecture 4.16. BKNa,b,c
∼= SL(Na,b,c) for all a, b, c ≥ 1.

Besides the subfamilies proved in Propositions 4.13 and 4.14, our preliminary computation by SageMath indicates that the 
conjecture holds for all 1 ≤ a, b, c ≤ 4. As a remark, the proofs of Propositions 4.13, 4.14, and 4.15 rely on an observational 
analysis of the linear extension graphs of these posets. As the parameters (a, b, c) grow, the linear extension graph of the 
poset Na,b,c becomes significantly more complex; for example, its dimension increases as parameters a and c grow, and it 
is no longer apparent that we can generate a transposition on L(Na,b,c) from BK moves. A different proof strategy may be 
required for the general case.

Another family of posets that is closely related to Na,b,c is also conjectured to have the full symmetric BK groups.

Conjecture 4.17. The zigzag-poset Zn (Fig. 5), defined to be a poset of n elements with the relations

v1 < v2 > v3 < v4 > . . . > vn−3 < vn−2 > vn−1 < vn,

satisfies BKZn
∼=SL(Zn) when n is even.
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v1

v2

v3

v4

. . .

vn−3

vn−2

vn−1

vn

Fig. 5. The zigzag-poset Zn when n is even.

This conjecture is computationally checked by SageMath for all even n ≤ 10. When n is odd, we found small counterex-
amples in Z5, Z7 , and Z9 . A potential common generalization of Conjectures 4.16 and 4.17 concerns the zig-zag posets of 
the form Za1,...,an for odd n, where ai is the length of the ith segment; however, we found a counterexample in Z1,2,2,2,2

whose BK group is not the full symmetric group. Finally, we remark that the linear extension graphs of zig-zag posets are 
very complicated and high-dimensional, for which our observational analysis used in the proof of Proposition 4.13 is not 
suitable.

Our final conjecture involves the Ferrers posets, whose BK groups–in contrast with the fact that they always satisfy the 
cactus relations [8]–do not always equal the full symmetric group on the set of linear extensions.

Conjecture 4.18. The families of Ferrers posets Fλ satisfy BKFλ
∼=SL(Fλ) for the following partitions λ:

(1) λ = (n, n − 2) for all n;
(2) λ = (n, 3) for n �≡ 2 (mod 4); and
(3) λ = (n, 2, 2) for n �≡ 0 (mod 4).

Observe that for any partition λ and its conjugate λt , Fλ
∼= Fλt are isomorphic posets, so Conjecture 4.18 in fact claims 

that the same property holds for the conjugates of all listed families of Ferrers posets. These conjectural classes have been 
computationally checked by SageMath for (1) n ≤ 10, (2) n ≤ 18, and (3) n ≤ 16. The data set for this analysis was generously 
provided by J. Kamnitzer.

5. Size of BK groups

In this final section, we explore a notion of size of the group BKP relative to the total number of linear extensions of a 
given poset P .

Definition 5.1. For a poset P , its stabilizer size sP is defined to be

sP =
|BKP |

|L(P )|
.

Our naming is suggestive: Since the subgroup BKP of SL(P ) is transitive, by the orbit-stabilizer theorem, sP is the size 
of the stabilizer of any linear extension of P . In particular, sP is a positive integer.

Part (1) of Proposition 4.2 and the fact that |L(P ⊕ Q )| = |L(P )| · |L(Q )| immediately imply the following.

Proposition 5.2. For any posets P and Q , one has sP⊕Q = sP sQ .

We now consider what integers are possible values of sP . If

P = Cn1 + Cn2 + · · · + Cnk ,

where Cni is a chain of size ni , then sP = n1!n2! . . .nk! by Lemma 4.6. In particular, any integer that can be expressed as 
a product of factorials (a Jordan–Pólya number) is a possible value of sP . But this condition is not necessary. For example, 
(A3 ⊕ A1 ⊕ A1) + A1 has sP = 466560. Thus, we turn to establishing some necessary conditions on possible values of sP .

Recall that a poset is indecomposable if it is not an ordinal sum of two or more non-empty posets.

Lemma 5.3. If P is indecomposable and not a disjoint union of chains, then S4 ≤ Stab(�).

Proof. Since P is not a disjoint union of chains, P either has a V-shaped or inverted V-shaped induced subposet. By duality, 
we may assume P has an inverted V-shaped induced subposet; that is, there are u, v, w ∈ P with the only relations among 
them being v < u and w < u. Since P is indecomposable, there is an immediate child of u incomparable to some x, where 
x is incomparable with u. Without loss of generality, assume this immediate child is w . If x and v are incomparable, then 
u, v , w , and x form a convex induced subposet of P with Stab(�) ∼= Z/2Z ×S4 . If x > v , then u, v , w , and x form a convex 
induced subposet of P with Stab(�) ∼=S4 . In either case, the proposition follows by Corollary 3.7. �
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Theorem 5.4. If sP �= 6, 12, 36, 2n , then either (Z/2Z)2 ×S3 ≤ Stab(�) or S4 ≤ Stab(�). In particular, sP = 6, 12, 36, 2n or 24 | sP .

Proof. We may assume that P is indecomposable. If P is a disjoint union of chains, the theorem follows from Lemma 4.6. 
Otherwise, the theorem follows from Lemma 5.3. �

If 24 � sP , then by Lemma 5.3

P = P1 ⊕ P2 ⊕ · · · ⊕ Pk,

where P i is a disjoint union of chains. Then, by Proposition 5.2,

sP = sP1sP2 . . . sPk ,

where each sP i
can be calculated with Lemma 4.6. This yields classifications of posets with a given sP not divisible by 24. 

As a special case, we have the following proposition.

Proposition 5.5. We have sP = 1 (i.e., the group action is simply transitive) if and only if P is an ordinal sum of antichains.

In fact, the BK group of an ordinal sum of antichains Ai1 ⊕ Ai2 ⊕ · · · ⊕ Ain is the product of symmetric groups Si1 ×

Si2 × · · · ×Sin .

We now define a poset parameter that gives us useful information about the stabilizer, including a lower bound for sP .

Definition 5.6. For a poset P and � ∈L(P ), define

c(P , �) := |{i ∈ [1, |P | − 1] | �−1(i) < �−1(i + 1)}|.

Then, the comparability of P is

c(P ) := max
�

c(P , �).

In other words, c(P ) is the maximum number of ti such that ti ∈ Stab(�).

Definition 5.7. Let G be a group. We say a set S ⊆ G is independent if s /∈ 〈S \ {s}〉 for all s ∈ S . Then, let m(G) be the 
maximum size of an independent set of involutions in G .

Proposition 5.8. We have m(G) ≤ log2(|G|).

Proof. Given an independent set {g1, . . . , gm(G)} ⊆ G , we have

〈g1〉 < 〈g1, g2〉 < · · · < 〈g1, g2, . . . , gm(G)〉,

where each subgroup is at least twice as large as the previous one by Lagrange’s theorem. �

Proposition 5.9. If P is indecomposable, then c(P ) ≤m(Stab(�)).

Proof. By Corollary 3.3, � has at least c(P ) independent involutions in Stab(�). �

Corollary 5.10. If P is indecomposable, then sP ≥ 2c(P ) .

Proof. This immediate from Propositions 5.8 and 5.9. �

Proposition 5.11. We have h(P ) −1 ≤ c(P ) ≤ |P | −w(P ), where h(P ) is the height of P and w(P ) is the width of P . As a consequence, 
sP ≥ 2h(P )−1 .

Proof. For the first inequality, let P ′ be a subposet of P obtained by removing a maximum chain C from P , so |P ′| =
|P | − h(P ). We construct � ∈ L(P ) as follows. At each step, if label i can be assigned to the least element in C without a 
label, then do so; otherwise, assign the label i to any other element for which it is possible. If �−1(i), �−1(i + 1) ∈ C , then 
�−1(i) < �−1(i + 1). Further, if �−1(i) ∈ P ′ and �−1(i + 1) ∈ C , then �−1(i) < �−1(i + 1). It follows that h(P ) − 1 ≤ c(P ).

For the second inequality, let A be a maximum antichain in P . Let � ∈ L(P ). Then, given x, y ∈ A with �(x) < �(y), there 
must be some i ∈ [�(x), �(y) − 1] such that �−1(i) is incomparable to �−1(i + 1). It follows that c(P ) ≤ |P | − w(P ). �
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