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1. Introduction

In this work, we study the blow-ups of certain determinantal varieties called determinantal facet ideals.
To be more specific, we find the homogeneous coordinate rings of graphs and images of the blow-ups of a
projective space along its subscheme defined by a certain class of determinantal varieties. Given an ideal
I in a polynomial ring R = K[, ..., 2,] over a field K, the Rees algebra of I is defined to be the graded
algebra R(I) = &°,I't* C R[t], where t is an indeterminate over R. The special fiber ring F(I) is defined
as R(I) ® K. The projective schemes of R(I) and F(I) define the blowup and the special fiber of the blowup
of the scheme Spec(R) along V (I).

The Rees algebra is an important object in commutative algebra, algebraic geometry, elimination theory,
intersection theory, geometric modeling, chemical reaction networks, and many more fields; see [9] and [10]
for details on such applications. If the ideal I is minimally generated by p elements, we find ideals J and I
over polynomial rings S = R[T1,...,T,] and K[T] = K[T1,...,T}] respectively, such that R(I) = S/J and
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F(I) = K[T]/K. The defining equations of J and K are implicit equations of the varieties defined by the
graph and image of a blow-up, respectively. Finding the implicit equations of the presentation ideals J and
K of R(I) and F(I), respectively, is a challenging problem and is still open for many classes of ideals. In
particular, the presentation ideals of the Rees algebra of determinantal ideals are only known in very special
cases. Conca, Herzog, and Valla found the presentation ideal for the Rees algebra of the ideal of maximal
minors of a generic matrix in [8]. The presentation ideal for the Rees algebra of the ideal of the rational
normal scroll associated with a 2 x n matrix was shown by Sammartano in [22]. Very recently, the case of
two-minors of a generic 3 X n matrix was resolved by Huang, Perlman, Polini, Raicu, and Sammartano in
[17].

Let X = (z;5) be a generic m x n matrix over a ring R = K[X], and assume m < n. It is well-known
that the ideal of maximal minors of X, denoted I,,(X), is of fiber type; that is, the ideal J is generated by
linear relations with respect to the variables in T, and the generators of K (see [8] and Subsection 2.2). The
presentation ideal of the special fiber ring, IC, is the ideal of a Grassmannian defined by Pliicker relations;
see, for example, [20, Chapter 14]. Moreover, Eisenbud and Huneke proved in [12] that the Rees algebra of
I,,(X) is a normal Cohen-Macaulay domain. In the 1980s, Bruns, Simis, and Trung considered the ideal
generated by all maximal minors which share the first £ columns of X and showed that they are always of
fiber type in [6]. Bruns and Simis found the symmetric algebra for this class of ideals in [5]. In later work
with Trung, they used the Hodge algebra structure on these ideals to give the defining equations of the Rees
algebra in [6] and concluded that they are of fiber type. To the best of the authors’ knowledge, not much
more is known for Rees algebras of sub-ideals of I,,,(X). Even in the case when the ideal is generated by a
subset of maximal minors of a 2 X 5 matrix, the ideal may not be of fiber type; see Example 2.8. Clearly,
one needs to impose extra conditions in order to have hope of describing generators of presentation ideals
of Rees algebras and their properties.

Determinantal facet ideals, which were introduced by Ene, Herzog, Hibi, and Mohammadi in [14], are
generated by a subset of maximal minors of an m x n matrix indexed by the facets of a pure (m — 1)-
dimensional simplicial complex A on n vertices. They are a natural generalization of binomial edge ideals.
Recall that binomial edge ideals were introduced by Herzog, et al. in [16] due to their connections with
algebraic statistics; see, for example, [11]. Particularly tractable classes of determinantal facet ideals arise
from minimal generating sets which are indexed by the facets of the corresponding simplicial complex. They
also form a Grobner basis with respect to the lexicographic monomial order > induced by x11 > 212 > -+ >
T1n > To] > Tog > -+ > Ty ldeals generated by maximal minors of a matrix are well-known to form a
Grobner basis with respect to any term order (see [24]). The authors of [16] characterized binomial edge
ideals for which the quadratic generators form a Grébner basis with respect to >; this class of binomial
edge ideals is called closed. Closed binomial edge ideals have been extensively studied by many authors;
see [21] for a compilation of results on closed binomial edge ideals. There have been several attempts by
various authors, including Almousa—Vandebogert [1] and Benedetti—Seccia—Varbaro [3] to find a necessary
and sufficient condition for the natural minimal generating set of determinantal facet ideals to form a
Grobner basis with respect to >, but it has proven to be a difficult task.

One class of determinantal facet ideals that Almousa—Vandebogert and Benedetti—Seccia—Varbaro in-
dependently settled on as a natural candidate to study is wnit interval determinantal facet ideals (see
Definition 2.4), a class that has a natural combinatorial description and generalizes closed binomial edge
ideals. The natural minimal generating set of a unit interval determinantal facet ideal corresponding to
the facets of a simplicial complex is a reduced Grobner basis with respect to any diagonal term order; see
[1]. Therefore, it is natural to study the homological properties of this class of ideals by first aiming to
understand the homological properties of their initial ideals. Ene, Herzog, and Hibi conjectured in [13] that
the graded Betti numbers of a closed binomial edge ideal and its initial ideal with respect to a diagonal term
order coincide. Almousa and Vandebogert asked whether this might extend to all lem-closed determinantal
facet ideals, a class that includes unit interval determinantal facet ideals. By studying the linear strands
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of initial ideals of lem-closed determinantal facet ideals, this was confirmed in [2] for the case when the
corresponding simplicial complex has no more than two maximal cliques.

We aim to study the Rees algebra of a unit interval determinantal facet ideal via the study of the Rees
algebra of its initial ideal using the theory of SAGBI bases. This approach was used successfully by Conca,
Herzog, and Valla in [8] to find the presentation ideal of the Rees algebra for balanced rational normal
scrolls, and by Lin and her coauthors for the secant varieties of balanced rational normal scrolls in [18], and
sparse matrices in [7]. The Cohen-Macaulayness of rational normal scrolls is shown in [19].

The paper is outlined as follows. We establish notation and recall some preliminaries in Section 2. In
Section 3, we present the candidates for the defining equations of the Rees algebra of the initial ideal
of a unit interval determinantal facet ideal in Definition 3.5. We define the “clique-sorted” monomials in
Definition 3.9, and show that these clique-sorted monomials are unique modulo the ideal generated by the
candidates in Lemma 3.13. We conclude that polynomials described in Definition 3.5 form a Grébner basis
for the Rees algebra of the initial ideal of a unit interval determinantal facet ideal in Theorem 3.14, extending
a result of Ene, Herzog, Hibi, and Mohammadi in [14, Corollary 1.4]. Then we show that these polynomials
given in Definition 3.5 can be lifted to a Grébner basis for the Rees algebra of a unit interval determinantal
facet ideal in Theorem 4.5. Therefore any unit interval determinantal facet ideal is of fiber type. We further
give necessary and sufficient conditions for it to be of linear type, recovering a theorem of Bruns, Simis,
and Trung in [6]. In particular, the special fiber ring of any unit interval determinantal facet ideal is Koszul
and its presentation ideal is generated by Pliicker relations in Corollary 4.7. Finally, via the SAGBI basis
deformation, we see that both the Rees algebra and special fiber ring of a unit interval determinantal facet
ideal are normal Cohen-Macaulay domains and have rational singularities, extending a result of Eisenbud
and Huneke in [12].

2. Preliminaries
2.1. Determinantal facet ideals

Let X = (x;;) be an m x n matrix of indeterminates where m < n, and let R = K[X] be the polynomial
ring over a field K in the indeterminates x;;. For indices a = {a1,...,apm}such that 1 < ay < -+ < ay, < 0,
set [a] = [a1---am] to be the maximal minor of X involving columns in a. The ideal generated by all
m-minors of X is denoted by I,,,(X).

Definition 2.1.

(a) Let A be a pure (m — 1)-dimensional simplicial complex on the vertex set V = [n]. A determinantal
facet ideal (or DFT) Ja C R is the ideal generated by determinants of the form [a] where a supports an
m — 1 face of A; that is, the columns of [a] correspond to a facet F' = {ay,...amn} € A. When m = 2,
one may identify A with a graph G and Jg is called a binomial edge ideal.

(b) Let A be an (m — 1)-dimensional simplicial complex on vertex set [n]. A cliqgue of A is an induced
subcomplex I' of A such that any m vertices of I' are in a face together. A clique is called mazimal if it
is not contained in any larger clique of A. The simplicial complex Aci9u® whose facets are the maximal
cliques of A is called the clique complex associated to A. The decomposition A = A; U---UA, is called
the maximal cliqgue decomposition of A where A;’s are maximal cliques of A.

Remark 2.2. Let I be an ideal generated by an arbitrary subset of maximal minors of X. The simplicial
complex A associated to a determinantal facet ideal can be viewed as a combinatorial tool to index generators
of such an ideal, since the vertices of each facet correspond to the columns defining a minor in the generating
set of I. For any A; in the clique decomposition of A, let V; denote the vertex set of A;. Then each A;



4 A. Almousa et al. / Journal of Pure and Applied Algebra 228 (2024) 107601

Fig. 1. A complex with two maximal cliques given by vertex sets {1,2,3,4} and {2,3,4,5}.

corresponds to a submatrix X, of X with columns in the set V; such that the ideal of maximal minors
I,(Xa,) is contained in Ja.

Notation 2.3. Let > denote the lexicographic monomial order induced by the natural order of indeterminates
T11 > T12 > > Tl > T2 >+ > Tymn -

(i) Set xo = ins[a] = %14, T2a, * * * Tma,, - Frequently, we will drop > and simply write in(Ja) for the initial
ideal of Ja.
(ii) Set Ta = {Ta | a is an (m — 1)-face of A}.

In general, the initial ideal of a determinantal facet ideal with respect to an arbitrary term order is
not well-understood outside of the case when m = 2. However, one class where the Grobner basis of
a determinantal facet ideal with respect to > is well-understood is a wunit interval DFI. In this case, the
corresponding simplicial complex is a unit interval simplicial complex. These were introduced independently
in [1] and [3].

Definition 2.4. Let A be a pure (m — 1)-dimensional simplicial complex on n vertices with maximal clique
decomposition A = (Ji_, A;. The simplicial complex A is a unit interval simplicial complex if each A; may
be written as an interval [u;, v;] = {u;,u; +1,...,v; — 1,v;} for integers u; < v;. We may assume

l=u <us <---<u, <w, =n.

We call the determinantal facet ideal Ja unit interval if the corresponding simplicial complex A is a unit
interval simplicial complex.

Example 2.5. [3, Figure 3 (i)] Let A be the complex in Fig. 1. Then Ja is a unit interval DFI and corresponds
to a subideal of the ideal of maximal minors of a 3 x 5 matrix with generators [a;asas] indexed by facets
{a1,a2,as} of A. Here the maximal cliques are given by the intervals [1,4] and [2, 5].

Notation 2.6. Let A be a unit interval determinantal facet ideal and suppose that A; = [u;,v;] and A; =
[uj,v;] are cliques of A such that ¢ < j. We say a € A; \ A; if there is an integer [ such that aq,...,a; €
[wi, vi] \ ([, vs] N [uj,v;]). We say b € A; \ A, if there is an integer k such that by,..., by, € [uj,v;] \

([wi; vi] O [ug, v5]).

Ene, Herzog, and Hibi proved that there always exists a labeling of a closed graph G such that all
the facets of the clique complex of G correspond to intervals [13, Theorem 2.2]. In this way, unit interval
DFIs naturally generalize binomial edge ideals of closed graphs. In addition, unit interval DFIs have a
well-understood Grobner basis in a manner that further generalizes binomial edge ideals of closed graphs.
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Theorem 2.7. [1, Theorem 2.15] Let A be a pure (m — 1)-dimensional simplicial complex on the vertex set
[n] admitting mazimal clique decomposition A = |Ji_; A;. Let R = K[X] be a polynomial ring over an
arbitrary field K. If the associated DFI Ja is unit interval, then the generators of Ja indexed by the facets
of A form a reduced Grébner basis with respect to any diagonal term order, including >.

2.2. Rees algebras

Given a pure (m — 1)-dimensional simplicial complex A and its determinantal facet ideal Ja in the
polynomial ring R = K[z;;], the Rees algebra of Ja, denoted by R(Ja), is the graded subalgebra R[Ja - ]
of the polynomial ring RJ[t]. The special fiber of Ja, denoted by F(Ja), is the graded subalgebra K[Ja - t]
of the polynomial ring K[t]. Define the following standard presentations of the symmetric algebra S(Ja),
Rees algebra R(Ja) of Ja, and special fiber ring F(Ja):

p: R[TaA] — S(Ja), ¢ : R[TA] — R(Ja), Y K[Ta] — F(Ja)

where for all 7,7, p(xi;) = zi; = ¢(45), p(Ta) = [a] = ¥(Ta), and ¢(Ta) = [a] - t. Let L =kerp, J = ker ¢,
and K = kert. The ideals £, J, and K are called the presentation ideals of S(Ja), R(Ja), and F(Ja),
respectively. We sometimes refer to the ideals £, J, and K as the symmetric ideal, the Rees ideal, and the
special fiber ideal, respectively. When £ = 7, the ideal Ja is of linear type. If 7 = L+ K - R[Ta], then Ja
is of fiber type.

Finding the presentation ideal J is not easy in general. Given the presenting matrix M of Ja, the
generators of L are given by [Tar,...,Tar] - M where p denotes the number of (m — 1)-faces of A. In
the best scenario when Ja is of linear type, this gives the Rees ideal 7. However, little is known about
the resolutions of determinantal facet ideals beyond the linear strand (see [2]). Therefore, even finding the
symmetric algebra can be difficult. The next best case is when an ideal Ja is of fiber type. Although the
ideal of maximal minors is known to be of fiber type, this is not true in general for a determinantal facet
ideal.

Example 2.8. Let Jg be the binomial edge ideal corresponding to the graph G with edge set F(G) =

{(1,2),(1,4),(1,5),(2,3),(3,4), (3,5) }.
Then

f=212T55T14 — 214T35T12 — x12T34T15 + 215134712 — 214T23T"15 + 15723714

is a minimal bihomogeneous generator of the Rees ideal, 7, of Jg. However, f is contained in neither the
symmetric ideal, £, nor the special fiber ideal, IC, of Jg.

2.3. SAGBI bases

Our goal is to use the theory of SAGBI basis deformations developed in [8] to find the presentation ideals
of the Rees algebra and special fiber ring of unit interval determinantal facet ideals. In this way, one can use
the Rees algebra of in(Ja) to understand the Rees algebra of Ja. We recall the definition of a SAGBI basis
below. For further reference on SAGBI basis theory, see [23, Chapter 11]; for details about applications of
SAGBI bases to Rees algebras, see [8].

Definition 2.9. Let R be a polynomial ring over a field K, and let A C R be a finitely generated K-subalgebra.
Fix a term order 7 on the monomials in R and let in,(A) be the K-subalgebra of R generated by the initial
monomials in,(a) where a € A. We say that in,(A) is the initial algebra of A with respect to 7. A set of
elements A C A is called a SAGBI basis if in,(A) = K[in, (A)].
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Definition 2.10. Let > be the lexicographic order on R = K[X] as in Notation 2.3. Extend > to a monomial
order >’ on R][t] as follows: for monomials my - t* and my - #/ of K [X] [¢], set myq - t* > my - t7 if i > j or if
1 =7 and my; > msg in R.

The main goal of this paper is to use the SAGBI basis deformation developed in [8] to study R(Ja). In
particular, we want to show ins(R(Ja)) = R(ins(Ja)). The first step is to understand R(ins (Ja)).

Definition 2.11. We define the presentations of the Rees algebra R(in(Ja)) and the special fiber ring
F(in(Ja)) as follows:

¢* : R[TA] — R(in(Ja)), ' K[Ta] — F(in(Ja))

where for all 4, j, ¢*(zi;) = xij, 0*(Ta) = Xa-t, and ¥*(T) = Xa. ker(¢*) and ker(¢*) are called presentation
ideals of R(in(Ja)) and F(in(Ja)), respectively.

In order to find a Grobner basis of the defining ideal of R(in(Ja)), we recall a lemma that we use to
achieve the goal.

Lemma 2.12. /8, Lemma 3.1] Let K[T| be a polynomial ring equipped with a term order =. Let J be an
ideal of K[T)] and let f1,..., fs be polynomials in J. Assume that the monomials of the set Q@ = {m | m ¢
(iny-(f1),...,in=(fs))} are linearly independent in K[T|/J. Then fi,...,fs is a Grobner basis of J with
respect to ».

3. Rees algebras of initial ideals of unit interval DFIs

In this section, we present our candidates for the defining equations of the Rees algebra of the initial
ideal of a unit interval determinantal facet ideal in Definition 3.5. We define the clique-sorted monomials
in R[TA], which will be exactly the standard monomials for R[Ta]. We show that the candidates form a
Grobner basis for the presentation ideal of R(in(Ja)) in Theorem 3.14.

We open this section by establishing some notation that will be assumed in the upcoming proofs.

Notation 3.1. Let A be a unit interval simplicial complex on n vertices with maximal clique decomposition
A =J;_; A; as defined in Definition 2.4.

(i) Let a and b be m — 1-faces of A; we say a > b lexicographically if x, > xy, lexicographically as defined
in Notation 2.3.
(ii) Define
Ta, ={Ta|aisan (m —1) face of A;}
for any 1 <4 < r. For any monomial M € R[T A], write
MZU'NZU'Tal"'Tak :u'Gl"'Gr GR[TA]
where u € R, a! > --- > a lexicographically, and G; € K[Ta,]. Moreover, we impose the condition
that if T,: divides G, then T,: ¢ A; for any [ < j. This expression for M sorts the T}, variables into

the earliest cliques in which they appear.
(iii) We write a € A;, when A, is the smallest clique that contains a, i.e., a ¢ A; for any [ < i,.
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(iv) Let m € R[in(Ja) - t] and write Ry, = {M € R[TA] | ¢*(M) = m}. Let n € K[in(Ja) - ¢] and write
Fy,={N eK[TA]|¢*(N) =n}.

Example 3.2. Let A = Ay UA;UA3 =[1,6]U[3,7]U[5,9]. Consider the monomial

2
T11215%23%28L59T124T125T125T357T367T568 € R[TA].

2
Then u = x11715723T287359, and N = T194T125T125T3571367 1568 = G1G2G3 where G = 12411257125,
G2 = T357T367, and Gz = Tses.

We define a term order for the Grébner basis of the presentation ideal of R(in(Ja)) and of F(in(Ja)).

Definition 3.3. Let - be the degree reverse lexicographically order on K[Ta] and R[Ta] induced by Ty > T}
if a > b lexicographically, T, > x;; for any a € A and any 1 <i <m,1 < j <n, and z;; > xpq if ¢ < p or
t=pand j <gq.

The goal of this section is to find a Grébner basis for the presentation ideal of R(in(Ja)) and of F(in(Ja))
with respect to the term order >. We use a strategy similar to that found in [8] to achieve this goal, utilizing
particular tools which are specific to our setting.

We now recall the Pliicker poset from [20, Chapter 14]. Endow the set P = {a | a is an m-subset of [n]}
with a partial order as follows: if a = {a; < -+ < ay,,} and b = {b; < --- < by, } are two elements of P,
set a <, bif a; <b; for all i = 1,...,m. Identifying an m-subset a = {a1,...,a,} with a maximal minor
coming from columns aq,...,a,, of an m x n matrix X, the poset P is called the Plicker poset.

The following lemma accomplishes two essential tasks. First, given two facets a,b € A such that i, < 4,
we construct two other facets in A which we call min{a, b} and max{a,b}. We show that if a and b are
incomparable in the Pliicker poset, then min{a, b} will be in the smaller clique, and max{a, b} will be in
the larger clique.

Lemma 3.4. Adopt Notation 3.1. Let a and b be incomparable elements in the Pliicker poset such that
acA;, and b e A;, with i, <1, then

¢ = {min{ay,b1},...,min{a,,, b, }} := min{a,b} € A;_, and

d = {max{ai,b1},...,max{a, by }} := max{a, b} € A,,.

Proof. By Notation 3.1, it follows that a; € [u;,,v;,] = A;, and by € [u;,,v;,] = Ay, forall 1 <1 < m. If
iq = 1p, then the conclusion follows trivially using the unit interval property. Suppose i, < i3, then we may
assume a € A; \ A;,, b € A, \ A,,. This means we have ay € [u;,,v;, |\ [Wi,, Vi, ], Dm € Wiy, Vi, \ [Wi, Vi, ]
and ap, > by, for some o =1, ..., 7. We notice that a; < by, and b; > a1. Since A is a unit interval complex,
and a,, > b, , we have d,,, = a,, € [u;,,v;] and ¢p, = by, € [u;,,v;,] for o =1, ..., 7. Therefore c € A;,
andde€A;,. O

Recall that to understand the defining equations of the Rees algebra of a unit interval DFI, we first study
the Rees algebra of the initial ideal of a unit interval DFI. With the lemmas above established, we are
ready to present our candidates for the defining equations of Rees algebras of initial ideals of unit interval
determinantal facet ideals.
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Definition 3.5.

(a) Let a € A; \A;, and b € A;, be m — 1 faces of A such that a > b are comparable, and i, < ip. Define
polynomials of type (1) to be of the form

XaTb — XbTa. (1)

We refer to relations of type (1) as Koszul-type relations.
(b) Let ¢ = {c1 < ¢ < ... < cme1} be an m-face of Ai94¢ and 1 <4 < m. Define polynomials of type (2)
to be of the form

xiCiTC\ci - xiCi+1Tc\Ci+1 . (2)

We refer to relations of type (2) as Eagon-Northcott-type relations.
(c) Let a,b € A be incomparable elements in the Pliicker poset and ¢ = min{a,b} € A and d =
max{a,b} € A. Define polynomials of type (3) to be of the form

ToTy — TeTa. (3)
We refer to relations of type (3) as Plicker-type relations.
Let G be the collection of binomials of (1), (2), and (3), and G’ be the collection of binomials of (3).
The following example illustrates the implicit equations listed in Definition 3.5.

Example 3.6. Let A be the unit interval simplicial complex on 6 vertices with two maximal cliques Ay =
{1,2,3,4,5} and Ay = {2,3,4,5,6}, so Ja is generated by all three-minors [ajaza3] of two generic 3 x 5
matrices such that {a1,as,a3} € [1,5] or {a1,a2,a3} € [2,6]. We demonstrate the equations defined in
Definition 3.5 for this unit interval DFI.

(a) Koszul relations between A; and Ay, e.g.,
X124T536 — X2367124 and  X145T256 — X2567145;
(b) Eagon-Northcott-type relations from within A; and Ao, e.g.,
2111234 — 127134, @o3To56 — Ta5To36, and 357346 — 2367 345;
(c) Pliicker relations, e.g.,
Th95T134 — Th24T135, Th45T536 — T135T246, and ToseT345 — T245T356-

Notice that the middle relation arises from a = {1,4,5} and b = {2, 3,6} coming from distinct maximal
cliques of A.

Remark 3.7. One can check easily that the marked monomials of (1), (2), and (3) are the leading monomials
with respect to > defined in Definition 3.3.

We are ready to define clique-sorted monomials in R[Ta]. The clique-sorted monomials will be exactly
those not contained in the ideal generated by the underlined monomials in the polynomials of types (1),
(2), and (3).
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Notation 3.8. Let a be a face of A, and let ¢ € [n] such that a,—1 < ¢ < ap, p € [m]. Define (a U ¢) to be
the ordered tuple

(@1, s Qp1, Qs Apy e vy )
When we write (a U ¢)\ap € A, we mean {ai,...,0p—1,4¢,Gp+1,---,am} € A.
Definition 3.9. Adopt Notation 3.1 and 3.8. A monomial
M=u-N=u-Ta Ty =u-Gy---G, € R[TA]
is clique-sorted if it satisfies the following properties:

(a) if forall 1 <j<mandall 1 <i< k we have aé» < a?'l;

(b) if T, divides some Gy, and xpq divides u, then either (aUgq), # g or (aU g)\a, ¢ A;

(c) for any x, and Ty dividing M such that a € A;, and b € A;,, we have that if i, # 9, and a,b are
comparable elements in the Pliicker poset, then 4, < i,.

A monomial N € K[Ta] (so u € K) satisfying property (a) is clique-sorted in K[Ta].

Remark 3.10. If M € R[T A] is clique-sorted, then none of the marked monomials of G divide M. Similarly
for N € K[Ta] is clique-sorted, then none of the marked monomials of G’ divide N. Moreover, if N =
[T/—; Tu € K[T4] is clique-sorted then a’ and a’ are comparable for all 4, j by the definition.

We first show the existence of clique-sorted monomials.

Lemma 3.11. Let m € R[in(Ja) - t] and n € K[in(Ja) - t]. Then there exist M € Ry, and N € Fy, such that
M and N are clique-sorted.

Proof. Suppose N € F,, C K[Ta] is not clique-sorted. We will show that we can find N’ € F,, such that N’
is obtained by a one step reduction from N using Pliicker-type relations in G’ and N = N’ where > is the
monomial ordering from Definition 3.3. Since > is a total order, this reduction process must terminate and
therefore the conclusion follows.

Suppose N = [],_; Ty € K[T] is not clique-sorted, then there are a and b such that T, Ty | [];_; Ty
and a and b are incomparable by Remark 3.10. We may use Pliicker-type relation, TyTy, — Tc Ty, defined
in Definition 3.5. We set N’ = N% to obtain N = N’. Notice that the existence of ¢,d € A is proven in
Lemma 3.4.

We now consider M = u - [[,_; 7w € Rm and assume [[;_, T is clique-sorted by the case above.
Suppose M is not clique-sorted. Then we have one of the possible situations: (a) there are a € A such that
To | [Tj—; Tat and z,, | u satisfying (aUq), = ¢ and (aUq) \ a, € A; (b) there are a,b € A where x,
divides u and T}, divides [[;_, T, such that a € A; \A;, and b € A;, but i, < ip.

When the condition (a) appears, we can use the Eagon-Northcott-type relation, zp,Tn — Zpa, T (aUg)\a,
to obtain M%%W and set M/ = M%%M’, then we have M = M’'. When the condition (b)
occurs, we use the Koszul-type relation, x5}, — xpTa to obtain M2ela and set M/ = beTﬂ, then we have

XaTh XaTb

M = M’. Again, > is a total order, therefore the reduction process stops. This concludes the proof of the

lemma. O

Before we show the uniqueness of the clique-sorted monomials in Lemma 3.13, we need the following
lemma, first.
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Lemma 3.12. Adopt Notation 3.1. Let m € R[in(Ja) - t]. Suppose M = u- Gy -G, € Ry, and M’ =
u -G} Gl € Ry, are clique-sorted. Then deg G; = deg G|, for alli € [r].

Proof. For each i, let G; € Fg, and G| € Fy. We first notice that deg G - -+ G, = deg G| - - G}, = k where
k is the degree of t in m. We show deg G; = deg G/ inductively with respect to k and r. If » = 1, then nothing
is to be proven. We let Ny := {j | ngl Xai|m,a’ € Aq for all i, and j < k}. Without loss of generality,
we may assume N; # 0, and set k1 := max N;. We claim k1 = deg G; and similarly, k&1 = deg G}. We
consider my = - and m| = %, then YL —u.Gy -G, € Ry, and Gﬁi =u - Gh- -Gl E Ry, ie.
m;, mj € R[in(Ja)-#] and degree of ¢ in m; and m} are k—k;. Then by induction, we have deg G; = deg G
for all ¢ € [r].

We now prove the claim. It is clear that k; > deg G;. Suppose k1 > deg G;. Then we can find some
Xa which divides u such that a € A;. Since r > 2, we can find Ty, | G2 - -+ G, such that b € A; \ A; for
some i > 1. If a € Ay \ A; then we use the Koszul-type relation x,Tp — xpTa to reduce M, a contradiction

to M being clique-sorted. If a € A; N'A;, then there is a minimal p such that a, < b,. Notice that such
p must exist, since b € A; \ A; implies we have at least b,, € A; \ Ay and a,, < by,. If p = 1, we have
(bUai)\ b1 € A;. If p > 1, then we have b,_1 < ap—1 < ap < by < bpy1, hence (bUayp) \ by, € A; as well.
Therefore we use the Eagon-Northcott-type relation zpq, Tv — pb, T(bua,)\b, to reduce M, which is again a
contradiction to M being clique-sorted. This concludes the proof of the lemma. O

Lemma 3.13. Adopt Notation 5.1, and let m € R[in(Ja) - t]. Then there exists a unique clique-sorted mono-
mial M € Ry,. Similarly, let n € K[in(Ja) - t]; then there exists a unique clique-sorted monomial N € Fy,.

Proof. We will prove the first statement and the second statement will follow. By Lemma 3.11, there exists
M=u-G;i -G, € Ry, C R[TA] such that M is clique-sorted. We give a construction to find a clique-
sorted monomial M’ =u’ -G ---G). € R, and show that we must have M = M'. Let k be the degree of ¢
in m. We show this by induction on k£ and r.

Let Ny := {j | ngl Xai|m,a’ € A for all i, and j < k}. Without loss of generality, we may assume
Ni # () and set k; := max N1. By Lemma 3.12, we have deg G1 = k1. We proceed with the following steps
(a), (b), and (c) to define G}, and we claim G| = G;.

(a) Sort the x1, variables dividing m by ¢ so that we have

Trgn S gy S Tigy < Ty (mo) < Figa, 0 < Tag,,

Then set ai’T =gq, for 1 <7 < k1. Notice ¢, exists for all 1 < 7 < k; by the definition of k.
(b) Sort the x4, variables in the same way:

T2q, << L2qq, < T2y; —(m—2) < L2qay+1 << L2qe, -

Notice those ¢s are elements inside [n] and they are different from those ¢’s for 21,. Let Ay™ := {w |
a1 < quyay” ' = q; < qw < w1 — (m—2), and j < w}. Then AY7 is not empty by the definition of
k1 again. Set aéj = Gupin AL for 1 <7 < k.

(c) Repeat this process, consecutively sorting all the z,, variables dividing m for a fixed p and setting
1,7

ap

= Qinin ALT where

A;’T ={wl| a7, < qu,at"!

T ! =¢; < quw <vy —(m—p)and j < w}.

T T

Set g} = Hk1:1 Xa1.7. Notice that x, 1 g forany a € Ay. Let G| = Hklzl Ta1.-. We now show that G| =
G . We prove this by contradiction. From construction, we have al"! > a2 > ... > al**¥1 lexicographically,
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and a’ and al¥/ are comparable for any i,j. We write G5 = H’:;l Ty for s € [r] and assume bl > bik
lexicographically when i < j or i = j and | < k, and b®' and b?* are comparable for any 4, j,1, k by the
clique-sorted assumption of M and Remark 3.10.
Suppose G} # Gy. Let = min{r | b7 # a7} As a'# # b"#, we must have a p such that a}# < b,”
oo = b0
Since we have comparable among b»7 and we order them lexicographically, we obtain all;ﬁ =+ bif for
any | > lorl =1and 7 > . This means x 1.4|u. Moreover, we have (5P U alP)\bLP € Ay and

by the construction of a}#. Let p be the minimal number such that a’-% < b3, ic., a

(blf Uall;ﬁ)p = all;ﬂ. Now we can use Eagon-Northcott-type relation, xpa;?,ﬂTbl,B — T8 T(blvﬁUaIl)’B)\b;,’B7 to
reduce M, a contradiction to M is clique-sorted. Therefore we must have G| = G.
If r = 1, then M is the unique clique-sorted monomial with respect to m. If » > 1, then m; = g,_% =
1
oo € Rlin(Jas) - t] as we have My = MG% € Rm, C R[Ta/] where A" = U!_,A;. By induction on k and
on 7, M; is the unique clique-sorted monomial with respect to m; and it can be constructed using exact
same steps of the construction of Gy repeatedly. Then M = G1M; is the unique clique-sorted monomial

with respect to m and this concludes the proof of the lemma. O
We are now ready for the main theorem of the section.

Theorem 3.14. Adopt Definition 3.5. Under the monomial order > on the ring R[Ta] and K[Ta], G is a
Gréobner basis of the presentation ideal of R(in(Ja)), and G’ is a Grobner basis of the presentation ideal of
F(in(Ja)). In particular, in(Ja) is of fiber type.

Proof. We apply the same strategy as in the proof of [8, Proposition 3.2]. Clearly, polynomials in G sit
inside ker ¢*, and Pliicker type relations in G’ sit inside ker¢*. The term order > on R[Ta] selects the
underlined monomials as leading terms, and its restriction on K[T] selects the underlined monomials of
Pliicker type relations in G’ as leading terms. Let L be the ideal generated by the underlined monomials. To
show that G forms a Grobner basis for R(in(Ja)), and that Pliicker type relations G’ forms a Grébner basis
for F(in(Ja)), it suffices to check that all monomials not contained in L are linearly independent modulo
ker ¢* by Lemma 2.12. Identify R[Ta]/ker ¢* with R[in(Ja) - t] via the natural isomorphism induced by
¢*. The proof is complete if we show that every monomial in R[in(Ja) - t] corresponds uniquely to a clique-
sorted monomial in R[T ] modulo ker ¢*, and this is shown in Lemma 3.13. This completes the proof of
the theorem. 0O

4. Rees algebras of unit interval determinantal facet ideals

The goal of this section is to find a Grébner basis for the defining ideal of the Rees algebra of a unit
interval determinantal facet ideal using the Grobner basis for the defining ideal of the Rees algebra of the
initial ideal that we describe in Theorem 3.14.

The motivation for the following technical lemma can be found in [4, Section 7.1 and 7.2]. Building on
the assumptions of Lemma 3.4, we show that a certain class of minors which we denote by [e]’s and [g]’s
are guaranteed to be minimal generators of Jo. These minors will appear in the upcoming Pliicker relations
in Theorem 4.3 and Definition 4.4.

Lemma 4.1. Adopt Notation 3.1. Let a and b be incomparable elements in the Pliicker poset such thata € A;,
and b € A;, with i, < ip. Write c = min{a,b} € A;, and d = max{a,b} € A;,. Let e = {e1,€ea,...,em}
and g =1{g1,92,.-.,9m} satisfy the following conditions:

(a) e <, g and e <, c in the Plicker poset.
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(b) The sequence (e1,€a,...,€m,G1,92,---,Gm) arises from the sequence (a1, az,...,@m,b1,ba, ..., by) by a
permutation.

Thene € A;, andg e A,,.

Proof. Write A;, = [u;,,v;,] and A;, = [u;,, v4,]. If iq =4y, then ap, b, € [u;,, v;,] for all 1 < p < m, hence
e, g € A;, by the requirement (b). Therefore, we may assume i, < i, S0 u;, < u;, and v;, < v;,. Suppose
that a, € [wi,,v;,] \ [wi,,vs,] when 1 <p <7 and a, € [u;,,v;,] N[, v;,] when 7 < p < m.

This implies that ¢, = min{a,,b,} = a, for all 1 < p < 7. Notice that 7 is the number of elements
of the set {a1,a2,...,am,b1,b2,...,by} which are contained in [u;,,v;,] \ [, vs,]- Since e <, ¢, we have
ep = ap € (Ui, vi, ]\ [wi,,v;,] for 1 <p <7 and e, € [u;,,v;,] N [ug,v;] for all 7 < p < m. This shows
e € A;_ . Moreover,

{a1,a2, ... am,b1,b2,... ;b\ {e1,...,em} C [us, v, ]
implying that g € A;,. O

Example 4.2. Let A be the unit interval simplicial complex on 6 vertices with two maximal cliques Ay =
{1,2,3,4,5} and Ay = {2,3,4,5,6}, so Ja is generated by all three-minors [ajazas3] of two generic 3 x 5
matrix such that {a1,as,a3} € [1,5] or {a1,a2,a3} € [2,6]. Let a = {1,4,5} and b = {2,3,6}. Then
c = {1,3,5} and d = {2,4,6}. Here are all possible pairs of e and g that are not equal to ¢ and d:
e; = {1,2,3} and g1 = {4,5,6}; e; = {1,2,4} and go = {3,5,6}; e3 = {1,2,5} and g3 = {3,4,6};
e, ={1,3,4} and g4 = {2, 5,6}.

Let a = {a1,...,amn} and b = {b1,..., by} be (m — 1)-dimensional faces of A, and ¢ = min{a, b} and
d = max{a, b} as defined in Lemma 3.4. Then [a][b] can be written as a linear combination of products of
minors [e][g] satisfying assumptions in Lemma 4.1. (see for example the proof of Theorem 6.46 in [15]).

We are now ready to give a SAGBI basis of the Rees algebra for a unit interval determinantal facet ideal.

Theorem 4.3. Let A be a pure and unit interval (m — 1)-dimensional simplicial complex. The polynomials
of the set {x;;} U{[a] -t | a is a facet of A} form a SAGBI basis of the Rees algebra R(Ja) with respect to
the monomial order >' defined in Definition 2.10. In particular,

ins: (R(Ja)) = K [X] [ins (Ja) - ] = Riins (Ja)).

Additionally, the polynomials of the set {[a] | a is a facet of A} form a SAGBI basis of the K-algebra
K[Ja] with respect to the lexicographic monomial order > as in Notation 2.3; in particular, ins (K[Ja]) =

Proof. Polynomials of types (1), (2), and (3) form a Grébner basis, and therefore a (not necessarily minimal)
generating set, of ker ¢* by Theorem 3.14. It suffices to show that for any f = f; — fo in the generating
set of ker ¢*, ¢(f) is a linear combination of elements of the form Au([a] - t)* with A € K\ {0}, k € N,
u a monomial in the z;;, and ins/(¢(f1)) > ins/(u([a] - t)*)); see, for example, [15, Theorem 6.43] or [8,
Theorem 3.3].

Observe the following elementary facts: 3- s Sg0(P)Z1p(ar) ** Tmp(am) = (8 Dpee,, SS0P)T1ppy) *
Tpp(b,,) = [P]; and [a][b] — [b][a] = 0. Then the linear relation (1) can be lifted to

Xa[b] -t —xpla] - t =
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Z Sgn(p)xlp(al) T Tmp(am) [b] = Z Sgn(p)‘rlp(ln) T Tmp (b)) [a] -t
peS,, PeEG,,
pF#id pFid

where &,, denotes the symmetric group on m letters. Observe that every monomialin 3> Z1p(a,) *** Timp(anm)

pEGTTl
p#id

is less than x, with respect to >.

The linear relation (2) can be lifted to
(D) i e\ e] -t 4+ (1) aig e \Nea] = Y (D) g fe\ ¢ -t
je{1,....m+1}
JALi+1
where ¢ = {¢; < ca < ... < ¢y} is an m-face of A9, This is because we have > (=1)"™ 2y, [\
jefl,m+1}

¢;] = 0. If j < i, then the lead monomial of z;.;[c \ ¢;] on the right-hand side of the equation is

xiijlcl e l‘j*l(’;jflx]‘c]q,l e xici e xmcm+1~

On the other hand, the lead monomial of the left-hand side is
Tic; Tley " *° xj—lcj-,lxjcj- e l‘i—lci,lxiclurl o xmchrl .

Since wjc, , < Zj¢;, the desired condition on the initial monomials is satisfied.
If j >4+ 1, then the leading monomial of x;;[c\ ¢;] is

Tic;Tlcy * " Ti—lei—1LiciLitleipr ~° Lij—lej_1Tjejpr ~ " Tmemyr -

The lead monomial of the left-hand side is

xicixlcl e xi*lciflxiCiJFl e xj*lcj‘flxj(;j e xmchrl .

The conclusion follows by Tic; < Ticiyy -
The Pliicker relation (3) can be lifted to the standard Pliicker relation

[a][b] - t* — [c][d] - t* = > Ceg - €] - [g] - (4)
1<l AL el

where 0 # ce ¢ € K and [e], [g] are in the Plicker poset such that they satisfy the assumptions in Lemma 4.1
with e, g € A. It is well-known that ins ([e][g]) < in ([a][b]); see, for example, [15, Theorem 6.46]. O

We present the defining equations of the defining ideal of the Rees algebra of the determinantal ideal.

Definition 4.4. Adopt Notation 3.1 and Definition 3.5. Let A be a unit interval and pure (m —1)-dimensional
simplicial complex.

(a) Let a and b be (m — 1)-dimensional faces contained in distinct cliques of A. We define polynomials of
type (5) as

[a] - Ty — [b] - T (5)
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(b) Let ¢ = {c1,...,Cm+1} be an m-face of Aliaue We define polynomials of type (6) as
»
Z (_1)1 inCch\cj (6)
je{1,...,m+1}

(c) Let a and b be (m — 1)-dimensional faces of A. Let ¢ = min{a, b},d = max{a, b}, and e, g are faces
of A satisfying the assumptions in Lemma 4.1. We write i, as the permutation p € S, given by
(e1,€2,- - €m, 91,92, - --,gm) arises from the sequence (a1, as, ..., am,b1,bs, ..., by). We define polyno-
mials of type (7) as

TaTy — TeTaq + Z sgn(iy) - ToTy (7)
le]<plel.[e] <, [gl#[d]

Now, applying [23, Corollary 11.6], we obtain our main result.

Theorem 4.5. With respect to some monomial ordering w' on the ring R[Ta], the presentation ideal of
R(JA) has a Grobner basis consisting of polynomials of types (5), (6), and (7).

In addition, the presentation ideal of F(Ja) has a Grobner basis given by polynomials of type (7) with
respect to some monomial order w on K[T)|. In particular, Ja is of fiber type.

Example 4.6. Consider again the complex A from Example 3.6. Lifting the defining equations of the Rees
ideal of in(Ja), we obtain the defining equations of R(Ja):

(a) Koszul relations between Ay and Ay, e.g.,
[124] Tos6 — [236]Ti24 and [145]Tss6 — [256]Tas;
(b) Eagon-Northcott-type relations from within A; and Ao, e.g.,
r11T234 — x12T134 + 213T124 — T14T123 and w24 T356 — 257346 — T23Tu56 + T261545;
(c) Pliicker relations, e.g.,

To5T134 — Th24T135 + Th23T145 and
T145T236 — T135T246 + T123Tu56 — T124T356 + T125T346 + T132T256-

Example 4.2 gives all possible e and g pairs for the last Pliicker relation.

Corollary 4.7. Let A be a unit interval and pure (m — 1)-dimensional simplicial complex with clique decom-
position A = |J;_; A; and Ja be its corresponding determinantal facet ideal, and let n; be the size of the
vertex set of each A; in the clique decomposition. Then we have the following properties:

(i) F(Ja) is Koszul.
(i) R(JA) is Koszul if A is a clique.
(iii) Ja is of linear type if and only if n; < m+1 for all i.
(iv) R(Ja) and F(Ja) are normal Cohen-Macaulay domains. In particular, R(Ja) and F(Ja) have ratio-
nal singularities if char K = 0, and they are F-rational if charK > 0.

Proof. It is well-known that if the presentation ideal for an algebra has a quadratic Grobner basis, then the
algebra is Koszul; see, for instance, [15, Theorem 6.7]. This gives (i) and (ii). To see (iii), observe that all
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relations of type (7) come from faces of Al9% which are dimension m + 1 or larger and |A;, NA;,| > m+1.
By [23, Proposition 13.15], the semigroup rings, R(ins(Ja)) and F(ins(Ja)), are normal because their
presentation ideals have square-free initial ideals by Theorem 3.14.

Applying [8, Corollary 2.3] and Theorem 4.3, we obtain (iv). O
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