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1. Introduction

In this work, we study the blow-ups of certain determinantal varieties called determinantal facet ideals. 

To be more specific, we find the homogeneous coordinate rings of graphs and images of the blow-ups of a 

projective space along its subscheme defined by a certain class of determinantal varieties. Given an ideal 

I in a polynomial ring R = K[x1, ..., xn] over a field K, the Rees algebra of I is defined to be the graded 

algebra R(I) = ⊕∞
i=0Iiti ⊂ R[t], where t is an indeterminate over R. The special fiber ring F(I) is defined 

as R(I) ⊗K. The projective schemes of R(I) and F(I) define the blowup and the special fiber of the blowup 

of the scheme Spec(R) along V (I).

The Rees algebra is an important object in commutative algebra, algebraic geometry, elimination theory, 

intersection theory, geometric modeling, chemical reaction networks, and many more fields; see [9] and [10]

for details on such applications. If the ideal I is minimally generated by μ elements, we find ideals J and K

over polynomial rings S = R[T1, . . . , Tμ] and K[T] = K[T1, . . . , Tμ] respectively, such that R(I) = S/J and 
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F(I) = K[T]/K. The defining equations of J and K are implicit equations of the varieties defined by the 

graph and image of a blow-up, respectively. Finding the implicit equations of the presentation ideals J and 

K of R(I) and F(I), respectively, is a challenging problem and is still open for many classes of ideals. In 

particular, the presentation ideals of the Rees algebra of determinantal ideals are only known in very special 

cases. Conca, Herzog, and Valla found the presentation ideal for the Rees algebra of the ideal of maximal 

minors of a generic matrix in [8]. The presentation ideal for the Rees algebra of the ideal of the rational 

normal scroll associated with a 2 × n matrix was shown by Sammartano in [22]. Very recently, the case of 

two-minors of a generic 3 × n matrix was resolved by Huang, Perlman, Polini, Raicu, and Sammartano in 

[17].

Let X = (xij) be a generic m × n matrix over a ring R = K[X], and assume m ≤ n. It is well-known 

that the ideal of maximal minors of X, denoted Im(X), is of fiber type; that is, the ideal J is generated by 

linear relations with respect to the variables in T, and the generators of K (see [8] and Subsection 2.2). The 

presentation ideal of the special fiber ring, K, is the ideal of a Grassmannian defined by Plücker relations; 

see, for example, [20, Chapter 14]. Moreover, Eisenbud and Huneke proved in [12] that the Rees algebra of 

Im(X) is a normal Cohen-Macaulay domain. In the 1980s, Bruns, Simis, and Trung considered the ideal 

generated by all maximal minors which share the first k columns of X and showed that they are always of 

fiber type in [6]. Bruns and Simis found the symmetric algebra for this class of ideals in [5]. In later work 

with Trung, they used the Hodge algebra structure on these ideals to give the defining equations of the Rees 

algebra in [6] and concluded that they are of fiber type. To the best of the authors’ knowledge, not much 

more is known for Rees algebras of sub-ideals of Im(X). Even in the case when the ideal is generated by a 

subset of maximal minors of a 2 × 5 matrix, the ideal may not be of fiber type; see Example 2.8. Clearly, 

one needs to impose extra conditions in order to have hope of describing generators of presentation ideals 

of Rees algebras and their properties.

Determinantal facet ideals, which were introduced by Ene, Herzog, Hibi, and Mohammadi in [14], are 

generated by a subset of maximal minors of an m × n matrix indexed by the facets of a pure (m − 1)-

dimensional simplicial complex Δ on n vertices. They are a natural generalization of binomial edge ideals. 

Recall that binomial edge ideals were introduced by Herzog, et al. in [16] due to their connections with 

algebraic statistics; see, for example, [11]. Particularly tractable classes of determinantal facet ideals arise 

from minimal generating sets which are indexed by the facets of the corresponding simplicial complex. They 

also form a Gröbner basis with respect to the lexicographic monomial order > induced by x11 > x12 > · · · >

x1n > x21 > x22 > · · · > xmn. Ideals generated by maximal minors of a matrix are well-known to form a 

Gröbner basis with respect to any term order (see [24]). The authors of [16] characterized binomial edge 

ideals for which the quadratic generators form a Gröbner basis with respect to >; this class of binomial 

edge ideals is called closed. Closed binomial edge ideals have been extensively studied by many authors; 

see [21] for a compilation of results on closed binomial edge ideals. There have been several attempts by 

various authors, including Almousa–Vandebogert [1] and Benedetti–Seccia–Varbaro [3] to find a necessary 

and sufficient condition for the natural minimal generating set of determinantal facet ideals to form a 

Gröbner basis with respect to >, but it has proven to be a difficult task.

One class of determinantal facet ideals that Almousa–Vandebogert and Benedetti–Seccia–Varbaro in-

dependently settled on as a natural candidate to study is unit interval determinantal facet ideals (see 

Definition 2.4), a class that has a natural combinatorial description and generalizes closed binomial edge 

ideals. The natural minimal generating set of a unit interval determinantal facet ideal corresponding to 

the facets of a simplicial complex is a reduced Gröbner basis with respect to any diagonal term order; see 

[1]. Therefore, it is natural to study the homological properties of this class of ideals by first aiming to 

understand the homological properties of their initial ideals. Ene, Herzog, and Hibi conjectured in [13] that 

the graded Betti numbers of a closed binomial edge ideal and its initial ideal with respect to a diagonal term 

order coincide. Almousa and Vandebogert asked whether this might extend to all lcm-closed determinantal 

facet ideals, a class that includes unit interval determinantal facet ideals. By studying the linear strands 
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of initial ideals of lcm-closed determinantal facet ideals, this was confirmed in [2] for the case when the 

corresponding simplicial complex has no more than two maximal cliques.

We aim to study the Rees algebra of a unit interval determinantal facet ideal via the study of the Rees 

algebra of its initial ideal using the theory of SAGBI bases. This approach was used successfully by Conca, 

Herzog, and Valla in [8] to find the presentation ideal of the Rees algebra for balanced rational normal 

scrolls, and by Lin and her coauthors for the secant varieties of balanced rational normal scrolls in [18], and 

sparse matrices in [7]. The Cohen-Macaulayness of rational normal scrolls is shown in [19].

The paper is outlined as follows. We establish notation and recall some preliminaries in Section 2. In 

Section 3, we present the candidates for the defining equations of the Rees algebra of the initial ideal 

of a unit interval determinantal facet ideal in Definition 3.5. We define the “clique-sorted” monomials in 

Definition 3.9, and show that these clique-sorted monomials are unique modulo the ideal generated by the 

candidates in Lemma 3.13. We conclude that polynomials described in Definition 3.5 form a Gröbner basis 

for the Rees algebra of the initial ideal of a unit interval determinantal facet ideal in Theorem 3.14, extending 

a result of Ene, Herzog, Hibi, and Mohammadi in [14, Corollary 1.4]. Then we show that these polynomials 

given in Definition 3.5 can be lifted to a Gröbner basis for the Rees algebra of a unit interval determinantal 

facet ideal in Theorem 4.5. Therefore any unit interval determinantal facet ideal is of fiber type. We further 

give necessary and sufficient conditions for it to be of linear type, recovering a theorem of Bruns, Simis, 

and Trung in [6]. In particular, the special fiber ring of any unit interval determinantal facet ideal is Koszul 

and its presentation ideal is generated by Plücker relations in Corollary 4.7. Finally, via the SAGBI basis 

deformation, we see that both the Rees algebra and special fiber ring of a unit interval determinantal facet 

ideal are normal Cohen-Macaulay domains and have rational singularities, extending a result of Eisenbud 

and Huneke in [12].

2. Preliminaries

2.1. Determinantal facet ideals

Let X = (xij) be an m × n matrix of indeterminates where m ≤ n, and let R = K[X] be the polynomial 

ring over a field K in the indeterminates xij . For indices a = {a1, . . . , am} such that 1 ≤ a1 < · · · < am ≤ n, 

set [a] = [a1 · · · am] to be the maximal minor of X involving columns in a. The ideal generated by all 

m-minors of X is denoted by Im(X).

Definition 2.1.

(a) Let Δ be a pure (m − 1)-dimensional simplicial complex on the vertex set V = [n]. A determinantal 

facet ideal (or DFI ) J∆ ⊆ R is the ideal generated by determinants of the form [a] where a supports an 

m − 1 face of Δ; that is, the columns of [a] correspond to a facet F = {a1, . . . am} ∈ Δ. When m = 2, 

one may identify Δ with a graph G and JG is called a binomial edge ideal.

(b) Let Δ be an (m − 1)-dimensional simplicial complex on vertex set [n]. A clique of Δ is an induced 

subcomplex Γ of Δ such that any m vertices of Γ are in a face together. A clique is called maximal if it 

is not contained in any larger clique of Δ. The simplicial complex Δclique whose facets are the maximal 

cliques of Δ is called the clique complex associated to Δ. The decomposition Δ = Δ1 ∪· · ·∪Δr is called 

the maximal clique decomposition of Δ where Δi’s are maximal cliques of Δ.

Remark 2.2. Let I be an ideal generated by an arbitrary subset of maximal minors of X. The simplicial 

complex Δ associated to a determinantal facet ideal can be viewed as a combinatorial tool to index generators 

of such an ideal, since the vertices of each facet correspond to the columns defining a minor in the generating 

set of I. For any Δi in the clique decomposition of Δ, let Vi denote the vertex set of Δi. Then each Δi
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Fig. 1. A complex with two maximal cliques given by vertex sets {1, 2, 3, 4} and {2, 3, 4, 5}.

corresponds to a submatrix X∆i
of X with columns in the set Vi such that the ideal of maximal minors 

Im(X∆i
) is contained in J∆.

Notation 2.3. Let > denote the lexicographic monomial order induced by the natural order of indeterminates 

x11 > x12 > · · · > x21 > x22 > · · · > xmn.

(i) Set xa = in>[a] = x1a1
x2a2

· · · xmam
. Frequently, we will drop > and simply write in(J∆) for the initial 

ideal of J∆.

(ii) Set T∆ = {Ta | a is an (m − 1)-face of Δ}.

In general, the initial ideal of a determinantal facet ideal with respect to an arbitrary term order is 

not well-understood outside of the case when m = 2. However, one class where the Gröbner basis of 

a determinantal facet ideal with respect to > is well-understood is a unit interval DFI. In this case, the 

corresponding simplicial complex is a unit interval simplicial complex. These were introduced independently 

in [1] and [3].

Definition 2.4. Let Δ be a pure (m − 1)-dimensional simplicial complex on n vertices with maximal clique 

decomposition Δ =
⋃r

i=1 Δi. The simplicial complex Δ is a unit interval simplicial complex if each Δi may 

be written as an interval [ui, vi] = {ui, ui + 1, . . . , vi − 1, vi} for integers ui < vi. We may assume

1 = u1 < u2 < · · · < ur < vn = n.

We call the determinantal facet ideal J∆ unit interval if the corresponding simplicial complex Δ is a unit 

interval simplicial complex.

Example 2.5. [3, Figure 3 (i)] Let Δ be the complex in Fig. 1. Then J∆ is a unit interval DFI and corresponds 

to a subideal of the ideal of maximal minors of a 3 × 5 matrix with generators [a1a2a3] indexed by facets 

{a1, a2, a3} of Δ. Here the maximal cliques are given by the intervals [1, 4] and [2, 5].

Notation 2.6. Let Δ be a unit interval determinantal facet ideal and suppose that Δi = [ui, vi] and Δj =

[uj , vj ] are cliques of Δ such that i < j. We say a ∈ Δi \ Δj if there is an integer l such that a1, . . . , al ∈

[ui, vi] \ ([ui, vi] ∩ [uj , vj ]). We say b ∈ Δj \ Δi if there is an integer k such that bk, . . . , bm ∈ [uj , vj ] \

([ui, vi] ∩ [uj , vj ]).

Ene, Herzog, and Hibi proved that there always exists a labeling of a closed graph G such that all 

the facets of the clique complex of G correspond to intervals [13, Theorem 2.2]. In this way, unit interval 

DFIs naturally generalize binomial edge ideals of closed graphs. In addition, unit interval DFIs have a 

well-understood Gröbner basis in a manner that further generalizes binomial edge ideals of closed graphs.
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Theorem 2.7. [1, Theorem 2.15] Let Δ be a pure (m − 1)-dimensional simplicial complex on the vertex set 

[n] admitting maximal clique decomposition Δ =
⋃r

i=1 Δi. Let R = K[X] be a polynomial ring over an 

arbitrary field K. If the associated DFI J∆ is unit interval, then the generators of J∆ indexed by the facets 

of Δ form a reduced Gröbner basis with respect to any diagonal term order, including >.

2.2. Rees algebras

Given a pure (m − 1)-dimensional simplicial complex Δ and its determinantal facet ideal J∆ in the 

polynomial ring R = K[xij ], the Rees algebra of J∆, denoted by R(J∆), is the graded subalgebra R[J∆ · t]

of the polynomial ring R[t]. The special fiber of J∆, denoted by F(J∆), is the graded subalgebra K[J∆ · t]

of the polynomial ring K[t]. Define the following standard presentations of the symmetric algebra S(J∆), 

Rees algebra R(J∆) of J∆, and special fiber ring F(J∆):

ρ : R[T∆] −→ S(J∆), φ : R[T∆] −→ R(J∆), ψ : K[T∆] −→ F(J∆)

where for all i, j, ρ(xij) = xij = φ(xij), ρ(Ta) = [a] = ψ(Ta), and φ(Ta) = [a] · t. Let L = ker ρ, J = ker φ, 

and K = ker ψ. The ideals L, J , and K are called the presentation ideals of S(J∆), R(J∆), and F(J∆), 

respectively. We sometimes refer to the ideals L, J , and K as the symmetric ideal, the Rees ideal, and the 

special fiber ideal, respectively. When L = J , the ideal J∆ is of linear type. If J = L + K · R[T∆], then J∆

is of fiber type.

Finding the presentation ideal J is not easy in general. Given the presenting matrix M of J∆, the 

generators of L are given by [Ta1 , . . . , Taµ ] · M where μ denotes the number of (m − 1)-faces of Δ. In 

the best scenario when J∆ is of linear type, this gives the Rees ideal J . However, little is known about 

the resolutions of determinantal facet ideals beyond the linear strand (see [2]). Therefore, even finding the 

symmetric algebra can be difficult. The next best case is when an ideal J∆ is of fiber type. Although the 

ideal of maximal minors is known to be of fiber type, this is not true in general for a determinantal facet 

ideal.

Example 2.8. Let JG be the binomial edge ideal corresponding to the graph G with edge set E(G) =

{(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (3, 5)}.

Then

f = x12T35T14 − x14T35T12 − x12T34T15 + x15T34T12 − x14T23T15 + x15T23T14

is a minimal bihomogeneous generator of the Rees ideal, J , of JG. However, f is contained in neither the 

symmetric ideal, L, nor the special fiber ideal, K, of JG.

2.3. SAGBI bases

Our goal is to use the theory of SAGBI basis deformations developed in [8] to find the presentation ideals 

of the Rees algebra and special fiber ring of unit interval determinantal facet ideals. In this way, one can use 

the Rees algebra of in(J∆) to understand the Rees algebra of J∆. We recall the definition of a SAGBI basis 

below. For further reference on SAGBI basis theory, see [23, Chapter 11]; for details about applications of 

SAGBI bases to Rees algebras, see [8].

Definition 2.9. Let R be a polynomial ring over a field K, and let A ⊂ R be a finitely generated K-subalgebra. 

Fix a term order τ on the monomials in R and let inτ (A) be the K-subalgebra of R generated by the initial 

monomials inτ (a) where a ∈ A. We say that inτ (A) is the initial algebra of A with respect to τ . A set of 

elements A ⊆ A is called a SAGBI basis if inτ (A) = K[inτ (A)].
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Definition 2.10. Let > be the lexicographic order on R = K[X] as in Notation 2.3. Extend > to a monomial 

order >′ on R[t] as follows: for monomials m1 · ti and m2 · tj of K [X] [t], set m1 · ti >′ m2 · tj if i > j or if 

i = j and m1 > m2 in R.

The main goal of this paper is to use the SAGBI basis deformation developed in [8] to study R(J∆). In 

particular, we want to show in>′(R(J∆)) = R(in>(J∆)). The first step is to understand R(in>(J∆)).

Definition 2.11. We define the presentations of the Rees algebra R(in(J∆)) and the special fiber ring 

F(in(J∆)) as follows:

φ∗ : R[T∆] −→ R(in(J∆)), ψ∗ : K[T∆] −→ F(in(J∆))

where for all i, j, φ∗(xij) = xij , φ∗(Ta) = xa ·t, and ψ∗(Ta) = xa. ker(φ∗) and ker(ψ∗) are called presentation 

ideals of R(in(J∆)) and F(in(J∆)), respectively.

In order to find a Gröbner basis of the defining ideal of R(in(J∆)), we recall a lemma that we use to 

achieve the goal.

Lemma 2.12. [8, Lemma 3.1] Let K[T] be a polynomial ring equipped with a term order �. Let J be an 

ideal of K[T] and let f1, . . . , fs be polynomials in J . Assume that the monomials of the set Ω = {m | m /∈

(in�(f1), . . . , in�(fs))} are linearly independent in K[T]/J . Then f1, . . . , fs is a Gröbner basis of J with 

respect to �.

3. Rees algebras of initial ideals of unit interval DFIs

In this section, we present our candidates for the defining equations of the Rees algebra of the initial 

ideal of a unit interval determinantal facet ideal in Definition 3.5. We define the clique-sorted monomials 

in R[T∆], which will be exactly the standard monomials for R[T∆]. We show that the candidates form a 

Gröbner basis for the presentation ideal of R(in(J∆)) in Theorem 3.14.

We open this section by establishing some notation that will be assumed in the upcoming proofs.

Notation 3.1. Let Δ be a unit interval simplicial complex on n vertices with maximal clique decomposition 

Δ =
⋃r

i=1 Δi as defined in Definition 2.4.

(i) Let a and b be m −1-faces of Δ; we say a > b lexicographically if xa > xb lexicographically as defined 

in Notation 2.3.

(ii) Define

T∆i
= {Ta | a is an (m − 1) face of Δi}

for any 1 ≤ i ≤ r. For any monomial M ∈ R[T∆], write

M = u · N = u · Ta1 · · · Tak = u · G1 · · · Gr ∈ R[T∆]

where u ∈ R, a1 ≥ · · · ≥ ak lexicographically, and Gi ∈ K[T∆i
]. Moreover, we impose the condition 

that if Tai divides Gj , then Tai /∈ Δl for any l < j. This expression for M sorts the Ta variables into 

the earliest cliques in which they appear.

(iii) We write a ∈ Δia
when Δia

is the smallest clique that contains a, i.e., a /∈ Δl for any l < ia.
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(iv) Let m ∈ R[in(J∆) · t] and write Rm = {M ∈ R[T∆] | φ∗(M) = m}. Let n ∈ K[in(J∆) · t] and write 

Fn = {N ∈ K[T∆] | ψ∗(N) = n}.

Example 3.2. Let Δ = Δ1 ∪ Δ2 ∪ Δ3 = [1, 6] ∪ [3, 7] ∪ [5, 9]. Consider the monomial

x11x15x23x28x2
39T124T125T125T357T367T568 ∈ R[T∆].

Then u = x11x15x23x28x2
39, and N = T124T125T125T357T367T568 = G1G2G3 where G1 = T124T125T125, 

G2 = T357T367, and G3 = T568.

We define a term order for the Gröbner basis of the presentation ideal of R(in(J∆)) and of F(in(J∆)).

Definition 3.3. Let 
 be the degree reverse lexicographically order on K[T∆] and R[T∆] induced by Ta > Tb

if a > b lexicographically, Ta > xij for any a ∈ Δ and any 1 ≤ i ≤ m, 1 ≤ j ≤ n, and xij > xpq if i < p or 

i = p and j < q.

The goal of this section is to find a Gröbner basis for the presentation ideal of R(in(J∆)) and of F(in(J∆))

with respect to the term order 
. We use a strategy similar to that found in [8] to achieve this goal, utilizing 

particular tools which are specific to our setting.

We now recall the Plücker poset from [20, Chapter 14]. Endow the set P = {a | a is an m-subset of [n]}

with a partial order as follows: if a = {a1 < · · · < am} and b = {b1 < · · · < bm} are two elements of P, 

set a ≤p b if ai ≤ bi for all i = 1, . . . , m. Identifying an m-subset a = {a1, . . . , am} with a maximal minor 

coming from columns a1, . . . , am of an m × n matrix X, the poset P is called the Plücker poset.

The following lemma accomplishes two essential tasks. First, given two facets a, b ∈ Δ such that ia ≤ ib, 

we construct two other facets in Δ which we call min{a, b} and max{a, b}. We show that if a and b are 

incomparable in the Plücker poset, then min{a, b} will be in the smaller clique, and max{a, b} will be in 

the larger clique.

Lemma 3.4. Adopt Notation 3.1. Let a and b be incomparable elements in the Plücker poset such that 

a ∈ Δia
and b ∈ Δib

with ia ≤ ib, then

c = {min{a1, b1}, . . . , min{am, bm}} := min{a, b} ∈ Δia
, and

d = {max{a1, b1}, . . . , max{am, bm}} := max{a, b} ∈ Δib
.

Proof. By Notation 3.1, it follows that al ∈ [uia
, via

] = Δia
and bl ∈ [uib

, vib
] = Δib

for all 1 ≤ l ≤ m. If 

ia = ib, then the conclusion follows trivially using the unit interval property. Suppose ia < ib, then we may 

assume a ∈ Δia
\ Δib

, b ∈ Δib
\ Δia

. This means we have a1 ∈ [uia
, via

] \ [uib
, vib

], bm ∈ [uib
, vib

] \ [uia
, via

], 

and apα
> bpα

for some α = 1, ..., τ . We notice that al < bm and bl > a1. Since Δ is a unit interval complex, 

and apα
> bpα

, we have dpα
= apα

∈ [uib
, vib

] and cpα
= bpα

∈ [uia
, via

] for α = 1, ..., τ . Therefore c ∈ Δia

and d ∈ Δib
. �

Recall that to understand the defining equations of the Rees algebra of a unit interval DFI, we first study 

the Rees algebra of the initial ideal of a unit interval DFI. With the lemmas above established, we are 

ready to present our candidates for the defining equations of Rees algebras of initial ideals of unit interval 

determinantal facet ideals.
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Definition 3.5.

(a) Let a ∈ Δia
\Δib

and b ∈ Δib
be m − 1 faces of Δ such that a > b are comparable, and ia < ib. Define 

polynomials of type (1) to be of the form

xaTb − xbTa. (1)

We refer to relations of type (1) as Koszul-type relations.

(b) Let c = {c1 < c2 < . . . < cm+1} be an m-face of Δclique and 1 ≤ i ≤ m. Define polynomials of type (2)

to be of the form

xici
Tc\ci

− xici+1
Tc\ci+1

. (2)

We refer to relations of type (2) as Eagon-Northcott-type relations.

(c) Let a, b ∈ Δ be incomparable elements in the Plücker poset and c = min{a, b} ∈ Δ and d =

max{a, b} ∈ Δ. Define polynomials of type (3) to be of the form

TaTb − TcTd. (3)

We refer to relations of type (3) as Plücker-type relations.

Let G be the collection of binomials of (1), (2), and (3), and G′ be the collection of binomials of (3).

The following example illustrates the implicit equations listed in Definition 3.5.

Example 3.6. Let Δ be the unit interval simplicial complex on 6 vertices with two maximal cliques Δ1 =

{1, 2, 3, 4, 5} and Δ2 = {2, 3, 4, 5, 6}, so J∆ is generated by all three-minors [a1a2a3] of two generic 3 × 5

matrices such that {a1, a2, a3} ∈ [1, 5] or {a1, a2, a3} ∈ [2, 6]. We demonstrate the equations defined in 

Definition 3.5 for this unit interval DFI.

(a) Koszul relations between Δ1 and Δ2, e.g.,

x124T236 − x236T124 and x145T256 − x256T145;

(b) Eagon-Northcott-type relations from within Δ1 and Δ2, e.g.,

x11T234 − x12T134, x23T256 − x25T236, and x35T346 − x36T345;

(c) Plücker relations, e.g.,

T125T134 − T124T135, T145T236 − T135T246, and T256T345 − T245T356.

Notice that the middle relation arises from a = {1, 4, 5} and b = {2, 3, 6} coming from distinct maximal 

cliques of Δ.

Remark 3.7. One can check easily that the marked monomials of (1), (2), and (3) are the leading monomials 

with respect to 
 defined in Definition 3.3.

We are ready to define clique-sorted monomials in R[T∆]. The clique-sorted monomials will be exactly 

those not contained in the ideal generated by the underlined monomials in the polynomials of types (1), 

(2), and (3).
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Notation 3.8. Let a be a face of Δ, and let q ∈ [n] such that ap−1 < q < ap, p ∈ [m]. Define (a ∪ q) to be 

the ordered tuple

(a1, . . . , ap−1, q, ap, . . . , am).

When we write (a ∪ q)\ap ∈ Δ, we mean {a1, . . . , ap−1, q, ap+1, . . . , am} ∈ Δ.

Definition 3.9. Adopt Notation 3.1 and 3.8. A monomial

M = u · N = u · Ta1 · · · Tak = u · G1 · · · Gr ∈ R[T∆]

is clique-sorted if it satisfies the following properties:

(a) if for all 1 ≤ j ≤ m and all 1 ≤ i < k we have ai
j ≤ ai+1

j ;

(b) if Ta divides some Gl, and xpq divides u, then either (a ∪ q)p �= q or (a ∪ q)\ap /∈ Δ;

(c) for any xa and Tb dividing M such that a ∈ Δia
and b ∈ Δib

, we have that if ia �= ib and a, b are 

comparable elements in the Plücker poset, then ib ≤ ia.

A monomial N ∈ K[T∆] (so u ∈ K) satisfying property (a) is clique-sorted in K[T∆].

Remark 3.10. If M ∈ R[T∆] is clique-sorted, then none of the marked monomials of G divide M . Similarly 

for N ∈ K[T∆] is clique-sorted, then none of the marked monomials of G′ divide N . Moreover, if N =
∏r

l=1 Tal ∈ K[T∆] is clique-sorted then ai and aj are comparable for all i, j by the definition.

We first show the existence of clique-sorted monomials.

Lemma 3.11. Let m ∈ R[in(J∆) · t] and n ∈ K[in(J∆) · t]. Then there exist M ∈ Rm and N ∈ Fn such that 

M and N are clique-sorted.

Proof. Suppose N ∈ Fn ⊆ K[T∆] is not clique-sorted. We will show that we can find N′ ∈ Fn such that N′

is obtained by a one step reduction from N using Plücker-type relations in G′ and N 
 N′ where 
 is the 

monomial ordering from Definition 3.3. Since 
 is a total order, this reduction process must terminate and 

therefore the conclusion follows.

Suppose N =
∏r

l=1 Tbl ∈ K[T] is not clique-sorted, then there are a and b such that TaTb |
∏r

l=1 Tbl

and a and b are incomparable by Remark 3.10. We may use Plücker-type relation, TaTb − TcTd, defined 

in Definition 3.5. We set N′ = N TcTd

TaTb
to obtain N 
 N′. Notice that the existence of c, d ∈ Δ is proven in 

Lemma 3.4.

We now consider M = u ·
∏r

l=1 Tal ∈ Rm and assume 
∏r

l=1 Tal is clique-sorted by the case above. 

Suppose M is not clique-sorted. Then we have one of the possible situations: (a) there are a ∈ Δ such that 

Ta |
∏r

l=1 Tal and xpq | u satisfying (a ∪ q)p = q and (a ∪ q) \ ap ∈ Δ; (b) there are a, b ∈ Δ where xa

divides u and Tb divides 
∏r

l=1 Tal such that a ∈ Δia
\Δib and b ∈ Δib

but ia < ib.

When the condition (a) appears, we can use the Eagon-Northcott-type relation, xpqTa − xpap
T(a∪q)\ap

to obtain M
xpap T(a∪q)\ap

xpqTa
and set M′ = M

xpap T(a∪q)\ap

xpqTa
, then we have M 
 M′. When the condition (b) 

occurs, we use the Koszul-type relation, xaTb − xbTa to obtain M xbTa

xaTb
and set M′ = M xbTa

xaTb
, then we have 

M 
 M′. Again, 
 is a total order, therefore the reduction process stops. This concludes the proof of the 

lemma. �

Before we show the uniqueness of the clique-sorted monomials in Lemma 3.13, we need the following 

lemma first.
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Lemma 3.12. Adopt Notation 3.1. Let m ∈ R[in(J∆) · t]. Suppose M = u · G1 · · · Gr ∈ Rm and M′ =

u′ · G′
1 · · · G′

r ∈ Rm are clique-sorted. Then deg Gi = deg G′
i for all i ∈ [r].

Proof. For each i, let Gi ∈ Fgi
and G′

i ∈ Fg′
i
. We first notice that deg G1 · · · Gr = deg G′

1 · · · G′
r = k where 

k is the degree of t in m. We show deg Gi = deg G′
i inductively with respect to k and r. If r = 1, then nothing 

is to be proven. We let N1 := {j |
∏j

i=1 xai |m, ai ∈ Δ1 for all i, and j ≤ k}. Without loss of generality, 

we may assume N1 �= ∅, and set k1 := max N1. We claim k1 = deg G1 and similarly, k1 = deg G′
1. We 

consider m1 = m
g1·tk1

and m′
1 = m

g′
1·tk1

, then M
G1

= u · G2 · · · Gr ∈ Rm1
and M

G′
1

= u′ · G′
2 · · · G′

r ∈ Rm′
1
, i.e. 

m1, m′
1 ∈ R[in(J∆) ·t] and degree of t in m1 and m′

1 are k−k1. Then by induction, we have deg Gi = deg G′
i

for all i ∈ [r].

We now prove the claim. It is clear that k1 ≥ deg G1. Suppose k1 > deg G1. Then we can find some 

xa which divides u such that a ∈ Δ1. Since r ≥ 2, we can find Tb | G2 · · · Gr such that b ∈ Δi \ Δ1 for 

some i > 1. If a ∈ Δ1 \ Δi then we use the Koszul-type relation xaTb − xbTa to reduce M, a contradiction 

to M being clique-sorted. If a ∈ Δ1 ∩ Δi, then there is a minimal p such that ap < bp. Notice that such 

p must exist, since b ∈ Δi \ Δ1 implies we have at least bm ∈ Δi \ Δ1 and am < bm. If p = 1, we have 

(b ∪ a1) \ b1 ∈ Δi. If p > 1, then we have bp−1 ≤ ap−1 < ap < bp < bp+1, hence (b ∪ ap) \ bp ∈ Δi as well. 

Therefore we use the Eagon-Northcott-type relation xpap
Tb − xpbp

T(b∪ap)\bp
to reduce M, which is again a 

contradiction to M being clique-sorted. This concludes the proof of the lemma. �

Lemma 3.13. Adopt Notation 3.1, and let m ∈ R[in(J∆) · t]. Then there exists a unique clique-sorted mono-

mial M ∈ Rm. Similarly, let n ∈ K[in(J∆) · t]; then there exists a unique clique-sorted monomial N ∈ Fn.

Proof. We will prove the first statement and the second statement will follow. By Lemma 3.11, there exists 

M = u · G1 · · · Gr ∈ Rm ⊆ R[T∆] such that M is clique-sorted. We give a construction to find a clique-

sorted monomial M′ = u′ · G′
1 · · · G′

r ∈ Rm and show that we must have M = M′. Let k be the degree of t

in m. We show this by induction on k and r.

Let N1 := {j |
∏j

i=1 xai |m, ai ∈ Δ1 for all i, and j ≤ k}. Without loss of generality, we may assume 

N1 �= ∅ and set k1 := max N1. By Lemma 3.12, we have deg G1 = k1. We proceed with the following steps 

(a), (b), and (c) to define G′
1, and we claim G′

1 = G1.

(a) Sort the x1q variables dividing m by q so that we have

x1q1
≤ x1q2

≤ · · · x1qd1
≤ x1v1−(m−1) ≤ x1qd1+1

· · · ≤ x1qe1
.

Then set a1,τ
1 = qτ for 1 ≤ τ ≤ k1. Notice qτ exists for all 1 ≤ τ ≤ k1 by the definition of k1.

(b) Sort the x2q variables in the same way:

x2q1
≤ · · · ≤ x2qd2

≤ x2v1−(m−2) ≤ x2qd2+1
≤ · · · ≤ x2qe2

.

Notice those q′
is are elements inside [n] and they are different from those q′

is for x1q. Let A1,τ
2 := {w |

a1,τ
1 < qw, a1,τ−1

2 = qj ≤ qw ≤ v1 − (m − 2), and j < w}. Then A1,τ
2 is not empty by the definition of 

k1 again. Set a1,τ
2 = qmin A

1,τ
2

for 1 ≤ τ ≤ k1.

(c) Repeat this process, consecutively sorting all the xpq variables dividing m for a fixed p and setting 

a1,τ
p = qmin A

1,τ
p

where

A1,τ
p := {w | a1,τ

p−1 < qw, a1,τ−1
p = qj ≤ qw ≤ v1 − (m − p) and j < w}.

Set g′
1 =

∏k1

τ=1 xa1,τ . Notice that xa � m
g′

1
for any a ∈ Δ1. Let G′

1 =
∏k1

τ=1 Ta1,τ . We now show that G′
1 =

G1. We prove this by contradiction. From construction, we have a1,1 ≥ a1,2 ≥ · · · ≥ a1,k1 lexicographically, 
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and a1,i and a1,j are comparable for any i, j. We write Gs =
∏ks

τ=1 Tbs,τ for s ∈ [r] and assume bi,l ≥ bj,k

lexicographically when i < j or i = j and l < k, and bi,l and bj,k are comparable for any i, j, l, k by the 

clique-sorted assumption of M and Remark 3.10.

Suppose G′
1 �= G1. Let β = min{τ | b1,τ �= a1,τ }. As a1,β �= b1,β , we must have a p such that a1,β

p < b1,β
p

by the construction of a1,β
p . Let p be the minimal number such that a1,β

p < b1,β
p , i.e., a1,β

p−1 = b1,β
p−1.

Since we have comparable among bl,τ and we order them lexicographically, we obtain a1,β
p �= bl,τ

p for 

any l > 1 or l = 1 and τ > β. This means x
pa

1,β
p

|u. Moreover, we have (b1,β ∪ a1,β
p )\b1,β

p ∈ Δ1 and 

(b1,β ∪ a1,β
p )p = a1,β

p . Now we can use Eagon-Northcott-type relation, x
pa

1,β
p

Tb1,β − x
pb

1,β
p

T(b1,β∪a
1,β
p )\b

1,β
p

, to 

reduce M, a contradiction to M is clique-sorted. Therefore we must have G′
1 = G1.

If r = 1, then M is the unique clique-sorted monomial with respect to m. If r > 1, then m1 = m
g′

1·tk1
=

m
g1·tk1

∈ R[in(J∆′) · t] as we have M1 = M 1
G1

∈ Rm1
⊆ R[T∆′ ] where Δ′ = ∪r

i=2Δi. By induction on k and 

on r, M1 is the unique clique-sorted monomial with respect to m1 and it can be constructed using exact 

same steps of the construction of G1 repeatedly. Then M = G1M1 is the unique clique-sorted monomial 

with respect to m and this concludes the proof of the lemma. �

We are now ready for the main theorem of the section.

Theorem 3.14. Adopt Definition 3.5. Under the monomial order 
 on the ring R[T∆] and K[T∆], G is a 

Gröbner basis of the presentation ideal of R(in(J∆)), and G′ is a Gröbner basis of the presentation ideal of 

F(in(J∆)). In particular, in(J∆) is of fiber type.

Proof. We apply the same strategy as in the proof of [8, Proposition 3.2]. Clearly, polynomials in G sit 

inside ker φ∗, and Plücker type relations in G′ sit inside ker ψ∗. The term order 
 on R[T∆] selects the 

underlined monomials as leading terms, and its restriction on K[T] selects the underlined monomials of 

Plücker type relations in G′ as leading terms. Let L be the ideal generated by the underlined monomials. To 

show that G forms a Gröbner basis for R(in(J∆)), and that Plücker type relations G′ forms a Gröbner basis 

for F(in(J∆)), it suffices to check that all monomials not contained in L are linearly independent modulo 

ker φ∗ by Lemma 2.12. Identify R[T∆]/ ker φ∗ with R[in(J∆) · t] via the natural isomorphism induced by 

φ∗. The proof is complete if we show that every monomial in R[in(J∆) · t] corresponds uniquely to a clique-

sorted monomial in R[T∆] modulo ker φ∗, and this is shown in Lemma 3.13. This completes the proof of 

the theorem. �

4. Rees algebras of unit interval determinantal facet ideals

The goal of this section is to find a Gröbner basis for the defining ideal of the Rees algebra of a unit 

interval determinantal facet ideal using the Gröbner basis for the defining ideal of the Rees algebra of the 

initial ideal that we describe in Theorem 3.14.

The motivation for the following technical lemma can be found in [4, Section 7.1 and 7.2]. Building on 

the assumptions of Lemma 3.4, we show that a certain class of minors which we denote by [e]’s and [g]’s 

are guaranteed to be minimal generators of J∆. These minors will appear in the upcoming Plücker relations 

in Theorem 4.3 and Definition 4.4.

Lemma 4.1. Adopt Notation 3.1. Let a and b be incomparable elements in the Plücker poset such that a ∈ Δia

and b ∈ Δib
with ia ≤ ib. Write c = min{a, b} ∈ Δia

and d = max{a, b} ∈ Δib
. Let e = {e1, e2, . . . , em}

and g = {g1, g2, . . . , gm} satisfy the following conditions:

(a) e ≤p g and e ≤p c in the Plücker poset.
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(b) The sequence (e1, e2, . . . , em, g1, g2, . . . , gm) arises from the sequence (a1, a2, . . . , am, b1, b2, . . . , bm) by a 

permutation.

Then e ∈ Δia
and g ∈ Δib

.

Proof. Write Δia
= [uia

, via
] and Δib

= [uib
, vib

]. If ia = ib, then ap, bp ∈ [uia
, via

] for all 1 ≤ p ≤ m, hence 

e, g ∈ Δia
by the requirement (b). Therefore, we may assume ia < ib, so uia

< uib
and via

< vib
. Suppose 

that ap ∈ [uia
, via

] \ [uib
, vib

] when 1 ≤ p ≤ τ and ap ∈ [uia
, via

] ∩ [uib
, vib

] when τ < p ≤ m.

This implies that cp = min{ap, bp} = ap for all 1 ≤ p ≤ τ . Notice that τ is the number of elements 

of the set {a1, a2, . . . , am, b1, b2, . . . , bm} which are contained in [uia
, via

] \ [uib
, vib

]. Since e ≤p c, we have 

ep = ap ∈ [uia
, via

] \ [uib
, vib

] for 1 ≤ p ≤ τ and ep ∈ [uia
, via

] ∩ [uib
, vib

] for all τ < p ≤ m. This shows 

e ∈ Δia
. Moreover,

{a1, a2, . . . , am, b1, b2, . . . , bm} \ {e1, . . . , em} ⊆ [uib
, vib

]

implying that g ∈ Δib
. �

Example 4.2. Let Δ be the unit interval simplicial complex on 6 vertices with two maximal cliques Δ1 =

{1, 2, 3, 4, 5} and Δ2 = {2, 3, 4, 5, 6}, so J∆ is generated by all three-minors [a1a2a3] of two generic 3 × 5

matrix such that {a1, a2, a3} ∈ [1, 5] or {a1, a2, a3} ∈ [2, 6]. Let a = {1, 4, 5} and b = {2, 3, 6}. Then 

c = {1, 3, 5} and d = {2, 4, 6}. Here are all possible pairs of e and g that are not equal to c and d: 

e1 = {1, 2, 3} and g1 = {4, 5, 6}; e2 = {1, 2, 4} and g2 = {3, 5, 6}; e3 = {1, 2, 5} and g3 = {3, 4, 6}; 

e4 = {1, 3, 4} and g4 = {2, 5, 6}.

Let a = {a1, . . . , am} and b = {b1, . . . , bm} be (m − 1)-dimensional faces of Δ, and c = min{a, b} and 

d = max{a, b} as defined in Lemma 3.4. Then [a][b] can be written as a linear combination of products of 

minors [e][g] satisfying assumptions in Lemma 4.1. (see for example the proof of Theorem 6.46 in [15]).

We are now ready to give a SAGBI basis of the Rees algebra for a unit interval determinantal facet ideal.

Theorem 4.3. Let Δ be a pure and unit interval (m − 1)-dimensional simplicial complex. The polynomials 

of the set {xij} ∪ {[a] · t | a is a facet of Δ} form a SAGBI basis of the Rees algebra R(J∆) with respect to 

the monomial order >′ defined in Definition 2.10. In particular,

in>′(R(J∆)) = K [X] [ in>(J∆) · t] = R(in>(J∆)).

Additionally, the polynomials of the set {[a] | a is a facet of Δ} form a SAGBI basis of the K-algebra 

K[J∆] with respect to the lexicographic monomial order > as in Notation 2.3; in particular, in>(K[J∆]) =

K[ in>(J∆)].

Proof. Polynomials of types (1), (2), and (3) form a Gröbner basis, and therefore a (not necessarily minimal) 

generating set, of ker φ∗ by Theorem 3.14. It suffices to show that for any f = f1 − f2 in the generating 

set of ker φ∗, φ(f) is a linear combination of elements of the form λu([a] · t)k with λ ∈ K \ {0}, k ∈ N, 

u a monomial in the xij , and in>′(φ(f1)) > in>′(u([a] · t)k)); see, for example, [15, Theorem 6.43] or [8, 

Theorem 3.3].

Observe the following elementary facts: 
∑

p∈Sm
sgn(p)x1p(a1) · · · xmp(am) = [a]; 

∑

p∈Sm
sgn(p)x1p(b1) · · ·

xmp(bm) = [b]; and [a][b] − [b][a] = 0. Then the linear relation (1) can be lifted to

xa[b] · t − xb[a] · t =
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⎛

⎜

⎜

⎝

∑

p∈Sm

p�=id

sgn(p)x1p(a1) · · · xmp(am)

⎞

⎟

⎟

⎠

[b] · t −

⎛

⎜

⎜

⎝

∑

p∈Sm

p�=id

sgn(p)x1p(b1) · · · xmp(bm)

⎞

⎟

⎟

⎠

[a] · t

where Sm denotes the symmetric group on m letters. Observe that every monomial in 
∑

p∈Sm

p�=id

x1p(a1) · · · xmp(am)

is less than xa with respect to >.

The linear relation (2) can be lifted to

(−1)i+ixici
[c \ ci] · t + (−1)i+i+1xici+1

[c \ ci+1] · t =
∑

j∈{1,...,m+1}
j �=i,i+1

(−1)i+j+1xicj
[c \ cj ] · t

where c = {c1 < c2 < . . . < cm+1} is an m-face of Δclique. This is because we have 
∑

j∈{1,...,m+1}

(−1)i+jxicj
[c \

cj ] = 0. If j < i, then the lead monomial of xicj
[c \ cj ] on the right-hand side of the equation is

xicj
x1c1

· · · xj−1cj−1
xjcj+1

· · · xici
· · · xmcm+1

.

On the other hand, the lead monomial of the left-hand side is

xici
x1c1

· · · xj−1cj−1
xjcj

· · · xi−1ci−1
xici+1

· · · xmcm+1
.

Since xjcj+1
< xjcj

, the desired condition on the initial monomials is satisfied.

If j > i + 1, then the leading monomial of xicj
[c \ cj ] is

xicj
x1c1

· · · xi−1ci−1
xici

xi+1ci+1
· · · xj−1cj−1

xjcj+1
· · · xmcm+1

.

The lead monomial of the left-hand side is

xici
x1c1

· · · xi−1ci−1
xici+1

· · · xj−1cj−1
xjcj

· · · xmcm+1
.

The conclusion follows by xicj
< xici+1

.

The Plücker relation (3) can be lifted to the standard Plücker relation

[a][b] · t2 − [c][d] · t2 =
∑

ce,g �=0
[e]≤p[c],[e]≤p[g] �=[d]

ce,g · [e] · [g] · t2 (4)

where 0 �= ce,g ∈ K and [e], [g] are in the Plücker poset such that they satisfy the assumptions in Lemma 4.1

with e, g ∈ Δ. It is well-known that in>([e][g]) < in>([a][b]); see, for example, [15, Theorem 6.46]. �

We present the defining equations of the defining ideal of the Rees algebra of the determinantal ideal.

Definition 4.4. Adopt Notation 3.1 and Definition 3.5. Let Δ be a unit interval and pure (m −1)-dimensional 

simplicial complex.

(a) Let a and b be (m − 1)-dimensional faces contained in distinct cliques of Δ. We define polynomials of 

type (5) as

[a] · Tb − [b] · Ta (5)
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(b) Let c = {c1, . . . , cm+1} be an m-face of Δclique. We define polynomials of type (6) as

∑

j∈{1,...,m+1}

(−1)i+jxicj
Tc\cj

(6)

(c) Let a and b be (m − 1)-dimensional faces of Δ. Let c = min{a, b}, d = max{a, b}, and e, g are faces 

of Δ satisfying the assumptions in Lemma 4.1. We write i• as the permutation p ∈ S2m given by 

(e1, e2, . . . , em, g1, g2, . . . , gm) arises from the sequence (a1, a2, . . . , am, b1, b2, . . . , bm). We define polyno-

mials of type (7) as

TaTb − TcTd +
∑

[e]≤p[c],[e]≤p[g] �=[d]

sgn(i•) · TeTg (7)

Now, applying [23, Corollary 11.6], we obtain our main result.

Theorem 4.5. With respect to some monomial ordering ω′ on the ring R[T∆], the presentation ideal of 

R(J∆) has a Gröbner basis consisting of polynomials of types (5), (6), and (7).

In addition, the presentation ideal of F(J∆) has a Gröbner basis given by polynomials of type (7) with 

respect to some monomial order ω on K[T]. In particular, J∆ is of fiber type.

Example 4.6. Consider again the complex Δ from Example 3.6. Lifting the defining equations of the Rees 

ideal of in(J∆), we obtain the defining equations of R(J∆):

(a) Koszul relations between Δ1 and Δ2, e.g.,

[124]T236 − [236]T124 and [145]T256 − [256]T145;

(b) Eagon-Northcott-type relations from within Δ1 and Δ2, e.g.,

x11T234 − x12T134 + x13T124 − x14T123 and x24T356 − x25T346 − x23T456 + x26T345;

(c) Plücker relations, e.g.,

T125T134 − T124T135 + T123T145 and

T145T236 − T135T246 + T123T456 − T124T356 + T125T346 + T134T256.

Example 4.2 gives all possible e and g pairs for the last Plücker relation.

Corollary 4.7. Let Δ be a unit interval and pure (m − 1)-dimensional simplicial complex with clique decom-

position Δ =
⋃r

i=1 Δi and J∆ be its corresponding determinantal facet ideal, and let ni be the size of the 

vertex set of each Δi in the clique decomposition. Then we have the following properties:

(i) F(J∆) is Koszul.

(ii) R(J∆) is Koszul if Δ is a clique.

(iii) J∆ is of linear type if and only if ni ≤ m + 1 for all i.

(iv) R(J∆) and F(J∆) are normal Cohen-Macaulay domains. In particular, R(J∆) and F(J∆) have ratio-

nal singularities if char K = 0, and they are F-rational if char K > 0.

Proof. It is well-known that if the presentation ideal for an algebra has a quadratic Gröbner basis, then the 

algebra is Koszul; see, for instance, [15, Theorem 6.7]. This gives (i) and (ii). To see (iii), observe that all 
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relations of type (7) come from faces of Δclique which are dimension m +1 or larger and |Δia
∩Δib

| ≥ m +1. 

By [23, Proposition 13.15], the semigroup rings, R(in>(J∆)) and F(in>(J∆)), are normal because their 

presentation ideals have square-free initial ideals by Theorem 3.14.

Applying [8, Corollary 2.3] and Theorem 4.3, we obtain (iv). �
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