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Abstract—Massive multiple-input multiple-output (MIMO)
communications using low-resolution analog-to-digital converters
(ADCs) is a promising technology for providing high spectral
and energy efficiency with affordable hardware cost and power
consumption. However, the use of low-resolution ADCs requires
special signal processing methods for channel estimation and
data detection since the resulting system is severely non-linear.
This paper proposes joint channel estimation and data detection
methods for massive MIMO systems with low-resolution ADCs
based on the variational Bayes (VB) inference framework. We
first derive matched-filter quantized VB (MF-QVB) and linear
minimum mean-squared error quantized VB (LMMSE-QVB)
detection methods assuming the channel state information (CSI)
is available. Then we extend these methods to the joint channel
estimation and data detection (JED) problem and propose two
methods we refer to as MF-QVB-JED and LMMSE-QVB-JED.
Unlike conventional VB-based detection methods that assume
knowledge of the second-order statistics of the additive noise, we
propose to float the elements of the noise covariance matrix
as unknown random variables that are used to account for
both the noise and the residual inter-user interference. We also
present practical aspects of the QVB framework to improve its
implementation stability. Finally, we show via numerical results
that the proposed VB-based methods provide robust performance
and also significantly outperform existing methods.

Index Terms—Approximate message passing, Bayesian infer-
ence, detection, estimation, massive MIMO, soft interference
cancellation, variational Bayesian.

I. INTRODUCTION

Beyond-5G wireless systems will require exploitation of
the large bandwidths available at THz frequencies (0.3–3
THz) [1]–[3]. An inherent challenge in operating in these
bands is the strong radio frequency (RF) path loss, and
while this can be effectively addressed by exploiting the
beamforming gain available from large antenna arrays, scaling
up existing RF technologies to very large arrays becomes
complex, expensive, and demands high power consumption.
Therefore, implementing massive antenna arrays for THz
communications will require radical simplifications in the RF
architecture. Hybrid analog-digital arrays reduce the number
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of RF chains with respect to (w.r.t.) the number of antenna
elements [4], but this approach yields poor spatial multiplexing
and does not scale well at higher frequencies and wider
bandwidths due to the need for complex analog circuitry and
resource-consuming beam management schemes [5].

An alternative solution is to retain the RF chains for
each antenna but reduce complexity and energy consumption
through the use of low-resolution analog-to-digital converters
(ADCs). It has been shown that fully digital arrays with lower-
resolution data converters (even down to 1 bit) can significantly
outperform hybrid analog-digital architectures in terms of
beamforming flexibility and spectral/energy efficiency [6]. This
is because the use of low-resolution ADCs maintains the
high spatial multiplexing gains of massive arrays, and they
more easily scale to higher frequencies and bandwidths with
significantly reduced hardware cost and power consumption.
However, the use of low-resolution quantization requires special
signal processing methods for channel estimation and data
detection since the resulting system is severely non-linear, and
the received signals are significantly distorted.

There has been a plethora of channel estimation and
data detection studies for massive MIMO systems with low-
resolution ADCs. For example, one-bit maximum-likelihood
(ML) and near-ML methods were proposed in [7]. The Buss-
gang decomposition was used to derive different linear channel
estimators in [8], [9] and linear data detectors in [9]–[11].
While the ML and near-ML methods are either too complicated
for practical implementation or non-robust at high signal-to-
noise ratios (SNRs), the linear Bussgang-based receivers have
lower complexity and are more robust, but they have limited
performance. Several other detection approaches have been
proposed in [12]–[15] but they require the use of either a
cyclic redundancy check (CRC) or an error correcting code
(ECC). The authors in [16] developed a bilinear generalized
approximate message passing (BiGAMP) algorithm [17] to
solve the joint channel estimation and data detection (JED)
problem for few-bit MIMO systems.

Recently, machine learning for low-resolution MIMO chan-
nel estimation and data detection has gained interest and there
have also been numerous results reported in the literature. In
particular, the work in [18] shows how support vector machine
(SVM) models can be applied to one-bit massive MIMO
channel estimation and data detection. The authors of [11]
exploit a deep neural network (DNN) framework to develop a
special model-driven detection approach that outperforms the
SVM-based methods in [18]. Deep learning-based joint pilot
signal and channel estimator designs were proposed in [19]
and [20]. While a conventional DNN structure was used in [19],
the work in [20] employed a model-driven network similar
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to [11]. The work in [21] proposed another DNN-based detector
but its computational complexity is high since the detection
network must be retrained for each new channel realization.
Several learning-based blind detection methods were proposed
in [22]–[24] but they are restricted to small-scale systems.
In [25], Bayesian inference was used to develop a JED method
for quantized single-antenna systems with orthogonal frequency
division multiplexing (OFDM) and time-frequency doubly
selective (DS) channels where the sparsity of the DS channels
was exploited. Another JED method was proposed in [26]
based on the variational Bayesian (VB) inference framework,
and it was shown to outperform the BiGAMP-based method
in [16] for soft symbol decoding. The work in [26] was then
extended to OFDM systems in [27]. The authors in [28] applied
the VB method to the sparse mmWave channel estimation
problem via spectral line estimation. In a recent work [29],
VB inference was shown to be very efficient in MIMO data
detection with infinite-resolution (perfect) ADCs. VB inference
for unquantized systems was also studied for OFDM [30], [31]
and orthogonal time frequency space (OTFS) [32] systems, all
assuming that the noise variance or covariance matrix is fixed
and known in advance.

In this paper, we develop a VB framework for channel
estimation and data detection for massive MIMO systems with
low-resolution ADCs. While conventional machine learning
models such as SVM and DNN only provide a point estimate
of the signal of interest, e.g., the channel or the data symbols,
the VB approach can provide the posterior distribution of the
estimate, which is important in subsequent signal processing
steps such as channel decoding. Another advantage of VB is
that it does not require a training process like DNNs which often
suffer from performance degradation due to mismatch between
the actual model and that used during training. Unlike our
previous work in [33] which only considers the data detection
problem and assumes perfect channel state information (CSI),
we study both channel estimation and data detection in this
paper. The works most closely related to ours are the Bayesian
inference-based methods in [26] and [34]. However, they
assume perfect knowledge of the noise variance, which is
challenging to obtain and, to the best of our knowledge, remains
an open problem in quantized systems. In addition, the methods
in [26] and [34] do not efficiently address the problem of inter-
user interference estimation and compensation. To address
these challenges, the key and novel contribution of our work
is developing a VB framework that can efficiently estimate
and compensate for the joint effects of noise and inter-user
interference through the use of a new latent variable. More
specific contributions of our work are summarized as follows:

• First we consider the simpler case with known chan-
nel state information (CSI). We devise a matched-filter
quantized VB (MF-QVB) detection method for few-
bit MIMO systems that, unlike the VB-based detection
method in [26], does not assume an a priori known noise
variance. The proposed MF-QVB method floats the noise
variance as a latent variable and uses it to also account
for residual inter-user interference. This latent variable is
jointly estimated with the transmitted data symbol vector.
We also introduce the use of a logistic rather than Gaussian
distribution for describing the tails of the distribution of the

latent variables, which dramatically improves robustness,
particularly at higher SNRs. Simulation results show that
with these modifications, our MF-QVB approach performs
very well for both QPSK and 16QAM modulation, while
the approach in [26] fails to achieve reasonable detection
performance.

• Generalizing the first approach, we next consider cases
where the additive noise is both unknown and spatially
correlated, and we treat the entire noise covariance matrix
as a latent variable rather than simply assuming it is a
scaled identity matrix. We develop a linear minimum
mean-squared error quantized VB (LMMSE-QVB) detec-
tor based on this approach that offers performance similar
to MF-QVB for independent and identically distributed
(i.i.d.) channels, but significantly outperforms MF-QVB
for spatially correlated channels. Similarly, the approach
in [26] is unable to achieve good results in this scenario
because it ignores the correlated noise.

• Next we study the same low-resolution MIMO cases as
above, but we assume that the CSI is unknown and must
be estimated prior to detection. We develop two VB-based
JED algorithms for this problem, referred to as MF-QVB-
JED and LMMSE-QVB-JED. These algorithms jointly
estimate the channel matrix, the symbol data vectors, and
either the unknown noise variance (MF-QVB-JED) or the
unknown noise covariance matrix (LMMSE-QVB-JED).
Again, this goes well beyond the prior work in [26] that
simply assumes an a priori known scaled identity noise
covariance.

• Finally, we describe various practical aspects of our
proposed VB-based algorithms to improve their numerical
stability and reduce their computational complexity. We
show via simulations that the proposed VB detection
algorithms provide much lower symbol error rates (SERs)
compared to the conventional VB-based methods in [26].
The proposed QVB-JED algorithms also outperform
our previously proposed FBM-DetNet approach in [20],
particularly for spatially correlated channels.

The rest of the paper is organized as follows. We present
the system model and the problem of interest in Section II.
Next, a brief introduction to the VB inference framework
is given in Section III. Then, in Section IV, we derive the
VB-based data detection method when the CSI is known.
Section V proposes the VB-based JED methods. We present
practical implementation aspects of the VB framework as
well as numerical results in Section VI. Finally, Section VII
concludes the paper.

Notation: Scalar [X]ij denotes the element at the ith row and
jth column of matrix X; vectors [X]i,: and [X]:,j denote the
ith row and jth column of matrix X, respectively; the operators
Tr{X} and |X| represent the trace and determinant of a square
matrix X, respectively; the Frobenius norm of a matrix X is
represented by ∥X∥F ; the distribution of a K-element complex
Gaussian random vector with mean µ and covariance matrix Σ
is denoted by CN (x;µ,Σ) = 1

πK |Σ| exp
(
−(x−µ)HΣ−1(x−

µ)
)
, and is also written as x ∼ CN (µ,Σ); the functions ϕ(x)

and Φ(x) denote the PDF and cumulative distribution function
(CDF) of a standard Gaussian random variable N (0, 1); the
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operators Ep(x)[x] and Varp(x)[x] denote the mean and variance
of x w.r.t. its distribution p(x); in addition, we use ⟨x⟩, τx, and
⟨|x|2⟩ = |⟨x⟩|2 + τx to denote the mean, variance, and second
moment of x w.r.t. a variational distribution q(x). The symbols
∼ and ∝ indicate “distributed according to” and “proportional
to”, respectively. Finally, 1(·) denotes the indicator function
which equals one if the argument holds true, or zero otherwise.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider an uplink MIMO system with K single-
antenna users and an M -antenna base station (BS). The
users’ transmitted symbols are collected in the vector x =
[x1, . . . , xK ]T , where xi corresponds to user-i and is drawn
from a discrete constellation S. The prior distribution of xi

is p(xi) =
∑

a∈S paδ(xi − a), where pa corresponds to a
known prior probability of the constellation point a ∈ S . It is
assumed that the symbols in x are independent of each other,
i.e., p(x) =

∏K
i=1 p(xi). For ease of presentation, we assume

the same constellation S and the same prior distribution p(xi)
for all the users. However, the methods proposed in the paper
are not restricted to this assumption.

Given the uplink channel H = [h1 · · · hK ] ∈ CM×K , the
uplink MIMO transmission at a given time slot can be modeled
as r = Hx + n, where r is the unquantized received signal
vector and n ∼ CN (0, N0IM ) models the independent and
identically distributed (i.i.d.) additive white Gaussian noise at
the receiver. The channel vector hi from user-i to the BS is
assumed to be distributed as hi ∼ CN (0,Ci), where Ci ≜
E[hih

H
i ] describes the spatial correlation of the channel, and is

assumed to be known. The spatial statistics of the channel are
relatively straightforward to obtain since they typically change
much more slowly than a channel coherence interval. Thus,
sample averages of the channel estimates obtained over these
coherence intervals can be used to estimate Ci. Finally, we
assume that the users’ channels are independent, and hence
E[hih

H
j ] = 0 for i ̸= j.

We consider a block fading channel in which a pilot
transmission phase over Tp time slots is followed by a data
transmission phase over Td time slots. We denote Xp ∈ CK×Tp

as the pilot matrix and Xd ∈ SK×Td as the data matrix. For
s ∈ {p, d}, the unquantized received signals Rs ∈ CM×Ts are
given by

Rs = HXs +Ns, (1)

where Xs =
[
xs,1, . . . ,xs,Ts

]
with xs,t = [xs,t1, . . . , xs,tK ]T ,

and Ns =
[
ns,1, . . . ,ns,Ts

]
. We assume that user-i transmits

with power ρi during the pilot transmission phase. Each
received analog signal is then quantized by a pair of b-bit
ADCs to produce the quantized received signal:

ℜ
{
Ys

}
= Qb

(
ℜ
{
Rs

})
, ℑ

{
Ys

}
= Qb

(
ℑ
{
Rs

})
, (2)

where Qb(·) denotes the b-bit ADC operation which is applied
separately to every element of its matrix or vector argument.
We assume Qb(·) performs b-bit uniform scalar quantization,
which is characterized by a set of 2b − 1 thresholds denoted
as {d1, . . . , d2b−1}. Without loss of generality, we assume
−∞ = d0 < d1 < . . . < d2b−1 < d2b =∞. For a quantization

step size of ∆, the quantization thresholds are given by

dk = (−2b−1 + k)∆, for k ∈ K = {1, . . . , 2b − 1}. (3)

The quantized output y is then defined as

y = Qb(r) =

{
dk − ∆

2 , if r ∈ (dk−1, dk] with k ∈ K
(2b − 1)∆2 , if r ∈ (d2b−1, d2b ].

(4)
We also define ylow and yup as lower and upper thresholds

of the quantization bin to which y belongs.

In this paper, we first study the data detection problem with
known CSI, i.e., where the problem of interest is to detect the
data matrix Xd using the received signal matrix Yd and the
channel matrix H. Then, in the following section we study the
problem of joint channel estimation and data detection where
H is estimated and Xd detected using knowledge of the pilot
matrix Xp and the received signal matrices Yp and Yd.

III. BACKGROUND ON VARIATIONAL BAYES INFERENCE

Here we present a brief background on the VB method for
approximate inference that will be used to solve the problems
of interest in this paper. In variational inference, the posterior
distribution p(x|y) over a set of latent variables x given some
observed data y is approximated by a variational distribution
q(x). A set of variational parameters describing q(x) within
a family of densities Q that minimize the Kullback-Leibler
(KL) divergence from q(x) to p(x|y) are determined [35], [36].
Minimizing the KL divergence is equivalent to maximizing the
evidence lower bound (ELBO), which is defined as

ELBO(q) = Eq(x)

[
ln p(x,y)

]
− Eq(x)

[
ln q(x)

]
. (5)

The VB method assumes the mean field variational family,
for which q(x) =

∏m
i=1 qi(xi). The general expression for the

optimal solution qi(xi) can be obtained as [35]

qi(xi) ∝ exp
{〈

ln p(y|x) + ln p(x)
〉
−xi

}
. (6)

Here, ⟨·⟩−xi
denotes the expectation w.r.t. all latent variables

except xi using the variational distribution q−i(x−i) =∏
j ̸=i qj(xj). In the following, if ⟨·⟩ is used, it means the

variational expectation is taken w.r.t. all the latent variables in
the argument. By iterating the update of qi(xi) sequentially over
all i, the ELBO(q) objective function can be monotonically
improved, guaranteeing the convergence to at least a local
optimum of ELBO(q) [35], [36].

The following lemma on the variational posterior mean of
multiple random variables will be used throughout the paper.

Lemma 1. Suppose that {A,y,x} are respectively of size
{m× n,m× 1, n× 1} and are independent random variables
w.r.t. variational distribution qA,y,x(A,y,x) = q(A)q(y)q(x).
Assume A is column-wise independent and let ⟨ai⟩ and Σai

be the variational mean and covariance of the ith column of
A. Let ⟨x⟩ and Σx (and ⟨y⟩ and Σy) be the variational mean
and covariance of x (and y), respectively. For an arbitrary
Hermitian matrix B, let

〈
(y − Ax)HB(y − Ax)

〉
be the

expectation of (y −Ax)HB(y −Ax) w.r.t. qA,y,x(A,y,x).
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Then〈
(y −Ax)HB(y −Ax)

〉
=

(
⟨y⟩ − ⟨A⟩⟨x⟩

)H
B
(
⟨y⟩ − ⟨A⟩⟨x⟩

)
+Tr{BΣy}

+ ⟨x⟩HD⟨x⟩+Tr
{
ΣxD

}
+Tr

{
Σx⟨AH⟩B⟨A⟩

}
, (7)

where D = diag
(
Tr{BΣa1

}, . . . ,Tr{BΣan
}
)
.

Proof: The proof of this lemma is straightforward and
similar to the proof of Lemma 1 in [29], except that y is now
a random vector. We omit the proof for brevity.

We note that if any of A, y, and x is deterministic, the
corresponding covariance matrices {Σai}, Σy, and Σx will be
set to 0 and the expectation of (y −Ax)HB(y −Ax) given
in (7) can be simplified accordingly.

IV. VB FOR DATA DETECTION IN FEW-BIT MIMO
SYSTEMS WITH CSIR

The VB-based methods proposed in [26] assume prior
information about the noise variance N0. However, by fixing
the noise variance to N0, the conventional VB methods in [26]
are unable to properly account for the residual inter-user
interference, and therefore the obtained variational distribution
will in general deviate significantly from the true posterior [29].
Here, we float the noise variance/covariance as an unknown
parameter that is postulated by the VB estimation framework.
To this end, we develop two new VB-based algorithms for
solving the data detection problem in few-bit MIMO systems
with known channel H. For ease of presentation, we drop the
subscript d, t indicating the data transmission at time index t.

A. Proposed MF-QVB For Few-Bit MIMO Detection

In this algorithm, we consider the residual interference-plus-
noise as an unknown parameter Npost

0 that is postulated by
the VB estimation framework. For ease of computation, we
use γ = 1/Npost

0 to denote the precision to be estimated.

The joint distribution p(y, r,x; γ,H) of the observed vari-
able y and the latent variables r and x can be factored as

p(y, r,x; γ,H) = p(y|r)p(r|x; γ,H)p(x) (8)

=

[
M∏

m=1

p(ym|rm)

]
p(r|x; γ,H)

[
K∏
i=1

p(xi)

]
,

where p(ym|rm) = 1
(
rm ∈ [ylowm , yupm ]

)
and p(r|x; γ,H) =

CN (r;Hx, γ−1IM ). We note that the random vector r is
comprised of conditional independent elements due to the same
noise variance being imposed on the M receive antennas.

In the E-step, for a currently fixed estimate γ̂ of γ, we aim
to derive the mean field variational distribution q(r,x) of r
and x given y such that

p(r,x|y; γ̂,H) ≈ q(r,x) = q(r)

[
K∏
i=1

q(xi)

]
. (9)

1) Updating r. The variational distribution q(r) is obtained

Algorithm 1 – MF-QVB for Few-Bit MIMO Detection

1: Input: y, H
2: Output: x̂
3: Initialize x̂1

i = 0 and τ1xi
= Varp(xi)[xi], ∀i, r̂1m = ym and

τ1rm = 0, ∀m, e = r̂1 −Hx̂1, and compute gi = ∥hi∥2
4: for ℓ = 1, 2, . . . do
5: γ̂ℓ ←M/

(
∥e∥2 +

∑M
m=1 τ

ℓ
rm +

∑M
i=1 giτ

ℓ
xi

)
6: sℓ ← r̂ℓ − e
7: r̂ℓ+1 ← Fr

(
sℓ, γ̂ℓ,ylow,yup

)
▷ Update r

8: τ ℓ+1
r ← Gr

(
sℓ, γ̂ℓ,ylow,yup

)
9: e← e− r̂ℓ + r̂ℓ+1 ▷ Update residual

10: for i = 1, . . . ,K do ▷ Update x
11: zℓi ← x̂ℓ

i + hH
i e/gi ▷ Matched filter

12: x̂ℓ+1
i ← Fx

(
zℓi , giγ̂

ℓ
)

13: τ ℓ+1
xi
← Gx

(
zℓi , giγ̂

ℓ
)

14: e← e+ hi(x̂
ℓ
i − x̂ℓ+1

i ) ▷ Update residual
15: ∀i : x̂i ← arg maxa∈S pa CN

(
zℓi ; a, 1/(giγ̂

ℓ)
)
.

by taking the expectation of the conditional in (8) w.r.t. q(x):

q(r) ∝ exp
{〈

ln p(y|r) + ln p(r|x; γ̂,H)
〉
−r

}
∝ exp

{〈
ln1

(
r ∈ [ylow,yup]

)
− γ̂∥r−Hx∥2

〉
−r

}
∝ 1

(
r ∈ [ylow,yup]

)
× exp

{
− γ̂∥r−H⟨x⟩∥2

}
∝ 1

(
r ∈ [ylow,yup]

)
× CN

(
r;H⟨x⟩, γ̂−1IM

)
. (10)

We note that variational distribution q(r) is inherently separable
as

∏M
m=1 q(rm) without enforcing the mean field approxima-

tion on q(r). Thus, the variational mean and variance can be ob-
tained concurrently for all the elements of r. We see in (10) that
q(rm) is the truncated complex normal distribution obtained
from bounding rm ∼ CN

(
sm, γ̂−1

)
, where sm = Hm,:⟨x⟩, to

the interval (ylowm , yupm ). Thus, its mean ⟨rm⟩ and variance τrm
are given by Fr

(
sm, γ̂, ylowm , yupm

)
and Gr

(
sm, γ̂, ylowm , yupm

)
,

respectively.1 Here, sm can be considered as a linear estimate
of rm and ⟨rm⟩ can then be considered as a denoised version
of sm through the variational distribution q(rm).

2) Updating xi. The variational distribution q(xi) is obtained
by taking the expectation of the conditional in (8) w.r.t.
q(r)

∏
j ̸=i q(xj):

q(xi) ∝ exp
{〈

ln p(r|x; γ̂,H) + ln p(xi)
〉
−xi

}
∝ p(xi) exp

{
− γ̂

〈
∥r−Hx∥2

〉
−xi

}
∝ p(xi) exp

{
−γ̂

[
∥hi∥2|xi|2

− 2ℜ
{
hH
i

(
⟨r⟩ −

K∑
j ̸=i

hj⟨xj⟩
)
x∗
i

}]}
∝ p(xi) exp

{
−γ̂∥hi∥2

(
|xi|2 − 2ℜ{x∗

i zi}
)}

∝ p(xi) exp
{
−γ̂∥hi∥2|xi − zi|2

}
∝ p(xi) CN

(
zi;xi, 1/(γ̂∥hi∥2)

)
, (11)

1The computations of the mean Fr(µ, γ, a, b) and variance Gr(µ, γ, a, b)
of an arbitrary complex normal distribution CN (µ, γ−1) truncated to an
interval (a, b) are presented in Appendix A.
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where we define

zi =
hH
i

∥hi∥2

(
⟨r⟩ −

K∑
j ̸=i

hj⟨xj⟩
)

= ⟨xi⟩+
hH
i

∥hi∥2
(
⟨r⟩ −H⟨x⟩

)
(12)

with ⟨xi⟩ being the currently fixed nonlinear estimate of
xi, ∀i. We can see in (11) that the mean field VB approxi-
mation decouples the few-bit MIMO system into an AWGN
channel zi = xi + CN

(
0, 1/(⟨γ⟩∥hi∥2)

)
for user-i. The

variational distribution q(xi) can be realized by normaliz-
ing p(xi) CN

(
zi;xi, 1/(γ̂∥hi∥2)

)
. The variational mean ⟨xi⟩

and variance τxi are now updated as Fx

(
zi, γ̂∥hi∥2

)
and

Gx

(
zi, γ̂∥hi∥2

)
, respectively.2

In the M-step, the estimate of γ is updated to maximize
ln p(y, r,x; γ,H) w.r.t. q(r,x), i.e.,

γ̂ = argmax
γ

〈
ln p(r|x; γ;H)

〉
= argmax

γ
M ln γ − γ

〈
∥r−Hx∥2

〉
. (13)

Applying Lemma 1 to evaluate the expectation
〈
∥r−Hx∥2

〉
,

the new estimate of γ is given by

γ̂ =
M

∥⟨r⟩ −H⟨x⟩∥2 +
∑M

m=1 τrm +
∑K

i=1 τxi
∥hi∥2

. (14)

By iteratively optimizing q(r), {q(xi)}, and updating γ̂, we
obtain the variational Bayes expectation-maximization (VBEM)
algorithm for estimating r, x, and γ. Similar to our previous
work [29], we refer to this scheme as the MF-QVB algorithm
due to the use of the matched-filter hH

i /∥hi∥2 to obtain the
linear estimate zi of xi in (12). Then, ⟨xi⟩ can be considered
as a denoised estimate of zi through the variational distribution
q(xi). If γ is fixed to N−1

0 , the MF-QVB algorithm will be
referred to as the conv-QVB algorithm, that was referred to as
the QVB-CSIR algorithm in [26]. In MF-QVB, the estimate
γ̂ in (14) factors in the effect on the background noise, i.e.,
∥⟨r⟩ −H⟨x⟩∥2, as well as the errors of estimating {rm} and
{xi}, i.e., {τrm} and {τxi}. Accounting for these estimation
error terms in MF-QVB will result in a variational distribution
q(xi) that provides a closer approximation to the true posterior
p(xi|y), when compared to conv-QVB.

The MF-QVB approach is summarized in Algorithm 1. Here,
we use r̂ℓ, x̂ℓ

i , and γ̂ℓ to replace ⟨r⟩, ⟨xi⟩, and γ̂ at iteration
ℓ and each iteration consists of one round of updating the
estimation of r, x, and γ. To reduce the complexity of the
algorithm, we include the residual term e, which is initialized
as r̂1−Hx̂1, and we pre-compute gi = ∥hi∥2. We also define
sℓ = r̂ℓ − e as an efficient way to compute Hx̂ℓ at iteration-ℓ,
which requires a complexity of only O(M) instead of O(MK).
The computation of rℓ+1 (and τ ℓ+1

r ) can be carried out element-
wise in parallel. The complexity of updating e in step 9 of
the algorithm with the latest value rℓ+1 is also O(M). In
addition, computing zℓi in step 11 and updating e in step 14
of the algorithm only require a per-usercomplexity of O(M).

2The computations of the mean Fx(z, γ) and variance Gx(z, γ) of a discrete
random variable x given a prior distribution p(x) and the observation z =
x+ CN (0, γ−1) are presented in Appendix B.

Thus, by properly using and updating e, we can reduce the
complexity from O(MK) to O(M) of computing ⟨r⟩−H⟨x⟩
from the latest update of r and x.

B. Proposed LMMSE-QVB For Few-Bit MIMO Detection

While MF-QVB relies on a latent random variable to
capture the second-order statistics of the noise and residual
inter-user interference, the LMMSE-QVB developed in this
section utilizes a latent matrix variable for this purpose. To
account for the spatial correlation in the residual inter-user
interference

∑K
i=1 hi(xi − x̂i), especially in scenarios with

correlated channels or few users, we propose using a postulated
noise plus inter-user interference covariance matrix Cpost. By
adding more degrees of freedom through Cpost, we can get
a variational distribution q(xi) that better matches the real
posterior distribution p(xi|y). This helps to reduce symbol
estimation errors compared to the MF-QVB method. For ease
of computation, we use Γ = (Cpost)−1 as the precision matrix
for the noise and residual inter-user interference to be estimated.

The joint distribution p(y, r,x;Γ,H) of the observed vari-
able y and the latent variables r and x at time slot t can be
factored as
p(y, r,x;Γ,H) = p(y|r)p(r|x;Γ,H)p(x) (15)

=

[
M∏

m=1

p(ym|rm)

]
p(r|x;Γ,H)

[
K∏
i=1

p(xi)

]
,

where p(r|x,Γ;H) = CN
(
r;Hx,Γ−1

)
. We note that the

random vector r is no longer comprised of conditional
independent elements since the noise covariance matrix Γ−1

is in general non-diagonal.

In the E-step, for a currently fixed estimate Γ̂ of Γ, we aim
to derive the mean field variational distribution q(r,x) of r
and x given y such that

p(r,x|y; Γ̂,H) ≈ q(r,x) =

[
M∏

m=1

q(rm)

][
K∏
i=1

q(xi)

]
. (16)

1) Updating rm. The variational distribution q(rm) is
obtained by taking the expectation of the conditional in (15)
w.r.t. q(x)

∏
n̸=m q(rn):

q(rm) ∝ exp
{〈

ln p(ym|rm) + ln p(r|x; Γ̂,H)
〉
−rm

}
∝ exp

{
ln1

(
rm ∈ [ylowm , yupm ]

)
−
〈
(r−Hx)H Γ̂(r−Hx)

〉
−rm

}
∝ 1

(
rm ∈ [ylowm , yupm ]

)
× exp

{
− [Γ̂]mm

(
|rm|2 − 2ℜ{r∗mHm,:⟨x⟩}

)2
− 2

M∑
n̸=m

ℜ
{
r∗m[Γ̂]mn

(
⟨rn⟩ −Hn,:⟨x⟩

)}}
∝ 1

(
rm∈ [ylowm , yupm ]

)
× exp

{
− [Γ̂]mm|rm − sm|2

}
∝ 1

(
rm∈ [ylowm , yupm ]

)
× CN

(
rm; sm, [Γ̂]−1

mm

)
, (17)
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where sm is now defined as

sm = Hm,:⟨x⟩ − [Γ̂]−1
mm

M∑
n̸=m

[Γ̂]mn

(
⟨rn⟩ −Hn,:⟨x⟩

)
= ⟨rm⟩ −

[Γ̂]m,:

[Γ̂]mm

(
⟨r⟩ −H⟨x⟩

)
, (18)

⟨rm⟩ is the currently fixed nonlinear estimate of rm.We
can see in (17) that the variational distribution q(rm) is
the truncated complex normal distribution obtained from
bounding rm ∼ CN (sm, [Γ̂]−1

mm) to the interval (ylowm , yupm ).
Thus, its mean ⟨rm⟩ and variance τrm are updated as
Fr

(
sm, [Γ̂]mm, ylowm , yupm

)
and Gr

(
sm, [Γ̂]mm, ylowm , yupm

)
, re-

spectively.

2) Updating xi. The variational distribution q(xi) is obtained
by taking the expectation of the conditional in (8) w.r.t.
q(r)

∏
j ̸=i q(xj):

q(xi) ∝ exp
{〈

ln p(r|x; Γ̂,H) + ln p(xi)
〉
−xi

}
∝ p(xi) exp

{
−
〈
(r−Hx)H Γ̂(r−Hx)

〉
−xi

}
∝ p(xi) exp

{
− hH

i Γ̂hi|xi − zi|2
}

∝ p(xi) CN
(
zi;xi, 1/

(
hH
i Γ̂hi

))
, (19)

where zi is a linear estimate of xi that is now defined as

zi =
hH
i Γ̂

hH
i Γ̂hi

(
⟨r⟩ −

K∑
j ̸=i

hj⟨xj⟩
)

= ⟨xi⟩+
hH
i Γ̂

hH
i Γ̂hi

(
⟨r⟩ −H⟨x⟩

)
, (20)

and ⟨xi⟩ is the current nonlinear estimate of xi. Here, zi
is the LMMSE estimate of xi using the LMMSE filter
hH
i Γ̂/(hH

i Γ̂hi). The variational distribution q(xi) can be
realized by normalizing p(xi) CN

(
zi;xi, 1/(h

H
i Γ̂hi)

)
. The

variational mean ⟨xi⟩ and variance τxi
are updated as

Fx

(
zi,h

H
i Γ̂hi

)
and Gx

(
zi,h

H
i Γ̂hi

)
, respectively.

In the M-step, the estimate of Γ is updated to maximize
ln p(y, r,x;Γ,H) w.r.t. q(r,x), i.e.,

Γ̂ = argmax
Γ

〈
ln p(r|x;Γ,H)

〉
= argmax

Γ
ln |Γ| −

〈
(r−Hx)HΓ(r−Hx)

〉
. (21)

By applying Lemma 1, we have〈
(r−Hx)HΓ(r−Hx)

〉
= Tr

{[(
⟨r⟩ −H⟨x⟩

)(
⟨r⟩ −H⟨x⟩

)H
+Σr +HΣxH

H
]
Γ
}
,

(22)

where Σr = diag(τr1 , . . . , τrM ) and Σx =
diag(τx1

, . . . , τxK
). Thus, a new estimate of Γ is given by

Γ̂ =
((
⟨r⟩ −H⟨x⟩

)(
⟨r⟩ −H⟨x⟩

)H
+Σr +HΣxH

H
)−1

.

(23)

We note that the matrix inversion in (23) often results in numer-
ical errors due to the rank deficiency of

(
⟨r⟩ −H⟨x⟩

)(
⟨r⟩ −

H⟨x⟩
)H

+ Σr +HΣxH
H . Similar to the approach in [29],

Algorithm 2 – LMMSE-QVB for Few-Bit MIMO Detection

1: Input: y, H
2: Output: x̂
3: Initialize x̂1

i = 0 and τ1xi
= Varp(xi)[xi], ∀i, r̂1m = ym and

τ1rm = 0, ∀m, and e = r̂1 −Hx̂1

4: for ℓ = 1, 2, . . . do
5: Σr ← diag(τ ℓr1 , . . . , τ

ℓ
rM )

6: Σx ← diag(τ ℓx1
, . . . , τ ℓxK

)

7: Γ̂
ℓ
←

(
(∥e∥2/M)IM +Σr +HΣxH

H
)−1

8: for m = 1, . . . ,M do ▷ Update r

9: sℓm ← r̂ℓm − [Γ̂
ℓ
]m,:e/[Γ̂

ℓ
]mm

10: r̂ℓ+1
m ← Fr

(
sℓm, [Γ̂

ℓ
]mm, ylowm , yupm

)
11: τ ℓ+1

rm ← Gr

(
sℓm, [Γ̂

ℓ
]mm, ylowm , yupm

)
12: em ← em − r̂ℓm + r̂ℓ+1

m ▷ Update residual
13: for i = 1, . . . ,K do ▷ Update x

14: zℓi ← x̂ℓ
i + hH

i Γ̂
ℓ
e/(hH

i Γ̂
ℓ
hi) ▷ LMMSE

15: x̂ℓ+1
i ← Fx

(
zℓi ,h

H
i Γ̂

ℓ
hi

)
16: τ ℓ+1

xi
← Gx

(
zℓi ,h

H
i Γ̂

ℓ
hi

)
17: e← e+ hi(x̂

ℓ
i − x̂ℓ+1

i ) ▷ Update residual
18: ∀i : x̂i ← arg maxa∈S paCN

(
zℓi ; a, 1/(h

H
i Γ̂

ℓ
hi)

)
.

we propose to use the following estimator

Γ̂ =

(
∥⟨r⟩ −H⟨x⟩∥2

M
IM +Σr +HΣxH

H

)−1

. (24)

for the precision matrix Γ.
By iteratively optimizing {q(rm)}, {q(xi)}, and Γ̂, we

obtain the VBEM algorithm for estimating r, x, and Γ. We
refer to this scheme as the LMMSE-QVB algorithm due to
the use of the LMMSE filter hH

i Γ̂/(hH
i Γ̂hi) to obtain the

linear estimate zi of xi in (20). The LMMSE-QVB approach
is summarized in Algorithm 2. As before, we use r̂ℓm, x̂ℓ

i , and
Γ̂
ℓ

to replace ⟨rm⟩, ⟨xi⟩, and Γ̂ at iteration ℓ, and each iteration
consists of one update of the estimates for r, x, and Γ. Unlike
MF-QVB, the LMMSE-QVB algorithm requires sequential
updates over {r̂ℓm}. Note that LMMSE-QVB is equivalent to
MF-QVB in Algorithm 1 if Γ̂

ℓ
= γ̂ℓIM .

C. Practical Aspects of Implementing MF/LMMSE-QVB
1) Computing ⟨rm⟩ and τrm: In MF-QVB, ⟨rm⟩ and τrm

are updated as Fr

(
sm, γ̂, ylowm , yupm

)
and Gr

(
sm, γ̂, ylowm , yupm

)
,

respectively. The computation of these two terms, presented
in Appendix A, can result in catastrophic cancellation when
Φ(β) = Φ(α), even if β =

√
2γ̂(ylowm − sm) and α =√

2γ̂(yupm −sm) are different. This numerical error often occurs
when sm is outside the interval (ylowm , yupm ) and ⟨γ⟩ is large, i.e.,
for high SNR. To improve the robustness of the computation,
we use the logistic CDF F (x; c) = 1

1+e−cx and logistic PDF
p(x; c) = cF (x; c)(1 − F (x; c)) in place of the normal CDF
Φ(x) and normal PDF ϕ(x). We choose c = 3/

√
π to impose

a unit variance on the logistic distribution. Note that F (x)
is much easier to compute than Φ(x). We have observed
through numerous simulations that this modification eliminates
numerical errors since the tail of the logistic distribution is
heavier than that of the normal distribution. Interestingly, the
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detection accuracy is also slightly better when using F (x; c)
and p(x; c) rather than Φ(x) and ϕ(x), even when no numerical
errors occur using the latter approach. We also use F (x; c) and
p(x; c) in LMMSE-QVB and observe the same effect.

2) Using e: The residual term e is included in MF/LMMSE-
QVB to reduce the computational complexity of these algo-
rithms. Due to the sequential nature of VB, sm and zi are
computed using the latest updated values of ⟨r⟩ and ⟨x⟩. Instead
of computing ⟨r⟩−H⟨x⟩ each time before computing sm or zi,
which induces a complexity of O(MK), we use the current
value of the residual term e. The residual term e is then
recomputed to reflect any update on the estimation of rm or
xi only induces a complexity of O(M).

V. VB FOR JOINT CHANNEL ESTIMATION AND DATA
DETECTION IN FEW-BIT MIMO SYSTEMS

The algorithms in the previous section assumed that the CSI
was already obtained prior to data detection. In this section,
we generalize the MF-QVB and LMMSE-QVB approaches to
perform joint channel estimation and data detection.

A. Proposed MF-QVB-JED Algorithm
We denote γp and γd = [γd,1, . . . , γd,Td

]T as the pre-
cision of the noise in the pilot transmission phase and
the Td data transmission time slots, respectively. Denote
{Ci} as the set of covariance matrices C1, . . . ,CK . The
factorization of the joint distribution of all the observed
and latent variables in the system model (1)–(2) is given
in (25), where p(rp,t|H; γp,xp,t) = CN

(
rp,t;Hxp,t, γ

−1
p IM

)
and p(rd,t|H,xd,t; γd,t) = CN

(
rd,t;Hxd,t, γ

−1
d,t IM

)
.

In the E-step, for currently fixed estimates γ̂p and γ̂d of
γp and γd, respectively, we obtain the mean field variational
distribution q(Rp,Rd,H,Xd) given Yp and Yd such that

p(Rp,Rd,Xd,H|Yp,Yd; γ̂p, γ̂d,Xp, {Ci}) (26)
≈ q(Rp,Rd,Xd,H)

=

[
Tp∏
t=1

q(rp,t)

][
Td∏
t=1

q(rd,t)

][
K∏
i=1

q(hi)

][
K∏
i=1

Td∏
t=1

q(xd,it)

]
.

1) Updating rp,t. Taking the expectation of the conditional
(25) w.r.t. all latent variables except rp,t, the variational
distribution q(rp,t) is given by

q(rp,t)

∝ exp
{〈

ln p(yp,t|rp,t) + ln p(rp,t|H; γ̂p,xp,t)
〉
−rp,t

}
∝ exp

{〈
ln1

(
rp,t ∈ [ylow

p,t ,y
up
p,t]

)
− (27)

γ̂p∥rp,t −Hxp,t∥2
〉
−rp,t

}
∝ 1

(
rp,t ∈ [ylow

p,t ,y
up
p,t]

)
× exp

{
− γ̂p∥rp,t − ⟨H⟩xp,t∥2

}
.

We note that the variational distribution q(rp,t) is inherently
separable as

∏M
m=1 q(rp,tm) and the variational distribution

q(rp,tm) is the complex complex normal distribution obtained
from bounding rp,tm ∼ CN

(
⟨Hm,:⟩xp,t, γ̂

−1
p

)
to the interval

(ylowp,tm, yupp,tm). The variational mean ⟨rp,tm⟩ and variance
τrp,tm are given by Fr

(
⟨Hm,:⟩xp,t, γ̂

−1
p , ylowp,tm, yupp,tm

)
and

Gr

(
⟨Hm,:⟩xp,t, γ̂

−1
p , ylowp,tm, yupp,tm

)
, respectively.

2) Updating rd,t. Taking the expectation of the conditional
(25) w.r.t. all latent variables except rd,t, the variational
distribution q(rp,t) is given by

q(rd,t)

∝ exp
{〈

ln p(yd,t|rd,t) + ln p(rd,t|H,xd,t; γ̂d,t)
〉
−rd,t

}
∝ exp

{〈
ln1

(
rd,t ∈ [ylow

d,t ,y
up
d,t]

)
− (28)

γ̂d,t∥rd,t −Hxd,t∥2
〉
−rd,t

}
∝ 1

(
rd,t∈ [ylow

d,t ,y
up
d,t]

)
× exp

{
− γ̂d,t∥rp,t−⟨H⟩⟨xd,t⟩∥2

}
.

The update of rd,t is similar to that of rp,t. Due to the inherent
decoupling of q(rd,t), the variational mean ⟨rd,tm⟩ and variance
τrd,tm are given by Fr

(
⟨Hm,:⟩⟨xd,t⟩, γ̂d,t, ylowd,tm, yupd,tm

)
and

Gr

(
⟨Hm,:⟩⟨xd,t⟩, γ̂d,t, ylowd,tm, yupd,tm

)
, respectively.

3) Updating hi. Taking the expectation of the conditional
(25) w.r.t. all latent variables except hi, the variational distri-
bution q(hi) is given by

q(hi) ∝ exp
{〈

ln p(Rp|H; γ̂p,Xp) + ln p(Rd|Xd,H; γ̂d)

+ ln p(hi;Ci)
〉
−hi

}
, (29)

which is expanded into (30). Thus, the variational distribution
qhi

(hi) is the pdf of a Gaussian random vector with covariance
matrix Σhi

given in (31) and mean ⟨hi⟩ given in (32).

4) Updating xd,it. Taking the expectation of the conditional
(25) w.r.t. all latent variables except xd,ti, the variational
distribution q(xd,ti) is given by

q(xd,ti) ∝ exp
{〈

ln p(rd,t|H,xd,t; γ̂d,t) + ln p(xd,ti)
〉
−xd,ti

}
∝ p(xd,ti) exp

{
−γ̂d,t

〈
∥rd,t −Hxd,t∥2

〉
−xd,ti

}
. (33)

Note that (33) can be expanded into (34), in which we define

zd,ti =
⟨hH

i ⟩
⟨∥hi∥2⟩

(
⟨rd,t⟩ −

K∑
j ̸=i

⟨hj⟩⟨xd,jt⟩
)

=
∥⟨hi⟩∥2⟨xd,ti⟩+ ⟨hH

i ⟩
(
⟨rd,t⟩ − ⟨H⟩⟨xd,t⟩

)
⟨∥hi∥2⟩

(35)

as a linear estimate of xd,ti. We note that ⟨∥hi∥2⟩ = ∥⟨hi⟩∥2+
Tr{Σhi

}. The variational mean and variance of xd,ti are
given by Fx

(
zd,ti, γ̂d,t⟨∥hi∥2⟩

)
and Gx

(
zd,ti, γ̂d,t⟨∥hi∥2⟩

)
,

respectively.

In the M-step, the estimates of γp and γd,t are updated
to maximize ln p(Yp,Yd,Rp,Rd,Xd,H; γp,γd,Xp, {Ci})
w.r.t. the variational distribution q(Rp,Rd,Xd,H), i.e.,

γ̂p = argmax
γp

〈
ln p(Rp|H; γp,Xp)

〉
= argmax

γp

MTp − γp
〈
∥Rp −HXp∥2

〉
=

MTp∑Tp

t=1

〈
∥rp,t −Hxp,t∥2

〉 , (36)
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p(Yp,Yd,Rp,Rd,Xd,H; γp,γd,Xp, {Ci})
= p(Yp|Rp)p(Rp|H; γp,Xp)p(Yd|Rd)p(Rd|Xd,H;γd)p(Xd)p(H|{Ci})

=

[
Tp∏
t=1

p(yp,t|rp,t)p(rp,t|H; γp,xp,t)

][
Td∏
t=1

p(yd,t|rd,t)p(rd,t|H,xd,t; γd,t)p(xd,t)

][
K∏
i=1

p(hi|Ci)

]
. (25)

q(hi) ∝ exp

{
−
〈
γ̂p

Tp∑
t=1

∥∥rp,t −Hxp,t

∥∥2 + Td∑
t=1

γ̂d,t
∥∥rd,t −Hxd,t

∥∥2 + hH
i C−1

i hi

〉
−hi

}

∝ exp

{
− hH

i

[(
γ̂p

Td∑
t=1

|xp,ti|2 +
Td∑
t=1

γ̂d,t⟨|xd,ti|2⟩
)
IM +C−1

i

]
hi

+2ℜ
{
hH
i

[
γ̂p

Tp∑
t=1

(
⟨rp,t⟩−

K∑
j ̸=i

⟨hj⟩xp,tj

)
x∗
p,ti +

Td∑
t=1

γ̂d,t

(
⟨rd,t⟩ −

K∑
j ̸=i

⟨hj⟩⟨xd,tj⟩
)
⟨x∗

d,ti⟩
]}}

. (30)

Σhi
=

[(
γ̂p

Tp∑
t=1

|xp,ti|2 +
Td∑
t=1

γ̂d,t⟨|xd,ti|2⟩
)
IM +C−1

i

]−1

(31)

⟨hi⟩ = Σhi

[
γ̂p

Tp∑
t=1

(
⟨rp,t⟩−

K∑
j ̸=i

⟨hj⟩xp,tj

)
x∗
p,ti +

Td∑
t=1

γ̂d,t

(
⟨rd,t⟩ −

K∑
j ̸=i

⟨hj⟩⟨xd,tj⟩
)
⟨x∗

d,ti⟩
]
. (32)

q(xd,ti) ∝ p(xd,ti) exp

{
− γ̂d,t

[
⟨∥hi∥2⟩|xd,ti|2 − 2ℜ

{
⟨hH

i ⟩
(
⟨rd,t⟩ −

K∑
j ̸=i

⟨hj⟩⟨xd,tj⟩
)
x∗
d,ti

}]}
∝ p(xd,ti) exp

{
− γ̂d,t⟨∥hi∥2⟩|xd,ti − zd,ti|2

}
∝ p(xd,ti) CN

(
zd,ti;xd,ti, 1/

(
γ̂d,t⟨∥hi∥2⟩

))
. (34)

and for t = 1, . . . , Td

γ̂d,t = argmax
γd,t

〈
ln p(rd,t|H,xd,t; γd,t

〉
= argmax

γd,t

Tp − γd,t
〈
∥rd,t −Hxd,t∥2

〉
=

Tp〈
∥rd,t −Hxd,t∥2

〉 . (37)

Applying Lemma 1, we have

〈
∥rp,t −Hxp,t∥2

〉
= ∥⟨rp,t⟩ − ⟨H⟩xp,t∥2 +

M∑
m=1

τrp,tm

+
K∑
i=1

|xp,ti|2Tr{Σhi
} (38)

〈
∥rd,t −Hxd,t∥2

〉
= ∥⟨rd,t⟩ − ⟨H⟩⟨xd,t⟩∥2 +

M∑
m=1

τrd,tm

+
K∑
i=1

[
⟨|xd,ti|2⟩Tr{Σhi

}+ τxd,ti
∥⟨hi⟩∥2

]
.

(39)

By iteratively optimizing {q(rp,t)}, {q(rd,t)}, {q(hi)},
{q(xd,ti)}, γ̂p, and {γ̂d,t}, we obtain the VBEM algorithm
for estimating Rp, Rd, H, Xd, γp, and {γd,t}. We refer to
this scheme as the MF-QVB-JED algorithm for joint channel
estimation and data detection.

Remark 1: If γp and {γd,t} are all set to N−1
0 , the MF-QVB-

JED algorithm is equivalent to the VB-based joint channel
estimation and data detection approach in [26]. We will refer
to the algorithm in [26] as conv-QVB-JED, whose variational
covariance matrix for hi, given by

Σhi
=

[
N−1

0

( Tp∑
t=1

|xp,ti|2 +
Td∑
t=1

⟨xd,ti|2⟩
)
IM +C−1

i

]−1

,

(40)
becomes smaller with increasing Td or ⟨|xd,ti|2⟩, ∀t. This
result, however, implies that the estimation of hi becomes
more accurate with a longer transmission phase or even with
an unreliable estimate of xd,ti reflected through large τxd,ti

(and ⟨|xd,ti|2⟩). In MF-QVB-JED, an unreliable estimation of
xd,ti will decrease γ̂d,t in (37). Evidently, the effect of ⟨|xd,ti|2⟩
on the variational covariance matrix Σhi

of hi in (31) is less
pronounced than its effect on Σhi

in (40). Therefore, in the
MF-QVB-JED algorithm, an unreliable estimate of xd,ti will
not increase the accuracy of estimating hi. This is one of the
explanations for the superior performance of MF-QVB-JED
compared to conv-QVB-JED.
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Remark 2: Denoting

γi = γ̂p

Tp∑
t=1

|xp,ti|2 +
Td∑
t=1

γ̂d,t⟨|xd,ti|2⟩ (41)

ki = γ−1
i

[
γ̂p

Tp∑
t=1

(
⟨rp,t⟩−

K∑
j ̸=i

⟨hj⟩xp,tj

)
x∗
p,ti

+

Td∑
t=1

γ̂d,t

(
⟨rd,t⟩ −

K∑
j ̸=i

⟨hj⟩⟨xd,tj⟩
)
⟨x∗

d,ti⟩

]
, (42)

the variational distribution q(hi) in (30) can be expressed as

q(hi) ∝ CN (hi;ki, γ
−1
i IM ) CN (hi;0,Ci)

= CN
(
hi; γi

(
γiIM +C−1

i

)−1
ki,

(
γiIM +C−1

i

)−1)
,

which then explains the results Σhi
=

(
γiIM +C−1

i

)−1
and

⟨hi⟩ = γiΣhi
ki in (31) and (32), respectively. We also note

that ki can be also written as

ki =

(
1−

∑Td

t=1 γ̂d,tτxd,ti

γi

)
⟨hi⟩

+ γ−1
i

[
γ̂pEp[Xp]

H
i,: +Ed

(
[⟨Xp⟩]Hi,: ⊙ γ̂d

)]
, (43)

enabling its efficient computation using the residual matrices
Ep = ⟨Rp⟩ − ⟨H⟩Xp and Ed = ⟨Rd⟩ − ⟨H⟩⟨Xd⟩. Here,
ki can be considered as a linear estimate of hi and ⟨hi⟩ =
γiΣhiki can be considered as the denoised estimate of hi

given the variational distribution q(hi).
The proposed MF-QVB-JED algorithm is summarized in

Algorithm 3. Here, we use r̂ℓp,t, r̂
ℓ
d,t, ĥ

ℓ
i , x̂

ℓ
i , γ̂

ℓ
p, and γ̂ℓ

d,t to
replace ⟨rp,t⟩, ⟨rd,t⟩, ⟨hi⟩, ⟨xi⟩, γ̂p, and γ̂d,t at iteration ℓ. We
also include in the algorithm the residual terms Ep and Ed,
which are adjusted to reflect any update to the estimates of
Rp, Rd, H, and Xd.

B. Proposed LMMSE-QVB-JED Algorithm
This section extends the LMMSE-QVB algorithm to the case

of joint channel estimation and data detection. We denote γp
and {Γt} = {Γ1, . . . ,ΓTd

} as the precision of the noise during
the pilot transmission phase and the Td data transmission time
slots, respectively. The joint distribution of all the observations
and latent variables in (25) are now factored as given in
(44), where p(rp,t|H; γp,xp,t) = CN

(
rp,t;Hxp,t, γ

−1
p IM

)
and p(rd,t|H,xd,t;Γt) = CN

(
rd,t;Hxd,t,Γ

−1
t

)
.

In the E-step, for currently fixed estimates γ̂p and {Γ̂t} of
γp and {Γt}, respectively, we aim to obtain the mean field
variational distribution q(Rp,Rd,H,Xd) of Rp, Rd, H, and
Xd given Yp and Yd such that

p
(
Rp,Rd,Xd,H|Yp,Yd; γ̂p, {Γ̂t},Xp, {Ci}

)
≈ q

(
Rp,Rd,Xd,H

)
=

[
Tp∏
t=1

q(rp,t)

][
Td∏
t=1

q(rd,t)

][
K∏
i=1

q(hi)

][
K∏
i=1

Td∏
t=1

q(xd,it)

]
.

(45)

1) Updating rp,t. Similar to the MF-QVB-JED algorithm.
2) Updating rd,tm. Similar to the LMMSE-QVB algo-

rithm, the variational mean ⟨rd,tm⟩ and variance τrd,tm
are determined by Fr

(
sd,tm, [Γ̂t]mm, ylowd,tm, yupd,tm

)
and

Algorithm 3 – MF-QVB-JED for Few-Bit MIMO Joint
Channel Estimation and Data Detection

1: Input: Yp,Yd,Xp,Ci, ∀i
2: Output: Ĥ, X̂d

3: Initialize Ĥ1 = 0, X̂1
d = 0, τ1xd,ti

= Varp(xi)[xi], ∀i, ∀t,
R̂1

p = Yp, R̂1
d = Yd, τ1rp,tm = 0, τ1rd,tm = 0, ∀m, ∀t,

Ep = R̂1
p − Ĥ1Xp, and Ed = R̂1

d − Ĥ1X̂1
d

4: for ℓ = 1, 2, . . . do
5: Update γ̂ℓ

p using (36) and (38)
6: for t = 1, . . . , Tp do ▷ Update Rp

7: sℓp,t ← r̂ℓp,t − [Ep]:,t
8: r̂ℓ+1

p,t ← Fr

(
sℓp,t, γ̂

ℓ
p,y

low
p,t ,y

up
p,t

)
9: τ ℓ+1

rp,t ← Gr

(
sℓp,t, γ̂

ℓ
p,y

low
p,t ,y

up
p,t

)
10: Ep ← Ep − R̂ℓ

p + R̂ℓ+1
p

11: for t = 1, . . . , Td do ▷ Update Rd

12: Update γ̂ℓ
d,t using (37) and (39)

13: sℓd,t ← r̂ℓd,t − [Ed]:,t
14: r̂ℓ+1

d,t ← Fr

(
sℓd,t, γ̂

ℓ
d,t,y

low
d,t ,y

up
d,t

)
15: τ ℓ+1

rd,t
← Gr

(
sℓd,t, γ̂

ℓ
d,t,y

low
d,t ,y

up
d,t

)
16: Ed ← Ed − R̂ℓ

d + R̂ℓ+1
d

17: for i = 1, . . . ,K do ▷ Update H
18: γℓ

i ← γ̂ℓ
p

∑Tp

t=1|xp,ti|2+
∑Td

t=1γ̂
ℓ
d,t

(
|x̂ℓ

d,it|2+τ ℓxd,ti

)
19: kℓ

i ←
(
1−

∑Td
t=1 γ̂ℓ

d,tτ
ℓ
xd,ti

γℓ
i

)
ĥℓ
i

+(γℓ
i )

−1
[
γ̂ℓ
pEp[Xp]

H
i,:+Ed

(
[Xℓ

d]
H
i,:⊙γ̂

ℓ
d

)]
20: Σℓ+1

hi
←

(
γℓ
i IM +C−1

i

)−1

21: ĥℓ+1
i ← γℓ

iΣ
ℓ+1
hi

kℓ
i

22: Ep ← Ep + (ĥℓ
i − ĥℓ+1

i )[Xp]i,:
23: Ed ← Ed + (ĥℓ

i − ĥℓ+1
i )[X̂ℓ

d]i,:
24: gℓi ← ∥ĥ

ℓ+1
i ∥2 +Tr{Σℓ+1

hi
}

25: for t = 1, . . . , Td do ▷ Update Xd

26: for i = 1, . . . ,K do
27: zℓd,ti ←

(
∥ĥℓ+1

i ∥2x̂ℓ
d,ti + (ĥℓ+1

i )H [Ed]:,t
)
/gℓi

28: x̂ℓ+1
d,ti ← Fx

(
zℓd,ti, g

ℓ
i γ̂

ℓ
d,t

)
29: τ ℓ+1

xd,ti
← Gx

(
zℓd,ti, g

ℓ
i γ̂

ℓ
d,t

)
30: [Ed]:,t ← [Ed]:,t + ĥℓ

i(x̂
ℓ
d,ti − x̂ℓ+1

d,ti )

31: ∀t, ∀i : x̂d,ti←arg maxa∈S paCN
(
zℓd,ti; a, 1/(g

ℓ
i γ̂

ℓ
d,t)

)
.

Gr

(
sd,tm, γ̂t,mm, ylowd,tm, yupd,tm

)
, where

sd,tm = ⟨rd,tm⟩ −
[Γ̂t]m,:

[Γ̂t]mm

(
⟨rd,t⟩ − ⟨H⟩⟨xd,t⟩

)
. (46)

3) Updating hi. Taking the expectation of the conditional
(44) w.r.t. all latent variables except hi, the variational distri-
bution q(hi) is given by

q(hi) ∝ exp
{〈

ln p(Rp|H; γ̂p,Xp) + ln p(Rd|Xd,H; {Γ̂t})

+ ln p(hi;Ci)
〉
−hi

}
. (47)

Following the same procedure to obtain q(hi) as in the MF-
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p(Yp,Yd,Rp,Rd,Xd,H; γp, {Γt},Xp, {Ci})
= p(Yp|Rp)p(Rp|H; γp,Xp)p(Yd|Rd)p(Rd|Xd,H; {Γt})p(Xd)p(H|{Ci})

=

[
Tp∏
t=1

p(yp,t|rp,t)p(rp,t|H; γp,xp,t)

][
Td∏
t=1

p(yd,t|rd,t)p(rd,t|H,xd,t;Γt)p(xd,t)

]
K∏
i=1

p(hi|Ci) (44)

QVB-JED algorithm, we have

q(hi) ∝ CN
(
hi;ki,Γ

−1
)
CN (hi;0,Ci)

= CN
(
hi;

(
Γi +C−1

i

)−1
Γiki,

(
Γi +C−1

i

)−1)
, (48)

where Γi and ki are defined as

Γi = γ̂p

Tp∑
t=1

|xp,ti|2IM +

Td∑
t=1

⟨|xd,it|2⟩Γ̂t, (49)

ki =

(
IM − Γ−1

i

Td∑
t=1

Γ̂tτxd,ti

)
⟨hi⟩

+ Γ−1
i

[
γ̂pEp[Xp]

H
i,: +

Td∑
t=1

Γ̂t[Ed]:,tx
∗
d,ti

]
, (50)

and where Ep = ⟨Rp⟩ − ⟨H⟩Xp and Ed = ⟨Rd⟩ − ⟨H⟩⟨Xd⟩
are the residual terms. The variational covariance matrix and
mean of hi are now given by Σhi

=
(
Γi + C−1

i

)−1
and

⟨hi⟩ = Σhi
Γiki.

4) Updating xd,it. Taking the expectation of the conditional
(25) w.r.t. all latent variables except xd,ti, the variational
distribution q(xd,ti) is given by

q(xd,ti) ∝ exp
{〈
ln p(rd,t|H,xd,t; Γ̂t)+ ln p(xd,ti)

〉
−xd,ti

}
.

(51)

Similar to the procedure in the LMMSE-QVB and MF-QVB-
JED algorithms, we obtain

q(xd,ti) ∝ p(xd,ti) CN
(
zd,ti;xd,ti, 1/⟨hH

i Γ̂thi⟩
)
, (52)

where

zd,it =
⟨hH

i ⟩Γ̂t

⟨hH
i Γ̂thi⟩

(
⟨rd,t⟩ −

K∑
j ̸=i

⟨hj⟩⟨xd,tj⟩
)

=
⟨hH

i ⟩Γ̂t⟨hi⟩⟨xd,ti⟩+ ⟨hH
i ⟩Γ̂t[Ed]:,t

⟨hH
i Γ̂thi⟩

(53)

is a linear estimate of xd,it. We note that ⟨hH
i Γ̂thi⟩ =

⟨hi⟩Γ̂t⟨hi⟩+Tr{Γ̂tΣhi
}.

In the M-step, γp and {Γt} are estimated to maximize
ln p(Yp,Yd,Rp,Rd,Xd,H; γp, {Γt},Xp, {Ci}) w.r.t. the
variational distribution q(Rp,Rd,Xd,H). The update of γ̂p
is similar to the procedure in the MF-QVB-JED algorithm and
is given in (36) and (38). The update of Γ̂t is given by

Γ̂t = argmax
Γt

〈
ln p(rd,t|H,xd,t;Γt)

〉
= argmax

Γt

[
ln |Γt|

−
〈
(rd,t −Hxd,t)

HΓt(rd,t −Hxd,t)
〉]
.

Applying Lemma 1, we have〈
(rd,t −Hxd,t)

HΓt(rd,t −Hxd,t)
〉

= Tr
{[(
⟨rd,t⟩ − ⟨H⟩⟨xd,t⟩

)(
⟨rd,t⟩ − ⟨H⟩⟨xd,t⟩

)H
+Σrd,t

+
K∑
i=1

⟨|xd,ti|2⟩Σhi + ⟨H⟩Σxd,t
⟨H⟩H

]
Γt

}
. (54)

Due to the rank deficiency of
〈
(rd,t − Hxd,t)

HΓt(rd,t −
Hxd,t)

〉
−Γt

, we propose the following estimator for Γt:

Γ̂t =

(
∥⟨rd,t⟩ − ⟨H⟩⟨xd,t⟩∥2

M
IM +Σrd,t

+
K∑
i=1

⟨|xd,ti|2⟩Σhi
+ ⟨H⟩Σxd,t

⟨H⟩H
)−1

. (55)

By iteratively optimizing {q(rp,t)}, {q(rd,t)}, {q(hi)},
{q(xd,ti)}, γ̂p, and {Γ̂t}, we obtain the VBEM algorithm
for estimating Rp, Rd, H, Xd, γp, and {Γt}. We refer to
this scheme as the LMMSE-QVB-JED algorithm for joint
channel estimation and data detection. The implementation of
the LMMSE-QVB-JED algorithm is similar to that of MF-QVB-
JED presented in Algorithm 3, and thus we skip a summary
of its implementation.

C. Practical Aspects of Implementing MF/LMMSE-QVB-JED
1) Computing ⟨|xd,ti|2⟩: For PSK signaling, the variational

second moment ⟨|xd,ti|2⟩ is constant and need not be updated
in each iteration of the algorithms. We present the proof for
this observation in Appendix B.

2) Computing Σhi with uncorrelated channels: When Ci is
a diagonal matrix, the variational covariance matrix Σhi in (40)
is also a diagonal matrix and its computation does not require
matrix inversion. Thus, the MF-QVB-JED algorithm can be
implemented without any matrix inversion. This property does
not hold for the LMMSE-QVB-JED algorithm, since Γi in
(49) is not, in general, a diagonal matrix.

3) Estimating hi without its prior distribution: While
the prior distribution of hi is assumed to be known as
CN (0,Ci), the proposed MF/LMMSE-QVB-JED algorithms
can be adapted to cases without this knowledge. For example,
we can simply assume an uninformative prior for hi and thus
use ki in (43) or ki in (50) as a point estimate of hi in the
M-step of these two algorithms.

4) Lite implementation of MF-QVB-JED: Instead of using
the latent variable γd,t as the precision at time slot t, we can
impose a single latent variable γd as the precision for all time
slots during the data transmission phase. A lite version of
MF-QVB-JED can be devised using the same procedure as in
Section V-A where {γd,t} is replaced by γd. In the M-step,
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the estimate of γd can be found as

γ̂d =
MTd∑Td

t=1⟨∥rd,t −Hxd,t∥2⟩
, (56)

where ⟨∥rd,t −Hxd,t∥2⟩ is given in (39).

5) Lite implementation of LMMSE-QVB-JED: Instead of
using the latent variable Γt as the precision matrix at time slot
t, we can use the same precision matrix Γ for all time slots.
A lite version of LMMSE-QVB-JED can be devised using the
same procedure as in Section V-B where {Γt} is replaced by
Γ. In the M-step, we propose the following estimator for Γ:

Γ̂ = Td

(
∥⟨Rd⟩ − ⟨H⟩⟨Xd⟩∥2F

M
IM +Σrd

+
K∑
i=1

⟨∥xd,i∥2⟩Σhi
+ ⟨H⟩Σxd

⟨H⟩H
)−1

, (57)

where we denote Σrd =
∑Td

t=1 Σrd,t , Σxd
=

∑Td

t=1 Σxd,t
and

⟨∥xd,i∥2⟩ =
∑Td

t=1⟨|xd,ti|2⟩.
We observe in our simulations that the lite version of

MF/LMMSE-QVB-JED slightly increases the detection error
compared to the original version. However, the lite version can
significantly reduce the computational complexity, especially
for the LMMSE-QVB-JED algorithm. LMMSE-QVB-JED
requires one matrix inversion in (57) for computing Γ̂ in the
lite version, while requiring Td matrix inversions to compute
{Γ̂t} in the original version. In the numerical results, we will
use the lite version of these algorithms.

VI. NUMERICAL RESULTS

This section presents numerical results comparing the perfor-
mance of the proposed VB-based methods with the conventional
quantized VB-based approach with perfect knowledge of the
noise variance, denoted as conv-QVB in [26], the GAMP-
based approach in [34], and FBM-DetNet in [20], which are
the most recent and related methods to our work. The maximum
number of iterations is set to 50 for all iterative algorithms. The
covariance matrices Ci are normalized so that their diagonal
elements are 1, which implies E[∥hi∥2] = M, ∀i. The noise
variance N0 is set based on the operating SNR, defined as

SNR =
E[∥Hx∥2]
E[∥n∥2]

=

∑K
i=1 Tr{Ci}
MN0

=
K

N0
. (58)

For i.i.d. channels, we set Ci = I, ∀i. For spatially correlated
channels, we use the typical urban channel model in [8]
where the power angle spectrum of the channel model follows
a Laplacian distribution with an angle spread of 10◦. The
covariance matrix Ci is obtained according to [37, Eq. (2)].
Unless otherwise stated, we set the training length Tp = 2K
and the data transmission length Td = 100. The pilot sequences
from the K users are chosen to be orthogonal to each other.

First, we investigate data detection for the case of perfect
CSI. For the conv-QVB approach, we also examine a scenario
in which the noise variance is unknown and estimated by the
median absolute deviation (MAD) method [38], [39]. Since
the unquantized received signal r = Hx + n is unobserved,
we consider two MAD-based estimators for the noise standard
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Fig. 1: Data detection performance comparison for i.i.d. channels with perfect
CSI, b = 3 bits, K = 16, and with M = 32 for QPSK signaling (solid lines)
and M = 64 for 16QAM signaling (dashed lines), respectively.
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Fig. 2: Data detection performance comparison for spatially correlated channels
with perfect CSI, b = 3 bits, K = 16, and with M = 32 for QPSK signaling
(solid lines) and M = 64 for 16QAM signaling (dashed lines), respectively.

deviation σ:

MAD1 : σ̂ = 1.4826×med {|r̂−med{r̂}|} , (59)

which is based on the current estimator r̂ of r, and

MAD2 : σ̂ = 1.4826×med {|e−med{e}|} , (60)

which is based on the current residual vector e = r̂−Hx̂. We
then apply these MAD estimates to the MF-QVB algorithm
with γ̂ = 1/σ̂2

{1,2} in place of the EM-based estimate in (14).
In numerous simulations, we have consistently observed that
MAD2 outperforms MAD1. Therefore, we will only present
the SER performance results for the MAD2 scheme.

SER performances in i.i.d. and spatially correlated channels
are shown in Fig. 1 and Fig. 2, respectively. It can be seen
that, for both i.i.d. and correlated channels, the conv-QVB and
GAMP-based methods are outperformed by all other methods,
and their performance is severely degraded at high SNRs. This
is because they do not take into account the residual inter-user
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Fig. 3: Data detection comparison between the proposed MF-QVB-JED,
LMMSE-QVB-JED, and other existing methods for i.i.d. channels with
K = 16, M = 32, b = 3 bits, and QPSK signaling.

interference and often encounter catastrophic cancellation issues
at high SNR. The conv-QVB scheme with the MAD-based
noise variance estimator significantly outperforms the conv-
QVB scheme that uses the known noise variance, especially
at high SNR. However, the performance of the MAD-based
scheme is much worse than that of the proposed QVB schemes
which use the EM-based noise variance/covariance estimators.
For i.i.d. channels, FBM-DetNet, MF-QVB, and LMMSE-
QVB all yield the same performance for QPSK signals, while
for 16QAM FBM-DetNet and LMMSE-QVB are similar and
both outperform MF-QVB. For spatially correlated channels,
LMMSE-QVB provides a significantly lower SER than the
other methods due to its estimation of the precision matrix Γ,
which can better compensate for the effect of the noise and the
strong residual inter-user interference in spatially correlated
channels. It is also worth noting that in the case of 16QAM,
the inter-user interference effect is more severe than QPSK,
and therefore the advantage of LMMSE-QVB compared to
MF-QVB is better seen.

Fig. 3 presents results for data detection with estimated
CSI and i.i.d. channels. Both MF-QVB-JED and LMMSE-
QVB-JED outperform the conv-QVB-JED, GAMP-based, and
FBM-DetNet methods. Note that FBM-DetNet uses estimated
CSI provided by FBM-CENet, a channel estimation network
also proposed in [20] and designed to estimate the CSI using
only the pilot sequence. MF-QVB-JED and LMMSE-QVB-
JED both yield the same SER, which is about 2–3 dB better
than FBM-DetNet at an SER of 10−3 and 10−5, respectively.
The performance of MF-QVB-JED and LMMSE-QVB-JED is
also quite close to that of LMMSE-QVB with perfect CSI.

Results for data detection with estimated CSI and spatially
correlated channels are given in Fig. 4, where we see that
the proposed MF-QVB-JED and LMMSE-QVB-JED methods
outperform conv-QVB-JED, GAMP-QVB-JED, and FBM-
DetNet since the effects of both inter-user interference and
spatial channel correlation are taken into account. However,
unlike the case of i.i.d. channels where MF-QVB-JED and
LMMSE-QVB-JED give the same performance, the LMMSE-
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Fig. 4: Data detection performance comparison between the proposed MF-QVB-
JED, LMMSE-QVB-JED, and other existing methods for spatially correlated
channels with K = 16, M = 64, b = 3 bits, and 16QAM signaling.
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Fig. 5: Data detection performance versus the pilot length Tp for spatially
correlated channels with K = 16, M = 64, b = 3 bits, and 16QAM signaling
at SNR = 20 dB.

QVB-JED method provides a significantly lower SER than
MF-QVB-JED at high SNRs for spatially correlated channels.
For example, at 30dB, the SER of LMMSE-QVB-JED is about
10 times lower than that of MF-QVB-JED, which is already
better than FBM-DetNet.

In Fig. 5 we present the data detection performance versus
the pilot length Tp. It can that the SER improves remarkably
as the pilot length increases beyond the minimum value of
K, consistent with prior work involving coarsely quantized
observations. The SER improvement with Tp for FBM-DetNet
is more noticeable than the other methods because FBM-
DetNet uses channel estimates that are solely obtained from
the pilot signals, while the other methods perform joint channel
estimation and data detection, i.e., both pilot and data signals
are used to improve the channel estimation.

We provide a channel estimation comparison in Fig. 6
where i.i.d. channels are considered in Fig. 6a and spatially
correlated channels are considered in Fig. 6b. The normalized
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(a) i.i.d. channels, K = 16, M = 32.
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(b) spatially correlated channels, K = 16,
M = 64.

Fig. 6: Channel estimation performance comparison.
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Fig. 7: Detection performance of MF-QVB-JED and LMMSE-QVB-JED versus
Td with K = 16, M = 64, b = 3 bits, and 16QAM signaling.

mean squared error (NMSE) in these figures is defined as
NMSE = E

[
∥H − Ĥ∥2F /∥H∥2F

]
. For i.i.d. channels, all

three VB-based methods conv-QVB-JED, MF-QVB-JED, and
LMMSE-QVB-JED give similar performance but for spatially
correlated channels, the proposed MF-QVB-JED and LMMSE-
QVB-JED methods are seen to provide lower NMSEs compared
to the conv-QVB-JED method.

Fig. 7 presents the SER performance of the proposed MF-
QVB-JED and LMMSE-QVB-JED methods w.r.t. Td. We
observe that the SER performance improves with increasing
Td since more received signals are combined to achieve a more
accurate channel estimate. Consequently, the data detection
phase can result in a lower detection error.

In Fig. 8, we evaluate the data detection performance of
the proposed MF-QVB-JED and LMMSE-QVB-JED methods
for different ADC bit resolutions. As expected, increasing
the resolution b significantly helps improve the detection
performance. It is observed that lower SNRs require a lower
bit resolution for the best performance, e.g., 4-bit ADCs are
sufficient to obtain the lowest SER at 10dB. Increasing the
ADC bit resolution to values higher than 4 does not result in
a lower SER. It is also interesting to note that at high SNRs,
LMMSE-QVB-JED can provide much lower SERs compared
to MF-QVB-JED as the bit resolution increases.
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Fig. 8: Detection performance of MF-QVB-JED and LMMSE-QVB-JED versus
the ADC bit resolution b with K = 16, M = 64, and 16QAM signaling.

VII. CONCLUSION

In this paper, we exploited the VB inference framework
to propose different channel estimation and data detection
methods for massive MIMO systems with low-resolution
ADCs. In particular, we proposed new VB-based algorithms
referred to as MF-QVB and LMMSE-QVB for data detection
with known CSI, and MF-QVB-JED and LMMSE-QVB-
JED for joint channel estimation and data detection. In the
proposed QVB framework, we proposed to float the noise
covariance matrix as unknown random variables which also
allows the algorithms to take into account the residual inter-
user interference. Numerous practical aspects of the QVB
framework were studied to improve the implementation stability.
It was also shown via a number of simulation studies that the
proposed methods provide robust performance and significantly
outperform existing methods, particularly when the channels
are spatially correlated.

APPENDIX A
COMPUTATION OF Fr(µ, γ, a, b) AND Gr(µ, γ, a, b)

For ease of presentation, we denote α =
√
2γ(a− µ) and

β =
√
2γ(b − µ). For an arbitrary complex random variable

CN (µ, γ−1) whose real and imaginary parts are both truncated
on the interval (a, b), the mean Fr(µ, γ, a, b) and variance
Gr(µ, γ, a, b) are computed as

Fr(µ, γ, a, b) = µ− 1√
2⟨γ⟩

ϕ(β)− ϕ(α)

Φ(β)− Φ(α)
(61)

Gr(µ, γ, a, b) =
1

2⟨γ⟩

[
1− βϕ(β)− αϕ(α)

Φ(β)− Φ(α)

−
(
ϕ(β)− ϕ(α)

Φ(β)− Φ(α)

)2
]
, (62)

where the PDF and CDF operators ϕ(·) and Φ(·), as well
as the multiplication, division, and square operations are
applied individually on the real and imaginary components. The
variance Gr(µ, γ, a, b) is computed by adding the variances of
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the two components.

APPENDIX B
COMPUTATION OF Fx(z, γ) AND Gx(z, γ)

Given z = x+ CN (0, γ−1), the posterior distribution of x
given z is p(x|z; γ) ∝ p(x) CN (z;x, γ−1). For a ∈ S , we have

p(x = a|z; γ) = (1/Z)pa exp
(
− γ|z − a|2

)
,

where Z =
∑

b∈S pb exp
(
− γ|z − b|2

)
is a normalization

factor. The corresponding posterior mean Fx(z, γ) and variance
Gx(z, γ) are computed as

Fx(z, γ) =
∑
a∈S

a× p(x = a|z, γ)

Gx(z, γ) =
∑
a∈S
|a|2 × p(x = a|z, γ)− |Fx(z, γ)|2.

We note that E
[
|x|2|z; γ

]
is equal to |a|2 for PSK signaling

with transmit energy |a|2, as shown below:

E
[
|x|2|z; γ

]
=

∑
a∈S
|a|2 1

Z
pa exp

(
− γ|z − a|2

)
= |a|2

∑
a∈S pa exp

(
− γ|z − a|2

)
Z

= |a|2.
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