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A B S T R A C T

Hamiltonian Operator Inference has been introduced in Sharma et al. (2022) to learn structure-
preserving reduced-order models (ROMs) for Hamiltonian systems. This approach constructs a
low-dimensional model using only data and knowledge of the Hamiltonian function. Such ROMs
can keep the intrinsic structure of the system, allowing them to capture the physics described by
the governing equations. In this work, we extend this approach to more general systems that are
either conservative or dissipative in energy, and which possess a gradient structure. We derive
the optimization problems for inferring structure-preserving ROMs that preserve the gradient
structure. We further derive an a priori error estimate for the reduced-order approximation.
To test the algorithms, we consider semi-discretized partial differential equations with gradient
structure, such as the parameterized wave and Korteweg–de-Vries equations, and equations of
three-dimensional linear elasticity in the conservative case and the one- and two-dimensional
Allen-Cahn equations in the dissipative case. The numerical results illustrate the accuracy,
structure-preservation properties, and predictive capabilities of the gradient-preserving Operator
Inference ROMs.

1. Introduction

Consider evolutionary partial differential equations (PDEs) of the following form
𝜕𝑦(𝑥, 𝑡;𝜇)

𝜕𝑡
=  𝛿[𝑦;𝜇]

𝛿𝑦
, (1)

where the state variable 𝑦 depends on the spatial variable 𝑥 ∈ 𝛺 ⊂ R𝑑 (𝑑 = 1, 2 or 3), time variable 𝑡 ∈ 𝐼 ⊂ [𝑡0,∞) and parameter
𝜇 ∈ 𝑃 ⊂ R𝑝, 𝑝 ≥ 1. Moreover,  represents a constant linear differential operator, and 𝛿

𝛿𝑦 is the variational derivative of the
functional

[𝑦;𝜇] ∶= ∫𝛺
𝐻(𝑦, 𝑦𝑥, 𝑦𝑥𝑥,…;𝜇) 𝑑𝑥

with 𝑦𝑥, 𝑦𝑥𝑥, . . . , denoting the first- and second-order (and higher order) partial derivatives of 𝑦 with respect to 𝑥. Depending on
the properties of , the PDE can possess different features. If  is skew adjoint, , referred to as the Hamiltonian, is a constant and
the PDE is conservative. If  is negative semi-definite (resp. definite), , referred to as a Lyapunov function or energy function, is
nonincreasing (resp. monotonically decreasing) and the PDE is dissipative.
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Either class of PDEs has broad applications ranging from mechanics [1], plasma physics [2,3] to ocean modeling [4–7]. Numerical
ethods have been developed to approximate and predict solutions to such PDEs. It is well known that numerical schemes that do
ot preserve the continuous models’ properties are prone to suffer from error accumulation and generate unphysical solutions over
long-term integration. Therefore, structure-preserving algorithms have been designed to keep the right features at a discrete level,
ee the review papers [8,9] and the reference therein. In particular, structure-preserving spatial discretization schemes include finite
ifference methods such as [10,11] and finite element methods such as [8,12–15]. Structure-preserving time discretization schemes
nclude geometric integrators [16–18], discrete gradient methods [19,20], average vector field (AVF) methods [21,22], and discrete
ariational derivative methods [23].
The cost (e.g., measured in CPU hours) to simulate a high-dimensional discretization of (1) can become a limiting factor when one

ants to simulate either for long time horizons, and/or obtain many parametric solutions for different 𝜇𝑖 in the context of exploration
nd uncertainty quantification. To accelerate the simulation of high-dimensional systems, reduced-order models (ROMs) can provide
rders-of-magnitude speedups while providing accurate approximate solutions, see the surveys/books [24–28]. However, ROMs
onstructed by projecting the equation onto a linear subspace spanned by a reduced basis, or onto a nonlinear manifold, could
estroy the features of mechanical systems. In the context of Lagrangian structure, this has been shown in [29], and motivated
he development of projection-based model reduction techniques that preserve the Lagrangian structure [30]. For systems with
amiltonian and port-Hamiltonian systems, structure-preserving projection-based model reduction has been developed, including
he interpolatory projection method proposed in [31] that preserves the symmetry of linear dynamical systems and is extended to
ort-Hamiltonian systems via tangential rational interpolation in [32]; the proper orthogonal decomposition (POD)-based Galerkin
rojection method in [33–35] for Hamiltonian systems and the POD/2-based Petrov–Galerkin project method in [36,37] for port-
amiltonian; the proper symplectic decomposition in [38] and a Petrov-Galerkin projection-based, variationally consistent approach
n [39] for canonical Hamiltonian systems; and the reduced basis method for Hamiltonian systems in [40–43]. Moreover, there has
een increased interest lately in projection-based model reduction on nonlinear manifolds for Hamiltonian systems, see [44–46].
ROMs can also be constructed non-intrusively, which is appealing in situations where only snapshot data of state variables

s available, paired with potentially some prior knowledge of the PDE model. In particular, the operator inference (OpInf) method
rovides such a nonintrusive framework for model order reduction, which was introduced in [47] and expanded in many directions,
.f. the survey paper [48]. The recent work [49] extended OpInf to affine-parametric systems of PDEs, yet the adaption of
he framework to problems with unknown parametric structures is nontrivial. Within the OpInf framework, learning canonical
amiltonian ROMs on linear subspaces is considered in [50], where the linear part of the gradient of the Hamiltonian is inferred
hrough constrained least-squares solutions. This has been extended to noncanonical Hamiltonian systems in [51], where the entire
amiltonian function is assumed to be known, and the reduced operator associated to the linear differential operator  is inferred.
ort-Hamiltonian [52] and Lagrangian ROMs can also be inferred directly from time-domain data, see [53–55].
Motivated by these developments, in this paper, we propose gradient-preserving Operator Inference (GP-OPINF), a more general

ramework to nonintrusively construct ROMs that preserve the gradient structure of the PDE model (1). In this nonintrusive setting,
e assume that we are given snapshot data and some prior knowledge of the continuous model and the functional , yet that we
o not have access to the spatially-discretized forms in high-fidelity solvers. We note that the proposed approach is not limited to
amiltonian systems. The novelties of this work include the following:

1. We propose suitable optimization problems for the gradient-preserving Operator Inference method. In particular, for
conservative equations, the solution to the optimization problem is post-processed for improving the gradient structure of
ROMs without introducing any consistency errors.

2. We derive an a priori error estimate for the inferred GP-OPINF ROM, which we demonstrate by numerical experiments.
3. Our framework applies to dissipative and conservative systems with a gradient structure.

The rest of this paper is organized as follows. In Section 2, we introduce the full-order model form that we consider and, for
omparison, an intrusive structure-preserving ROM for Eq. (1). In Section 3, we introduce the gradient-preserving Operator Inference
nd present the associated optimization problems. In Section 4 we derive an a priori error estimate for the learned GP-OPINF ROM.
e then demonstrate the effectiveness of the proposed ROM through several numerical examples in Section 5. A few concluding
emarks are drawn in the last section.

. Full-order model and structure-preserving reduced-order model

We present the full-order model setting in Section 2.1 and then discuss the traditional structure-preserving intrusive ROM
pproach in Section 2.2. This provides the background for the new method in the following Section 3.
To ease the exposition, in situation when no confusion arises, we omit the explicit reference to the parameter and adopt the

ollowing notations: at any 𝜇 ∈ 𝑃 , for any vector-valued function 𝐟 and scalar-valued function 𝑔,

𝐟 (𝑡) ≡ 𝐟 (𝑡;𝜇), 𝑔(𝐟 ) ≡ 𝑔(𝐟 (𝑡;𝜇);𝜇), ∀𝑡 ∈ 𝐼.

.1. Full-order model

For any parameter (vector) 𝜇 ∈ 𝑃 ⊂ R𝑝, 𝑝 ≥ 1, we call the system of finite dimensional ODEs obtained from (1) after a
2

tructure-preserving spatial discretization the full-order model (FOM). Here, we consider the FOM
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.𝐲 = 𝐃∇𝐲𝐻(𝐲), (2)

where 𝐲(𝑡) ≡ 𝐲(𝑡;𝜇) ∈ R𝑛 is the 𝑛-dimensional state vector and the initial condition is 𝐲(𝑡0) = 𝐲0. The right-hand-side of (2) represents
the velocity field (or drift), in which 𝐃 ∈ R𝑛×𝑛 is a real matrix, 𝐻(𝐲) ≡ 𝐻(𝐲;𝜇) ∶ R𝑛 → R is a continuously differentiable function of
the state and ∇𝐲𝐻(𝐲) is the gradient of 𝐻(𝐲). The gradient structure of Eq. (2) plays a key role in characterizing the dynamics:

(i) When 𝐃 is anti-symmetric (also referred to as skew-symmetric or skew-adjoint), that is, 𝐃 = −𝐃⊺, the system is Hamiltonian. A

special case is when 𝐃 =
[

0 𝐈
−𝐈 0

]

then Eq. (2) represents a canonical Hamiltonian system and the solution flow is symplectic.

Due to such a structure, the internal energy of the system, 𝐻(𝐲), is conserved. Mathematically, for any 𝑡1, 𝑡2 ∈ 𝐼 with 𝑡1 < 𝑡2,
we have

𝐻(𝐲(𝑡2)) −𝐻(𝐲(𝑡1)) = ∫

𝑡2

𝑡1

d
d𝑡
𝐻(𝐲(𝑡)) d𝑡 = ∫

𝑡2

𝑡1

(

∇𝐲𝐻(𝐲)
)⊺ 𝐃∇𝐲𝐻(𝐲) d𝑡 = 0.

(ii) When 𝐃 is negative semi-definite, the system represents a gradient flow and is dissipative. To see this, we can easily check

𝐻(𝐲(𝑡2)) −𝐻(𝐲(𝑡1)) = ∫

𝑡2

𝑡1

d
d𝑡
𝐻(𝐲(𝑡)) d𝑡 = ∫

𝑡2

𝑡1

(

∇𝐲𝐻(𝐲)
)⊺ 𝐃∇𝐲𝐻(𝐲) d𝑡 ≤ 0.

Note that if 𝐃 is negative definite, 𝐻(𝐲) is strictly decreasing. Numerical schemes to solve these equations recognize the
special gradient structure in time discretization, e.g., geometric integrators and average vector field methods.

If the size of the dynamical system is large, it is expensive to simulate (2), especially for many parameters or for long time
intervals. We next review intrusive projection-based ROMs that can provide accurate approximations at much lower computational
cost. To preserve physics of the system, they should possess the same gradient structure.

2.2. Intrusive structure-preserving ROMs

We review an intrusive Galerkin-projection-based approach to build the structure-preserving ROM, termed SP-G ROM, which
was introduced in [33]. The first step in the ROM construction is to extract the low-dimensional basis in which we derive the ROM.
Here, we use the widely used snapshot-based POD method [56]. For a non-parametric problem, we consider 𝜇 as fixed, and the
snapshots (state vectors at select time instances) are stored in the matrix

𝐘 ≡ 𝐘(𝜇) ∶=
[

𝐲(𝑡0;𝜇), 𝐲(𝑡1;𝜇),… , 𝐲(𝑡𝑠;𝜇)
]

. (3)

For simplicity, we assume the snapshot set contains the FOM solutions at all the uniformly distributed discrete time discretization
points, that is, 𝑡𝑖+1 = 𝑡𝑖 + 𝛥𝑡 for 𝑖 = 0,… , 𝑠 − 1. However, in practice one may use only a portion of them as the snapshots. For a
parametric problem, one is interested in a set of parameters {𝜇0, 𝜇1,… , 𝜇𝑝} from 𝑃 , for which full-order solutions are generated.
The associated snapshot data matrix is defined as

𝐘 ∶=
[

𝐘(𝜇0),𝐘(𝜇1),… ,𝐘(𝜇𝑝)
]

. (4)

The POD basis matrix Φ = [𝝓1,𝝓2,… ,𝝓𝑟] contains the leading left singular vectors of 𝐘 as its columns, which can be computed by
the method of snapshots [57] or singular value decomposition (SVD) and related randomized algorithms.

The reduced-order approximation of the state variable is defined by a linear ansatz:

𝐲̂(𝑡;𝜇) ∶= Φ𝐲𝑟(𝑡;𝜇), (5)

where 𝐲𝑟(𝑡;𝜇) ∈ R𝑟 are the unknowns, which are determined by integrating the reduced-order model in time. A centering trajectory
(e.g., the average of snapshots) 𝐲 is usually subtracted from each snapshot before calculating the POD modes, which helps in
nforcing fixed inhomogeneous Dirichlet boundary conditions. In that case, 𝐲̂(𝑡;𝜇) = 𝐲 + Φ𝐲𝑟(𝑡;𝜇). We assume 𝐲 = 𝟎 in this work
for simplicity. This linear ansatz has been adapted in [58] for reduced order modeling of problems with parametric, time-varying,
inhomogeneous Dirichlet-type boundary conditions.

The SP-G ROM applies the ansatz (5). To distinguish it from the non-intrusive reduced-order ROMs developed later in this
paper, we let 𝐲̃𝑟(𝑡;𝜇) denote the SP-G ROM’s reduced-order state. The ROM is then constructed by first projecting the FOM onto the
low-dimensional basis given by Φ, and subsequently adjusting it to ensure the correct gradient structure appears in the resulting
ROM. This yields the SP-G ROM

.̃
𝐲𝑟 = 𝐃̃𝑟 ∇𝐲̃𝑟𝐻𝑟(𝐲̃𝑟) (6)

for 𝐲̃𝑟(𝑡) ≡ 𝐲̃𝑟(𝑡;𝜇) ∈ R𝑟 with 𝐲̃𝑟(𝑡0) = Φ⊺𝐲0, where 𝐃̃𝑟 = Φ⊺𝐃Φ, 𝐻𝑟(𝐲̃𝑟) ∶= 𝐻(Φ𝐲̃𝑟), and ∇𝐲̃𝑟𝐻𝑟(𝐲̃𝑟) = Φ⊺∇𝐲𝐻(Φ𝐲̃𝑟). With this
onstruction, the right-hand side of the ROM (6) has the same gradient structure as the FOM (2). Thus, the ROM has the same
roperties as its full-order counterpart. If the system is Hamiltonian, 𝐻𝑟 is also guaranteed to be constant.
We remark that an error exists between 𝐻𝑟(𝐲̃𝑟) and 𝐻(𝐲), which is due to the projected initial condition 𝐲̃𝑟(𝑡0) in the ROM.

However, this error shrinks as 𝑟 increases, as a larger ROM basis produces a more accurate ROM initial condition. Specifically,
hen the initial condition is independent of any parameters, it can be used as the centering trajectory, eliminating the error caused
3

y projecting the initial condition. For details, the reader is referred to [33].
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The above construction of SP-G ROM requires access to the full-order coefficient matrix 𝐃, knowledge of 𝐻 or its gradient ∇𝐲𝐻 ,
nd snapshot data. In the next section, we introduce an Operator Inference approach to build a data-driven ROM for (2) with the
ppropriate gradient structure, but without accessing the full-order coefficient matrix.

. Gradient-preserving operator inference

A structure-preserving Operator Inference for canonical Hamiltonian systems, named H-OpInf, has been developed in [50], based
n the unconstrained operator inference from [47,48]. The symplecticity-preserving method learns the reduced-order operator
ssociated with the quadratic part of the Hamiltonian function and assumes knowledge of the nonquadratic part of the Hamiltonian
unction. The motivational example in [50, Sec. 3.1] shows that the OpInf ROM without preserving the symplectic structure
roduces an increasing Hamiltonian energy for a canonical linear wave equation, resulting in inaccurate and unphysical reduced-
rder simulations. This occurs already within the training data regime. Non-canonical Hamiltonian systems are considered in [51],
here the authors construct a ROM that preserves the (Hamiltonian) energy under the assumption of prior knowledge of the entire
amiltonian function. In this work, we propose a more general gradient-preserving Operator Inference (GP-OpInf) approach for both
onservative and dissipative systems governed by the general FOM (2). In Section 3.1 we introduce the new framework. Section 3.2
resents solution approaches for the conservative case and Section 3.3 for the dissipative case.

.1. Proposed GP-OPINF framework

We assume that snapshot data 𝐘 given in Eqs. (3) or (4) as well as the symbolic expression of 𝐻(𝐲) or the associated gradient is
iven. The goal is to develop a non-intrusive gradient-preserving ROM. We do this by employing the linear ansatz (5), characterized
y the expression 𝐲̂(𝑡;𝜇) = Φ𝐲𝑟(𝑡;𝜇), to find 𝐲𝑟(𝑡) ≡ 𝐲𝑟(𝑡;𝜇) ∈ R𝑟 satisfying

.𝐲𝑟 = 𝐃𝑟 ∇𝐲𝑟𝐻𝑟(𝐲𝑟) (7)

ith 𝐲𝑟(𝑡0) = Φ⊺𝐲0. Here 𝐃𝑟 is unknown and will be inferred from data. Specifically, 𝐃𝑟 is anti-symmetric if the system is conservative;
nd is negative semi-definite if the system is dissipative. We refer to Eq. (7) as the GP-OpInf ROM since it has the same gradient
tructure as the FOM (2).
To learn 𝐃𝑟, the gradient data are computed based on knowledge of the gradient of the Hamiltonian function and available

napshot data. In the non-parametric case,

𝐅 ≡ 𝐅(𝜇) ∶=
[

∇𝐲𝐻(𝐲(𝑡0;𝜇);𝜇),∇𝐲𝐻(𝐲(𝑡1;𝜇);𝜇),… ,∇𝐲𝐻(𝐲(𝑡𝑠;𝜇);𝜇)
]

. (8)

he first-order time derivative data can be generated by applying a finite difference operator, denoted as 𝑡[⋅], on the state vectors:.
𝐘 ≡

.
𝐘(𝜇) ∶=

[

𝑡[𝐲(𝑡0;𝜇)],𝑡[𝐲(𝑡1;𝜇)],… ,𝑡[𝐲(𝑡𝑠;𝜇)]
]

.

or instance, 𝑡[⋅] can be chosen to be the following second-order finite difference operator, satisfying

𝑡[𝐲(𝑡𝑗 ;𝜇)] =
⎧

⎪

⎨

⎪

⎩

(−3𝐲(𝑡0;𝜇) + 4𝐲(𝑡1;𝜇) − 𝐲(𝑡2;𝜇))∕(2𝛥𝑡) 𝑗 = 0,
(𝐲(𝑡𝑗+1;𝜇) − 𝐲(𝑡𝑗−1;𝜇))∕(2𝛥𝑡) 𝑗 = 1,… , 𝑠 − 1,
(𝐲(𝑡𝑠−2;𝜇) − 4𝐲(𝑡𝑠−1;𝜇) + 3𝐲(𝑡𝑠;𝜇))∕(2𝛥𝑡) 𝑗 = 𝑠.

(9)

n the parametric case, 𝐅 ∶=
[

𝐅(𝜇0),𝐅(𝜇1),… ,𝐅(𝜇𝑝)
]

and
.
𝐘 ∶=

[.
𝐘(𝜇0),

.
𝐘(𝜇1),… ,

.
𝐘(𝜇𝑝)

]

. In either case, using the POD basis Φ, we

roject each of the above data matrices onto the POD basis and obtain the projected data

𝐘𝑟 = Φ⊺𝐘, 𝐅𝑟 = Φ⊺𝐅, and
.
𝐘𝑟 = Φ⊺ .𝐘.

he GP-OpInf learns the reduced operator 𝐃𝑟 from the following optimization problems:

(i) When the system is conservative:

min
𝐃𝑟∈R𝑟×𝑟

1
2
‖

.
𝐘𝑟 − 𝐃𝑟𝐅𝑟‖

2
𝐹 s.t. 𝐃⊺

𝑟 = −𝐃𝑟. (10)

(ii) When the system is dissipative:

min
𝐃𝑟∈R𝑟×𝑟

1
2
‖

.
𝐘𝑟 − 𝐃𝑟𝐅𝑟‖

2
𝐹 s.t. 𝐃𝑟 ≼ 0, (11)

where 𝐃𝑟 ≼ 0 indicates that 𝐃𝑟 is semi-negative definite.

The next two sections present suitable solutions to these respective optimization problems.

3.2. Solution of the GP-OpInf optimization for the conservative case

The solution to the optimization problem (10) can be derived using the method of Lagrange multipliers. Consider the Lagrangian
function

𝐿(𝐃 ) = 1 ⟨.
𝐘 − 𝐃 𝐅 ,

.
𝐘 − 𝐃 𝐅

⟩

+
⟨

Λ,𝐃 + 𝐃⊺⟩ ,
4

𝑟 2 𝑟 𝑟 𝑟 𝑟 𝑟 𝑟 𝐹 𝑟 𝑟 𝐹
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where the Frobenius inner product is defined as ⟨𝐀,𝐁⟩𝐹 ∶=
∑

𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗 for two real matrices 𝐀 and 𝐁. The stationary point of the
Lagrangian then satisfies

(
.
𝐘𝑟 − 𝐃𝑟𝐅𝑟)𝐅

⊺
𝑟 = Λ +Λ⊺, (12)

𝐃⊺
𝑟 = −𝐃𝑟. (13)

Using the symmetry of the right hand side in Eq. (12) together with Eq. (13), we get the Lyapunov equation

𝐅𝑟𝐅
⊺
𝑟𝐃𝑟 + 𝐃𝑟𝐅𝑟𝐅

⊺
𝑟 =
.
𝐘𝑟𝐅

⊺
𝑟 − 𝐅𝑟

.
𝐘⊺
𝑟 . (14)

We next outline three solution approaches to obtain 𝐃𝑟, each leading to a different ROM. We then provide numerical comparisons
in Section 5.

GP-OpInf-V : This straightforward (‘‘vanilla’’) approach directly solves the Lyapunov equation (14). Given square matrices 𝐀,
𝐐 ∈ R𝑛×𝑛, for a general continuous-time Lyapunov equation

𝐀𝐗 + 𝐗𝐀⊺ = 𝐐,

it is known that (1) if 𝐀 and −𝐀⊺ have no eigenvalues in common, then the solution 𝐗 is unique; (2) if 𝐐 is (anti-)symmetric,
then 𝐗 must be (anti-)symmetric, see, e.g., [59]. Since 𝐅𝑟𝐅

⊺
𝑟 in (14) is only positive semi-definite, there might be zero eigenvalues,

violating (1), and the system would become singular. In this case, standard software libraries for numerical linear algebra, such as
LAPACK [60], provide a unique solution 𝐃𝑟, yet to a slightly perturbed system. This solution may not be symmetric to machine
precision anymore, and due to numerical errors in the solver, 𝐅𝑟𝐅

⊺
𝑟 can have small negative eigenvalues. This could introduce

additional errors in the numerical simulation of the GP-OpInf ROM. To resolve this issue, we next consider a regularized optimization.
GP-OpInf-P: We introduce a regularization term to the optimization: for some 𝜖 > 0

min
𝐃𝑟∈R𝑟×𝑟

1
2
‖

.
𝐘𝑟 − 𝐃𝑟𝐅𝑟‖

2
𝐹 + 𝜖

2
‖𝐃𝑟‖

2
𝐹 s.t. 𝐃⊺

𝑟 = −𝐃𝑟. (15)

e use similar arguments as above and define the Lagrangian

𝐿(𝐃𝑟) =
1
2

⟨.
𝐘𝑟 − 𝐃𝑟𝐅𝑟,

.
𝐘𝑟 − 𝐃𝑟𝐅𝑟

⟩

𝐹
+ 𝜖

2
⟨𝐃𝑟,𝐃𝑟⟩𝐹 +

⟨

Λ,𝐃𝑟 + 𝐃⊺
𝑟
⟩

𝐹 ,

hose stationary point satisfies

(
.
𝐘𝑟 − 𝐃𝑟𝐅𝑟)𝐅

⊺
𝑟 − 𝜖𝐃𝑟 = Λ +Λ⊺,

𝐃⊺
𝑟 = −𝐃𝑟.

his leads to the ‘‘perturbed’’ Lyapunov equation

(𝐅𝑟𝐅
⊺
𝑟 + 𝜖𝐈)𝐃𝑟 + 𝐃𝑟(𝐅𝑟𝐅

⊺
𝑟 + 𝜖𝐈) =

.
𝐘𝑟𝐅

⊺
𝑟 − 𝐅𝑟

.
𝐘⊺
𝑟 , (16)

here 𝐈 is the 𝑟 × 𝑟 identity matrix.
In order to prevent the eigenvalues of the coefficient matrix 𝐅𝑟𝐅

⊺
𝑟 + 𝜖𝐈 from being non-positive, we define

𝜖 =
{

max(𝑐0, 𝛼|min(𝜆(𝐅𝑟𝐅
⊺
𝑟 ))|) if min(𝜆(𝐅𝑟𝐅

⊺
𝑟 )) ≤ 𝑐0,

0 otherwise, (17)

ith a small positive constant 𝑐0 and a positive constant 𝛼. This approach improves the anti-symmetry of the inferred 𝐃𝑟. However,
omparing with (14), the perturbed equation could introduce a consistency error.
GP-OpInf : We propose an alternative approach to eliminate this common consistency error. Suppose that 𝐃̂𝑟 satisfies (14), that

s,

𝐅𝑟𝐅
⊺
𝑟 𝐃̂𝑟 + 𝐃̂𝑟𝐅𝑟𝐅

⊺
𝑟 =
.
𝐘𝑟𝐅

⊺
𝑟 − 𝐅𝑟

.
𝐘⊺
𝑟 . (18)

e assume that the equation can be uniquely solved. In the case where 𝐅𝑟𝐅
⊺
𝑟 has zero eigenvalues, the approach used in LAPACK

hould be applied to provide a unique solution [60]. As discussed above, 𝐃̂𝑟 may not be exactly anti-symmetric. After transposing
oth sides of (18) and taking the negative, we obtain

−𝐅𝑟𝐅
⊺
𝑟 𝐃̂𝑟 − 𝐃̂𝑟𝐅𝑟𝐅

⊺
𝑟 =
.
𝐘𝑟𝐅

⊺
𝑟 − 𝐅𝑟

.
𝐘⊺
𝑟 . (19)

y averaging (18) and (19), we find that (14) admits the anti-symmetric solution

𝐃𝑟 = (𝐃̂𝑟 − 𝐃̂⊺
𝑟 )∕2. (20)

hus, the inferred 𝐃𝑟, defined in (20), is superior to the one obtained from (16) because it possesses the right property without
ausing any consistency errors to the optimization problem.
5



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117033Y. Geng et al.

w

w

t
c
i

t
a

i

w

t
s
m

P

3.3. Solution of the GP-OpInf optimization for the dissipative case

The solution to the optimization problem (11) for the dissipative case can be obtained through an interior-point method [61,62].
By introducing 𝑓 (𝐗) = ‖

.
𝐘𝑟 − 𝐗𝐅𝑟‖

2
𝐹 and the logarithmic barrier

𝑔(𝐗) =
⎧

⎪

⎨

⎪

⎩

𝑟
∑

𝑖=1
log(−𝜆𝑖(𝐗)) if 𝜆𝑖(𝐗) < 0

− ∞ otherwise,

here 𝐗 is an 𝑟×𝑟 matrix and 𝜆𝑖(𝐗) is the 𝑖th eigenvalue of the matrix 𝐗, we can solve, instead of (11), an unconstrained optimization
with an augmented objective function:

𝐃𝑟 = arg min
𝐃̃𝑟∈𝐑𝑟×𝑟

{

𝑓𝛽 (𝐃̃𝑟) ∶= 𝑓 (𝐃̃𝑟) − 𝛽𝑔(𝐃̃𝑟)
}

, (21)

here 𝛽 > 0 is the barrier parameter. The corresponding (dissipative) ROM (7) using 𝐃𝑟 determined from (21) is referred to as the
GP-OpInf ROM.

Remark 1. The online simulation time of the nonintrusive GP-OpInf ROM (7) is similar to that of the intrusive SP-G ROM for
he same 𝑟, as both ROMs have the same structure yet may have different model parameters. If the Hamiltonian is nonlinear, one
an use hyper-reduction techniques to accelerate the evaluation of the nonlinear term. For instance, the DEIM approach presented
n [63] can be used to reduce the cost for evaluating the nonlinear Hamiltonian while preserving the structure.
Compared to SP-G ROM, the GP-OpInf ROM requires additional offline computation to infer 𝐃𝑟. In the conservative case, we need

o solve a 𝑟 × 𝑟 Lyapunov equation. Since the matrix 𝐅𝑟𝐅
⊺
𝑟 is usually dense, the Bartels–Stewart algorithm can be applied [64] with

n associated computational complexity of (𝑟3) flops. In the dissipative case, one can solve (21) by a gradient descent method as
outlined in Appendix. The associated computational complexity is (𝑟2𝑠𝑝) per iteration, where 𝑠𝑝 represents the number of snapshots.

4. Error estimation

Previous work in [44,51] established an asymptotic (as 𝑟 → 𝑛) convergence of learned reduced operators to the associated
projection-based reduced operators. However, this analysis can sometimes not explain the error in the solution of the ROM, as
small errors in the operators may cause large solution errors, specifically for structured (e.g., gradient) systems. Here, we take a
step further and analyze the approximate solution error of the inferred ROMs in the preasymptotic regime. Specifically, we estimate
the a priori error of the GP-OpInf ROM approximation relative to the FOM (7). The derivation mainly follows the error estimation
developed in [33] for analyzing the projection-based SP-G ROM. However, in addition to considering the error from POD truncation,
there is a need to estimate the error caused by Operator Inference.

Given a mapping 𝑓 ∶ R𝑛 → R𝑛, the Lipschitz constant and the logarithmic Lipschitz constant of the mapping are defined as

Lip[𝑓 ] ∶= sup
𝐮≠𝐯

‖𝑓 (𝐮) − 𝑓 (𝐯)‖
‖𝐮 − 𝐯‖

, and log−Lip[𝑓 ] ∶= sup
𝐮≠𝐯

⟨𝐮 − 𝐯, 𝑓 (𝐮) − 𝑓 (𝐯)⟩
‖𝐮 − 𝐯‖2

,

where ⟨⋅, ⋅⟩ ∶ R𝑛 × R𝑛 → R for any positive integer 𝑛 denotes the Euclidian inner product. The logarithmic Lipschitz constant could
be negative, which was used in [65] to show that the error of reduced-order solution is uniformly bounded over the time interval
of simulations.

Theorem 1. Let 𝐲(𝑡) be the solution of the FOM (2) on the time interval [0, 𝑇 ] and 𝐲𝑟(𝑡) be the solution of the ROM (7) on the same
nterval. Suppose ∇𝐲𝐻(𝐲) is Lipschitz continuous, then the ROM approximation error satisfies

∫

𝑇

0
‖𝐲 −Φ𝐲𝑟‖2 d𝑡 ≤ 𝐶(𝑇 )

(

∫

𝑇

0
‖𝐲 −ΦΦ⊺𝐲‖2d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
projection error

+∫

𝑇

0
‖

.𝐲 −𝑡[𝐲]‖2 d𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

data error

+∫

𝑇

0
‖Φ⊺𝑡[𝐲] − 𝐃𝑟Φ

⊺∇𝐲𝐻(𝐲)‖2 d𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

optimization error

)

, (22)

here 𝐶(𝑇 ) = max{1+𝐶2
2 , 2}𝑇𝛼(𝑇 ), 𝛼(𝑇 ) = 2 ∫ 𝑇

0 𝑒2𝐶1(𝑇−𝜏) d𝜏, and the constants 𝐶1 = log−Lip[Φ𝐃𝑟Φ
⊺∇𝐲𝐻] and 𝐶2 = ‖Φ𝐃𝑟Φ

⊺
‖Lip[∇𝐲𝐻].

There are three terms in the error bound: the first term ∫ 𝑇
0 ‖𝐲−ΦΦ⊺𝐲‖2d𝑡 is the projection error caused by projecting 𝐲(𝑡;𝜇) onto

he subspace spanned by the POD basis Φ, that interprets the POD approximability and has been analyzed thoroughly in [66,67]; the
econd one ∫ 𝑇

0 ‖

.𝐲−𝑡[𝐲]‖2 d𝑡 is the data error caused by the approximation of time derivative snapshots using the finite difference
ethod; the third one ∫ 𝑇

0 ‖Φ⊺𝑡[𝐲] − 𝐃𝑟Φ
⊺∇𝐲𝐻(𝐲)‖2 d𝑡 represents the optimization error generated by learning 𝐃𝑟 from data.

roof. Consider the ROM of a fixed dimension 𝑟, and define its approximate solution error by
6

𝐞 ∶= 𝐲 −Φ𝐲𝑟.
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It can be decomposed as 𝐞 = 𝝆+𝜽 with 𝝆 ∶= 𝐲−ΦΦ⊺𝐲 and 𝜽 ∶= ΦΦ⊺𝐲−Φ𝐲𝑟. Define 𝜻 ∶= .𝐲−𝑡[𝐲] and 𝜼 ∶= Φ⊺𝑡[𝐲]−𝐃𝑟Φ
⊺∇𝐲𝐻(𝐲).

Consider the time derivative of 𝜽
.
𝜽 = ΦΦ⊺.𝐲 −Φ

.𝐲𝑟
= ΦΦ⊺.𝐲 −Φ𝐃𝑟 ∇𝐲𝑟𝐻𝑟(𝐲𝑟)
= ΦΦ⊺.𝐲 −Φ𝐃𝑟 ∇𝐲𝑟𝐻(Φ𝐲𝑟)
= ΦΦ⊺.𝐲 −ΦΦ⊺𝑡[𝐲]

+ΦΦ⊺𝑡[𝐲] −Φ𝐃𝑟Φ
⊺∇𝐲𝐻(𝐲)

+Φ𝐃𝑟Φ
⊺∇𝐲𝐻(𝐲) −Φ𝐃𝑟Φ

⊺∇𝐲𝐻(ΦΦ⊺𝐲)

+Φ𝐃𝑟Φ
⊺∇𝐲𝐻(ΦΦ⊺𝐲) −Φ𝐃𝑟Φ

⊺∇𝐲𝐻(Φ𝐲𝑟). (23)

Note that
d
d𝑡
‖𝜽‖ = 1

2‖𝜽‖
d
d𝑡
‖𝜽‖2 = 1

‖𝜽‖

⟨

𝜽,
.
𝜽
⟩

. (24)

Taking the inner product of Eq. (23) with 𝜃, the terms on the right-hand side of (23) are
⟨

𝜽,ΦΦ⊺.𝐲 −ΦΦ⊺𝑡[𝐲]
⟩

=
⟨

𝜽,ΦΦ⊺(.𝐲 −𝑡[𝐲])
⟩

≤ ‖𝜽‖ ‖𝜻‖, (25)

⟨

𝜽,ΦΦ⊺𝑡[𝐲] −Φ𝐃𝑟Φ
⊺∇𝐲𝐻(𝐲)

⟩

= ⟨𝜽,Φ𝜼⟩ ≤ ‖𝜽‖ ‖𝜼‖, (26)

⟨

𝜽,Φ𝐃𝑟Φ
⊺ (

∇𝐲𝐻(𝐲) − ∇𝐲𝐻(ΦΦ⊺𝐲)
)⟩

≤ ‖𝜽‖ ‖Φ𝐃𝑟Φ
⊺
‖Lip[∇𝐲𝐻] ‖𝝆‖, (27)

⟨

𝜽,Φ𝐃𝑟Φ
⊺ (

∇𝐲𝐻(ΦΦ⊺𝐲) − ∇𝐲𝐻(Φ𝐲𝑟)
)⟩

≤ log−Lip[Φ𝐃𝑟Φ
⊺∇𝐲𝐻] ‖𝜽‖2. (28)

Let 𝐶1 = log−Lip[Φ𝐃𝑟Φ
⊺∇𝐲𝐻], 𝐶2 = ‖Φ𝐃𝑟Φ

⊺
‖Lip[∇𝐲𝐻], and combine (24) with (23) and (25)–(28), we have

d
d𝑡
‖𝜽‖ ≤ 𝐶1‖𝜽‖ + 𝐶2‖𝝆‖ + ‖𝜻‖ + ‖𝜼‖.

Applying the classical differential version of Gronwall lemma (see, for example, Appendix B in [68]) over the interval [0, 𝑡], for
𝑡 ≤ 𝑇 , and using the fact that 𝜽(0) = 0, we get

‖𝜽(𝑡)‖ ≤ ∫

𝑡

0
𝑒𝐶1(𝑡−𝜏)(𝐶2‖𝝆‖ + ‖𝜻‖ + ‖𝜼‖) d𝜏.

Applying the Cauchy–Schwarz inequality on the RHS and squaring both sides, we have

‖𝜽(𝑡)‖2 ≤ ∫

𝑡

0
𝑒2𝐶1(𝑡−𝜏) d𝜏 ∫

𝑡

0
[𝐶2‖𝝆‖ + (‖𝜻‖ + ‖𝜼‖)]2 d𝜏

≤ 𝛼(𝑡)
[

∫

𝑇

0
𝐶2
2‖𝝆‖

2d𝑡 + ∫

𝑇

0
(‖𝜻‖ + ‖𝜼‖)2 d𝑡

]

≤ 𝛼(𝑇 )
[

𝐶2
2 ∫

𝑇

0
‖𝝆‖2d𝑡 + ∫

𝑇

0
(‖𝜻‖ + ‖𝜼‖)2 d𝑡

]

,

where 𝛼(𝑡) = 2 ∫ 𝑡
0 𝑒2𝐶1(𝑡−𝜏) d𝜏. Hence,

∫

𝑇

0
‖𝜽(𝑡)‖2 d𝑡 ≤ 𝑇𝛼(𝑇 )

[

𝐶2
2 ∫

𝑇

0
‖𝝆‖2d𝑡 + ∫

𝑇

0
(‖𝜻‖ + ‖𝜼‖)2 d𝑡

]

.

This, together with the triangular inequality and orthogonality of 𝜌 and 𝜃, yields

∫

𝑇

0
‖𝐞(𝑡)‖2 d𝑡 ≤

(

1 + 𝐶2
2𝑇𝛼(𝑇 )

)

∫

𝑇

0
‖𝝆‖2d𝑡 + 2𝑇𝛼(𝑇 )∫

𝑇

0
(‖𝜻‖2 + ‖𝜼‖2) d𝑡,

which proves the theorem. □

Remark 2. In comparison to the asymptotic error estimation of the SP-G ROM in [33], the GP-OpInf ROM is different in that it
only involves the projection error of the state, whereas the error of projecting the gradient of the Hamiltonian onto the reduced basis
space is included in the SP-G. Additionally, it incorporates the data error and optimization error. We will numerically investigate
these errors in the next section.

Remark 3. The FOM (2) and ROM (7) are continuous in time. In numerical simulations, time-marching schemes with identical
or different time step sizes are applied. Consequently, the time discretization errors appear in the upper bound of the ROM
approximation error. This time discretization error, along with the data error, can be controlled by choosing a sufficiently small
time step size.
7
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Remark 4. It is worth mentioning that, in addition to (8), one could evaluate the gradient data on the projected snapshots, e.g.,

𝐅 ≡ 𝐅(𝜇) ∶=
[

∇𝐲𝐻(ΦΦ⊺𝐲(𝑡0;𝜇);𝜇),∇𝐲𝐻(ΦΦ⊺𝐲(𝑡1;𝜇);𝜇),… ,∇𝐲𝐻(ΦΦ⊺𝐲(𝑡𝑠;𝜇);𝜇)
]

(29)

when inferring the reduced operator. Using it does not alter the proposed GP-OpInf framework, yet for the error estimation, Eqs. (26)
and (27) can be grouped together. This results in a similar error bound to (22), with the only difference being that the optimization
error term becomes ∫ 𝑇

0 ‖Φ⊺𝑡[𝐲] − 𝐃𝑟Φ
⊺∇𝐲𝐻(ΦΦ⊺𝐲)‖2.

5. Numerical experiments

In this section, we provide many numerical experiments to demonstrate the effectiveness of the proposed method. In Section 5.1
we first define the error measures used throughout to assess quality and accuracy of a learned ROM. Section 5.2 contains conservative
dynamical systems and Section 5.3 evaluates dissipative dynamical systems.

5.1. Error measures

Given a set of snapshots, the performance of a ROM depends on its dimension and the numerical schemes used for simulations. To
test the performance of the various GP-OpInf ROMs and to illustrate the error analysis, for a given time discretization, we compute
the (squared) ROM approximation error as a function of 𝑟:

(𝑟) ∶= 𝑇𝛥𝐴
𝑁

𝑁
∑

𝑗=1
‖𝐲(𝑡𝑗 ;𝜇) −Φ𝐲𝑟(𝑡𝑗 ;𝜇)‖2, (30)

where ‖ ⋅ ‖ represents the vector 2-norm, 𝐲(𝑡𝑗 ;𝜇) and 𝐲𝑟(𝑡𝑗 ;𝜇) are the full-order and reduced-order solutions at 𝑡𝑗 , respectively,
for 𝑗 = 1,… , 𝑁 , Φ = [𝝓1,𝝓2,… ,𝝓𝑟] is the reduced basis matrix, and 𝛥𝐴 represents the associated element size in a uniform grid.
Following the error bound (22), we additionally compute the (squared) projection error and (squared) optimization error :

proj(𝑟) ∶=
𝑇𝛥𝐴
𝑁

𝑁
∑

𝑗=1
‖𝐲(𝑡𝑗 ;𝜇) −ΦΦ⊺𝐲(𝑡𝑗 ;𝜇)‖2, (31)

opt(𝑟) ∶=
𝑇𝛥𝐴
𝑁

𝑁
∑

𝑗=1
‖Φ⊺𝑡[𝐲(𝑡𝑗 ;𝜇)] − 𝐃𝑟Φ

⊺∇𝐲𝐻(𝐲(𝑡𝑗 ;𝜇);𝜇)‖2. (32)

The norms are evaluated by the same quadrature rule such as the composite rectangle method. In the following numerical
experiments, we frequently use two matrices in discrete schemes:

𝐋𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2 1 0 ⋯ 1
1 −2 1 ⋯ 0

⋱ ⋱ ⋱
0 ⋯ 1 −2 1
1 ⋯ 0 1 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑛×𝑛

and 𝐒𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 ⋯ −1
−1 0 1 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
0 … −1 0 1
1 0 … −1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑛×𝑛

;

and we denote the spatial domain of an equation by 𝛺 and the time domain by 𝐼 . Specifically, in the FOM simulations the time
interval 𝐼 = [0, 𝑇FOM], while in the ROM simulations 𝐼 = [0, 𝑇ROM].

For our numerical tests, the Lyapunov equation is solved by using the 𝗅𝗒𝖺𝗉 function when using 𝖬𝖺𝗍𝗅𝖺𝖻, or the
𝗅𝗂𝗇𝖺𝗅𝗀.𝗌𝗈𝗅𝗏𝖾_𝖼𝗈𝗇𝗍𝗂𝗇𝗎𝗈𝗎𝗌_𝗅𝗒𝖺𝗉𝗎𝗇𝗈𝗏 function when using 𝗉𝗒𝗍𝗁𝗈𝗇∕𝗌𝖼𝗂𝗉𝗒. Moreover, we use the licensed MOSEK [69] optimization software
developed by CVXPY [70,71] to solve the semi-definite programming problem (21). If this software is unavailable, one can obtain
the optimal solution through gradient descent, as discussed in Appendix.

5.2. Conservative PDEs

We consider the wave equation, the Korteweg–de Vries (KdV) equation and the linear elastic equations as a test-bed for
investigating the GP-OpInf ROM when approximating conservative systems. After a spatial discretization of the PDEs, the former
yields a canonical Hamiltonian system while the latter results in a non-canonical Hamiltonian system. We note that both equations
have also been considered in [50,51] with similar configurations.

5.2.1. Parameterized wave equation
Consider the one-dimensional linear wave equation with a constant wave speed 𝑐:

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥, (𝑥, 𝑡) ∈ 𝛺 × 𝐼,

where 𝑢 = 𝑢(𝑥, 𝑡;𝜇) is the parameter-dependent solution and 𝜇 ∈ 𝑃 a parameter appearing in the initial condition, defined below
alongside the boundary and initial conditions. The wave equation can be recast to the canonical Hamiltonian formulation (see,
e.g. [22]) with the Hamiltonian (𝑢, 𝑣) = ∫𝛺(

1
2𝑣

2 + 𝑐2

2 𝑢
2
𝑥) d𝑥, so that

[

𝑢𝑡
]

=

[

0 1
][ 𝛿

𝛿𝑢
𝛿

]

,

8

𝑣𝑡 −1 0
𝛿𝑣
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Fig. 1. (Wave Equation) Full-order model simulation when 𝑇FOM = 100: time evolution of 𝐮 (left), 𝐯 (middle), and energy 𝐻(𝑡) (right).

which has the symplectic (gradient) structure.
Taking a uniform partition in the spatial domain with the mesh size 𝛥𝑥 and defining a consistent discrete Hamiltonian 𝐻(𝑡) ∶=

𝛥𝑥𝐻(𝐮, 𝐯) with 𝐻(𝐮, 𝐯) =
∑

𝑗 [
1
2𝐯

2
𝑗 +

𝑐2

2(𝛥𝑥)2 (𝐮𝑗+1 − 𝐮𝑗 )2] leads to the Hamiltonian system of ODEs
[.𝐮.𝐯

]

=
[

0 𝐈𝑛
−𝐈𝑛 0

] [

−𝐀𝐮
𝐯

]

. (33)

Here, 𝑛 is the number of degrees of freedom, 𝐈𝑛 the 𝑛 × 𝑛 identity matrix, and 𝐀 is a discretization of the scaled, one-dimensional
second order differential operator. The above system is of the form (2) with 𝐲 = [𝐮⊺, 𝐯⊺]⊺ and 𝐃 is the 2𝑛× 2𝑛 skew-symmetric block
matrix from above. This implies the system is conservative and the Hamiltonian is a constant function.

Computational setting. Consider the case in which 𝑐 = 0.1 and 𝛺 = [0, 1]. The boundary condition is set to be periodic and the initial
condition satisfies 𝑢0(𝑥;𝜇) = ℎ(𝑠(𝑥;𝜇)) and 𝑣0(𝑥;𝜇) = 0, in which ℎ(𝑠) is a cubic spline function defined by

ℎ(𝑠) =

⎧

⎪

⎨

⎪

⎩

1 − 3
2 𝑠

2 + 3
4 𝑠

3 if 0 ≤ 𝑠 ≤ 1,
1
4 (2 − 𝑠)3 if 1 < 𝑠 ≤ 2,
0 if 𝑠 > 2,

and 𝑠(𝑥;𝜇) = 𝜇
|

|

|

|

𝑥 − 1
2
|

|

|

|

with 𝜇 a parameter that can take values from 𝑃 = [5, 15]. In the FOM, the finite difference method is used for spatial discretization
nd

𝐀 = 𝑐2

𝛥𝑥2
𝐋𝑛.

For time integration, the midpoint rule is applied with the time step 𝛥𝑡. The resulting linear system is solved by the built-in direct
solver in MATLAB. For 𝑇FOM = 100, 𝛥𝑡 = 1 × 10−3 and 𝜇 = 10, the time evolution of the full-order states and the energy 𝐻(𝑡) are
lotted in Fig. 1. Note that the Hamiltonian energy is preserved as 𝐻(𝑡) ≈ 7.5 × 10−2.

OM construction. We assemble the snapshot matrices 𝐔 and 𝐕 from full-order simulations and generate the basis matrices
𝑢 ∈ R𝑛×𝑟1 and Φ𝑣 ∈ R𝑛×𝑟2 that contain, respectively, the 𝑟1 and 𝑟2 leading left singular vectors of 𝐔 and 𝐕. We define the POD basis

Φ =
[

Φ𝑢 𝟎
𝟎 Φ𝑣

]

and obtain the projected data 𝐘𝑟 = Φ⊺𝐘 = Φ⊺[𝐔⊺,𝐕⊺]⊺ as well as the associated gradient of the Hamiltonian and

the time derivative data matrices (using 𝑡 defined in (9)). For simplicity, we choose 𝑟1 = 𝑟2 = 𝑟 in the following tests. However,
different basis sizes can be chosen to better represent data. We note that other types of reduced basis can be used, such as the
cotangent lift [38]. We refer the interested readers to [51] for a numerical investigation on different types of reduced bases. Next,
we provide several comparisons of the ROMs generated by GP-OpInf, GP-OpInf-V and GP-OpInf-P and investigate their performance
over [0, 𝑇ROM].

Test 1. Effects of regularization. We first consider the non-parametric case in which 𝜇 = 10 is fixed. The mesh size for the FOM is
𝛥𝑥 = 10−3 (correspondingly, 𝑛 = 1000) and the same time step 𝛥𝑡 = 1×10−3 is used in both the FOM and the ROMs. We use GP-OpInf,
P-OpInf-V and GP-OpInf-P to create ROMs of dimension 2𝑟 (𝑟 bases for 𝑢 and 𝑟 bases for 𝑣) and let 𝑟 vary from 𝑟 = 5 to 𝑟 = 200.
We first select 𝑇FOM = 5, 𝑇ROM = 5 and check whether the inferred 𝐃𝑟 possesses the desired skew-symmetric structure by plotting

he maximum magnitude of |𝐃𝑟 + 𝐃⊺
𝑟 | in Fig. 2 (left). The inferred 𝐃𝑟 from GP-OpInf-P (with 𝛼 = 2 and 𝑐0 = 10−13 in the definition

of 𝜖 (17)) achieves better anti-symmetric structure than GP-OpInf-V when 𝑟 > 30, but both methods are not producing satisfactory
results and are far off from being skew-symmetric. In contrast, the proposed GP-OpInf produces exact anti-symmetric matrices up
to machine precision. The associated ROM approximation errors  are plotted in Fig. 2 (right). For the GP-OpInf-V method, the
error grows unbounded (no entry indicates an NaN) when 𝑟 > 40. The GP-OpInf-P method yields better performance as it provides
stable numerical solutions at almost all of the considered 𝑟-values, yet it becomes inaccurate at 𝑟 = 105 and 𝑟 = 155. In contrast, the
GP-OpInf method is able to obtain stable numerical approximations for all the 𝑟-values.

We now consider the case of 𝑇FOM = 10 and 𝑇ROM = 10. The associated maximum magnitude of |𝐃𝑟 + 𝐃⊺
𝑟 | and the approximation

errors of the ROMs based on three inferred 𝐃 are plotted in Fig. 3. From the results, we find that all three methods learn 𝐃 with
9

𝑟 𝑟
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Fig. 2. (Wave Equation) ROMs of 2𝑟-dimensions when 𝑇FOM = 5 and 𝑇ROM = 5: (left) maximum magnitude of |𝐃𝑟 + 𝐃⊺
𝑟 | for the inferred 𝐃𝑟 when 𝑟 varies; (right)

ROM approximation error  from (30) when 𝑟 varies from 5 to 200 in increments of five. The inserted plots cover the portion of 𝑟 between 75 and 175.

Fig. 3. (Wave Equation) ROMs of 2𝑟-dimensions when 𝑇FOM = 10 and 𝑇ROM = 10: (left) maximum magnitude of |𝐃𝑟 + 𝐃⊺
𝑟 | for the inferred 𝐃𝑟 when 𝑟 varies;

(right) numerical error  from (30) when 𝑟 varies from 5 to 200 in increments of five.

Table 1
Smallest eigenvalues of 𝐅𝑟𝐅

⊺
𝑟 at several small 𝑟 values.

Case 𝑟 = 5 𝑟 = 10 𝑟 = 15 𝑟 = 20 𝑟 = 25 𝑟 = 30

𝑇FOM = 𝑇ROM = 5 1.36e−07 8.16e−10 3.55e−12 9.57e−15 −6.97e−13 −6.41e−12
𝑇FOM = 𝑇ROM = 10 1.16e−04 6.74e−09 2.48e−10 1.98e−11 5.55e−12 1.26e−12

skew-symmetric structure, however, with noticeable differences. The maximum magnitude of |𝐃𝑟 + 𝐃⊺
𝑟 | is about 10−6 in GP-OpInf-V

and GP-OpInf-P. Once again GP-OpInf is the most accurate yielding machine precision, 10−16, for the skew-symmetry test. From
Fig. 3 (right), we observe that the three ROMs yield similar numerical accuracy in this case.

The different behavior of GP-OpInf-V in the second case is mainly a result of the inferred 𝐃𝑟 having a better structure. In Table 1,
the minimum eigenvalues of 𝐅𝑟𝐅

⊺
𝑟 are listed at several small 𝑟 values. We observe that small negative eigenvalues appear when 𝑟 = 25

and 𝑟 = 30 which result in the direct solution to the Lyapunov equation, 𝐃𝑟, not being skew-symmetric.
In sum, we find that the GP-OpInf approach computes 𝐃𝑟 with skew-symmetric structure up to machine precision in both tests,

which is markedly better than GP-OpInf-V and GP-OpInf-P. While more training data improved the GP-OpInf-V and GP-OpInf-P
structural properties, noticeable (10 orders of magnitude) differences remained. The resulting GP-OpInf ROMs are more accurate,
which is especially evident in the first test case where the other two approaches failed. In the following tests, we thus only focus
on the GP-OpInf approach and investigate it in more detail.

Test 2. Illustration of error estimation. Here, we investigate the error estimation for the GP-OpInf ROM for the same non-parametric
case with 𝜇 = 10, and compare the approximation error with the intrusive structure-preserving ROM (SP-G ROM) of the same
dimension.

We choose 𝛥𝑥 = 𝛥𝑡 = 2 × 10−4 so that the discretization errors are negligible relative to the POD projection error and the
10

optimization error. We set 𝑇FOM = 𝑇ROM = 10 and vary the dimension 𝑟 of the ROM. The three ROM errors (30)–(32) are plotted in
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Fig. 4. (Wave Equation) Numerical errors of the 2𝑟-dimensional GP-OpInf ROM when 𝑇FOM = 𝑇ROM = 10 and 𝛥𝑥 = 𝛥𝑡 = 2 × 10−4: (left) the ROM approximation
error (30) together with POD projection error (31) and optimization error (32); (right) comparison of the ROM approximation error for the GP-OpInf and SP-G
OM.

ig. 4 (left), which shows that the error decays monotonically as 𝑟 increases. When 𝑟 > 200, the ROM approximation error saturates,
lthough the POD projection error is still decreasing, which indicates the error is dominated by the saturated optimization error
nd the fixed time discretization error. We compare the GP-OpInf ROM approximation error with the SP-G ROM in Fig. 4 (right).
he SP-G approximation error decreases in a tendency similar to the POD projection error in Fig. 4 (left), and GP-OpInf achieves
imilar numerical accuracy to SP-G when 𝑟 is less than 200. However, as 𝑟 increases, the GP-OpInf ROM approximation accuracy
tays around 10−8. Nevertheless, such large 𝑟 values lead to impractically expensive ROMs, and are of little practical use.
In this numerical test, 𝑇FOM = 𝑇ROM, as assumed when deriving the error estimation. Since Operator Inference is a data-driven

echnique, the optimization error and POD projection error depend on the given snapshot data. Consequently, there is no general
ccuracy guarantee for the ROM simulations beyond the time duration on which the snapshots are gathered. Nonetheless, if the
napshot data represent the dynamical system behavior well, it is possible to attain accurate ROM predictions. Nevertheless, the
redictive capabilities of the ROMs outside the training intervals are enhanced by enforcing the correct structure in the inferred
OMs. We investigate predictions for longer time intervals in the next test.

est 3. Long-term predictive capabilities of the GP-OpInf ROM. We set 𝛥𝑥 = 𝛥𝑡 = 10−3 and fix 𝜇 = 10 and generate snapshots from
he FOM with the final time 𝑇FOM = 10. However, we simulate the GP-OpInf ROM on a much longer interval with 𝑇ROM = 100
o demonstrate the long-term predictive capabilities of structure-preserving ROMs. The time evolution of the ROM approximation
rrors, using the FOM solution as the benchmark, at 𝑟 = 10, 20, 40 and 80 are plotted in Fig. 5 (left). The associated approximate
amiltonian values are plotted in Fig. 5 (right), where the dashed line indicates the end of the training time interval. We observe that
or 𝑟 = 10 and 20, the errors stay at the same level over time, while for 𝑟 = 40 and 80, the errors increase gradually as 𝑡 increases.
eanwhile, since the appropriate (gradient) structure is captured in the inferred GP-OpInf ROM, the approximate Hamiltonian
s conservative, which approaches the benchmark value (from the FOM) as 𝑟 increases. We remark that these Hamiltonian
pproximations can be improved by choosing 𝐲 = 𝐲0 and using a POD basis generated from the shifted snapshots as introduced
n [33].

est 4. Parametric predictions away from training data. We parameterize the initial condition 𝑢0(𝑥;𝜇) = ℎ(𝑠(𝑥;𝜇)) and let 𝜇 ∈ [5, 15]. To
generate snapshots, 11 uniformly distributed training samples are collected from the parameter interval and the FOM is simulated
at all samples with 𝛥𝑥 = 𝛥𝑡 = 10−3 and 𝑇FOM = 10. Then, we compute the POD basis from the collected snapshots, learn the GP-OpInf
ROM, from which we predict solutions at different test parameters over the same time interval (𝑇ROM = 𝑇FOM). We consider three
randomly selected test parameters, 𝜇 = 6.7, 9.5 and 14.1.

Fig. 6 (top left) compares the approximation errors of the SP-G ROM and the GP-OpInf. The figure shows that at all test parameters
𝜇, the error of the GP-OpInf ROM is close to that of SP-G ROM when 𝑟 ≤ 80. The error, however, saturates when 𝑟 becomes bigger
and, thus, turns larger than that of the SP-G ROM. Nevertheless, such large basis dimensions produce inefficient ROMs and are of
little practical value. We choose the more realistic 𝑟 = 40 case and plot the benchmark FOM solution and the ROM solution in
Fig. 6 (top right and bottom); only a few snapshots are shown for illustration. In each case, the GP-OpInf ROM achieves accurate
approximations close to the FOM solution.

We next consider a more challenging parametric problem in which both the wave speed and the initial condition are
parameterized: 𝑐(𝜇) = 0.1𝜇 and 𝑢0(𝑥;𝜇) = (1 + 𝜇)ℎ(𝑠(𝑥;𝜇)), where 𝑠(𝑥;𝜇) = 20

𝜇 |𝑥 − 1
2 − 𝜇

10 | and 𝜇 ∈ 𝑃 = [5∕12, 5∕6]. Compared
to the preceding test, the support of the initial pulse is thinner and its location, magnitude, and traveling speed vary with the
parameter 𝜇. We infer the GP-OpInf ROM based on the training set of 11 uniformly distributed parameter samples in 𝑃 . For three
randomly chosen testing samples outside the training set, 𝜇 = 0.43, 0.60 and 0.82, we plot the approximation errors of the GP-OpInf
ROM in Fig. 7 (top left) together with those of the SP-G ROM. Several time snapshots of the GP-OpInf with 𝑟 = 55 and the FOM
solutions are presented in Fig. 7 (top right and bottom), demonstrating the good performance of the GP-OpInf ROM in this case as
11

ell.
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Fig. 5. (Wave Equation) Numerical accuracy of the 2𝑟-dimensional GP-OpInf : (left) time evolution of the summand of the ROM approximation error (30); (right)
time evolution of the reduced-order approximate Hamiltonian energy. The vertical dashed line indicates the end of the training interval.

Fig. 6. (Wave Equation) Performance at three test parameters: (top left) comparison of the ROM approximation errors (30) for the GP-OpInf with the SP-G
ROM of the same dimension 2𝑟; (top right and bottom) the GP-OpInf ROM solution and the FOM solution at 𝑡 = 0, 2, 4, 6.

5.2.2. Parameterized Korteweg–de Vries (KdV) equation
Next, we consider the one-dimensional KdV equation

𝑢𝑡 = 𝛼𝑢𝑢𝑥 + 𝜈𝑢𝑥𝑥𝑥, (𝑥, 𝑡) ∈ 𝛺 × 𝐼,

where 𝑢 = 𝑢(𝑥, 𝑡;𝜇) is the parameter-dependent solution and 𝜇 ∈ 𝑃 a parameter appearing in the initial condition, defined below
alongside the boundary and initial conditions. The KdV equation can be rewritten as a non-canonical Hamiltonian system (see,
e.g., [22]):

𝑢𝑡 =  𝛿
𝛿𝑢

,

where  = 𝜕𝑥 denotes the first-order derivative operator with respect to space, and the Hamiltonian function (𝑢) =
∫𝛺

(

𝛼
6 𝑢

3 − 𝜈
2 𝑢

2
𝑥

)

d𝑥. After taking a spatial discretization with a uniform mesh size 𝛥𝑥 and defining a consistent discrete Hamiltonian

𝐻(𝑡) ∶= 𝛥𝑥𝐻(𝐮) with 𝐻(𝐮) =
∑

𝑗

[

𝛼
6 𝑢

3
𝑗 −

𝜈
2 (𝑢𝑗+1 − 𝑢𝑗 )2

]

, we obtain the semi-discrete Hamiltonian system

.𝐮 = 𝐀
(𝛼 𝐮2 + 𝜈𝐁𝐮

)

, (34)
12
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Fig. 7. (Wave Equation) Performance at three test parameters: (top left) comparison of the ROM approximation errors (30) for the GP-OpInf with the SP-G
OM of the same dimension 2𝑟; (top right and bottom) the GP-OpInf ROM solution and the FOM solution at 𝑡 = 0, 2, 4, 6.

Fig. 8. (KdV Equation) Full-order model simulation up to final time 𝑇FOM = 20: time evolution of 𝐮 (left) and approximate Hamiltonian 𝐻(𝑡) (right).

where 𝐀 and 𝐁 are the matrices associated to the discretization of the skew-adjoint operator  and the second-order derivative by
central differences, respectively. Since 𝐀 is skew-symmetric, this dynamical system conserves the discrete Hamiltonian 𝐻(𝑡).

omputational setting. We set 𝛺 = [−20, 20], 𝛼 = −6, 𝜈 = −1, and consider periodic boundary conditions 𝑢(−20, 𝑡;𝜇) = 𝑢(20, 𝑡;𝜇) for
any 𝑡 ∈ 𝐼 and we parameterize the initial condition 𝑢0(𝑥;𝜇) = sech2

(

𝑥
𝜇

)

, for any 𝜇 ∈ 𝑃 = [1, 5]. In the FOM (34), we have

𝐀 = 1
2𝛥𝑥

𝐒𝑛, and 𝐁 = 1
𝛥𝑥2

𝐋𝑛.

The mesh size 𝛥𝑥 = 0.01 (correspondingly, 𝑛 = 4000) is used in all simulations. For time integration, we use the average vector field
(AVF) method [22] together with a Picard iteration to solve the nonlinear system.

When 𝑇FOM = 20, 𝛥𝑡 = 0.01 and 𝜇 =
√

2, the time evolution of the full-order state and approximate Hamiltonian 𝐻(𝑡) are shown
in Fig. 8. We observe that the system is conservative, with the Hamiltonian staying around 𝐻(𝑡) ≈ −1.13 during the simulation.

Test 1. Illustration of error estimation. We demonstrate the estimation of the GP-OpInf ROM approximation error in a non-parametric
case with 𝜇 =

√

2, and compare the approximation error with the SP-G ROM of the same dimension. To verify the error estimation,
we choose a small time step 𝛥𝑡 = 2.5 × 10−3, let 𝑇 = 𝑇 = 20 and vary the dimension of the ROM. Fig. 9 (left) shows the
13
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Fig. 9. (KdV Equation) Numerical errors of the 𝑟-dimensional GP-OpInf ROM when 𝑇FOM = 𝑇ROM = 20 and 𝛥𝑡 = 2.5 × 10−3: (left) the ROM approximation error
30) together with POD projection error (31) and optimization error (32); (right) comparison of the ROM approximation error of the GP-OpInf ROM with the
P-G ROM.

Fig. 10. (KdV Equation) Numerical accuracy of the 𝑟-dimensional GP-OpInf ROM: (left) time evolution of the summand of the ROM approximation error (30);
right) time evolution of the values of reduced-order approximate Hamiltonian functions. The dashed line indicates the end of the training interval.

hree error measures from Eqs. (30)–(32). The ROM approximation error decays monotonically until 𝑟 > 80 and then levels off. The
optimization error follows a similar trend, yet the projection error continues to decay until 𝑟 ≈ 170. Fig. 9 (right) compares the
GP-OpInf ROM approximation error with that of the SP-G ROM. We observe that SP-G and GP-OpInf achieve the same accuracy for
𝑟 < 70, which covers the model dimension where most practical ROMs would be selected from, whereas for larger 𝑟 the SP-G ROM
performs better.

Test 2. Long-term predictive capabilities of the GP-OpInf ROM. We set 𝛥𝑡 = 10−2 and fix 𝜇 =
√

2 and generate snapshots from FOM with
the final time 𝑇FOM = 20. We simulate the GP-OpInf ROM 100% past the training interval, so 𝑇ROM = 40. Fig. 10 (left) shows the
time evolution of the ROM approximation errors at 𝑟 = 10, 20, 40 and 80, where the FOM solution is the benchmark. The associated
pproximate Hamiltonian values are plotted in Fig. 10 (right), where the dashed line indicates the end of the training interval. The
rrors increase gradually as 𝑡 increases due to usual error accumulation. Since the appropriate (gradient) structure is captured in
he inferred GP-OpInf ROMs, the approximate Hamiltonian functions are constant and approach the benchmark value for 𝑟 that is
ufficiently large.

est 3. Parametric predictions away from training data. We parameterize the initial condition as 𝑢0(𝑥;𝜇) = sech2
(

𝑥
𝜇

)

for 𝜇 ∈ 𝑃 = [1, 5].
To generate snapshots, 9 training samples are uniformly collected from the interval and the FOM is simulated at all samples with
𝛥𝑡 = 10−2 and 𝑇FOM = 20. We compute the POD basis from the collection of snapshot matrices.

Next, we infer the GP-OpInf ROM and use it to make predictions at the test parameters, where we keep the time interval fixed
(𝑇ROM = 𝑇FOM). We evaluate the ROMs accuracy at three randomly selected test parameters 𝜇 = 1.4, 2.8 and 4.7. Fig. 11 (top left)
shows a comparison of the ROM approximation errors (30) of the SP-G and the GP-OpInf ROMs. At the test parameters, the error
of the GP-OpInf ROM is close to the SP-G ROM when 𝑟 ≤ 50 (which is where most practical ROM model dimensions would be
selected from), yet the error saturates when 𝑟 gets bigger and thus becomes larger than that of SP-G. We fix 𝑟 = 40 and plot the
FOM solution and the GP-OpInf ROM solution at several selected time instances in Fig. 11 (top right and bottom). This shows that
14

he ROM produces accurate approximations of the FOM solution at these test parameters.
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Fig. 11. (KdV Equation) Performance of the 𝑟-dimensional GP-OpInf ROM at several test parameters: (top left) comparison of the ROM approximation error (30)
for the SP-G ROM of the same dimension 𝑟; (top right and bottom) snapshots of the GP-OpInf ROM solution and the FOM solution at several time instances.

Fig. 12. (3D Cantilever Plate) Plate’s surface plots at 𝑡 = 0, 0.005, 0.0125, and 0.02 (from left to right), in which the color bar indicates the displacement in the
vertical direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2.3. Three-dimensional linear elastic cantilever plate
We consider the 3D linear elastic cantilever plate problem from [51]. The governing equation can be recast in the conservative

Hamiltonian form
[

𝐮̇
𝐯̇

]

=
[

0 𝐈𝐧
−𝐈𝐧 0

] [

𝐊 0
0 𝐌−𝟏

] [

𝐮
𝐯

]

,

where 𝐮 is the displacement, 𝐯 = 𝐌.𝐮 is the momentum, 𝐌 and 𝐊 are the mass and stiffness matrix obtained from a finite
element discretization. The Hamiltonian of the semi-discrete system is 𝐻(𝐮, 𝐯) = 1

2

(

𝐮⊺𝐾𝑢 + 𝐯⊺𝑀−1𝑣
)

. Following [51], we consider
a rectangular steel plate of size 0.2 m × 0.2 m × 0.03 m, whose ‘‘left’’ side is set in place by a clamp, and the ‘‘right’’ side is given
an initial upward velocity (0, 0, 100). For the spatial discretization, we use 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 0.01 (correspondingly 𝑛 = 5, 292), which
is identical to the numerical setting in [51].1 We simulate the full-order model over the time interval [0, 0.02] with the implicit
midpoint method, with time step size 𝛥𝑡 = 1 × 10−4 to collect snapshots. Fig. 12 shows the 3D surface of the plate at time instances
𝑡 = 0, 0.005, 0.0125 and 0.02.

Test 1. Effects of regularization. Similar to the linear wave case, we obtain the reduced basis Φ =
[

𝜱𝒖 0
0 𝜱𝒗

]

with 𝑟1 = 𝑟2 = 𝑟,

and simulate the GP-OpInf, GP-OpInf-V, and GP-OpInf-P (with 𝛼 = 2 and 𝑐0 = 10−13 in the definition of 𝜖 (17)) ROMs, respectively,

1 We use the data from the github repository: https://github.com/ikalash/HamiltonianOpInf. We note that regularization is also used in their code to infer
15

amiltonian reduced-order operators via optimization.
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Fig. 13. (3D Cantilever Plate) Approximation errors for GP-OpInf, GP-OpInf-V and GP-OpInf-P as 𝑟 increases.

Fig. 14. (3D Cantilever Plate) Numerical errors of the GP-OpInf : (left) the ROM approximation error (30) together with POD projection error (31) and optimization
rror (32); (Middle) comparison with approximation errors of the SP-G; (Right) the projection error of ∇𝐻 onto the reduced basis space.

ithin the training data regime. The corresponding approximation errors are shown in Fig. 13 as 𝑟 varies. It is evident that GP-
pInf surpasses the other two with its accuracy. Especially, as 𝑟 increases beyond 35, the errors of GP-OpInf-V and GP-OpInf-P grow
ncontrollably, while GP-OpInf maintains a small error.

est 2. Illustration of error estimation. We now investigate the GP-OpInf approximation error, projection error, and optimization error
n the training data regime. This comparison is illustrated in Fig. 14 (left), while 𝑟 varies from 5 to 60, increasing incrementally by
. The optimization error stagnates for 𝑟 ≥ 30 at a level below 10−6 which for many applications is sufficiently low.
We further compare the accuracy of the nonintrusive GP-OpInf with the intrusive SP-G in Fig. 14 (middle). Despite increasing

, the error of SP-G does not improve, whereas the GP-OpInf error decays to almost machine precision. A potential explanation for
his phenomenon is discussed in Remark 2. In light of that discussion, we calculate the projection errors of ∇𝐻-snapshots onto the
educed basis subspace,

proj_∇𝐻 (𝑟) = 𝑇𝛥𝐴
𝑁

𝑁
∑

𝑗=1
‖∇𝐻(𝐲𝐣) −ΦΦ⊺∇𝐻(𝐲𝐣)‖2,

and plot it in Fig. 14 (right). We observe that the magnitude of this projection error is on the order of 103 even when 𝑟 = 60, which
could limit the accuracy of SP-G. However, it does not affect the GP-OpInf as indicated by the error bound in Theorem 1.

We remark that we also tested a similar parametric problem, in which the initial velocity vector was parameterized as (0, 0, 𝜇),
with the parameter 𝜇 ∈ 𝑃 ∶= [80, 120]. The GP-OpInf ROM, inferred based on a training set of 11 uniformly distributed parameter
samples, accurately predicted the solution for randomly selected parameters from 𝑃 . Since this phenomenon closely resembles our
observations in the linear wave test case, we omit further discussion on it here.

5.3. Dissipative PDEs

We consider the Allen-Cahn equation to assess the GP-OpInf ROM’s performance on a dissipative system.

5.3.1. One-dimensional Allen-Cahn equation
Consider the one-dimensional Allen-Cahn equation

2 3
16

𝑢𝑡 = 𝜖 𝑢𝑥𝑥 + (𝑢 − 𝑢 ), (𝑥, 𝑡) ∈ 𝛺 × 𝐼 and 𝜇 ∈ 𝑃 ,
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Fig. 15. (1D Allen-Cahn Equation) Full-order model simulation with final time 𝑇FOM = 5: time evolution of the state 𝐮 (left) and the approximate Lyapunov
function 𝐻(𝑡) (right).

where 𝑢 = 𝑢(𝑥, 𝑡;𝜇) with 𝜇 a parameter in the initial condition. The equation can be recast to the form (1), that is, 𝑢𝑡 = − 𝛿
𝛿𝑢 , with

he Lyapunov function (𝑢) = ∫𝛺
(

𝜖2

2 𝑢
2
𝑥 −

1
2 𝑢

2 + 1
4 𝑢

4
)

d𝑥 (see, e.g., [22]). After applying a uniform spatial discretization with the

mesh size 𝛥𝑥 and defining a consistent discrete Lyapunov function 𝐻(𝑡) ∶= 𝛥𝑥𝐻(𝐮) with 𝐻(𝐮) =
∑

𝑗 [
𝜖2

2𝛥𝑥2 (𝑢𝑗+1 − 𝑢𝑗 )2 −
1
2 𝑢

2
𝑗 +

1
4 𝑢

4
𝑗 ], we

obtain the semi-discrete system
.𝐮 = −𝐈𝑛(−𝐀𝐮 − 𝐮 + 𝐮3), (35)

where 𝐈𝑛 is the 𝑛 × 𝑛 identity matrix, 𝐀 is associated with a discrete, one-dimensional, second-order differential operator, and 𝐮3 is
the component-wise cubic function of the vector 𝐮. Since −𝐈𝑛 is negative definite, the Lyapunov function decreases in time.

omputational setting. Set 𝛺 = [−1, 1], the interface parameter 𝜖 = 0.01, and consider periodic boundary conditions 𝑢(−1, 𝑡;𝜇) =
𝑢(1, 𝑡;𝜇) and 𝜕𝑢

𝜕𝐧 (−1, 𝑡;𝜇) = 𝜕𝑢
𝜕𝐧 (1, 𝑡;𝜇) for 𝑡 ∈ 𝐼 . The initial condition is 𝑢0(𝑥;𝜇) = 𝜇𝑥2 sin(2𝜋𝑥), for 𝜇 ∈ 𝑃 = [0.2, 2] (see [72] for

umerical simulations of a non-parametric configuration). In the FOM (35), we have

𝐀 = 𝜖2

𝛥𝑥2
𝐋𝐧.

In all full-order simulations, we choose the mesh size 𝛥𝑥 = 10−3 and use the AVF method for time integration with a time step size
𝛥𝑡. To solve the nonlinear systems of equations, we apply Picard iteration. Fig. 15 shows the time evolution of the full-order state
and discrete Lyapunov function 𝐻(𝑡) where we set 𝜇 = 1, 𝑇FOM = 5 and 𝛥𝑡 = 10−3.

Test 1. Illustration of error estimation. We set 𝑇FOM = 𝑇ROM = 3, fix the parameter 𝜇 = 1, and choose a small time step 𝛥𝑡 = 2.5×10−4 so
that the time discretization error is negligible in the error estimate. Varying the dimension 𝑟 of the ROM, we compute the GP-OpInf
ROM approximation error (30), projection error (31) and optimization error (32), which are shown in Fig. 16 (left). In this case, for
𝑟 ≤ 15, the optimization error is smaller than the POD projection error; however, for a bigger 𝑟, the former becomes larger and levels
off. Correspondingly, the GP-OpInf ROM approximation error first decreases monotonically and then reaches a plateau. Therefore,
compared to the SP-G ROM, the GP-OpInf ROM achieves the same accuracy for small 𝑟, but yields larger numerical error when its
dimension is large, as shown in Fig. 16 (right).

Test 2. Prediction-in-time capabilities of the GP-OpInf ROM. Setting 𝛥𝑡 = 10−3, we generate snapshots from the full-order simulation
with the final time 𝑇FOM = 3 and simulate the ROM to the final time 𝑇ROM = 5, which is 66% past the training data. The ROM
approximation errors (30) at 𝑟 = 10, 20, 40 and 80 are plotted in Fig. 17 (left) alongside the FOM solutions. The associated approximate
Lyapunov function is plotted in Fig. 17 (right). The dashed line indicates the end of the training time interval. It is evident that the
ROM is accurate within the interval [0, 3], but its accuracy degrades when the simulation time exceeds this range. Meanwhile, the
approximate Lyapunov is decreasing in time as guaranteed by the gradient structure of the ROM.

Test 3. Parametric predictions away from training data. We parameterize the problem with the interface parameter 𝜇 ∈ 𝑃 = [0.2, 2],
which also affects the initial condition. To generate snapshots, we simulated the FOM at 10 uniformly distributed training parameter
samples in 𝑃 with the time step 𝛥𝑡 = 10−3 and final simulation time 𝑇FOM = 3. We construct the GP-OpInf ROM from the collected
snapshot data and use it to obtain predictions at any given test parameter over the same time interval (𝑇ROM = 𝑇FOM). Here, we
select three random test parameters, 𝜇 = 0.34, 0.96 and 1.87.

Fig. 18 (top left) shows the approximation errors of the SP-G and GP-OpInf ROMs. This illustrates that, at all test parameters, the
error of GP-OpInf is close to that of SP-G when 𝑟 ≤ 30. The former levels off at values around 10−15 when 𝑟 becomes large, which
is well beyond a typically required accuracy. Therefore, the GP-OpInf is very accurate. Fig. 18 (top right and bottom) compares the
FOM solution with the GP-OpInf ROM solution of dimension 𝑟 = 30 at several time instances. This confirms that the GP-OpInf ROM
provides an accurate approximation to the FOM solution in all cases.
17
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Fig. 16. (1D Allen-Cahn Equation) Numerical errors for the 𝑟-dimensional GP-OpInf when 𝑇FOM = 𝑇ROM = 3 and 𝛥𝑡 = 2.5 × 10−4: (left) the ROM error together
ith the POD projection error (31) and the optimization error (32); (right) comparison of the GP-OpInf ROM approximation error (30) with that of the SP-G
OM.

Fig. 17. (1D Allen-Cahn Equation) Numerical accuracy of the 𝑟-dimensional GP-OpInf ROM: (left) time evolution of the summand of the ROM approximation
rror (30); (right) time evolution of the reduced-order approximate Lyapunov function. The dashed line indicates the end of the training interval.

.3.2. Two-dimensional parameterized Allen-Cahn equation
Consider the two-dimensional Allen-Cahn equation on a rectangular domain 𝛺:

𝑢𝑡 = 𝜖2𝛥𝑢 + 𝑢 − 𝑢3, (𝑥, 𝑦) ∈ 𝛺, 𝑡 ∈ 𝐼,

here 𝑢 = 𝑢(𝑥, 𝑡;𝜇) is the parameter-dependent solution and 𝜇 ∈ 𝑃 a parameter appearing in the initial condition, defined below
longside the boundary and initial conditions. The Allen-Cahn equation can be recast into the form (1), in a similar way as in the
D case, with the Lyapunov function (𝑢) = ∫𝛺

(

𝜖2

2 |∇𝑢|
2 − 1

2 𝑢
2 + 1

4 𝑢
4
)

d𝑥. Let 𝐮 be a vectorization of the approximate state defined
on the rectangular grid, obtained by applying a spatial discretization with a uniform mesh size 𝛥𝑥 and 𝛥𝑦 in the horizontal and
ertical directions. The semi-discrete system is then

.𝐮 = −𝐈𝑛2 (−𝜖2𝐋𝐮 − 𝐮 + 𝐮3),

here 𝐋 = 𝐈𝑛 ⊗ 𝐃2
𝑥 + 𝐃2

𝑦 ⊗ 𝐈𝑛 with 𝐃2
𝑥 = 1

(𝛥𝑥)2 𝐋𝑛, 𝐃2
𝑦 =

1
(𝛥𝑦)2 𝐋𝑛 and ⊗ denotes the Kronecker product [11].

Computational setting. Let the problem be defined on 𝛺 = [−0.5, 0.5]2 and 𝐼 = [0, 𝑇FOM]. Consider a periodic boundary condition and
𝜖 = 0.02. The initial condition (following [73]) is given by

𝑢0(𝑥, 𝑦;𝜇) = max

(

tanh

(

𝑟 −
√

(𝑥 − 𝑟(0.7 − 𝜇))2 + (𝑦 + 𝑟𝜇)2
)

, tanh

(

𝑟 −
√

(𝑥 + 𝑟(0.7 − 𝜇))2 + (𝑦 − 𝑟𝜇)2
))
18
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Fig. 18. (1D Allen-Cahn Equation) Performance of 𝑟-dimensional GP-OpInf ROM: (top left) comparison of the ROM approximation error (30) for the SP-G ROM
in problems with different 𝜇; (top right and bottom) snapshots of the ROM and FOM solutions at 𝑡 = 0, 1, 2 and 3.

Fig. 19. (2D Allen-Cahn Equation) Full-order simulation when 𝑇FOM = 100 and 𝛥𝑡 = 10−2: (top) approximate states at 𝑡 = 0, 20, 40, 80, 100; (bottom) time evolution
f the discrete Lyapunov function.
19
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Fig. 20. (2D Allen-Cahn Equation) Numerical errors for the 𝑟-dimensional GP-OpInf ROM: (left) comparison of the GP-OpInf ROM approximation error (30)
with that of the SP-G ROM; (right) the projection error (31) and optimization error (32).

with 𝑟 = 0.2 and 𝜇 a parameter in 𝑃 = [0, 0.7]. The initial condition has two disks centered at ((0.7 − 𝜇)𝑟,−𝜇𝑟) and (−(0.7 − 𝜇)𝑟, 𝜇𝑟)
ith radius 𝑟. In all FOM simulations, the spatial domain is partitioned by a rectangular grid with the mesh size 𝛥𝑥 = 𝛥𝑦 = 2−6 and
he AVF method is used for time integration with a time step 𝛥𝑡. The nonlinear system is solved by the Picard iteration.
Fig. 19 shows the time evolution of the FOM state and the discrete Lyapunov function 𝐻(𝑡) when 𝑇FOM = 100, 𝛥𝑡 = 1 × 10−2 and

= 0.
Similar to the 1D Allen-Cahn equation discussed in Section 5.3.1, we investigated the performance of the GP-OpInf ROM for

D Allen-Cahn equation through three tests where we illustrate the error estimation, evaluate the GP-OpInf ’s capability for time
rediction, and examine parametric predictions beyond the training data. We observed that the numerical behaviors of the GP-OpInf
OM for the 2D Allen-Cahn equation closely align with those reported for the 1D case. Therefore, in the sequel, we only present
he numerical test on the parametric problem in which 𝑇FOM = 𝑇ROM = 20 and 𝛥𝑡 = 10−2.

est 1. Parametric predictions away from training data. To generate snapshots, 15 training samples are uniformly selected from 𝑃 .
he GP-OpInf ROM is then inferred from the data and used to predict solutions at any given testing samples from 𝑃 . Here, the
pproximation errors of SP-G and GP-OpInf at three test parameters 𝜇 = 0.17, 0.38 and 0.63 are compared in Fig. 20 (left). The
figure shows that the error of GP-OpInf is close to that of SP-G with the same dimension 𝑟 at all test parameters. As indicated in
Fig. 20 (right), the optimization error is significantly lower than the POD projection error, thereby aligning the trends of errors for
both GP-OpInf and SP-G with the POD projection error. Fixing 𝑟 = 40, we plot the ROM solutions and associated absolute errors at
time instances 𝑡 = 0, 5, 10, 15, 20 (from top to bottom) in Fig. 21. We observe that the GP-OpInf ROM produces accurate solutions for
the parametric problem at the selected testing samples.

6. Conclusions

In this work, we considered evolutionary PDEs with a gradient structure with the goal to infer reduced-order models with
the same gradient structure from simulated data of the semi-discretized PDEs. We first projected the high-dimensional snapshot
data onto a POD basis, and from the projected data we infer a low-dimensional operator by solving a constrained optimization
problem. The resulting operators then define a low-dimensional model, termed the gradient-preserving Operator Inference (GP-
OpInf ) ROM. By enforcing the proper constraints in the inference of the low-dimensional operators, we ensure that the GP-OpInf
ROM has the appropriate gradient structure, thereby preserving the essential physics in the reduced-order dynamics. We further
analyzed the associated approximation error of the GP-OpInf ROM. The analysis shows that an upper bound for the error consists
of the combination of the POD projection error, the data error, and the OpInf optimization error. We test the accuracy, structure-
preservation properties, and predictive capabilities of the GP-OpInf ROM on several PDE examples. For conservative test cases, we
consider the parameterized wave equation and Korteweg-de-Vries equation, as well as a three-dimensional linear elasticity problem,
and for dissipative test cases we consider the one-and two-dimensional Allen-Cahn equation. The numerical experiments show that
GP-OpInf can achieve the same performance as the intrusive, projection-based ROM when the optimization error and data error are
dominated by the POD projection error, which is typically true if the dimension of the ROM is low. This observation aligns with
our error estimation. Moreover, for parametric problems, the low-dimensional GP-OpInf ROMs can attain accuracy close to that of
the full-order simulations even for unseen parameters.

Going forward, it would be interesting to learn the Hamiltonian or its gradient function entirely from data, without relying on
any prior knowledge. For this purpose, the work in [55] could be extended to the Hamiltonian case. Moreover, a joint learning of
the dissipative and conservative matrices, similar to the port-Hamiltonian DMD framework from [52] would be an important next
20

step.
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|

Fig. 21. (2D Allen-Cahn Equation) The GP-OpInf ROM of (𝑟 = 40) approximate solution (displayed in odd rows) and the associated approximation error
𝐲(𝑡, 𝜇) − 𝐲𝑟(𝑡, 𝜇)| (displayed in even rows) when 𝜇 = 0.17, 0.38 and 0.63, respectively, and 𝑡 = 0, 5, 10, 15, 20 (from left to right).
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Appendix. Iterative algorithm for solving (21)

To solve (21), we first find the gradient of the objective function. The barrier function 𝑔(𝐗) can be written as follows.

𝑔(𝐗) =
𝑟
∑

𝑖=1
log(−𝜆𝑖(𝐗)) = log

( 𝑟
∏

𝑖=1
(−𝜆𝑖(𝐗))

)

= log((−1)𝑟𝑑𝑒𝑡(𝐗)).

ithout loss of generality, we consider an even 𝑟 here. Differentiating it with respect to the 𝑖𝑗 entry yields
𝜕 log(𝑑𝑒𝑡(𝐗))

𝜕𝐗𝑖𝑗
= 1

𝑑𝑒𝑡(𝐗)
𝜕𝑑𝑒𝑡(𝐗)
𝜕𝐗𝑖𝑗

.

Based on the cofactor formula for determinant, 𝑑𝑒𝑡(𝐗) = ∑𝑠
𝑘=1 𝐗𝑖𝑘𝐂𝑖𝑘, we have

𝜕𝑑𝑒𝑡(𝐗)
𝜕𝐗𝑖𝑗

=
𝜕(
∑𝑟

𝑘=1 𝐗𝑖𝑘𝐂𝑖𝑘)
𝜕𝐗𝑖𝑗

=
𝑠
∑

𝑘=1

(

𝜕𝐗𝑖𝑘
𝐗𝑖𝑗

𝐂𝑖𝑘 + 𝐗𝑖𝑘
𝜕𝐂𝑖𝑘
𝜕𝐗𝑖𝑗

)

= 𝐂𝑖𝑗 .

Therefore, we have
𝜕 log(𝑑𝑒𝑡(𝐗))

𝜕𝐗𝑖𝑗
= 1

𝑑𝑒𝑡(𝐗)
𝐂𝑖𝑗 .

Due to the fact that 𝐗−1 = 1
𝑑𝑒𝑡(𝐗)𝐂

⊺, we have ∇𝑔(𝐗) = 𝐗−⊺, and

∇𝑔(𝐃𝑟) = 𝐃−⊺
𝑟 . (A.1)

Next, 𝑓 (𝐃𝑟) is recast into the following form using the trace:

𝑓 (𝐃𝑟) = tr
(

(
.
𝐘𝑟 − 𝐃𝑟𝐅𝑟)(

.
𝐘𝑟 − 𝐃𝑟𝐅𝑟)⊺

)

= tr
(.
𝐘𝑟
.
𝐘⊺
𝑟 −
.
𝐘𝑟𝐅

⊺
𝑟𝐃

⊺
𝑟 − 𝐃𝑟𝐅𝑟

.
𝐘⊺
𝑟 + 𝐃𝑟𝐅𝑟𝐅

⊺
𝑟𝐃

⊺
𝑟

)

.

hen the gradient of 𝑓 (𝐃𝑟) can be obtained as follows:

∇𝑓 (𝐃𝑟) = −
.
𝐘𝑟𝐅

⊺
𝑟 −
.
𝐘𝑟𝐅

⊺
𝑟 + (𝐅𝑟𝐅

⊺
𝑟𝐃

⊺
𝑟 )⊺ + 𝐃𝑟𝐅𝑟𝐅

⊺
𝑟 = −2(

.
𝐘𝑟 − 𝐃𝑟𝐅𝑟)𝐅

⊺
𝑟 . (A.2)

y combining (A.2) and (A.1), we have
. ⊺ −⊺
22

∇𝑓𝛽 (𝐃𝑟) = ∇𝑓 (𝐃𝑟) − 𝛽∇𝑔(𝐃𝑟) = −2(𝐘𝑟 − 𝐃𝑟𝐅𝑟)𝐅𝑟 − 𝛽𝐃𝑟 .
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Secondly, we use the gradient descent method [74] to approximate the solution 𝐃𝑘+1
𝑟 by the given 𝐃𝑘

𝑟 , which follows

𝐃𝑘+1
𝑟 = 𝐃𝑘

𝑟 − 𝜏𝑘∇𝑓𝛽 (𝐃𝑘
𝑟 )

where 𝜏𝑘 ≥ 0 is the step size. Instead of a constant barrier parameter 𝛽, one could use a decaying parameter with 𝛽𝑘+1 = 𝜎𝛽𝑘, where
𝜎 ∈ (0, 1) and its value depends on 𝑟 [75,76].

This iteration continues till the magnitude of gradient ∇𝑓𝛽 (𝐃𝑟) is sufficiently small and the barrier parameter 𝛽 drops below a
user-defined tolerance.
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