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The Allen-Cahn equation is a well-known stiff semilinear parabolic equation used to describe 
the process of phase separation and transition in phase field modeling of multi-component 
physical systems, while the conservative Allen-Cahn equation is a modified version of the 
classic Allen-Cahn equation that can additionally conserve the mass. As neural networks and 
deep learning techniques have achieved significant successes in recent years in scientific and 
engineering applications, there has been growing interest in developing deep learning algorithms 
for numerical solutions of partial differential equations. In this paper, we propose a novel 
deep learning method for predicting the dynamics of the classic and conservative Allen-Cahn 
equations. Specifically, we design two special convolutional neural network models, one for each 
of the two equations, to learn the fully-discrete operators between two adjacent time steps. The 
loss functions of the two models are defined using the residual of the fully-discrete systems, 
which result from applying the central finite difference discretization in space and the Crank–
Nicolson approximation in time. This approach enables us to train the models without requiring 
any ground-truth data. Moreover, we introduce an effective training strategy that automatically 
generates useful samples along the time evolution to facilitate training of the models. Finally, 
we conduct extensive experiments in two and three dimensions to demonstrate outstanding 
performance of our proposed method, including its dynamics prediction and generalization ability 
under different scenarios.

 Introduction

The Allen-Cahn (AC) equation was first introduced in [1] as a phenomenological model for antiphase domain coarsening in a 
nary alloy. Since then it has been used to describe a wide range of phase transition phenomena in science and engineering appli-
tions, including crystal growth [3,31], image analysis [2,11,4], and biology [22,33]. The classic AC equation takes the following 
rm:

𝜕𝑡𝑢 = 𝜖2Δ𝑢+ 𝑓 (𝑢), 𝒙 ∈Ω, 𝑡 > 0 (1)

ith the initial condition
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𝑢(𝒙, 𝑡 = 0) = 𝑢0(𝒙), 𝒙 ∈Ω,

d appropriate boundary conditions such as the periodic or homogeneous boundary condition. Here Ω ⊂ℝ𝑑 (𝑑 = 2, 3) is a bounded 
main with the Lipschitz boundary 𝜕Ω, 𝜖 > 0 is an interfacial parameter, 𝑢(𝒙, 𝑡) is the unknown scalar function, and 𝑓 = −𝐹 ′, where 
(𝑢) is an nonlinear potential function. There are two commonly used potential functions as considered in this paper: one is the 
uble-well potential in which

𝐹 (𝑢) = 1
4
(𝑢2 − 1)2, 𝑓 (𝑢) = 𝑢− 𝑢3, (2)

d the other is the Flory-Huggins potential in which

𝐹 (𝑢) = 𝜃

2
[(1 + 𝑢) ln(1 + 𝑢) + (1 − 𝑢) ln(1 − 𝑢)] −

𝜃𝑐

2
𝑢2, 𝑓 (𝑢) = 𝜃

2
ln 1 − 𝑢

1 + 𝑢
+ 𝜃𝑐𝑢 (3)

ith the constant parameters 0 < 𝜃 < 𝜃𝑐 .
Mass-conserving is often necessary in many physical systems, however, the classic AC equation (1) doesn’t maintain the total 
ass 𝑀(𝑡) = ∫Ω 𝑢(𝒙, 𝑡)𝑑𝒙 as time evolves. The conservative Allen-Cahn equations are some variants of the classic Allen-Cahn equation 
at can additionally conserve the mass. A typical one was derived and analyzed in [21] that takes the following form:

𝜕𝑡𝑢 = 𝜖2Δ𝑢+ 𝑓 (𝑢) −
1|Ω| ∫

Ω

𝑓 (𝑢(𝒚, 𝑡))𝑑𝒚, 𝒙 ∈Ω, 𝑡 > 0, (4)

here 1|Ω| ∫Ω 𝑓 (𝑢(𝒚, 𝑡))𝑑𝒚 is a nonlocal Lagrange multiplier introduced to conserve the total mass over time, i.e., 𝑀(𝑡) =𝑀(0) for 
y 𝑡 ≥ 0. Both the classic AC equation (1) and the conservative AC equation (4) are autonomous systems under the periodic or 
mogeneous boundary condition.
The classic AC equation (1) can be regarded as the 𝐿2 gradient flow with respect to the energy functional:

𝐸(𝑢) = ∫
Ω

(
𝜖2

2
|∇𝑢(𝒙, 𝑡)|2+𝐹 (𝑢(𝒙, 𝑡)))𝑑𝒙. (5)

e conservative AC equation (4) is also energy dissipative under the same energy functional (5). In addition, the maximum bound 
inciple (MBP) [6,16] is another important property of the classic and conservative Allen-Cahn equations. For the double-well 
tential case (2), the solution of the classic AC equation (1) always stays inside the interval [−1, 1] and that of the conservative AC 
uation (4) is within [− 2

3

√
3, 23

√
3]. For the Flory-Huggins potential case (3), the solution of the classic AC equation is bounded in 

e interval [−𝜌1, 𝜌1] for all the time, where 1 > 𝜌1 > 0 is the constant satisfying 𝑓 (𝜌1) = 0, and that of the conservative AC equation is 
ithin [−𝜌2, 𝜌2], where 1 > 𝜌2 > 0 is the constant satisfying 𝑓 (𝜌2) = 𝑓 (−

√
1 − 𝜃∕𝜃𝑐).

Analytical solutions to the classic and conservative AC equations are very challenging or even impossible to find. Hence, effec-
e and accurate numerical methods for computing their approximate solutions become highly necessary in order to simulate and 
derstand their dynamics. Spatial discretization methods, such as the finite element method (FEM) [8,34,12] and the finite differ-
ce method (FDM) [13,14,39] and spectral methods [10], have been investigated extensively for discretizing these two equations. 
is required that the computational mesh size should be less than the interfacial parameter 𝜖 in order to accurately describe the 
nsition layers and capture the correct dynamics. Consequently, when the interfacial parameter 𝜖 gets smaller, the computational 
st gets larger. Meanwhile, many different time-stepping algorithms, such as fully implicit schemes [7,36], stabilized semi-implicit 
hemes [26,27], convex splitting schemes [23,32,28], exponential integrator schemes [5,6,10], invariant energy quadratization 
Q) [37,38], and scalar auxiliary variable (SAV) [24,25] have been designed for the AC equation, and many of them can ensure 
e energy stability and the MBP in the discrete sense. Generally speaking, explicit schemes require a restrictive time step size due 
 the CFL condition which can be very time-consuming when the interface parameter 𝜖 is small. Implicit or semi-implicit schemes 
n avoid the CFL condition restriction and thus allow for relatively larger time step sizes, but the computational costs still could be 
gh due to the use of linear solvers and/or nonlinear iterations at each time step.
In recent years, deep learning-based methods, in addition to conventional numerical methods, have been introduced to solve 
e above classic and conservative AC equations, as well as some other phase field models, by utilizing both data and physical 
owledge. One such method is the well-known Physics-Informed Neural Network (PINN) [20], which approximates the mapping 
tween the solution and the spatiotemporal input while complying with any specific physical principle defined by general nonlinear 
rtial differential equations. To accelerate the training of PINN, Wight and Zhao proposed two time-adaptive approaches in [40]: 
e involves training every small interval separately after splitting the time domain into small intervals, while the other involves 
rting training with small time intervals and gradually increasing the time span when each span is learned well. Furthermore, 
e backward compatible PINN (bc-PINN) [19] was introduced to split successive time into small time intervals, adding backward 
mpatibility to the physical law during training of each time interval to ensure that the neural network approximation is effective 
 all previous time segments. In [29], a modified PINN was proposed for solving the one-dimensional conservative AC equation (4)
 adding a term representing the difference of input and output masses into the loss function. This approach can be regarded as 
soft constraint implementation for mass conservation in PINN, but it was only applicable to the one-dimensional case due to its 
ecial construction process. On the other hand, there also exist some limitations in the above PINN-based learning approaches. The 
st one is the high computational cost due to the need of retraining the network as the initial conditions change. This is because 
2

eir loss functions involve initial condition data (Note that the periodic or homogeneous boundary conditions do not impose any 
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tra nontrivial data). Second, the PINN-based learning methods usually couldn’t produce numerical solutions with high accuracy 
en when lots of neurons with enough representation ability are used in the network. This is mostly due to the difficulty in effective 
ining. Third, they often lack good generalization ability, which becomes critical for predicting solutions of time-dependent PDEs. 
nally, it is still a hard problem for the PINN-based methods to effectively handle the nonlocal Lagrange multiplier term in the 
nservative AC equation in two or three dimensions. There also exist some operator-based learning methods for PDEs and surrogate 
odels. For example, DeepONet [18] and its variant [30] extend the universal approximation theorem to deep neural networks to 
arn the operators, and the physics-informed neural operator (PINO) [17] combines operator learning with function approximation 
 achieve better accuracy. These methods can deal with various initial/boundary conditions, but usually are very hard to train with 
od accuracy for large scale problems.
In this paper, we propose a novel deep learning method for computing the dynamics of the classic and conservative AC equations. 
r method uses two specially designed convolutional neural networks (CNNs) in an end-to-end fashion (one for each AC equation) to 
arn the fully-discrete operators with second-order approximation accuracy between two adjacent time steps for the target equations, 
rmulated by using the central finite difference discretization in space and the Crank–Nicolson approximation in time. Particularly, 
e loss function for training our CNN models is defined through the residual of the fully-discrete system instead of the original 
E-based physical law. Consequently, the learned fully-discrete operators then can be repeatedly used to predict the solutions of 
e AC equations along time subject to various initial conditions, which is a major difference from PINN-based learning methods. 
nce the initial data could be of very high dimension (the functional value at each mesh node gives one degree of freedom), a key 
estion is how to design an effective training strategy for the proposed models with very few initial condition data so that they 
ll can learn and predict accurately the solutions of the AC equations for any given unseen initial condition. For this purpose, we 
velop a novel training strategy that can automatically generate useful samples along the time evolution to facilitate training of 
e models. In order to preserve the MBP and avoid the potential overflow errors during the training in the Flory-Huggins potential 
se (due to the existence of logarithmic terms), we also integrate a bound limiter module into the neural networks. Additionally, 
like the soft constraint approach used in [35], the mass-conservation property is treated as a hard constraint in the proposed CNN 
odel for the conservative AC equation (4). This, to the best of our knowledge, is a novel contribution, which guarantees the exact 
nservation of total mass and plays a key role in accurately learning the dynamics of the conservative AC equation.
The rest of the paper is organized as follows. In Section 2, we introduce the space and time discretization for the classic and 
nservative AC equations and review the concept of CNNs. Then we propose and discuss our deep learning method for simulating 
e dynamics of the two AC equations, including network architectures, loss functions, and training strategies. Extensive numerical 
periments and comparisons are presented in Section 3 to demonstrate the outstanding performance of the proposed method, 
cluding some ablation studies and its prediction and generalization ability under different scenarios in two and three dimensions, 
spectively. Finally, some concluding remarks are drawn in Section 4 together with a brief discussion on future work.

 The proposed deep learning method

In this section we first introduce the fully-discrete systems for the classic and conservative AC equations, (1) and (4), and then 
opose a deep learning method based on the fully-discrete operators and end-to-end CNNs for predicting the dynamics of these two 
uations. The network architectures, loss functions, and training strategies will be discussed. For ease of illustration, we take Ω to 
 a square domain [0, 𝐿]2 in two dimensions (2D) and assume that 𝑢 satisfies the periodic boundary condition, although the method 
n be easily extended to three dimensional (3D) problems and applied to different boundary conditions.

1. Fully-discrete systems of the classic and conservative Allen-Cahn equations

When solving the two AC equations using conventional numerical methods, it is well known that explicit schemes are limited by 
e CFL condition, which necessitates a restrictive time step size. Therefore, semi-implicit and fully implicit time stepping methods 
e commonly used in practice. Let us uniformly partition the domain Ω and obtain the set of grid points {(𝑥𝑖, 𝑦𝑗 )}𝑁𝑖,𝑗=0 where 
> 0 is an integer, 𝑥𝑖 = 𝑖ℎ and 𝑦𝑗 = 𝑗ℎ with ℎ = 𝐿∕𝑁 . Then we choose a uniform time step size Δ𝑡 > 0 and set 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 ≥ 0. 
rrespondingly, we set 𝑈𝑖,𝑗

0 = 𝑢0(𝑥𝑖, 𝑦𝑗 ) and assume 𝑈
𝑖,𝑗
𝑛 ≈ 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛). The periodic boundary condition implies 𝑈

0,𝑗
𝑛 = 𝑈

𝑁,𝑗
𝑛 and 

𝑗,0 =𝑈𝑗,𝑁
𝑛 for 𝑗 = 0, 1, ⋯ 𝑁 , thus the set of unknown can be represented by 𝑈𝑛 = {𝑈𝑖,𝑗

𝑛 }𝑁
𝑖,𝑗=1.

After applying the central finite difference discretization in space and the Crank–Nicolson approximation in time, we obtain a 
lly-discrete system for the classic AC equation (1) with the periodic boundary condition as follows: given 𝑈0, to find 𝑈𝑛+1 for 𝑛 ≥ 0
ch that

𝑈
𝑖,𝑗

𝑛+1 −𝑈
𝑖,𝑗
𝑛

Δ𝑡
= 𝜖2

Δℎ𝑈
𝑖,𝑗

𝑛+1 + Δℎ𝑈
𝑖,𝑗
𝑛

2
+
𝑓 (𝑈𝑖,𝑗

𝑛+1) + 𝑓 (𝑈
𝑖,𝑗
𝑛 )

2
,

r 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 , where Δℎ denotes the five-point stencil for the Laplacian as

Δℎ𝑈
𝑖,𝑗

𝑛+1 =
𝑈
𝑖+1,𝑗
𝑛+1 +𝑈𝑖−1,𝑗

𝑛+1 +𝑈𝑖,𝑗+1
𝑛+1 +𝑈𝑖,𝑗−1

𝑛+1 − 4𝑈𝑖,𝑗

𝑛+1

ℎ2
.

is yields ( ) ( )

3

𝑈
𝑖,𝑗

𝑛+1 −
Δ𝑡
2

𝜖2Δℎ𝑈
𝑖,𝑗

𝑛+1 + 𝑓 (𝑈
𝑖,𝑗

𝑛+1) =𝑈𝑖,𝑗
𝑛

+ Δ𝑡
2

𝜖2Δℎ𝑈𝑖,𝑗
𝑛

+ 𝑓 (𝑈𝑖,𝑗
𝑛
) , (6)
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r 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 . It is known that the system (6) is guaranteed to have a unique solution 𝑈𝑛+1 for any given 𝑈𝑛 under a quite 
laxed restriction on the time step size Δ𝑡 and the resulting numerical solution is of second order accuracy in both time and space. 
e system can be rewritten as

𝑈𝑛+1 = FDCN𝐴𝐶 (𝑈𝑛), 𝑛 = 0,1,⋯ , (7)

here FDCN𝐴𝐶 denotes the fully discrete operator that maps the input 𝑈𝑛 to the output 𝑈𝑛+1 through the relation (6).
Similarly, we can obtain a fully-discrete system with second-order accuracy for the conservative AC equation (4) with the periodic 
undary condition as follows: given 𝑈0, find 𝑈𝑛+1 for 𝑛 ≥ 0 such that

𝑈
𝑖,𝑗

𝑛+1 −𝑈
𝑖,𝑗
𝑛

Δ𝑡
= 𝜖2

Δℎ𝑈
𝑖,𝑗

𝑛+1 + Δℎ𝑈
𝑖,𝑗
𝑛

2
+
𝑓 (𝑈𝑖,𝑗

𝑛+1) + 𝑓 (𝑈
𝑖,𝑗
𝑛 )

2
− 1
𝑁2

𝑁∑
𝑖′ ,𝑗′=1

𝑓 (𝑈𝑖′ ,𝑗′

𝑛+1 ) + 𝑓 (𝑈
𝑖′ ,𝑗′
𝑛 )

2
,

r 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 . It leads to

𝑈
𝑖,𝑗

𝑛+1 −
Δ𝑡
2

(
𝜖2Δℎ𝑈

𝑖,𝑗

𝑛+1 + 𝑓 (𝑈
𝑖,𝑗

𝑛+1) −
1
𝑁2

𝑁∑
𝑖′ ,𝑗′=1

𝑓 (𝑈𝑖′ ,𝑗′

𝑛+1 )

)
=𝑈𝑖,𝑗

𝑛
+ Δ𝑡

2

(
𝜖2Δℎ𝑈𝑖,𝑗

𝑛
+ 𝑓 (𝑈𝑖,𝑗

𝑛
) − 1

𝑁2

𝑁∑
𝑖′ ,𝑗′=1

𝑓 (𝑈𝑖′ ,𝑗′
𝑛

)

)
, (8)

r 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 , which can be rewritten as

𝑈𝑛+1 = FDCN𝑚𝐴𝐶 (𝑈𝑛), 𝑛 = 0,1,⋯ , (9)

here FDCN𝑚𝐴𝐶 denotes the fully discrete operator that maps the input 𝑈𝑛 to the output 𝑈𝑛+1 through the relation (8).
For conventional numerical methods, the systems (6) and (8) need to be solved using some nonlinear iterative solvers, such as 
e Picard iteration or the Newton’s method, and the computational cost can become high for large-scale problems. For example, the 
card iteration solves (6) iteratively as follows: let 𝑈𝑛+1,(0) =𝑈𝑛 and for 𝑚 = 0, 1, ⋯, compute 𝑈𝑛+1,(𝑚+1) by solving the linear system(

𝐼 − 𝜖2Δ𝑡
2

Δℎ
)
𝑈
𝑖,𝑗

𝑛+1,(𝑚+1) =𝑈
𝑖,𝑗
𝑛

+ Δ𝑡
2

(
𝜖2Δℎ𝑈𝑖,𝑗

𝑛
+ 𝑓 (𝑈𝑖,𝑗

𝑛
) + 𝑓 (𝑈𝑖,𝑗

𝑛+1,(𝑚))
)

(10)

r 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 , and finally set 𝑈𝑛+1 = 𝑈𝑛+1,(𝑚∗) if 𝑈𝑛+1,(𝑚∗) satisfies certain convergence criteria. When solving (8), one replaces 
0) by(

𝐼 − 𝜖2Δ𝑡
2

Δℎ
)
𝑈
𝑖,𝑗

𝑛+1,(𝑚+1) =𝑈
𝑖,𝑗
𝑛

+ Δ𝑡
2

(
𝜖2Δℎ𝑈𝑖,𝑗

𝑛
+ 𝑓 (𝑈𝑖,𝑗

𝑛
) + 𝑓 (𝑈𝑖,𝑗

𝑛+1,(𝑚)) −
1
𝑁2

𝑁∑
𝑖′ ,𝑗′=1

(𝑓 (𝑈𝑖′ ,𝑗′
𝑛

) + 𝑓 (𝑈𝑖′ ,𝑗′

𝑛+1,(𝑚)))

)
(11)

r 𝑖, 𝑗 = 1, 2, ⋯ , 𝑁 . Note that FFT-based fast implementations are available [6] for solving (10) and (11) on uniform rectangular 
ids, but such Picard iterations converge linearly. On the other hand, if Newton’s method is applied, the iterations would converge 
adratically, but FFT-based efficient implementations don’t exist anymore.
To efficiently solve the classic and conservative AC equations, we next develop a deep learning method that learns the two 
lly-discrete operators FDCN𝐴𝐶 and FDCN𝑚𝐴𝐶 without utilizing any ground-truth data for training. The goal is to achieve accurate 
proximation of these operators, enabling the fast prediction of the dynamics of the AC equations under arbitrary initial conditions 
ithout the need of retraining.

2. Network architectures

Next we will construct two CNNs in an end-to-end fashion to model the nonlinear mapping from 𝑈𝑛 to 𝑈𝑛+1 with the fixed time 
p size Δ𝑡: one is called “ACNN” for the classic AC equation (1) and its full discretization (6), the other is referred to as “mACNN” 
r the conservative AC equation (4) and its full discretization (8).

twork architecture for the classic Allen-Cahn equation Fig. 1 illustrates the proposed “ACNN” for learning the dynamics of the classic 
 equation (1), which consists of one single convolutional layer, one or more successive Residual blocks (ResBlocks) [9], and one 
al convolutional layer. Note that there is no pooling layer or fully-connected layer in the ACNN. We take 𝑈𝑛, an 𝑁 ×𝑁 × 1 tensor, 
 the input and predict the solution at next time step, 𝑈𝑛+1, by using a loss function formulated from the fully-discrete Crank–
colson scheme (6) (concrete expression given in (12)). The filter size in each convolutional layer is fixed as 𝐾 ×𝐾 and for each 
nvolutional layer, we fix the number of different filters to be 𝐶 for all intermediate layers. The first layer will broadcast the input 
nsor to the shape of 𝑁 ×𝑁 ×𝐶 while the last layer will bring it back to 𝑁 ×𝑁 × 1. Motivated by the periodic boundary condition 
 the target problem, the “circular” padding mode is applied across all convolutional layers. To maintain the spatial dimensions 
 the input feature map, the padding size is set in accordance with the filter size employed in each layer. To address the issue of 
nishing gradients and promote better gradient flow during training, we incorporate ResBlocks into the ACNN architecture. Each 
sBlock comprises two convolutional layers followed by an activation function 𝜎, where the input to the ResBlock is added to the 
tput of the second convolutional layer prior to applying the activation function, thereby mitigating the potential for vanishing 
adients during back propagation. Note that the violation of the MBP may cause the overflow error in evaluating the loss function 
4

 the Flory-Huggins potential case (3) due to the presence of logarithmic terms, and consequently leads to the failure of the training. 
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. 1. The network architecture of ACNN, which learns the dynamics of the classic Allen-Cahn equations (1). In this work, it is used to approximate the operator 
CN𝐴𝐶 of the fully-discrete Crank–Nicolson scheme (6), mapping 𝑈𝑛 to 𝑈𝑛+1 , i.e., ACNN(𝑈𝑛; Θ) ≈ FDCN𝐴𝐶 (𝑈𝑛), where Θ denotes the set of learnable parameters in 
NN.

. 2. The network architecture of mACNN, which learns the dynamics of the conservative Allen-Cahn equations (4). In this work, it is used to approximate the 
erator FDCN𝑚𝐴𝐶 of the fully-discrete Crank–Nicolson scheme (8), mapping 𝑈𝑛 to 𝑈𝑛+1 , i.e., mACNN(𝑈𝑛; Θ) ≈ FDCN𝑚𝐴𝐶 (𝑈𝑛), where Θ denotes the set of learnable 
rameters in mACNN.

 uphold the MBP, we further add a bound limiter module into the network architecture, which ensures that the network output 
mains within the interval [𝛼, 𝛽]. We expect the bound limiter to play an important role at the early stage of training ACNN in 
eserving the MBP, but won’t be triggered once ACNN is nearly optimized. Thus the parameters 𝛼 and 𝛽 will be set as some slightly 
laxed values to the theoretical lower and upper bounds for the solution of the target AC equation.

twork architecture for the conservative Allen-Cahn equation For learning the dynamics of the mass-conserving AC equation, we 
verage the ACNN as the foundational architecture and extend it to the “mACNN”. The mACNN is different than the ACNN in 
e sense that the total mass is preserved as a hard constraint. This constraint is applied regardless of whether the model is being 
ined or being used for inference. This approach ensures that the solution obtained at each time step conserves mass, which is 
crucial property of the mass-conservative AC equation. It would also enhance the numerical accuracy and robustness for solving 
e mass-conserving AC equation. The associated network architecture is displayed in Fig. 2. Given the input 𝑈𝑛 with a total mass 
(𝑈𝑛) =

𝐿2

𝑁2
∑𝑁

𝑖,𝑗=1𝑈
𝑖,𝑗
𝑛 , the ACNN module generates an intermediate result, denoted by 𝑈𝐴𝐶𝑁𝑁

𝑛+1 . This could result in a difference in 
ass:

Δ𝑀 =𝑀(𝑈𝑛) −𝑀(𝑈𝐴𝐶𝑁𝑁
𝑛+1 ).

 enforce the mass preservation, a value of Δ𝑀
𝐿2 will be added to every entry of 𝑈𝐴𝐶𝑁𝑁

𝑛+1 , which provides, after further applying 
e bound limiter, the final output of mACNN 𝑈𝑛+1. Note that although the bound limiter could affect the mass conservation at the 
rly stage of training mACNN, but again it won’t be triggered once mACNN is nearly optimized and thus the total mass is still well 
nserved in the end (as demonstrated by numerical experiments).

3. Loss functions

The goal of ACNN and mACNN is to learn the two fully-discrete operators, FDCN𝐴𝐶 and FDCN𝑚𝐴𝐶 , respectively, that are applica-
e to various inputs 𝑈𝑛, including different initial conditions and any intermediate states. To this end, we consider for the training 
ocess an ensemble of classic AC or conservative AC equations consisting of 𝑆 distinct problems that differ only in their initial 
ta. Denote the network input by U𝑛 = {𝑈 (1)

𝑛 , 𝑈 (2)
𝑛 , … , 𝑈 (𝑆)

𝑛 }, where 𝑈 (𝑙)
𝑛 represents the solution at the time 𝑡𝑛 corresponding to the 
5

problem. To learn the operator between U𝑛 and U𝑛+1, we define the loss function based on the fully-discrete scheme (6) for the 
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Fig. 3. Illustration of the training process for one epoch, where  represents the proposed neural network, ACNN or mACNN.

assic AC equation and the fully-discrete scheme (8) for the conservative AC equation respectively. Specifically, the loss function is 
rmulated to measure the violation of (6) or (8) in the 𝐿2-norm:

𝐴𝐶𝑁𝑁 = 1
𝑆𝑁2

𝑆∑
𝑙=1

𝑁∑
𝑖,𝑗=1

[
𝑈
𝑖,𝑗,(𝑙)
𝑛+1 −𝑈𝑖,𝑗,(𝑙)

𝑛
− Δ𝑡

2

(
𝜖2Δℎ(𝑈

𝑖,𝑗,(𝑙)
𝑛+1 +𝑈𝑖,𝑗,(𝑙)

𝑛
) + 𝑓 (𝑈𝑖,𝑗,(𝑙)

𝑛+1 ) + 𝑓 (𝑈𝑖,𝑗,(𝑙)
𝑛

)
)]2

(12)

r ACNN and

𝑚𝐴𝐶𝑁𝑁 = 1
𝑆𝑁2

𝑆∑
𝑙=1

𝑁∑
𝑖,𝑗=1

[
𝑈
𝑖,𝑗,(𝑙)
𝑛+1 −𝑈𝑖,𝑗,(𝑙)

𝑛
− Δ𝑡

2

(
𝜖2Δℎ(𝑈

𝑖,𝑗,(𝑙)
𝑛+1 +𝑈𝑖,𝑗,(𝑙)

𝑛
) + 𝑓 (𝑈𝑖,𝑗,(𝑙)

𝑛+1 ) + 𝑓 (𝑈𝑖,𝑗,(𝑙)
𝑛

)

− 1
𝑁2

𝑁∑
𝑖′ ,𝑗′=1

(𝑓 (𝑈𝑖′ ,𝑗′ ,(𝑙)
𝑛+1 ) + 𝑓 (𝑈𝑖′ ,𝑗′ ,(𝑙)

𝑛
))

)]2 (13)

r mACNN, such that 𝑈𝑖,𝑗,(𝑙)
𝑛+1 = ACNN(𝑈𝑖,𝑗,(𝑙)

𝑛 ; Θ) in (12) and 𝑈𝑖,𝑗,(𝑙)
𝑛+1 = mACNN(𝑈𝑖,𝑗,(𝑙)

𝑛 ; Θ) in (13), where {𝑈𝑖,𝑗,(𝑙)
𝑛+1 } denotes the approx-

ate solution of the 𝑙𝑡ℎ problem. It is worth noting that with the above choices of loss functions, both ACNN and mACNN do not 
ed any ground truth data for training.

4. The training strategy

Next, we describe the strategy for training ACNN and mACNN. Suppose there are totally 𝑆 problems with different initial 
nditions and 𝑆 = 𝑝𝑞. The initial data is assembled in 𝐔0 = {𝑈 (𝑙)

0 }𝑆
𝑙=1, each value of {𝑈

𝑖,𝑗,(𝑙)
0 }𝑁

𝑖,𝑗=1 is bounded between (−1, 1). The 
ining time interval is taken as [0, 𝑇𝑡𝑟𝑎𝑖𝑛] with 𝑇𝑡𝑟𝑎𝑖𝑛 = 𝑎Δ𝑡 and 𝑎 a positive integer.
The training process involves updating learnable parameters of ACNN and mACNN over epochs. Fig. 3 presents the detailed 
ining flow within one epoch. At the beginning of the epoch, the target neural network (ACNN or mACNN) is fed with the same 
itial data U0 (corresponding to the initial time 𝑡 = 0). Assume the target neural network before the current epoch is parameterized 
 Θ. It will be repeatedly updated using self-generated data. The following optimization is performed within the epoch:

i). Randomly split U0 = {𝑈 (1)
0 , 𝑈 (2)

0 , … , 𝑈 (𝑆)
0 } into 𝑝 subsets {𝐔𝑙0}

𝑝

𝑙=1 and each subset contains 𝑞 distinct initial conditions (since 
𝑆 = 𝑝𝑞). Set Θ0 = Θ.

i). For the first time step (from 𝑡 = 0 to Δ𝑡), take the initial condition subset U1
0 as the input of the neural network with parameter 

Θ0 and generate U1
1. To make sure the output U

1
1 is a relatively accurate approximation to the true solution, at this step we 

train the neural network with respect to the loss function (12) or (13) for 𝑏 times (𝑏 > 0 is an integer), and consequently update 
the parameters to Θ𝑏.

i). The same training approach is then used for the second time step (from 𝑡 = Δ𝑡 to 2Δ𝑡): given the input U1
1, the neural network 

produces U1
2 and updates the learnable parameters to Θ2𝑏. Such a process will be repeated for 𝑎 time steps until the time 𝑇𝑡𝑟𝑎𝑖𝑛

is reached. The neural network parameters are updated to Θ𝑎𝑏.
v). Feed the second initial condition subset U2

0 to the neural network with parameters Θ0 = Θ𝑎𝑏; apply Steps (ii) and (iii) and update 
the neural network parameters to Θ2𝑎𝑏. Such a process will be repeated till it loops through all the 𝑝 subsets. At the end, the 
neural network parameters Θ𝑝𝑎𝑏 are obtained.
6

v). Set Θ =Θ𝑝𝑎𝑏 and go to the next epoch.
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During the training process, a dynamic learning rate schedule is employed. Specifically, the learning rate is decreased whenever 
new subset of initial conditions is fed into the network. This adjustment fine-tunes the model to different initial conditions. The 
ining process is terminated if the loss function falls below a certain tolerance level or the maximum number of epochs is reached. 
 practice, the value of the hyperparameter 𝑏 is also gradually reduced over time steps. It starts from a predefined large value for 
ining the model with the first input 𝑈𝑙

0 at the first time step, and decays after each time step until it reaches a predefined minimum 
lue. This helps mitigate the influence of accumulated errors during the forward time stepping.

 Numerical experiments

In this section, we first perform a series of ablation studies on the network architectures and the training strategy of the proposed 
NN and mACNN. Then, we test the trained models with several benchmark problems for the classic AC equation (1) and the 
nservative AC equation (4) in 2D and 3D. In all the experiments, the spatial domain Ω = [−0.5, 0.5]2 and the interfacial parameter 
0.01 for 2D examples, and Ω = [−0.5, 0.5]3 and 𝜖 = 0.02 for 3D examples. We consider the double-well potential function (2) and 

e Flory-Huggins potential function (3) with 𝜃 = 0.8 and 𝜃𝑐 = 1.6. Note the bounds for the classic and conservative AC equations are 
en respectively 𝜌1 ≈ 0.95750402 and 𝜌2 ≈ 0.98678360 in the Flory-Huggins potential case. The low and upper bounding parameters 
and 𝛽 in the bound limiter module are then set accordingly by expanding 1% from the corresponding theoretical values.
To train our networks, ACNN and mACNN, we choose 𝑆 = 20 random initial conditions 𝑢0(𝑥, 𝑦) = 0.9 rand(⋅), where rand(⋅) is the 
eudo random generator producing a scalar value between -1 and 1. Following the training strategy described in Section 2.4, we 
lit the set of 20 initial conditions into 𝑝 = 5 subsets, each containing 𝑞 = 4 initial conditions. For each subset, the neural network 
rameters are updated for 𝑏 times at each time step, which is set to be 𝑏 = 500 at the first time step and its value decreases by 
per time step until 𝑏 = 100 is reached. Unless stated otherwise, we adopt the Adam optimizer [15] with an initial learning rate 

 0.001, and the learning rate decays by a factor of 0.6 after each subset training. We also set the convolution kernel size 𝐾 = 3
d use tanh(⋅) as the activation function in our networks. In addition, we set the maximum number of epochs to be 2 and the loss 
lerance to be 1e-8. We implement our models in PyTorch, and all experiments are run on a server with a V100 GPU card with 
GB memory. The cost of each training of ACNN or mACNN for the experiments tested in this section varies from 1 hour to 8 hours 
r 2D problems and about 30 hours for 3D problems, depending on the specific problem size and network architecture setting.
To measure the accuracy of our trained models, we calculate the prediction errors in the 𝐿2 norm, ‖𝐔 −𝐔𝑟𝑒𝑓‖2 where 𝐔 is 
e predicted solution by using the trained neural network models and 𝐔𝑟𝑒𝑓 is the reference solution produced by the corresponding 
lly-discrete schemes with the same spatial mesh and the sufficiently small time step size Δ𝑡 = 0.001 (the resulting nonlinear systems 
e solved by using the Picard iteration and FFT-based implementation at each time step mentioned in Section 2.1).

1. Ablation studies

The goal of ablation studies in this section is to analyze the effect of network architecture (such as depth and width) and the 
oice of some hyper-parameters (such as the time step size Δ𝑡 and the training time 𝑇𝑡𝑟𝑎𝑖𝑛) on the prediction ability of ACNN and 
ACNN, and investigate how mACNN improves the performance of solving conservative AC equations compared to ACNN. Only 2D 
oblems with double-well are considered in the ablation studies, and we use the uniform 2D mesh of ℎ = 1∕256 (i.e., 𝑁 = 256) for 
atial discretization. The model prediction error is calculated by averaging results from 100 individual testing cases, each with a 
ndomly selected initial condition that does not belong to the training set.

1.1. Effect of the network architecture in ACNN and mACNN
Our first objective is to investigate how the choice of depth and width of ACNN and mACNN affects the performance of the 
oposed methods for solving the AC equation. Specifically, we vary the number of ResBlocks from 1 to 3 to gradually increase 
e depth of the network and select the number of features in each convolutional layer as either 16 or 32. We also fix the training 
ding time 𝑇𝑡𝑟𝑎𝑖𝑛 = 10 and the time step size Δ𝑡 = 0.1, which means that our training process will cover 100 time steps. Fig. 4 and 
g. 5 present the evolution of the model prediction errors in the time interval [0, 500] for ACNN and mACNN respectively under 
ese structure settings. Note that almost all error curves have a very short period of jumping and oscillating at the beginning of the 
ulation, which is caused by the non-smoothness and randomness of the initial conditions (the same phenomenon also happens to 
nventional numerical solvers for the AC equations). It is noted that for both ACNN and mACNN, the networks with 3 ResBlocks 
d 16 channels appear to be robust and outperform all other configurations in both potential function cases. Even with a simulation 
ding time of 500, which is 50 times longer than the training duration, ACNN and mACNN with this particular structure still perform 
ry well and the model prediction errors consistently remain under the level of 2e-2. Thus, we will use this particular structure for 
r ACNN and mACNN in all subsequent experiments.

1.2. Effect of the time step size Δ𝑡 and the training ending time 𝑇𝑡𝑟𝑎𝑖𝑛
To test the effect of the time step size Δ𝑡 on the model prediction accuracy and check if our networks produce convergent results, 

e train and test ACNN and mACNN using different time step sizes Δ𝑡 = 0.05, 0.1, and 0.2 respectively, by using the double-well 
tential and fixing 𝑇𝑡𝑟𝑎𝑖𝑛 = 10 (correspondingly, 𝑎 = 200, 100 and 50 time steps used for training). In general, a smaller step size 
ads to a smaller discretization error, but the model prediction accuracy is also affected by the network errors such as those caused 
 the representation ability of the networks, the effectiveness of the training, and the needed number of time steps (a smaller time 
7

p size requires more time steps to reach the same simulation time). The overall performance of our networks is determined by the 
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. 4. Evolution of the ACNN model prediction errors for solving the classic AC equation (1) in 2D: (a) with the double-well potential and (b) with the Flory-Huggins 
tential. Note ℎ = 1∕256, Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

. 5. Evolution of the mACNN model prediction errors for solving the conservative AC equation (4) in 2D: (a) with the double-well potential; (b) with the Flory-
ggins potential. Note ℎ = 1∕256, Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10.

Table 1

The model prediction errors of ACNN and mACNN at 𝑡 = 5, 20, 100, 500 when using different time step sizes for solving the 
classic AC equation (1) and the conservative AC equation (4) with the double-well potential in 2D. Note ℎ = 1∕256 and 
𝑇𝑡𝑟𝑎𝑖𝑛 = 10.

Error ACNN mACNN

Δ𝑡 = 0.2 Δ𝑡 = 0.1 Δ𝑡 = 0.05 Δ𝑡 = 0.2 Δ𝑡 = 0.1 Δ𝑡 = 0.05

𝑡 = 5 1.3942e-3 5.3620e-4 1.2754e-3 2.1655e-3 6.1348e-4 1.5406e-3

𝑡 = 20 5.3144e-3 2.8855e-3 4.1812e-3 7.1158e-3 2.5030e-3 4.1367e-3

𝑡 = 100 1.2778e-2 7.9914e-3 1.0008e-2 1.7908e-2 8.8159e-3 1.6237e-2

𝑡 = 500 1.5032e-2 8.0758e-3 1.3033e-2 2.5319e-2 1.6417e-2 2.0222e-2

mbination of all these issues. Table 1 reports the model prediction errors of ACNN and mACNN at 𝑡 = 5, 20, 100, 500 when using 
fferent time step sizes respectively to solve the classic AC and mass conservative AC equations. The time evolutions of the model 
ediction errors during the time interval [0, 500] are shown in Fig. 6. It is seen that ACNN and mACNN using Δ𝑡 = 0.1 perform better 
an the ones with Δ𝑡 = 0.2 and Δ𝑡 = 0.05. Thus we take Δ𝑡 = 0.1 in the remaining experiments.
The value of 𝑇𝑡𝑟𝑎𝑖𝑛 also has impact on ACNN and mACNN in terms of prediction accuracy and training efficiency. To quantify 

 effect, we consider three values 𝑇𝑡𝑟𝑎𝑖𝑛 = 2, 5, and 10 (correspondingly 𝑎 = 20, 50, 100 time steps in training). The associated model 
ediction errors of ACNN and mACNN are shown in Fig. 7. It is observed that, for both ACNN and mACNN, the choice of 𝑇𝑡𝑟𝑎𝑖𝑛 = 2 re-
lts in the worst prediction accuracy. Longer training intervals do lead to improved model prediction, but the extent of improvement 
8

adually gets smaller along the increasing of the training time.
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. 6. Evolution of the model prediction errors in the double-well potential case when different time step sizes are used: (a) ACNN for solving the classic AC equation 
; (b) mACNN for solving the conservative AC equation (4). Note ℎ = 1∕256 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10.

. 7. Evolution of the model prediction errors in the double-well potential case when the final training time 𝑇𝑡𝑟𝑎𝑖𝑛 varies: (a) ACNN for solving the classic AC equation 
; (b) mACNN for solving the conservative AC equation (4). Note ℎ = 1∕256 and Δ𝑡 = 0.1.

1.3. Effect of the hard constraint for mass conservation in mACNN
To illustrate the advantage of employing the hard constraint on mass conservation in mACNN, we compare the performance of 
NN to mACNN based on the same loss function (13) in learning the dynamics of the conservative AC equation. We remark that the 
NN can also be applied to the conservative AC equation since the loss function (13) does implicitly enforce the mass conservation 
m 𝑡𝑛 to 𝑡𝑛+1 (i.e., treating the mass conservation as a soft constraint). We use Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10 for training. Fig. 8 presents the 
olution of total mass and model prediction errors where the trained ACNN and mACNN are applied to simulate the conservative 
 equation over [0, 500]. It is observed that ACNN fails to preserve the total mass while mACNN does so perfectly during the 
ulation. Meanwhile, mACNN achieves much smaller prediction errors (around 2e-2 during nearly the entire time interval) than 
NN. In other words, adding the hard constraint of the mass in mACNN not only ensures the predicted solution complies with the 
ass conservation, but also greatly enhances the accuracy of the prediction.

1.4. Effect of the bound limiter for ACNN and mACNN
Finally, we conduct experiments to evaluate the effect of the bound limiter module on the performance of ACNN and mACNN. 
e set Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛=10 in the training process for the classic and conservative AC equations with the double-well potential. 
g. 9 shows the errors associated with ACNN and mACNN, both when the bound limiter is incorporated into the neural networks 
d when it is not. Our observations indicate that when solving the classic AC equation, the presence of the bound limiter does 
t significantly impact the training accuracy. However, in the context of the conservative AC equation, the inclusion of the bound 
iter enhances the accuracy during the entire time evolution. In addition, we would like to remark that it would become crucial to 
tegrate the bound limiter in learning the two AC equations with the Flory-Huggins potential. Due to the presence of the logarithmic 
rm (i.e., ln 1−𝑢

1+𝑢 ) in the corresponding loss functions (12) and (13), |𝑢| ≤ 1 is strictly required in the whole training process. Without 
posing appropriate bounds for 𝑢, the training loss often becomes infinity at early stages of the training as we have observed from 
9

periments.
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. 8. Comparison between the predicted solutions by ACNN and mACNN for solving the conservative AC equation (4) with the double-well potential in 2D: (a) total 
ss; (b) prediction error. Note ℎ = 1∕256, Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10.

. 9. Comparison between the predicted solutions in the double-well potential case produced by ACNN and mACNN with or without the bound limiter module: (a) 
 classic AC equation (1); (b) the conservative AC equation (4). Note ℎ = 1∕256, Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10.

2. Dynamics prediction for 2D examples

Next, we demonstrate through two well-known 2D benchmark examples the excellent performance of our proposed methods, in 
rms of both accuracy and generalization ability, for learning the dynamics of the classic and conservative AC equations. One is the 
bble merging problem, the other is the grain coarsening problem. They are governed by either the classic AC equation (1) or the 
nservative AC equation (4). Based on the ablation studies done in Section 3.1, we choose ℎ = 1∕256 for the spatial mesh size, and 
t Δ𝑡 = 0.1 and 𝑇𝑡𝑟𝑎𝑖𝑛 = 10 in both ACNN and mACNN. The trained neural networks are applied to predict solutions of the benchmark 
oblems.

2.1. 2D bubble merging
To showcase the generalization ability of ACNN and mACNN, we test them using the 2D bubble merging example, which takes 
e following initial condition:

𝑢0(𝑥, 𝑦) = max

(
tanh

(
0.2 −

√
(𝑥− 0.14)2 + 𝑦2

𝜖

)
, tanh

(
0.2 +

√
(𝑥+ 0.14)2 + 𝑦2

𝜖

))
.

ly the double-well potential function is considered for this example. Fig. 10 presents the evolution of the prediction errors during 
e time interval [0, 500] produced by ACNN for the classic AC equation and by mACNN for the conservative AC equation. It is found 
at both networks can accurately predict the corresponding dynamics and the prediction errors always remain under about the level 
 5e-3 for both ACNN and mACNN.
The predicted solution by ACNN and associated errors at the times 𝑡 = 0, 10, 50, 200, 300 are plotted in Fig. 11 for the classic AC 
10

uation. The time evolution of mass, energy and maximum norm of the predicted solution are shown in Fig. 12, where the red line 
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Fig. 10. Evolution of the model prediction errors in the 2D bubble merging example.

. 11. Plots of the ACNN prediction results (top row) and associated numerical errors (bottom row) at the times 𝑡 = 0, 10, 50, 200, 300 for solving the classic AC 
uation (1) with the double-well potential in the 2D bubble merging example.

. 12. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the ACNN predicted solution for the classic AC equation (1) with the 
uble-well potential in the 2D bubble merging example.

dicates the value of theoretical bound 𝛼 = 1 in the rightmost figure. We observe that the two disks gradually shrink and merge 
to one smaller disk, which keeps shrinking and finally disappears around 𝑡 = 360. The prediction errors seem to only occur in the 
nsition regions of two phases, which implies that the phase shapes are accurately captured. The energy monotonically decays and 
ys at 0 after the disk disappears. The predicted solution also surprisingly preserves well the MBP, i.e., its maximum norm is always 
unded by 1.
Fig. 13 plots the predicted solution by mACNN and corresponding prediction errors for the conservative AC equation at the times 
0, 10, 50, 200, 500. We can see that the two disks gradually merge together and finally form a perfect disk with the same area as 
11

e initial state due to the property of mass conservation. Fig. 14 shows the evolution of mass, energy and maximum norm of the 
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. 13. Plots of the mACNN prediction results (top row) and corresponding numerical errors (bottom row) for solving the conservative AC equation (4) with the 
uble-well potential at the times 𝑡 = 0, 10, 50, 200, 500 in the 2D bubble merging example.

. 14. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the mACNN predicted solution for the conservative AC equation (4) with 
 double-well potential in the 2D bubble merging example.

edicted solution. The prediction errors again only occur in the transition regions of the two phases. It is seen that the mass is exactly 
nserved along the time and the energy monotonically decays until the steady state is reached. We also note that the maximum 
rm of the predicted solution is a little bit larger than 1, but much less than the theoretical bound 𝛼 = 2

√
3

3 (since this theoretical 
und is not sharp), indicated by the red line in the plot. This phenomenon is also observed when conventional numerical methods 
e considered, for example, in [16].

2.2. 2D grain coarsening
Next, we use the trained ACNN and mACNN to simulate the 2D grain coarsening problem, where an initial condition is chosen 
ndomly of the form 𝑢0(𝑥, 𝑦) = 0.9 rand(⋅) and then applied to all tests. Both the double-well potential and the Flory-Huggins potential 
e considered. Fig. 15 presents the evolution of the prediction errors during the time interval [0, 500] produced by ACNN for the 
assic AC equation and by mACNN for the conservative AC equation with the double-well potential, together with the errors 
oduced by the convectional Picard iteration solver with the Crank–Nicolson approximations under the same time step and spatial 
esh sizes. We observe that our networks are able to accurately predict the dynamics. Indeed, the prediction errors are less than 1e-2 
r ACNN and 1.8e-2 for mACNN during the entire simulation, which are close to those generated by the Crank–Nicolson scheme. 
is implies that our networks are able to successfully learn the fully-discrete operators FDCN𝐴𝐶 and FDCN𝑚𝐴𝐶 . The same behavior 
n be observed in Fig. 16 when the two AC equations with the Flory-Huggins potential are considered.
In addition, the average running time per step for prediction using ACNN or mACNN is only around 0.002 seconds, while, under 
e same computing environment using GPUs for parallel computing in PyTorch, the running time spent by the conventional Picard 
ration solver (the termination criterion is that the maximum absolute change is less than 1e-10 or the iteration number reaches 
) is around 0.02 seconds per step, which is 10 times larger. This makes the proposed deep learning method more favorable in 
actice while still maintaining similar numerical accuracy.
We plot in Fig. 17 the predicted solution by ACNN and corresponding prediction errors for the classic AC equation with the 
uble-well potential at the times 𝑡 = 0, 10, 50, 200, 500, and in Fig. 18 the evolution of mass, energy and maximum norm of the 
edicted solution. It is seen that in the process of grain coarsening, one phase (the yellow-colored one) gradually gets smaller and 
aller, which will finally vanish after 𝑡 = 500. Fig. 19 shows the predicted solution by mACNN for the conservative AC equation 
ith the double-well potential at the same time instances together with corresponding prediction errors, and Fig. 20 plots the 
12

olution of mass, energy and maximum norm of the predicted solution. In this situation, we still clearly observe the grain coarsening 
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. 15. Evolution of the prediction errors for solving AC equation with the double-well potential by ACNN and mACNN, compared with the numerical solutions of 
 Crank–Nicolson scheme in the 2D grain coarsening example. Note ℎ = 1∕256 and Δ𝑡 = 0.1.

. 16. Evolution of the prediction errors for solving AC equations with the Flory-Huggins potential by ACNN and mACNN, compared with the numerical solutions 
tained by the Crank–Nicolson scheme in the 2D grain coarsening example. Note ℎ = 1∕256 and Δ𝑡 = 0.1.

ocess, but the coarsening finally reaches a steady state without any phase disappeared due to the property of mass conservation. 
e prediction results by ACNN and mACNN for the classic and conservative AC equations with the Flory-Huggins potential are 
spectively presented in Figs. 21, 22, 23 and 24. The overall performance is similar to those in the double-well potential case in 
rms of the simulated solutions and their errors.

3. Dynamics prediction for 3D examples

Finally, we investigate the proposed method on 3D benchmark problems with the interfacial parameter 𝜖 = 0.02. Represent the 
t of grid points by {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)}𝑁𝑖,𝑗,𝑘=0 with 𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗ℎ and 𝑧𝑘 = 𝑘ℎ. Based on the central finite difference in space and the 
ank-Nicolson in time, the fully-discrete system for the classic AC equation (1) reads:

𝑈
𝑖,𝑗,𝑘

𝑛+1 −𝑈𝑖,𝑗,𝑘
𝑛

Δ𝑡
= 𝜖2

Δℎ𝑈
𝑖,𝑗,𝑘

𝑛+1 + Δℎ𝑈
𝑖,𝑗,𝑘
𝑛

2
+
𝑓 (𝑈𝑖,𝑗,𝑘

𝑛+1 ) + 𝑓 (𝑈
𝑖,𝑗,𝑘
𝑛 )

2
, (14)

r 𝑖, 𝑗, 𝑘 = 1, 2, ⋯ , 𝑁 , where Δℎ denotes the seven-point stencil for the 3D Laplacian as

Δℎ𝑈
𝑖,𝑗,𝑘

𝑛+1 =
𝑈
𝑖+1,𝑗,𝑘
𝑛+1 +𝑈𝑖−1,𝑗,𝑘

𝑛+1 +𝑈𝑖,𝑗+1,𝑘
𝑛+1 +𝑈𝑖,𝑗−1,𝑘

𝑛+1 +𝑈𝑖,𝑗,𝑘−1
𝑛+1 +𝑈𝑖,𝑗,𝑘+1

𝑛+1 − 6𝑈𝑖,𝑗,𝑘

𝑛+1

ℎ2
,

ith 𝑈𝑖,𝑗,𝑘
𝑛 ≈ 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘, 𝑡𝑛). The fully-discrete system for the mass-conservative AC equation (4) in 3D becomes:

𝑈
𝑖,𝑗,𝑘

𝑛+1 −𝑈𝑖,𝑗,𝑘
𝑛 2

Δℎ𝑈
𝑖,𝑗,𝑘

𝑛+1 + Δℎ𝑈
𝑖,𝑗,𝑘
𝑛 𝑓 (𝑈𝑖,𝑗,𝑘

𝑛+1 ) + 𝑓 (𝑈
𝑖,𝑗,𝑘
𝑛 ) 1

𝑁∑ 𝑓 (𝑈𝑖,𝑗,𝑘

𝑛+1 ) + 𝑓 (𝑈
𝑖,𝑗,𝑘
𝑛 )
13

Δ𝑡
= 𝜖

2
+

2
−
𝑁3

𝑖,𝑗,𝑘=1 2
, (15)
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. 17. Plots of the ACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times 𝑡 = 0, 10, 50, 200, 500 for solving the classic AC 
uation (1) with the double-well potential in the 2D grain coarsening example.

. 18. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the ACNN predicted solution for the classic AC equation (1) with the 
uble-well potential in the 2D grain coarsening example.

. 19. Plots of the mACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times 𝑡 = 0, 10, 50, 200, 500 for solving the conservative 
 equation (4) with the double-well potential in the 2D grain coarsening example.

r 𝑖, 𝑗, 𝑘 = 1, 2, ⋯ , 𝑁 .
The same network architectures and training strategy as used for 2D problems are used to construct the ACNN and mACNN for 3D 
oblems. Correspondingly, the input 𝑈𝑛 now becomes a 𝑁 ×𝑁 ×𝑁 ×1 tensor, and the filter size in each convolutional layer changes 
 𝐾 ×𝐾 ×𝐾 with 𝐾 = 3. We set Δ𝑡 = 0.1, 𝑇𝑡𝑟𝑎𝑖𝑛 = 5, and the spatial mesh size ℎ = 1∕64. Since the interfacial parameter 𝜖 = 0.02 is used 
r 3D problems, instead of 𝜖 = 0.01 for 2D examples, we expect the coarsening process takes much short time to reach the steady 
14

te, therefore shorter simulation intervals will be considered.
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. 20. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the mACNN predicted solution for the conservative AC equation (4) with 
 double-well potential in the 2D grain coarsening example.

. 21. Plots of the ACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times 𝑡 = 0, 10, 50, 200, 500 for solving the classic AC 
uation (1) with the Flory–Huggins potential in the 2D grain coarsening example.

. 22. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the ACNN predicted solution for the classic AC equation (1) with the 
ry–Huggins potential in the 2D grain coarsening example.

3.1. 3D bubble merging
We first test our ACNN and mACNN with the 3D bubble merging example for solving AC equations with double-well potential 
nction, which takes the following initial condition:

𝑢0(𝑥, 𝑦, 𝑧) = max

(
tanh

(
0.2 −

√
(𝑥− 0.14)2 + 𝑦2 + 𝑧2

𝜖

)
, tanh

(
0.2 +

√
(𝑥+ 0.14)2 + 𝑦2 + 𝑧2

𝜖

))
.

ain only the double-well potential function is considered for this example. The simulation time interval is set to be [0, 50] for the 
assic AC equation and [0, 100] for the conservative AC equation. Fig. 25 shows the iso-surfaces (value 0) of the predicted solution 
 ACNN at the time instances 𝑡 = 0, 10, 20, 30 for the classic AC equation and the evolution of mass, energy and maximum norm of 
e predicted solution. We observe that the two balls gradually shrink and merge into one smaller ball, that finally disappears as 
pected (roughly at t = 36). The energy decays monotonically and stays at 0 after the ball disappears, and the maximum bound 1
well preserved by the predicted solution. Fig. 26 presents the iso-surface (value 0) of the predicted solution by mACNN at the time 
15

stances 𝑡 = 0, 10, 30, 100 for the conservative AC equation, together with the evolution of mass, energy and maximum norm of the 
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. 23. Plots of the mACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times 𝑡 = 0, 10, 50, 200, 500 for solving the conservative 
 equation (4) with the Flory-Huggins potential in the 2D grain coarsening example.

. 24. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the mACNN predicted solution for the conservative AC equation (4) with 
 Flory-Huggins potential in the 2D grain coarsening example.

. 25. The ACNN prediction results for the classic AC equation (1) with the double-well potential in the 3D bubble merging example. Top row: plots of the iso-
rfaces (value 0) of the predicted solution at the time instances t = 0, 10, 20, 30; Bottom row: evolution of the mass (left), the energy (middle), and the maximum 
16

rm (right) of the predicted solution.
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. 26. The mACNN prediction results for the conservative AC equation (4) with the double-well potential in the 3D bubble merging example. Top row: plots of the 
-surfaces (value 0) of the predicted solution at the times t = 0, 10, 30, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum norm 
ght) of the predicted solution.

edicted solution. We observe that the two balls gradually merge together and finally form a perfect ball with the same volume as 
e initial state due to the mass conservation in this case. In addition, the mass is exactly conserved, and the maximum norm of the 
edicted solution is a little bit larger than 1.

3.2. 3D grain coarsening
Finally, we use the trained ACNN and mACNN to predict the 3D grain coarsening dynamics with an initial condition generated 
ndomly by 𝑢0(𝑥, 𝑦, 𝑧) = 0.9 rand(⋅). The simulation time interval is set to be [0, 100] for both the classic and conservative AC equa-
ns. For the double-well potential case, the iso-surfaces (value 0) of the predicted solution at the times 𝑡 = 0, 10, 50, 100 obtained by 
NN for the classic AC equation and by mACNN for the conservative AC equation are displayed in Fig. 27 and Fig. 28, respectively, 
gether with the time evolution of the associated mass, energy and maximum norm of the predicted solution. Fig. 29 and Fig. 30
ow the prediction results of the AC equations with the Flory-Huggins potential and the performance is again similar. They clearly 
ow that the grain coarsening process in both cases. Indeed, one phase gets smaller and smaller in the classic AC setting, while in the 
nservative AC setting the coarsening finally reaches a steady state without any phase disappeared due to the mass conservation. 
e energy dissipation and the maximum bound of the predicted solutions again show similar behaviors as observed in the previous 
ample. The average running time per step using ACNN or mACNN is only around 0.005 seconds for these 3D problems.

 Conclusion

In this paper, we have introduced two novel neural network architectures in the end-to-end fashion, ACNN and mACNN, for 
arning the dynamics of classic AC equation and the conservative AC equation respectively. The loss functions are constructed to 
inimize the residuals of the fully-discrete system of the target equations based on the central finite difference discretization in space 
d the Crank–Nicolson approximation in time. We also design an effective training strategy for our neural networks without using 
y ground truth data. We demonstrate the outstanding performance of our proposed models, in terms of prediction accuracy and 
mputational cost, through extensive numerical tests and comparisons in two and three dimensions.
Our current networks for ACNN and mACNN are designed with a fixed time step size and for problems defined on rectangular 
mains. To extend the applicability of our method, we first aim to develop new network structures that can handle both variable 
e step sizes and more general domains. The former one is especially useful for the adaptive time stepping method for long term 
ulations. It also remains very interesting to introduce some attention mechanisms to our ACNN and mACNN to further enhance 
eir prediction and generalization ability. In addition, the framework proposed in the paper also could be used to solve other second-
der and even high-order nonlinear PDEs. One such equation is the so-called Cahn-Hilliard (CH) equation, which is a fourth-order 
nlinear parabolic PDE that satisfies the mass conservation law, and has many important applications in phase field modeling. The 
 equation is notoriously stiff, requiring extremely small time steps even with fully implicit numerical methods, making it highly 
e-consuming to solve. Our framework offers a promising direction for developing efficient deep learning methods to solve such 
17

ff equations in a fraction of the time. It would open up exciting possibilities for future research in this area.
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. 27. The ACNN prediction results for the classic AC equation (1) with the double-well potential in the 3D grain coarsening example. Top row: plots of the 
-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum norm 
ght) of the predicted solution.

. 28. The mACNN prediction solution for the conservative AC equation (4) with the double-well potential in the 3D grain coarsening example. Top row: plots of 
 iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum 
rm (right) of the predicted solution.
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. 29. The ACNN prediction results for the classic AC equation (1) with the Flory-Huggins potential in the 3D grain coarsening example. Top row: plots of the 
-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum norm 
ght) of the predicted solution.

. 30. The mACNN prediction solution for the conservative AC equation (4) with the Flory-Huggins potential in the 3D grain coarsening example. Top row: plots of 
 iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum 
rm (right) of the predicted solution.

claration of competing interest

None

ta availability
19

Data will be made available on request.



Y.

Ac

Fo

Re

[

[

[

[

[

[

[

[

[

[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

[2

[2

[2

[2

[2

[2

[2

[2

[2

[2

[3

[3

[3

[3

[3

[3

[3

[3

[3

[3

[4
Journal of Computational Physics 496 (2024) 112589Geng, Y. Teng, Z. Wang et al.

knowledgements

This work is partially supported by U.S. Department of Energy under grant number DE-SC0022254 and U.S. National Science 
undation under grant numbers DMS-2109633, DMS-2012469, and DMS-2038080.

ferences

1] S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (6) (1979) 
1085–1095.
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