Journal of Computational Physics 496 (2024) 112589

Contents lists available at ScienceDirect CRmBEio
Physics

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

—
A deep learning method for the dynamics of classic and e
conservative Allen-Cahn equations based on fully-discrete

operators

Yuwei Geng, Yuankai Teng, Zhu Wang, Lili Ju*

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

ARTICLE INFO ABSTRACT
Keywords: The Allen-Cahn equation is a well-known stiff semilinear parabolic equation used to describe
Allen-Cahn equations the process of phase separation and transition in phase field modeling of multi-component

Mass-conserving
Fully-discrete operator
Convolutional neural network

physical systems, while the conservative Allen-Cahn equation is a modified version of the
classic Allen-Cahn equation that can additionally conserve the mass. As neural networks and
Bound limiter deep learning techniques have achieved significant successes in recent years in scientific and
Training strategy engineering applications, there has been growing interest in developing deep learning algorithms
for numerical solutions of partial differential equations. In this paper, we propose a novel
deep learning method for predicting the dynamics of the classic and conservative Allen-Cahn
equations. Specifically, we design two special convolutional neural network models, one for each
of the two equations, to learn the fully-discrete operators between two adjacent time steps. The
loss functions of the two models are defined using the residual of the fully-discrete systems,
which result from applying the central finite difference discretization in space and the Crank-
Nicolson approximation in time. This approach enables us to train the models without requiring
any ground-truth data. Moreover, we introduce an effective training strategy that automatically
generates useful samples along the time evolution to facilitate training of the models. Finally,
we conduct extensive experiments in two and three dimensions to demonstrate outstanding
performance of our proposed method, including its dynamics prediction and generalization ability
under different scenarios.

1. Introduction

The Allen-Cahn (AC) equation was first introduced in [1] as a phenomenological model for antiphase domain coarsening in a
binary alloy. Since then it has been used to describe a wide range of phase transition phenomena in science and engineering appli-
cations, including crystal growth [3,31], image analysis [2,11,4], and biology [22,33]. The classic AC equation takes the following
form:

du=e*Au+ fu), x€Q,1>0 @

with the initial condition

* Corresponding author.
E-mail addresses: ygeng@email.sc.edu (Y. Geng), yteng@email.sc.edu (Y. Teng), wangzhu@math.sc.edu (Z. Wang), ju@math.sc.edu (L. Ju).

https://doi.org/10.1016/j.jcp.2023.112589
Received 17 May 2023; Received in revised form 26 September 2023; Accepted 19 October 2023

Available online 28 October 2023
0021-9991/© 2023 Elsevier Inc. All rights reserved.

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

u(x,t=0)=uy(x), x€Q,

and appropriate boundary conditions such as the periodic or homogeneous boundary condition. Here Q c R? (d = 2,3) is a bounded
domain with the Lipschitz boundary 0%, ¢ > 0 is an interfacial parameter, u(x,?) is the unknown scalar function, and f = —F’, where
F(u) is an nonlinear potential function. There are two commonly used potential functions as considered in this paper: one is the
double-well potential in which

Fw= 70 =17 f@=u-u’ @
and the other is the Flory-Huggins potential in which

3

Fu) = —[(1 +wn(+u)+ (1 —win(l —)] — H—Cuz rw=2ml=
2 l+4u
with the constant parameters 0 < 6 < 6,.
Mass-conserving is often necessary in many physical systems, however, the classic AC equation (1) doesn’t maintain the total
mass M(t) = fQ u(x,t)dx as time evolves. The conservative Allen-Cahn equations are some variants of the classic Allen-Cahn equation
that can additionally conserve the mass. A typical one was derived and analyzed in [21] that takes the following form:

ou=e Au+f(u)—@/f(u(y,t))dy, x€Q,t>0, 4

where I]E\ /Q f(u(y,1)dy is a nonlocal Lagrange multiplier introduced to conserve the total mass over time, i.e., M () = M(0) for
any t > 0. Both the classic AC equation (1) and the conservative AC equation (4) are autonomous systems under the periodic or
homogeneous boundary condition.

The classic AC equation (1) can be regarded as the L, gradient flow with respect to the energy functional:

E(u):/<€—22|Vu(x,r)|2+F(u(x,r))> dx.)
Q

The conservative AC equation (4) is also energy dissipative under the same energy functional (5). In addition, the maximum bound
principle (MBP) [6,16] is another important property of the classic and conservative Allen-Cahn equations. For the double-well
potential case (2), the solution of the classic AC equation (1) always stays inside the interval [—1, 1] and that of the conservative AC
equation (4) is within [—— \/_ '3 \/_ 3]. For the Flory-Huggins potential case (3), the solution of the classic AC equation is bounded in
the interval [—p;, p,] for all the time, where 1> p, > 0 is the constant satisfying f(p,) =0, and that of the conservative AC equation is
within [—p,, p,], where 1 > p, > 0 is the constant satisfying f(p,) = f(—/1—6/6,).

Analytical solutions to the classic and conservative AC equations are very challenging or even impossible to find. Hence, effec-
tive and accurate numerical methods for computing their approximate solutions become highly necessary in order to simulate and
understand their dynamics. Spatial discretization methods, such as the finite element method (FEM) [8,34,12] and the finite differ-
ence method (FDM) [13,14,39] and spectral methods [10], have been investigated extensively for discretizing these two equations.
It is required that the computational mesh size should be less than the interfacial parameter ¢ in order to accurately describe the
transition layers and capture the correct dynamics. Consequently, when the interfacial parameter ¢ gets smaller, the computational
cost gets larger. Meanwhile, many different time-stepping algorithms, such as fully implicit schemes [7,36], stabilized semi-implicit
schemes [26,27], convex splitting schemes [23,32,28], exponential integrator schemes [5,6,10], invariant energy quadratization
(IEQ) [37,38], and scalar auxiliary variable (SAV) [24,25] have been designed for the AC equation, and many of them can ensure
the energy stability and the MBP in the discrete sense. Generally speaking, explicit schemes require a restrictive time step size due
to the CFL condition which can be very time-consuming when the interface parameter ¢ is small. Implicit or semi-implicit schemes
can avoid the CFL condition restriction and thus allow for relatively larger time step sizes, but the computational costs still could be
high due to the use of linear solvers and/or nonlinear iterations at each time step.

In recent years, deep learning-based methods, in addition to conventional numerical methods, have been introduced to solve
the above classic and conservative AC equations, as well as some other phase field models, by utilizing both data and physical
knowledge. One such method is the well-known Physics-Informed Neural Network (PINN) [20], which approximates the mapping
between the solution and the spatiotemporal input while complying with any specific physical principle defined by general nonlinear
partial differential equations. To accelerate the training of PINN, Wight and Zhao proposed two time-adaptive approaches in [40]:
one involves training every small interval separately after splitting the time domain into small intervals, while the other involves
starting training with small time intervals and gradually increasing the time span when each span is learned well. Furthermore,
the backward compatible PINN (bc-PINN) [19] was introduced to split successive time into small time intervals, adding backward
compatibility to the physical law during training of each time interval to ensure that the neural network approximation is effective
in all previous time segments. In [29], a modified PINN was proposed for solving the one-dimensional conservative AC equation (4)
by adding a term representing the difference of input and output masses into the loss function. This approach can be regarded as
a soft constraint implementation for mass conservation in PINN, but it was only applicable to the one-dimensional case due to its
special construction process. On the other hand, there also exist some limitations in the above PINN-based learning approaches. The
first one is the high computational cost due to the need of retraining the network as the initial conditions change. This is because
their loss functions involve initial condition data (Note that the periodic or homogeneous boundary conditions do not impose any

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

extra nontrivial data). Second, the PINN-based learning methods usually couldn’t produce numerical solutions with high accuracy
even when lots of neurons with enough representation ability are used in the network. This is mostly due to the difficulty in effective
training. Third, they often lack good generalization ability, which becomes critical for predicting solutions of time-dependent PDEs.
Finally, it is still a hard problem for the PINN-based methods to effectively handle the nonlocal Lagrange multiplier term in the
conservative AC equation in two or three dimensions. There also exist some operator-based learning methods for PDEs and surrogate
models. For example, DeepONet [18] and its variant [30] extend the universal approximation theorem to deep neural networks to
learn the operators, and the physics-informed neural operator (PINO) [17] combines operator learning with function approximation
to achieve better accuracy. These methods can deal with various initial/boundary conditions, but usually are very hard to train with
good accuracy for large scale problems.

In this paper, we propose a novel deep learning method for computing the dynamics of the classic and conservative AC equations.
Our method uses two specially designed convolutional neural networks (CNNs) in an end-to-end fashion (one for each AC equation) to
learn the fully-discrete operators with second-order approximation accuracy between two adjacent time steps for the target equations,
formulated by using the central finite difference discretization in space and the Crank-Nicolson approximation in time. Particularly,
the loss function for training our CNN models is defined through the residual of the fully-discrete system instead of the original
PDE-based physical law. Consequently, the learned fully-discrete operators then can be repeatedly used to predict the solutions of
the AC equations along time subject to various initial conditions, which is a major difference from PINN-based learning methods.
Since the initial data could be of very high dimension (the functional value at each mesh node gives one degree of freedom), a key
question is how to design an effective training strategy for the proposed models with very few initial condition data so that they
still can learn and predict accurately the solutions of the AC equations for any given unseen initial condition. For this purpose, we
develop a novel training strategy that can automatically generate useful samples along the time evolution to facilitate training of
the models. In order to preserve the MBP and avoid the potential overflow errors during the training in the Flory-Huggins potential
case (due to the existence of logarithmic terms), we also integrate a bound limiter module into the neural networks. Additionally,
unlike the soft constraint approach used in [35], the mass-conservation property is treated as a hard constraint in the proposed CNN
model for the conservative AC equation (4). This, to the best of our knowledge, is a novel contribution, which guarantees the exact
conservation of total mass and plays a key role in accurately learning the dynamics of the conservative AC equation.

The rest of the paper is organized as follows. In Section 2, we introduce the space and time discretization for the classic and
conservative AC equations and review the concept of CNNs. Then we propose and discuss our deep learning method for simulating
the dynamics of the two AC equations, including network architectures, loss functions, and training strategies. Extensive numerical
experiments and comparisons are presented in Section 3 to demonstrate the outstanding performance of the proposed method,
including some ablation studies and its prediction and generalization ability under different scenarios in two and three dimensions,
respectively. Finally, some concluding remarks are drawn in Section 4 together with a brief discussion on future work.

2. The proposed deep learning method

In this section we first introduce the fully-discrete systems for the classic and conservative AC equations, (1) and (4), and then
propose a deep learning method based on the fully-discrete operators and end-to-end CNNs for predicting the dynamics of these two
equations. The network architectures, loss functions, and training strategies will be discussed. For ease of illustration, we take Q to
be a square domain [0, L]? in two dimensions (2D) and assume that « satisfies the periodic boundary condition, although the method
can be easily extended to three dimensional (3D) problems and applied to different boundary conditions.

2.1. Fully-discrete systems of the classic and conservative Allen-Cahn equations

When solving the two AC equations using conventional numerical methods, it is well known that explicit schemes are limited by
the CFL condition, which necessitates a restrictive time step size. Therefore, semi-implicit and fully implicit time stepping methods
are commonly used in practice. Let us uniformly partition the domain Q and obtain the set of grid points { (x,.,yj)}fjj.=0 where
N >0 is an integer, x; = ih and y; = jh with h= L/N. Then we choose a uniform time step size At >0 and set ¢, = nAt for n > 0.
Correspondingly, we set Ué‘j =uy(x;, ;) and assume UM = u(x;, ¥;st,). The periodic boundary condition implies U,?’j =U/ and
U =U’N for j=0,1,-- N, thus the set of unknown can be represented by U, = (U~} ,N,: p

After applying the central finite difference discretization in space and the Crank-Nicolson approximation in time, we obtain a
fully-discrete system for the classic AC equation (1) with the periodic boundary condition as follows: given U, to find U, for n >0
such that

vl -u’ e AU MUY FUY D+ FU)

At 2 2
fori,j=1,2,---,N, where A, denotes the five-point stencil for the Laplacian as

B

i+1,j i-1,j ij+1 ij-1 _ i,j
A U/',j _ _n+l + Un+1 + Un+1 + Un+1 4Un+l
h= 1 :

n2
This yields
u A (ezA Uy ft)) —u 1 A (2a,U 1 fUi) ©)
n+l 2 h~ pyl n+1’) = "n 2 h™n n’)>

3

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

for i,j =1,2,---,N. It is known that the system (6) is guaranteed to have a unique solution U, for any given U, under a quite
relaxed restriction on the time step size Az and the resulting numerical solution is of second order accuracy in both time and space.
The system can be rewritten as

Uyy1 =FDCN 1 (U,), n=0.1,-, 7

where FDCN 4 denotes the fully discrete operator that maps the input U, to the output U,,,; through the relation (6).
Similarly, we can obtain a fully-discrete system with second-order accuracy for the conservative AC equation (4) with the periodic
boundary condition as follows: given U, find U, for n > 0 such that

vl -ut _ oAU+ AT VICAB RIS 13 U+
5 —
At 2 2 N2 L 2
fori,j=1,2,---,N. It leads to
T\ At
Ul =5 (0,00+ F)—— 2 f(U;+f1 > U”+—(2A,,U”+f(U’f)—N— z i)> 8)
’J'=1

fori,j=1,2,---, N, which can be rewritten as

Uyt =FDCN,,4c(Uy), n=0,1,--, (C)]

where FDCN,, 4 denotes the fully discrete operator that maps the input U, to the output U,,,; through the relation (8).

For conventional numerical methods, the systems (6) and (8) need to be solved using some nonlinear iterative solvers, such as
the Picard iteration or the Newton’s method, and the computational cost can become high for large-scale problems. For example, the
Picard iteration solves (6) iteratively as follows: let U, ¢, = U, and for m=0, 1, -, compute U, (,+1y by solving the linear system

€2 At i Ar i i,
< > >Un+l iy =Ul + S (20U + fU) + fU (m))) 10)

fori,j=1,2,--,N, and finally set U,,| = U,y () if U,y () satisfies certain convergence criteria. When solving (8), one replaces
(10) by

(I ZA) UL ey = Up? + % (PMUY + FUID+ £ LD Nz Z](f(U' I+ rwly (m)))> an
i"j

for i,j=1,2,---, N. Note that FFT-based fast implementations are available [6] for solving (10) and (11) on uniform rectangular

grids, but such Picard iterations converge linearly. On the other hand, if Newton’s method is applied, the iterations would converge

quadratically, but FFT-based efficient implementations don’t exist anymore.

To efficiently solve the classic and conservative AC equations, we next develop a deep learning method that learns the two
fully-discrete operators FDCN 4 and FDCN,, 4, without utilizing any ground-truth data for training. The goal is to achieve accurate
approximation of these operators, enabling the fast prediction of the dynamics of the AC equations under arbitrary initial conditions
without the need of retraining.

2.2. Network architectures

Next we will construct two CNNs in an end-to-end fashion to model the nonlinear mapping from U, to U, with the fixed time
step size Ar: one is called “ACNN” for the classic AC equation (1) and its full discretization (6), the other is referred to as “mACNN”
for the conservative AC equation (4) and its full discretization (8).

Network architecture for the classic Allen-Cahn equation Fig. 1 illustrates the proposed “ACNN” for learning the dynamics of the classic
AC equation (1), which consists of one single convolutional layer, one or more successive Residual blocks (ResBlocks) [9], and one
final convolutional layer. Note that there is no pooling layer or fully-connected layer in the ACNN. We take U,, an N x N x 1 tensor,
as the input and predict the solution at next time step, U, ., by using a loss function formulated from the fully-discrete Crank—
Nicolson scheme (6) (concrete expression given in (12)). The filter size in each convolutional layer is fixed as K x K and for each
convolutional layer, we fix the number of different filters to be C for all intermediate layers. The first layer will broadcast the input
tensor to the shape of N x N x C while the last layer will bring it back to N x N x 1. Motivated by the periodic boundary condition
of the target problem, the “circular” padding mode is applied across all convolutional layers. To maintain the spatial dimensions
of the input feature map, the padding size is set in accordance with the filter size employed in each layer. To address the issue of
vanishing gradients and promote better gradient flow during training, we incorporate ResBlocks into the ACNN architecture. Each
ResBlock comprises two convolutional layers followed by an activation function ¢, where the input to the ResBlock is added to the
output of the second convolutional layer prior to applying the activation function, thereby mitigating the potential for vanishing
gradients during back propagation. Note that the violation of the MBP may cause the overflow error in evaluating the loss function
in the Flory-Huggins potential case (3) due to the presence of logarithmic terms, and consequently leads to the failure of the training.

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

Un o
Z X
e o e e c B v O | S &
> - ’ =
— g — 3 — e g _— E == @ — e @ = g
S 3
=] 2 o o & o
,,,,,,,,,,,,,, ResBlock

Bound Limiter(x, @, f)= max(min(x,), a)

Fig. 1. The network architecture of ACNN, which learns the dynamics of the classic Allen-Cahn equations (1). In this work, it is used to approximate the operator

FDCN - of the fully-discrete Crank-Nicolson scheme (6), mapping U, to U,,,, i.e., ACNN(U,;©) ~ FDCN,(U,), where © denotes the set of learnable parameters in
ACNN.

mACNN

U71+ 1

- ACNN - UV —o—

Bound Limiter

v

> M(U,) — M(UAYN

Fig. 2. The network architecture of mACNN, which learns the dynamics of the conservative Allen-Cahn equations (4). In this work, it is used to approximate the

operator FDCN,, ;. of the fully-discrete Crank-Nicolson scheme (8), mapping U, to U,,,, i.e., mMACNN(U,;0) ~ FDCN,,,(U,), where ® denotes the set of learnable
parameters in mACNN.

To uphold the MBP, we further add a bound limiter module into the network architecture, which ensures that the network output
remains within the interval [a, f]. We expect the bound limiter to play an important role at the early stage of training ACNN in
preserving the MBP, but won’t be triggered once ACNN is nearly optimized. Thus the parameters « and f will be set as some slightly
relaxed values to the theoretical lower and upper bounds for the solution of the target AC equation.

Network architecture for the conservative Allen-Cahn equation For learning the dynamics of the mass-conserving AC equation, we
leverage the ACNN as the foundational architecture and extend it to the “mACNN”. The mACNN is different than the ACNN in
the sense that the total mass is preserved as a hard constraint. This constraint is applied regardless of whether the model is being
trained or being used for inference. This approach ensures that the solution obtained at each time step conserves mass, which is
a crucial property of the mass-conservative AC equation. It would also enhance the numerical accuracy and robustness for solving
the mass-conserving AC equation. The associated network architecture is displayed in Fig. 2. Given the input U, with a total mass

2 -
MU, = % Ziszl U,’, the ACNN module generates an intermediate result, denoted by UASNN. This could result in a difference in
mass:

AM =MU,) - MUASY™).

To enforce the mass preservation, a value of AL—ﬁl will be added to every entry of UACNN, which provides, after further applying

the bound limiter, the final output of mACNN U, , . Note that although the bound limiter could affect the mass conservation at the
early stage of training mACNN, but again it won’t be triggered once mACNN is nearly optimized and thus the total mass is still well
conserved in the end (as demonstrated by numerical experiments).

2.3. Loss functions

The goal of ACNN and mACNN is to learn the two fully-discrete operators, FDCN 4 and FDCN,, 4, respectively, that are applica-
ble to various inputs U,, including different initial conditions and any intermediate states. To this end, we consider for the training
process an ensemble of classic AC or conservative AC equations consisting of S distinct problems that differ only in their initial
data. Denote the network input by U, = {U,fl), U,E2), s U,ES)}, where U,ﬁ’) represents the solution at the time ¢, corresponding to the
I'"" problem. To learn the operator between U, and U,,,, we define the loss function based on the fully-discrete scheme (6) for the

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

Up={U},

| | T

[}
Oy, Ou| |0 [0uis] €] [O2] [Buva] [Bovarrd] [€as] | O]

J
<
J
=
=
=

= NN(U(l], ®b—1>

U

update

Fig. 3. Illustration of the training process for one epoch, where NN represents the proposed neural network, ACNN or mACNN.

classic AC equation and the fully-discrete scheme (8) for the conservative AC equation respectively. Specifically, the loss function is
formulated to measure the violation of (6) or (8) in the L2-norm:

. At D . D . 2
Lacny = T Z Z [~ v = 2 (28, + U + U + fU0)] 12)
for ACNN and

C’"ACNN = n+l1 n+l

||Mu)

N
j (1) 1 2 (l) ij.(l i.j.(1) i.j. (1l
N Z= [U Uu() > (Ah(U” U’llj())+f(U1])+f(U,’,’())
(13)

N 2
I CH ’(’)>+f<u,i’*"*<”>>>]
i’,j'=1

for mACNN, such that U"H’r ’](’) = ACNN(U,’;’j ’(’);G)) in (12) and U,’,i ,1(1) = mACNN(U,';’j ’U);G) in (13), where {U,';’i' ,1(1)} denotes the approx-
imate solution of the I'" problem. It is worth noting that with the above choices of loss functions, both ACNN and mACNN do not
need any ground truth data for training.

2.4. The training strategy

Next, we describe the strategy for training ACNN and mACNN. Suppose there are totally S problems with different initial
conditions and S = pq. The initial data is assembled in U, = {U(()[)} 1 each value of {U, isJ: (”}N is bounded between (—1,1). The
training time interval is taken as [0, T},,;,] with T}, ,;, =aArand a a posmve integer.

The training process involves updating learnable parameters of ACNN and mACNN over epochs. Fig. 3 presents the detailed
training flow within one epoch. At the beginning of the epoch, the target neural network (ACNN or mACNN) is fed with the same
initial data U, (corresponding to the initial time 7 = 0). Assume the target neural network before the current epoch is parameterized
by ©. It will be repeatedly updated using self-generated data. The following optimization is performed within the epoch:

(i). Randomly split U, = {Uél),Uéz), ,Ués)} into p subsets {Uf) le
S =pq). Set ©)=0.

(ii). For the first time step (from # =0 to Ar), take the initial condition subset U(') as the input of the neural network with parameter
0, and generate U}. To make sure the output U% is a relatively accurate approximation to the true solution, at this step we
train the neural network with respect to the loss function (12) or (13) for b times (b > 0 is an integer), and consequently update
the parameters to ©,.

(iii). The same training approach is then used for the second time step (from 7 = Az to 2A1): given the input U}, the neural network
produces U; and updates the learnable parameters to ®,,. Such a process will be repeated for a time steps until the time 7},,;,
is reached. The neural network parameters are updated to 0.

(iv). Feed the second initial condition subset Ug to the neural network with parameters ®, = ©,; apply Steps (ii) and (iii) and update
the neural network parameters to ©,,,. Such a process will be repeated till it loops through all the p subsets. At the end, the
neural network parameters ©,,, are obtained.

(v). Set ®=0,,, and go to the next epoch.

and each subset contains ¢ distinct initial conditions (since

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

During the training process, a dynamic learning rate schedule is employed. Specifically, the learning rate is decreased whenever
a new subset of initial conditions is fed into the network. This adjustment fine-tunes the model to different initial conditions. The
training process is terminated if the loss function falls below a certain tolerance level or the maximum number of epochs is reached.
In practice, the value of the hyperparameter b is also gradually reduced over time steps. It starts from a predefined large value for
training the model with the first input U(’) at the first time step, and decays after each time step until it reaches a predefined minimum
value. This helps mitigate the influence of accumulated errors during the forward time stepping.

3. Numerical experiments

In this section, we first perform a series of ablation studies on the network architectures and the training strategy of the proposed
ACNN and mACNN. Then, we test the trained models with several benchmark problems for the classic AC equation (1) and the
conservative AC equation (4) in 2D and 3D. In all the experiments, the spatial domain Q =[—-0.5,0.5]* and the interfacial parameter
€ =0.01 for 2D examples, and Q = [-0.5,0.5]* and ¢ = 0.02 for 3D examples. We consider the double-well potential function (2) and
the Flory-Huggins potential function (3) with 6 = 0.8 and 6, = 1.6. Note the bounds for the classic and conservative AC equations are
then respectively p; ~0.95750402 and p, ~ 0.98678360 in the Flory-Huggins potential case. The low and upper bounding parameters
a and f in the bound limiter module are then set accordingly by expanding 1% from the corresponding theoretical values.

To train our networks, ACNN and mACNN, we choose S =20 random initial conditions u(x, y) = 0.9rand(-), where rand(-) is the
pseudo random generator producing a scalar value between -1 and 1. Following the training strategy described in Section 2.4, we
split the set of 20 initial conditions into p = 5 subsets, each containing ¢ = 4 initial conditions. For each subset, the neural network
parameters are updated for b times at each time step, which is set to be » =500 at the first time step and its value decreases by
10 per time step until » =100 is reached. Unless stated otherwise, we adopt the Adam optimizer [15] with an initial learning rate
of 0.001, and the learning rate decays by a factor of 0.6 after each subset training. We also set the convolution kernel size K =3
and use tanh(-) as the activation function in our networks. In addition, we set the maximum number of epochs to be 2 and the loss
tolerance to be 1e-8. We implement our models in PyTorch, and all experiments are run on a server with a V100 GPU card with
32 GB memory. The cost of each training of ACNN or mACNN for the experiments tested in this section varies from 1 hour to 8 hours
for 2D problems and about 30 hours for 3D problems, depending on the specific problem size and network architecture setting.

To measure the accuracy of our trained models, we calculate the prediction errors in the L, norm, ||U » — U, /ll, where U is
the predicted solution by using the trained neural network models and U, is the reference solution produced by the corresponding
fully-discrete schemes with the same spatial mesh and the sufficiently small time step size A7 =0.001 (the resulting nonlinear systems
are solved by using the Picard iteration and FFT-based implementation at each time step mentioned in Section 2.1).

3.1. Ablation studies

The goal of ablation studies in this section is to analyze the effect of network architecture (such as depth and width) and the
choice of some hyper-parameters (such as the time step size Ar and the training time 7},,,) on the prediction ability of ACNN and
mACNN, and investigate how mACNN improves the performance of solving conservative AC equations compared to ACNN. Only 2D
problems with double-well are considered in the ablation studies, and we use the uniform 2D mesh of A =1/256 (i.e., N = 256) for
spatial discretization. The model prediction error is calculated by averaging results from 100 individual testing cases, each with a
randomly selected initial condition that does not belong to the training set.

3.1.1. Effect of the network architecture in ACNN and mACNN

Our first objective is to investigate how the choice of depth and width of ACNN and mACNN affects the performance of the
proposed methods for solving the AC equation. Specifically, we vary the number of ResBlocks from 1 to 3 to gradually increase
the depth of the network and select the number of features in each convolutional layer as either 16 or 32. We also fix the training
ending time 7,,, = 10 and the time step size Ar=0.1, which means that our training process will cover 100 time steps. Fig. 4 and
Fig. 5 present the evolution of the model prediction errors in the time interval [0,500] for ACNN and mACNN respectively under
these structure settings. Note that almost all error curves have a very short period of jumping and oscillating at the beginning of the
simulation, which is caused by the non-smoothness and randomness of the initial conditions (the same phenomenon also happens to
conventional numerical solvers for the AC equations). It is noted that for both ACNN and mACNN, the networks with 3 ResBlocks
and 16 channels appear to be robust and outperform all other configurations in both potential function cases. Even with a simulation
ending time of 500, which is 50 times longer than the training duration, ACNN and mACNN with this particular structure still perform
very well and the model prediction errors consistently remain under the level of 2e-2. Thus, we will use this particular structure for
our ACNN and mACNN in all subsequent experiments.

3.1.2. Effect of the time step size At and the training ending time T,,;,

To test the effect of the time step size Ar on the model prediction accuracy and check if our networks produce convergent results,
we train and test ACNN and mACNN using different time step sizes At = 0.05,0.1, and 0.2 respectively, by using the double-well
potential and fixing Tj,,;, = 10 (correspondingly, a = 200, 100 and 50 time steps used for training). In general, a smaller step size
leads to a smaller discretization error, but the model prediction accuracy is also affected by the network errors such as those caused
by the representation ability of the networks, the effectiveness of the training, and the needed number of time steps (a smaller time
step size requires more time steps to reach the same simulation time). The overall performance of our networks is determined by the

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

—-- 1R+16C —- 1R+16C
00351 —.. 1R+32C 0,04 —=- 1R+32C
AAAAA 2R+16C e seee 2R+16C
0.030 { ... 2R$32C e e JR432C
—=- 3R+16C —=- 3R+16C i
0.025{ -—- 3R+32C 0.03{ ——- 3R+32C .
» 0.020 4 -
g 5
o o 0.02 A
0.015 1
0.010 4
0.01
0.005
0.000 0.00
0 100 200 300 400 500 0 100 200 300 400 500
Time me
(a) Classic AC with double-well (b) Classic AC with Flory-Huggins

Fig. 4. Evolution of the ACNN model prediction errors for solving the classic AC equation (1) in 2D: (a) with the double-well potential and (b) with the Flory-Huggins
potential. Note A =1/256, At=0.1 and 7,

"ain = 10. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

0.025
—-- 1R+16C —-- 1R+16C e -
—-- 1R+32C 0.06] —- 1R+32C e
00z0d| 2R+16C <--+ 2R+16C AT
i R 2R+32C e 2R432C it
-—- 3R+16C 0059 ——- 3R+16C ’
--- 3R+32C --- 3R+32C
0.015 - 0.04
5 || 0 e T s
& P & 0.03
0.010 BT
I i 4 A
i 0
S 0.02
i/ 4 :
00054 i/
i 0.01
0.000 - 0.00
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
(a) Conservative AC with double-well (b) Conservative AC with Flory-Huggins

Fig. 5. Evolution of the mACNN model prediction errors for solving the conservative AC equation (4) in 2D: (a) with the double-well potential; (b) with the Flory-
Huggins potential. Note A =1/256, Ar=0.1 and 7,,,, = 10.

train

Table 1
The model prediction errors of ACNN and mACNN at ¢ = 5,20, 100, 500 when using different time step sizes for solving the
classic AC equation (1) and the conservative AC equation (4) with the double-well potential in 2D. Note » = 1/256 and

Train = 10.
Error ACNN mACNN
Ar=02 Ar=0.1 Ar=0.05 Ar=02 Ar=0.1 Ar=0.05
t=5 1.3942e-3 5.3620e-4 1.2754e-3 2.1655e-3 6.1348e-4 1.5406e-3
=20 5.3144e-3 2.8855e-3 4.1812e-3 7.1158e-3 2.5030e-3 4.1367e-3
t=100 1.2778e-2 7.9914e-3 1.0008e-2 1.7908e-2 8.8159%¢-3 1.6237e-2
t =500 1.5032e-2 8.0758e-3 1.3033e-2 2.5319e-2 1.6417e-2 2.0222e-2

combination of all these issues. Table 1 reports the model prediction errors of ACNN and mACNN at ¢ = 5,20, 100,500 when using
different time step sizes respectively to solve the classic AC and mass conservative AC equations. The time evolutions of the model
prediction errors during the time interval [0,500] are shown in Fig. 6. It is seen that ACNN and mACNN using Ar =0.1 perform better
than the ones with A7 =0.2 and Ar=0.05. Thus we take At =0.1 in the remaining experiments.

The value of T,,, also has impact on ACNN and mACNN in terms of prediction accuracy and training efficiency. To quantify
its effect, we consider three values T,,,;, =2,5, and 10 (correspondingly a = 20,50, 100 time steps in training). The associated model
prediction errors of ACNN and mACNN are shown in Fig. 7. It is observed that, for both ACNN and mACNN, the choice of 7}, ,;, =2 re-
sults in the worst prediction accuracy. Longer training intervals do lead to improved model prediction, but the extent of improvement
gradually gets smaller along the increasing of the training time.

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

— At=0.2 0.025
—— At=0.1
00204 —— At=0.05
0.020 A
0.015 |
0.015 -
g
5 &
0.010 1 0.010 A
0.005 - 0.005 4
0.000 A 0.000 A
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
(a) by ACNN (b) by mACNN

Fig. 6. Evolution of the model prediction errors in the double-well potential case when different time step sizes are used: (a) ACNN for solving the classic AC equation
(1); (b) mACNN for solving the conservative AC equation (4). Note h =1/256 and T,,,, = 10.

o025 { — Tn=2 0,030 — Tan=2
—— Ttran =5 — Ttran =5
— Tuan =10 — Tian =10
0.025
0.020
0.020 |
0.015 -
s]
& £ 0015
0.010
0.010
00054 0.005
0.000 0.000
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
(a) by ACNN (b) by mACNN

Fig. 7. Evolution of the model prediction errors in the double-well potential case when the final training time T},,,,
(1); (b) mACNN for solving the conservative AC equation (4). Note ~=1/256 and Ar=0.1.

varies: (a) ACNN for solving the classic AC equation
3.1.3. Effect of the hard constraint for mass conservation in mACNN

To illustrate the advantage of employing the hard constraint on mass conservation in mACNN, we compare the performance of
ACNN to mACNN based on the same loss function (13) in learning the dynamics of the conservative AC equation. We remark that the
ACNN can also be applied to the conservative AC equation since the loss function (13) does implicitly enforce the mass conservation
fromzt, tot,,, (i.e., treating the mass conservation as a soft constraint). We use Ar=0.1 and T,,,,;, = 10 for training. Fig. 8 presents the
evolution of total mass and model prediction errors where the trained ACNN and mACNN are applied to simulate the conservative
AC equation over [0,500]. It is observed that ACNN fails to preserve the total mass while mACNN does so perfectly during the
simulation. Meanwhile, mACNN achieves much smaller prediction errors (around 2e-2 during nearly the entire time interval) than
ACNN. In other words, adding the hard constraint of the mass in mACNN not only ensures the predicted solution complies with the
mass conservation, but also greatly enhances the accuracy of the prediction.

3.1.4. Effect of the bound limiter for ACNN and mACNN

Finally, we conduct experiments to evaluate the effect of the bound limiter module on the performance of ACNN and mACNN.
We set Ar=0.1 and T,,,;, =10 in the training process for the classic and conservative AC equations with the double-well potential.
Fig. 9 shows the errors associated with ACNN and mACNN, both when the bound limiter is incorporated into the neural networks
and when it is not. Our observations indicate that when solving the classic AC equation, the presence of the bound limiter does
not significantly impact the training accuracy. However, in the context of the conservative AC equation, the inclusion of the bound
limiter enhances the accuracy during the entire time evolution. In addition, we would like to remark that it would become crucial to
integrate the bound limiter in learning the two AC equations with the Flory-Huggins potential. Due to the presence of the logarithmic
term (i.e., In ﬁ) in the corresponding loss functions (12) and (13), |u| <1 is strictly required in the whole training process. Without
imposing appropriate bounds for u, the training loss often becomes infinity at early stages of the training as we have observed from
experiments.

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

0.0 ¢
0.10 1
-0.1
0.2 0.08 4
-0.3
5 5 0.06 -
= -04 v}
0.04 4
—051
-0.6 0.02 4
-0.74|— ACNN
MACNN 0.00 4
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
(a) Total mass (b) Prediction error

Fig. 8. Comparison between the predicted solutions by ACNN and mACNN for solving the conservative AC equation (4) with the double-well potential in 2D: (a) total

mass; (b) prediction error. Note h =1/256, At =0.1 and T}, = 10.
—— Bound Limiter —— Bound Limiiter
0.012 1 No Bound Limiter 0.020 4 No Bound Limiter
0.010 4
|
‘ S 0.015
0.008 f==m— — S =
s s
w 0.006 w 0.010 4
00047 | |/
[0.005 |
0.002 4 /
00004 ° 0.000 -
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
(a) ACNN (b) mACNN

Fig. 9. Comparison between the predicted solutions in the double-well potential case produced by ACNN and mACNN with or without the bound limiter module: (a)
the classic AC equation (1); (b) the conservative AC equation (4). Note h =1/256, Ar=0.1 and T,,,;, = 10.

3.2. Dynamics prediction for 2D examples

Next, we demonstrate through two well-known 2D benchmark examples the excellent performance of our proposed methods, in
terms of both accuracy and generalization ability, for learning the dynamics of the classic and conservative AC equations. One is the
bubble merging problem, the other is the grain coarsening problem. They are governed by either the classic AC equation (1) or the
conservative AC equation (4). Based on the ablation studies done in Section 3.1, we choose 4 =1/256 for the spatial mesh size, and
set Ar=0.1 and T,,,;, = 10 in both ACNN and mACNN. The trained neural networks are applied to predict solutions of the benchmark
problems.

3.2.1. 2D bubble merging
To showcase the generalization ability of ACNN and mACNN, we test them using the 2D bubble merging example, which takes
the following initial condition:

02-V(x-0.14y +y? 02+ V(x+0.1472 + 52
"o(x,y)=max<tanh< o Yy),tanh< +V(x+0.142 +y >>

€ €

Only the double-well potential function is considered for this example. Fig. 10 presents the evolution of the prediction errors during
the time interval [0,500] produced by ACNN for the classic AC equation and by mACNN for the conservative AC equation. It is found
that both networks can accurately predict the corresponding dynamics and the prediction errors always remain under about the level
of 5e-3 for both ACNN and mACNN.

The predicted solution by ACNN and associated errors at the times ¢ = 0, 10,50, 200,300 are plotted in Fig. 11 for the classic AC
equation. The time evolution of mass, energy and maximum norm of the predicted solution are shown in Fig. 12, where the red line

10

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

0.005 4
0.004 4
0.004 4
0.003 1
§ 0.003 - §
& &
0.002 4
0.002 4
0.001 1
0.001 4
0.000 +— v v v v . 0.000 1 : v v v v
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
(a) by ACNN for the classic AC (b) by mACNN for the conservative AC

Fig. 10. Evolution of the model prediction errors in the 2D bubble merging example.

1.00

- 0.75
0.50
0.25

g 0.00
-0.25

- -0.50
-0.75

' -1.00

-04 -02 00 02 04

- 0.090
0.075
0.060
- 0.045
: 0.030
0.015
) 0.000

-04 -02 00 02 04

Fig. 11. Plots of the ACNN prediction results (top row) and associated numerical errors (bottom row) at the times ¢ =0, 10,50,200,300 for solving the classic AC
equation (1) with the double-well potential in the 2D bubble merging example.

0.0175

0.0150

-0.7 0.0125

0.0100

Mass
Energy
Maximum norm
o
a

0.0075

0.9 00050

0.2
0.0025

0.0000 0.0
0

Time Time Time

Fig. 12. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the ACNN predicted solution for the classic AC equation (1) with the
double-well potential in the 2D bubble merging example.

indicates the value of theoretical bound a =1 in the rightmost figure. We observe that the two disks gradually shrink and merge
into one smaller disk, which keeps shrinking and finally disappears around ¢ = 360. The prediction errors seem to only occur in the
transition regions of two phases, which implies that the phase shapes are accurately captured. The energy monotonically decays and
stays at O after the disk disappears. The predicted solution also surprisingly preserves well the MBP, i.e., its maximum norm is always
bounded by 1.

Fig. 13 plots the predicted solution by mACNN and corresponding prediction errors for the conservative AC equation at the times
t=0,10,50,200,500. We can see that the two disks gradually merge together and finally form a perfect disk with the same area as
the initial state due to the property of mass conservation. Fig. 14 shows the evolution of mass, energy and maximum norm of the

11

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

1.25
04 1.00
0.75
92 0.50
0.25
0.0
0.00
o -0.25
-0.50
oy -0.75
-1.00

-0.4 -02 00 02 04

04 0.090
i 0.075
0.060
oo 0.045
-0.2 0.030
0.015

-0.4
0.000

-0.4 -02 00 -0.4 -02 00 02 04

Fig. 13. Plots of the mACNN prediction results (top row) and corresponding numerical errors (bottom row) for solving the conservative AC equation (4) with the
double-well potential at the times t =0, 10, 50, 200, 500 in the 2D bubble merging example.

0.75 0.0185

0.0180

0.0175

Mass
Maximum norm
o
Y

—0.25 0.0170

-0.50

0.0165
0.2
-0.75

0.0160
-1.00 0.0
0

Time Time Time

Fig. 14. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the mACNN predicted solution for the conservative AC equation (4) with
the double-well potential in the 2D bubble merging example.

predicted solution. The prediction errors again only occur in the transition regions of the two phases. It is seen that the mass is exactly
conserved along the time and the energy monotonically decays until the steady state is reached. We also note that the maximum

norm of the predicted solution is a little bit larger than 1, but much less than the theoretical bound a = 2T\/§ (since this theoretical
bound is not sharp), indicated by the red line in the plot. This phenomenon is also observed when conventional numerical methods
are considered, for example, in [16].

3.2.2. 2D grain coarsening

Next, we use the trained ACNN and mACNN to simulate the 2D grain coarsening problem, where an initial condition is chosen
randomly of the form u,(x, y) = 0.9rand(-) and then applied to all tests. Both the double-well potential and the Flory-Huggins potential
are considered. Fig. 15 presents the evolution of the prediction errors during the time interval [0,500] produced by ACNN for the
classic AC equation and by mACNN for the conservative AC equation with the double-well potential, together with the errors
produced by the convectional Picard iteration solver with the Crank-Nicolson approximations under the same time step and spatial
mesh sizes. We observe that our networks are able to accurately predict the dynamics. Indeed, the prediction errors are less than 1e-2
for ACNN and 1.8e-2 for mACNN during the entire simulation, which are close to those generated by the Crank-Nicolson scheme.
This implies that our networks are able to successfully learn the fully-discrete operators FDCN 4. and FDCN,, 4. The same behavior
can be observed in Fig. 16 when the two AC equations with the Flory-Huggins potential are considered.

In addition, the average running time per step for prediction using ACNN or mACNN is only around 0.002 seconds, while, under
the same computing environment using GPUs for parallel computing in PyTorch, the running time spent by the conventional Picard
iteration solver (the termination criterion is that the maximum absolute change is less than le-10 or the iteration number reaches
40) is around 0.02 seconds per step, which is 10 times larger. This makes the proposed deep learning method more favorable in
practice while still maintaining similar numerical accuracy.

We plot in Fig. 17 the predicted solution by ACNN and corresponding prediction errors for the classic AC equation with the
double-well potential at the times ¢ = 0,10, 50,200,500, and in Fig. 18 the evolution of mass, energy and maximum norm of the
predicted solution. It is seen that in the process of grain coarsening, one phase (the yellow-colored one) gradually gets smaller and
smaller, which will finally vanish after r = 500. Fig. 19 shows the predicted solution by mACNN for the conservative AC equation
with the double-well potential at the same time instances together with corresponding prediction errors, and Fig. 20 plots the
evolution of mass, energy and maximum norm of the predicted solution. In this situation, we still clearly observe the grain coarsening

12

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

— ACNN 0.0175 | — MACNN
0.0124 — CN
0.0150 4
0.010 A
0.0125 4
0.008
= .. 0.0100 4
g g
& 0.006 e
0.0075 4
0.004 -
0.0050 A
0.002 1 0.0025 4
0.000 0.0000 A
EJ 160 260 360 4(‘)0 SC'iO (‘) 160 2(‘)0 360 4(;0 560
Time Time
(a) by ACNN for the classic AC equation (b) by mACNN for the conservative AC equation

Fig. 15. Evolution of the prediction errors for solving AC equation with the double-well potential by ACNN and mACNN, compared with the numerical solutions of
the Crank—Nicolson scheme in the 2D grain coarsening example. Note A =1/256 and Az =0.1.

0.014 1
0.012 4 0.020 +
0.010 4
0.015 4
. 0.008 .
g g
w w
0.006 1 0.010 4
0.004 -
0.005 +
0.002 +
0.0004 0.000 4
'O 1(;0 2(’)0 360 460 560 6 160 2(’)0 360 460 5(;0
Time Time
(a) by ACNN for the classic AC equation (b) by mACNN for the conservative AC equation

Fig. 16. Evolution of the prediction errors for solving AC equations with the Flory-Huggins potential by ACNN and mACNN, compared with the numerical solutions
obtained by the Crank-Nicolson scheme in the 2D grain coarsening example. Note 2 =1/256 and Ar=0.1.

process, but the coarsening finally reaches a steady state without any phase disappeared due to the property of mass conservation.
The prediction results by ACNN and mACNN for the classic and conservative AC equations with the Flory-Huggins potential are
respectively presented in Figs. 21, 22, 23 and 24. The overall performance is similar to those in the double-well potential case in
terms of the simulated solutions and their errors.

3.3. Dynamics prediction for 3D examples

Finally, we investigate the proposed method on 3D benchmark problems with the interfacial parameter ¢ = 0.02. Represent the
set of grid points by {(x,,y/,zk)} =0 with x; =ih, y; = jh and z; = kh. Based on the central finite difference in space and the
Crank-Nicolson in time, the fully- dlscrete system for the classic AC equation (1) reads:

U,’,ilk _ U;;,j,k AhUI/k +Ah I_[k f(Uljk)+f(Uljk
= +

= . 14
At 2 2 a4
fori,j,k=1,2,---,N, where A, denotes the seven-point stencil for the 3D Laplacian as
i+1,j,k /]/k tj+1k i,j—1,k i,j,k—1 ,/k+] i.j.k
A Ui,j,k _ Un+l + U + U + Un+1 + Un+1 + U 6Un+l
h%pg1 — 2 ’
with U,’;’j * u(x;,;, - t,)- The fully-discrete system for the mass-conservative AC equation (4) in 3D becomes:
i.j.k i.j k i)k irjok i.jok ik irjk irjok
Ut ~Un"" _ MU AL SUED IO i FaUpet)+f(U’ as)
At 2 2 N3 = ’

13

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

1.00
04 0.75
0.50
: 0.25
' 0.00
-0.25
- -0.50
-0.75
) -1.00

-04 -02 00 02 04

: 0.090
! 0.075

0.060
i 0.045
; 0.030

0.015
) 0.000

-04 -02 00 02 04

Fig. 17. Plots of the ACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times 7 =0, 10, 50,200, 500 for solving the classic AC
equation (1) with the double-well potential in the 2D grain coarsening example.

00 2.00
“01 175 10
“02 150
08
2.0 E 10
03 125 5
>
") 15 £
g 06 08
2 04 2100 :
10 3 5%
5% 075 . 04
04
o 0.50
- 00 05 10 15 20 0 2 4 6 8 10
02
o7 0.25
0.00 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time Time Time

Fig. 18. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the ACNN predicted solution for the classic AC equation (1) with the

double-well potential in the 2D grain coarsening example.

1.25

k 1.00
0.75

- 0.50
0.25

: 0.00
-0.25
—0.50
-0.75
-1.00

-04 -02 00 02 04

0.4
0.2
0.0
-0.2
-0.4

0.090
0.075
0.060
0.045
0.030
0.015
0.000

-04 -02 00 02 04

Fig. 19. Plots of the mACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times =0, 10, 50, 200, 500 for solving the conservative
AC equation (4) with the double-well potential in the 2D grain coarsening example.

fori,j,k=1,2,---,N.

The same network architectures and training strategy as used for 2D problems are used to construct the ACNN and mACNN for 3D
problems. Correspondingly, the input U, now becomes a N X N X N x 1 tensor, and the filter size in each convolutional layer changes
to K X K x K with K =3. We set Ar=0.1, T},,;, = 5, and the spatial mesh size 4 = 1/64. Since the interfacial parameter ¢ = 0.02 is used
for 3D problems, instead of ¢ = 0.01 for 2D examples, we expect the coarsening process takes much short time to reach the steady
state, therefore shorter simulation intervals will be considered.

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589
100 - 12
415 175 10
0.50 1.50 (_

0.8
10
-0.25 075 061

0.5

Mass
s o
S N
g8 &
Energy
s N
g &
e
o o
Maximum norm
° °
S Y
5

0.4
—0.50 0.50

-0.75 0.25

-1.00 0.00 0.0

Time Time Time

Fig. 20. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the mACNN predicted solution for the conservative AC equation (4) with

the double-well potential in the 2D grain coarsening example.
1.00
0.4 0.75
02 0.50
0.25
0.0 0.00
-0.25
-0.2 —~0.50
-0.4 =0.73
-1.00

-04 -02 00 02 04

0.4 0.14
- 0.12
02 0.10
0.0 0.08
0.06
-0.2 0.04
0.02

-0.4
0.00

02 04

-0.4 -02 00

Fig. 21. Plots of the ACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times ¢ =0, 10, 50,200, 500 for solving the classic AC
equation (1) with the Flory-Huggins potential in the 2D grain coarsening example.

00 2.00
o1 175 10
150
-0.2
08
125 20 3
-03 > £
0 B 15 E s 08
g S 1,00 H
= 04 & 3
: 10 % 06
075 LI
-05 05 04
0.50
56 00 05 10 15 20 o 2 4 6 8 10
= 02
0.25
-0.7 \
0.00 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time Time Time

Fig. 22. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the ACNN predicted solution for the classic AC equation (1) with the
Flory-Huggins potential in the 2D grain coarsening example.

3.3.1. 3D bubble merging
We first test our ACNN and mACNN with the 3D bubble merging example for solving AC equations with double-well potential
function, which takes the following initial condition:
0.2—-1/(x—0.14)2 + y2 + 22 0.2+ 1/ (x+0.14)2 + 2 + 22

uo(x,y,z) =max | tanh ,tanh
€ €

Again only the double-well potential function is considered for this example. The simulation time interval is set to be [0, 50] for the
classic AC equation and [0, 100] for the conservative AC equation. Fig. 25 shows the iso-surfaces (value 0) of the predicted solution
by ACNN at the time instances ¢ = 0, 10,20, 30 for the classic AC equation and the evolution of mass, energy and maximum norm of
the predicted solution. We observe that the two balls gradually shrink and merge into one smaller ball, that finally disappears as
expected (roughly at t = 36). The energy decays monotonically and stays at O after the ball disappears, and the maximum bound 1
is well preserved by the predicted solution. Fig. 26 presents the iso-surface (value 0) of the predicted solution by mACNN at the time
instances 7 = 0, 10,30, 100 for the conservative AC equation, together with the evolution of mass, energy and maximum norm of the

15

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

1.00

- 075
0.50

: 0.25

y 0.00
~0.25
-0.50
-0.75
-1.00

-0.4 -0.2 O . . . X -0.4 -02 00 02 04

0.4 0.4 0.4 0.4

0.2 02 02 02

0.0 0.0 0.0 0.0
-0.2 -0.2 -0.2 -0.2 /
-0.4 -0.4 -0.4 —0.4

-0.4 -02 00 02 04 -04 -02 00 02 04 -04 -02 00 02 04

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

Fig. 23. Plots of the mACNN prediction results (top row) and corresponding prediction errors (bottom row) at the times 7 =0, 10, 50, 200, 500 for solving the conservative
AC equation (4) with the Flory-Huggins potential in the 2D grain coarsening example.

08 12
2.00
06
175 10
04
150
02 08
125 2.0 £ 10
00 - 2
@ B 15 E 06 0.8
g 2 1.00 3
= 02 & E
: 10 %
. % 06
0.75 =
-0.4 05 4 04
56 0.50
00 05 10 15 20 0 2 4 6 8 10
02
—08 0.25
-1.0 0.00 00
o 100 200 300 400 500 o 100 200 300 400 500 o 100 200 300 400 500
Time Time Time

Fig. 24. Evolution of the mass (left), the energy (middle), and the maximum norm (right) of the mACNN predicted solution for the conservative AC equation (4) with
the Flory-Huggins potential in the 2D grain coarsening example.

0.5 0.5 05 05
05 05 05 05
05 05 05 05
0] 0 0
\/ 0 0 0 0
05 05 05 05 05 05 05 05
12
-0.88 0016
10
4
-0.90 oot
0012 08
-0.92 E
0010 2
2] £
g 5 £ o6
= -0.94 & 0.008 £
]
3
=
~0.96 0.006 0.4
0.004
-0.98 02
0.002
-1.00
0.000 0.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time Time Time

Fig. 25. The ACNN prediction results for the classic AC equation (1) with the double-well potential in the 3D bubble merging example. Top row: plots of the iso-
surfaces (value 0) of the predicted solution at the time instances t = 0, 10, 20, 30; Bottom row: evolution of the mass (left), the energy (middle), and the maximum
norm (right) of the predicted solution.

16

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

05 05 05 05

0 0 w 0 0

05 0.5 0.5 0.5

05 05 05 05
2 o~ S T
05 05 05 05

\\ / g / N o
0 0 N o 0 G
\// ’

05 05 05 05 05 05 05 05

0.0170

0.0165 10

0.0160

3
©

025 0.0155

0.0150

Mass
°
g
8
Energy

0.0145

Maximum norm
°
Y

-0.25

o
kY

0.0140
-0.50

0.0135 0.2
-0.75

0.0130
-1.00 0.0

Time Time Time

Fig. 26. The mACNN prediction results for the conservative AC equation (4) with the double-well potential in the 3D bubble merging example. Top row: plots of the
iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 30, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum norm
(right) of the predicted solution.

predicted solution. We observe that the two balls gradually merge together and finally form a perfect ball with the same volume as
the initial state due to the mass conservation in this case. In addition, the mass is exactly conserved, and the maximum norm of the
predicted solution is a little bit larger than 1.

3.3.2. 3D grain coarsening

Finally, we use the trained ACNN and mACNN to predict the 3D grain coarsening dynamics with an initial condition generated
randomly by u,(x, y,z) = 0.9rand(-). The simulation time interval is set to be [0, 100] for both the classic and conservative AC equa-
tions. For the double-well potential case, the iso-surfaces (value 0) of the predicted solution at the times ¢ =0, 10, 50, 100 obtained by
ACNN for the classic AC equation and by mACNN for the conservative AC equation are displayed in Fig. 27 and Fig. 28, respectively,
together with the time evolution of the associated mass, energy and maximum norm of the predicted solution. Fig. 29 and Fig. 30
show the prediction results of the AC equations with the Flory-Huggins potential and the performance is again similar. They clearly
show that the grain coarsening process in both cases. Indeed, one phase gets smaller and smaller in the classic AC setting, while in the
conservative AC setting the coarsening finally reaches a steady state without any phase disappeared due to the mass conservation.
The energy dissipation and the maximum bound of the predicted solutions again show similar behaviors as observed in the previous
example. The average running time per step using ACNN or mACNN is only around 0.005 seconds for these 3D problems.

4. Conclusion

In this paper, we have introduced two novel neural network architectures in the end-to-end fashion, ACNN and mACNN, for
learning the dynamics of classic AC equation and the conservative AC equation respectively. The loss functions are constructed to
minimize the residuals of the fully-discrete system of the target equations based on the central finite difference discretization in space
and the Crank-Nicolson approximation in time. We also design an effective training strategy for our neural networks without using
any ground truth data. We demonstrate the outstanding performance of our proposed models, in terms of prediction accuracy and
computational cost, through extensive numerical tests and comparisons in two and three dimensions.

Our current networks for ACNN and mACNN are designed with a fixed time step size and for problems defined on rectangular
domains. To extend the applicability of our method, we first aim to develop new network structures that can handle both variable
time step sizes and more general domains. The former one is especially useful for the adaptive time stepping method for long term
simulations. It also remains very interesting to introduce some attention mechanisms to our ACNN and mACNN to further enhance
their prediction and generalization ability. In addition, the framework proposed in the paper also could be used to solve other second-
order and even high-order nonlinear PDEs. One such equation is the so-called Cahn-Hilliard (CH) equation, which is a fourth-order
nonlinear parabolic PDE that satisfies the mass conservation law, and has many important applications in phase field modeling. The
CH equation is notoriously stiff, requiring extremely small time steps even with fully implicit numerical methods, making it highly
time-consuming to solve. Our framework offers a promising direction for developing efficient deep learning methods to solve such
stiff equations in a fraction of the time. It would open up exciting possibilities for future research in this area.

17

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

"

0.5

05 05
12
00
05 10
-0.1
04 08
£ 10
-0.2 2
2 £
06 08
g g
%
-03 g 06
04
0.4
-0.4 o 2 4 6 8 10
02
=05 00
o 20 40 60 80 100 o 20 40 60 80 100

Time Time

Fig. 27. The ACNN prediction results for the classic AC equation (1) with the double-well potential in the 3D grain coarsening example. Top row: plots of the
iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum norm
(right) of the predicted solution.

1.00 12
075 o 1o
050
04 08
025 E —_—
2
8 £ e
£ 000 E o6
2 g 08
3
~0.25 E] 06
04
04
-0.50
o 2 4 6 8 10
02
-0.75
-1.00 00 0.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time Time Time

Fig. 28. The mACNN prediction solution for the conservative AC equation (4) with the double-well potential in the 3D grain coarsening example. Top row: plots of
the iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum
norm (right) of the predicted solution.

CRediT authorship contribution statement

Yuwei Geng: Methodology, Implementation, Writing-Original draft preparation, Reviewing and Editing. Yuankai Teng: Im-
plementation, Reviewing and Editing. Zhu Wang: Methodology, Reviewing and Editing. Lili Ju: Conceptualization, Methodology,
Writing-Original draft preparation, Reviewing and Editing.

18

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589

0
05
05
S
05
0
[

05 05
12
00
-01 05 10
-0.2
0.4 0.8
-03 £
» : 08
@ £ g
5 06
£ -04]
2 06
-05 H
04 04
-0.6
o 2 4 6 8 10
0.7 o
=0.8 00
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Fig. 29. The ACNN prediction results for the classic AC equation (1) with the Flory-Huggins potential in the 3D grain coarsening example. Top row: plots of the
iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum norm
(right) of the predicted solution.

05 05 05 05 05 05

1.00 12
075
05 10
050
04 08
025 £ 10
]
2
& 000 E o6 0.8
= E
% 06
-0.25 g
0.4 0.4
-0.50
0 2 4 6 8 10
02
-0.75
-1.00 0.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time Time Time

Fig. 30. The mACNN prediction solution for the conservative AC equation (4) with the Flory-Huggins potential in the 3D grain coarsening example. Top row: plots of
the iso-surfaces (value 0) of the predicted solution at the times t = 0, 10, 50, 100; Bottom row: evolution of the mass (left), the energy (middle), and the maximum
norm (right) of the predicted solution.

Declaration of competing interest
None
Data availability
Data will be made available on request.

19

Y. Geng, Y. Teng, Z. Wang et al. Journal of Computational Physics 496 (2024) 112589
Acknowledgements

This work is partially supported by U.S. Department of Energy under grant number DE-SC0022254 and U.S. National Science
Foundation under grant numbers DMS-2109633, DMS-2012469, and DMS-2038080.

References

[1] S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (6) (1979)
1085-1095.
[2] M. Benes, V. Chalupecky, K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math. 51 (2-3) (2004) 187-205.
[3] M. Cheng, J.A. Warren, An efficient algorithm for solving the phase field crystal model, J. Comput. Phys. 227 (12) (2008) 6241-6248.
[4] J.A. Dobrosotskaya, A.L. Bertozzi, A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Trans. Image Process. 17 (5) (2008)
657-663.
[5] Q. Du, L. Ju, X. Li, Z. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal.
57 (2) (2019) 875-898.
[6] Q. Du, L. Ju, X. Li, Z. Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev.
63 (2) (2021) 317-359.
[7]1 X. Feng, A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math. 94 (2003) 33-65.
[8] X. Feng, H.-j. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow, J. Sci. Comput.
24 (2005) 121-146.
[9] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.
[10] L. Ju, X. Li, Z. Qiao, H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope
selection, Math. Comput. 87 (312) (2018) 1859-1885.
[11] D.A. Kay, A. Tomasi, Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution, IEEE Trans. Image Process. 18 (10)
(2009) 2330-2339.
[12] D. Kessler, R.H. Nochetto, A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality, ESAIM: Math. Model. Numer.
Anal. (Modél. Math. Anal. Numér.) 38 (1) (2004) 129-142.
[13] J. Kim, D. Jeong, S.-D. Yang, Y. Choi, A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces, J. Comput. Phys. 334 (2017)
170-181.
[14] Y. Kim, G. Ryu, Y. Choi, Fast and accurate numerical solution of Allen-Cahn equation, Math. Probl. Eng. 2021 (2021) 1-12.
[15] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
[16] J. Li, L. Ju, Y. Cai, X. Feng, Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal
constraint, J. Sci. Comput. 87 (2021) 1-32.
[17] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, A. Anandkumar, Physics-informed neural operator for learning partial differential
equations, arXiv preprint, arXiv:2111.03794, 2021.
[18] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat.
Mach. Intell. 3 (3) (2021) 218-229.
[19] R. Mattey, S. Ghosh, A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations, Comput. Methods Appl.
Mech. Eng. 390 (2022) 114474.
[20] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707.
[21] J. Rubinstein, P. Sternberg, Nonlocal reaction—diffusion equations and nucleation, IMA J. Appl. Math. 48 (3) (1992) 249-264.
[22] D. Shao, W.-J. Rappel, H. Levine, Computational model for cell morphodynamics, Phys. Rev. Lett. 105 (10) (2010) 108104.
[23] J. Shen, C. Wang, X. Wang, S.M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film
epitaxy, SIAM J. Numer. Anal. 50 (1) (2012) 105-125.
[24] J. Shen, J. Xu, Convergence and error analysis for the scalar auxiliary variable (sav) schemes to gradient flows, SIAM J. Numer. Anal. 56 (5) (2018) 2895-2912.
[25] J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev. 61 (3) (2019) 474-506.
[26] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst. 28 (4) (2010) 1669-1691.
[27] T. Tang, J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math. (2016) 451-461.
[28] C. Wang, S.M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal. 49 (3) (2011)
945-969.
[29] H. Wang, X. Qian, Y. Sun, S. Song, A modified physics informed neural networks for solving the partial differential equation with conservation laws, Available
at SSRN 4274376, 2022.
[30] S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed deeponets, Sci. Adv. 7 (40)
(2021) eabi8605.
[31] A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (10) (1992) 7424.
[32] S.M. Wise, C. Wang, J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal. 47 (3)
(2009) 2269-2288.
[33] X. Wu, G. Van Zwieten, K. Van der Zee, Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-
growth models, Int. J. Numer. Methods Biomed. Eng. 30 (2) (2014) 180-203.
[34] Y. Xia, Y. Xu, C.-W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys. 5 (2009)
821-835.
[35] H. Xu, J. Chen, F. Ma, Adaptive deep learning approximation for Allen-Cahn equation, in: Computational Science-ICCS 2022: 22nd International Conference,
London, UK, June 21-23, 2022, Proceedings, Part IV, Springer, 2022, pp. 271-283.
[36] J. Xu, Y. Li, S. Wu, A. Bousquet, On the stability and accuracy of partially and fully implicit schemes for phase field modeling, Comput. Methods Appl. Mech.
Eng. 345 (2019) 826-853.
[37] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys.
327 (2016) 294-316.
[38] X. Yang, G.-D. Zhang, Convergence analysis for the invariant energy quadratization (ieq) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with
general nonlinear potential, J. Sci. Comput. 82 (2020) 1-28.
[39] J. Zhang, Q. Du, Numerical studies of discrete approximations to the Allen—Cahn equation in the sharp interface limit, SIAM J. Sci. Comput. 31 (4) (2009)
3042-3063.
[40] C.L. Zhao, Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks, Commun. Comput. Phys. 29 (3) (2020).

20

