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Abstract
This paper studies the problem of learning an unknown function f from given data
about f . The learning problem is to give an approximation f̂ to f that predicts the
values of f away from the data. There are numerous settings for this learning problem
depending on (i) what additional informationwe have about f (known as amodel class
assumption), (ii) how we measure the accuracy of how well f̂ predicts f , (iii) what is
known about the data and data sites, (iv) whether the data observations are polluted by
noise. A mathematical description of the optimal performance possible (the smallest
possible error of recovery) is known in the presence of amodel class assumption.Under
standard model class assumptions, it is shown in this paper that a near optimal f̂ can
be found by solving a certain finite-dimensional over-parameterized optimization
problem with a penalty term. Here, near optimal means that the error is bounded
by a fixed constant times the optimal error. This explains the advantage of over-
parameterization which is commonly used in modern machine learning. The main
results of this paper prove that over-parameterized learning with an appropriate loss
function gives a near optimal approximation f̂ of the function f from which the data
is collected. Quantitative bounds are given for howmuch over-parameterization needs
to be employed and how the penalization needs to be scaled in order to guarantee a
near optimal recovery of f . An extension of these results to the case where the data is
polluted by additive deterministic noise is also given.
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1 Introduction

Learning an unknown function f from given data observations is a dominant theme
in data science. The central problem is to use the data observations of f to construct
a function f̂ which approximates f away from the data. This paper is concerned
with evaluating how well such an approximation f̂ performs and determining the best
possible performance among all choices of an f̂ . Given answers to these fundamental
questions, we then turn to the construction of numerical procedures and evaluate their
performance against the known best possible performance.

To place ourselves in a firm mathematical setting, we assume that f is in some
Banach space X of functions and the performance of the approximant f̂ is measured
by ‖ f − f̂ ‖X . Typical choices for X are the L p(�) spaces with � a domain in Rd , or
smoothness spaces such as Sobolev spaces on �. The latter case arises in the context
of solving Partial Differential Equations (PDEs).

In the absence of additional information about f , it is easy to see that there can
be no performance guarantee, i.e. for any choice of f̂ , the error ‖ f − f̂ ‖X can be
arbitrarily large for a function f which satisfies the data. The additional information
we impose on f is referred to as model class information. The appropriate model
class for a learning problem depends very much on the underlying application and is a
compilation of all that is known about the function f from analysis of the application.
For example, in PDE applications, the model class is typically provided by physics or
regularity theorems for the PDE in hand. In other applications, such as image or video
classification, appropriate model classes are less transparent and open for debate.

Mathematically, amodel class is a compact subset K of X . Given such amodel class,
the learning problem is to determine a best approximant f̂ given only the information
that f is in K and f satisfies the given data. A best function f̂ is called the optimal
recovery of f .

Optimal recovery has the following well-known mathematical description (see e.g.
[12, 26, 37]). Let us denote the set of all possible candidates for f by K ∗, i.e.,

K ∗ := { f ∈ K : f satisfies the data}. (1.1)

This is a compact subset of K . When we are presented the data, all we know is that
it came from some f ∈ K but we do not know which one. Thus, the task of optimal
recovery is to findone function g ∈ X which simultaneously approximates all elements
in K ∗ to an error R with R as small as possible. This best error is described in the next
paragraph.
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We denote by B(z, r)X the ball in X of radius r with center z. Given any compact
set S in X , the Chebyshev radius R(S)X of S is defined as

R(S)X := inf{r : S ⊂ B(z, r)X for some z ∈ X}. (1.2)

While it can happen that R(S)X may not be attained, the number R(S)X is well defined
and is the error of optimal recovery. It can also happen that R(S)X is assumed but the
center z is not in S.

We now return to our set S = K ∗.When R = R(K ∗)X is assumed by a ball B(z, R),
then z would provide an optimal recovery for K ∗. Formore details on optimal recovery
and Chebyshev balls, we refer the reader to [12].

We return to our set K ∗. While the previous paragraph gives a simple mathematical
description of the optimal recovery of all functions f ∈ K ∗, it is nowhere close
to giving a numerical procedure for learning since finding an appropriate z is a
numerical challenge whose difficulty depends on the nature of K . Nevertheless, the
radius R(K ∗)X gives a benchmark formeasuring the success of a numerical procedure.
If a numerical procedure produces an f̂ ∈ X that can be shown to give an error

‖ f − f̂ ‖X ≤ CR(K ∗), f ∈ K ∗, (1.3)

it is said to be a near optimal recovery of f with constant C . Notice that any function
f̂ ∈ B(K ∗)X is a near optimal recovery with constant 2. If a numerical procedure is
shown to produce a near optimal recovery f̂ of f , one can rest assured that no other
numerical method will perform better save for the size of the constant C and issues
centering on the numerical cost to implement the method.

1.1 Dependence on data

The error R(K ∗)X of optimal recovery depends very much on the given data. We
assume throughout our paper that this data is given by the values ofm linear functionals
λ1, . . . , λm applied to f . These linear functionals should be defined for all functions
in K . In the simplest setting of noiseless data, the values

wi := λi ( f ), i = 1, . . . ,m, (1.4)

is the data information provided to us about f . Instead of K ∗ we shall use the notation

Kw := { f ∈ K : λi ( f ) = wi , i = 1, . . . ,m}, w = (w1, . . . , wm), (1.5)

to indicate the dependence of this set on the data. With this notation, the optimal
recovery rate of f from the given information is

optimal recovery rate = R(Kw)X . (1.6)
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Given that the m data functionals λ1, . . . , λm are fixed, we define

W := WK := W (λ1, . . . , λm; K ) := {(λ1(g), . . . , λm(g)) : g ∈ K } ⊂ R
m, (1.7)

which is the set of all possible data vectors that can arise from observing an f ∈ K .
So, Kw is defined for all w ∈ W . For all other values w̄, namely for all w̄ ∈ R

m \W ,
we define Kw̄ := ∅.

The most convenient assumption to make about the λ j ’s is that they are linear
functionals from the dual space X∗ of X . However, a common setting in learning
is to measure error in the X = L2(�,μ) norm, where � ⊂ R

d and μ is a Borel
measure, and to assume that the data are point values of f , which of course are not
linear functionals on all of X in this case. The latter case can be treated if the model
class K admits point evaluation. A natural assumption in this case is that K ⊂ C(�),
where C(�) is the space of continuous functions defined on �. Another common
setting for point evaluation is to assume that K ⊂ H , where H is a reproducing kernel
Hilbert space (RKHS) which may be different from the space X where we measure
performance. In Sect. 4, we study point evaluation in cases where X itself does not
admit point evaluations as linear functionals.

There are the following common settings for the data observations:

Setting I: The common general setting is that the λ j ’s are any fixed linear functionals
defined on K and we had no influence in their choice.

Setting II:We are free to choose the functionals λ j , subject to the restriction that there
are only m of them.

Setting III: The λ j ’s are given by a random selection of m independent draws under
some probability distribution.

Settings IV, V, VI: The functionals are chosen as in the above cases (I, II, III) but are
restricted to come from a dictionary of possible functionals. Point evaluation falls into
this setting.

Since Setting I is the most often used, in this paper we try to stay within this setting
as much as possible. Setting II is usually referred to as directed learning and is a
well studied setting in functional analysis. If the functionals are allowed to be any m
functionals from X∗ with the budgetm fixed, then the best choice for them functionals
gives an optimal recovery rate

dm(K )X := inf
λ1,...,λm∈X∗ sup

w∈Rm
R(Kw)X , (1.8)

which is known as theGelfand width of K . For classical model classes such as the unit
ball K := U (Y ) of a smoothness space Y that embeds into X , the Gelfand widths are
known at least asymptotically as m → ∞. Standard reference for results on Gelfand
widths in classical settings are [24, 33] and the citations therein.Notice that theGelfand
width would tell us the minimum number m of measurements needed to guarantee a
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desired accuracy of performance. Namely, if we desire recovery error at most ε, then
we would need m large enough so that dm(K )X ≤ ε.

Setting III seems to be the most often studied in modern learning. The optimal
performance in this case is given by the expected width

dmave(K )X := Expλ1,...,λm
sup

w∈Rm
R(Kw)X , (1.9)

where the expectation is taken with respect to random independent draws according
to the underlying probability measure.

If restrictions are placed on which measurement functionals are allowed to be used,
then the notions of Gelfand widths and expected widths are modified accordingly. In
the case that these functionals are required to be point evaluations, the corresponding
Gelfand width is referred to as the sampling numbers of K and the information is
referred to as standard information in the field of Information Based Complexity
(IBC). We will denote sampling numbers by

sm(K )X (1.10)

in this paper. Two of the standard references on this line of investigation are [29, 37].
Because of their importance in learning, finding the sampling numbers for various
model classes K is an active research topic (see e.g. [10, 21, 23, 27]).

Although this is not the theme of the present paper, let us emphasize that com-
puting the Gelfand widths and expected widths of model classes K is an important
problem in analysis. It is also important for the learning community since it gives the
best performance that would be possible in a numerical procedure for learning, and
therefore it can serve as a benchmark for evaluating the performance of a particular
proposed algorithm. While quite a bit is known about these widths for classical model
classes K , most of the known results are not useful in modern learning. Namely, it is
known that for classical model classes the sampling numbers (see [21]) and Gelfand
widths suffer the curse of dimensionality. This precludes the use of these classical
model classes in modern learning where the dimension d of the physical space is very
large (for example d > 104 in many classification problems). Hence, a general open
question is to find appropriate model classes in high dimensions that match the specific
application and then show that their sampling numbers and/or Gelfand widths avoid
the curse of dimensionality.

1.2 Discretization of the learning problem

The above notions are abstract and do not provide a numerical recipe for learning.
Rather, they provide only a benchmark for optimal performance. The goal of learning
is to design a procedure that provably converges to an optimal or near optimal recovery
of f , i.e., reaches the optimal benchmark. The development of learning procedures
usually proceeds through two stages. The first is to formulate a finite-dimensional
optimization problem associated to the data. Here, finite-dimensional means that the
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optimization problem depends on only a finite number of parameters. The second stage
is to propose and analyze numerical procedures for solving the finite-dimensional
optimization. In this paper, we shall primarily concern ourselves with the first stage
and ask the question:

Which finite-dimensional optimization problems, if they are successfully numer-
ically implemented, are guaranteed to provide the optimal learning possible from
the given data?

This paper provides an answer to this question in a variety of settings. Namely, it
is shown that the solution to a suitable over-parameterized penalized least squares
optimization problem gives a near optimal learning procedure. This fact may shed
some light on why over-parameterized learning using neural networks is preferred in
modern machine learning. We touch upon techniques for numerically implementing
the finite-dimensional optimization only briefly when we discuss some concrete
examples.

1.3 Outline of the paper

In the next section, we begin by recalling the mathematical description of optimal
learning procedures based on Chebyshev balls. The remainder of the paper concen-
trates on introducing finite-dimensional minimization formulations, under a model
class assumption, whose solution is near optimal. Each of these finite-dimensional
minimizations can be taken of the form

f̂ ∈ argmin
g∈�n

⎛
⎝τ

m∑
j=1

[w j − λ j (g)]2 + μ penK (g)

⎞
⎠ , (1.11)

where τ, μ > 0 are suitably chosen parameters, �n is a linear space of dimension n
or a nonlinear set described by n parameters, and pen is a penalty term depending on
the model class K .

We have chosen to call these problems finite-dimensional minimization problems
since the minimization is performed over the set �n depending on a finite number n
of parameters. In going further, we will denote this set simply by �. The number of
its parameters depends on the accuracy δ > 0 with which � approximates K . For
example, we will impose that

dist(K , �)X := sup
f ∈K

dist( f , �)X = sup
f ∈K

inf
g∈�

‖ f − g‖X < δ,

for suitably chosen small enough δ > 0. The value of δ will determine the number
n = n(δ) of parameters needed to describe �. Thus, the smaller the δ, the bigger the
n, which corresponds to the fact that the set � is described by n parameters whose
number will be (in general) much larger than the number m of data available for f
(and thus justify the use of the term over-parametrized optimization problem).
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Remark 1.1 In general, the minimization problem in (1.11) may not have a unique
solution from �n . Unless stated otherwise, the statements of the theorems that follow
hold for any minimizer.

We determine a penalty term for each model class K of X and each of the above
settings for the data. These are given in Sect. 3. If the model class K has additional
structure, for example, if it is convex and centrally symmetric about the origin, then
the penalty can be simplified and is presented in Sect. 3.1. The case of data consisting
of point evaluations needs a slightly different treatment since the data is no longer
necessarily given by a linear functional on X . Point evaluation is considered in Sect. 4.

The above description of the learning problem assumes that the data are exact. A
more realistic assumption is that the data observations are corrupted by noise. We
have chosen to treat the noiseless case first and then later address how the addition
of noise deteriorates the accuracy of best recovery. In Sect. 5, we consider the case
when the data observations are corrupted by additive deterministic noise. In this paper,
we do not treat the more common assumption in statistics of stochastic noise and the
correspondingminimax estimates since the treatment of that case requires substantially
new ideas.However,we dodiscuss the case of randomsampling inSect. 7. In numerical
implementations it is convenient to use other forms of the loss function appearing in
(1.11). We discuss this aspect in Sect. 6.

In the final section of this paper, we study a couple of specific settings in learning
with the aim of discussing the numerical aspects of implementing the proposed finite-
dimensional optimization. In our first example, we treat the case when the model class
K is the unit ball of a Sobolev space and the recovery error is measured in L2(�).
This setting is not realistic for the modern problems of learning, but it does allow
us to put forward a specific numerical method for solving the optimal discretization
for which convergence of the numerical method is known, namely the Finite Element
Method. Our second example is more germane to modern learning.While we continue
to measure error in L2(�), the model class K is taken as the convex hull of the ReLU
single layer neural network dictionary. We describe the correct optimization prob-
lem for an optimal learning procedure. While much is known about solutions to this
finite-dimensional problem [30, 34] and numerical methods for solving the optimiza-
tion problem [18, 36], very fundamental questions concerning what is the asymptotic
behavior of the optimal error of recovery are not yet settled. This is discussed in more
details in Sect. 8.2.

There is a rather vast literature on optimal recovery and learning. We close this
introduction with a few remarks which can serve to explain how our results fit into
the current literature. Let X be the Banach space in whose norm ‖ · ‖X we mea-
sure the optimal recovery or learning error. If the model class K is the unit ball
K := { f : ‖ f ‖Y ≤ 1} of a Banach space Y which compactly embeds into X , we let
g be the minimum norm interpolant of the data. That is, g is the function in Y which
satisfies the data and has smallest Y norm. Obviously, g is in K and is therefore a near
optimal recovery with constant C ≤ 2. If Y is a Hilbert space (regardless of whether
X is) then it can be shown that g is actually the Chebyshev center of K and g is an
optimal recovery (C = 1). The function g is sometimes referred to as an interpolating
spline even though it is not necessarily a spline function in the classical sense. Of
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course, this does not directly give an algorithm since one still must compute g. There
is a general numerical strategy for computing g which rests on computing the Riesz
representers of the linear functional λ j viewed as functionals on Y . If one adopts this
approach then one still must answer the question of how accurate the computation of
the Riesz representers must be in order to have near optimality of recovery. There are
some settings in which one can prove that the minimum norm interpolant g lives in a
finite dimensional linear space or finite dimensional manifold (see [38] and [30] for
recent literature of this type).When such representer theorems are proven, they provide
a powerful numerical tool. The approach discussed in the present paper differs from
the minimum norm interpolant approach in that we treat more general model classes
K and we put forward a finite-dimensional optimization problem based on penalties
that is always guaranteed to give a near optimal solution. Moreover, we quantify how
fine we must choose the discretization �n and how small we must choose the penalty
parameter τ .

Optimization problems of the type proposed here to find near optimal recovery are
very common in the literature and fall under the notions of Tikhonov regularization,
least squares minimization, and LASSO problems (see [19]).While thesemethods are
used often, the typical results in the literature do not describe how this is to be carried
out if one wants to guarantee a near optimal recovery. Certified performance is usually
proven in particular applications (such as sparse signal recovery) and fixed form of
the loss functions (see [6–8, 25]). In this paper, we present a general framework and
derive provable bounds on how much over-parameterization is needed and how the
penalization has to be scaled in order to obtain a near optimal recovery of the observed
function.

2 Learning in a Banach space setting

We begin by considering the case where we measure accuracy in a Banach space X
and the model class K is simply a compact subset of X . We assume that the data are
the observations (1.4), where the λ j ∈ X∗ are linear functionals on X . The vector
w := (w j )

m
j=1 ∈ R

m is called the data observation vector of the unknown f and
the λ j , j = 1, . . . ,m, are the observation functionals. Without loss of generality,
we can assume that the λ j ’s are normalized to have norm one, that is, ‖λ j‖X∗ = 1,
j = 1, . . . ,m. All theorems that follow can be restated in the general case, with the
norms of the functionals present as constants at the appropriate places. We shall also
use the notation

λ(g) := (λ1(g), . . . , λm(g)) ∈ R
m, g ∈ X . (2.1)

and (1.7) throughout this paper. Notice that since λ is continuous on K and K is
compact in X , the set WK is a compact subset of Rm . Obviously, all these quantities
depend on the λ but we generally do not indicate this dependence since we think of
the observation functionals as fixed.

As noted in the introduction, the totality of information we have about the unknown
function f is that f ∈ Kw for the given data observations w. As with K ∗, we define

123



Optimal learning Page 9 of 37 15

B(Kw)X to be a Chebyshev (i.e., smallest) ball in X which contains Kw. An optimal
recovery of f is the Chebyshev center zw of B(Kw)X and the error of optimal recovery
is the Chebyshev radius R(Kw) := R(Kw)X of B(Kw)X . The goal of learning is to
find a numerical procedure which would take the data and the knowledge of K and
create an approximant f̂ ∈ X such that

‖ f − f̂ ‖X ≤ CR(Kw)X , (2.2)

with a reasonable constant C . We call such an approximant f̂ a near optimal recovery
for Kw with constant C .

Remark 2.1 It can happen that R(Kw)X is zero. This would mean that there is only one
function in Kw, i.e., only one function from K that fits the data. In this case we would
only have near optimality in the above sense if f̂ = f . To avoid this exceptional case,
we assume in going forward that R(Kw)X > 0 in the theorems that follow. It is easy
to formulate a version of each of these theorems to handle the case R(Kw)X = 0 but
we leave that task to the reader.

In this paper, we are interested in formulating finite-dimensional optimization
problems whose solution would provide a near optimal approximant f̂ to f . We begin
by giving sufficient conditions on a function f̂ to be a near optimal approximant.

2.1 A preliminary result

It seems very doubtful that a numerical method would find an element g ∈ Kw when
given just w and the knowledge of K . A more reasonable numerical task would be
to find a g ∈ X such that g almost satisfies the data and is close to K . We can
formulate the concept of almost satisfying the data in many equivalent ways since the
data observations are finite. To be concrete, we shall use the weighted empirical �2
norm

‖v‖ := ‖v‖�2(Rm) :=
⎡
⎣ 1

m

m∑
j=1

|v j |2
⎤
⎦
1/2

, v ∈ R
m . (2.3)

Notice that the data mapping λ is a linear mapping from X to Rm whose norm is one
when we use (2.3) as the norm for Rm . This means that λ is a Lipschitz mapping:

‖λ( f ) − λ(g)‖ ≤ ‖ f − g‖X , f , g ∈ X . (2.4)

We shall use this fact repeatedly, usually without further mention, in this paper.
Let us suppose that when given an ε > 0 we can find a gε ∈ X for which

‖λ(gε) − w‖ ≤ ε and dist(gε, K )X ≤ ε. (2.5)
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A numerical scheme may have the ability to drive ε to zero at the expense of higher
levels of computation. The question arises as to which level of accuracy ε would
guarantee that gε provides a near optimal recovery. Equivalently, we would need gε

to provide good approximation to the Chebyshev center zw of Kw. To formulate such
a bound, we introduce the following expanded Chebyshev radius

R(K (w, ε))X , where K (w, ε) :=
⋃

w′: ‖w′−w‖≤ε

Kw′ , (2.6)

which is the Chebyshev radius of the inflated set K (w, ε). Notice that Kw ⊂ K (w, ε)

for all ε > 0. We discuss properties of R(K (w, ε))X in more detail in the next
subsection. The behavior of this expanded radius is important for deciding how much
over-parameterization is needed for near optimal recovery. For now, we prove the
following lemma.

Lemma 2.2 For any compact subset K of X and any w ∈ R
m, we have

lim
ε→0+ R(K (w, ε))X = R(Kw)X . (2.7)

Proof Since the sets K (w, ε), ε > 0, are nested, the function R(K (w, ε))X , ε > 0,
is decreasing as ε decreases. Hence, the limit in (2.7) exists. Suppose that this limit
is R0 and R0 > R(Kw)X . Let us fix ξ > 0 such that R0 > R0 − ξ > R(Kw)X .
Since for each ε > 0 we have R(K (w, ε))X ≥ R0, there is an fε ∈ K (w, ε) with
‖ fε − zw‖X ≥ R0 − ξ , where zw is the Chebyshev center of B(Kw)X . Then
we take εn → 0 and consider the corresponding sequence fεn ∈ K (w, εn) with
‖ fεn − zw‖X ≥ R0 − ξ . Since K is compact, this sequence has a subsequence which
converges to a limit f ∗ in K and ‖ f ∗ − zw‖X ≥ R0 − ξ > R(Kw). We also know
that λ( f ∗) = w and so f ∗ ∈ Kw. This means that ‖ f ∗ − zw‖X ≤ R(Kw). This
contradicts the assumption R0 > R(Kw) and proves (2.7). �

Remark 2.3 Let us record for further use that for any fixed γ > 0 and w ∈ R

m , we
have

lim
ε→0+ R(K (w, γ + ε))X = R(K (w, γ ))X . (2.8)

This is proved as in Lemma 2.2 by using the fact that the collection of sets K (w, γ +ε),
ε > 0, is a monotone family.

The following theorem gives a quantitative bound on the recovery performance of
a constructed function gε in terms of how closely it fits the data and how close it is to
the model class K .

Theorem 2.4 If gε is any function in X satisfying (2.5), then

‖ f − gε‖X ≤ ε + 2R(K (w, 2ε))X , f ∈ Kw. (2.9)
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If R(Kw) �= 0, then for any C > 2 and for ε suitably small the function gε is a near
best recovery of f with constant C.

Proof We know that there is an h ∈ K such that ‖gε − h‖X ≤ ε. This h satisfies

‖λ(h) − w‖ ≤ ‖λ(h) − λ(gε)‖ + ‖λ(gε) − w‖ ≤ 2ε,

where we have used (2.4). Thus, h ∈ Kw′ where ‖w − w′‖ ≤ 2ε. Hence, h is
in the set K (w, 2ε). Now any f ∈ Kw is also in K (w, 2ε). This means that
‖ f − h‖X ≤ 2R(K (w, 2ε))X . Since ‖gε − h‖X ≤ ε, we obtain (2.9). If C > 2
and ε > 0 is sufficiently small, then ε + 2R(K (w, 2ε))X is smaller than CR(Kw)X
because of Lemma 2.2. �


2.2 The behavior of R(Kw)X

The analysis that follows in this paper depends on the function ε �→ R(K (w, ε))X and
so it may be useful to the reader to make a few remarks on this function. Its behavior
depends very much on K and needs to be analyzed for each K individually. From the
above estimates, we see that a critical issue in quantitative bounds for the performance
of learning procedures is the rate of convergence of R(K (w, ε))X to R(Kw)X as
ε → 0+. It is easy to give examples of compact sets K for which R(K (w, ε))X tends
to R(Kw)X arbitrarily slowly. Concerning the behavior of R(Kw)X , let us note that
this may not be a continuous function of w. To illustrate these issues, we consider the
following simple example of a compact set in R2.

Example We define the compact set K := [0, 1]2 ∪ ([1, 2] × { 12 }
) ⊂ X = R

2,
equipped with the Euclidean norm. We take the measurement functional λ to be the
first coordinate of a point x = (x1, x2) ∈ R

2: λ(x) = x1. Thus, we have

Kw =
⎧⎨
⎩

{(w, y) ⊂ R
2 : y ∈ [0, 1]}, w ∈ [0, 1],

{(w, 1
2 )}, w ∈ [1, 2],

∅, w ∈ (−∞, 1) ∪ (2,∞).

For this example the function R(Kw)X is a discontinuous function of w (see the
bottom-left graph in Fig. 1). Nowwe consider the sets K 1

ε := K (w̃, ε)with w̃ ∈ (0, 1)
and K 2

ε := K (ŵ, ε) with ŵ = 1.1, pictured in Fig. 1 (top-right), along with their cor-
responding Chebyshev balls. The graph of R(K 2

ε )X as a function of ε is presented at
the bottom-right. This function is a discontinuous function of ε with the discontinuity
occurring at ε = 0.1. If we move the point ŵ to be closer to 1, then the jump dis-
continuity in R(K (ŵ, ε))X as a function of ε > 0 will move closer to 0. The main
observation to make here is that the convergence of R(K (ŵ, ε))X , ε → 0+, towards
R(Kŵ)X = 0 is not uniform in ŵ and depends on the distance of ŵ to [0, 1].

This example shows that obtaining quantitative bounds on the performance of
numerical procedures via the construction of a gε will be very much dependent on
the set K and will therefore need its own ad hoc analysis.
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Fig. 1 Top-Left: the set K = [0, 1]2 ∪
(
[1, 2] × { 12 }

)
and Kw for two different measurements, w̃ ∈ (0, 1)

and ŵ = 1.1; Bottom-Left: R(Kw)X as a function of w; Top-Right: the sets K 1
ε and K 2

ε and their corre-
sponding Chebyshev balls; Bottom-Right: Graph of R(K 2

ε )X as a function of ε

3 Near optimal recovery through discretization

The results of the previous section do not constitute a numerical learning procedure.
Rather, they only show that optimal performance can be obtained if an algorithm
provides a function gε satisfying condition (2.5).

In this section, we begin our discussion of learning procedures by formulating
finite-dimensional optimization problems whose successful numerical implementa-
tion would yield a near optimal numerical recovery algorithm. Thus, the problem of
designing near optimal learning procedures is reduced to questions centering around
the convergence of optimization algorithms for the derived finite-dimensional opti-
mization problem.

Any numerical procedure for learning is based on some method of approximation.
The most common tools used are polynomials, splines, wavelets, or neural networks.
Let �n , n = 1, 2, . . . , be the sets used for the approximation, where n denotes the
complexity of �n . The two main examples we have in mind are the cases where �n is
a linear subspace of X of dimension n and the case where�n is a parametric nonlinear
manifold of functions from X depending onCn parameters. The most common exam-
ple in the latter case is the nonlinear manifold consisting of the outputs of a neural
network (NN) with n hidden neurons and some specified architecture and activation
function (see [11] for an overview).

The first question we address is how we should use �n to build a numerical pro-
cedure. The answer depends heavily on the structure of K and is discussed in the
sub-sections that follow.
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3.1 Convexmodel classes

We begin with the most favorable case where K is a compact convex centrally sym-
metric (about the origin) subset of X . Any such set can be written as the unit ball
K = U (Y ) of a normed linear subspace Y of X , where the norm on Y is induced by
K (see e.g. [41]). Since K is compact, we have the embedding inequality

‖g‖X ≤ C0‖g‖Y , g ∈ Y , (3.1)

whereC0 is the embedding constant which depends only on K . In order to simplify the
notations, we use the convention ‖g‖Y := ∞ for g /∈ Y . In this setting, we introduce
for any μ > 0 the loss function

Lμ(g) := ‖λ(g) − w‖ + μ‖g‖Y . (3.2)

This loss function is defined for all g ∈ X but infinite when g /∈ Y .
We choose here not to raise the norms involved in the loss function to any powers

but consider such variants in Sect. 6. Formulation (3.2) is also known as the “square-
root” formulation of the loss function since the data fidelity term is not squared. It
is analogous to the so-called “square-root LASSO” decoder in statistics, compressed
sensing and machine learning. One of the motivations for introducing the square-root
LASSO is that it is agnostic to the noise level, that is, the tuning parameter μ can be
chosen independently of the norm of the noise, whereas in the standard LASSO the
optimal tuning parameter should depend on the norm of the noise. These decoders have
recently become quite popular in learning problems.While they were first popularized
in high-dimensional statistics (see [39]), recently they were studied in the context of
(weighted) sparse recovery in compressed sensing (see [1, 3, 15, 31]) and deep learning
for high-dimensional function approximation (see [2]).

The following theoremdescribes a finite-dimensional optimization problemwhose
solution is a near optimal recovery.

Theorem 3.1 Let K = U (Y ) with Y a normed linear subspace of X and let the set
� ⊂ X satisfy the condition

dist(K , � ∩ K )X < δ. (3.3)

Then, if f ∈ Kw, the function

f̂ := f̂�,μ ∈ argmin
g∈�

Lμ(g) (3.4)

is a near optimal recovery of f , that is,

‖ f − f̂ ‖X ≤ CR(Kw)X , (3.5)
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for any C > 2, provided that R(Kw)X �= 0, δ ≤ μ2 and μ is sufficiently small. More
precisely, it is sufficient that

ε := μmax(C0, 1 + μ) (3.6)

satisfies the inequality

ε + 2R(K (w, 2ε))X ≤ CR(Kw)X ,

which is possible for μ > 0 small enough because of Lemma 2.2.

Proof Let f be any function in K = U (Y ) which satisfies the data, i.e., f is in Kw,
and let f� ∈ � ∩ K satisfy ‖ f − f�‖X ≤ δ. From the definition of f̂ , we know that

‖w − λ( f̂ )‖ + μ‖ f̂ ‖Y ≤ ‖w − λ( f�)‖ + μ‖ f�‖Y ≤ δ + μ, (3.7)

where the first term was estimated by

‖w − λ( f�)‖ = ‖λ( f − f�)‖ ≤ ‖ f − f�‖X ≤ δ,

and the second term uses that f� ∈ K so that ‖ f�‖Y ≤ 1.
We now assume that δ ≤ μ2 and μ is small. We see from (3.7) that f̂ almost

satisfies the data since

‖w − λ( f̂ )‖ ≤ δ + μ ≤ μ(1 + μ).

Also, f̂ is close to K since (3.7) shows that ‖ f̂ ‖Y ≤ 1+μ. Therefore (1+μ)−1 f̂ ∈ K ,
and from (3.1) we have

dist( f̂ , K )X ≤ ‖ f̂ − (1 + μ)−1 f̂ ‖X = μ

1 + μ
‖ f̂ ‖X ≤ μ

1 + μ
C0‖ f̂ ‖Y ≤ μC0.

In other words, gε := f̂ satisfies (2.5) for ε := μmax(C0, 1+μ). Theorem 2.4 shows
that for anyC > 2, the function f̂ is a near optimal recovery with constantC , provided
μ (and hence δ) is sufficiently small. The last statement of the theorem follows from
Theorem 2.4. �

Remark 3.2 In practice, numerical optimizers may not find a global minimizer f̂ in
(3.4). Rather, they are more likely to produce f̃ ∈ � such that

Lμ( f̃ ) ≤ Lμ( f̂ ) + ε̃

for some ε̃ > 0. In this case, the conclusion of Theorem 3.1 remains valid provided ε̃

is sufficiently small; namely ε̃ ≤ δ ≤ 1
2μ

2. Indeed, the estimate (3.7) gives

‖w − λ( f̃ )‖ + μ‖ f̃ ‖Y ≤ δ + μ + ε̃ ≤ 2δ + μ ≤ μ(1 + μ),
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and the proof is completed as in the theorem.

Remark 3.3 Notice that if � is convex (e.g. if � is a linear space) and if ‖ · ‖Y is
strictly convex, then the minimizer of Lμ over � is unique because Lμ is always
strictly convex on �.

3.2 General model classes

We next want to give a discretization problem whose solution is near optimal for any
model class K , i.e., for any compact set K ⊂ X . For this, we introduce the loss
function

LK (g) := ‖λ(g) − w‖ + dist(g, K )X , g ∈ X . (3.8)

The following theorem holds.

Theorem 3.4 Let K be any compact subset of X and let the set � ⊂ X satisfy the
condition

dist(K , �)X < δ. (3.9)

Then, if f ∈ Kw, the function

f̂ ∈ argmin
g∈�

LK (g) (3.10)

is a near optimal recovery of f , that is, we have for any C > 2

‖ f − f̂ ‖X ≤ CR(Kw)X , (3.11)

provided that R(Kw)X �= 0 and δ is sufficiently small. More precisely, it is sufficient
that

2δ + 2R(K (w, 4δ))X ≤ CR(Kw)X ,

which is possible because of Lemma 2.2.

Proof Let f be any function in K which satisfies the data, i.e., f is in Kw, and let
f� ∈ � satisfy ‖ f − f�‖X ≤ δ. From the definition of f̂ , we know that

‖w − λ( f̂ )‖ + dist( f̂ , K )X ≤ ‖w − λ( f�)‖ + dist( f�, K )X ≤ δ + δ = 2δ,

(3.12)
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where the first term was estimated by

‖w − λ( f�)‖ = ‖λ( f − f�)‖ ≤ ‖ f − f�‖X ≤ δ.

It follows that the function gε := f̂ satisfies (2.5) with ε = 2δ. From Theorem 2.4,
we find that

‖ f − f̂ ‖X ≤ 2δ + 2R(K (w, 4δ))X , f ∈ Kw. (3.13)

If C > 2 and δ is sufficiently small, Lemma 2.2 gives that the right side of (3.13) does
not exceed CR(Kw)X . �


The difference between the case of a general model class K and the special case
where K is convex and centrally symmetric is in the form of the penalty term in the
loss function. Ostensibly, the penalty in the general case would be more difficult to
numerically implement. Also note that the penalty term does not require a parameter
to balance it with the data fitting term. This is because we simply want both terms to
be small simultaneously.

Remark 3.5 Let us emphasize that the results in this section do not yet give a numerical
procedure for near optimal recovery since we have not given a numerical recipe for
solving the corresponding finite-dimensional problem. This is discussed in more
details in Sect. 8.

Remark 3.6 Similarly to Remark 3.2, if we only approximately solve the minimization
problem we still obtain a near optimal recovery provided the numerical error is small
enough.

4 The special case of point values and recovery in Lp

We turn next to what is the most common setting in machine learning where the data
comes from point evaluations. We assume that f is a function defined on � ⊂ R

d ,
d ≥ 1, where� is the closure of a bounded domain inRd . For the moment, we assume
that we have noiseless observations

wi = f (xi ), xi ∈ � ⊂ R
d , i = 1, . . . ,m, (4.1)

where the data sites xi come from�. The most common choice of the metric in which
to measure recovery error is an X = L p(�) norm on � and 1 ≤ p ≤ ∞. Since point
evaluation is not a linear functional on X , we cannot apply the results of the previous
section. Note however, that to define Lμ or LK , it is enough to have point evaluation
well defined for functions in the model class K and functions in �.
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In order to guarantee that point evaluation is well defined for functions in K , we
make the following assumption on the model class K .

Main AssumptionWe assume the model class K is a compact subset of C(�). So, in
particular, all functions in K have well defined point values.

Even thoughwe impose this assumptionon K ,we continue tomeasure the performance
of the learning procedure in a Banach space X for which we have an embedding

‖ f ‖X ≤ CX‖ f ‖C(�). (4.2)

Let K be a model class satisfying our Main Assumption. As in the previous
section, we shall consider two settings depending onwhether K is convex and centrally
symmetric, or K is a general compact set. The results we give in this section are similar
to those of the preceding section with the modifications necessary to handle the new
setting of point evaluation.

As before, let Kw be the set of all f ∈ K which satisfy the given measurements,
i.e. (4.1). As in the previous section, the optimal recovery for a model class K with
the data (4.1) is given by the Chebyshev center of Kw and the optimal error is the
Chebyshev radius R(Kw)X . This radius will depend on X .

Now, let us see what the previous section says since our setting is slightly different.
As before, we let

K (w, ε) :=
⋃

‖w′−w‖≤ε

Kw′ , (4.3)

and let R(K (w, ε))X be the Chebyshev radius of this inflated set in X .
The following are the analogues of Theorem 2.4 and Lemma 2.2. We use the

notation

λx(g) := (g(x1), . . . , g(xm)) ∈ R
m, x := (x1, . . . , xm), xi ∈ � ⊂ R

d ,

g ∈ C(�), (4.4)

when discussing point evaluation data. Note that when g, h ∈ C(�), it follows from
definition (2.3) that

‖λx(g) − λx(h)‖ ≤ ‖h − g‖C(�).

Proposition 4.1 Let X satisfy the embedding (4.2) and let K satisfy our Main
Assumption. If f ∈ Kw, where w = λx( f ), and gε is any function in C(�) with
‖w − λx(gε)‖ ≤ ε and dist(gε, K )C(�) ≤ ε, then

‖ f − gε‖X ≤ CXε + 2R(K (w, 2ε))X . (4.5)
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Proof The proof is the same as that of Theorem 2.4 after choosing h in K to satisfy
the inequality ‖gε − h‖C(�) ≤ ε. �

Remark 4.2 In the last proposition, it is natural to ask why we need gε close to K in the
norm ofC(�) and not just in the norm of X . The following example clarifies that issue.
Let � = [0, 1] and X = L2[0, 1]. Consider a set x of data sites. Let K = { f1, f2},
where f1 ≡ 1 and f2 ≡ 0. Let w = (1, 1, . . . , 1) which is data satisfied only by
f = f1. If gε is one at the data and ‖gε‖L2[0,1] < ε, then gε satisfies the data and is
close to K in the X norm. However, the left side of (4.5) is close to 1 and the right
side is close to 0, so the Proposition using distance in X is not valid.

Lemma 4.3 If X satisfies (4.2) and K satisfies ourMain Assumption, then, we have

lim
ε→0+ R(K (w, ε))X = R(Kw)X . (4.6)

Proof The proof is similar to that of Lemma 2.2 and so we only indicate the small dif-
ferences. The limit R0 on the left in (4.6) exists from monotonicity. If R0 > R(Kw)X ,
then we fix ξ > 0 such that R0 > R0 − ξ > R(Kw)X and because of the compactness
of K in C(�) there is a sequence εn → 0+ and a sequence fn ∈ K (w, εn)X that
converges to a limit f ∗ in K in the C(�) norm, and because of (4.2), in the X norm.
Then, ‖ f ∗ − zw‖X ≥ R0 − ξ > R(Kw). From the convergence in C(�), it follows
that f ∗ is in Kw and so we have ‖ f ∗ − zw‖X ≤ R(Kw)X , which contradicts that
‖ f ∗ − zw‖X > R(Kw). �


Let us now assume that K = U (Y ), where Y is a subspace of C(�) equipped with
a norm ‖ · ‖Y . Typical examples for Y are smoothness spaces: Lipschitz, Sobolev,
Besov spaces. The Main Assumption is simply requiring that Y compactly embeds
into C(�). Therefore, we know that

‖ f ‖C(�) ≤ CY , f ∈ K .

We shall use this inequality as we proceed without mentioning it. Such embeddings
typically follow from Sobolev embedding theorems.

The following theoremdescribes a finite-dimensional optimization problemwhose
solution is a near optimal recovery. In the statement of this theorem we use the loss
function Lμ as given in (3.2) using point evaluation functionals (see (4.4)).

Theorem 4.4 Let K = U (Y ) with Y a normed linear subspace of C(�) satisfy the
Main Assumption, let X satisfy the embedding (4.2), and let the set � satisfy the
condition

dist(K , � ∩ K )C(�) < δ. (4.7)

If f ∈ Kw, where w = λx( f ), then the function

f̂ := f̂�,μ ∈ argmin
g∈�

Lμ(g), where Lμ(g) := ‖λx(g) − w‖ + μ‖g‖Y , (4.8)
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is a near optimal recovery of f , that is,

‖ f − f̂ ‖X ≤ CR(Kw)X , (4.9)

for any C > 2, provided that R(Kw)X �= 0, and δ and μ are sufficiently small.
More precisely, it is enough to choose δ ≤ μ2 and μ small enough so that
CXε + 2R(K (w, 2ε))X ≤ CR(Kw)X with ε := μmax(μ + 1,CY ).

Proof The proof is the same as that of Theorem 3.1 except that now we choose
f� ∈ � ∩ K to satisfy ‖ f − f�‖C(�) ≤ δ and use Proposition 4.1 and Lemma
4.3. �


We also have the analogue to Theorem 3.4.

Theorem 4.5 Let K satisfy theMain Assumption, let X satisfy the embedding (4.2),
and let the set � satisfy the condition

dist(K , �)C(�) < δ. (4.10)

If f ∈ Kw, where w = λx( f ), then the function

f̂ := f̂� ∈ argmin
g∈�

L′
K (g), where L′

K (g) := ‖λx(g) − w‖ + dist(g, K )C(�),

(4.11)

is a near optimal recovery of f , that is

‖ f − f̂ ‖X ≤ CR(Kw)X , (4.12)

for any C > 2, provided R(Kw)X �= 0 and δ is sufficiently small. More precisely, it is
sufficient that

CXε + 2R(K (w, 2ε))X ≤ CR(Kw)X , where ε := 2δ.

Proof The proof is the same as that of Theorem 3.4 except that nowwe choose f� ∈ �

to satisfy ‖ f − f�‖C(�) ≤ δ and use Proposition 4.1 and Lemma 4.3. �


5 Noisy measurements

In this section, we consider the case when the measurements are corrupted by an
additive deterministic noise. Namely, we assume that our measurements are now given
by

w̃ j = f (x j ) + η j , j = 1, . . . ,m, (5.1)

where the real numbers η j , j = 1, . . . ,m, are unknown to us. However, to derive
quantitative results on performance, we will have to make some assumptions on the
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unknown noise vector η := (η1, . . . , ηm). We assume that all we know about η is its
size.

We continue to let w j = f (x j ), j = 1, . . . ,m, and w := (w1, . . . , wm). We put
ourselves in the same setting as in the previous section where f ∈ K and K satisfies
our Main Assumption. We let Kw again be the set of f ∈ K such that f (x j ) = w j ,
j = 1, . . . ,m, and continue to use the inflated sets K (w, ε), ε > 0.
We assume that we have a bound on the noise vectors of the form

‖η‖ ≤ γ < ∞. (5.2)

Then, the totality of information we have about f is that f ∈ K and f satisfies the
data w̃ − η where w̃ is our observation vector and ‖η‖ ≤ γ . It follows that the totality
of information we have about f is that it is in the set K (w̃, γ ). This means that the
error of optimal recovery of f from such noisy observations is given by

best noisy rate = R(K (w̃, γ ))X . (5.3)

We formulate recovery results for any set K that satisfies ourMainAssumption. For
any function g ∈ C(�), we continue to use the notation λx(g) := (g(x1), . . . , g(xm)),
where x = (x1, . . . , xm) ∈ �. To recover f from the noisy observations w̃, we use
the loss function

LK ,τ (g) := τ‖w̃ − λx(g)‖ + dist(g, K )C(�), (5.4)

where the parameter τ is a positive real number.

Theorem 5.1 Let K satisfy theMain Assumption, let X satisfy the embedding (4.2),
and let the set � satisfy the condition

dist(K , �)C(�) < δ. (5.5)

Consider the function

f̂ := f̂�,τ ∈ argmin
g∈�

LK ,τ (g),

with LK ,τ (g) := τ‖w̃ − λx(g)‖ + dist(g, K )C(�), (5.6)

where w̃ are the noisy data observations of a function f ∈ K with an unknown noise
vector η which satisfies ‖η‖ ≤ γ for some finite number γ ≤ 1 considered unknown.
Then, f̂ is a near optimal recovery of f , that is,

‖ f − f̂ ‖X ≤ CR(K (w̃, γ ))X , (5.7)

for any C > 2, provided R(K (w̃, γ ))X �= 0, δ ≤ τ 2 and τ is sufficiently small.
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Proof We assume τ < 1 and let f ∈ Kw and w̃ be the noisy observations of f with
noise vector η satisfying ‖η‖ ≤ γ . Let f� ∈ � satisfy ‖ f − f�‖C(�) ≤ δ. Then, we
know that ‖λx( f�)−w‖ ≤ δ and so ‖λx( f�)− w̃‖ ≤ δ +γ . Since f� ∈ �, we have

τ‖w̃ − λx( f̂ )‖ + dist( f̂ , K )C(�) ≤ τ‖w̃ − λx( f�)‖ + dist( f�, K )C(�)

≤ τ(δ + γ ) + δ < τγ + 2δ.

It follows that for δ ≤ τ 2 we have

‖w̃ − λx( f̂ )‖ < γ + 2
δ

τ
≤ γ + 2τ and dist( f̂ , K )C(�) ≤ τγ + 2δ. (5.8)

Now let h ∈ K satisfy

‖ f̂ − h‖C(�) ≤ τγ + 2δ ≤ τγ + 2τ 2= τ(γ + 2τ) < 3τ . (5.9)

Then, we have

‖w̃ − λx(h)‖ ≤ ‖w̃ − λx( f̂ )‖ + ‖λx( f̂ ) − λx(h)‖ ≤ γ + 2τ + ‖ f̂ − h‖C(�)

≤ γ + 2τ + τγ + 2τ 2 < γ + τ(4 + γ ) ≤ γ + 5τ.

So, h ∈ K (w̃, γ + 5τ) and so is f . We therefore obtain

‖ f − h‖X ≤ 2R(K (w̃, γ + 5τ))X .

Finally, from the embedding inequality (4.2) and (5.9), we have

‖ f − f̂ ‖X ≤ ‖ f − h‖X + ‖h − f̂ ‖X ≤ ‖ f − h‖X + CX‖h − f̂ ‖C(�)

≤ 2R(K (w̃, γ + 5τ))X + 3CXτ. (5.10)

If we use Remark 2.3, we obtain (5.7) for any C > 2, provided we take τ suitably
small, see (2.8). �

Remark 5.2 The appearance of the parameter τ in the case of noisy observations is
quite natural since the confidence in the measurements decreases as the noise level
increases. When there is no noise, we have complete confidence in the measurements
and so we can take τ = 1 as was done in the previous section.

Remark 5.3 Note that in the above, it is not necessary to know either γ or τ in order to
arrive at the inequality (5.10). However, to guarantee that the recovery is near optimal,
one needs to choose τ (and hence δ) sufficiently small depending on the nature of K .

Remark 5.4 The most common setting for noise in statistics is to assume that the noise
vector is composed of independent random draws with respect to an underlying prob-
ability distribution. Optimal performance in such a setting is referred to as minimax
rates. We do not treat this case in this paper since it requires some substantially new
ideas.
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6 Variants

This section considers variants of the minimization problems already discussed and
emphasises certain aspects of these problems that are useful in numerical implemen-
tation. Since the treatment of the other cases is similar, we concentrate on the model
assumption f ∈ K = U (Y ) and the loss function Lμ given in (3.2). An alternative to
Lμ is the loss function

L′
μ(g) := ‖w − λ(g)‖α + μ‖g‖β

Y , (6.1)

where α > 0 and β > 0 are fixed. The modified loss function (6.1) generalizes
the original loss function (3.2) by raising the data fidelity and regularization term to
possibly different powers. The case α = β = 2 is particularly appealing when Y
is a Hilbert space as it leads to a simple expression for the derivative of L′

μ. Also,
the modified loss function can be viewed as a generalization of the classical LASSO
procedure, which corresponds to α = 2 and β = 1. In some special settings, such loss
functions have been considered before in the context of recovery of sparse signals, see
[15, 31] and the references therein.

Remark 6.1 If � is convex (e.g. if it is a finite dimensional linear space), if ‖.‖Y is
strictly convex, and if α, β ≥ 1, then the minimizer of L′

μ(g) over g ∈ � is unique.

In this case, if � is a finite dimensional linear space, the solution f̂ of the resulting
optimization problem (6.2) can be computed by available optimization algorithms.
Non-uniqueness can occur for other settings, for example when the second term is a
quasi-norm or some other nonconvex regularizer. The latter are sometimes preferred
due to their better performance in special cases.

Following the ideas from Sect. 3.1, we establish similar near optimality results for
this loss function in the case where the measurements are linear functionals on X .

Theorem 6.2 Let K = U (Y ) with Y a normed linear subspace of X and let the set �
satisfy (3.3). Then, for any C > 2, the function

f̂ := f̂�,μ ∈ argmin
g∈�

L′
μ(g) (6.2)

is a near optimal recovery, i.e.,

‖ f − f̂ ‖X ≤ CR(Kw)X , f ∈ Kw, (6.3)

provided R(Kw)X �= 0, δα ≤ μ2 and μ is sufficiently small. Moreover, in the case of
numerical optimization producing f̃ such that L′

μ( f̃ ) ≤ L′
μ( f̂ ) + ε for some ε > 0,

the estimate (6.3) remains valid with f̂ replaced by f̃ and provided that ε ≤ δα ≤ 1
2μ

2

and μ is sufficiently small.

123



Optimal learning Page 23 of 37 15

Proof Let f be any function in K = U (Y ) which satisfies the data, i.e., f is in Kw,
and let f� ∈ � ∩ K satisfy ‖ f − f�‖X ≤ δ. From the definition of f̂ , we know that

‖w − λ( f̂ )‖α + μ‖ f̂ ‖β
Y ≤ ‖w − λ( f�)‖α + μ‖ f�‖β

Y ≤ δα + μ, (6.4)

where the first term was estimated by

‖w − λ( f�)‖ = ‖λ( f − f�)‖ ≤ ‖ f − f�‖X ≤ δ,

and the second term uses that f� ∈ K so that ‖ f�‖Y ≤ 1.
We now assume that δα ≤ μ2 andμ small. We see from (6.4) that f̂ almost satisfies

the data since

‖w − λ( f̂ )‖α ≤ δα + μ ≤ μ(1 + μ).

Also, f̂ is close to K since (6.4) shows that ‖ f̂ ‖β
Y ≤ 1 + μ and so (1 + μ)

− 1
β f̂ ∈ K

and from (3.1) we have

‖ f̂ − (1 + μ)
− 1

β f̂ ‖X = (1 − (1 + μ)
− 1

β )‖ f̂ ‖X ≤ (1 − (1 + μ)
− 1

β )C0‖ f̂ ‖Y
≤ ((1 + μ)

1
β − 1)C0.

This means that gε := f̂ satisfies (2.5) for ε := max
(
C0((1+μ)

1
β −1), (μ2 +μ)

1
α

)
.

Theorem 2.4 shows that for any C > 2, the function f̂ is a near optimal recovery with
constant C provided μ (and hence δ) is sufficiently small.

In the case of a numerical approximation f̃ to f̂ , the estimate (6.4) gives

‖w − λ( f̃ )‖α + μ‖ f̃ ‖β
Y ≤ δα + μ + ε ≤ 2δα + μ ≤ μ2 + μ,

and the proof is completed as above. �


7 Sampling rates

Although this is not the main topic of this paper, an important issue in learning is
how many samples m are needed to guarantee that an f ∈ K can be learned with a
prescribed accuracy. In this section, we mention three concepts that give a benchmark
for the accuracy issue. We refer to these concepts in the next section where we discuss
what our results say in two common settings for model classes in learning.

So far, we have discussed learning primarily from the viewpoint that we were given
data and wish to recover the function f which gave rise to this data. In that setting,
we had no role in the choice of the data sites. A natural question is if we are given a
budget m of samples we can take of a function f ∈ K , what would be the best choice
of data sites. Historically, there are three concepts that address this issue: Gelfand
widths, sampling numbers, and averaged sampling numbers. We briefly introduce
these notions in this section.
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7.1 Gelfand widths

Suppose that K is a compact set in the Banach space X and we are allowed to use our
knowledge of K to introduce m sampling functionals λ1, . . . , λm to use in sampling
the elements of K . Which functionals should we choose and what is the accuracy at
which we could recover any f ∈ K from the data λ1( f ), . . . , λm( f )? The Gelfand
width

dm(K )X := inf
λ1,...,λm∈X∗ sup

f ∈K
R(Kλ( f ))X , where λ( f ) := (λ1( f ), . . . , λm( f )),

(7.1)

is the optimal accuracy we can achieve in the worst case sense.
The Gelfand widths of model classes K are a well studied concept in Functional

Analysis and Approximation Theory (see e.g. the book of Pinkus [33]). The Gelfand
widths of classical model classes K in classical Banach spaces X are for the most part
known and the Gelfand widths of novel model classes proposed in modern learning
are currently being investigated (see e.g. [32, 34]). Let us also note that Gelfand widths
were the origins of compressed sensing which studies the encoding and decoding of
signals f from a model class K described by sparsity. There it is shown that a random
choice of λ1, . . . , λm ∈ X∗ is with high probability near optimal (see [9, 13] and the
many books written on compressed sensing such as [16]).

For us, the Gelfand width dm(K )X gives a lower bound for the accuracy with which
we can recover a general f ∈ K from linear measurements of f . A general criticism
of the concept of Gelfand widths is that in practical applications of sampling, one
does not have access to arbitrary chosen general linear functionals of the target signal.
Instead, the available functionals are more restricted. For this reason, one typically
imposes restrictions on the functionals λ j , j = 1, . . . ,m. If one requires that the
sampling is done via point evaluation of f , then this leads to the concept of sampling
numbers.

7.2 Sampling numbers

Let K be a subset of C(�) with � the closure of a bounded domain in R
d . If we

restrict the linear functionals used as data observations to be point values of f , then
the optimal performance of m such samples of f is given by

sm(K )X := inf
x1,...,xm∈�

sup
f ∈K

R(K f (x))X , f (x) := ( f (x1), . . . , f (xm)),

m = 1, 2, . . . . (7.2)

The points x1, . . . , xm that give the infimum in sm(K )X are the optimal sampling
sites. For spaces X for which point evaluations are linear functionals, we obviously
have sm(K )X ≥ dm(K )X and the difference in these two numbers is often substantial.
Sampling numbers are well studied for classical model classes K in classical Banach
spaces X , especially in the Information Based Complexity community, where it is
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referred to as standard information. However, for novel model classes of functions of
many variables that arise in modern learning there are many open questions on the
asymptotic decay of the sampling numbers as m → ∞.

7.3 Average sampling

It is sometimes difficult to determine the sampling numbers of a model class K and
evenmore so the position of the optimal data sites. In this case, one studies the expected
performance when the data sites x are chosen randomly with respect to a probability
measure ρ on �. The relevant measure of performance is the averaged sampling
numbers given by

s̄m(K , ρ)X := Expx sup
f ∈K

R(K f (x))X . (7.3)

8 Examples

Themain objective of this paper is to describe the optimal performance that is possible
for a learning procedure and to show that this optimal performance can be achieved
by solving an over-parameterized optimization problem. In this sense, we provided a
justification for the use of over-parameterized optimization which is now a common
staple in machine learning. Exactly how this plays out in practice depends very much
on the model class K which gives the properties of the function f to be learned.

Two natural questions arise in the numerical implementation of this theory. The first
is how fine must we take �n and how to chose the parameters in the loss function in
order to guarantee near optimal learning. The second question is to describe a numer-
ical method with convergence guarantees for solving the resulting finite-dimensional
optimization problem.

We know from the exposition given above that when given a model class K and
linear data observations of an f ∈ K that the optimal accuracy in recovering f from
these observations is R(Kw)X and that a near optimal recovery is given by solving
a finite-dimensional over-parameterized optimization problem. The amount of over-
parameterization necessary depends on R(K (w, ε))X and how fast it converges to
R(Kw)X as ε → 0+. This in turn depends very much on the particular K and requires
an ad-hoc analysis depending on K . We describe a typical way to proceed in the
setting of Theorem 3.1. The first step is to construct a sequence of spaces {�n}n for
which dist(K , � ∩ K )X <∼ n−r for some r > 0. The next step is to provide bounds
for the Chebyshev radius and the inflated Chebyshev radii corresponding to the data
w = λ( f ) ∈ R

m . Typically we prove an estimate like R(K (w, ε))X ≤ R(Kw)X + ε.
In that case, according to the theorem, we need n >∼ [R(Kw)X ]−2/r and a value

μ � n−r/2 in the loss function (3.2) to guarantee that f̂ is a near optimal recovery of
f .
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In order to illustrate what is involved in such an analysis, we discuss two examples
in this section. There are numerous other examples that could be considered andwould
be relevant to what is done in current practice of machine learning.

8.1 Point values of a smooth function

A traditional setting in learning is to consider the data to be point evaluations of a
function f defined on a domain � ⊂ R

d and to measure the error of recovering f
in an Lq(�) norm, 1 ≤ q ≤ ∞. This is an extensively studied setting in IBC. The
texts [29, 37] are general references for this case. Our goal in this section is to shine
a light on what the results of the present paper have to say about optimal learning in
this setting. For simplicity of discussion, we assume � := [0, 1]d and q = 2; the
extension to q �= 2 and more general domains can be found for example in [21] and
the references in that paper.

For our model classes, we consider the unit ball K := U (Ws(L p(�))), s > 0,
1 < p ≤ ∞, of the Sobolev space Ws(L p(�)). In order to have K a compact subset
of C(�), we assume s > d/p. The results mentioned in this section generalize to the
case when � is a bounded Lipschitz domain and the Sobolev space is replaced by a
more general Besov space as long as we continue to have a compact embedding into
C(�).

Let x j ∈ �, j = 1, . . . ,m, bem data sites and w j = f (x j ), j = 1, . . . ,m, be data
observations of an f ∈ K . We take these measurements to be exact; noisy measure-
ments can be treated as discussed in Sect. 5. We use our notation x = (x1, . . . , xm)

for the data sites.
The optimal recovery error R(Kw)X , X = L2(�), depends on the position of the

data sites as is described for example in [22, 28]. It is known that near optimal sampling
sites x are those that are uniformly spaced and the optimal recovery error R(Kw)L2(�)

in the case of uniform spacing is ≈ m−s/d+(1/p−1/2)+ . For more general positioning
of the point x, the optimal recovery rate is also known and depends on the maximal
distance between the points of x (see [28]). Additionally, it is known that m random
sample sites are near optimal save for a possible logarithm [21]. Procedures for near
optimal recovery are known using quasi-interpolants (see [21]).

Our results show that a near optimal recovery can be obtained by choosing a suffi-
ciently fine linear or nonlinear space � = �n , and solving the penalized least squares
problem

f̂ ′
� := argmin

S∈�

⎡
⎢⎣

⎡
⎣ 1

m

m∑
j=1

[w j − S(x j )]2
⎤
⎦
1/2

+ μ‖S‖Ws (L p(�))

⎤
⎥⎦ , (8.1)

withμ chosen sufficiently small. According to Sect. 6, wemay also obtain near optimal
performance by using the modified loss

f̂� := argmin
g∈�

⎡
⎣ 1

m

m∑
j=1

[w j − g(x j )]2 + μ‖g‖p
Ws (L p(�))

⎤
⎦ , (8.2)
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with μ chosen sufficiently small. This latter loss is convenient for numerical imple-
mentation as discussed below. There are several natural choices for � such as a linear
FEM space or a linear space spanned by B-splines or wavelets.

8.1.1 Analysis

As a starting point for our analysis, let us recall the following known lemma.

Lemma 8.1 Let 1 ≤ p ≤ ∞, n ≥ 2, and 0 = ξ1 < ξ2 < · · · < ξn = 1. Then given
any f with f ′ ∈ L p[0, 1], the piecewise linear function S which interpolates f at the
points ξ1, . . . , ξn, and has breakpoints only at these points, satisfies the inequalities:

(i) ‖S′‖L p[0,1] ≤ ‖ f ′‖L p[0,1],

(ii) ‖ f − S‖L2[0,1] ≤ ‖ f ′‖L p[0,1]hs, where h := max1≤ j<n |ξ j+1 − ξ j | and
s := 1 − (1/p − 1/2)+.

Proof For notational convenience, we assume p < ∞. The same proof holds when
p = ∞. Let I j := [ξ j , ξ j+1] and let μ j be the slope of S on I j , Then, we have

|μ j | = 1

|I j |

∣∣∣∣∣∣∣

∫

I j

f ′

∣∣∣∣∣∣∣
≤ |I j |−1

⎡
⎢⎣

∫

I j

| f ′|p
⎤
⎥⎦
1/p

|I j |1−1/p

= |I j |−1/p

⎡
⎢⎣

∫

I j

| f ′|p
⎤
⎥⎦
1/p

, 1 ≤ j < n, (8.3)

and thus

|μ j |p ≤ |I j |−1
∫

I j

| f ′|p.

This means that
∫
I j

|S′|p ≤ ∫
I j

| f ′|p, 1 ≤ j < n, and (i) follows.

To prove (ii), we note that f − S vanishes at each ξ j , 1 ≤ j ≤ n, and therefore we
have

‖ f − S‖L∞(I j ) ≤
∫

I j

| f ′ − S′| ≤
∫

I j

| f ′| ≤
⎡
⎢⎣

∫

I j

| f ′|p
⎤
⎥⎦
1/p

|I j |1−1/p, 1 ≤ j < n.

(8.4)
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Here, we used the fact that on I j , S′ = μ j = 1
|I j |

∫
I j

f ′ is the best L1(I j ) approximation

to f ′ by constants. Using (8.4), we obtain

‖ f − S‖2L2[0,1] =
n−1∑
j=1

∫

I j

| f − S|2 ≤
n−1∑
j=1

⎡
⎢⎣

∫

I j

| f ′|p
⎤
⎥⎦
2/p

|I j |2−2/p+1

≤ h3−2/p
n−1∑
j=1

⎡
⎢⎣

∫

I j

| f ′|p
⎤
⎥⎦
2/p

. (8.5)

If p ≤ 2, the last sum is bounded by ‖ f ′‖2L p[0,1] because an �2/p norm is bounded by
an �1 norm, and we arrive at

‖ f − S‖2L2[0,1] ≤ h3−2/p‖ f ′‖2L p[0,1].

This gives (ii) when p ≤ 2. The case p ≥ 2 in (ii) follows from the case p = 2. �

Remark 8.2 Notice that from thebound (8.4)weget‖ f −S‖L∞[0,1]≤h1−1/p‖ f ′‖L p[0,1].
We will use this inequality later in this paper.

We take X = L2[0, 1] as the space in which we measure the error of performance.
To describe in a bit more detail one simple example, we consider the univariate case
d = 1 and

K = { f ∈ W 1(L p[0, 1]) ‖ f ‖W 1(L p[0,1]) ≤ 1}, 1 < p ≤ ∞,

where

‖ f ‖W 1(L p[0,1]) := max{‖ f ‖L p[0,1], ‖ f ′‖L p[0,1]}.

Let us return to our problem of near optimal recovery of a function in K from its point
values w j = f (x j ), j = 1, . . . ,m. For convenience, we assume that the endpoints
0, 1 are always data sites and w1 = 0. Note that in this case

Kw = { f ∈ W 1(L p[0, 1]) : f (x j ) = w j , j = 1, . . . ,m, ‖ f ′‖L p[0,1] ≤ 1}.

Let �n be the union of the point sets {x1, . . . , xm} and {0, 1/n, . . . , 1} and let �n be
the linear space of piecewise linear functions subordinate to �n . Thus, we are in the
setting of Theorem 4.4. The above remark tells us that if we choose � = �n with n
large enough then � satisfies

dist(K , �n ∩ K )C[0,1] ≤ n−1+1/p, n ≥ 1. (8.6)
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Thismeans that the hypothesis ofTheorem4.4 are satisfied for p > 1 and so solving the
optimization problem (4.8) gives us a near optimal recovery provided n is sufficiently
large. We want to see how large we need to take n but before doing that we make the
following remark.

Remark 8.3 We know from Lemma 8.1 that the piecewise linear function S which
interpolates the data is in Kw and therefore is itself a near optimal recovery with con-
stant C = 2. In other words, in this very special case, using an ad hoc analysis we
can avoid solving a minimization problem and simply take the piecewise linear inter-
polant to the data. Results of this special type are referred to as representer theorems
and are preferred over minimization of loss functions when such representer theorems
are known, see for e.g. [38]. The results of the present article apply when representer
theorems are not known.

We proceed as if a representer theorem is not known to us and instead we apply
Theorem 4.4. We want to see how large we would need to take n and how small
we have to take μ. For this, we need to give good estimates for R(Kw)L2[0,1] and
R(K (w, 2ε))L2[0,1], ε > 0. We continue using the above notation, in particular for
h(x) := max1≤ j<m |x j+1 − x j |, Sw for the piecewise linear interpolant to the data w,
and I j = [x j , x j+1], 1 ≤ j < m. For notational convenience, we only consider the
case 1 < p ≤ 2.

Lemma 8.4 If 1 < p ≤ 2, s = 3/2− 1/p, and R := R(Kw)L2[0,1] > 0, then we have
‖S′

w‖L p[0,1] < 1 and

�h(x)s ≤ R ≤ h(x)s, � := 1 − ‖S′
w‖L p[0,1], (8.7)

and

R(K (w, ε))L2[0,1] ≤ h(x)s + ε
√
mh(x). (8.8)

Proof We know from Lemma 8.1 applied for the points 0 = x1 < . . . < xm = 1
that ‖S′

w‖L p[0,1] ≤ 1 and Sw ∈ Kw. We first want to prove that if R > 0, then
we necessarily have � > 0. Indeed, if R > 0, then there is a g ∈ Kw such that
‖g− Sw‖L2[0,1] > 0 and ‖g′‖L p[0,1] ≤ 1. The function 1

2 (g+ Sw) also is in Kw. Since
p > 1, then the strict convexity of the L p ball implies that

1

2
‖g′ + S′

w‖L p[0,1] <
1

2

(‖g′‖L p[0,1] + ‖S′
w‖L p[0,1]

) ≤ 1.

From (i) of Lemma 8.1 (applied for f = 1
2 (g + Sw)) we derive that ‖S′

w‖L p[0,1] < 1
and hence � > 0.

Now, consider (8.7). The upper inequality follows from Lemma 8.1 with m = n
and ξ j = x j , 1 ≤ j < m. We next prove the lower inequality. Let I = I j be an
interval [x j , x j+1] with |I j | = h(x) and let I− be the left half of I and I+ be the right
half of I . We define g′ := c[χI+ − χI−] with c := �|I |−1/p, where χJ denotes the
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characteristic function of an interval J . The functions Sw ± g are both in Kw and so
R ≥ ‖g‖L2[0,1]. Now |g| is larger than c|I |/4 on the middle half of I . Therefore

‖g‖L2[0,1] ≥ c(|I |/4)(|I |/2)1/2 ≥ 1

4
√
2
�|I |3/2−1/p = 1

4
√
2
�h(x)s .

This proves the lower inequality in (8.7).
Next, we prove (8.8). Let Sw and Sw′ be the piecewise linear interpolants for data

w and w′, respectively. If ‖w − w′‖ ≤ ε, then

‖Sw − Sw′ ‖2L2[0,1] ≤ h(x)
m∑
j=1

|w j − w′
j |2 ≤ h(x)mε2.

Now, if f ∈ K (w, ε) and λ( f ) = w′, then

‖ f − Sw‖L2[0,1] ≤ ‖ f − Sw′ ‖L2[0,1] + ‖Sw − Sw′ ‖L2[0,1] ≤ h(x)s + ε
√
h(x)m,

(8.9)

where we used Lemma 8.1. This proves (8.8) and completes the proof of the lemma.
�


We use the above lemma to see how large we have to take n and how to choose μ

in Theorem 4.4 in order to guarantee that f̂ is a near optimal recovery with constant
C in the X = L2[0, 1] norm. Note that CX = 1 in this case. We need that C is large
enough and μ is small enough so that

ε + 2R(K (w, 2ε))L2[0,1] ≤ CR(Kw)L2[0,1], ε := μmax(μ + 1,CY ).

(8.10)

The lemma gives the bounds R(Kw)L2[0,1] ≥ �h(x)s and
R(K (w, 2ε))L2[0,1] ≤ h(x)s + 2ε

√
mh(x). We see that (8.10) holds provided

ε ≤ h(x)s−
1
2m− 1

2 and C = 7�−1, (8.11)

since h(x) ≥ 1/m. It is enough to take ε ≤ m−s (since s > 1/2) and similarly
μ ≤ m−s . Looking back at Theorem 4.4, we need the approximation error δ (as
measured in C(�)) to satisfy δ ≤ μ2. Since the approximation accuracy in C(�) is
O(n−1+1/p), we need

n ≥ m
2s

1−1/p and μ ≤ m−s

in the minimization problem (8.1) to find a near optimal recovery of f .
A similar analysis can be made when using the loss function (8.2). This exam-

ple illustrates when given a compact set K , how one determines how well �n must
approximate K and how we must choose μ so that solving the minimization problem
gives a near optimal recovery from the given data.
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8.1.2 Numerical experiments

We next discuss the numerical implementation of the optimization with the loss (8.2)
for this special K = U (W 1(L p[0, 1])). We consider �n to be the space of continuous
piecewise linear functions with breakpoints ξ j = j/n, 0 ≤ j ≤ n. We can parame-
terize �n using the hat function basis Hj , j = 0, . . . , n, where Hj is the continuous
piecewise linear function which takes the value one at ξ j and the value 0 at all other
ξi , i �= j . Then each g ∈ �n can be written as

g(x) = gc(x) :=
n∑
j=0

c j Hj (x), x ∈ [0, 1], (8.12)

where c = (c1, . . . , cn). Consider now the loss as a function of the parameters
c = (c1, . . . , cn)

L∗(c) := Lμ(gc), c ∈ R
n . (8.13)

The loss function L∗ is strictly convex whenever 1 < p < ∞ because it is the
composition of a strictly convex function with an affine function.

To numerically compute the minimum of Lμ over �n we minimize L∗ over Rn

and use the argument c∗ attaining this minimum to define the minimizer f̂ := gc∗ . To
compute c∗ we use gradient descent with a sufficiently small step size and an initial
guess. Since the loss is nonnegative and its gradient is locally Lipschitz except at
c = 0, the algorithm converges (see [4]).

As a numerical example, we take

f (x) = 1

4
x

1
2 , x ∈ [0, 1]. (8.14)

This function is inW 1(L p[0, 1]) for all p < 2. As a specific model class that contains
f , we take

K = U (W 1(L p[0, 1])), p = 3/2. (8.15)

This gives that s = 5/6. While we can implement the algorithm for any data observa-
tions, in order to get a spectrum of performance results, we take random data samples
consisting of m = 10, 20, 40, 80, 160, 320 observations. The additional observations
are chosen randomly while retaining the previous random observations. Thus, we have
a nested set of observations.

The random draws turned out to give the following values for h

h(x) = 0.13, 0.13, 0.108, 0.062, 0.048, 0.021.

For each of these values of m, we choose n = 2m and μ = 0.1m−s . Note that this
choice of n is less than suggested by the theoretical estimates.
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Fig. 2 Recovery errors using m = 10, 20, 40, . . . , 320 random samples, μ = 0.1m− 5
6 , and n = 2m.

The error is compared with h(x)
5
6 which is the asymptotic behavior of the optimal error for the class

K = U (W 1(L p(�))), p = 3
2

Figure 2 gives a graph of the true recovery rate and compares it with the bound

h(x)
5
6 which is our bound for the Chebyshev radius of Kw and hence optimal recovery

rate for these data observations. We observe an asymptotic decay better than h(x)s

(because we have taken only one function in Kw and not the supremum over all
possible f ∈ Kw).

We next examine what happens if we do not use a penalty term, i.e., we take
μ = 0 and n = 2m. It is known that applying gradient descent with an initial choice
of parameters converges to an interpolant which depends on the initial choice of
parameters (see e.g. the discussion in [11]). We take the initial parameter choice as
zero aswe did in the case of a penalty term. Figure3 compares theminimizing f̂ for the

Fig. 3 Learned function f̂� in (8.2) with p = 3/2, μ = 0 (left) and μ = 0.0046 (right), using 40 random

samples (corresponding to h(x) = 0.108) of the function f (x) = 1
4 x

1
2 . The approximation space � is

the set of continuous piecewise linear functions subordinate to a uniform partition of [0, 1] using n = 80
breakpoints. The recovery error ‖ f − f̂�‖L2[0,1] with μ = 0.0046 is 0.011, which is 10 times smaller than
when using μ = 0
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case of m = 40 without regularization (μ = 0) and with our proposed regularization
(μ = 0.0046). For the former, the over-parametrized procedure produces a highly
oscillating f̂ that interpolates the data samples. In contrast, the constructed f̂ for
μ = 0.0046 exploits the regularity of f ∈ W 1(L p[0, 1]) and yields a recovery error
‖ f − f̂�‖L2[0,1] = 0.011, which is 10 times smaller than when using μ = 0.

8.2 Neural networks

It is now quite common in learning to take �n as the space of outputs of a neural
network depending on n parameters.We consider one often used example of this using
ReLU activation. Let � be the unit Euclidean ball in Rd with d ≥ 1. We consider the
nonlinear space �n of outputs of a single hidden layer ReLU neural network of width
n on � (much less is known for deeper networks). Each function g ∈ �n is of the
form

g(x) = c0 +
n∑
j=1

c j (ω j · x + b j )+, (8.16)

where ω j ∈ R
d , and the c j , b j ∈ R. This representation of g is not unique. We can

requireω j to satisfy ‖(ω j )‖ = ‖(ω j )‖�2 = 1 by adjusting the outer parameters c j . We
can also require the b j to be in [−2, 2]. The set �n is a nonlinear space of continuous
piecewise linear functions on �.

It is commonly thought that �n has significantly better approximation proper-
ties than more traditional approximation methods based on polynomials, splines, and
wavelets and can therefore be more effective when learning a function f from data.
This is especially thought to be true when d is large as it is for many modern learning
problems. If this is indeed the case then it should be demonstrated through model
classes K whose elements can be better approximated by neural networks than by the
traditional approximation methods.

Accordingly, several model classes K have been introduced and studied because
they have favorable approximation properties when using �n . The most reknown of
these is the Barron class introduced in [5] defined via Fourier transforms. Several
generalization of these classes (see e.g. [14, 30, 34]) have been prominently studied.
Each of these model classes is of the form K = U (Y ) where Y is a subspace of C(�).
They all have the feature that the functions in K can be approximated in Lq(�),
1 ≤ q ≤ ∞, with an approximation rate O(n−α), n → ∞, with α ≥ 1/2, and hence
these model classes do not suffer the curse of dimensionality in terms of d. In going
further with our discussion, we let K be any of thesemodel classes.We refer the reader
to [11, 34] for results on the approximation of functions in K by the elements of �n .

Optimal learning for these classes can be obtained via over-parameterized learning
as described in Theorem 3.1. However, several important issues remain unresolved
and prevent a complete theory for these model classes. We describe these next where
we assume the learning performance is to be measured in X = L2(�, ν) metric.
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Corresponding results are known for Lq , 1 ≤ q ≤ ∞, but in some cases are less
precise. The discussion below should be compared with the previous subsection.

Given data observations w at data sites x a major question that needs to be resolved
is what is R(Kw)X? Results in this direction are for the most part unknown although
some partial information can be obtained fromGelfand widths and sampling numbers.
Recall that Gelfand widths tell us the optimal learning rate that can be obtained for K
when using data given bym linear functionals on X . Upper bounds on Gelfand widths
are given in [35] and one expects that these bounds are sharp. If we consider learning
from point values of a function f ∈ K the situation is more opaque. The sampling
numbers for K are not known. Jonathan Siegel has provided us with an argument
based on the Rademacher complexity of K that shows that both the sampling numbers
sm(K )X and averaged sampling numbers s̄m(K )X of K in X are bounded by Cm−1/4.
However, we do not know lower bounds for sampling numbers and what is perhaps
more crucial is we do not know the near best positioning of the points x1, . . . , xm
at which to sample f ∈ K . Some progress has been made recently in [40], where
upper and lower bounds for sampling numbers for the smooth Barron classes have
been obtained. Resolving these open questions is important in learning since it tells
us how many samples we would need of a function f ∈ K in order to recover it with
a prescribed error ε > 0. Also, it would tell us how much over-parameterization we
would need (how large to choose n for �n) to obtain optimal learning.

When using over-parameterized neural networks to solve the finite-dimensional
minimization in Theorem 3.1, one can use ridge regression or LASSO applied to the
loss as a function of the coefficient in the representation (8.16). It is shown in [30] that
there is always a minimizer which has a sparse representation (8.16).

In summary, for these model classes K , we can numerically find a near optimal
recovery of f ∈ K from given point data but we do not yet know the optimal learning
rates nor do we know the optimal points where we should do the sampling. Some
crude bounds bounds on performance and the amount of over-parameterization are
known but definitive results are still lacking.

9 Concluding remarks

We have shown that optimal learning under a model class assumption f ∈ K
is always solved by an over-parameterized minimization problem. The use of
over-parameterization matches what is typically done in modern machine learning.
However, it is important to point out that in many settings of modern learning one
does not begin with a model class assumption and the loss function that is employed
is simply a least squares fitting of the data absent any penalty term. In such a setting,
i.e, absent any model class assumption, there can be no theory to describe optimal
performance since f can be any function away from the data.

Another setting often studied is to employ neural networks �n in the loss function
together with a regularization term in the loss function which penalizes the size of the
parameters. Such a penalty term can be viewed as imposing a model class assumption
on the function to be learned. A precise formulation of this connection must still be
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worked out. One case where such a connection is known is when K is the unit ball of
the Radon BV space; see [30].

In the setting without a model class assumption, as noted above, there are
infinitely many solutions to the over-parameterized minimization problem. The stan-
dard approach in learning is to choose one of these solutions by using a specific
procedure to find an f̂ corresponding to least squares loss. The typical setting employs
over-parameterized deep neural networks in conjunction with minimization methods
based on variants of gradient descent. This is sometimes referred to as deep learning.
The analysis of deep learning revolves around questions of whether such minimiza-
tion procedures converge, how the limit depends on the initial parameter guess and the
learning rate (step size in gradient descent), and if convergence does hold then what
is the function f̂ that is learned (see the results on the Neural Tangent Kernel [17,
20]). Another way to word this approach is that one does not formulate a well defined
learning problem (i.e. with a model class assumption) but rather proposes a specific
numerical method to utilize for learning and then centers the discussion on when this
works well and why? The current viewpoint is that the numerical method implicitly
imposes a model class assumption (described via neural tangent kernels). Why such
an implicit model class assumption is natural for the given learning setting is still to
be explained.
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