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DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS

FOR LARGE GENUS

YUNHUI WU, HAOHAO ZHANG AND XUWEN ZHU

We study the differences of two consecutive eigenvalues λi − λi−1, i up to 2g − 2, for the Laplacian

on hyperbolic surfaces of genus g, and show that the supremum of such spectral gaps over the moduli

space has infimum limit at least 1
4

as the genus goes to infinity. A min-max principle for eigenvalues on

degenerating hyperbolic surfaces is also established.

1. Introduction

For a closed Riemann surface Xg of genus g ≥ 2, consider the hyperbolic metric uniquely determined by

its complex structure. We study the spectrum of the Laplacian on Xg, which is a discrete subset in R
≥0

and consists of eigenvalues with finite multiplicities. The eigenvalues, counted with multiplicities, are

listed in the following increasing order:

0 = λ0(Xg) < λ1(Xg) ≤ λ2(Xg) ≤ · · · → ∞.

Let Mg be the moduli space of Riemann surfaces of genus g, which is an open orbifold of dimension

equal to 6g − 6. For each index i , the i-th eigenvalue λi ( · ) is a bounded continuous function on Mg. In

this paper we study the differences of two consecutive eigenvalues and will focus on the behavior of such

spectral gaps when g → ∞.

Definition. For all i ≥ 1, the i -th spectral gap SpGi ( · ) is a bounded continuous function over the moduli

space Mg defined as

SpGi : Mg → R
≥0, Xg 7→ λi (Xg) − λi−1(Xg). (1)

By definition, SpG1(Xg) = λ1(Xg). For all i ≥ 1, the i-th spectral gap SpGi ( · ) can be arbitrarily close

to zero (e.g., see Proposition 3.7). In this paper we mainly study the quantity supXg∈Mg
SpGi (Xg) for

large g and a family of indices i .

The main result of this article is the limiting behavior of the lower bound of the spectral gaps.

Theorem 4.1. Let {η(g)}∞g=2 be any sequence of integers with η(g) ∈ [1, 2g − 2]. Then

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥ 1
4
.
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Remark. The sequence {η(g)} is arbitrary as long as it satisfies the bounds: examples include η(g) ≡ 2,

η(g) = {2, 3, 2, 3, . . . }, and η(g) = 2g − 2.

On the other hand, by [Cheng 1975, Corollary 2.3], we know that

λi (Xg) ≤
1

4
+ i2 ·

16π2

Diam2(Xg)
.

By Gauss±Bonnet, Area(Xg) = 4π(g − 1). A simple area argument implies that the diameter satisfies

Diam(Xg) ≥ C ln(g) for some universal constant C > 0. So if η(g) satisfies

lim
g→∞

η(g)

ln(g)
= 0,

we have

lim sup
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≤ 1
4
.

Together with Theorem 4.1 this yields the following direct consequence.

Corollary 1.1. If η(g) = o(ln(g)), then

lim
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) = 1
4
.

For η(g) = 1, both Theorem 4.1 and Corollary 1.1 are due to Hide and Magee [2023, Corollary 1.3],

who used a probabilistic method to solve the conjecture (e.g., see [Buser 1984; Buser et al. 1988]) that

there exists a sequence of closed hyperbolic surfaces with first eigenvalues tending to 1
4

as the genus goes

to infinity.

The following result is important in the proof of Theorem 4.1, which we include for independent

interest. The proof is highly motivated by the work of Burger, Buser and Dodziuk [Buser et al. 1988],

where they studied the case when the limiting surface is connected (e.g., see Theorem 2.6).

Proposition 3.1 (min-max principle). Let Xg(0) ∈ ∂Mg be the limit of a family of Riemann surfaces

{Xg(t)} obtained by pinching certain simple closed geodesics such that Xg(0) has k connected components,

i.e., Xg(0) = Y1 ⊔ Y2 ⊔ · · · ⊔ Yk , where k ≥ 2. Let λ1(Y1), . . . , λ1(Yk) be the first nonzero eigenvalue of

Y1, . . . , Yk (if Yi has no discrete eigenvalues then write λ1(Yi ) = ∞) and write λ̄1(∗) = min
{

λ1(∗), 1
4

}

for ∗ = Y1, . . . , Yk . Then

lim inf
t→0

λk(Xg(t)) ≥ min
1≤i≤k

{λ̄1(Yi )}.

Remark. Each component Yi in the proposition above is a complete open hyperbolic surface of finite

volume, whose spectrum consists of possibly discrete eigenvalues and the continuous spectrum
[

1
4
, ∞

)

.

Therefore, in the statement above, λ̄1(Yi ) is the nonzero minimum of the spectrum of Yi .

Proof sketch of Theorem 4.1. In the proof of Theorem 4.1, we will apply Proposition 3.1 to the case

when all the λ̄1(Yi ) are close to 1
4
. The main idea is the following: for each η(g) we construct a sequence

of genus g surfaces that degenerate into η(g) components using only pieces that are known to have the

first eigenvalue close to 1
4
. Then by the min-max principle, the η(g)-th eigenvalue of these surfaces will be

close to 1
4
. On the other hand, by a result of Schoen, Wolpert and Yau (see Theorem 2.5), the (η(g)−1)-th

eigenvalue is close to zero. This way we find sequences of surfaces that achieve the spectral gap of 1
4
. For
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the regime η(g) > g, the components used in the construction only include the thrice-punctured sphere

and a twice-punctured torus. On the other hand, for η(g) ≤ g, the essential components also include a

large genus piece that relies on the work of Hide and Magee [2023].

Plan of the paper. Section 2 will first discuss properties of the boundary degeneration of the Riemann

moduli spaces; then we will provide a review of the background and recent developments on spectral

gaps on hyperbolic surfaces, including a list of punctured surface components with eigenvalue bounds

which will be used in the degeneration limits. In Section 3 we will provide a proof for Proposition 3.1

regarding the min-max principle for eigenvalues of degenerating hyperbolic surfaces and a few immediate

applications. In Section 4 we will complete the proof of Theorem 4.1.

2. Preliminaries

Boundary of the Riemann moduli spaces. Denote by Mg,n the moduli space of hyperbolic surfaces

of genus g with n punctures, and by Mg := Mg,0 the moduli space of compact hyperbolic surfaces

with genus g. It is well known that dimR(Mg,n) = 6g + 2n − 6. In particular, M0,3 contains only one

point represented by the hyperbolic thrice-punctured sphere. The Deligne±Mumford compactification

of Mg,n is obtained by adding nodal surfaces into Mg,n , which is homeomorphic to the completion of

Mg,n endowed with the Weil±Petersson metric. Let ∂Mg,n be the boundary of the Deligne±Mumford

compactification of Mg,n . Recall that ∂Mg,n is stratified, and each stratum of ∂Mg,n is a product of

lower-dimensional moduli spaces. Points in ∂Mg,n are represented by hyperbolic nodal surfaces in Mg,n

(see for example [Masur 1976] for more details on the completion of Mg,n). Locally the process of

pinching a simple closed geodesic into a pair of cusp points can be written with respect to hyperbolic

collar coordinates (ρ, θ) with ℓ the length of the central geodesic circle. As ℓ → 0, the hyperbolic

neck degenerates into a pair of cusps, which can be seen with the choice of the correct coordinates (see

for example [Ji 1993; Masur 1976]). Another way to see this would be using the complex ªplumbingº

coordinates, which we will not discuss. Hyperbolic nodal surfaces are obtained by pinching certain

disjoint geodesic circles, and we call such a family of hyperbolic metrics approaching nodal surfaces a

degenerating family (see, e.g., [Wolpert 1990], and see Figure 1 for an example).

We also recall the collar lemma on structures of disjoint hyperbolic collars around short geodesics,

which will be useful later in decomposing the surfaces.

Lemma 2.1 (collar lemma [Buser 1992, Theorem 4.1.1]). Let γ1, γ2, . . . , γm be disjoint simple closed

geodesics on a closed hyperbolic Riemann surface Xg, and let ℓ(γi ) be the length of γi . Then m ≤ 3g − 3,

and we can define the collar of γi by

T (γi ) = {x ∈ Xg : dist(x, γi ) ≤ w(γi )},

where

w(γi ) = arcsinh
1

sinh
(

1
2
ℓ(γi )

) (2)

is the width of the collar.
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X1,1 X1,3

X3

ℓ1
ℓ2

ℓ1, ℓ2 → 0

Figure 1. An example of a degenerating family in M3 whose limit is X1,1 ⊔ X1,3, which is disconnected.

Then the collars are pairwise disjoint for i = 1, . . . , m. Each T (γi ) is isomorphic to a cylinder

(ρ, θ) ∈ [−w(γi ), w(γi )] × S
1, where S

1 = R/Z, with the metric

ds2 = dρ2 + ℓ(γi )
2 cosh2 ρ dθ2. (3)

For a point (ρ, θ), the point (0, θ) is its projection on the geodesic γi , |ρ| is the distance to γi , and θ is

the coordinate on γi
∼= S

1.

As the length ℓ(γ ) of the central closed geodesic goes to zero, the width w(γ ) is approximately

ln (1/ℓ(γ )), which tends to infinity. We have the following as an easy corollary.

Corollary 2.2. For a degenerating family of hyperbolic surfaces {Xg(t)}, the diameter satisfies

Diam(Xg(t)) → ∞.

The following two lemmas will be useful in the proof of Theorem 4.1.

Lemma 2.3. For each integer η(g) ∈ [g − 1, 2g − 2] with g ≥ 2, there exist two nonnegative integers i

and j such that

(1) i + j = η(g),

(2) M0,3 × · · · ×M0,3
︸ ︷︷ ︸

i copies

×M1,2 × · · · ×M1,2
︸ ︷︷ ︸

j copies

⊂ ∂Mg.

Remark. Here i and j depend on g and satisfy i +2 j = 2g−2 by the additivity of the Euler characteristic.

Proof. If η(g) = 2g − 2, the conclusion is obvious by choosing i = 2g − 2 and j = 0, which is obtained

by pinching 3g − 3 disjoint simple closed curves in a closed surface Xg of genus g.
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i(g) copies of X0,3
︷ ︸︸ ︷

· · · · · ·

j (g) copies of X1,2

︸ ︷︷ ︸

· · · · · ·

Figure 2. An example of the degeneration of a genus g surface into i(g) copies of X0,3

and j (g) copies of X1,2 by pinching all the simple geodesics marked in the picture.

Now we assume g ≤ η(g) ≤ 2g − 3. Given a closed surface Xg of genus g, first one may pinch Xg

along two disjoint simple closed curves σ1 and σ2 such that Xg \ (σ1 ∪σ2) has two connected components

Xg1,2 ⊔ Xg2,2, where g1 and g2 are two nonnegative integers satisfying g1 + g2 = g − 1. Here we choose

g1 = (2g − 2) − η(g) and g2 = η(g) − (g − 1).

For the second step, we pinch Xg1,2 along g1 − 1 disjoint simple closed curves {γl}1≤l≤g1−1 such that the

complement decomposes further into g1 components:

Xg1,2 \
⋃

1≤l≤g1−1

γl = X1,2 ⊔ · · · ⊔ X1,2
︸ ︷︷ ︸

g1 copies

.

For Xg2,2, one may pinch along 3g2 − 1 disjoint simple closed curves {γ ′
m}1≤m≤3g2−1 such that the

complement decomposes further into 2g2 components:

Xg2,2 \
⋃

1≤m≤3g2−1

γ ′
m = X0,3 ⊔ · · · ⊔ X0,3

︸ ︷︷ ︸

2g2 copies

.

Pinching all these simple closed curves during cutting above to zero, the conclusion follows since

i = 2g2 = 2η(g) − (2g − 2) and j = g1 = (2g − 2) − η(g). (4)

For an illustration, see Figure 2.

If η(g) = g − 1, we first pinch Xg along a nonseparating simple closed curve to get a surface Xg−1,2.

Then in the same way as with Xg1,2 in the previous case, we pinch Xg−1,2 along g − 2 disjoint simple

closed curves to get g − 1 copies of X1,2. Then the conclusion follows with i = 0 and j = g − 1.

Combining the three cases above, the proof is complete. □
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i(g) copies of X0,3
︷ ︸︸ ︷

· · · · · ·

j (g) copies of X1,2
︷ ︸︸ ︷

· · · · · ·

· · · · · ·

Xg1,2

︸ ︷︷ ︸

Figure 3. An example of decomposing a surface of genus g into i copies of X0,3, j copies

of X1,2 and a copy of Xg1,2, where i, j , and g1 are given in the proof of Lemma 2.4.

Lemma 2.4. For each integer η(g) ∈ [2, g] with g ≥ 3, there exist three nonnegative integers g1, i and j

such that

(1) 2g1 ≥ g − 2,

(2) i + j + 1 = η(g),

(3) M0,3 × · · · ×M0,3
︸ ︷︷ ︸

i(g) copies

×M1,2 × · · · ×M1,2
︸ ︷︷ ︸

j (g) copies

×Mg1,2 ⊂ ∂Mg.

Remark. Similar to the previous lemma, i, j and g1 depend on g. By calculating the Euler characteristics,

these numbers should satisfy i + 2 j + 2g1 = 2g − 2.

Proof. Similar to the proof of Lemma 2.3 above, we first decompose Xg as Xg \ (σ1 ∪σ2) = Xg1,2 ⊔ Xg2,2

for two disjoint simple closed curves σ1 and σ2, where g1 and g2 := g − 1 − g1 will be determined in

different cases below. Next we decompose Xg2,2 into the disjoint union of i copies of X0,3 and j copies

of X1,2 to obtain the desired properties. For an illustration, see Figure 3.

The proof contains the following three cases.

Case 1: 2 ≤ η(g) ≤ 1
2
g + 1. The conclusion follows by choosing

i = 0, j = η(g) − 1 and g1 = g − η(g).

Case 2: 1
2
g + 1 < η(g) ≤ g and η(g) is odd. The conclusion follows by choosing

i = η(g) − 1, j = 0 and g1 = g − 1
2
(1 + η(g)).

Case 3: 1
2
g + 1 < η(g) ≤ g and η(g) is even. The conclusion follows by choosing

i = η(g) − 2, j = 1 and g1 = g − 1 − 1
2
η(g). □



DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS FOR LARGE GENUS 1383

Eigenvalues of hyperbolic surfaces. The study of eigenvalues of the Laplacian on hyperbolic surfaces

has a long history and has recently seen much progress. For a compact hyperbolic surface, the eigenvalues

are discrete. On the other hand, when the hyperbolic surface degenerates to one with cusps, by [Lax

and Phillips 1982] it is known that the spectrum is no longer discrete, rather it consists of a continuous

spectrum
[

1
4
, ∞

)

and (possibly) additional discrete eigenvalues. The study of spectral degeneration has

seen many developments; see [Hejhal 1990; Ji 1993; Ji and Zworski 1993; Wolpert 1987; 1992a; 1992b]

for some of the earlier works.

An eigenvalue of a hyperbolic surface is said to be ªsmallº if it is less than 1
4
, where the number 1

4

shows up as the bottom of the continuous spectrum of a hyperbolic surface with cusps. The questions

of existence of eigenvalues less than 1
4

for both noncompact and compact hyperbolic surfaces not only

arise in the field of spectral geometry, but also have deep relations to number theory regarding arithmetic

hyperbolic surfaces, dating back to Selberg’s famous 3
16

theorem [1965]. We refer to [Gelbart and Jacquet

1978; Kim 2003; Luo et al. 1995] for more recent developments. Regarding the estimates and multiplicity

counting of small eigenvalues, the history goes back to McKean [1972], Randol [1974], and Buser [1982;

1984]. Recently there have been many developments; see [Ballmann et al. 2016; 2017; 2018; Brooks and

Makover 2001; Buser 1992; Buser et al. 1988; Mondal 2015; Otal and Rosas 2009; Schoen et al. 1980].

Among these are two classical results of particular relevance to our current work. The first regards bounds

of eigenvalues on degenerating hyperbolic surfaces by Schoen, Wolpert and Yau [Schoen et al. 1980]:

Theorem 2.5 [Schoen et al. 1980]. For any compact hyperbolic surface Xg of genus g and integer

i ∈ (0, 2g − 2), the i-th eigenvalue satisfies

αi (g) · ℓi ≤ λi ≤ βi (g) · ℓi

and

α(g) ≤ λ2g−2,

where αi (g) > 0 and βi (g) > 0 depend only on i and g, α(g) > 0 depends only on g, and ℓi is the

minimal possible sum of the lengths of simple closed geodesics in Xg which cut Xg into i + 1 connected

components.

Dodziuk and Randol [1986] gave an alternative proof of Theorem 2.5, and one may also see Dodziuk,

Pignataro, Randol and Sullivan [Dodziuk et al. 1987] on similar results for Riemann surfaces with

punctures. It was proved by Otal and Rosas [2009] that the constant α(g) can be optimally chosen to

be 1
4
. For large genus g, it was recently proved by the first-named author and Xue [Wu and Xue 2022a;

2022c] that up to multiplication by a universal constant, α1(g) can be optimally chosen to be 1/g2.

The other result that is relevant is [Buser et al. 1988, Theorem 2.1] regarding the first eigenvalue when

the limiting degenerating surface is connected:

Theorem 2.6 [Buser et al. 1988]. Let {Xg(t)} ⊂ Mg such that Y = limt→0 Xg(t) ∈ ∂Mg is connected.

Denote by λ1(Y ) the first nonzero eigenvalue of Y ( if Y has no discrete eigenvalues we write λ1(Y ) = ∞).

Then

lim sup
t→0

λ1(Xg(t)) ≥ λ̄1(Y ) = min
{

λ1(Y ), 1
4

}

.
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In Section 3 we will give a similar description of λk(Xg(t)) when the limiting surface has k connected

components.

Another related direction in this topic is to understand how the genus of the hyperbolic surface, in

particular when g → ∞, affects the eigenvalues via different models of random hyperbolic surfaces.

Brooks and Makover [2004] gave a uniform lower bound on the first spectral gap for their combinatorial

model of random surfaces by gluing hyperbolic ideal triangles. In terms of Weil±Petersson random

closed hyperbolic surfaces, Mirzakhani [2013] showed that the first eigenvalue is greater than 0.0024 with

probability one as g → ∞. Recently, the first-named author and Xue [Wu and Xue 2022b] improved this

lower bound 0.0024 to be 3
16

−ϵ, which was also independently obtained by Lipnowski and Wright [2024].

One may also see [Hide 2022] for similar results on Weil±Petersson random punctured hyperbolic surfaces

and [Monk 2021] for related results. Recently there have also been many exciting developments in the

case of random covers of both compact and noncompact hyperbolic surfaces; see [Magee and Naud 2020;

2021, Magee and Puder 2023,Magee et al. 2022]. For example, Magee, Naud and Puder [Magee et al.

2022] showed that a generic covering of a hyperbolic surface has relative spectral gap of size 3
16

− ϵ,

which was improved to 1
4
− ϵ by Hide and Magee [2023] for random covers of punctured hyperbolic

surfaces. As an important application, [Hide and Magee 2023] proved that

lim
g→∞

sup
Xg∈Mg

λ1(Xg) = 1
4
.

This result provides major inspiration for our current paper.

One major ingredient of our proof is the existence of punctured surfaces with first eigenvalue close

to 1
4
. We summarize those components in the two theorems below.

Theorem 2.7. (1) λ1(X0,3) ≥ 1
4
;

(2) [Mondal 2015] There exists a surface X1,2 ∈ M1,2 such that λ1(X1,2) ≥ 1
4
.

Proof. The first item is well known; see for example [Otal and Rosas 2009] or [Ballmann et al. 2016].

The existence of the second item was proved by Mondal [2015, Theorem 1.3]. □

The third component is from the recent breakthrough by Hide and Magee [2023]. They use probabilistic

methods to show that for any ϵ > 0, there exists an integer δ(ϵ) > 0 only depending on ϵ such that for all

g > δ(ϵ) there exists a 2g-cover X of X0,3 such that

λ̄1(X ) = min
{

λ1(X ), 1
4

}

> 1
4
− ϵ.

It is not hard to see that X must have an even number of punctures because the Euler characteristic of X

is equal to −2g, which is even. Then one may apply the handle lemma of [Buser et al. 1988] (or see

[Brooks and Makover 2001, Lemma 1.1]) to get the following.

Theorem 2.8. For any ϵ > 0 and large enough g > 0, there exists a hyperbolic surface Xg,2 ∈ Mg,2 such

that

λ̄1(Xg,2) = min
{

λ1(Xg,2),
1
4

}

> 1
4
− ϵ.
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Proof. For completeness we sketch an outline of the proof. Suppose by contradiction there exists a

constant ϵ0 > 0 such that

lim inf
g→∞

sup
X∈Mg,2

λ1(X) ≤ 1
4
− ϵ0. (5)

It follows by [Hide and Magee 2023] that, for any ϵ > 0 and large enough g, there exists a 2g-cover X

of X0,3 such that

λ̄1(X ) = min
{

λ1(X ), 1
4

}

> 1
4
− ϵ.

Since the Euler characteristic χ(X ) = −2g is even, one may assume that X has an even number of cusps.

As in [Buser et al. 1988] we can construct a family of hyperbolic surfaces {Xg,2(t)} ⊂ Mg,2 such that

lim
t→0

Xg,2(t) = X ∈ ∂Mg,2.

By [Lax and Phillips 1982] we know that, for a hyperbolic surface with cusps, the spectrum below 1
4

is discrete and only contains eigenvalues. By (5), for some large g one may assume that φt is the first

eigenfunction on Xg,2(t) with 1φt = λ1(Xg,2(t)) ·φt on Xg,2(t). Then one may apply the handle lemma

of [Buser et al. 1988] (or see [Brooks and Makover 2001, Lemma 1.1]) to obtain

lim sup
t→0

λ1(Xg,2(t)) ≥ λ̄1(X ) = min
{

λ1(X ), 1
4

}

> 1
4
− ϵ,

which is a contradiction to (5) since ϵ > 0 can be chosen to be arbitrarily small. □

3. Eigenvalues on a family of degenerating Riemann surfaces

In this section we will prove the following min-max principle, which was stated earlier.

Proposition 3.1 (min-max principle). Let Xg(0) ∈ ∂Mg be the limit of a family of Riemann surfaces

{Xg(t)} obtained by pinching certain simple closed geodesics such that Xg(0) has k connected components,

i.e., Xg(0) = Y1 ⊔ Y2 ⊔ · · · ⊔ Yk , where k ≥ 2. Let λ1(Y1), . . . , λ1(Yk) be the first nonzero eigenvalue of

Y1, . . . , Yk (if Yi has no discrete eigenvalues then write λ1(Yi ) = ∞) and write λ̄1(∗) = min
{

λ1(∗), 1
4

}

for ∗ = Y1, . . . , Yk . Then

lim inf
t→0

λk(Xg(t)) ≥ min
1≤i≤k

{λ̄1(Yi )}.

To prove the theorem, we will start by discussing the subsequence limits of eigenfunctions. Denote by

φt ∈ C∞(Xg(t)) (one of) the normalized eigenfunctions corresponding to λk(Xg(t)), i.e.,

1Xg(t)φt = λk(Xg(t)) · φt and

∫

Xg(t)
|φt |

2 dVolXg(t) = 1.

By [Cheng 1975, Corollary 2.3] we know that for any compact hyperbolic surface X there is an upper

bound

λk(X) ≤
1

4
+ k2 ·

16π2

Diam2(X)
.
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Note that Diam(Xg(t))→∞ as t → 0 by Corollary 2.2 for any family of degenerating hyperbolic surfaces

{Xg(t)} as described in the proposition above. This gives that, for any fixed k ≥ 1,

lim inf
t→0

λk(Xg(t)) ≤ lim sup
t→0

λk(Xg(t)) ≤ 1
4
. (6)

On the other hand, by Theorem 2.5 we know that the lowest k − 1 eigenvalues of Xg(t) go to zero

when the degenerating limit has k components, while the k-th eigenvalue λk(Xg(t)) stays bounded away

from zero. Therefore

lim inf
t→0

λk(Xg(t)) > 0. (7)

Now consider

λk(0) := lim inf
t→0

λk(Xg(t)). (8)

By the discussion above we know that

0 < λk(0) ≤ 1
4
. (9)

By the collar lemma, Lemma 2.1, each Xg(t) can be decomposed into a number of disjoint degenerating

hyperbolic necks and a compact part (which has possibly several connected components). The width of

each hyperbolic neck is determined by the central shrinking geodesic γ and can be chosen to be w(γ )−1,

for example, where w(γ ) is given in (2). For the degenerating family {Xg(t)} with N shrinking geodesics

{γm(t)}N
m=1, we denote the width of each hyperbolic neck by the following N -tuple:

w⃗ := (w(γ1(t)) − 1, w(γ2(t)) − 1, . . . , w(γN (t)) − 1).

Note that w⃗ depends on t , and each entry in w⃗ goes to ∞ as t goes to zero. Geometrically each hyperbolic

neck degenerates into a pair of cusps. We remark here that in the definition of w⃗, the choice w(γ )− 1 is

for convenience and can be replaced by w(γ ) − c for any c > 0.

For any Xg(t), we denote the union of all N hyperbolic necks as Cw⃗(t). In local hyperbolic geodesic

coordinates given by dρ2 + ℓ2 cosh2 ρ dθ2 where ℓ is the length of the central geodesic circle γi ,

Cw⃗(t) =

N
⋃

m=1

{(ρ, θ) : 0 ≤ |ρ| ≤ w(γm(t)) − 1}. (10)

In addition, we also denote the union of all ªshellsº near the collars by

Sw⃗(t) =

N
⋃

m=1

{(ρ, θ) : w(γm(t)) − 1 ≤ |ρ| ≤ w(γm(t))}. (11)

Then it follows by the collar lemma that all such collar neighborhoods (and shells) are disjoint; see

Figure 4 for an illustration of collars and shells.

Denote the compact part by Fw⃗(t) = Xg(t)\Cw⃗(t). The compact area and nodal degeneration area are

grafted together [Melrose and Zhu 2018; 2019; Wolpert 1990]. For small t , the Fw⃗(t) are all diffeomorphic.

In particular, the metric on Fw⃗(t) can be written as e2ut g0, where g0 is the metric on Fw⃗(0) and ut is

polyhomogeneous and uniformly bounded in all derivatives [Melrose and Zhu 2019]. That is, we can

write the diffeomorphism Dt : Fw⃗(t) → Fw⃗(0) such that gt = D∗
t g0 and Dt are uniformly bounded. From

now on, when we consider the convergence of eigenfunctions φ(t) on Xg(t), the functions are all defined
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X1,2

ℓ1

X1,2

ℓ2 ℓ3

· · · · · · · · ·

Xg1,2

ρ

ℓ

w-wide collar neighborhood

shells

Figure 4. An example of collar neighborhoods and shells.

on Xg(0) via the pullback (D−1
t )∗φ(t); see [Wolpert 1992a; 1992b] for similar approaches. See also

another related approach via universal covers in [Buser et al. 1988].

Now take a sequence of metrics such that the corresponding sequence of eigenvalues approaches λk(0),

which is defined in (8). Denote the sequence by {Xg(ti )}∞i=1. By definition,

lim
i→∞

ti = 0 and lim
i→∞

λk(Xg(ti )) = λk(0).

Denote the corresponding eigenfunction on Xg(ti ) by φti ; we discuss the convergence of the sequence of

functions {φti }
∞
i=1 below. One key ingredient is the following Sobolev±Gårding Inequality on the compact

part Fw⃗(t). Denote by inj( · ) the injectivity radius function. Denote by ∇ jφti the j -th covariant derivative

of φti , where j ∈ N. Then we have the following.

Lemma 3.2. For any x ∈ Fw⃗(t), j ∈ N and r < inj(Fw⃗(t)), there exist a constant cr, j > 0 and an integer

Nj > 0 independent of x such that we have the following pointwise bound for any j-th derivative:

|∇ jφt(x)| ≤ cr, j

Nj
∑

ℓ=0

∥1ℓ
Xg(t)φt∥L2(Br (x)). (12)

Proof. This equality was shown in [Buser et al. 1988, Theorem 2.1]. The inequality is from the combination

of the Sobolev and Gårding inequalities, for example, see [Bers et al. 1964]. □

With the above inequality we have the following uniform bound on {φti }
∞
i=1 and their derivatives.

Lemma 3.3. For any j ∈ N, we have that {∇ jφti }i is uniformly bounded on any compact set of Xg(0).

Proof. Using (12) in the previous lemma, 1φt = λk(t)φt and 0 < λk(t) < 1
3
, we have

|∇ jφt(x)| ≤ cr, j

∞
∑

ℓ=0

(
1

3

)ℓ

∥φt∥L2(Xg(t)) ≤ 2cr, j ,

where the bound is independent of x . Hence all derivatives of φt (in particular the sequence {φti }) are

uniformly bounded. □
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Lemma 3.4. There exists a subsequence of φti (denoted by φi ) and φ0 ∈ H 1(Xg(0)) such that any

derivatives satisfy

∇ jφi → ∇ jφ0

uniformly on connected compact set of Xg(0).

Proof. Viewing {φt } as functions on F0 where F0 is any connected compact set of Xg(0), by the previous

lemma we have uniform boundedness of φt and all their derivatives. Hence by the Arzelà±Ascoli diagonal

argument there exists a subsequence φi such that the function and its derivative converge uniformly on

any compact set. □

By the convergence above we have
∫

Xg(0)

|φ0|
2 ≤ 1,

∫

Xg(0)

|∇φ0|
2 ≤ 1

and

1Xg(0)φ0 = λk(0) · φ0.

Now we show the following statement regarding the limit (λk(0), φ0). The argument is similar to [Wu

and Xue 2022a, Lemma 9] and [Dodziuk et al. 1987, Lemma 3.3].

Proposition 3.5. The limit (λk(0), φ0) must satisfy one of the following conditions:

(1) φ0 is an eigenfunction of 1Xg(0) and also restricts to at least one of the components Yk as an

eigenfunction; or

(2) φ0 = 0 everywhere on Xg(0) and λk(0) = 1
4
.

Proof. If φ0 is not zero everywhere, then φ0 belongs to H 1(Xg(0)) and is an eigenfunction. In particular,

it must restrict to a nonzero function on at least one component of Xg(0).

Otherwise suppose φ0 = 0 everywhere on Xg(0), that is, φi → 0 pointwise everywhere. Then following

a similar argument as in [Wu and Xue 2022a, Lemma 9] or [Dodziuk et al. 1987, Lemma 3.3], we can

show that λk(0) ≥ 1
4
. For completeness we write out the proof in detail here.

Recall the definitions of collars and shells on hyperbolic necks in (10) and (11). Similar to the definition

above, we denote by Cw⃗(i) the union of w⃗-wide collar neighborhoods near all degenerating geodesic

circles on Xg(ti ), and by Sw⃗(i) the union of the ªshellsº. To simplify the argument below, we also denote

by Ci,m and Si,m the individual hyperbolic neck and shell, respectively, with central geodesic circle γm(i),

where 1 ≤ m ≤ N , and denote the corresponding width by wi,m := w(γm(i)) − 1. Hence

Cw⃗(i) =

N
⋃

m=1

Ci,m and Sw⃗(i) =

N
⋃

m=1

Si,m .

Fix any ϵ ∈ (0, 1) and δ ∈
(

0, 1
16

)

. We write c = 1 − ϵ. Since φi converges to zero uniformly on any

compact set, there exists N0 ∈ N such that for any i > N0 we have
∫

Cw⃗(i)
|φi |

2 ≥ c > 0,

∫

Sw⃗(i)
|φi |

2 < δc and

∫

Sw⃗(i)
|∇φi |

2 < δc.
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Define a new function on Cw⃗(i) ∪ Sw⃗(i) as follows:

8i :=

{

φi , |ρ| ≤ wi,m,

(wi,m + 1 − |ρ|)φi , wi,m ≤ |ρ| ≤ wi,m + 1.

Then 8i gives a function in H 1
0 (Cw⃗(i) ∪ Sw⃗(i)) with 8i |∂(Cw⃗(i)∪Sw⃗(i)) = 0. Therefore by applying [Wu

and Xue 2022a, Lemma 7] to a union of hyperbolic collars we have
∫

Cw⃗(i)∪Sw⃗(i)
|∇8i |

2 >
1

4

∫

Cw⃗(i)∪Sw⃗(i)
|8i |

2.

On the other hand we have

∫

Sw⃗(i)
|∇8i |

2 =

N
∑

m=1

∫

Si,m

|∇((wi,m + 1 − |ρ|)φi )|
2

=

N
∑

m=1

∫

Si,m

|∇(wi,m + 1 − |ρ|) · φi + (wi,m + 1 − |ρ|) · ∇φi |
2

≤

N
∑

m=1

∫

Si,m

(|φi | + (wi,m + 1 − |ρ|) · |∇φi |)
2 ≤ 2

N
∑

m=1

∫

Si,m

|φi |
2 + 2

N
∑

m=1

∫

Si,m

|∇φi |
2 ≤ 4δc.

Therefore for any i > N0 we have
∫

Cw⃗(i)
|∇φi |

2 =

∫

Cw⃗(i)
|∇8i |

2 =

∫

Cw⃗(i)∪Sw⃗(i)
|∇8i |

2 −

∫

Sw⃗(i)
|∇8i |

2

≥
1

4

∫

Cw⃗(i)∪Sw⃗(i)
|8i |

2 −

∫

Sw⃗(i)
|∇8i |

2

≥
1

4

∫

Cw⃗(i)
|φi |

2 −

∫

Sw⃗(i)
|∇8i |

2 ≥
1

4
c − 4δc =

1−16δ

4
(1 − ϵ),

which implies

λk(Xg(ti )) =

∫

Xg(ti )
|∇φti |

2

∫

Xg(ti )
|φi |2

≥

∫

Cw⃗(i) |∇φi |
2

∫

Xg(ti )
|φi |2

≥
1−16δ

4
(1 − ϵ).

Since this argument holds for any ϵ ∈ (0, 1) and δ ∈
(

0, 1
16

)

, we have

λk(0) = lim inf
i→∞

λk(Xg(ti )) ≥ 1
4
.

On the other hand λk(0) ≤ 1
4

by (9), therefore we have λk(0) = 1
4
. □

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By the previous proposition, either λk(0) = λ1(Yi ) for at least one of the

components Yi , or λk(0) = 1
4
, therefore we obtain

λk(0) ≥ min
1≤i≤k

{

min
{

λ1(Yi ),
1
4

}}

as desired. □
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We enclose in this section the following result, which is an easy application of Proposition 3.1.

Proposition 3.6. Let Xg(0)∈ ∂Mg be the limit of a family of Riemann surfaces {Xg(t)}⊂Mg by pinching

certain simple closed geodesics such that Xg(0) has k connected components, i.e., Xg(0)=Y1⊔Y2⊔· · ·⊔Yk

for some k ≥ 2. Assume in addition that λ̄1(Yi ) = min
{

λ1(Yi ),
1
4

}

≥ 1
4

for all 1 ≤ i ≤ k, where λ1(Yi ) is

the first nonzero eigenvalue of Yi . Then

lim
t→0

λk(Xg(t)) = 1
4
.

Proof. From (6) we have that

lim sup
t→0

λk(Xg(t)) ≤ 1
4
.

On the other hand, it follows by Proposition 3.1 that

lim inf
t→0

λk(Xg(t)) ≥ min
1≤i≤k

{

min
{

λ1(Yi ),
1
4

}}

= 1
4
.

The conclusion immediately follows. □

We now prove spectral gaps can be arbitrarily close to zero by using this result. Recall that, for all

i ≥ 1 and Xg ∈ Mg, the i-th spectral gap SpGi (Xg) of X is defined as

SpGi (Xg) := λi (Xg) − λi−1(Xg).

We prove the following.

Proposition 3.7. For all i ≥ 1,

inf
Xg∈Mg

SpGi (Xg) = 0.

Proof. We split the proof into three cases.

Case 1: 1 ≤ i ≤ 2g − 3. One may choose a closed hyperbolic surface Xg ∈ Mg which is close enough to

the maximal nodal surface

X0,3 ⊔ · · · ⊔ X0,3
︸ ︷︷ ︸

2g − 2 copies

∈ ∂Mg,

then λi (Xg) is close to zero by Theorem 2.5. So the conclusion follows for this case.

Case 2: i = 2g − 2. Let Z1,2 ∈ M1,2 such that λ̄1(Z1,2) = min
{

1
4
, λ1(Z1,2)

}

≥ 1
4

by Theorem 2.7. Recall

that λ1(X0,3) ≥ 1
4

from the same theorem. Let {Xg(t)} ⊂Mg be a family of hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3
︸ ︷︷ ︸

2g − 4 copies

⊔ Z1,2 ∈ ∂Mg.

Then it follows from Proposition 3.6 that

lim
t→0

λ2g−3(Xg(t)) = 1
4
.

Meanwhile, by [Otal and Rosas 2009, Theorem 2], we know that

λ2g−2(Xg(t)) ≥ 1
4
.
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Since Diam(Xg(t)) → ∞ as t → 0, by [Cheng 1975, Corollary 2.3] we have that

lim sup
t→0

λ2g−2(Xg(t)) ≤ 1
4
.

Thus, we have

lim
t→0

λ2g−2(Xg(t)) = 1
4
.

Then the conclusion also follows for this case because

inf
Xg∈Mg

SpG2g−2(Xg) ≤ lim
t→0

SpG2g−2(Xg(t)) = 0.

Case 3: i > 2g − 2. Let {Yg(t)} ⊂ Mg be a family of hyperbolic surfaces such that

lim
t→0

Yg(t) ∈ ∂Mg.

Similar to Case 2, by [Otal and Rosas 2009, Theorem 2] and [Cheng 1975, Corollary 2.3], we have

lim
t→0

λi (Yg(t)) = 1
4

and lim
t→0

λi−1(Yg(t)) = 1
4
.

This implies infXg∈Mg SpGi (Xg) = 0 for all i > 2g − 2. □

4. Proof of Theorem 4.1

Now we are ready to prove Theorem 4.1.

Theorem 4.1. Let {η(g)}∞g=2 be any sequence of integers with η(g) ∈ [1, 2g − 2]. Then

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥ 1
4
.

Proof. We will show that for any η(g) with sufficiently large g, one can find a genus g surface Xg with

SpGη(g)(Xg) close to 1
4
. To see this, we split the proof into the following four cases.

Case 1: η(g) = 2g − 2. Let Xg(t) : (0, 1) → Mg be a family of closed hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3
︸ ︷︷ ︸

2g − 2 copies

∈ ∂Mg.

First by [Otal and Rosas 2009, Theorem 2], λ2g−2(Xg(t)) ≥ 1
4

for all t ∈ (0, 1). Secondly by Theorem 2.5

we know that λ2g−3(Xg(t)) → 0 as t → 0. Thus,

sup
Xg∈Mg

SpG2g−2(Xg) ≥ lim inf
t→0

SpG2g−2(Xg(t)) ≥ 1
4
.

Case 2: η(g) ∈ [g + 1, 2g − 3]. First we choose a hyperbolic surface Z1,2 ∈ M1,2 such that λ̄1(Z1,2) ≥ 1
4

by Theorem 2.7. Recall also that λ1(X0,3) ≥ 1
4
. By Lemma 2.3 we can construct Xg(t) : (0, 1) → Mg as

a family of closed hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3
︸ ︷︷ ︸

i copies

⊔ Z1,2 ⊔ · · · ⊔ Z1,2
︸ ︷︷ ︸

j copies

∈ ∂Mg,
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where i and j are two nonnegative integers satisfying i + j = η(g). By Theorem 2.5 we know that

limt→0 λη(g)−1(Xg(t)) = 0. By Proposition 3.6 we have

lim
t→0

λη(g)(Xg(t)) = 1
4
,

which implies

sup
Xg∈Mg

SpGη(g)(Xg) ≥ lim
t→0

SpGη(g)(Xg(t)) = 1
4
.

Case 3: η(g) ∈ [2, g]. As in Case 2, we choose a hyperbolic surface Z1,2 ∈ M1,2 such that λ̄1(Z1,2) ≥ 1
4
.

Let g1 > 0 be the integer determined in Lemma 2.4. Note that g1 tends to ∞ as g → ∞ because

2g1 ≥ g − 2. Then by Theorem 2.8 we know that, for any ϵ > 0 and large enough g > 0, one may choose

a hyperbolic surface Xg1,2 ∈ Mg1,2 such that

λ̄1(Xg1,2) > 1
4
− ϵ.

Fix any such large g. Then by Lemma 2.4 we construct Xg(t) : (0, 1) → Mg as a family of closed

hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 ⊔ · · · ⊔ X0,3
︸ ︷︷ ︸

i copies

⊔ Z1,2 ⊔ · · · × Z1,2
︸ ︷︷ ︸

j copies

⊔Xg1,2 ∈ ∂Mg,

where i and j are two nonnegative integers satisfying i + j = η(g) − 1. By Theorem 2.5 we know that

limt→0 λη(g)−1(Xg(t)) = 0. Applying the min-max principle in Proposition 3.1 to this sequence with

k = η(g) (note that g is a fixed large integer hence η(g) is also fixed), we have

lim inf
t→0

λη(g)(Xg(t)) ≥ min{λ̄1(M0,3), λ̄1(Z1,2), λ̄1(Xg1,2)} ≥ 1
4
− ϵ,

which implies

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥ 1
4
− ϵ

because

sup
Xg∈Mg

SpGη(g)(Xg) ≥ lim inf
t→0

SpGη(g)(Xg(t)).

Since ϵ > 0 can be arbitrarily small, we have

lim inf
g→∞

sup
Xg∈Mg

SpGη(g)(Xg) ≥ 1
4
.

Case 4: η(g) = 1. This is due to [Hide and Magee 2023, Corollary 1.3] because SpG1(Xg) = λ1(Xg).

The four cases above cover all possible η(g) and hence complete the proof. □

Remark. The method in this paper works for indices in the range of [1, 2g − 2] in Theorem 4.1.

The restriction comes from the lack of suitable components with λ1 close to 1
4

when constructing the

degenerating family. It would be interesting to know whether the assumption η(g) ∈ [1, 2g − 2] can be

dropped.
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We also note that, together with [Cheng 1975, Corollary 2.3], the proof of Theorem 4.1 above actually

gives the following result.

Theorem 4.2. For any 0 ≤ j < i with i = o(ln(g)),

lim
g→∞

sup
Xg∈Mg

(λi (Xg) − λj (Xg)) = 1
4
.
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