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DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS
FOR LARGE GENUS

YUNHUI WU, HAOHAO ZHANG AND XUWEN ZHU

We study the differences of two consecutive eigenvalues A; — A;_;, i up to 2g — 2, for the Laplacian
on hyperbolic surfaces of genus g, and show that the supremum of such spectral gaps over the moduli
space has infimum limit at least % as the genus goes to infinity. A min-max principle for eigenvalues on
degenerating hyperbolic surfaces is also established.

1. Introduction

For a closed Riemann surface X, of genus g > 2, consider the hyperbolic metric uniquely determined by
its complex structure. We study the spectrum of the Laplacian on X, which is a discrete subset in R=0
and consists of eigenvalues with finite multiplicities. The eigenvalues, counted with multiplicities, are
listed in the following increasing order:

OZA'O(Xg) <)\1(Xg) S)"Z(Xg) <...— 00.

Let M, be the moduli space of Riemann surfaces of genus g, which is an open orbifold of dimension
equal to 6g — 6. For each index i, the i-th eigenvalue A;(-) is a bounded continuous function on M,. In
this paper we study the differences of two consecutive eigenvalues and will focus on the behavior of such
spectral gaps when g — oo.

Definition. For all i > 1, the i-th spectral gap SpG,; (-) is a bounded continuous function over the moduli
space M, defined as

SPG; : My — RZ%, Xy Ai(Xg) — Aim1(Xy). (1)

By definition, SpG;(X,) = A1(X,). For all i > 1, the i-th spectral gap SpG; (- ) can be arbitrarily close
to zero (e.g., see Proposition 3.7). In this paper we mainly study the quantity sup XoeM, SpG; (X,) for
large g and a family of indices i.

The main result of this article is the limiting behavior of the lower bound of the spectral gaps.

Theorem 4.1. Let {n(g)}(‘:f:2 be any sequence of integers with n(g) € [1,2g —2]. Then
liminf sup SpG, ,,(Xg) > 1
800 ¥ eM, n(g) 4
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Remark. The sequence {n(g)} is arbitrary as long as it satisfies the bounds: examples include 1(g) =2,
n(g)=1{2,3,2,3,...},and n(g) =2g — 2.
On the other hand, by [Cheng 1975, Corollary 2.3], we know that
1. 1672
rRa Diam*(X,)’
By Gauss—Bonnet, Area(X,) = 4m(g — 1). A simple area argument implies that the diameter satisfies

)\'i (Xg) =

Diam(X,) > C In(g) for some universal constant C > 0. So if n(g) satisfies

5 ng
1m =
g—o0 In(g)

we have
limsup sup SpG, ) (Xg) < %.

8§00 X.eM,

Together with Theorem 4.1 this yields the following direct consequence.

Corollary 1.1. If n(g) = o(In(g)), then

For n(g) = 1, both Theorem 4.1 and Corollary 1.1 are due to Hide and Magee [2023, Corollary 1.3],
who used a probabilistic method to solve the conjecture (e.g., see [Buser 1984; Buser et al. 1988]) that
there exists a sequence of closed hyperbolic surfaces with first eigenvalues tending to ‘—11 as the genus goes
to infinity.

The following result is important in the proof of Theorem 4.1, which we include for independent
interest. The proof is highly motivated by the work of Burger, Buser and Dodziuk [Buser et al. 1988],
where they studied the case when the limiting surface is connected (e.g., see Theorem 2.6).

Proposition 3.1 (min-max principle). Let X, (0) € 0 Mg be the limit of a family of Riemann surfaces
{ X, (1)} obtained by pinching certain simple closed geodesics such that X 4(0) has k connected components,
ie, Xo0)=YuYoU---UYy, wherek > 2. Let A1 (Y1), ..., A (Yy) be the first nonzero eigenvalue of
Y1, ..., Yx (if Y; has no discrete eigenvalues then write A1 (Y;) = 00) and write )_\1(*) = min{kl(*), }‘}
forx=Yy,..., Y. Then
liminf Ax (X, (¢)) > min {A;(Y;)}.
t—0 1<i<k

Remark. Each component Y; in the proposition above is a complete open hyperbolic surface of finite
volume, whose spectrum consists of possibly discrete eigenvalues and the continuous spectrum [}L, oo).
Therefore, in the statement above, A;(Y;) is the nonzero minimum of the spectrum of Y;.

Proof sketch of Theorem 4.1. In the proof of Theorem 4.1, we will apply Proposition 3.1 to the case
when all the A (Y;) are close to Alf. The main idea is the following: for each 7(g) we construct a sequence
of genus g surfaces that degenerate into 7(g) components using only pieces that are known to have the
first eigenvalue close to le' Then by the min-max principle, the 7(g)-th eigenvalue of these surfaces will be
close to }1. On the other hand, by a result of Schoen, Wolpert and Yau (see Theorem 2.5), the ((g)—1)-th
eigenvalue is close to zero. This way we find sequences of surfaces that achieve the spectral gap of ‘—1‘. For
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the regime n(g) > g, the components used in the construction only include the thrice-punctured sphere
and a twice-punctured torus. On the other hand, for n(g) < g, the essential components also include a
large genus piece that relies on the work of Hide and Magee [2023].

Plan of the paper. Section 2 will first discuss properties of the boundary degeneration of the Riemann
moduli spaces; then we will provide a review of the background and recent developments on spectral
gaps on hyperbolic surfaces, including a list of punctured surface components with eigenvalue bounds
which will be used in the degeneration limits. In Section 3 we will provide a proof for Proposition 3.1
regarding the min-max principle for eigenvalues of degenerating hyperbolic surfaces and a few immediate
applications. In Section 4 we will complete the proof of Theorem 4.1.

2. Preliminaries

Boundary of the Riemann moduli spaces. Denote by M, , the moduli space of hyperbolic surfaces
of genus g with n punctures, and by M, := M, o the moduli space of compact hyperbolic surfaces
with genus g. It is well known that dimg (M, ,) = 6g + 2n — 6. In particular, M 3 contains only one
point represented by the hyperbolic thrice-punctured sphere. The Deligne—Mumford compactification
of M, , is obtained by adding nodal surfaces into M, ,, which is homeomorphic to the completion of
M, , endowed with the Weil-Petersson metric. Let d M, ,, be the boundary of the Deligne-Mumford
compactification of M, ,. Recall that 9 My , is stratified, and each stratum of d M, , is a product of
lower-dimensional moduli spaces. Points in d M, , are represented by hyperbolic nodal surfaces in M, ,
(see for example [Masur 1976] for more details on the completion of M, ,). Locally the process of
pinching a simple closed geodesic into a pair of cusp points can be written with respect to hyperbolic
collar coordinates (p, 6) with £ the length of the central geodesic circle. As £ — 0, the hyperbolic
neck degenerates into a pair of cusps, which can be seen with the choice of the correct coordinates (see
for example [Ji 1993; Masur 1976]). Another way to see this would be using the complex “plumbing”
coordinates, which we will not discuss. Hyperbolic nodal surfaces are obtained by pinching certain
disjoint geodesic circles, and we call such a family of hyperbolic metrics approaching nodal surfaces a
degenerating family (see, e.g., [Wolpert 1990], and see Figure 1 for an example).

We also recall the collar lemma on structures of disjoint hyperbolic collars around short geodesics,
which will be useful later in decomposing the surfaces.

Lemma 2.1 (collar lemma [Buser 1992, Theorem 4.1.1]). Let y1, y2, - .., Ym be disjoint simple closed
geodesics on a closed hyperbolic Riemann surface X4, and let £(y;) be the length of y;. Then m < 3g — 3,
and we can define the collar of y; by

T (i) = {x € Xy :dist(x, y;) < w(yi)},

where

1

w(y;) = arcsinh ————
l smh(%ﬁ(yi))

(2)

is the width of the collar.
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X3

Figure 1. An example of a degenerating family in M3 whose limit is X | U X 3, which is disconnected.

Then the collars are pairwise disjoint for i = 1,...,m. Each T (y;) is isomorphic to a cylinder
(p,0) € [—wy;), w(y)] x S', where S = R/Z, with the metric

ds® =dp* +€(y;)? cosh? p d6>. (3)
For a point (p, 0), the point (0, 0) is its projection on the geodesic y;, |p| is the distance to y;, and 0 is
the coordinate on y; = S'.

As the length £(y) of the central closed geodesic goes to zero, the width w(y) is approximately
In (1/£(y)), which tends to infinity. We have the following as an easy corollary.

Corollary 2.2. For a degenerating family of hyperbolic surfaces {X ¢ (t)}, the diameter satisfies
Diam(X, (1)) — oo.
The following two lemmas will be useful in the proof of Theorem 4.1.

Lemma 2.3. For each integer n(g) € [g — 1, 2g — 2] with g > 2, there exist two nonnegative integers i
and j such that

M i+j=n(g.

(2) Moz x -+ x Moz X My XX Mz CIMs,.

i copies J copies

Remark. Here i and j depend on g and satisfy i +2j =2g —2 by the additivity of the Euler characteristic.

Proof. If n(g) =2g — 2, the conclusion is obvious by choosing i =2g —2 and j = 0, which is obtained
by pinching 3g — 3 disjoint simple closed curves in a closed surface X, of genus g.
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i(g) copies of X3

Jj(g) copies of X »

Figure 2. An example of the degeneration of a genus g surface into i (g) copies of X 3
and j(g) copies of X, by pinching all the simple geodesics marked in the picture.

Now we assume g < n(g) < 2g — 3. Given a closed surface X, of genus g, first one may pinch X,
along two disjoint simple closed curves o and o, such that X, \ (o7 Uo?) has two connected components
Xg,2U X, 2, where g and g> are two nonnegative integers satisfying g + g = g — 1. Here we choose

g1=02g—2)—n(g) and g =n(g) —(g—1D.

For the second step, we pinch X, > along g; — 1 disjoint simple closed curves {y;}1</<g,—1 such that the
complement decomposes further into g; components:

Xg 2\ U vi=Xipu---uXi.

I=l=g1-1 g copies

For X,, >, one may pinch along 3g, — 1 disjoint simple closed curves {y,,}1<m<3¢,—1 such that the
complement decomposes further into 2g, components:

Xgr2\ U Ym = Xo3U---UXo3.
—_———

l=m=3g,—1 2g, copies

Pinching all these simple closed curves during cutting above to zero, the conclusion follows since
i=2g=2n()—(2¢—-2) and j=g =2¢g—-2)—ng). “4)

For an illustration, see Figure 2.

If n(g) = g — 1, we first pinch X, along a nonseparating simple closed curve to get a surface X,_1».
Then in the same way as with X, > in the previous case, we pinch X,_; > along g — 2 disjoint simple
closed curves to get g — 1 copies of X . Then the conclusion follows withi =0 and j =g — 1.

Combining the three cases above, the proof is complete. U
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i(g) copies of X3 Jj(g) copies of X »

X2

Figure 3. An example of decomposing a surface of genus g into i copies of Xg 3, j copies
of X1 and a copy of X, », where i, j, and g; are given in the proof of Lemma 2.4.

Lemma 2.4. For each integer n(g) € [2, gl with g > 3, there exist three nonnegative integers g1, i and j
such that

(1) 2¢1=¢-2,
Q) i+j+1=n(),
(3) Moz x -+ x Moz X My X+ x MyaXMg 2 CIM,.

i(g) copies Jj(g) copies

Remark. Similar to the previous lemma, i, j and g; depend on g. By calculating the Euler characteristics,
these numbers should satisfy i +2j +2g; =2g — 2.

Proof. Similar to the proof of Lemma 2.3 above, we first decompose X, as X, \ (01 U02) = Xg, 2 U X, »
for two disjoint simple closed curves o] and o,, where g; and g, := g — 1 — g1 will be determined in
different cases below. Next we decompose X, > into the disjoint union of i copies of X 3 and j copies
of X to obtain the desired properties. For an illustration, see Figure 3.

The proof contains the following three cases.

Case 1: 2 <n(g) < % g + 1. The conclusion follows by choosing
i=0, j=n(@—-1 and g =g—n(g.
Case 2: %g +1 < n(g) < g and n(g) is odd. The conclusion follows by choosing
i=n(g—1, j=0 and g =g—1(1+n).
Case 3: %g +1 < n(g) < g and n(g) is even. The conclusion follows by choosing

i=ng -2 j=1 and g =g—1—1n(g). O
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Eigenvalues of hyperbolic surfaces. The study of eigenvalues of the Laplacian on hyperbolic surfaces
has a long history and has recently seen much progress. For a compact hyperbolic surface, the eigenvalues
are discrete. On the other hand, when the hyperbolic surface degenerates to one with cusps, by [Lax
and Phillips 1982] it is known that the spectrum is no longer discrete, rather it consists of a continuous
spectrum [A% oo) and (possibly) additional discrete eigenvalues. The study of spectral degeneration has
seen many developments; see [Hejhal 1990; Ji 1993; Ji and Zworski 1993; Wolpert 1987; 1992a; 1992b]
for some of the earlier works.

An eigenvalue of a hyperbolic surface is said to be “small” if it is less than Alf, where the number %
shows up as the bottom of the continuous spectrum of a hyperbolic surface with cusps. The questions
of existence of eigenvalues less than % for both noncompact and compact hyperbolic surfaces not only
arise in the field of spectral geometry, but also have deep relations to number theory regarding arithmetic
hyperbolic surfaces, dating back to Selberg’s famous 1% theorem [1965]. We refer to [Gelbart and Jacquet
1978; Kim 2003; Luo et al. 1995] for more recent developments. Regarding the estimates and multiplicity
counting of small eigenvalues, the history goes back to McKean [1972], Randol [1974], and Buser [1982;
1984]. Recently there have been many developments; see [Ballmann et al. 2016; 2017; 2018; Brooks and
Makover 2001; Buser 1992; Buser et al. 1988; Mondal 2015; Otal and Rosas 2009; Schoen et al. 1980].
Among these are two classical results of particular relevance to our current work. The first regards bounds
of eigenvalues on degenerating hyperbolic surfaces by Schoen, Wolpert and Yau [Schoen et al. 1980]:

Theorem 2.5 [Schoen et al. 1980]. For any compact hyperbolic surface X4 of genus g and integer
i €(0,2g —2), the i-th eigenvalue satisfies

a;(g)-4i <A < Bi(g) -4
and

a(g) S )¥2g—27

where a;(g) > 0 and Bi(g) > 0 depend only on i and g, a(g) > 0 depends only on g, and £; is the
minimal possible sum of the lengths of simple closed geodesics in X, which cut X into i + 1 connected
components.

Dodziuk and Randol [1986] gave an alternative proof of Theorem 2.5, and one may also see Dodziuk,
Pignataro, Randol and Sullivan [Dodziuk et al. 1987] on similar results for Riemann surfaces with
punctures. It was proved by Otal and Rosas [2009] that the constant «(g) can be optimally chosen to
be }L. For large genus g, it was recently proved by the first-named author and Xue [Wu and Xue 2022a;
2022c] that up to multiplication by a universal constant, o (g) can be optimally chosen to be 1/g2.

The other result that is relevant is [Buser et al. 1988, Theorem 2.1] regarding the first eigenvalue when
the limiting degenerating surface is connected:

Theorem 2.6 [Buser et al. 1988]. Let {X4(t)} C M, such that Y = lim;_,o X4(t) € 0. M, is connected.
Denote by L1 (Y) the first nonzero eigenvalue of Y (if Y has no discrete eigenvalues we write L1(Y) = 00).
Then

limsup A1 (Xg (1)) = A1 (Y) =min{a;(¥), 1}

t—0
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In Section 3 we will give a similar description of A4 (X, (7)) when the limiting surface has k connected
components.

Another related direction in this topic is to understand how the genus of the hyperbolic surface, in
particular when g — oo, affects the eigenvalues via different models of random hyperbolic surfaces.
Brooks and Makover [2004] gave a uniform lower bound on the first spectral gap for their combinatorial
model of random surfaces by gluing hyperbolic ideal triangles. In terms of Weil-Petersson random
closed hyperbolic surfaces, Mirzakhani [2013] showed that the first eigenvalue is greater than 0.0024 with
probability one as g — oo. Recently, the first-named author and Xue [Wu and Xue 2022b] improved this
lower bound 0.0024 to be % — €, which was also independently obtained by Lipnowski and Wright [2024].
One may also see [Hide 2022] for similar results on Weil-Petersson random punctured hyperbolic surfaces
and [Monk 2021] for related results. Recently there have also been many exciting developments in the
case of random covers of both compact and noncompact hyperbolic surfaces; see [Magee and Naud 2020;
2021, Magee and Puder 2023,Magee et al. 2022]. For example, Magee, Naud and Puder [Magee et al.
2022] showed that a generic covering of a hyperbolic surface has relative spectral gap of size 13—6 — €,
which was improved to }L — € by Hide and Magee [2023] for random covers of punctured hyperbolic
surfaces. As an important application, [Hide and Magee 2023] proved that

lim sup A;(Xg) = %.
87 X,eM,
This result provides major inspiration for our current paper.

One major ingredient of our proof is the existence of punctured surfaces with first eigenvalue close
to }‘. We summarize those components in the two theorems below.

Theorem 2.7. (1) 11(Xo3) > &
(2) [Mondal 2015] There exists a surface X1 2 € M such that 11(X172) > }1.

Proof. The first item is well known; see for example [Otal and Rosas 2009] or [Ballmann et al. 2016].
The existence of the second item was proved by Mondal [2015, Theorem 1.3]. O

The third component is from the recent breakthrough by Hide and Magee [2023]. They use probabilistic
methods to show that for any € > 0, there exists an integer §(¢) > 0 only depending on € such that for all
g > &(¢) there exists a 2g-cover X' of Xg 3 such that

A (X) =min{A;(X), 1} > 1 —e

It is not hard to see that X must have an even number of punctures because the Euler characteristic of X
is equal to —2g, which is even. Then one may apply the handle lemma of [Buser et al. 1988] (or see
[Brooks and Makover 2001, Lemma 1.1]) to get the following.

Theorem 2.8. For any € > 0 and large enough g > 0, there exists a hyperbolic surface Xg 2 € Mg > such
that

A (X 2) =min{A; (X, 0), 1} > 1 —e
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Proof. For completeness we sketch an outline of the proof. Suppose by contradiction there exists a
constant €p > 0 such that
liminf sup A;(X) <1 —eo. (5)
8§00 XeMgo

It follows by [Hide and Magee 2023] that, for any € > 0 and large enough g, there exists a 2g-cover X
of Xy, 3 such that

1 (X) =min{k1(X), le} > ‘l‘—e.

Since the Euler characteristic y (X)) = —2g is even, one may assume that X’ has an even number of cusps.
As in [Buser et al. 1988] we can construct a family of hyperbolic surfaces {X, »(¢)} C M, > such that

liII(l) Xg,z(l‘) =Xec 8Mg,2.
t—

By [Lax and Phillips 1982] we know that, for a hyperbolic surface with cusps, the spectrum below %
is discrete and only contains eigenvalues. By (5), for some large g one may assume that ¢, is the first
eigenfunction on X (1) with A¢;, = A1(X,2(2)) - ¢; on X, 2(¢). Then one may apply the handle lemma
of [Buser et al. 1988] (or see [Brooks and Makover 2001, Lemma 1.1]) to obtain

limsup A1 (Xg2(6) = A1 (X) = min{A;(X), 1} > 1 —e,

t—0

which is a contradiction to (5) since € > 0 can be chosen to be arbitrarily small. O

3. Eigenvalues on a family of degenerating Riemann surfaces
In this section we will prove the following min-max principle, which was stated earlier.

Proposition 3.1 (min-max principle). Let X,(0) € 0 M, be the limit of a family of Riemann surfaces
{X, (1)} obtained by pinching certain simple closed geodesics such that X ¢(0) has k connected components,
ie, Xg0) =Y uYou---UYy, wherek > 2. Let A1 (Y1), ..., A (Yy) be the first nonzero eigenvalue of
Yi,..., Yx (if Y; has no discrete eigenvalues then write 1(Y;) = 00) and write r(x) = min{kl(*), 4—11}
forx=Y1,..., Y. Then
liminf A¢ (X, (2)) > min {A;(Y;)}.
t—0 1<i<k

To prove the theorem, we will start by discussing the subsequence limits of eigenfunctions. Denote by
¢; € C™(Xg4(1)) (one of) the normalized eigenfunctions corresponding to Ax (X, (1)), i.e.,

Ax. b = i (Xe(D) ¢ and / (e dVoly, ¢ = 1.
X (1)

By [Cheng 1975, Corollary 2.3] we know that for any compact hyperbolic surface X there is an upper

bound
1672

1, .2
a(X) < L2 O
WX =g Diam2(X)
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Note that Diam(X (7)) — oo as t — 0 by Corollary 2.2 for any family of degenerating hyperbolic surfaces
{ X (1)} as described in the proposition above. This gives that, for any fixed k > 1,
lhn%ﬁkk(XgG))SlhnsupAk(XgO))fg%. (6)
= t—0
On the other hand, by Theorem 2.5 we know that the lowest k — 1 eigenvalues of X, () go to zero
when the degenerating limit has k components, while the k-th eigenvalue A, (X, (7)) stays bounded away
from zero. Therefore

limiélfkk(Xg(t)) > 0. (7
t—
Now consider
Ak (0) :=1lim ié’lf)\k(Xg(l‘)). (8)
t—
By the discussion above we know that
0 < A (0) < 1. )

By the collar lemma, Lemma 2.1, each X, (¢) can be decomposed into a number of disjoint degenerating
hyperbolic necks and a compact part (which has possibly several connected components). The width of
each hyperbolic neck is determined by the central shrinking geodesic y and can be chosen to be w(y) —1,
for example, where w(y) is given in (2). For the degenerating family {X,(r)} with N shrinking geodesics
Vi (t)}nl\; _;» we denote the width of each hyperbolic neck by the following N-tuple:

W= W) —Lwke®)—1,..., wyn@®) = 1.

Note that w depends on ¢, and each entry in W goes to 0o as ¢ goes to zero. Geometrically each hyperbolic
neck degenerates into a pair of cusps. We remark here that in the definition of w, the choice w(y) — 1 is
for convenience and can be replaced by w(y) — ¢ for any ¢ > 0.

For any X, (7), we denote the union of all N hyperbolic necks as Cy (¢). In local hyperbolic geodesic
coordinates given by dp? + £% cosh? p d6? where £ is the length of the central geodesic circle y;,

N
Ciy(r) = U{(P,Q) 10 <|pl =w(ym(®)) —1}. (10)
m=1

In addition, we also denote the union of all “shells” near the collars by

N
S (1) = U{(pﬂ) fw(ym (@) — 1 < [pl = w(ym ()} (1)
m=1
Then it follows by the collar lemma that all such collar neighborhoods (and shells) are disjoint; see
Figure 4 for an illustration of collars and shells.
Denote the compact part by Fy (1) = X,(t) \ Cy(¢). The compact area and nodal degeneration area are
grafted together [Melrose and Zhu 2018; 2019; Wolpert 1990]. For small ¢, the F;(¢) are all diffeomorphic.

In particular, the metric on Fy(¢) can be written as o2

8o, Where gg is the metric on Fj(0) and u, is
polyhomogeneous and uniformly bounded in all derivatives [Melrose and Zhu 2019]. That is, we can
write the diffeomorphism D, : F; (t) — F(0) such that g; = D} go and D; are uniformly bounded. From

now on, when we consider the convergence of eigenfunctions ¢ () on X, (), the functions are all defined
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X1,2 le2

~

w-wide collar neighborhood

X81,2

Figure 4. An example of collar neighborhoods and shells.

on X,(0) via the pullback (D, 1)*(f)(t); see [Wolpert 1992a; 1992b] for similar approaches. See also
another related approach via universal covers in [Buser et al. 1988].

Now take a sequence of metrics such that the corresponding sequence of eigenvalues approaches A (0),
which is defined in (8). Denote the sequence by {X(#;)}7°,. By definition,

lim ;=0 and lim A¢(X, (1)) = At (0).
11— 00

11— 00
Denote the corresponding eigenfunction on X, (#;) by ¢;,; we discuss the convergence of the sequence of
functions {¢;,}7, below. One key ingredient is the following Sobolev—Gérding Inequality on the compact
part F (). Denote by inj( - ) the injectivity radius function. Denote by V/ ¢, the j-th covariant derivative
of ¢, where j € N. Then we have the following.

Lemma 3.2. For any x € Fy(t), j € Nandr < inj(Fy(t)), there exist a constant c, j > 0 and an integer
N; > O independent of x such that we have the following pointwise bound for any j-th derivative:
N;
IV ()| < €rj D IAS 0@ llL2s, - (12)
=0
Proof. This equality was shown in [Buser et al. 1988, Theorem 2.1]. The inequality is from the combination
of the Sobolev and Garding inequalities, for example, see [Bers et al. 1964]. O

With the above inequality we have the following uniform bound on {¢;,}:2, and their derivatives.

Lemma 3.3. For any j € N, we have that {V/ ¢, }; is uniformly bounded on any compact set of X ¢(0).

Proof. Using (12) in the previous lemma, A¢; = A (t)¢, and 0 < Ag (1) < %, we have

oo
. 1\¢
V0001 = €y 2 (3) 191l 20w, = 261
£=0

where the bound is independent of x. Hence all derivatives of ¢, (in particular the sequence {¢;,}) are
uniformly bounded. 0
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Lemma 3.4. There exists a subsequence of ¢, (denoted by ¢;) and ¢o € H I(x ¢(0)) such that any
derivatives satisfy

Vg — Vg
uniformly on connected compact set of X, (0).

Proof. Viewing {¢,} as functions on Fy where Fj is any connected compact set of X, (0), by the previous
lemma we have uniform boundedness of ¢, and all their derivatives. Hence by the Arzela—Ascoli diagonal
argument there exists a subsequence ¢; such that the function and its derivative converge uniformly on
any compact set. U

By the convergence above we have

/ w#g,/ Vool < 1
X, (0) X, (0)

Ax, 090 = 11 (0) - ¢o.

Now we show the following statement regarding the limit (14(0), ¢o). The argument is similar to [Wu
and Xue 2022a, Lemma 9] and [Dodziuk et al. 1987, Lemma 3.3].

and

Proposition 3.5. The limit (7 (0), ¢pg) must satisfy one of the following conditions:

(1) ¢o is an eigenfunction of Ax, ) and also restricts to at least one of the components Y as an
eigenfunction; or

(2) ¢o =0 everywhere on X4(0) and A (0) = ‘11,

Proof. If ¢y is not zero everywhere, then ¢ belongs to H'(X ¢(0)) and is an eigenfunction. In particular,
it must restrict to a nonzero function on at least one component of X, (0).

Otherwise suppose ¢y = 0 everywhere on X, (0), that is, ¢; — 0 pointwise everywhere. Then following
a similar argument as in [Wu and Xue 2022a, Lemma 9] or [Dodziuk et al. 1987, Lemma 3.3], we can
show that A (0) > }‘. For completeness we write out the proof in detail here.

Recall the definitions of collars and shells on hyperbolic necks in (10) and (11). Similar to the definition
above, we denote by Cy (i) the union of w-wide collar neighborhoods near all degenerating geodesic
circles on X, (#;), and by Sy (i) the union of the “shells”. To simplify the argument below, we also denote
by C; ,, and S; ,, the individual hyperbolic neck and shell, respectively, with central geodesic circle y;, (i),
where 1 <m < N, and denote the corresponding width by w; ,, := w(y,,(i)) — 1. Hence

N N
Cii)=J Cim and Sii)= Sim.
m=1 m=1

Fix any € € (0, 1) and § € (0, %) We write ¢ = 1 — €. Since ¢; converges to zero uniformly on any
compact set, there exists Ny € N such that for any i > Ny we have

/ |i|> > ¢ >0, / |pi|> <8¢ and / |V |> < Sc.
Cy (@) Su (@) Su (@)
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Define a new function on Cy (i) U Sz (i) as follows:

O {¢i, lol < Wim,
Yl wim L= 1pDdi,  wim <ol < Wi+ 1.

Then ®; gives a function in HO1 (Cp (i) U Sy (i) with ®;|5c; i)yus; i) = 0. Therefore by applying [Wu
and Xue 2022a, Lemma 7] to a union of hyperbolic collars we have

/ |V<I>i|2>}1f @112,
Ciy()US5(0) Cy()US; (@)

On the other hand we have
N
| vl =3 [ Vw1 lobsP
SwZv(i) m=1 Si,m

N
= Z/ IV Wi+ 1= 1p1) - ¢ + (Wi + 1 = o)) - Vo]
m=1"* " tm

N N N
<> [ i@t -1op- 9o <2)" [ wP+2) [ 19aP <
m=1 Sim m=1 Sim m=1 Sim
Therefore for any i > Ny we have
/ Vil =/ Vo, P =f |Vd>l-|2—/ Vo,
Cy (i) Cy(i) Cy(HUSE () N0)
1
i) ep- [ verp
Cy(HUSE () S5 (@)

1/ ) 5 1 1-168
> — ;| —/ IV®;|“ > —c—46c = (1—e),
4 Jesi s 4 4

2 2
Ly V97 Joy) 19941 1168
Loy 1612 7 [y o)l — 4 '
Xg(ti) ! Xg(ti) !

Since this argument holds for any € € (0, 1) and § € (0, 1—16), we have

which implies

M(Xg(t)) =

A (0) = liminf A (X, (8:)) = 1.
1—> 00
On the other hand Az (0) < th by (9), therefore we have A (0) = }‘. O

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By the previous proposition, either A;(0) = A;(Y;) for at least one of the
components Y;, or A;(0) = }1, therefore we obtain

3(0) = min {min{r1(¥:), ;}}

as desired. O
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We enclose in this section the following result, which is an easy application of Proposition 3.1.

Proposition 3.6. Let X4(0) € 0 Mg be the limit of a family of Riemann surfaces {X4(t)} C M by pinching
certain simple closed geodesics such that X ¢(0) has k connected components, i.e., X,(0) =Y uY,U- - -LUY}
for some k > 2. Assume in addition that (Y = min{kl(l’i), zlt} > le forall 1 <i <k,where L{(Y;) is
the first nonzero eigenvalue of Y;. Then

lim 2 (X (1)) = 5.

Proof. From (6) we have that
lim sup A (Xg (1)) < 1.

t—0

On the other hand, it follows by Proposition 3.1 that
. . . . 1 1
llglélf),k(xg(l)) > 1ré1ilélk{m1n{)»1 ¥, 311 =1

The conclusion immediately follows. O

We now prove spectral gaps can be arbitrarily close to zero by using this result. Recall that, for all
i > 1and X, € M,, the i-th spectral gap SpG;,(X,) of X is defined as

SpG; (Xg) := A (X)) — Ai—1(X,).
We prove the following.
Proposition 3.7. Foralli > 1,
inf SpG;(X,) =0.
Xglg/\/lg PG (Xe)

Proof. We split the proof into three cases.

Case 1: 1 <i <2g — 3. One may choose a closed hyperbolic surface X, € M, which is close enough to
the maximal nodal surface

X0’3 L---u X0,3 € 3./\/lg,

[

2g — 2 copies
then A, (X,) is close to zero by Theorem 2.5. So the conclusion follows for this case.

Case 2: i =2g —2. Let Z; , € M, such that )_»1(21,2) = min{%, M (Zl,g)} > 3—1 by Theorem 2.7. Recall
that 11 (Xo3) > 21; from the same theorem. Let { X, (7)} C M, be a family of hyperbolic surfaces such that

liII(l) Xg(l‘) = Xo’g L. X0,3 L Z1,2 € 3./\/lg.
t— —_—

2g —4 copies
Then it follows from Proposition 3.6 that

. 1
tlg%)"Zg—b‘(Xg(t)) =7
Meanwhile, by [Otal and Rosas 2009, Theorem 2], we know that

Mg (X,(t) > 1.
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Since Diam(X, (1)) — o0 as t — 0, by [Cheng 1975, Corollary 2.3] we have that
lim sup Ag—2(Xg (1)) < 3.

t—0
Thus, we have

. 1
th_l;r(l))"ngZ(Xg(t)) =7
Then the conclusion also follows for this case because
giél};lg Sszgiz(Xg) < th_l;% SpG2g72(Xg(t)) =0.
Case 3: i >2g—2. Let {Y,(t)} C M, be a family of hyperbolic surfaces such that
lim Y, (¢) € 0M,.
t—0
Similar to Case 2, by [Otal and Rosas 2009, Theorem 2] and [Cheng 1975, Corollary 2.3], we have
lim 2 (Yo () =3 and  lim2;1(Yy(1) = 5.
This implies infx e, SpG; (Xg) =0 for all i > 2g —2. (|

4. Proof of Theorem 4.1
Now we are ready to prove Theorem 4.1.
Theorem 4.1. Let {17(g)}§°:2 be any sequence of integers with n(g) € [1,2g — 2]. Then

liminf sup SpG, ) (X¢) > 3.

8% X M,

Proof. We will show that for any n(g) with sufficiently large g, one can find a genus g surface X, with
SpGn(g

Case 1: n(g) =2g —2. Let X,(7) : (0, 1) = M, be a family of closed hyperbolic surfaces such that

)(X¢) close to %. To see this, we split the proof into the following four cases.

lim Xg(l‘) = X073 Le---u X0,3 S a./\/lg
t—0 — ———
2g — 2 copies
First by [Otal and Rosas 2009, Theorem 2], A2, 2 (X, (1)) > % forall € (0, 1). Secondly by Theorem 2.5
we know that Ay,_3(X,(#)) — 0 as t — 0. Thus,

sup - SpGy,_»(Xy) = liminfSpGyy (X (1)) = 3.

XgeM,

Case 2: n(g) € [g+ 1, 2g — 3]. First we choose a hyperbolic surface Z; » € M| » such that e (Z12) = }1
by Theorem 2.7. Recall also that A1 (X 3) > le' By Lemma 2.3 we can construct X,(7) : (0, 1) — M, as
a family of closed hyperbolic surfaces such that

lin’(l)Xg(t) = X(),3 - -I_IX(),3I_IZL2|_I- . -I_IZLQ S 8Mg,
t—

i copies J copies
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where i and j are two nonnegative integers satisfying i + j = n(g). By Theorem 2.5 we know that
lim;_, 0 Ay (g)—1(X4 (1)) = 0. By Proposition 3.6 we have

}T})kn(g)(xg(l)) = %a
which implies

sup SpGn(g)(X ) > hm SpGn(g)(X (1) =7
XgeM,

Case 3: n(g) € [2, gl. As in Case 2, we choose a hyperbolic surface Z; » € M > such that Xl(Zl,z) > }T.
Let g; > O be the integer determined in Lemma 2.4. Note that g; tends to co as g — 0o because
2g1 > g — 2. Then by Theorem 2.8 we know that, for any € > 0 and large enough g > 0, one may choose
a hyperbolic surface X,, » € M, > such that

X](Xg],g) > ‘l‘ — €.

Fix any such large g. Then by Lemma 2.4 we construct X4 (¢) : (0, 1) — M, as a family of closed
hyperbolic surfaces such that

liII(l)Xg(l‘) =X0,3l_|- . -IJX()’g IJZl’le' - X Zl’zuxgl’z € 3Mg,
t—

i copies J copies

where i and j are two nonnegative integers satisfying i + j = (g) — 1. By Theorem 2.5 we know that
lim; 0 Ay(g)—1(X, (1)) = 0. Applying the min-max principle in Proposition 3.1 to this sequence with
k =n(g) (note that g is a fixed large integer hence 7n(g) is also fixed), we have

hmlnf?»n(g)(X (1)) = min{A; (Mo3), 21(Z12), h1(X,2)} = 5 —¢,
which implies

lim inf sup SpG o) (Xg )> 7 —€
g—> 00 X,eM,

because

sup SpG

1(Xg) > liminf SpG, ) (X ¢ (1))
XgEMg t—0

n(g

Since € > 0 can be arbitrarily small, we have

liminf sup SpCiycn (Xp) = §

Case 4: n(g) = 1. This is due to [Hide and Magee 2023, Corollary 1.3] because SpG;(X,) = A1(Xy).
The four cases above cover all possible 7(g) and hence complete the proof. 0

Remark. The method in this paper works for indices in the range of [1,2g — 2] in Theorem 4.1.
The restriction comes from the lack of suitable components with A close to ‘l‘ when constructing the
degenerating family. It would be interesting to know whether the assumption n(g) € [1, 2g — 2] can be
dropped.
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We also note that, together with [Cheng 1975, Corollary 2.3], the proof of Theorem 4.1 above actually
gives the following result.

Theorem 4.2. Forany 0 < j <i withi = o(In(g)),

lim sup (A;i(X,) —2;(X,) = 1.
§00 x, M, 8 RS Z

Acknowledgements

The authors would like to thank the referees for their careful reading and valuable comments which
improved the quality of this paper. Wu and Zhang would like to thank Yuxin He, Yang Shen and Yuhao
Xue for helpful discussions on this project. Wu is partially supported by NSFC grants 12171263 and
12361141813. Zhu is supported by NSF grants DMS-2041823 and DMS-2305363.

References

[Ballmann et al. 2016] W. Ballmann, H. Matthiesen, and S. Mondal, “Small eigenvalues of closed surfaces”, J. Differential
Geom. 103:1 (2016), 1-13. MR Zbl

[Ballmann et al. 2017] W. Ballmann, H. Matthiesen, and S. Mondal, “On the analytic systole of Riemannian surfaces of finite
type”, Geom. Funct. Anal. 27:5 (2017), 1070-1105. MR Zbl

[Ballmann et al. 2018] W. Ballmann, H. Matthiesen, and S. Mondal, “Small eigenvalues of surfaces: old and new”, ICCM Not.
6:2 (2018), 9-24. MR Zbl

[Bers et al. 1964] L. Bers, F. John, and M. Schechter, Partial differential equations, Lectures in Appl. Math. 3, Interscience, New
York, 1964. MR Zbl

[Brooks and Makover 2001] R. Brooks and E. Makover, “Riemann surfaces with large first eigenvalue”, J. Anal. Math. 83
(2001), 243-258. MR Zbl

[Brooks and Makover 2004] R. Brooks and E. Makover, “Random construction of Riemann surfaces”, J. Differential Geom. 68:1
(2004), 121-157. MR Zbl

[Buser 1982] P. Buser, “A note on the isoperimetric constant”, Ann. Sci. Ecole Norm. Sup. (4) 15:2 (1982), 213-230. MR Zbl
[Buser 1984] P. Buser, “On the bipartition of graphs”, Discrete Appl. Math. 9:1 (1984), 105-109. MR Zbl

[Buser 1992] P. Buser, Geometry and spectra of compact Riemann surfaces, Progr. Math. 106, Birkhéuser, Boston, 1992. MR
Zbl

[Buser et al. 1988] P. Buser, M. Burger, and J. Dodziuk, “Riemann surfaces of large genus and large A1”, pp. 54-63 in Geometry
and analysis on manifolds (Katata/Kyoto, 1987), edited by T. Sunada, Lecture Notes in Math. 1339, Springer, 1988. MR Zbl

[Cheng 1975] S. Y. Cheng, “Eigenvalue comparison theorems and its geometric applications”, Math. Z. 143:3 (1975), 289-297.
MR Zbl

[Dodziuk and Randol 1986] J. Dodziuk and B. Randol, “Lower bounds for A; on a finite-volume hyperbolic manifold”,
J. Differential Geom. 24:1 (1986), 133-139. MR Zbl

[Dodziuk et al. 1987] J. Dodziuk, T. Pignataro, B. Randol, and D. Sullivan, “Estimating small eigenvalues of Riemann surfaces”,
pp- 93121 in The legacy of Sonya Kovalevskaya (Cambridge/Amherst, MA, 1985), edited by L. Keen, Contemp. Math. 64,
Amer. Math. Soc., Providence, RI, 1987. MR Zbl

[Gelbart and Jacquet 1978] S. Gelbart and H. Jacquet, “A relation between automorphic representations of GL(2) and GL(3)”,
Ann. Sci. Ecole Norm. Sup. (4) 11:4 (1978), 471-542. MR Zbl

[Hejhal 1990] D. A. Hejhal, Regular b-groups, degenerating Riemann surfaces, and spectral theory, Mem. Amer. Math. Soc.
437, Amer. Math. Soc., Providence, RI, 1990. MR Zbl



1394 YUNHUI WU, HAOHAO ZHANG AND XUWEN ZHU

[Hide 2022] W. Hide, “Spectral gap for Weil-Petersson random surfaces with cusps”, Int. Math. Res. Not. 2022 (online
publication October 2022). Zbl

[Hide and Magee 2023] W. Hide and M. Magee, “Near optimal spectral gaps for hyperbolic surfaces”, Ann. of Math. (2) 198:2
(2023), 791-824. MR Zbl

[Ji 1993] L. Ji, “Spectral degeneration of hyperbolic Riemann surfaces”, J. Differential Geom. 38:2 (1993), 263-313. MR Zbl

[Ji and Zworski 1993] L. Ji and M. Zworski, “The remainder estimate in spectral accumulation for degenerating hyperbolic
surfaces”, J. Funct. Anal. 114:2 (1993), 412-420. MR Zbl

[Kim 2003] H. H. Kim, “Functoriality for the exterior square of GL4 and the symmetric fourth of GL,”, J. Amer. Math. Soc.
16:1 (2003), 139-183. MR Zbl

[Lax and Phillips 1982] P.D. Lax and R. S. Phillips, “The asymptotic distribution of lattice points in Euclidean and non-Euclidean
spaces”, J. Funct. Anal. 46:3 (1982), 280-350. MR Zbl

[Lipnowski and Wright 2024] M. Lipnowski and A. Wright, “Towards optimal spectral gaps in large genus”, Ann. Probab. 52:2
(2024), 545-575. MR Zbl

[Luo et al. 1995] W. Luo, Z. Rudnick, and P. Sarnak, “On Selberg’s eigenvalue conjecture”, Geom. Funct. Anal. 5:2 (1995),
387-401. MR Zbl

[Magee and Naud 2020] M. Magee and F. Naud, “Explicit spectral gaps for random covers of Riemann surfaces”, Publ. Math.
Inst. Hautes Etudes Sci. 132 (2020), 137-179. MR Zbl

[Magee and Naud 2021] M. Magee and F. Naud, “Extension of Alon’s and Friedman’s conjectures to Schottky surfaces”,
preprint, 2021. Zbl arXiv 2106.02555

[Magee and Puder 2023] M. Magee and D. Puder, “The asymptotic statistics of random covering surfaces”, Forum Math. Pi 11
(2023), art.id. E15. Zbl

[Magee et al. 2022] M. Magee, F. Naud, and D. Puder, “A random cover of a compact hyperbolic surface has relative spectral
gap % — &7, Geom. Funct. Anal. 32:3 (2022), 595-661. MR Zbl

[Masur 1976] H. Masur, “Extension of the Weil-Petersson metric to the boundary of Teichmuller space”, Duke Math. J. 43:3
(1976), 623-635. MR Zbl

[McKean 1972] H. P. McKean, “Selberg’s trace formula as applied to a compact Riemann surface”, Comm. Pure Appl. Math. 25
(1972), 225-246. Correction in 27:1 (1974), 134. MR Zbl

[Melrose and Zhu 2018] R. Melrose and X. Zhu, “Resolution of the canonical fiber metrics for a Lefschetz fibration”, J. Differ-
ential Geom. 108:2 (2018), 295-317. MR Zbl

[Melrose and Zhu 2019] R. Melrose and X. Zhu, “Boundary behaviour of Weil-Petersson and fibre metrics for Riemann moduli
spaces”, Int. Math. Res. Not. 2019:16 (2019), 5012-5065. MR Zbl

[Mirzakhani 2013] M. Mirzakhani, “Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus”,
J. Differential Geom. 94:2 (2013), 267-300. MR Zbl

[Mondal 2015] S. Mondal, “On largeness and multiplicity of the first eigenvalue of finite area hyperbolic surfaces”, Math. Z.
281:1-2 (2015), 333-348. MR Zbl

[Monk 2021] L. Monk, Geometry and spectrum of typical hyperbolic surfaces, Ph.D. thesis, Université de Strasbourg, 2021,
available at https://lauramonk.github.io/thesis.pdf. Zbl

[Otal and Rosas 2009] J.-P. Otal and E. Rosas, “Pour toute surface hyperbolique de genre g, Azg—o > 1/4”, Duke Math. J. 150:1
(2009), 101-115. MR Zbl

[Randol 1974] B. Randol, “Small eigenvalues of the Laplace operator on compact Riemann surfaces”, Bull. Amer. Math. Soc. 80
(1974), 996-1000. MR Zbl

[Schoen et al. 1980] R. Schoen, S. Wolpert, and S. T. Yau, “Geometric bounds on the low eigenvalues of a compact surface”,
pp. 279-285 in Geometry of the Laplace operator (Honolulu, HI, 1979), edited by R. Osserman and A. Weinstein, Proc. Sympos.
Pure Math. 36, Amer. Math. Soc., Providence, RI, 1980. MR Zbl

[Selberg 1965] A. Selberg, “On the estimation of Fourier coefficients of modular forms”, pp. 1-15 in Theory of numbers

(Pasadena, CA, 1963), edited by A. L. Whiteman, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965. MR
Zbl



DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS FOR LARGE GENUS 1395

[Wolpert 1987] S. A. Wolpert, “Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces”,
Comm. Math. Phys. 112:2 (1987), 283-315. MR Zbl

[Wolpert 1990] S. A. Wolpert, “The hyperbolic metric and the geometry of the universal curve”, J. Differential Geom. 31:2
(1990), 417-472. MR Zbl

[Wolpert 1992a] S. A. Wolpert, “Spectral limits for hyperbolic surfaces, I, Invent. Math. 108:1 (1992), 67-89. MR Zbl
[Wolpert 1992b] S. A. Wolpert, “Spectral limits for hyperbolic surfaces, II”, Invent. Math. 108:1 (1992), 91-129. MR Zbl

[Wu and Xue 2022a] Y. Wu and Y. Xue, “Optimal lower bounds for first eigenvalues of Riemann surfaces for large genus”,
Amer. J. Math. 144:4 (2022), 1087-1114. MR Zbl

[Wu and Xue 2022b] Y. Wu and Y. Xue, “Random hyperbolic surfaces of large genus have first eigenvalues greater than 13—6 —€7,
Geom. Funct. Anal. 32:2 (2022), 340-410. MR Zbl

[Wu and Xue 2022¢] Y. Wu and Y. Xue, “Small eigenvalues of closed Riemann surfaces for large genus”, Trans. Amer. Math.
Soc. 375:5 (2022), 3641-3663. MR Zbl

Received 25 Jan 2022. Revised 29 Jul 2022. Accepted 23 Sep 2022.

YUNHUI WU: yunhui_wu@tsinghua.edu.cn
Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

HAOHAO ZHANG: zhh21@mails.tsinghua.edu.cn
Tsinghua University, Beijing, China

XUWEN ZHU: x.zhu@northeastern.edu
Department of Mathematics, Northeastern University, Boston, MA, United States

:'msp

mathematical sciences publishers






Analysis & PDE
msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot ~Cambridge University, UK

c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

Massimiliano Berti

Zbigniew Btocki

Charles Fefferman

David Gérard-Varet

Colin Guillarmou

Ursula Hamenstaedt

Peter Hintz

Vadim Kaloshin

Izabella Laba

Anna L. Mazzucato

Richard B. Melrose

Frank Merle

Scuola Intern. Sup. di Studi Avanzati, Italy
berti @sissa.it

Uniwersytet Jagielloniski, Poland
zbigniew.blocki@uj.edu.pl

Princeton University, USA
cf@math.princeton.edu

Université de Paris, France
david.gerard-varet@imj-prg.fr

Université Paris-Saclay, France
colin.guillarmou @universite-paris-saclay.fr
Universitit Bonn, Germany
ursula@math.uni-bonn.de

ETH Zurich, Switzerland
peter.hintz@math.ethz.ch

Institute of Science and Technology, Austria
vadim.kaloshin@gmail.com

University of British Columbia, Canada
ilaba@math.ubc.ca

Penn State University, USA

alm24 @psu.edu

Massachussets Inst. of Tech., USA

rbm @math.mit.edu

Université de Cergy-Pontoise, France
merle @ihes.fr

William Minicozzi IT

Werner Miiller

Igor Rodnianski

Yum-Tong Siu

Terence Tao

Michael E. Taylor

Gunther Uhlmann

Andrds Vasy

Dan Virgil Voiculescu

Jim Wright

Maciej Zworski

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

Johns Hopkins University, USA
minicozz@math.jhu.edu

Universitit Bonn, Germany
mueller@math.uni-bonn.de

Princeton University, USA

irod @math.princeton.edu

Harvard University, USA
siu@math.harvard.edu

University of California, Los Angeles, USA
tao@math.ucla.edu

Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

University of Washington, USA
gunther @math.washington.edu
Stanford University, USA

andras @math.stanford.edu

University of California, Berkeley, USA
dvv@math.berkeley.edu

University of Edinburgh, UK
j-r.wright@ed.ac.uk

University of California, Berkeley, USA
zworski @math.berkeley.edu

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2024 is US $440/year for the electronic version, and $690/year (+$65, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Univer-
sity of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

:- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers



ANALYSIS & PDE

Volume 17 No.4 2024

The singular strata of a free-boundary problem for harmonic measure
SEAN MCcCURDY

On complete embedded translating solitons of the mean curvature flow that are of finite genus

GRAHAM SMITH

Hausdorff measure bounds for nodal sets of Steklov eigenfunctions
STEFANO DECIO

On full asymptotics of real analytic torsions for compact locally symmetric orbifolds
BINGXIAO LIU

The Landau equation as a gradient Flow
JOSE A. CARRILLO, MATIAS G. DELGADINO, LAURENT DESVILLETTES and
JEREMY S.-H. WU

Degenerating hyperbolic surfaces and spectral gaps for large genus
YUNHUI WU, HAOHAO ZHANG and XUWEN ZHU

Plateau flow or the heat flow for half-harmonic maps
MICHAEL STRUWE

Noncommutative maximal operators with rough kernels
XUDONG LAI

Structure of sets with nearly maximal Favard length
ALAN CHANG, DAMIAN DABROWSKI, TUOMAS ORPONEN and MICHELE VILLA

1127

1175

1237

1261

1331

1377

1397

1439

1473



	1. Introduction
	2. Preliminaries
	3. Eigenvalues on a family of degenerating Riemann surfaces
	4. Proof of Theorem 4.1
	Acknowledgements
	References

