Contribution of the language network to the
comprehension of Python programming code

Abstract

Does the perisylvian language network contribute to comprehension of programming languages,
like Python? Univariate neuroimaging studies find high responses to code in fronto-parietal
executive areas but not in fronto-temporal language areas, suggesting the language network
does little. We used multivariate-pattern-analysis to test whether the language network encodes
Python functions. Python programmers read functions while undergoing fMRI. A linear SVM
decoded for-loops from if-conditionals based on activity in lateral temporal (LT) language cortex.
In searchlight analysis, decoding accuracy was higher in LT language cortex than anywhere
else. Follow up analysis showed that decoding was not driven by presence of different words
across function, “for” vs “if,” but by compositional program properties. Finally, univariate
responses to code peaked earlier in LT language-cortex than in the fronto-parietal network. We
propose that the language system forms initial “surface meaning” representations of programs,
which input to the reasoning network for processing of algorithms.



Introduction

The invention of computer programming and its applications (e.g., artificial intelligence) have
altered human society and are fast becoming a central aspect of employment and education in
the modern world. The cognitive and neural mechanisms that enable the human brain to support
this important cultural skill are poorly understood. A key outstanding question is the degree to
which the neurocognitive system that supports natural language processing is involved in
understanding and producing programming code (Fedorenko, lvanova, Dhamala, & Bers, 2019;
Ivanova et al., 2020; Liu, Kim, Wilson, & Bedny, 2020; Peitek et al., 2018; Prat, Madhyastha,
Mottarella, & Kuo, 2020; Siegmund et al., 2014).

Prima facie support for the idea that the language system is “recycled” for code comprehension
comes from the fact that programming languages borrow some elements of natural language.
Words like “for”, “if’, “and”, “or”, and “return” are used almost universally across programming
languages, and their meanings are partly preserved. Even opaque and older function names (e.g.,
“‘chmod”, “mkdir” in bash scripts) are abbreviations of English words rather than arbitrary letter
combinations. The syntax of natural and programming languages also share features, such as
hierarchical structure and recursion (Fitch, Hauser, & Chomsky, 2005). Natural languages are
recursive because a phrase can be embedded within another phrase of the same syntactic
category (Friederici, Chomsky, Berwick, Moro, & Bolhuis, 2017; Hauser, Chomsky, & Fitch, 2002;
Yang, Crain, Berwick, Chomsky, & Bolhuis, 2017). Programming languages contain data
structures, such as lists and trees, that can be recursive in the same way; furthermore, functions
are allowed to call other functions, including themselves, as subroutines. Reading code can be
thought of as partly analogous to reading natural language, where progressively more abstract
and larger structures (e.g., functions) are constructed from lawful combinations of discrete
symbols at lower levels of representation (i.e., letters, words) (Fedorenko et al., 2019). These
parallels predicts overlap in the neural representation of natural and programming languages
(Fedorenko et al., 2019; Fitch et al., 2005; Pandza, 2016; Peitek et al., 2018; Portnoff, 2018; Prat
et al., 2020).

On the other hand, there are key differences between natural and programming languages. While
English word forms do appear in computer code, the meanings of these symbols are not exactly
the same as in natural languages. More generally, programming languages lack symbols that
have the rich semantics of lexical items (e.g., “dog” or “walk”). Grammatical categories such as
nouns, verbs, adjectives, and prepositions do not have clear counterparts in programming
languages (e.g., an object in code can have both verb-like and adjective-like attributes).
Furthermore, the rules for combining basic units are distinct: while human natural and
programming languages both have function-argument structure, scope, and variable binding at
the semantic level, only human natural languages have grammatical relations such as subject
and direct object or information structure such as topic and focus. While natural languages are
rife with ambiguity (i.e., a given sequence of words can have multiple lexical and syntactic parses
with different meanings), the relation between code and meaning is deterministic. Programming
languages may in fact have more in common with logical reasoning than with natural language.
Code and formal logic both make use of conditions like “if’, quantifiers like “for all’, and logical
operators such as “and”, “or”, and “not”. In both systems, these expressions are interpreted
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deterministically and without the pragmatic enrichment that is so characteristic of human natural
language.

The available empirical evidence suggests that domain-general logical reasoning systems, rather
than language networks, support programming (Dehaene, Al Roumi, Lakretz, Planton, & Sablé-
Meyer, 2022; Fedorenko & Varley, 2016; Monti, Parsons, & Osherson, 2009, 2012). Studies of
individual differences find correlations between programming learning outcome and logical,
analogical, and deductive reasoning abilities (McCoy & Burton, 1988; Pea & Kurland, 1984; Prat
et al., 2020; Shute, 1991). Recent functional magnetic resonance imaging (fMRI) studies have
found activity in fronto-parietal reasoning areas, rather than perisylvian language circuits, when
comparing programming tasks to various control conditions: code reading vs. reading algorithms
written in plain English (lvanova et al., 2020), code reading vs. syntactic bug finding (Siegmund
et al., 2014), code reading vs. prose reading (Floyd, Santander, & Weimer, 2017), and searching
for semantic bugs which prevent a program from implementing its intended algorithm vs. reading
a bug-free program (Castelhano et al., 2018). The same fronto-parietal network is also involved
in code writing as opposed to prose writing (Krueger et al., 2020), and even when participants
were covertly crafting the program without actually typing it (Xu, Li, & Liu, 2021). In many of these
studies, the control condition involved language (e.g., prose reading), leading to the concern that
language-related activation was subtracted out. However, Liu et al. (2020), compared code
comprehension to memorizing scrambled code, where the scrambled code lacked meaningful
words and sentential structure. Nevertheless, the code vs. scrambled code contrast still identified
fronto-parietal and not perisylvian language networks.

A possible conclusion from these data is that the language system plays little role in the
processing of computer code (lvanova et al., 2020; Liu et al., 2020). At the same time, it is not
clear that the involvement of the language system in code processing can be entirely dismissed.
One recent study found that while Python code and natural language do not activate the same
cortical networks, they do show co-lateralization across individuals, suggesting some relationship
between them (Liu et al., 2020). Moreover, examining univariate responses relative to control
conditions (as reviewed above) is not the only way to test whether a neurocognitive system is
involved in a particular task.

It remains possible that even though the fronto-temporal language system does not show large
activity during code processing (perhaps because natural rather than programming languages
are its preferred stimulus), multivariate patterns of activity in the language network still represent
information relevant to programming code. Such dissociations between univariate and
multivariate results have been observed in other domains of cognitive neuroscience. For example,
despite low overall activity levels, early sensory areas contain information about the contents of
visual working memory (Bettencourt & Xu, 2016; Emrich, Riggall, LaRocque, & Postle, 2013;
Ester, Serences, & Awh, 2009; Harrison & Tong, 2009; Riggall & Postle, 2012).

Only a handful of studies have used multivariate methods to study programming and most of
these have not looked at decoding in language regions. lkutani et al. (2021) and Liu et al. (2020)
found that different types of programming algorithms can be decoded based on the spatial
activation pattern in the fronto-parietal reasoning network. Furthermore, decoding accuracy in the



fronto-parietal network correlated with behavioral performance on the behavioral task where
participants sorted programming scripts based on the underlying algorithms (Ikutani et al., 2021).
However, neither of these studies specifically looked at decoding in functionally localized
language areas.

Recent evidence for the hypothesis that language areas may in fact contain multivariate
information about programming code comes from Srikant et al. (2022). They found that a linear
classifier trained on activity patterns from the language network could be used to distinguish
between different types of control structures (FOR loop, IF conditional, or sequential operations
lacking FOR and IF) and data types (string vs. numeric) in Python programming scripts. These
results suggest that, contrary to the inferences from univariate measures, the language network
does show sensitivity to the content of computer code.

In the current study, we sought to replicate and extend these results by probing in greater detail
the contribution of the language network to program comprehension. We used data from a
previous publication (Liu et al., 2020). In the previous work, we did not conduct any multi-variate
pattern analysis (MVPA) in the language network. In our current study, MVPA was used to decode
FOR from IF functions based on activity patterns within classic language regions identified in
individual participants. While undergoing functional magnetic resonance imaging (fMRI) scans,
expert Python programmers read short functions, each of which contained a single FOR loop or
a single IF conditional. The same participants performed a language localizer task where
sentence comprehension was compared to solving math equations. This functional localization
allowed us to conduct our analyses within the neural population most sensitive to linguistic content
within each individual participant.

The current experiment went beyond previous studies by asking whether the language network
is sensitive to the compositional meaning of programming functions or is restricted to retrieving
the meanings of programming keywords, such as “return”, “for” and “if’. If the language-networks’
role is restricted to retrieving word meanings, decoding might be based purely on the presence of
distinct lexical items across different code function types. This hypothesis is consistent with the
available data because in the only prior study to find decoding in the language network, the
decoded functions contained different words, in addition to differing in line structure (Srikant et
al., 2022).

A feature of the stimuli in the current study made it possible to test the hypothesis that the
language network is sensitive to the compositional structure and not just the lexical items of code:
the same participants read real Python code functions and memorized similar functions presented
with all the words in scrambled order, i.e., “scrambled fake function”. Each scrambled “fake”
function was generated from a real Python function by scrambling the words and symbols within
each line. As a result, the lexical items within each scrambled function were identical to a real
function, so words like “for” and “if’ were preserved. However, the fake functions lacked the
meaning and structure that is present in real Python functions. If decoding of IF vs. FOR functions
in language regions is driven by the presence of different lexical items, we should be able to
decode not only the real but also the fake functions. By contrast, if decoding in the language



network is driven by the meaning and/or structure of the Python code, then we should find
decoding of real but not fake function.

Next, we compared the temporal dynamics of neural responses to Python functions across
language and fronto-parietal reasoning networks to test whether these networks contribute to
different aspects of code comprehension. We hypothesized that the language system is
responsible for the initial meaning extraction from programming text, whereas fronto-parietal
logical reasoning system subsequently creates a mental model of the programming algorithm.
This latter mental model is a more in-depth representation than the surface meaning extracted by
the language system. It is more flexible, containing variables that can take on specific values and
be entered into functions. Based on this hypothesis, we predicted that the language system
contributes to code comprehension earlier than the fronto-parietal reasoning system and that the
blood-oxygen level dependent (BOLD) signal responses to code would peak earlier in language
relative to fronto-parietal systems.

Methods

As this study consists of further analyses on the data collected for a previous publication, the
participants, experiment design, and data acquisition procedures are identical to what was
described previously by Liu et al. (2020). However, for the sake of completeness, we still briefly
describe these aspects of the study.

Participants

Fifteen individuals participated in the study (three women, twelve men, age range 20-38, mean
age = 27.4, SD = 5.0). Participants had an average of 5.7 years of Python programming
experience (range: 3-9, SD = 1.8). Other than self-report, Python expertise was evaluated with
two Python exercises administered outside the MRI scanner. In the first exercise, participants
answered what will be the output of a one-line Python statement (e.g. for “print(‘3.14’.split(‘1°))”,
participants should type “['3., ‘4’]"). In the second exercise, participants saw a Python program
shippet with a blank, along with a sentence describing what the snippet should do when executed.
Participants were required to complete the snippet to fulfill the specification (e.g., for the snippet
“a = ‘abc’; print( (enumerate(a)))” and the specification “What should be filled in the blank
if we want to print out a collection of tuples enclosed in square brackets, rather than something
like <enumerate object at 0x000001888D2B2678>7", participants should type “list”). The first
exercise evaluated participants’ knowledge of basic Python syntaxes and built-in functions
(participants’ responses M = 82.9%, SD = 6.9%, range: 70-96%), whereas the second exercise
evaluated participants’ ability to use their programming knowledge to solve a problem (M = 64.6%,
SD = 16.6%, range: 37.5-93.75%). For detailed descriptions of these exercises, please refer to
Liu et al. (2020).

All participants had normal or corrected to normal vision and none had been diagnosed with
cognitive or neurological disabilities. All participants gave informed consent according to
procedures approved by the Johns Hopkins Medicine Institutional Review Board (IRB protocol



number: NA_00087983).

fMRI task design and stimuli

Participants took part in an fMRI Python code comprehension experiment and a second localizer
experiment for language, logical reasoning, and symbolic math. Participants also performed a
multi-source-interference-task (Bush & Shin, 2006) which is not relevant to the current paper, and
will not be discussed further.

The code experiment consisted of Python code condition and a “fake” code memory control. Real
code comprehension ftrials involved the sequential presentation of three elements: a Python
function (24s), an input to the function (6s), and a proposed output (6s). Participants judged
whether the proposed output was correct and indicated their response via a yes/no button press.
Each Python function contained exactly one control structure, which was either a FOR loop or an
IF conditional. There were two variants for FOR functions, and two variants for IF functions. The
first variant of FOR functions implemented the FOR loop in the canonical way, where a FOR loop
began with the keyword “for”, followed by actions to be taken in each iteration. The second variant
of FOR functions contained a Python-specific expression called “list comprehension”, where the
keyword “for” was placed in the middle of a loop definition, rather than the beginning. In the first
variant of IF functions, a conditional statement began with the keyword “if’, followed by the action
to be taken if a condition was met. In the second variant, the keyword “if’ was not used. Instead,
we multiplied the action by the condition such that if the condition evaluated to false, the product
of the multiplication was 0, indicating no action was taken. Despite the existence of the variants,
all functions consisted of exactly 5 lines of code with the same patterns of indentation, such that
FOR and IF functions, regardless of the variants, were visually similar. All functions took a
character string as input and performed string manipulations. As discussed in detail below,
analyses focused on the function comprehension portion of the ftrial, prior to input presentation.
Each trial was followed by a 5-second inter-trial interval. Please see Figure 1 for example stimuli.

Prior to the experiment, participants were told they were going to see functions that work with
character strings called “input”. They also practiced with these types of stimuli, so they were well
aware that in the scope of this experiment, “input” referred to the input argument of the functions,
rather than a Python built-in function which happened to have the same name.

Fake code memory trials had a similar structure to the code trails: a scrambled Python “function”
(24s), followed by a one-line “input” (6s) and a scrambled one-line “output” (6s). Participants were
instructed to remember the text presented during the first two phases of the trail. They then judged
whether the one-line scrambled “output” matched any of the lines presented during the previous
phases (including both the scrambled function and the scrambled “input”). As with real code,
analysis focused on the “function” portion of the trail.

Every scrambled function was generated from a real Python function by separately scrambling
each line of the real function at the level of words and symbols. Therefore, the words, digits and
operators present in real functions were preserved in scrambled functions, but none of the
scrambled lines comprised an executable Python statement. Like the real IF and FOR functions,



the fake FOR functions contained the word “FOR”, and the IF scrambled functions did not contain
the word “FOR”. We contrasted reading and comprehending Python code against an explicit
working memory task as an attempt to emphasize only the process of understanding the
algorithm, but not the working memory processes associated with the comprehension.

There were six task runs in this scan. During each run, participants saw 8 real FOR functions, 8
real IF functions, and 4 fake scrambled functions (48 FOR, 48 IF, and 24 fake across runs for
each participant). In each of the 6 task runs, each participant only saw either the “real” or the
“fake” version of the same function, but not both.

The localizer experiment included language comprehension, logical reasoning, and symbolic
math tasks all following the same structure. On language trials, participant judged whether two
sentences, one in active and one in passive voice, had the same meaning (e.g., “The child that
the babysitter chased ate the apple” vs “The apple was eaten by the babysitter that the child
chased”). On formal logic trials, participants judged whether two logical statements were
consistent. That is, whether the two statements logically infer each other (e.g., “If either not X or
not Y then Z” vs “If not Z then both X and Y”). On math trials, participant judged whether the
variable X had the same value across two equations (e.g., “X minus twenty-three equals forty-
two” vs “X minus fifty-one equals fourteen”). In each trial, one of the two “sentences” appeared
first, with the other following 3 s later. Both statements stayed visible on the screen for 16 s.
Participants indicated their true/false judgment by pressing one of two buttons. The experiment
consisted of 6 runs, each containing 8 trials of each type (language/logic/math) and six rest
periods, lasting 5 s each. In this study, we localized the perisylvian fronto-temporal language
network using the language>math contrast, and the lateral fronto-parietal logical reasoning
network using the logic>language contrast (Kanjlia, Lane, Feigenson, & Bedny, 2016; Monti et
al., 2009, 2012). The logic task was adapted from Monti et al. (2009) and Monti et al. (2012);
whereas the language task was adapted from Kanjlia et al. (2016), which was also derived from
Monti et al. (2012).

fMRI data acquisition and preprocessing

All functional and structural MRI data were acquired at the F.M. Kirby Research Center of
Functional Brain Imaging on a 3T Phillips Achieva Multix X-Series scanner. T1-weighted structural
images were collected in 150 axial slices with 1 mm isotropic voxels using a magnetization-
prepared rapid gradient-echo (MP-RAGE) sequence. Functional T2*-weighted BOLD scans were
collected using a gradient echo planar imaging (EPI) sequence with the following parameters: 36
sequential ascending axial slices, repetition time (TR) = 2 seconds, echo time (TE) = 0.03
seconds, flip angle = 70°, field of view (FOV) matrix = 76 x 70, slice thickness = 2.5 mm, inter-
slice gap = 0.5, slice-coverage FH = 107.5, voxel size = 2.4 x 2.4 x 3 mm, PE direction = L/R, first
order shimming. Six dummy scans were collected at the beginning of each run but were not saved.
We acquired the data in one code comprehension session (six runs) and one localizer session (6
runs of language/math/logic), with the acquisition parameters being identical for both sessions.

The stimuli in both sessions were presented with custom scripts written in PsychoPy3
(https://www.psychopy.org/ (Peirce et al., 2019)). The visual stimuli were presented on a rear
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projection screen, cut to fit the scanner bore. The participant viewed the screen via a front-
silvered, 45°inclined mirror attached to the top of the head coil. The stimuli were projected with
an Epson PowerLite 7350 projector. The resolution of the projected image was 1600 x 1200.

Data were analyzed using Freesurfer, FSL, HCP workbench, and custom in-house software
written in Python (Dale, Fischl, & Sereno, 1999; Glasser et al., 2013; Smith et al., 2004).
Functional data were motion corrected, high-pass filtered (128 s), mapped to the cortical surface
using Freesurfer, spatially smoothed on the surface (6 mm FWHM Gaussian kernel), and
prewhitened to remove temporal autocorrelation. Covariates of no interest were included to
account for confounds related to white matter, cerebral spinal fluid, and motion spikes.

Analysis

Whole-cortex searchlight multivariate pattern analysis (MVPA)

In this analysis, we asked: in the whole cortex, where were the FOR and IF programming
functions most distinctly represented? To answer the question, we conducted MVPA decoding
to distinguish FOR and IF functions using local spatial activation patterns in the “searchlight”
associated with each vertex on the cortical surface.

To prepare data for decoding, we constructed a general linear model (GLM) where each real
code function (48 FOR and 48 IF) and each scrambled control function (12 FOR and 12 IF) was
entered as a separate predictor with 24s duration, modeling the function presentation phase. A
support vector machine (SVM) classifier was then trained and tested on the spatial pattern of z-
statistics associated with beta parameters estimated by the GLM. The SVM classifier was
implemented in the Python toolbox Scikit-learn (Chang & Lin, 2011; Pedregosa et al., 2011). For
each vertex in the brain, one linear SVM classifier (regularization parameter C = 5.0) was
trained and tested on the spatial pattern in a “searchlight” surrounding the vertex. The
searchlight associated with a vertex consisted of all the vertices within a circle of 8mm diameter
(according to geodesic distance) centered at the vertex (Glasser et al., 2013; Kriegeskorte,
Goebel, & Bandettini, 2006). Searchlights containing sub-cortical vertex were excluded. The
regularization parameter C for SVM classifiers indicates how much misclassification of the
training data is allowed, where a larger value means less misclassification. But increasing C
value also increases the risk of overfitting the training data, leading to reduced decoding
accuracy when applying the model to the testing data. The default value of C provided by Scikit-
learn was 1, and we selected a larger value to impose a harder margin to better avoid
misclassification. Empirically, a reasonable C value ranges from 1 to 10
(https://www.ibm.com/docs/en/spss-modeler/18.2.2?topic=node-svm-expert-options). We
selected 5, which falls at the center of this range, and used this value consistently throughout
the analysis.

To eliminate any difference in the overall signal strength across MRI scanning runs, data were
normalized within each run (Lee & Kable, 2018; Stehr, Garcia, Pyles, & Grossman, 2023). In
each run, in each vertex on the cortical surface, the mean and standard deviation were
computed across trials and used for normalization such that the mean was set to 0 and
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standard deviation to 1. To avoid the dependency between trials from the same run artificially
inflating the decoding accuracy, we performed a 6-fold leave-one-run-out cross-validation (Etzel,
Valchev, & Keysers, 2011; Mumford, Davis, & Poldrack, 2014; Valente, Castellanos, Hausfeld,
De Martino, & Formisano, 2021). In each cross-validation fold, the classifier was trained on the
data from 5 out of the 6 task runs and tested on the left-out run. The resulting 6 accuracy values
were averaged to derive the observed accuracy for one participant in one searchlight. In each
searchlight, we used a one-sample t-test to test the 15-participant group mean accuracy value
(Fisher z-transformed) against chance of 50% (also Fisher z-transformed).

To control for family-wise error rate (FWER), we applied a cluster-based permutation correction
(Elli, Lane, & Bedny, 2019; Musz, Loiotile, Chen, & Bedny, 2022; Regev, Honey, Simony, &
Hasson, 2013; Schreiber & Krekelberg, 2013; Stelzer, Chen, & Turner, 2013; Su, Fonteneau,
Marslen-Wilson, & Kriegeskorte, 2012) with a vertex-wise cluster-forming threshold of
uncorrected p<0.001, and a cluster-wise FWER threshold of p<0.05 (Eklund, Knutsson, &
Nichols, 2019; Eklund, Nichols, & Knutsson, 2016; Winkler, Ridgway, Webster, Smith, &
Nichols, 2014). Specifically, we shuffled the condition labels (FOR and IF) 100 times. For each
shuffle, we derived one null group-mean accuracy map. For the observed group-mean accuracy
map and each of the null maps, we applied a cluster-forming threshold of p<0.001. For each
cluster, we computed its strength-over-spread, which is the average distance between each
vertex in the cluster with the peak cluster, weighted by the decoding accuracy value of the
vertex. We recorded the maximum strength-over-spread value among the clusters in each null
accuracy map to form a null distribution of 100 maximum strength-over-spread values. A cluster
in the observed map passed the correction if its strength-over-spread value was greater than
the 95th percentile of the null distribution.

ROI definition

Separate GLMs were constructed for the code experiment and localizer scans for the purpose
of generating region of interest (ROI) search spaces and individual functional ROls (fROIs).
Specifically, our analysis focused on four ROls: language-responsive lateral temporal cortex
(LT), code-responsive intraparietal sulcus (IPS) and lateral prefrontal cortex (PFC), and a
control region, the medial occipital primary visual cortex (OCC). Each ROI served as a search
space within which we defined functional ROI (fROI) for each individual. The fROI approach was
adopted to account for the known individual differences of neural populations engaged by a
cognitive task (Nieto-Castanoén & Fedorenko, 2012). It enabled us to select the subject-specific
neural populations engaged by experiment conditions within a larger group-based ROI search
space. How the group-based ROI search spaces and the fROIs within each individual were
defined is described in detail below.

In the localizer GLM, one predictor was included for each of the three conditions (sentence,
math, and logic), modelling the 16s duration when the pair of statements was visible. A separate
predictor was entered to model the 5s rest period between trials. For further details see Liu et
al., (2020). The group contrast of sentence>math (p<0.05, FWER cluster-corrected) was used
to define the language-responsive lateral temporal cortex (LT) ROI search space, and the
individual sentence>math contrasts were used to select language-responsive fROlIs within the
LT ROI search space. On the other hand, the group contrast of logic>sentence (p<0.05, FWER
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cluster-corrected) was used to define the intraparietal sulcus (IPS) and the lateral prefrontal
cortex (PFC) ROI search spaces.

For the coding experiment GLM, each condition (5 in total: 2 variants of FOR functions, 2
variants of IF functions, and scrambled fake function) were entered as a separate predictor to
model the duration of function presentation (24sec). The individual real>fake function contrasts
were used to select code-responsive fROIs within the IPS and the PFC ROI search spaces.

To generate the IPS, PFC (based on group logic>sentence contrast), and the LT (based on
group sentence>math contrast) search-space masks, we combined the cortical parcels in the
400-parcel map reported by Schaefer et al.(2018) which included vertices activated in the
contrast of interest. To define the OCC search space, we combined the peri-calcarine parcels
from Schaefer et al.(2018) to form a search space covering the medial occipital primary visual
cortex.

Within each ROI search spaces, we defined the fROI for each individual. Language-responsive
individual subject fROIs were defined as vertices showing the strongest fixed-effect for the
sentence>math contrast in the LT search space. For MVPA decoding, we selected the top 500
sentence>math vertices in LT. For percent signal change (PSC) analysis in LT, we selected the
top 5% sentence>math vertices (Kanjlia et al., 2016; Kim, Kanijlia, Merabet, & Bedny, 2017).
Specifically, within the LT search space, vertices with negative z-statistics in the sentence>math
contrast were excluded, and the top 5% of vertices were selected from the subset of vertices
with positive z-statistics (i.e., those preferring sentence over math). In the IPS and, PFC,
individual code-responsive fROIs were defined in a similar fashion, but based on the real>fake
function contrast from the code comprehension experiment. The average number of selected
vertices are 130 in the LT, 70 in the IPS, and 101 in the PFC. For MVPA decoding, for each
participant within each search space, we selected the top 500 vertices based on the fixed-effect
real>fake function contrast. For the percent signal change (PSC) analysis in IPS and PFC, we
used a leave-one-run-out approach (Glezer & Riesenhuber, 2013; Kriegeskorte, Simmons,
Bellgowan, & Baker, 2009), taking data from 5 out of the 6 runs to select the top 5% of code-
responsive vertices within a search space, and extracted the PSC time course from the held out
run. For each participant, this process was repeated for all 6 runs and the results were averaged
across folds. In the PSC analysis, for the code-responsive fROIs, the leave-one-run-out
approach was adopted to avoid circular analysis where we extract neural responses during
code reading from the fROlIs defined by the responses during code reading. However, for the
language-responsive fROIs, because we extracted the neural responses during code reading
from the fROIs defined by an orthogonal localizer contrast, leave-one-run-out approach was
neither necessary nor preferable.

ROIl-based MVPA

In this analysis, we investigated the neural representations of algorithms in four ROIs: language-
responsive LT; the code-responsive IPS and the PFC; and the control region OCC, which was
not expected to encode information relevant to programming algorithms.

In this analysis, we used the same configuration for the SVM classifier, training data, and
normalization scheme, and leave-one-run-out cross-validation as in the searchlight MVPA.
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To determine whether decoding across IF vs. FOR functions was driven by the presence of
different “lexical” items such as the word “for”, or rather by the compositional structure of
programming functions, we trained and tested the same SVM classifier on scrambled fake
functions. Recall that each fake function was derived from one real function, where words such
as “for” or “if’ were retained. As a result, fake functions can be divided into “for” fake functions
and “if” fake functions. Except for the training and testing data, the procedures for fake function
decoding was the same as real function decoding. Because participants saw four times as many
real functions as fake functions, we conducted a separate control decoding analysis, where we
trained the same SVM classifier on only a quarter of the real function data.

Percent signal change (PSC) analysis

We examined the time courses of percent signal change (PSC) of the blood-oxygen level
dependent (BOLD) signal to study the dynamics of the neural responses to programming
functions in each fROI. Specifically, we compared the (1) peak-to-trough amplitude, (2) peak time,
and (3) average PSC of the time courses between the language-responsive LT and the code-
responsive IPS and PFC.

PSC was calculated as [(Signal condition - Signal baseline)/Signal baseline], where baseline is
the activity during the inter-trial interval. We extracted PSC from the duration of function
presentation (FOR, IF, or fake), excluding activity related to the derivation of specific output or
response processes. As introduced in the section regarding ROI definition, in the language-
responsive LT, for each participant and each run, we extracted PSC from the top 5% of active
vertices in the fixed-effect sentence>math contrast. The 6 resultant PSC curves were then
averaged. In the IPS and PFC, we used a leave-one-run-out approach to select the top 5% of
active vertices in the fixed-effect real>fake function contrast, and extract the PSC using the left-
out run. This was repeated across a 6 runs, and the 6 resultant PSC curves were then averaged.

Since IPS and PFC showed similar time courses, they were averaged together. Therefore, the
extraction resulted in one PSC time course per condition (FOR, IF, and fake) per participant, in
either the language-responsive LT or the code-responsive lateral fronto-parietal network
(IPS&PFC). The peak-to-trough amplitude was defined as the difference between the maximum
and minimum value of a time course. The peak time was the time point when the maximum value
happened. The average PSC of the time courses was computed by averaging the middle 14s of
the time course (that is, the beginning and the last 5 seconds were not considered). Paired t-tests
were conducted to compare these variables of interest.
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Results

MVPA decoding of FOR and IF functions in language-responsive
lateral temporal cortex

In whole-cortex searchlight analysis, we found reliable above-chance decoding of FOR and IF
functions in a left lateralized fronto-temporal network, with the highest accuracy in the lateral
superior temporal (BA 22, 39) and temporo-parietal cortices (the angular and the supramarginal
gyri, BA 40). Smaller clusters were also found in left prefrontal cortex, left intraparietal sulcus and
right temporo-parietal cortices (Figure 2).

Next, we used individual-subject ROl analysis to test whether in individual participants, language-
responsive lateral temporal cortices contain neural populations that distinguish between IF vs.
FOR Python functions. Lateral temporal ROls chosen in individual participants for their language
selectivity in the localizer scan (sentence>math) showed above chance classification of FOR and
IF code functions (LT accuracy = 66.9%, Wilcoxon signed rank test against chance: z=-3.41,
p<0.001). Decoding in language-responsive lateral temporal cortex was as high as decoding in
IPS (accuracy = 67.8%, z=-3.41, p<0.001) and PFC (accuracy = 64.4%, z=-3.41, p<0.001), where
vertices were chosen for their high responses to real over fake code. Wilcoxon signed rank tests
showed that decoding accuracy values in the LT, the IPS, and the PFC, were higher than in an
occipital cortex control region (OCC accuracy = 55.5%, z=-2.54, p<0.05; LT vs OCC: z=-3.10,
p<0.01; IPS vs OCC: z=-3.04, p<0.01; PFC vs OCC: z=-2.56, p<0.05) (Figure 3). In sum, lateral
temporal language-responsive areas showed high decoding accuracy for IF vs. FOR functions.
Decoding in language-responsive LT was as high as or higher than in IPS and PFC areas
identified for their univariate responses to code (Supplementary Figure 1).

One possibility is that language-responsive cortex is sensitive only to the “lexical” items present
in code and not to compositional structure of code functions (e.g., presence of particular key
words, such as “if” and “for”). Alternatively, language areas may be sensitive to the compositional
structure of Python code functions. To distinguish between these possibilities, we conducted the
same decoding using the neural responses to scrambled fake functions. Recall that in our
experiment, each fake function contained all the words and symbols of the corresponding real
function in a scrambled order, line by line. Therefore, like real FOR functions, all fake FOR
functions contained the word “for”. Contrary to the lexical-only hypothesis, we did not find
significantly above-chance decoding accuracy for fake code in language-responsive lateral
temporal cortex, or in any of the other ROIs (LT: accuracy=46.7%, z=-1.15, p=0.24; IPS:
accuracy=46.9%, z=-1.43, p=0.15; PFC: accuracy=49.2%, z=-045, p=0.65; OCC:
accuracy=44.4%, z=-1.92, p=0.053). In the language-responsive LT and the code-responsive IPS
and PFC, the decoding accuracy for real functions was significantly higher than for fake functions.
Curiously, this difference was observed in the OCC (LT: z=-3.01, p<0.01; IPS: z=-2.78, p<0.01;
PFC: z=-2.22, p<0.05; OCC: z=-3.04, p<0.01) (Figure 3). To account for the fact that there were
four times as many real as fake functions in the experiment, we repeated the decoding analysis
on one quarter of the real code data. For real code, decoding in the language-responsive lateral
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temporal cortex, the IPS, and the PFC remained significantly above chance (LT: accuracy=65.8%,
z=-3.08, p<0.01; IPS: accuracy=58.6%, z=-3.06, p<0.01; PFC: accuracy=60.3%, z=-2.93 p<0.01).
In the LT and the IPS, the difference between the decoding accuracy for a quarter of real functions
and for fake functions remained significant (LT: z=-3.01, p<0.01; IPS: z=-2.13, p<0.05) and
marginally significant in the PFC (z=-1.88, p=0.06). In the OCC, neither the decoding accuracy
for a quarter of real function or the difference between a quarter of real function and fake function
reached significance (OCC: accuracy=51.1%, z=-0.25, p=0.80; difference with fake function
decoding z=-1.61, p=11) (Supplementary Figure 1). This result suggests that multivariate patterns
in language-responsive lateral temporal cortex (or IPS and PFC) cannot be explained by the
lexical meanings of the particular words used in the functions but is related at least in part to the
compositional structure of code.

Language vertices had weaker but earlier univariate responses to
programming functions

In a sensitive individual-subject ROI analysis focusing on the top 5% of language responsive
vertices in lateral temporal cortex (language>math), we observed a small but significant response
to real over fake code in language-responsive LT (real functions: 0.095%, SD=0.26%; fake
functions: -0.028%, SD=0.27%; t(14)=2.87, p<0.05). Consistent with previously reported whole-
cortex results (Liu et al., 2020), univariate responses to Python code in LT were much smaller
than in fronto-parietal cortices IPS&PFC (real functions: 0.65%, SD=0.27%; fake functions:
0.023%, SD=0.22%; real vs. fake t(14)=9.52, p<0.001), both compared to the memory control
condition and compared to rest (FOR: mean PSC difference = 0.42% in the LT, SD=0.14%; mean
=1.1% in the IPS&PFC, SD=0.41%; paired t-test between ROIs t{(14) = -6.10, p<0.001. IF: mean
PSC difference = 0.53% in the LT, SD=0.20%; mean = 1.24% in the IPS&PFC, SD=0.42%; t(14)
=-6.22, p<0.001).

Based on the hypothesis that language regions are involved in the representation of the initial
“gist” of programming functions, we predicted that the neural response to programming functions
should peak earlier in language-responsive lateral temporal cortex than in the fronto-parietal
reasoning network (IPS and PFC). Consistent with this hypothesis, we observed significantly
earlier signal peaks in language-responsive LT than the code-responsive fronto-parietal network
(FOR: mean peak time = 8.87s in the LT, SD=6.39s; mean = 15s in the IPS&PFC, SD=3.72s;
t(14)=-4.77, p<0.001. IF: mean peak time = 11.67s in the LT, SD=6.14s; mean = 15.93s in the
IPS&PFC, SD=3.99s; t(14)=-4.07, p<0.005.) This result supports the hypothesis that language
areas are involved in code comprehension than fronto-parietal systems (Figure 4). Separately
comparing LT with IPS and with PFC led to the same results. The responses in either the IPS or
the PFC were stronger and faster than in the LT (Supplementary Figure 2).

Discussion

We find that language-responsive lateral temporal cortices are sensitive to the contents of the
programming functions. Linear classifier trained on activity patterns in the language network can
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distinguish between FOR loops and IF conditional functions. Indeed, decoding accuracy in
language-responsive lateral temporal cortex was as high as or higher than anywhere else on the
cortical surface, including fronto-parietal networks that show strong univariate responses to code.
This decoding result is consistent with a recent report by Srikant et al. (2022), which found above-
chance decoding accuracy of control structures (FOR, IF, or a sequential script with neither FOR
or IF) and data types in both the fronto-temporal language network and the fronto-parietal
reasoning network. Interestingly, high decoding is found in the language network despite relatively
low univariate activation to Python code in language areas.

The current results also suggest that language regions, as well as the fronto-parietal network, are
sensitive to the compositional structure of code. Decoding in language regions is not likely to be
driven solely by the presence of different lexical items across different Python functions since the
scrambled “fake” control functions contained the same lexical items as individual real Python
functions but did not show above chance decoding in language-responsive lateral temporal cortex
(orin the IPS and PFC).

One caveat to our conclusion is that differences between decoding for real and fake might be
partly driven by task demands, and not only the stimuli themselves. For the Python code,
participants read for meaning, but for fake functions, they performed memorization. However,
even in the memory control task, participants needed to attend to individual lexical items in the
fake functions to correctly perform the task, making it unlikely that they were ignoring the lexical
items. It is also possible that the unstructured nature of fake code stimuli contributed to the
disengagement of the language network. That is, when the lexical items in a programming
function are scrambled to disrupt the structure, they don’'t engage the language network as an
actual function does. Base on the current data alone, we cannot rule out the possibility that lower
decoding accuracy for fake as compared to real code is related in part to different task demands
across these conditions or the greater variability of the position of the words in the fake functions.

Prior studies provide further evidence for the idea that language regions are not highly sensitive
to lexical information in code (Srikant et al., (2022). Srikant et al. (2022) failed to decode between
functions that contained variables in English (e.g., the variable holding the mean of two values
was named “mean”) as opposed to functions that contained the same variables named in
Japanese spelled out with English alphabet (e.g., the variable holding the mean was named
“heikin”, which means “mean” in Japanese). Together, these findings suggested that the lateral
temporal language areas (and fronto-parietal areas) are sensitive to the composition content of
code functions, beyond the lexical items in a Python function.

Support for the idea that the language network plays some role in code comprehension comes
from previous evidence of co-lateralization. In a previous publication on the same dataset, we
found that fronto-parietal responses to Python code are left-lateralized and importantly co-
lateralized with the language network across individuals (Liu et al., 2020). Notably, since the
current results come from the same dataset as that prior analysis, it will be important to replicate
these findings in a new set of participants. That is, participants who have highly left lateralized
responses to language in fronto-temporal language regions are also more likely to have highly
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left-lateralized responses to Python code in fronto-parietal networks. Together these data
suggested that the language system does contribute to code comprehension.

Possible computational contributions of language network to code
comprehension

We propose that during the comprehension of computer programs, information flows from visual
cortex to the perisylvian language system, which initially constructs a language-like surface-level
representation of the programming script. Then, the surface-level representation is transmitted to
the logical reasoning system, where the algorithm is processed. This hypothesis is consistent
with presence of multivariate information about programs in language areas and is supported by
evidence for an earlier peak response to programs in language areas, relative to the fronto-
parietal network.

According to this proposal, the “surface” representation of the language system describes the
program in a non-computable format. By contrast, the fronto-parietal system actually simulates
the program’s execution, mapping between inputs and outputs, and changing the states of the
variables throughout the execution of the program. When a input is provided, the fronto-parietal
systems simulate the program to generate the output (Bunge, Kahn, Wallis, Miller, & Wagner,
2003; Crittenden, Mitchell, & Duncan, 2016; Pischedda, Gorgen, Haynes, & Reverberi, 2017;
Woolgar, Jackson, & Duncan, 2016; Woolgar, Thompson, Bor, & Duncan, 2011; Zhang,
Kriegeskorte, Carlin, & Rowe, 2013). This interpretation of the fronto-parietal system’s role is
consistent with another finding reported by Srikant et al.(2022), where the fronto-parietal network
encodes the “run-time behavior” of a program (e.g., the number of actual steps taken by the
computer to execute the program) better than the language network.

Many questions remain regarding the precise role of the language network in code
comprehension. Here, we discuss two possibilities, a “weak” recycling and a “strong” recycling
hypothesis. According to the weak recycling idea, during code comprehension, the language
network represents a natural language description of the algorithm represented in programming
code, something like what a programmer writes in the comments section of programming script.
Since humans are more familiar with natural than artificially designed programming languages, it
is possible that a natural language description facilitates program comprehension. We call this a
“‘weak” recycling hypothesis because the language network continues to perform its typical
linguistic operations. Similar to using the language system to solve memorization-based math
problems (6 times 6 is 36) (Maruyama, Pallier, Jobert, Sigman, & Dehaene, 2012).

Consistent with the weak recycling possibility, it appears to be easy for many programmers to
generate language descriptions of their mental processes during coding. “Verbal protocols” are
often used to study the cognitive basis of code processing (Hungerford, Hevner, & Collins, 2004;
Lethbridge, Sim, & Singer, 2005; Letovsky, 1987; Letovsky & Soloway, 1986; Littman, Pinto,
Letovsky, & Soloway, 1987; Pennington, 1987; Sharpe, 1997; von Mayrhauser & Vans, 1994). In
such studies, programmers are instructed to “think aloud” during a code comprehension task and
the linguistic utterances are analyzed to gain insight into how a programmer’s understanding of a
script evolves through time. For example, while reading an unfamiliar script, programmers may
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begin by asking questions prompting closer inspection of other programming elements (e.g.,
“What does this other function ‘SRCH’ do?”, “Why are there 7 elements in the array ‘DBASE’?”),
in a later stage, programmers’ utterances may become more affirmative, indicating a better
understanding of the program (e.g., “So you access records by name in the data base.”, “Because
they have that marker in there to determine if it's deleted.”) (examples from (Letovsky, 1987)).
One hypothesis is that such verbalization occurs covertly, even when there is no motor speech
output. If such verbalizations are specific enough, they would account for distinctive neural
patterns in the language network for different programming functions.

As opposed to the weak recycling view, the alternative “strong recycling” hypothesis is that the
language network supports the representations of hierarchical “syntactic trees” of computer
programs. On the strong recycling view, the language system’s capacity for representing
hierarchical structures is “repurposed” to represent the structures found in computer code (Fitch
et al., 2005; Friederici, Rueschemeyer, Hahne, & Fiebach, 2003; Humphries, Binder, Medler, &
Liebenthal, 2006; Pallier, Devauchelle, & Dehaene, 2011). We call this view “strong recycling”
because it would require modifying representations in the fronto-temporal language network to
accommodate encoding the types of “trees” found in computer code. Such repurposing may even
involve sub-specialization of some subset of the language network for representing programming
code, akin to the development of the visual word form area (VWFA) in the ventral stream during
literacy acquisition (Dehaene-Lambertz, Monzalvo, & Dehaene, 2018; Dehaene, Cohen, Morais,
& Kolinsky, 2015; Dehaene, Le Clec'H, Poline, Le Bihan, & Cohen, 2002; Dehaene et al., 2010;
McCandliss, Cohen, & Dehaene, 2003; Szwed, Vinckier, Cohen, & Dehaene, 2012). Potentially
consistent with the idea that the language network represents the hierarchical trees of computer
code, Srikant et al. (2022) found that the language network is sensitive to the number of nodes in
the abstract syntactic tree of a program. However, it is also likely that more complex programs
require more complex linguistic descriptions, so this data is also consistent with the weak
recycling view.

At present, we favor the “weak” recycling view for several reasons. Given the similarity of natural
languages to each other and their collective difference from programming languages, it seems
likely that the language system is particularly suited for representing not just any “hierarchical tree”
but specifically the types of trees that are found in natural languages. Even if the language network
were capable of sufficient plasticity to accommodate trees found in computer code, coding is
acquired well past the critical period of language acquisition. These considerations lead us to
favor the “weak” recycling hypothesis, perhaps better termed the “reuse” for the relationship of
language and code.

It is also worth noting that prior evidence suggests that other hierarchical cultural symbol systems
such as formal logic, mathematics and music do not “recycle” the language network but instead
rely on fronto-parietal circuits (Dehaene et al., 2022; Fedorenko & Varley, 2016; Monti, 2017;
Monti et al., 2009, 2012). However, most of these studies used univariate approaches. It would
be interesting to ask whether the contents of math and formal logic expressions could be decoded
in language networks, despite low univariate response. If so, it might suggest that reuse of the
language network is a wide-spread phenomenon across symbol systems.
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Open questions and future directions

Many open questions remain regarding the role of the language system in code comprehension.
One is whether the involvement of the language system generalizes to programming languages
that are less language-like than Python, the programming language studied here. Specifically,
does the language system represent program-relevant information only when the code is
language-like? In the current study and Srikant et al. (2022), the programming language
presented to participants was Python, which is among the more language-like high-level
programming languages, in comparison with other major programming languages like C++ or
Java. It is not known whether the language network encodes code-relevant information when the
“code” does not consist of linguistic symbols.

A study by Ivanova et al. (2020) presented participants with ScratchJdr programs in addition to
Python programs. ScratchJr is a child-oriented graphic-based programming “language”, where a
program is “written” in a series of interlocked tiles containing icons and numbers. Whereas
Ivanova et al. (2020) reported a slight preference for Python programs over lists of non-words in
the language network, such an effect was not observed with Scratchdr “programs”. However,
Ivanova et al. (2020) did not test for multivariate decoding of ScratchJr programs in language
regions. ScratchdJr provides an interesting test-case to be used in future studies.

Another open question concerns the neural flow of information during program comprehension,
akin to what has been processed for comprehension of natural languages (Price, 2010, 2012).
Based on our findings, we propose that during comprehension of programs, information flows
from visual regions to language circuits followed by fronto-parietal reasoning systems, with
feedback from later to earlier regions throughout the process. However, it warrants further
investigation whether the language system is behaviorally necessary, or merely active during
code comprehension. It is possible that the logical reasoning system alone is sufficient to parse
a program and construct the representations of the actual algorithms, whereas the surface-level
representation constructed by the language network only facilitates the comprehension process.
The necessity of the language network can be studied by conducting code comprehension
experiments while inhibiting the language system using transcranial magnetic stimulation (TMS),
or overloading the language system with verbal shadowing task, or with aphasic programmers.

Moving forward, as we delve deeper into understanding the role of the language system in code
comprehension, it becomes evident that future investigations will not only illuminate the
necessity of this system but also provide valuable insights into the mental processes involved in
programming. Furthermore, these inquiries will help us unravel the intricate relationship
between language and abstract symbolic reasoning, ultimately shedding light on the intriguing
concept of neural recycling.
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Table 1. Clusters revealed by the searchlight MVPA decoding. FWER corrected. Only
clusters with more than 50 vertices are included.

peak MNI coordinates Cluster size peak-p

X Y z vertices mm2
Left hemisphere
Superior temporal sulcus/angular
gyrus/intraparietal sulcus -46.6 -69.2 219 3169 5260.58  3.62E-09
Superior frontal sulcus/middle frontal
gyrus/precentral gyrus & sulcus -24.9 16.8 40 979 2022.29  8.55E-09
Precuneus -6.3 -59 32 526 913.58 1.23E-07
Superior frontal gyrus -16.4 18.8 59 395 1026.33  3.27E-08
Inferior frontal gyrus -52.7 14.1 5.1 213 510.77 1.97E-07
Posterior dorsal cingulate gyrus -7.4 -40.8 39.1 121 260.38 1.31E-07
Superior frontal gyrus -13.4 53.1 324 89 199.66 2.42E-06
Middle frontal gyrus -45.4 30.6 25.8 86 150.12 3.44E-05
Medial occipto-temporal sulcus -32.6 -48.9 -10.2 74 173.29 4.02E-07
Orbital gyrus -41.2 26.7 -16.1 71 172.65 7.33E-07
Lingual gyrus -3.8 -91.1 -6.8 51 136.47 7.01E-06
Right hemisphere
Intraparietal sulcus/superior temporal
sulcus/angular gyrus 355 -54.8 39.8 1036 1954.92  9.23E-08
Superior frontal sulcus 27 13.1 45.5 315 551.61 3.07E-07
Precuneus 5.9 -68.1 47.6 266 504.43 1.52E-06
Middle frontal gyrus/inferior frontal sulcus 47.7 234 315 193 342.6 4.56E-07
Precuneus 7.3 -54.9 47.1 87 113.06 6.09E-06
Superior frontal gyrus 115 54.7 31.8 60 205.07 3.13E-06
Superior frontal gyrus 16.5 38.8 45 57 162.05 6.77E-06
Lingual gyrus 3.1 -79.2 0.2 52 195.12 4.26E-06

23



Supplementary Table 1. In either regions of interest (ROI) in the fronto-parietal
reasoning network (the intraparietal sulcus IPS and the lateral prefrontal cortex PFC),
decoding accuracy is compared between two methods for the definition of the ROI
search space. In our current study, the ROI search spaces were defined using the
logic>sentence contrast. An alternative was to define them based on the real code >
scrambled fake code contrast. However, the decoding accuracy derived from the two
methods are highly correlated and statistically indistinguishable.

IPS PFC
Logic>sentence contrast 68.9% (SD=7.17%) 64.4% (SD=7.82%)
Real>fake contrast 67.8% (SD=8.24%) 64.8% (SD=7.65%)
Pearson correlation r=0.88, p<0.001 r=0.96, p<0.001

Paired t-test t=1.05, p=0.31 t=-0.75, p=0.47



fun (input) : def fun (input):

— rerult = [“input”] result = [“result”]

3 for ii in input.split (™ ”): if len(input.split (™ ”))<3:

= result += [11[0].lower ()] result += input.split(“_")
return result return result

input :def) fun/(

@ ult=input” “[ ]

E input” in) split.for :

] ii] result[lower=0. () e: (+ =
result return result return

Figure 1. Example stimuli. The top row shows a real FOR function and a real IF function. The
bottom row shows a scrambled (fake) FOR function and a fake IF function. Each fake function
was created by scrambling the words and symbols in each line of the corresponding real function.
During the experiment, all stimuli were presented on a black background. Real functions were
presented in a white font, and fake functions were presented in a yellow font as a visual reminder
to prevent participants from temporarily thinking the fake functions were real functions. For an
illustration for the experiment design, please refer to Liu et al. (2020).
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Lang > Math Logic > Lang

. accuracy
50% 65%

Figure 2. Searchlight multivariate pattern analysis (MVPA) FOR-vs-IF Python function decoding
accuracy map. Family-wise error rate (FWER) was controlled by applying cluster-based
permutation correction, with a vertex-wise cluster-forming threshold of uncorrected p<0.001,
and a cluster-wise threshold of p<0.05. The blue outlines denote the language-responsive
network defined based on the sentence>math group contrast derived from the localizer scan,
whereas the green outlines denote the logic-responsive network defined based on the
logic>sentence group contrast. All the vertices shown in this figure have significantly above-
chance accuracy. For the list of clusters which passed the FWER correction, please see Table
1.
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Figure 3. FOR-vs-IF Python function MVPA decoding accuracy in language-responsive left
lateral temporal cortex (LT), code-responsive left intraparietal sulcus (IPS), code-responsive left
lateral prefrontal cortex (PFC), and left primary visual medial occipital cortex (OCC). The “real”
is the accuracy of decoding if vs. for Python functions. “Fake” is the accuracy of fake/scrambled
function decoding. The search spaces are delineated on the inset brain map. Chance level is
50%. Error bars denote standard error of the decoding accuracy. *p<0.05, **p<0.01, ***p<0.001
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Figure 4. Percent signal change (PSC) time courses of different conditions, averaged across
participants: FOR (solid line), IF (dashed line), and scrambled fake function (dotted line). Blue
lines: PSC time courses extracted from the top 5% language-responsive vertices in the left
lateral temporal (LT) search space. The search spaces are delineated on the inset brain map.
Yellow lines: PSC time courses extracted from the top 5% code-responsive vertices (using
leave-one-run-out method) in the left intraparietal sulcus (IPS) and the lateral prefrontal cortex
(PFC), averaged across IPS and PFC. Translucent shades denote standard error. The across-
participant average peak time of the responses to FOR and IF functions (Blue: LT, Yellow:
IPS&PFC) are denoted along the X axis.
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Supplementary Figure 1. FOR-vs-IF Python function MVPA decoding accuracy in the following
regions of interest (ROIs) in the left hemisphere: language-responsive lateral temporal cortex
(LT), code-responsive intraparietal sulcus (IPS), code-responsive lateral prefrontal cortex (PFC),
and primary visual medial occipital cortex (OCC). In each group of bars, the left one (“real”) is
the accuracy of real function decoding, the middle one (“qtr”) is the accuracy we observed when
only a quarter of the real function data were used, and the right one (“fake”) is the accuracy of
fake function decoding. In order not to complicate the figure, the significance of the differences
between “real” and “fake” bars in the LT, the IPS, and the PFC are not denoted in this figure
(this information is included in Figure 3). The search spaces are delineated on the inset brain

map. Chance level is 50%. Error bars denote standard error of the decoding accuracy. *p<0.05,
**p<0.01, ***p<0.001
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Supplementary Figure 2: Comparison of percent signal change time courses between (a) the
IPS and the LT (b) the PFC and the LT. IPS: left intraparietal sulcus. PFC: left lateral prefrontal
cortex. LT: left lateral temporal cortex. The figures are identical to Figure 4, except for
“IPS&PFC” being replaced with either IPS or PFC. Responses in the LT was faster than in the
IPS (FOR: mean peak time = 8.87s i
t(14)=-4.61, p<0.001. IF: mean peak
IPS, SD=4.37s; t(14)=-3.72, p<0.005). Responses in the LT was also faster than in the PFC
(FOR: mean peak time = 8.87s in the LT, SD=6.39s; mean = 15.26s in the PFC, SD=3.57s;

n the LT, SD=6.39s; mean = 15s in the IPS, SD=3.86s;
time = 11.67s in the LT, SD=6.14s; mean = 15.8s in the
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t(14)=-4.82, p<0.001. IF: mean peak time = 11.67s in the LT, SD=6.14s; mean = 15.13s in the
PFC, SD=3.96s; t(14)=-3.45, p<0.005)
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