
1

Contribution of the language network to the

comprehension of Python programming code

Abstract

Does the perisylvian language network contribute to comprehension of programming languages,

like Python? Univariate neuroimaging studies find high responses to code in fronto-parietal

executive areas but not in fronto-temporal language areas, suggesting the language network

does little. We used multivariate-pattern-analysis to test whether the language network encodes

Python functions. Python programmers read functions while undergoing fMRI. A linear SVM

decoded for-loops from if-conditionals based on activity in lateral temporal (LT) language cortex.

In searchlight analysis, decoding accuracy was higher in LT language cortex than anywhere

else. Follow up analysis showed that decoding was not driven by presence of different words

across function, “for” vs “if,” but by compositional program properties. Finally, univariate

responses to code peaked earlier in LT language-cortex than in the fronto-parietal network. We

propose that the language system forms initial “surface meaning” representations of programs,

which input to the reasoning network for processing of algorithms.

2

Introduction

The invention of computer programming and its applications (e.g., artificial intelligence) have

altered human society and are fast becoming a central aspect of employment and education in

the modern world. The cognitive and neural mechanisms that enable the human brain to support

this important cultural skill are poorly understood. A key outstanding question is the degree to

which the neurocognitive system that supports natural language processing is involved in

understanding and producing programming code (Fedorenko, Ivanova, Dhamala, & Bers, 2019;

Ivanova et al., 2020; Liu, Kim, Wilson, & Bedny, 2020; Peitek et al., 2018; Prat, Madhyastha,

Mottarella, & Kuo, 2020; Siegmund et al., 2014).

Prima facie support for the idea that the language system is “recycled” for code comprehension

comes from the fact that programming languages borrow some elements of natural language.

Words like “for”, “if”, “and”, “or”, and “return” are used almost universally across programming

languages, and their meanings are partly preserved. Even opaque and older function names (e.g.,

“chmod”, “mkdir” in bash scripts) are abbreviations of English words rather than arbitrary letter

combinations. The syntax of natural and programming languages also share features, such as

hierarchical structure and recursion (Fitch, Hauser, & Chomsky, 2005). Natural languages are

recursive because a phrase can be embedded within another phrase of the same syntactic

category (Friederici, Chomsky, Berwick, Moro, & Bolhuis, 2017; Hauser, Chomsky, & Fitch, 2002;

Yang, Crain, Berwick, Chomsky, & Bolhuis, 2017). Programming languages contain data

structures, such as lists and trees, that can be recursive in the same way; furthermore, functions

are allowed to call other functions, including themselves, as subroutines. Reading code can be

thought of as partly analogous to reading natural language, where progressively more abstract

and larger structures (e.g., functions) are constructed from lawful combinations of discrete

symbols at lower levels of representation (i.e., letters, words) (Fedorenko et al., 2019). These

parallels predicts overlap in the neural representation of natural and programming languages

(Fedorenko et al., 2019; Fitch et al., 2005; Pandža, 2016; Peitek et al., 2018; Portnoff, 2018; Prat

et al., 2020).

On the other hand, there are key differences between natural and programming languages. While

English word forms do appear in computer code, the meanings of these symbols are not exactly

the same as in natural languages. More generally, programming languages lack symbols that

have the rich semantics of lexical items (e.g., “dog” or “walk”). Grammatical categories such as

nouns, verbs, adjectives, and prepositions do not have clear counterparts in programming

languages (e.g., an object in code can have both verb-like and adjective-like attributes).

Furthermore, the rules for combining basic units are distinct: while human natural and

programming languages both have function-argument structure, scope, and variable binding at

the semantic level, only human natural languages have grammatical relations such as subject

and direct object or information structure such as topic and focus. While natural languages are

rife with ambiguity (i.e., a given sequence of words can have multiple lexical and syntactic parses

with different meanings), the relation between code and meaning is deterministic. Programming

languages may in fact have more in common with logical reasoning than with natural language.

Code and formal logic both make use of conditions like “if”, quantifiers like “for all”, and logical

operators such as “and”, “or”, and “not”. In both systems, these expressions are interpreted

3

deterministically and without the pragmatic enrichment that is so characteristic of human natural

language.

The available empirical evidence suggests that domain-general logical reasoning systems, rather

than language networks, support programming (Dehaene, Al Roumi, Lakretz, Planton, & Sablé-

Meyer, 2022; Fedorenko & Varley, 2016; Monti, Parsons, & Osherson, 2009, 2012). Studies of

individual differences find correlations between programming learning outcome and logical,

analogical, and deductive reasoning abilities (McCoy & Burton, 1988; Pea & Kurland, 1984; Prat

et al., 2020; Shute, 1991). Recent functional magnetic resonance imaging (fMRI) studies have

found activity in fronto-parietal reasoning areas, rather than perisylvian language circuits, when

comparing programming tasks to various control conditions: code reading vs. reading algorithms

written in plain English (Ivanova et al., 2020), code reading vs. syntactic bug finding (Siegmund

et al., 2014), code reading vs. prose reading (Floyd, Santander, & Weimer, 2017), and searching

for semantic bugs which prevent a program from implementing its intended algorithm vs. reading

a bug-free program (Castelhano et al., 2018). The same fronto-parietal network is also involved

in code writing as opposed to prose writing (Krueger et al., 2020), and even when participants

were covertly crafting the program without actually typing it (Xu, Li, & Liu, 2021). In many of these

studies, the control condition involved language (e.g., prose reading), leading to the concern that

language-related activation was subtracted out. However, Liu et al. (2020), compared code

comprehension to memorizing scrambled code, where the scrambled code lacked meaningful

words and sentential structure. Nevertheless, the code vs. scrambled code contrast still identified

fronto-parietal and not perisylvian language networks.

A possible conclusion from these data is that the language system plays little role in the

processing of computer code (Ivanova et al., 2020; Liu et al., 2020). At the same time, it is not

clear that the involvement of the language system in code processing can be entirely dismissed.

One recent study found that while Python code and natural language do not activate the same

cortical networks, they do show co-lateralization across individuals, suggesting some relationship

between them (Liu et al., 2020). Moreover, examining univariate responses relative to control

conditions (as reviewed above) is not the only way to test whether a neurocognitive system is

involved in a particular task.

It remains possible that even though the fronto-temporal language system does not show large

activity during code processing (perhaps because natural rather than programming languages

are its preferred stimulus), multivariate patterns of activity in the language network still represent

information relevant to programming code. Such dissociations between univariate and

multivariate results have been observed in other domains of cognitive neuroscience. For example,

despite low overall activity levels, early sensory areas contain information about the contents of

visual working memory (Bettencourt & Xu, 2016; Emrich, Riggall, LaRocque, & Postle, 2013;

Ester, Serences, & Awh, 2009; Harrison & Tong, 2009; Riggall & Postle, 2012).

Only a handful of studies have used multivariate methods to study programming and most of

these have not looked at decoding in language regions. Ikutani et al. (2021) and Liu et al. (2020)

found that different types of programming algorithms can be decoded based on the spatial

activation pattern in the fronto-parietal reasoning network. Furthermore, decoding accuracy in the

4

fronto-parietal network correlated with behavioral performance on the behavioral task where

participants sorted programming scripts based on the underlying algorithms (Ikutani et al., 2021).

However, neither of these studies specifically looked at decoding in functionally localized

language areas.

Recent evidence for the hypothesis that language areas may in fact contain multivariate

information about programming code comes from Srikant et al. (2022). They found that a linear

classifier trained on activity patterns from the language network could be used to distinguish

between different types of control structures (FOR loop, IF conditional, or sequential operations

lacking FOR and IF) and data types (string vs. numeric) in Python programming scripts. These

results suggest that, contrary to the inferences from univariate measures, the language network

does show sensitivity to the content of computer code.

In the current study, we sought to replicate and extend these results by probing in greater detail

the contribution of the language network to program comprehension. We used data from a

previous publication (Liu et al., 2020). In the previous work, we did not conduct any multi-variate

pattern analysis (MVPA) in the language network. In our current study, MVPA was used to decode

FOR from IF functions based on activity patterns within classic language regions identified in

individual participants. While undergoing functional magnetic resonance imaging (fMRI) scans,

expert Python programmers read short functions, each of which contained a single FOR loop or

a single IF conditional. The same participants performed a language localizer task where

sentence comprehension was compared to solving math equations. This functional localization

allowed us to conduct our analyses within the neural population most sensitive to linguistic content

within each individual participant.

The current experiment went beyond previous studies by asking whether the language network

is sensitive to the compositional meaning of programming functions or is restricted to retrieving

the meanings of programming keywords, such as “return”, “for” and “if”. If the language-networks’

role is restricted to retrieving word meanings, decoding might be based purely on the presence of

distinct lexical items across different code function types. This hypothesis is consistent with the

available data because in the only prior study to find decoding in the language network, the

decoded functions contained different words, in addition to differing in line structure (Srikant et

al., 2022).

A feature of the stimuli in the current study made it possible to test the hypothesis that the

language network is sensitive to the compositional structure and not just the lexical items of code:

the same participants read real Python code functions and memorized similar functions presented

with all the words in scrambled order, i.e., “scrambled fake function”. Each scrambled “fake”

function was generated from a real Python function by scrambling the words and symbols within

each line. As a result, the lexical items within each scrambled function were identical to a real

function, so words like “for” and “if” were preserved. However, the fake functions lacked the

meaning and structure that is present in real Python functions. If decoding of IF vs. FOR functions

in language regions is driven by the presence of different lexical items, we should be able to

decode not only the real but also the fake functions. By contrast, if decoding in the language

5

network is driven by the meaning and/or structure of the Python code, then we should find

decoding of real but not fake function.

Next, we compared the temporal dynamics of neural responses to Python functions across

language and fronto-parietal reasoning networks to test whether these networks contribute to

different aspects of code comprehension. We hypothesized that the language system is

responsible for the initial meaning extraction from programming text, whereas fronto-parietal

logical reasoning system subsequently creates a mental model of the programming algorithm.

This latter mental model is a more in-depth representation than the surface meaning extracted by

the language system. It is more flexible, containing variables that can take on specific values and

be entered into functions. Based on this hypothesis, we predicted that the language system

contributes to code comprehension earlier than the fronto-parietal reasoning system and that the

blood-oxygen level dependent (BOLD) signal responses to code would peak earlier in language

relative to fronto-parietal systems.

Methods

As this study consists of further analyses on the data collected for a previous publication, the

participants, experiment design, and data acquisition procedures are identical to what was

described previously by Liu et al. (2020). However, for the sake of completeness, we still briefly

describe these aspects of the study.

Participants

Fifteen individuals participated in the study (three women, twelve men, age range 20–38, mean

age = 27.4, SD = 5.0). Participants had an average of 5.7 years of Python programming

experience (range: 3–9, SD = 1.8). Other than self-report, Python expertise was evaluated with

two Python exercises administered outside the MRI scanner. In the first exercise, participants

answered what will be the output of a one-line Python statement (e.g. for “print(‘3.14’.split(‘1’))”,

participants should type “[‘3.’, ‘4’]”). In the second exercise, participants saw a Python program

snippet with a blank, along with a sentence describing what the snippet should do when executed.

Participants were required to complete the snippet to fulfill the specification (e.g., for the snippet

“a = ‘abc’; print(______(enumerate(a)))” and the specification “What should be filled in the blank

if we want to print out a collection of tuples enclosed in square brackets, rather than something

like <enumerate object at 0x000001888D2B2678>?”, participants should type “list”). The first

exercise evaluated participants’ knowledge of basic Python syntaxes and built-in functions

(participants’ responses M = 82.9%, SD = 6.9%, range: 70–96%), whereas the second exercise

evaluated participants’ ability to use their programming knowledge to solve a problem (M = 64.6%,

SD = 16.6%, range: 37.5–93.75%). For detailed descriptions of these exercises, please refer to

Liu et al. (2020).

All participants had normal or corrected to normal vision and none had been diagnosed with

cognitive or neurological disabilities. All participants gave informed consent according to

procedures approved by the Johns Hopkins Medicine Institutional Review Board (IRB protocol

6

number: NA_00087983).

fMRI task design and stimuli

Participants took part in an fMRI Python code comprehension experiment and a second localizer

experiment for language, logical reasoning, and symbolic math. Participants also performed a

multi-source-interference-task (Bush & Shin, 2006) which is not relevant to the current paper, and

will not be discussed further.

The code experiment consisted of Python code condition and a “fake” code memory control. Real

code comprehension trials involved the sequential presentation of three elements: a Python

function (24s), an input to the function (6s), and a proposed output (6s). Participants judged

whether the proposed output was correct and indicated their response via a yes/no button press.

Each Python function contained exactly one control structure, which was either a FOR loop or an

IF conditional. There were two variants for FOR functions, and two variants for IF functions. The

first variant of FOR functions implemented the FOR loop in the canonical way, where a FOR loop

began with the keyword “for”, followed by actions to be taken in each iteration. The second variant

of FOR functions contained a Python-specific expression called “list comprehension”, where the

keyword “for” was placed in the middle of a loop definition, rather than the beginning. In the first

variant of IF functions, a conditional statement began with the keyword “if”, followed by the action

to be taken if a condition was met. In the second variant, the keyword “if” was not used. Instead,

we multiplied the action by the condition such that if the condition evaluated to false, the product

of the multiplication was 0, indicating no action was taken. Despite the existence of the variants,

all functions consisted of exactly 5 lines of code with the same patterns of indentation, such that

FOR and IF functions, regardless of the variants, were visually similar. All functions took a

character string as input and performed string manipulations. As discussed in detail below,

analyses focused on the function comprehension portion of the trial, prior to input presentation.

Each trial was followed by a 5-second inter-trial interval. Please see Figure 1 for example stimuli.

Prior to the experiment, participants were told they were going to see functions that work with

character strings called “input”. They also practiced with these types of stimuli, so they were well

aware that in the scope of this experiment, “input” referred to the input argument of the functions,

rather than a Python built-in function which happened to have the same name.

Fake code memory trials had a similar structure to the code trails: a scrambled Python “function”

(24s), followed by a one-line “input” (6s) and a scrambled one-line “output” (6s). Participants were

instructed to remember the text presented during the first two phases of the trail. They then judged

whether the one-line scrambled “output” matched any of the lines presented during the previous

phases (including both the scrambled function and the scrambled “input”). As with real code,

analysis focused on the “function” portion of the trail.

Every scrambled function was generated from a real Python function by separately scrambling

each line of the real function at the level of words and symbols. Therefore, the words, digits and

operators present in real functions were preserved in scrambled functions, but none of the

scrambled lines comprised an executable Python statement. Like the real IF and FOR functions,

7

the fake FOR functions contained the word “FOR”, and the IF scrambled functions did not contain

the word “FOR”. We contrasted reading and comprehending Python code against an explicit

working memory task as an attempt to emphasize only the process of understanding the

algorithm, but not the working memory processes associated with the comprehension.

There were six task runs in this scan. During each run, participants saw 8 real FOR functions, 8

real IF functions, and 4 fake scrambled functions (48 FOR, 48 IF, and 24 fake across runs for

each participant). In each of the 6 task runs, each participant only saw either the “real” or the

“fake” version of the same function, but not both.

The localizer experiment included language comprehension, logical reasoning, and symbolic

math tasks all following the same structure. On language trials, participant judged whether two

sentences, one in active and one in passive voice, had the same meaning (e.g., “The child that

the babysitter chased ate the apple” vs “The apple was eaten by the babysitter that the child

chased”). On formal logic trials, participants judged whether two logical statements were

consistent. That is, whether the two statements logically infer each other (e.g., “If either not X or

not Y then Z” vs “If not Z then both X and Y”). On math trials, participant judged whether the

variable X had the same value across two equations (e.g., “X minus twenty-three equals forty-

two” vs “X minus fifty-one equals fourteen”). In each trial, one of the two “sentences” appeared

first, with the other following 3 s later. Both statements stayed visible on the screen for 16 s.

Participants indicated their true/false judgment by pressing one of two buttons. The experiment

consisted of 6 runs, each containing 8 trials of each type (language/logic/math) and six rest

periods, lasting 5 s each. In this study, we localized the perisylvian fronto-temporal language

network using the language>math contrast, and the lateral fronto-parietal logical reasoning

network using the logic>language contrast (Kanjlia, Lane, Feigenson, & Bedny, 2016; Monti et

al., 2009, 2012). The logic task was adapted from Monti et al. (2009) and Monti et al. (2012);

whereas the language task was adapted from Kanjlia et al. (2016), which was also derived from

Monti et al. (2012).

fMRI data acquisition and preprocessing

All functional and structural MRI data were acquired at the F.M. Kirby Research Center of

Functional Brain Imaging on a 3T Phillips Achieva Multix X-Series scanner. T1-weighted structural

images were collected in 150 axial slices with 1 mm isotropic voxels using a magnetization-

prepared rapid gradient-echo (MP-RAGE) sequence. Functional T2*-weighted BOLD scans were

collected using a gradient echo planar imaging (EPI) sequence with the following parameters: 36

sequential ascending axial slices, repetition time (TR) = 2 seconds, echo time (TE) = 0.03

seconds, flip angle = 70°, field of view (FOV) matrix = 76 x 70, slice thickness = 2.5 mm, inter-

slice gap = 0.5, slice-coverage FH = 107.5, voxel size = 2.4 x 2.4 x 3 mm, PE direction = L/R, first

order shimming. Six dummy scans were collected at the beginning of each run but were not saved.

We acquired the data in one code comprehension session (six runs) and one localizer session (6

runs of language/math/logic), with the acquisition parameters being identical for both sessions.

The stimuli in both sessions were presented with custom scripts written in PsychoPy3

(https://www.psychopy.org/ (Peirce et al., 2019)). The visual stimuli were presented on a rear

https://www.psychopy.org/

8

projection screen, cut to fit the scanner bore. The participant viewed the screen via a front-

silvered, 45°inclined mirror attached to the top of the head coil. The stimuli were projected with

an Epson PowerLite 7350 projector. The resolution of the projected image was 1600 × 1200.

Data were analyzed using Freesurfer, FSL, HCP workbench, and custom in-house software

written in Python (Dale, Fischl, & Sereno, 1999; Glasser et al., 2013; Smith et al., 2004).

Functional data were motion corrected, high-pass filtered (128 s), mapped to the cortical surface

using Freesurfer, spatially smoothed on the surface (6 mm FWHM Gaussian kernel), and

prewhitened to remove temporal autocorrelation. Covariates of no interest were included to

account for confounds related to white matter, cerebral spinal fluid, and motion spikes.

Analysis

Whole-cortex searchlight multivariate pattern analysis (MVPA)

In this analysis, we asked: in the whole cortex, where were the FOR and IF programming

functions most distinctly represented? To answer the question, we conducted MVPA decoding

to distinguish FOR and IF functions using local spatial activation patterns in the “searchlight”

associated with each vertex on the cortical surface.

To prepare data for decoding, we constructed a general linear model (GLM) where each real

code function (48 FOR and 48 IF) and each scrambled control function (12 FOR and 12 IF) was

entered as a separate predictor with 24s duration, modeling the function presentation phase. A

support vector machine (SVM) classifier was then trained and tested on the spatial pattern of z-

statistics associated with beta parameters estimated by the GLM. The SVM classifier was

implemented in the Python toolbox Scikit-learn (Chang & Lin, 2011; Pedregosa et al., 2011). For

each vertex in the brain, one linear SVM classifier (regularization parameter C = 5.0) was

trained and tested on the spatial pattern in a “searchlight” surrounding the vertex. The

searchlight associated with a vertex consisted of all the vertices within a circle of 8mm diameter

(according to geodesic distance) centered at the vertex (Glasser et al., 2013; Kriegeskorte,

Goebel, & Bandettini, 2006). Searchlights containing sub-cortical vertex were excluded. The

regularization parameter C for SVM classifiers indicates how much misclassification of the

training data is allowed, where a larger value means less misclassification. But increasing C

value also increases the risk of overfitting the training data, leading to reduced decoding

accuracy when applying the model to the testing data. The default value of C provided by Scikit-

learn was 1, and we selected a larger value to impose a harder margin to better avoid

misclassification. Empirically, a reasonable C value ranges from 1 to 10

(https://www.ibm.com/docs/en/spss-modeler/18.2.2?topic=node-svm-expert-options). We

selected 5, which falls at the center of this range, and used this value consistently throughout

the analysis.

To eliminate any difference in the overall signal strength across MRI scanning runs, data were

normalized within each run (Lee & Kable, 2018; Stehr, Garcia, Pyles, & Grossman, 2023). In

each run, in each vertex on the cortical surface, the mean and standard deviation were

computed across trials and used for normalization such that the mean was set to 0 and

https://www.ibm.com/docs/en/spss-modeler/18.2.2?topic=node-svm-expert-options

9

standard deviation to 1. To avoid the dependency between trials from the same run artificially

inflating the decoding accuracy, we performed a 6-fold leave-one-run-out cross-validation (Etzel,

Valchev, & Keysers, 2011; Mumford, Davis, & Poldrack, 2014; Valente, Castellanos, Hausfeld,

De Martino, & Formisano, 2021). In each cross-validation fold, the classifier was trained on the

data from 5 out of the 6 task runs and tested on the left-out run. The resulting 6 accuracy values

were averaged to derive the observed accuracy for one participant in one searchlight. In each

searchlight, we used a one-sample t-test to test the 15-participant group mean accuracy value

(Fisher z-transformed) against chance of 50% (also Fisher z-transformed).

To control for family-wise error rate (FWER), we applied a cluster-based permutation correction

(Elli, Lane, & Bedny, 2019; Musz, Loiotile, Chen, & Bedny, 2022; Regev, Honey, Simony, &

Hasson, 2013; Schreiber & Krekelberg, 2013; Stelzer, Chen, & Turner, 2013; Su, Fonteneau,

Marslen-Wilson, & Kriegeskorte, 2012) with a vertex-wise cluster-forming threshold of

uncorrected p<0.001, and a cluster-wise FWER threshold of p<0.05 (Eklund, Knutsson, &

Nichols, 2019; Eklund, Nichols, & Knutsson, 2016; Winkler, Ridgway, Webster, Smith, &

Nichols, 2014). Specifically, we shuffled the condition labels (FOR and IF) 100 times. For each

shuffle, we derived one null group-mean accuracy map. For the observed group-mean accuracy

map and each of the null maps, we applied a cluster-forming threshold of p<0.001. For each

cluster, we computed its strength-over-spread, which is the average distance between each

vertex in the cluster with the peak cluster, weighted by the decoding accuracy value of the

vertex. We recorded the maximum strength-over-spread value among the clusters in each null

accuracy map to form a null distribution of 100 maximum strength-over-spread values. A cluster

in the observed map passed the correction if its strength-over-spread value was greater than

the 95th percentile of the null distribution.

ROI definition

Separate GLMs were constructed for the code experiment and localizer scans for the purpose

of generating region of interest (ROI) search spaces and individual functional ROIs (fROIs).

Specifically, our analysis focused on four ROIs: language-responsive lateral temporal cortex

(LT), code-responsive intraparietal sulcus (IPS) and lateral prefrontal cortex (PFC), and a

control region, the medial occipital primary visual cortex (OCC). Each ROI served as a search

space within which we defined functional ROI (fROI) for each individual. The fROI approach was

adopted to account for the known individual differences of neural populations engaged by a

cognitive task (Nieto-Castañón & Fedorenko, 2012). It enabled us to select the subject-specific

neural populations engaged by experiment conditions within a larger group-based ROI search

space. How the group-based ROI search spaces and the fROIs within each individual were

defined is described in detail below.

In the localizer GLM, one predictor was included for each of the three conditions (sentence,

math, and logic), modelling the 16s duration when the pair of statements was visible. A separate

predictor was entered to model the 5s rest period between trials. For further details see Liu et

al., (2020). The group contrast of sentence>math (p<0.05, FWER cluster-corrected) was used

to define the language-responsive lateral temporal cortex (LT) ROI search space, and the

individual sentence>math contrasts were used to select language-responsive fROIs within the

LT ROI search space. On the other hand, the group contrast of logic>sentence (p<0.05, FWER

10

cluster-corrected) was used to define the intraparietal sulcus (IPS) and the lateral prefrontal

cortex (PFC) ROI search spaces.

For the coding experiment GLM, each condition (5 in total: 2 variants of FOR functions, 2

variants of IF functions, and scrambled fake function) were entered as a separate predictor to

model the duration of function presentation (24sec). The individual real>fake function contrasts

were used to select code-responsive fROIs within the IPS and the PFC ROI search spaces.

To generate the IPS, PFC (based on group logic>sentence contrast), and the LT (based on

group sentence>math contrast) search-space masks, we combined the cortical parcels in the

400-parcel map reported by Schaefer et al.(2018) which included vertices activated in the

contrast of interest. To define the OCC search space, we combined the peri-calcarine parcels

from Schaefer et al.(2018) to form a search space covering the medial occipital primary visual

cortex.

Within each ROI search spaces, we defined the fROI for each individual. Language-responsive

individual subject fROIs were defined as vertices showing the strongest fixed-effect for the

sentence>math contrast in the LT search space. For MVPA decoding, we selected the top 500

sentence>math vertices in LT. For percent signal change (PSC) analysis in LT, we selected the

top 5% sentence>math vertices (Kanjlia et al., 2016; Kim, Kanjlia, Merabet, & Bedny, 2017).

Specifically, within the LT search space, vertices with negative z-statistics in the sentence>math

contrast were excluded, and the top 5% of vertices were selected from the subset of vertices

with positive z-statistics (i.e., those preferring sentence over math). In the IPS and, PFC,

individual code-responsive fROIs were defined in a similar fashion, but based on the real>fake

function contrast from the code comprehension experiment. The average number of selected

vertices are 130 in the LT, 70 in the IPS, and 101 in the PFC. For MVPA decoding, for each

participant within each search space, we selected the top 500 vertices based on the fixed-effect

real>fake function contrast. For the percent signal change (PSC) analysis in IPS and PFC, we

used a leave-one-run-out approach (Glezer & Riesenhuber, 2013; Kriegeskorte, Simmons,

Bellgowan, & Baker, 2009), taking data from 5 out of the 6 runs to select the top 5% of code-

responsive vertices within a search space, and extracted the PSC time course from the held out

run. For each participant, this process was repeated for all 6 runs and the results were averaged

across folds. In the PSC analysis, for the code-responsive fROIs, the leave-one-run-out

approach was adopted to avoid circular analysis where we extract neural responses during

code reading from the fROIs defined by the responses during code reading. However, for the

language-responsive fROIs, because we extracted the neural responses during code reading

from the fROIs defined by an orthogonal localizer contrast, leave-one-run-out approach was

neither necessary nor preferable.

ROI-based MVPA

In this analysis, we investigated the neural representations of algorithms in four ROIs: language-

responsive LT; the code-responsive IPS and the PFC; and the control region OCC, which was

not expected to encode information relevant to programming algorithms.

In this analysis, we used the same configuration for the SVM classifier, training data, and

normalization scheme, and leave-one-run-out cross-validation as in the searchlight MVPA.

11

To determine whether decoding across IF vs. FOR functions was driven by the presence of

different “lexical” items such as the word “for”, or rather by the compositional structure of

programming functions, we trained and tested the same SVM classifier on scrambled fake

functions. Recall that each fake function was derived from one real function, where words such

as “for” or “if” were retained. As a result, fake functions can be divided into “for” fake functions

and “if” fake functions. Except for the training and testing data, the procedures for fake function

decoding was the same as real function decoding. Because participants saw four times as many

real functions as fake functions, we conducted a separate control decoding analysis, where we

trained the same SVM classifier on only a quarter of the real function data.

Percent signal change (PSC) analysis

We examined the time courses of percent signal change (PSC) of the blood-oxygen level

dependent (BOLD) signal to study the dynamics of the neural responses to programming

functions in each fROI. Specifically, we compared the (1) peak-to-trough amplitude, (2) peak time,

and (3) average PSC of the time courses between the language-responsive LT and the code-

responsive IPS and PFC.

PSC was calculated as [(Signal condition - Signal baseline)/Signal baseline], where baseline is

the activity during the inter-trial interval. We extracted PSC from the duration of function

presentation (FOR, IF, or fake), excluding activity related to the derivation of specific output or

response processes. As introduced in the section regarding ROI definition, in the language-

responsive LT, for each participant and each run, we extracted PSC from the top 5% of active

vertices in the fixed-effect sentence>math contrast. The 6 resultant PSC curves were then

averaged. In the IPS and PFC, we used a leave-one-run-out approach to select the top 5% of

active vertices in the fixed-effect real>fake function contrast, and extract the PSC using the left-

out run. This was repeated across a 6 runs, and the 6 resultant PSC curves were then averaged.

Since IPS and PFC showed similar time courses, they were averaged together. Therefore, the

extraction resulted in one PSC time course per condition (FOR, IF, and fake) per participant, in

either the language-responsive LT or the code-responsive lateral fronto-parietal network

(IPS&PFC). The peak-to-trough amplitude was defined as the difference between the maximum

and minimum value of a time course. The peak time was the time point when the maximum value

happened. The average PSC of the time courses was computed by averaging the middle 14s of

the time course (that is, the beginning and the last 5 seconds were not considered). Paired t-tests

were conducted to compare these variables of interest.

12

Results

MVPA decoding of FOR and IF functions in language-responsive

lateral temporal cortex

In whole-cortex searchlight analysis, we found reliable above-chance decoding of FOR and IF

functions in a left lateralized fronto-temporal network, with the highest accuracy in the lateral

superior temporal (BA 22, 39) and temporo-parietal cortices (the angular and the supramarginal

gyri, BA 40). Smaller clusters were also found in left prefrontal cortex, left intraparietal sulcus and

right temporo-parietal cortices (Figure 2).

Next, we used individual-subject ROI analysis to test whether in individual participants, language-

responsive lateral temporal cortices contain neural populations that distinguish between IF vs.

FOR Python functions. Lateral temporal ROIs chosen in individual participants for their language

selectivity in the localizer scan (sentence>math) showed above chance classification of FOR and

IF code functions (LT accuracy = 66.9%, Wilcoxon signed rank test against chance: z=-3.41,

p<0.001). Decoding in language-responsive lateral temporal cortex was as high as decoding in

IPS (accuracy = 67.8%, z=-3.41, p<0.001) and PFC (accuracy = 64.4%, z=-3.41, p<0.001), where

vertices were chosen for their high responses to real over fake code. Wilcoxon signed rank tests

showed that decoding accuracy values in the LT, the IPS, and the PFC, were higher than in an

occipital cortex control region (OCC accuracy = 55.5%, z=-2.54, p<0.05; LT vs OCC: z=-3.10,

p<0.01; IPS vs OCC: z=-3.04, p<0.01; PFC vs OCC: z=-2.56, p<0.05) (Figure 3). In sum, lateral

temporal language-responsive areas showed high decoding accuracy for IF vs. FOR functions.

Decoding in language-responsive LT was as high as or higher than in IPS and PFC areas

identified for their univariate responses to code (Supplementary Figure 1).

One possibility is that language-responsive cortex is sensitive only to the “lexical” items present

in code and not to compositional structure of code functions (e.g., presence of particular key

words, such as “if” and “for”). Alternatively, language areas may be sensitive to the compositional

structure of Python code functions. To distinguish between these possibilities, we conducted the

same decoding using the neural responses to scrambled fake functions. Recall that in our

experiment, each fake function contained all the words and symbols of the corresponding real

function in a scrambled order, line by line. Therefore, like real FOR functions, all fake FOR

functions contained the word “for”. Contrary to the lexical-only hypothesis, we did not find

significantly above-chance decoding accuracy for fake code in language-responsive lateral

temporal cortex, or in any of the other ROIs (LT: accuracy=46.7%, z=-1.15, p=0.24; IPS:

accuracy=46.9%, z=-1.43, p=0.15; PFC: accuracy=49.2%, z=-0.45, p=0.65; OCC:

accuracy=44.4%, z=-1.92, p=0.053). In the language-responsive LT and the code-responsive IPS

and PFC, the decoding accuracy for real functions was significantly higher than for fake functions.

Curiously, this difference was observed in the OCC (LT: z=-3.01, p<0.01; IPS: z=-2.78, p<0.01;

PFC: z=-2.22, p<0.05; OCC: z=-3.04, p<0.01) (Figure 3). To account for the fact that there were

four times as many real as fake functions in the experiment, we repeated the decoding analysis

on one quarter of the real code data. For real code, decoding in the language-responsive lateral

13

temporal cortex, the IPS, and the PFC remained significantly above chance (LT: accuracy=65.8%,

z=-3.08, p<0.01; IPS: accuracy=58.6%, z=-3.06, p<0.01; PFC: accuracy=60.3%, z=-2.93 p<0.01).

In the LT and the IPS, the difference between the decoding accuracy for a quarter of real functions

and for fake functions remained significant (LT: z=-3.01, p<0.01; IPS: z=-2.13, p<0.05) and

marginally significant in the PFC (z=-1.88, p=0.06). In the OCC, neither the decoding accuracy

for a quarter of real function or the difference between a quarter of real function and fake function

reached significance (OCC: accuracy=51.1%, z=-0.25, p=0.80; difference with fake function

decoding z=-1.61, p=11) (Supplementary Figure 1). This result suggests that multivariate patterns

in language-responsive lateral temporal cortex (or IPS and PFC) cannot be explained by the

lexical meanings of the particular words used in the functions but is related at least in part to the

compositional structure of code.

Language vertices had weaker but earlier univariate responses to

programming functions

In a sensitive individual-subject ROI analysis focusing on the top 5% of language responsive

vertices in lateral temporal cortex (language>math), we observed a small but significant response

to real over fake code in language-responsive LT (real functions: 0.095%, SD=0.26%; fake

functions: -0.028%, SD=0.27%; t(14)=2.87, p<0.05). Consistent with previously reported whole-

cortex results (Liu et al., 2020), univariate responses to Python code in LT were much smaller

than in fronto-parietal cortices IPS&PFC (real functions: 0.65%, SD=0.27%; fake functions:

0.023%, SD=0.22%; real vs. fake t(14)=9.52, p<0.001), both compared to the memory control

condition and compared to rest (FOR: mean PSC difference = 0.42% in the LT, SD=0.14%; mean

= 1.1% in the IPS&PFC, SD=0.41%; paired t-test between ROIs t(14) = -6.10, p<0.001. IF: mean

PSC difference = 0.53% in the LT, SD=0.20%; mean = 1.24% in the IPS&PFC, SD=0.42%; t(14)

= -6.22, p<0.001).

Based on the hypothesis that language regions are involved in the representation of the initial

“gist” of programming functions, we predicted that the neural response to programming functions

should peak earlier in language-responsive lateral temporal cortex than in the fronto-parietal

reasoning network (IPS and PFC). Consistent with this hypothesis, we observed significantly

earlier signal peaks in language-responsive LT than the code-responsive fronto-parietal network

(FOR: mean peak time = 8.87s in the LT, SD=6.39s; mean = 15s in the IPS&PFC, SD=3.72s;

t(14)=-4.77, p<0.001. IF: mean peak time = 11.67s in the LT, SD=6.14s; mean = 15.93s in the

IPS&PFC, SD=3.99s; t(14)=-4.07, p<0.005.) This result supports the hypothesis that language

areas are involved in code comprehension than fronto-parietal systems (Figure 4). Separately

comparing LT with IPS and with PFC led to the same results. The responses in either the IPS or

the PFC were stronger and faster than in the LT (Supplementary Figure 2).

Discussion

We find that language-responsive lateral temporal cortices are sensitive to the contents of the

programming functions. Linear classifier trained on activity patterns in the language network can

14

distinguish between FOR loops and IF conditional functions. Indeed, decoding accuracy in

language-responsive lateral temporal cortex was as high as or higher than anywhere else on the

cortical surface, including fronto-parietal networks that show strong univariate responses to code.

This decoding result is consistent with a recent report by Srikant et al. (2022), which found above-

chance decoding accuracy of control structures (FOR, IF, or a sequential script with neither FOR

or IF) and data types in both the fronto-temporal language network and the fronto-parietal

reasoning network. Interestingly, high decoding is found in the language network despite relatively

low univariate activation to Python code in language areas.

The current results also suggest that language regions, as well as the fronto-parietal network, are

sensitive to the compositional structure of code. Decoding in language regions is not likely to be

driven solely by the presence of different lexical items across different Python functions since the

scrambled “fake” control functions contained the same lexical items as individual real Python

functions but did not show above chance decoding in language-responsive lateral temporal cortex

(or in the IPS and PFC).

One caveat to our conclusion is that differences between decoding for real and fake might be

partly driven by task demands, and not only the stimuli themselves. For the Python code,

participants read for meaning, but for fake functions, they performed memorization. However,

even in the memory control task, participants needed to attend to individual lexical items in the

fake functions to correctly perform the task, making it unlikely that they were ignoring the lexical

items. It is also possible that the unstructured nature of fake code stimuli contributed to the

disengagement of the language network. That is, when the lexical items in a programming

function are scrambled to disrupt the structure, they don’t engage the language network as an

actual function does. Base on the current data alone, we cannot rule out the possibility that lower

decoding accuracy for fake as compared to real code is related in part to different task demands

across these conditions or the greater variability of the position of the words in the fake functions.

Prior studies provide further evidence for the idea that language regions are not highly sensitive

to lexical information in code (Srikant et al., (2022). Srikant et al. (2022) failed to decode between

functions that contained variables in English (e.g., the variable holding the mean of two values

was named “mean”) as opposed to functions that contained the same variables named in

Japanese spelled out with English alphabet (e.g., the variable holding the mean was named

“heikin”, which means “mean” in Japanese). Together, these findings suggested that the lateral

temporal language areas (and fronto-parietal areas) are sensitive to the composition content of

code functions, beyond the lexical items in a Python function.

Support for the idea that the language network plays some role in code comprehension comes

from previous evidence of co-lateralization. In a previous publication on the same dataset, we

found that fronto-parietal responses to Python code are left-lateralized and importantly co-

lateralized with the language network across individuals (Liu et al., 2020). Notably, since the

current results come from the same dataset as that prior analysis, it will be important to replicate

these findings in a new set of participants. That is, participants who have highly left lateralized

responses to language in fronto-temporal language regions are also more likely to have highly

15

left-lateralized responses to Python code in fronto-parietal networks. Together these data

suggested that the language system does contribute to code comprehension.

Possible computational contributions of language network to code

comprehension

We propose that during the comprehension of computer programs, information flows from visual

cortex to the perisylvian language system, which initially constructs a language-like surface-level

representation of the programming script. Then, the surface-level representation is transmitted to

the logical reasoning system, where the algorithm is processed. This hypothesis is consistent

with presence of multivariate information about programs in language areas and is supported by

evidence for an earlier peak response to programs in language areas, relative to the fronto-

parietal network.

According to this proposal, the “surface” representation of the language system describes the

program in a non-computable format. By contrast, the fronto-parietal system actually simulates

the program’s execution, mapping between inputs and outputs, and changing the states of the

variables throughout the execution of the program. When a input is provided, the fronto-parietal

systems simulate the program to generate the output (Bunge, Kahn, Wallis, Miller, & Wagner,

2003; Crittenden, Mitchell, & Duncan, 2016; Pischedda, Görgen, Haynes, & Reverberi, 2017;

Woolgar, Jackson, & Duncan, 2016; Woolgar, Thompson, Bor, & Duncan, 2011; Zhang,

Kriegeskorte, Carlin, & Rowe, 2013). This interpretation of the fronto-parietal system’s role is

consistent with another finding reported by Srikant et al.(2022), where the fronto-parietal network

encodes the “run-time behavior” of a program (e.g., the number of actual steps taken by the

computer to execute the program) better than the language network.

Many questions remain regarding the precise role of the language network in code

comprehension. Here, we discuss two possibilities, a “weak” recycling and a “strong” recycling

hypothesis. According to the weak recycling idea, during code comprehension, the language

network represents a natural language description of the algorithm represented in programming

code, something like what a programmer writes in the comments section of programming script.

Since humans are more familiar with natural than artificially designed programming languages, it

is possible that a natural language description facilitates program comprehension. We call this a

“weak” recycling hypothesis because the language network continues to perform its typical

linguistic operations. Similar to using the language system to solve memorization-based math

problems (6 times 6 is 36) (Maruyama, Pallier, Jobert, Sigman, & Dehaene, 2012).

Consistent with the weak recycling possibility, it appears to be easy for many programmers to

generate language descriptions of their mental processes during coding. “Verbal protocols” are

often used to study the cognitive basis of code processing (Hungerford, Hevner, & Collins, 2004;

Lethbridge, Sim, & Singer, 2005; Letovsky, 1987; Letovsky & Soloway, 1986; Littman, Pinto,

Letovsky, & Soloway, 1987; Pennington, 1987; Sharpe, 1997; von Mayrhauser & Vans, 1994). In

such studies, programmers are instructed to “think aloud” during a code comprehension task and

the linguistic utterances are analyzed to gain insight into how a programmer’s understanding of a

script evolves through time. For example, while reading an unfamiliar script, programmers may

16

begin by asking questions prompting closer inspection of other programming elements (e.g.,

“What does this other function ‘SRCH’ do?”, “Why are there 7 elements in the array ‘DBASE’?”),

in a later stage, programmers’ utterances may become more affirmative, indicating a better

understanding of the program (e.g., “So you access records by name in the data base.”, “Because

they have that marker in there to determine if it’s deleted.”) (examples from (Letovsky, 1987)).

One hypothesis is that such verbalization occurs covertly, even when there is no motor speech

output. If such verbalizations are specific enough, they would account for distinctive neural

patterns in the language network for different programming functions.

As opposed to the weak recycling view, the alternative “strong recycling” hypothesis is that the

language network supports the representations of hierarchical “syntactic trees” of computer

programs. On the strong recycling view, the language system’s capacity for representing

hierarchical structures is “repurposed” to represent the structures found in computer code (Fitch

et al., 2005; Friederici, Rueschemeyer, Hahne, & Fiebach, 2003; Humphries, Binder, Medler, &

Liebenthal, 2006; Pallier, Devauchelle, & Dehaene, 2011). We call this view “strong recycling”

because it would require modifying representations in the fronto-temporal language network to

accommodate encoding the types of “trees” found in computer code. Such repurposing may even

involve sub-specialization of some subset of the language network for representing programming

code, akin to the development of the visual word form area (VWFA) in the ventral stream during

literacy acquisition (Dehaene-Lambertz, Monzalvo, & Dehaene, 2018; Dehaene, Cohen, Morais,

& Kolinsky, 2015; Dehaene, Le Clec'H, Poline, Le Bihan, & Cohen, 2002; Dehaene et al., 2010;

McCandliss, Cohen, & Dehaene, 2003; Szwed, Vinckier, Cohen, & Dehaene, 2012). Potentially

consistent with the idea that the language network represents the hierarchical trees of computer

code, Srikant et al. (2022) found that the language network is sensitive to the number of nodes in

the abstract syntactic tree of a program. However, it is also likely that more complex programs

require more complex linguistic descriptions, so this data is also consistent with the weak

recycling view.

At present, we favor the “weak” recycling view for several reasons. Given the similarity of natural

languages to each other and their collective difference from programming languages, it seems

likely that the language system is particularly suited for representing not just any “hierarchical tree”

but specifically the types of trees that are found in natural languages. Even if the language network

were capable of sufficient plasticity to accommodate trees found in computer code, coding is

acquired well past the critical period of language acquisition. These considerations lead us to

favor the “weak” recycling hypothesis, perhaps better termed the “reuse” for the relationship of

language and code.

It is also worth noting that prior evidence suggests that other hierarchical cultural symbol systems

such as formal logic, mathematics and music do not “recycle” the language network but instead

rely on fronto-parietal circuits (Dehaene et al., 2022; Fedorenko & Varley, 2016; Monti, 2017;

Monti et al., 2009, 2012). However, most of these studies used univariate approaches. It would

be interesting to ask whether the contents of math and formal logic expressions could be decoded

in language networks, despite low univariate response. If so, it might suggest that reuse of the

language network is a wide-spread phenomenon across symbol systems.

17

Open questions and future directions

Many open questions remain regarding the role of the language system in code comprehension.

One is whether the involvement of the language system generalizes to programming languages

that are less language-like than Python, the programming language studied here. Specifically,

does the language system represent program-relevant information only when the code is

language-like? In the current study and Srikant et al. (2022), the programming language

presented to participants was Python, which is among the more language-like high-level

programming languages, in comparison with other major programming languages like C++ or

Java. It is not known whether the language network encodes code-relevant information when the

“code” does not consist of linguistic symbols.

A study by Ivanova et al. (2020) presented participants with ScratchJr programs in addition to

Python programs. ScratchJr is a child-oriented graphic-based programming “language”, where a

program is “written” in a series of interlocked tiles containing icons and numbers. Whereas

Ivanova et al. (2020) reported a slight preference for Python programs over lists of non-words in

the language network, such an effect was not observed with ScratchJr “programs”. However,

Ivanova et al. (2020) did not test for multivariate decoding of ScratchJr programs in language

regions. ScratchJr provides an interesting test-case to be used in future studies.

Another open question concerns the neural flow of information during program comprehension,

akin to what has been processed for comprehension of natural languages (Price, 2010, 2012).

Based on our findings, we propose that during comprehension of programs, information flows

from visual regions to language circuits followed by fronto-parietal reasoning systems, with

feedback from later to earlier regions throughout the process. However, it warrants further

investigation whether the language system is behaviorally necessary, or merely active during

code comprehension. It is possible that the logical reasoning system alone is sufficient to parse

a program and construct the representations of the actual algorithms, whereas the surface-level

representation constructed by the language network only facilitates the comprehension process.

The necessity of the language network can be studied by conducting code comprehension

experiments while inhibiting the language system using transcranial magnetic stimulation (TMS),

or overloading the language system with verbal shadowing task, or with aphasic programmers.

Moving forward, as we delve deeper into understanding the role of the language system in code

comprehension, it becomes evident that future investigations will not only illuminate the

necessity of this system but also provide valuable insights into the mental processes involved in

programming. Furthermore, these inquiries will help us unravel the intricate relationship

between language and abstract symbolic reasoning, ultimately shedding light on the intriguing

concept of neural recycling.

18

Reference

Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under
distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150-157.

Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits
subserving the retrieval and maintenance of abstract rules. Journal of neurophysiology,
90(5), 3419-3428.

Bush, G., & Shin, L. M. (2006). The Multi-Source Interference Task: an fMRI task that reliably
activates the cingulo-frontal-parietal cognitive/attention network. Nature Protocols, 1, 308.
doi:10.1038/nprot.2006.48

Castelhano, J., Duarte, I. C., Ferreira, C., Duraes, J., Madeira, H., & Castelo-Branco, M. (2018).
The role of the insula in intuitive expert bug detection in computer code: an fMRI study.
Brain imaging and behavior. doi:10.1007/s11682-018-9885-1

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3), 1-27.
doi:https://doi.org/10.1145/1961189.1961199

Crittenden, B., Mitchell, D., & Duncan, J. (2016). Task Encoding across the Multiple Demand
Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks
Distinction. The Journal of Neuroscience, 36(23), 6147-6155. doi:10.1523/jneurosci.4590-
15.2016

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation
and surface reconstruction. NeuroImage, 9(2), 179-194.
doi:https://doi.org/10.1006/nimg.1998.0395

Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word
form: Longitudinal evolution of category-specific ventral visual areas during reading
acquisition. PLOS Biology, 16(3), e2004103. doi:10.1371/journal.pbio.2004103

Dehaene, S., Al Roumi, F., Lakretz, Y., Planton, S., & Sablé-Meyer, M. (2022). Symbols and
mental programs: a hypothesis about human singularity. Trends in Cognitive Sciences.
doi:https://doi.org/10.1016/j.tics.2022.06.010

Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: behavioural and
cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4),
234-244. doi:10.1038/nrn3924

Dehaene, S., Le Clec'H, G., Poline, J.-B., Le Bihan, D., & Cohen, L. (2002). The visual word form
area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13(3),
321-325. doi:https://doi.org/10.1097/00001756-200203040-00015

Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., . . . Cohen, L. (2010).
How Learning to Read Changes the Cortical Networks for Vision and Language. Science,
330(6009), 1359-1364. doi:https://doi.org/10.1126/science.1194140

Eklund, A., Knutsson, H., & Nichols, T. E. (2019). Cluster failure revisited: Impact of first level
design and physiological noise on cluster false positive rates. Human Brain Mapping,
40(7), 2017-2032. doi:https://doi.org/10.1002/hbm.24350

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial
extent have inflated false-positive rates. Proceedings of the National Academy of
Sciences, 113(28), 7900-7905. doi:https://doi.org/10.1073/pnas.1602413113

Elli, G. V., Lane, C., & Bedny, M. (2019). A Double Dissociation in Sensitivity to Verb and Noun
Semantics Across Cortical Networks. Cerebral Cortex.
doi:https://doi.org/10.1093/cercor/bhz014

Emrich, S. M., Riggall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of
activity in sensory cortex reflect the precision of multiple items maintained in visual short-
term memory. Journal of Neuroscience, 33(15), 6516-6523.

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1016/j.tics.2022.06.010
https://doi.org/10.1097/00001756-200203040-00015
https://doi.org/10.1126/science.1194140
https://doi.org/10.1002/hbm.24350
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1093/cercor/bhz014

19

Ester, E. F., Serences, J. T., & Awh, E. (2009). Spatially global representations in human primary
visual cortex during working memory maintenance. Journal of Neuroscience, 29(48),
15258-15265.

Etzel, J. A., Valchev, N., & Keysers, C. (2011). The impact of certain methodological choices on
multivariate analysis of fMRI data with support vector machines. NeuroImage, 54(2), 1159-
1167.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The language of programming: a
cognitive perspective. Trends in Cognitive Sciences.
doi:https://doi.org/10.1016/j.tics.2019.04.010

Fedorenko, E., & Varley, R. (2016). Language and thought are not the same thing: evidence from
neuroimaging and neurological patients. Annals of the New York Academy of Sciences,
1369(1), 132-153. doi:https://doi.org/10.1111/nyas.13046

Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty:
clarifications and implications. Cognition, 97(2), 179-210.

Floyd, B., Santander, T., & Weimer, W. (2017). Decoding the representation of code in the brain:
An fMRI study of code review and expertise. Paper presented at the Proceedings of the
39th International Conference on Software Engineering.

Friederici, A., Chomsky, N., Berwick, R., Moro, A., & Bolhuis, J. (2017). Language, mind and
brain. Nature human behaviour, 1(10), 713-722.

Friederici, A., Rueschemeyer, S.-A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior
frontal and superior temporal cortex in sentence comprehension: localizing syntactic and
semantic processes. Cerebral Cortex, 13(2), 170-177.
doi:https://doi.org/10.1093/cercor/13.2.170

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., . . .
Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome
Project. NeuroImage, 80, 105-124. doi:https://doi.org/10.1016/j.neuroimage.2013.04.127

Glezer, L. S., & Riesenhuber, M. (2013). Individual variability in location impacts orthographic
selectivity in the “visual word form area”. Journal of Neuroscience, 33(27), 11221-11226.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in
early visual areas. Nature, 458(7238), 632-635.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The Faculty of Language: What Is It, Who
Has It, and How Did It Evolve? Science, 298(5598), 1569-1579.
doi:10.1126/science.298.5598.1569

Humphries, C., Binder, J., Medler, D., & Liebenthal, E. (2006). Syntactic and semantic modulation
of neural activity during auditory sentence comprehension. Cognitive Neuroscience,
Journal of, 18(4), 665-679.

Hungerford, B. C., Hevner, A. R., & Collins, R. W. (2004). Reviewing software diagrams: A
cognitive study. IEEE Transactions on Software Engineering, 30(2), 82-96.

Ikutani, Y., Kubo, T., Nishida, S., Hata, H., Matsumoto, K., Ikeda, K., & Nishimoto, S. (2021).
Expert Programmers Have Fine-Tuned Cortical Representations of Source Code. eneuro,
8(1), ENEURO.0405-0420.2020. doi:10.1523/ENEURO.0405-20.2020

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O'Reilly, U.-M., . . . Fedorenko,
E. (2020). Comprehension of computer code relies primarily on domain-general executive
brain regions. eLife, 9, e58906. doi:10.7554/eLife.58906

Kanjlia, S., Lane, C., Feigenson, L., & Bedny, M. (2016). Absence of visual experience modifies
the neural basis of numerical thinking. Proceedings of the National Academy of Sciences,
113(40), 11172-11177.

Kim, J. S., Kanjlia, S., Merabet, L. B., & Bedny, M. (2017). Development of the visual word form
area requires visual experience: Evidence from blind Braille readers. Journal of
Neuroscience, 37(47), 11495-11504. doi:https://doi.org/10.1523/jneurosci.0997-17.2017

https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.1111/nyas.13046
https://doi.org/10.1093/cercor/13.2.170
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1523/jneurosci.0997-17.2017

20

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping.
Proceedings of the National Academy of Sciences of the United States of America,
103(10), 3863-3868. doi:https://doi.org/10.1073/pnas.0600244103

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in
systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535-
540.

Krueger, R., Huang, Y., Liu, X., Santander, T., Weimer, W., & Leach, K. (2020). Neurological
Divide: An fMRI Study of Prose and Code Writing. Paper presented at the 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE).

Lee, S., & Kable, J. W. (2018). Simple but robust improvement in multivoxel pattern classification.
PLoS ONE, 13(11), e0207083.

Lethbridge, T. C., Sim, S. E., & Singer, J. (2005). Studying software engineers: Data collection
techniques for software field studies. Empirical Software Engineering, 10, 311-341.

Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of Systems and
Software, 7(4), 325-339. doi:https://doi.org/10.1016/0164-1212(87)90032-X

Letovsky, S., & Soloway, E. (1986). Delocalized plans and program comprehension. IEEE
software, 3(3), 41.

Littman, D. C., Pinto, J., Letovsky, S., & Soloway, E. (1987). Mental models and software
maintenance. Journal of Systems and Software, 7(4), 341-355.
doi:https://doi.org/10.1016/0164-1212(87)90033-1

Liu, Y.-F., Kim, J., Wilson, C., & Bedny, M. (2020). Computer code comprehension shares neural
resources with formal logical inference in the fronto-parietal network. eLife, 9, e59340.

Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical
representation of simple mathematical expressions. NeuroImage, 61(4), 1444-1460.
doi:https://doi.org/10.1016/j.neuroimage.2012.04.020

McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for
reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293-299.
doi:https://doi.org/10.1016/S1364-6613(03)00134-7

McCoy, L. P., & Burton, J. K. (1988). The relationship of computer programming and mathematics
in secondary students.

Monti, M. (2017). The role of language in structure-dependent cognition Neural mechanisms of
language (pp. 81-101): Springer.

Monti, M., & Osherson, D. (2012). Logic, language and the brain. Brain Research, 1428, 33-42.
doi:https://doi.org/10.1016/j.brainres.2011.05.061

Monti, M., Parsons, L., & Osherson, D. (2009). The boundaries of language and thought in
deductive inference. Proceedings of the National Academy of Sciences, 106(30), 12554-
12559.

Monti, M., Parsons, L., & Osherson, D. (2012). Thought beyond language: neural dissociation of
algebra and natural language. Psychological Science, 23(8), 914-922.
doi:10.1177/0956797612437427

Mumford, J. A., Davis, T., & Poldrack, R. A. (2014). The impact of study design on pattern
estimation for single-trial multivariate pattern analysis. NeuroImage, 103, 130-138.

Musz, E., Loiotile, R., Chen, J., & Bedny, M. (2022). Naturalistic Audio-Movies reveal common
spatial organization across “visual” cortices of different blind individuals. Cerebral Cortex,
bhac048. doi:10.1093/cercor/bhac048

Nieto-Castañón, A., & Fedorenko, E. (2012). Subject-specific functional localizers increase
sensitivity and functional resolution of multi-subject analyses. NeuroImage, 63(3), 1646-
1669.

Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent
structure of sentences. Proceedings of the National Academy of Sciences.
doi:10.1073/pnas.1018711108

https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1016/0164-1212(87)90033-1
https://doi.org/10.1016/j.neuroimage.2012.04.020
https://doi.org/10.1016/S1364-6613(03)00134-7
https://doi.org/10.1016/j.brainres.2011.05.061

21

Pandža, N. B. (2016). Computer programming as a second language Advances in Human Factors
in Cybersecurity (pp. 439-445): Springer, Cham.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming.
New ideas in psychology, 2(2), 137-168.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Dubourg, V.
(2011). Scikit-learn: Machine learning in Python. Journal of machine Learning research,
12(Oct), 2825-2830. doi:https://dl.acm.org/doi/10.5555/1953048.2078195

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., . . . Lindeløv, J.
K. (2019). PsychoPy2: Experiments in behavior made easy. Behav Res Methods, 51(1),
195-203. doi:10.3758/s13428-018-01193-y

Peitek, N., Siegmund, J., Apel, S., Kästner, C., Parnin, C., Bethmann, A., . . . Brechmann, A.
(2018). A look into programmers' heads. IEEE Transactions on Software Engineering, 1-
1. doi:10.1109/TSE.2018.2863303

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension
of computer programs. Cognitive Psychology, 19(3), 295-341.
doi:https://doi.org/10.1016/0010-0285(87)90007-7

Pischedda, D., Görgen, K., Haynes, J.-D., & Reverberi, C. (2017). Neural Representations of
Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the
Hierarchical Level to Which They Belong. The Journal of Neuroscience, 37(50), 12281-
12296. doi:10.1523/jneurosci.3088-16.2017

Portnoff, S. R. (2018). The introductory computer programming course is first and foremost a
language course. ACM Inroads, 9(2), 34-52.

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C.-H. (2020). Relating natural language
aptitude to individual differences in learning programming languages. Scientific reports,
10(1), 3817. doi:10.1038/s41598-020-60661-8

Price, C. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009.
Annals of the New York Academy of Sciences, 1191(1), 62-88.
doi:https://doi.org/10.1111/j.1749-6632.2010.05444.x

Price, C. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard
speech, spoken language and reading. NeuroImage, 62(2), 816-847.

Regev, M., Honey, C., Simony, E., & Hasson, U. (2013). Selective and Invariant Neural
Responses to Spoken and Written Narratives. Journal of Neuroscience, 33(40), 15978-
15988. doi:10.1523/jneurosci.1580-13.2013

Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and
elevated activity as measured with functional magnetic resonance imaging. Journal of
Neuroscience, 32(38), 12990-12998.

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., . . . Yeo, B. T.
T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional
connectivity MRI. Cerebral Cortex, 28(9), 3095-3114. doi:10.1093/cercor/bhx179

Schreiber, K., & Krekelberg, B. (2013). The Statistical Analysis of Multi-Voxel Patterns in
Functional Imaging. PLoS ONE, 8(7), e69328.
doi:https://doi.org/10.1371/journal.pone.0069328

Sharpe, S. (1997). Unifying Theories of Program Comprehension. Journal of Computer
Information Systems, 38(1), 86-93. doi:10.1080/08874417.1997.11647312

Shute, V. J. (1991). Who is Likely to Acquire Programming Skills? Journal of Educational
Computing Research, 7(1), 1-24. doi:10.2190/VQJD-T1YD-5WVB-RYPJ

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., . . . Brechmann, A.
(2014). Understanding understanding source code with functional magnetic resonance
imaging. Paper presented at the Proceedings of the 36th International Conference on
Software Engineering.

https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1111/j.1749-6632.2010.05444.x
https://doi.org/10.1371/journal.pone.0069328

22

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg,
H., . . . Flitney, D. E. (2004). Advances in functional and structural MR image analysis and
implementation as FSL. NeuroImage, 23, S208-S219.
doi:https://doi.org/10.1016/j.neuroimage.2004.07.051

Srikant, S., Lipkin, B., Ivanova, A. A., Fedorenko, E., & O’Reilly, U.-M. (2022). Convergent
Representations of Computer Programs in Human and Artificial Neural Networks. Paper
presented at the 36th Conference on Neural Information Processing Systems.

Stehr, D. A., Garcia, J. O., Pyles, J. A., & Grossman, E. D. (2023). Optimizing multivariate pattern
classification in rapid event-related designs. Journal of neuroscience methods, 387,
109808.

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in
classification-based multi-voxel pattern analysis (MVPA): Random permutations and
cluster size control. NeuroImage, 65, 69-82.
doi:https://doi.org/10.1016/j.neuroimage.2012.09.063

Su, L., Fonteneau, E., Marslen-Wilson, W., & Kriegeskorte, N. (2012, 2-4 July 2012).
Spatiotemporal Searchlight Representational Similarity Analysis in EMEG Source Space.
Paper presented at the 2012 Second International Workshop on Pattern Recognition in
NeuroImaging.

Szwed, M., Vinckier, F., Cohen, L., & Dehaene, S. (2012). Towards a universal neurobiological
architecture for learning to read. Behavioral and Brain Sciences, 35(5), 308-309.

Valente, G., Castellanos, A. L., Hausfeld, L., De Martino, F., & Formisano, E. (2021). Cross-
validation and permutations in MVPA: Validity of permutation strategies and power of
cross-validation schemes. NeuroImage, 238, 118145.

von Mayrhauser, A., & Vans, A. M. (1994). Comprehension processes during large scale
maintenance. Paper presented at the Proceedings of 16th International Conference on
Software Engineering.

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation
inference for the general linear model. NeuroImage, 92(100), 381-397.
doi:https://doi.org/10.1016/j.neuroimage.2014.01.060

Woolgar, A., Jackson, J., & Duncan, J. (2016). Coding of Visual, Auditory, Rule, and Response
Information in the Brain: 10 Years of Multivoxel Pattern Analysis. Journal of Cognitive
Neuroscience, 28(10), 1433-1454. doi:10.1162/jocn_a_00981

Woolgar, A., Thompson, R., Bor, D., & Duncan, J. (2011). Multi-voxel coding of stimuli, rules, and
responses in human frontoparietal cortex. NeuroImage, 56(2), 744-752.
doi:https://doi.org/10.1016/j.neuroimage.2010.04.035

Xu, S., Li, Y., & Liu, J. (2021). The Neural Correlates of Computational Thinking: Collaboration of
Distinct Cognitive Components Revealed by fMRI. Cerebral Cortex.
doi:10.1093/cercor/bhab182

Yang, C., Crain, S., Berwick, R. C., Chomsky, N., & Bolhuis, J. J. (2017). The growth of language:
Universal Grammar, experience, and principles of computation. Neuroscience &
Biobehavioral Reviews, 81, 103-119.

Zhang, J., Kriegeskorte, N., Carlin, J. D., & Rowe, J. B. (2013). Choosing the rules: distinct and
overlapping frontoparietal representations of task rules for perceptual decisions. The
Journal of Neuroscience, 33(29), 11852-11862. doi:10.1523/jneurosci.5193-12.2013

https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2012.09.063
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1016/j.neuroimage.2010.04.035

23

Table 1. Clusters revealed by the searchlight MVPA decoding. FWER corrected. Only

clusters with more than 50 vertices are included.

 peak MNI coordinates Cluster size
peak-p

 X Y Z vertices mm2

Left hemisphere

Superior temporal sulcus/angular

gyrus/intraparietal sulcus -46.6 -69.2 21.9 3169 5260.58 3.62E-09

Superior frontal sulcus/middle frontal

gyrus/precentral gyrus & sulcus -24.9 16.8 40 979 2022.29 8.55E-09

Precuneus -6.3 -59 32 526 913.58 1.23E-07

Superior frontal gyrus -16.4 18.8 59 395 1026.33 3.27E-08

Inferior frontal gyrus -52.7 14.1 5.1 213 510.77 1.97E-07

Posterior dorsal cingulate gyrus -7.4 -40.8 39.1 121 260.38 1.31E-07

Superior frontal gyrus -13.4 53.1 32.4 89 199.66 2.42E-06

Middle frontal gyrus -45.4 30.6 25.8 86 150.12 3.44E-05

Medial occipto-temporal sulcus -32.6 -48.9 -10.2 74 173.29 4.02E-07

Orbital gyrus -41.2 26.7 -16.1 71 172.65 7.33E-07

Lingual gyrus -3.8 -91.1 -6.8 51 136.47 7.01E-06

Right hemisphere

Intraparietal sulcus/superior temporal

sulcus/angular gyrus 35.5 -54.8 39.8 1036 1954.92 9.23E-08

Superior frontal sulcus 27 13.1 45.5 315 551.61 3.07E-07

Precuneus 5.9 -68.1 47.6 266 504.43 1.52E-06

Middle frontal gyrus/inferior frontal sulcus 47.7 23.4 31.5 193 342.6 4.56E-07

Precuneus 7.3 -54.9 47.1 87 113.06 6.09E-06

Superior frontal gyrus 11.5 54.7 31.8 60 205.07 3.13E-06

Superior frontal gyrus 16.5 38.8 45 57 162.05 6.77E-06

Lingual gyrus 3.1 -79.2 0.2 52 195.12 4.26E-06

24

Supplementary Table 1. In either regions of interest (ROI) in the fronto-parietal

reasoning network (the intraparietal sulcus IPS and the lateral prefrontal cortex PFC),

decoding accuracy is compared between two methods for the definition of the ROI

search space. In our current study, the ROI search spaces were defined using the

logic>sentence contrast. An alternative was to define them based on the real code >

scrambled fake code contrast. However, the decoding accuracy derived from the two

methods are highly correlated and statistically indistinguishable.

 IPS PFC

Logic>sentence contrast 68.9% (SD=7.17%) 64.4% (SD=7.82%)

Real>fake contrast 67.8% (SD=8.24%) 64.8% (SD=7.65%)

Pearson correlation r=0.88, p<0.001 r=0.96, p<0.001

Paired t-test t=1.05, p=0.31 t=-0.75, p=0.47

25

Figure 1. Example stimuli. The top row shows a real FOR function and a real IF function. The

bottom row shows a scrambled (fake) FOR function and a fake IF function. Each fake function

was created by scrambling the words and symbols in each line of the corresponding real function.

During the experiment, all stimuli were presented on a black background. Real functions were

presented in a white font, and fake functions were presented in a yellow font as a visual reminder

to prevent participants from temporarily thinking the fake functions were real functions. For an

illustration for the experiment design, please refer to Liu et al. (2020).

26

Figure 2. Searchlight multivariate pattern analysis (MVPA) FOR-vs-IF Python function decoding

accuracy map. Family-wise error rate (FWER) was controlled by applying cluster-based

permutation correction, with a vertex-wise cluster-forming threshold of uncorrected p<0.001,

and a cluster-wise threshold of p<0.05. The blue outlines denote the language-responsive

network defined based on the sentence>math group contrast derived from the localizer scan,

whereas the green outlines denote the logic-responsive network defined based on the

logic>sentence group contrast. All the vertices shown in this figure have significantly above-

chance accuracy. For the list of clusters which passed the FWER correction, please see Table

1.

27

Figure 3. FOR-vs-IF Python function MVPA decoding accuracy in language-responsive left

lateral temporal cortex (LT), code-responsive left intraparietal sulcus (IPS), code-responsive left

lateral prefrontal cortex (PFC), and left primary visual medial occipital cortex (OCC). The “real”

is the accuracy of decoding if vs. for Python functions. “Fake” is the accuracy of fake/scrambled

function decoding. The search spaces are delineated on the inset brain map. Chance level is

50%. Error bars denote standard error of the decoding accuracy. *p<0.05, **p<0.01, ***p<0.001

28

Figure 4. Percent signal change (PSC) time courses of different conditions, averaged across

participants: FOR (solid line), IF (dashed line), and scrambled fake function (dotted line). Blue

lines: PSC time courses extracted from the top 5% language-responsive vertices in the left

lateral temporal (LT) search space. The search spaces are delineated on the inset brain map.

Yellow lines: PSC time courses extracted from the top 5% code-responsive vertices (using

leave-one-run-out method) in the left intraparietal sulcus (IPS) and the lateral prefrontal cortex

(PFC), averaged across IPS and PFC. Translucent shades denote standard error. The across-

participant average peak time of the responses to FOR and IF functions (Blue: LT, Yellow:

IPS&PFC) are denoted along the X axis.

29

Supplementary Figure 1. FOR-vs-IF Python function MVPA decoding accuracy in the following

regions of interest (ROIs) in the left hemisphere: language-responsive lateral temporal cortex

(LT), code-responsive intraparietal sulcus (IPS), code-responsive lateral prefrontal cortex (PFC),

and primary visual medial occipital cortex (OCC). In each group of bars, the left one (“real”) is

the accuracy of real function decoding, the middle one (“qtr”) is the accuracy we observed when

only a quarter of the real function data were used, and the right one (“fake”) is the accuracy of

fake function decoding. In order not to complicate the figure, the significance of the differences

between “real” and “fake” bars in the LT, the IPS, and the PFC are not denoted in this figure

(this information is included in Figure 3). The search spaces are delineated on the inset brain

map. Chance level is 50%. Error bars denote standard error of the decoding accuracy. *p<0.05,

p<0.01, *p<0.001

30

Supplementary Figure 2: Comparison of percent signal change time courses between (a) the

IPS and the LT (b) the PFC and the LT. IPS: left intraparietal sulcus. PFC: left lateral prefrontal

cortex. LT: left lateral temporal cortex. The figures are identical to Figure 4, except for

“IPS&PFC” being replaced with either IPS or PFC. Responses in the LT was faster than in the

IPS (FOR: mean peak time = 8.87s in the LT, SD=6.39s; mean = 15s in the IPS, SD=3.86s;

t(14)=-4.61, p<0.001. IF: mean peak time = 11.67s in the LT, SD=6.14s; mean = 15.8s in the

IPS, SD=4.37s; t(14)=-3.72, p<0.005). Responses in the LT was also faster than in the PFC

(FOR: mean peak time = 8.87s in the LT, SD=6.39s; mean = 15.26s in the PFC, SD=3.57s;

31

t(14)=-4.82, p<0.001. IF: mean peak time = 11.67s in the LT, SD=6.14s; mean = 15.13s in the

PFC, SD=3.96s; t(14)=-3.45, p<0.005)

	Contribution of the language network to the comprehension of Python programming code
	Abstract
	Does the perisylvian language network contribute to comprehension of programming languages, like Python? Univariate neuroimaging studies find high responses to code in fronto-parietal executive areas but not in fronto-temporal language areas, suggesti...
	Introduction
	Methods
	Participants
	fMRI task design and stimuli
	fMRI data acquisition and preprocessing
	Analysis
	Whole-cortex searchlight multivariate pattern analysis (MVPA)
	ROI definition
	ROI-based MVPA
	Percent signal change (PSC) analysis

	Results
	MVPA decoding of FOR and IF functions in language-responsive lateral temporal cortex
	Language vertices had weaker but earlier univariate responses to programming functions

	Discussion
	Possible computational contributions of language network to code comprehension
	Open questions and future directions

	Reference

