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Elastic particle model for coil-stretch transition
of dilute polymers in an elongational flow
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The phenomenon of the ‘coil-stretch’ (C-S) transition, wherein a long-chain polymer
initially in a coiled state undergoes a sudden configuration change to become fully
stretched under steady elongational flows, has been widely recognized. This transition
can display intricate hysteresis behaviours under specific critical conditions, giving rise
to unique rheological characteristics in dilute polymer solutions. Historically, microscopic
stochastic models and Brownian dynamics simulations have shed light on the underlying
mechanisms of the transition by uncovering bistable configurations of polymer chains.
Following the initial work by Cerf (J. Chem. Phys., vol. 20, 1952, pp. 395–402),
we introduce a continuum model in this study to investigate the C-S transition in a
constant uniaxial elongational flow. Our approach involves approximating the unfolding
process of the polymer chain as an axisymmetric deformation of an elastic particle.
We make the assumption that the particle possesses uniform material properties, which
can be represented by a nonlinear, strain-hardening constitutive equation to replicate
the finite extensibility of the polymer chain. Subsequently, we analytically solve for
the steady-state deformation using a polarization method. By employing this reduced
model, we effectively capture the C-S transition and establish its specific correlations
with material and geometric properties. The hysteresis phenomena can be comprehended
through a force-balance analysis, which involves comparing the externally applied viscous
forces with the intrinsic elastic responsive forces. We demonstrate that our model, while
simple, unveils rich elastohydrodynamics of the C-S transition.
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1. Introduction

Understanding the interactions of polymer molecules and hydrodynamic flows are among
the most fundamental topics in the interdisciplinary research areas of fluid mechanics,
chemical engineering and polymer physics (Lumley 1969; Bird 1987). When subjected to
various flow conditions, polymer molecule may exhibit rich behaviours of morphing chain
configurations as revealed by single molecule visualization techniques (Perkins, Smith
& Chu 1997; Smith, Babcock & Chu 1999), leading to intriguing bulk rheological and
physical properties (Fuller & Leal 1980; Menasveta & Hoagland 1991; Hunkeler, Nguyen
& Kausch 1996; Lee et al. 2007). Of particular interest is the study of the coil-stretch
(C-S) transition of long-chain macromolecules, such as DNAs, in flows of dilute solutions.
When the background flow has a non-zero velocity gradient (e.g. shear and elongational
flows), at certain critical conditions, the coiled polymers can abruptly unwind to become
elongated or fully stretched shapes due to the imposed fluid viscous force, termed as the
C-S transition (Smith & Chu 1998). More interestingly, when measuring the polymer’s
end-to-end distance as a function of the extension rate, the transition typically features
hysteresis behaviours, suggesting a bistable system with more than one equilibrium state.
In the early 1970s, DeGennes (1974) introduced the initial kinetic model of an elastic

dumbbell to predict the hysteresis behaviours observed in elongational flows during the
C-S transition. He attributed these phenomena to the shape-dependent viscous force
acting on the polymer chain. As the DNA unfolds, the initially hidden monomers
become more exposed to hydrodynamic flows. By not explicitly considering fluid–polymer
interactions, de Gennes demonstrated that the hysteresis behaviours can be effectively
described by a double-well potential, which combines the effects of the background
elongational flow and the elastic forces in the dumbbell spring. The same mechanism
was pointed out independently by Hinch (1974, 1977) and was supported by several
other authors (Tanner 1975; Fuller & Leal 1981). Instead of using phenomenological
double-well potentials, they resolved the hysteresis using similar elastic dumbbell
models that incorporated length-dependent hydrodynamic friction forces. Apart from
the hydrodynamic effects, all these models emphasized the importance of employing
nonlinear elastic constitutive laws to account for the finite extensibility of polymer chains
(Peterlin 1961; Larson 1988). Further investigation into various microscopic aspects of
the C-S transition, involving calibrating the effective conformational energy (Schroeder,
Shaqfeh & Chu 2004), determining the threshold of molecular weight (Hsieh & Larson
2005) and studying the characteristic post-extension relaxation time (Doyle et al. 1998) and
ergodicity-breaking mechanisms in model reduction (i.e. from polymer chain to dumbbell,
Beck & Shaqfeh 2007), were extensively explored using Brownian dynamics simulations
based on beads-spring-chain models, which accounted for bead–bead hydrodynamic
interactions.
In a broader context, abrupt configurational transitions have often been observed in

microfluidic systems where various thin elastic structures of much larger sizes than
polymer molecules interact with strong viscous flows. For example, a fluid vesicle
(Kantsler, Segre & Steinberg 2008; Narsimhan, Spann & Shaqfeh 2015; Kumar, Richter
& Schroeder 2020) under extension can exhibit sharp transitions from tubular to dumbbell
shapes. More interestingly, a thin elastic sheet of different shapes in elongational flows
may undergo a ‘compact-stretched’ transition with hysteresis, akin to the C-S transition
of polymer molecules (Silmore, Strano & Swan 2021; Yu & Graham 2021, 2022). As
demonstrated by Yu & Graham (2021, 2022), who performed direct simulation of flexible
sheets in flows, successfully achieving C-S transition at the macro scale requires the
use of finite-extensibility elastic models, such as the Yeoh elastic model (Yeoh 1993).
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Elastic particle model for coil-stretch transition

The intriguing aspect of cross-scale observations of C-S transitions is that they indicate
the existence of specific universal hydrodynamic coupling mechanisms for a class of
problems involving interactions between fluids and elastic structures. These mechanisms
are applicable to small polymer molecules but are independent of the stochastic nature
of the microsystem. In fact, Hinch (1974, 1977) previously suggested the possibility of
connecting the chain unfolding process to the stretching deformation of a homogeneous
ellipsoidal elastic particle (EP), a reduced-order mechanical model for dilute, coiled
polymers and was initially introduced by Cerf (1952) and later extended by Roscoe (1967).
Compared with stochastic kinetic models for elastic dumbbells or bead-spring chains, the
EP model is mathematically simpler and has much fewer degrees of freedom, and naturally
captures the shape-dependent hydrodynamic effects that become increasingly dominant in
strong flows. But the EP model cannot represent polymer chains since it oversimplifies the
intricate heterogenous coiled microstructures, and ignores the stochastic features such as
Brownian forces.
Although the early models (Cerf 1952; Goddard & Miller 1967; Roscoe 1967)

successfully accounted for shape-dependent fluid forces, their simple elastic constitutive
laws (e.g. linear or neo-Hookean elastic model) fail to describe the constitutive relation at
high strains, making them incapable of capturing hysteresis phenomena. Recognizing this
limitation, the natural progression, as also suggested by Hinch (1977), is to incorporate
different nonlinear constitutive laws to mimic polymer chain’s finite extensibility in strong
flows. Continuing along this line of investigation, in this study we present an improved
EP model to investigate the C-S transition of polymer molecules. Despite having been
proposed several decades ago, the precise mathematical formulation of the EP model
incorporating finite extensibility has yet to be thoroughly examined. Here we employ an
analytical approach originally derived by the author (Gao, Hu & Ponte Castañeda 2011,
2012, 2013) to describe EP deformation. The method utilizes the polarization technique
(Eshelby 1957, 1959; Willis 1981) to derive an exact solution for the isolated nonlinear EP
problem under simple Stokes flow conditions (i.e. flows with constant velocity gradients).
To account for finite and large deformation behaviours, we employ the incompressible
Gent hyperelastic model (Gent 1996; Avazmohammadi & Ponte Castañeda 2015), which
captures significant strain hardening at large strains. As demonstrated below, this new
model unveils the elastohydrodynamics of the C-S transition in uniaxial elongational
flows, regulated by finite extensibility, and robustly captures hysteresis phenomena that are
akin to polymer chain behaviours. It is worth emphasizing that the Gent model was chosen
primarily due to its simple two-parameter form, facilitating analytical manipulations. We
have also tested other similar strain-hardening models, such as the Yeoh model (Yeoh
1993), which qualitatively captures similar transition behaviours. Additionally, we can
explain the system’s bistability through a free-body diagram at steady state without relying
on dynamic properties (e.g. relaxation time) of polymer chains. Furthermore, the model
allows for convenient extraction of other analytical features, such as the sharpness of the
transition region, and enables systematic examination of their dependencies on material
and geometric parameters, including stiffness, flow rate and initial shapes.
The structure of the paper is outlined as follows. In § 2 we provide a concise overview

of the polarization method based on Eshelby’s solution and derive the condition for
the steady-state deformation of a Gent EP under uniaxial extension. Section 3 focuses
on examining the characteristic steady-state solutions and unveiling the C-S transition
phenomenon by monitoring the principal stretch of the semi-major axis of the spheroid
as the flow strength increases. Moreover, we elucidate the physical mechanisms behind
the observed hysteresis behaviours through force-balance analysis. In addition, we have
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also investigated the use of alternative constitutive laws, such as the Yeoh hyperelastic
model, which accounts for the strain-hardening effect, and observed similar C-S transition
behaviours. Finally, some conclusions are drawn in § 4.

2. Mathematical model

Our study focuses on investigating the dynamics of a long-chain polymer that is
initially coiled and exposed to an unbounded, uniaxial three-dimensional elongational
flow (γ̇ x1, −(γ̇ /2)x2, −(γ̇ /2)x3) with constant flow rate γ̇ . In our approach, rather than
explicitly modelling the intricate details of the flexible chains, we approximate the polymer
as an isotropic, incompressible EP. This particle is assumed to possess an ellipsoidal
shape that instantaneously adjusts to the flow conditions and exhibits a no-slip surface,
as depicted in figure 1. In the limit of a vanishingly small Reynolds number (Re → 0), the
continuity and momentum equations can be expressed in a coherent manner throughout
the entire domain as

∇ · v = 0 and ∇ · σ = 0. (2.1a,b)

In the Eulerian fluid domain Ωf (denoted by subscript ‘f ’), the total stress tensor σ f is
defined by the constitutive relation

σ f = −pf I + 2μDf , (2.2)

where μ is the fluid viscosity, pf is the pressure and Df = 1
2 (∇v + ∇vT) is the

rate-of-deformation or strain-rate tensor. Likewise, in the solid particle domain Ωs
(denoted by the subscript ‘s’), we define

σ s = −psI + τ , (2.3)

where ps is a pseudo-pressure, serving as a Lagrangian multiplier to enforce the
incompressibility constraint. In general, the extra solid stress τ can be defined as a function
of the Finger (or left Cauchy–Green) tensor B = FFT , with F = ∂x/∂X denoting the
deformation gradient tensor, where {x} and {X } denote the current and reference domain,
respectively. For a neo-Hookean solid with the shear modulus η, the extra stress is taken as
τ = η(B − I), which permits infinite strain. For the purpose of modelling solids with finite
extensibility, we have opted to utilize the incompressible Gent model whose constitutive
relation can be written as

τ = η

(
1 − I1 − 3

J

)−1

(B − I) = ηχ (B − I) , (2.4)

which is derived from an elastic potential energy W = −(ηJ/2) ln(1 − (I1 − 3)/J)
(Gent 1996; Avazmohammadi & Ponte Castañeda 2015). Notably, the prefactor χ =
(1 − (I1 − 3)/J)−1 in the equation signifies the finite extensibility of the polymer chain,
where I1 is the so-called first invariant of the Cauchy strain tensor. Besides η, the only new
parameter, the strain limit constant J > 0, determines the maximum allowable values for
the principal stretches. It is evident that the elastic stress τ will become unbounded as I1
approaches the upper limit of J + 3, effectively capturing the strain-hardening behaviour.
When J → ∞ is chosen, the Gent model automatically recovers the neo-Hookean model
without enforcing stiffening at large strain. The rate of change of B satisfies the evolution
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Figure 1. Schematic of the EP model for C-S transition of an initially coiled long-chain polymer. The
spheroidal envelop with the semi-axes a0 � b0 = c0 will deform axisymmetrically into a more slender shape
at the steady state.

equation (Joseph 1990)
DB
Dt

= ∇vT · B + B · ∇v, (2.5)

where D/Dt = ∂/∂t + (v · ∇) denotes a material time derivative. The set of governing
equations (2.1a,b)–(2.5), along with the velocity and traction continuity conditions at the
fluid–solid interface, will be simultaneously solved. To non-dimensionalize the above
equations, we have chosen the characteristic length scale as the particle size dp, the
time scale γ̇ −1, the velocity scale γ̇ dp and the pressure and stress scale μγ̇ . The elastic
deformation is characterized by the shear modulus η. Hence, the dimensionless parameter
defined as G = μγ̇ /η measures the viscous force in the fluid relative to the elastic force in
the solid, and hence, can be termed as an effective ‘stretching’ parameter that characterizes
the magnitude of the elastic stretching deformation subjected to the elongational flow field.
The polarization method developed by Gao et al. (2011), derived from the classical

Eshelby problem in composite materials (Eshelby 1957, 1959), offers additional analytical
tools for manipulating the aforementioned fluid–solid system. This method leverages the
insight that a uniform (yet potentially time-dependent) strain rate and vorticity fields
within the particle indicate that the particle undergoes a series of transformations into
ellipsoidal shapes before reaching a final steady state (Goddard & Miller 1967; Roscoe
1967; Bilby, Eshelby & Kundu 1975; Bilby & Kolbuszewski 1977; Hinch 1977; Ogden
1984; Wetzel & Tucker 2001). The key step is introducing a uniform, incompressible
‘reference’ medium for the solid phase with the same viscosity μf as the fluid phase,
and define the dimensionless stress polarization tensor Ξ as the total stress difference, or
‘polarization tensor’

Ξ = σ + pI − 2D. (2.6)

Here we have dropped the subscripts ‘f ’ and ‘s’ in the definition so that the governing
equations can be universally constructed in the entire domain as

∇ · v = 0, ∇2v − ∇p + ∇ · Ξ = 0, (2.7a,b)

which can be reinterpreted as an equivalent problem for the homogeneous reference
medium subjected to a distribution of body force ∇ · Ξ in the particle. Hence, the solution
of the velocity field v of the forced Stokes equation in (2.7a,b) can be represented as

v (x) = L0 · x +
∫

Ωs

G0(x, x′) · (∇x′ · Ξ)dx′, (2.8)

where the volume integral is performed over the solid domain Ωs, L0 represents the
imposed far-field velocity gradient and G0(x, x′) is the free-space Green’s function or
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Stokeslet. By rewriting the tensor G0 in the Fourier space and applying on the uniform
forcing field, the strain-rate tensor Ds = 1

2(∇v + ∇vT) and the vorticity tensor W s =
1
2 (∇v − ∇vT) are found to be given by

Ds = (I − 2P)−1 : (D0 − P : τ ), (2.9)

W s = W 0 − R : τ + 2R · ((I − 2P)−1 : (D0 − P : τ )). (2.10)

In the above, I is the fourth-order identity tensor, P and R (see results for spheroidal
particles in Appendix A) are two fourth-order tensors related to the instantaneous
shape of the particle, D0 = 1

2 (L
0 + (L0)T) andW 0 = 1

2 (L
0 − (L0)T) are the background

strain-rate and vorticity tensors. The readers are referred to more derivation details in
Gao et al. (2011). It should be pointed out that our definition of the shape tensors is
different from the classical Eshelby tensors in solid mechanics literature (Eshelby 1957,
1959; Wetzel & Tucker 2001, see also Willis (1981) and Ponte Castañeda (2005) for more
discussion on these choices). Another direct implication of this is that all the spatial
gradients on the stress (or strain) fields in the equations, such as the convective term in
(2.5), vanishes automatically. With (2.9) and (2.9), the original coupled partial differential
equations now convert to a systems of ordinary differential equations for solving the
time-dependent (uniform) solid stress and particle shape regarding the aspect ratios and
orientation.
In a uniaxial extensional flow, we consider an EP that initially possesses a spheroidal

shape (with a0 � b0 = c0), and the semi-major axis is aligned with the x axis. When
subjected to uniaxial fluid loading, the EP will deform axisymmetrically into another
thinner spheroidal shape (a > b = c) with the aspect ratio ω = b/a = c/a. Thus, in the
limit case of a spherical particle shape, denoted as ω = 1, it represents a polymer in a
perfectly coiled state. Conversely, as ω approaches 0, it corresponds to a fully stretched
polymer. The principal stretches of elastic deformation can be written as

λ1 =
( ω

ω0

)−2/3
, λ2 = λ3 =

( ω

ω0

)1/3
, (2.11a,b)

where ω0 = b0/a0 is the initial aspect ratio. Following the definition in (2.4), together with
the condition of volume incompressibility of an EP (i.e. a0b0c0 = abc, or a0b20 = ab2 for
a spheroid), it is straightforward to obtain the expressions for the three stress components
as

τ11 = χ

G
(λ21 − 1) = 1

G

(
1 − I1 − 3

J

)−1(( ω

ω0

)−4/3 − 1
)
, (2.12)

τ22 = τ33 = χ

G
(λ22 − 1) = 1

G

(
1 − I1 − 3

J

)−1(( ω

ω0

)2/3 − 1
)
. (2.13)

Here it is important to highlight that utilizing the principal strain λi defined in (2.11a,b)
to evaluate the first invariant I1 in (2.4) is inaccurate. On the one hand, the geometric
constraint defined in the prefactor χ entails setting a limit on the maximum attainable
length of a fully extended chain, and this limit should not depend on the initial aspect
ratio ω0. On the other hand, the unconstrained part of (2.4), i.e. the Hookean stress–strain
relation, requires using the strain that is defined based on the initial configurations that
may become partially unfolded already (i.e. ω0 > 0). Thus, when determining the value
of I1 in χ , we opt to consistently compare the deformed shape to that of a spherical shape,
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Elastic particle model for coil-stretch transition

i.e. fixing ω0 = 1 for a perfectly coiled shape, and evaluate I1 using a set of ‘reference’
principal strain (denoted by superscript ‘(r)’) as

I1 = I(r)1 =
3∑

i=1

(λ
(r)
i )2 = ω−4/3(1 + 2ω2), (2.14)

with
λ

(r)
1 = ω−2/3, λ

(r)
2 = λ(r)3 = ω1/3. (2.15a,b)

Since the particle will not rotate during the symmetric extension, i.e. W s = 0
automatically satisfied, the steady-state solution only requires

Ds = 0 (2.16)

in (2.9).

3. Results and discussion

Applying the imposed background strain-rate tensor D0 = diag{1, −1/2,−1/2} and the
stress components in (2.16), after some algebraic manipulations, we are able to solve the
stretching parameter G as a function of the steady-state aspect ratio ω = Ω as

G =
J(Ω2 − ω2

0)

((
Ω2 + 2√
1 − Ω2

)
ln

(
1 − √

1 − Ω2

1 + √
1 − Ω2

)
+ 6

)

4ω2/3
0 (1 − Ω2)

2[(J + 3) Ω−2/3 − 2 − Ω−2]
. (3.1)

(Or, equivalently, we can numerically solve Ω as a function of G.) In the limit of J → ∞,
the above equation reduces to the neo-Hookean case where

G =
(Ω2 − ω2

0)

((
Ω2 + 2√
1 − Ω2

)
ln

(
1 − √

1 − Ω2

1 + √
1 − Ω2

)
+ 6

)

4(ω0/Ω)2/3(1 − Ω2)
2 . (3.2)

Subsequent analyses and discussions will rely on these fundamental solutions as the
basis for further examination. As shown in figures 2(a)–2(c), the hysteretic C-S transition
behaviours are captured when plotting the steady-state value of the principal stretch
(i.e. square root of the principal strain) along the semi-major axis againstG, corresponding
to the scenarios of changing the effective particle stiffness (or, increasing the flow
strength). Here we examine two types of strain measurements, namely the actual strain
Λ = (Ω/ω0)

−2/3 in (2.11a,b) and the reference strain Λ(r) = Ω−2/3 defined in (2.15a,b).
The discrepancy lies in the fact thatΛ quantifies the deformation relative to the initial state,
which can possess different shapes (i.e. 0 < ω0 � 1), whereas Λ(r) exclusively measures
the deformation relative to a reference spherical shape (i.e. fixing ω0 = 1). Consequently,
the maximum value of Λ(r) effectively signifies the finite length of a fully stretched
polymer, and is independent of the initial state.
For both types of strain definitions, we can identify two branches of solutions,

respectively marked as the ‘C’ and ‘S’ state. The S solution branch characterizes the
strain-hardening effect, i.e. producing larger elastic deformation to counterbalance the
increasing fluid extensional force, which is obviously missing in the neo-Hookean model.
In panel (a) we fix the initial shape to be spherical so that Λ = Λ(r), and vary the
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Figure 2. Principal stretch of the semi-major axis as a function of stiffness G for (a) an initially spherical
particle ω0 = 1 with different values of J, and (b,c) an initially spheroidal particle when choosing 0 < ω0 � 1
and fixing J = 1000. In panels (a,b) the dashed line recovers the neo-Hookean model that was previously
obtained by Gao et al. (2011) and Roscoe (1967). The principal stretch is measured with respect to the actual
initial shape (Λ in panel b) and with respect to the reference spherical shape (Λ(r) in panel c). In panel (c) the
inset shows the zoom-in view in the vicinity of G = 0.

strain limit value J. The C-S transition exhibits a relatively smooth and nearly monotonic
behaviour for small values of J. However, as J surpasses approximately 300, the transition
becomes sudden and exhibits hysteresis. As J continues to increase towards infinity, the
C-S transition progressively diminishes due to the Gent model converging towards the
neo-Hookean model. This trend is illustrated by the black dashed line, which corresponds
to the previous results obtained by Roscoe (1967) and Gao et al. (2013). In panel (b) we fix
J = 1000 and examine the initial shape effect by varying ω0. As anticipated, initiating
the process from a more elongated shape or a pre-stretched configuration leads to an
earlier occurrence of the C-S transition, particularly at lower values of G. Moreover,
the transition demonstrates a sharper progression towards a fully stretched configuration,
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which is consistent with experimental observations for DNAs (Smith & Chu 1998). If
the initial spheroidal shape is already considerably thin, only an S branch is present
(illustrated by the green curve computed at ω0 = 0.05), indicating an immediate transition
to a fully stretched shape. Moreover, the dashed lines representing the neo-Hookean cases
for non-spherical shapes consistently demonstrate a single C state without any transition.
In panel (c) we analyse the measurement of the reference strain Λ(r) for the same cases as
presented in panel (b). The inset on the left provides a zoom-in visual representation of
the EP undergoing deformation from various initial shapes, or ‘stressless’ configurations,
characterized by different values of Λ(r) at G = 0. All S curves are seen to saturate at the
maximum allowable strain Λmax which, by definition, can be obtained by directly solving
the geometric constraint

Λ2
max + 2

Λmax
= J + 3, (3.3)

suggesting that the chain eventually unfolds to the same maximum length set by J (Horgan
2015).
Next, we seek a more quantitative characterization of the hysteresis regime during the

transition. As shown by the inset of figure 3(a), the extent of the hysteresis region in
figure 2 can be determined by measuring the two turning points on the Λ − G curves,
namely Gmin and Gmax, which are obtained by solving the roots of equation

dG
dΩ

∣∣∣∣
Ω=Ωc

= 0 (3.4)

from (3.1). In panel (a) we plot Gmax and Gmin as functions of the initial aspect ratio
ω0 at different values of J. Evidently, the hysteresis region generally appears narrower
at lower values of ω0 and J, indicating a more abrupt transition. (The zoomed-in view
within the inset highlights a particularly rapid transition at J = 400.) On the contrary,
as the value of J increases, the transition region expands gradually, whereby the upper
limit Gmax approaches the neo-Hookean case, and the lower limit Gmin decreases. Another
intriguing observation is that for initially spherical shapes at ω0 = 1, a consistent value of
Gmax ≈ 0.34 is maintained across all large and finite values of J (J > 300) when two
turning points are present, and hence, serves as a global maximum. This result even
aligns with the findings for initially circular elastic sheets undergoing C-S transition in
elongational flows using the Yeoh hyperelastic model (Yu & Graham 2021). In panel
(b) we plot the steady-state aspect ratio Ωc = Ωmin and Ωc = Ωmax that corresponds
to Gmax and Gmin, respectively. With increasing J, the upper limit tends to converge
towards the neo-Hookean case, whereas the lower limit diminishes to zero. In panel (c)
we gather data for the ‘thinnest’ initial shape, represented by ω0 = ω∗

0, as a function of
J that can induce hysteresis. Mathematically, these instances correspond to the stationary
reflection points on the Λ − G curves, resulting in the merging of the two bounds in panel
(b), denoted as Ωc = Ωmin = Ωmax. For all the cases considered, we identify a global
minimum Jmin ≈ 330 as ω∗

0 → 1 for initially spherical EPs.
To understand the underlying mechanism behind the hysteresis behaviour captured by

the EP model, we employ the analysis approach introduced by Gao et al. (2013) to examine
the force balance of the half-spheroid, as depicted in figure 4. When subjected to a simple
uniaxial elongation field, the deformation of the EP is primarily governed by the interplay
between external hydrodynamic forces and internal elastic resistance forces along the x
axis. We utilized the fundamental solutions for a rigid ellipsoidal particle moving in Stokes
flows derived by Jeffery (1922) to calculate the horizontal fluid extensional force exerted
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Figure 3. Phase diagrams for computational parameters to characterize hysteresis. (a) The width of the
hysteretic regime featured by the distance between the turning points of the G − Λ curves. The upper (Gmax,
marked by solid lines) and lower (Gmin, marked by dashed lines) bounds as a function of initial aspect ratio ω0
at some typical values of J. (b) The corresponding values of Ωmin (for Gmax) and Ωmax (for Gmin) as functions
of ω0. (c) The minimum initial aspect ratio ω∗

0 for hysteresis to occur as a function of J.

on the particle surface ∂Sh as

Ffluid =
∮

∂Sh
ê1 · (σ f · n)dS, (3.5)

where ê1 is the unit vector along the x axis. The external fluid force is counterbalanced by
the internal elastic force exerted upon the middle cross-section of the particle. Since the
stress and strain fields in the particle are uniform, the responsive force Felastic can be then
simply expressed as

Felastic = (σ s · ê1) × A, (3.6)
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Figure 4. Force balance of the half-spheroidal EP revealing the physical mechanism of hysteresis. Both the
Gent (solid lines) and the neo-Hookean (dashed lines) models are tested for initially spherical EP, i.e. ω0 = 1
for some typical values of G. Inset: free-body diagram of the half-spheroid. The filled and open symbols mark
the stable and unstable equilibrium states, respectively.

where A = πb2 is the surface area. It is important to note a subtle point in our analysis. We
choose to evaluate the deviatoric component of the fluid stress, denoted as σ f = 2Df , and
incorporate the pressure difference between the two phases into the solid stress, denoted as
σ s = −( ps − pf )I + τ . This choice allows us to eliminate the arbitrary reference pressure.
Furthermore, this approach has the advantage of making the fluid force Ffluid solely
dependent on the shape of the EP, while the elastic force Felastic is influenced by various
factors including the EP’s shape, stiffness and strain limit.
Theoretically, Ffluid and Felastic must balance in steady states. As depicted in figure 4,

where we keep the initial shape ω0 = 1 and strain limit J = 1000, hysteresis can be
observed based on the phase diagrams shown in figure 3. The steady-state solutions are
obtained by determining the intersections of the two functions, Ffluid(Ω) (represented by
the black solid line) and Felastic(Ω,G). The number of intersections directly indicates the
characteristic properties of the C-S transition. When choosing a small G (e.g. G = 0.2
marked as a green line), there is only one intersection, corresponding to the solutions on
the C branch of theΛ − G curves in figure 2. Similarly, for a large value ofG (e.g.G = 0.5
indicated by the blue line), the presence of a single intersection corresponds to the S branch
of the transition. Nevertheless, if we select a value ofGwithin the transition regime defined
by G ∈ [Gmin,Gmax] as shown in figure 3, we can observe three intersections along the red
line. From left to right, these intersections are labelled as states 1, 2 and 3 in figure 4.
Let us focus on state 1 located on the C branch. If Ω decreases (increases) slightly
from the intersection point (i.e. the particle becomes slightly more elongated), Felastic
becomes larger (smaller) than Ffluid, causing the EP to contract (stretch) correspondingly
to restore the equilibrium configuration. The same conceptual analysis applies to state 3
on the S branch. Therefore, both of these equilibrium solutions are stable and indicated
by filled circles. In contrast, applying the same analysis to state 2 represented by an open
circle reveals an opposite trend. When Ω slightly decreases (increases), Felastic becomes
smaller (larger) than Ffluid, causing the EP to continue extensional (contracting) without
reaching equilibrium. At this point, a numerical linear stability analysis could be employed
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to characterize the system behaviour quantitatively and more rigorously. However, we
find that the bistability analysis described above, although simplistic, is intuitive and
straightforward. It also aligns with the earlier kinetic models (DeGennes 1974; Hinch 1974,
1977; Fuller & Leal 1980), and reflects the essence of the phenomenological double-well
potential. As comparisons, we investigate the corresponding cases under the neo-Hookean
model, seen as the dashed lines. As anticipated, no bistable solutions are observed, and
only a stable C branch exists. Additionally, we have identified a second class of equilibrium
solutions, referred to as state 4 and denoted by the open diamond, during the transition.
However, just like state 2, it is evident that these solutions are determined to be unstable.
Finally, we conduct an additional verification to confirm the validity of the physical

mechanisms identified above. Instead of utilizing the Gent model, we employ the Yeoh
model (Yeoh 1993), which is another widely used nonlinear hyperelastic model that
incorporates strain hardening. The incompressible Yeoh model is characterized by a
constitutive relation with a three-parameter form

τ11 = 1
G

(1 + z1(I1 − 3) + z2(I1 − 3)2)
(( ω

ω0

)−4/3 − 1
)
, (3.7)

τ22 = τ33 = 1
G

(1 + z1(I1 − 3) + z2(I1 − 3)2)
(( ω

ω0

)2/3 − 1
)
, (3.8)

with z1,2 the material constants (z1,2 = 0 reduces to the neo-Hookean model). As shown
in figure 5, when selecting suitable values for the parameters z1,2 in the Yeoh model, an EP
governed by the Yeoh model demonstrates hysteresis in the C-S transition when measuring
the principal stretch, which bears qualitative similarities to the hysteresis observed in a
Gent EP. It is noteworthy that the Yeoh model, which does not impose a restriction on the
maximum strain, exhibits generally smoother stiffening behaviours at high strains. In panel
(b) we demonstrate that by simultaneously adjusting two parameters, more versatile control
over the stiffening behaviours at high strains can be achieved compared with using a
single-parameter form in (2.12) and (2.13). The impact of the initial shape is investigated in
panel (c), where similar trends to the Gent model are observed, i.e. the transition becomes
sharper for thinner shapes and the global maximum Gmax ≈ 0.34 when choosing ω0 = 1.
A closer examination in panel (d) reveals that the equilibrium solutions on the lower C
branch, including the turning points for different ω0, are nearly independent of the specific
model used. This is because all these nonlinear models accurately capture small and finite
elastic deformations. Consequently, the simple neo-Hookean model should accurately
predict the C states, while the S states may exhibit some variations when different models
are employed.

4. Conclusion

We have presented an EP model with finite extensibility to restudy the C-S transition
of dilute polymers under steady elongational flows. Unlike previous kinetic models
that were developed for weak flows with ad-hoc hydrodynamic adjustments, our model
directly addresses the elastohydrodynamics in the strong flow limit. Additionally, we have
employed the Gent hyperelastic model, which is a simple nonlinear constitutive model
capable of capturing the strain-hardening effect, to replicate the finite extensibility of
polymer chains. Drawing inspiration from microscopic models and simulations, we have
characterized the shape change of EP by monitoring its principal stretch at the steady state,
analogous to the end-to-end distance of a polymer, as a function of the effective stiffness
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Figure 5. Principal stretch of the semi-major axis as a function of stiffness G for the Yeoh model (Yeoh 1993).
(a) Initially spherical particle ω0 = 1 at z1 = 0 and different values of z2. (b) Initially spherical particle ω0 = 1
at different values of z1 while fixing z2 = 10−7. (c) Spheroidal particle with different ω0 and fixing z1 = 0 and
z2 = 10−7. (d) Zoom-in view of the ‘C’ branch for both the Yeoh (solid lines) and Gent (dotted lines, J = 1000)
models.

of the particle, which is equivalent to modifying the strength of the flow. Our results
have successfully demonstrated that the interplay between shape ellipticity and nonlinear
elasticity can generate complex hysteresis phenomena, resembling those observed in the
behaviour of single polymers subjected to elongational flows. Furthermore, we have
explained the C-S transition of EP by identifying bistable deformations at equilibrium
through a force-balance analysis, which connects to the concept of a double-well
conformational energy present in stochastic kinetic models. The same analysis can be
extended to study the original model by Roscoe (1967) for viscoelastic particles of
Kelvin–Voigt type where a viscous term is linearly incorporated in the solid phase.
Although some qualitative behaviours were predicted a long time ago by Hinch (1974,

1977), it is still astonishing to observe that a simplified EP model can capture many
intricate details of complex hysteresis phenomena. The transition mechanism appears
to be robust, as similar results are obtained using different constitutive models, as
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long as the strain-hardening effect is incorporated. Nonetheless, we have found that the
incompressible Gent model is particularly appealing. Not only does it possess a simple
(possibly the simplest) mathematical formulation, but the value of strain limit J also has
a clear geometric interpretation and can potentially be directly calibrated by solving Λmax
and comparing with the maximum attainable chain length under extension before chain
breakage may occur. For instance, when selecting J around 1000 in the Gent model,
we observe that the principal stretch at the S state is approximately of the order of
30–40, which aligns with the results obtained from Brownian dynamics simulations for a
long-chain DNA molecule over 1 μm long by Schroeder et al. (2004). A similar hysteresis
curve can be produced when choosing z2 ∼ 10−7–10−6 and z1 < 10−4 in the Yeoh model.
Therefore, the actual value of J can be selected by carefully comparing Λ(r) with the
relative extension length measured in simulations. In this regard, the EP model suggests
that the C-S transition is more favourable for long-chain polymers, albeit with a finite
length (e.g. J < O(104)). Otherwise, for very long chains, the strain-hardening effects
diminish, leading to effectively neo-Hookean behaviour and the absence of hysteresis. It
should be noted that the EP model can even capture similar behaviours exhibited by much
larger, thin, flexible structures like fibres or sheets in elongational flows. Nevertheless, the
model described is limited in its ability to account for more complex material behaviours,
such as the buckling instability observed in microfibres flowing in viscous fluids (Cappello
et al. 2022). The underlying mechanisms rely on the accurate depiction of various wavy
deformations exhibited by thin fibres, which surpasses the assumption of ellipticity and
homogeneity made in the EP model.
It is intriguing to study critical behaviours of Gent EP in more complex scenarios in

mixed flows that linearly combine the rotational and extensional flows (Smith et al. 1999;
Schroeder et al. 2005; Teixeira et al. 2005). As demonstrated by Fuller & Leal (1981)
and Hoffman & Shaqfeh (2007), consistent capturing of hysteresis has been achieved but
the polymer’s fractional extension may deviate from that observed in pure extensional
flow. This discrepancy is contingent upon the strength of the rotational effect. While
the same framework of polarization method could be used, in these general cases, the
particle shape loses its axisymmetry, resulting in much more complex shape tensors that
cannot be integrated analytically as those derived in Appendix A. Hence, the pursuit of
equilibrium solutions for the dynamic systems will involve ad-hoc numerical methods
for accurate and efficient evaluation of elliptic integrals, proving to be an exceedingly
challenging endeavour. Moreover, an initially non-spherical EP will tumble periodically
when subjected to shear while simultaneously undergoing stretching or compression
(Smith et al. 1999; Hur et al. 2002; Schroeder et al. 2005; Teixeira et al. 2005; Hoffman
& Shaqfeh 2007), which require assessing the particle deformation via a proper time
average. Given these challenges and the large parameter space (two-dimensional and
three-dimensional mixed flows, initial aspect ratio and strain limit value), we have chosen
to undertake a distinct investigation specifically focusing on linear mixed flows in the
future.
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Appendix A. Shape tensors for initially spheroidal particles

For initially prolate spheroidal particles, since the particle shape remains spheroidal during
motion, the shape tensors P and R can be solved analytically as

P11 = ω2{(ω2 + 2)(lnω − ln(1 − √
1 − ω2)) − 3

√
1 − ω2}

2(1 − ω2)5/2
,

P22 = P33 = (5ω4 + 4ω2)(lnω − ln(1 − √
1 − ω2)) − (11ω2 − 2)

√
1 − ω2

16(1 − ω2)5/2
,

P12 = P13 = ω2{(ω2 + 2)(ln(1 − √
1 − ω2) − lnω) + 3

√
1 − ω2}

4(1 − ω2)5/2
,

P23 = (ω4 − 4ω2)(ln(1 − √
1 − ω2) − lnω) − (ω2 + 2)

√
1 − ω2

16(1 − ω2)5/2
,

P44 = 6ω4(lnω − ln(1 − √
1 − ω2)) − (5ω2 − 2)

√
1 − ω2

16(1 − ω2)5/2
,

P55 = P66 = 3ω2(ω2+1)(ln(1−√
1 − ω2)−lnω) + (2ω4 + 3ω2 + 1)

√
1 − ω2

8(1 − ω2)5/2
,

R55 = R66 = 3ω2(lnω − ln(1 − √
1 − ω2)) − (2ω2 + 1)

√
1 − ω2

8(1 − ω2)3/2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A1)

where a contracted index notation (Wetzel & Tucker 2001; Gao et al. 2011) is used.
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