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1. Introduction

Given a square matrix M, the spread of M, denoted by S(M), is defined as S(M) :=
max; ; |A; — A;|, where the maximum is taken over all pairs of eigenvalues of M. In other
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words, S(M) is the diameter of the spectrum of M. Given a graph G = (V,E) on n
vertices, the spread of G, denoted by S(G), is defined as the spread of the adjacency
matrix A(G) of G. Let A\ (G) > -+ > A\, (G) be the eigenvalues of A(G). Here A is
called the spectral radius of G. Since A(G) is a real symmetric matrix, we have that the
A;s are all real numbers. Thus S(G) = A; — A\,

The systematic study of the spread of graphs was initiated by Gregory, Hershkowitz,
and Kirkland [10]. One of the central focuses of this area is to find the maximum or
minimum spread over a fixed family of graphs and characterize the extremal graphs.
Problems of such extremal flavor have been investigated for trees [1], graphs with few
cycles [8,16,23], the family of all n-vertex graphs [2,3,17-19,21], the family of bipartite
graphs [3], graphs with a given matching number [12], girth [22], or size [11], and very
recently for the families of outerplanar graphs [9,13] and planar graphs [13]. We note
that the spreads of other matrices associated with a graph have also been extensively
studied (see e.g. references in [9,5,7]).

Given two graphs G and H, the join of G and H, denoted by G V H, is the graph
obtained from the disjoint union of G and H by connecting every vertex of G with every
vertex of H. Let Py denote the path on k vertices. Given two graphs G and H, let
G U H denote the disjoint union of G and H. Given a graph G and a positive integer
k, we use kG to denote the disjoint union of k copies of G. Given v C V(G), let Ng(v)
denote the set of neighbors of v in G, and let dg(v) denote the degree of v in G, i.e.,
dg(v) = |[N(v)|. Given S C V(G), define Ng(S) as Ng(S) = Upes(Ng(v)\S). Given a
graph G and disjoint vertex subsets S,T C V(G), we use Eg(S) to denote the set of
edges in E(G[S)]), and use Eg(S,T) to denote the set of edges with one endpoint in S
and the other endpoint in T'. For all above definitions, we may omit the subscript G when
there is no ambiguity. A graph H is called a minor of a graph G if a graph isomorphic
to H can be obtained from a subgraph of G by contracting edges. A graph G is called
H-minor-free if H is not a minor of G.

There has been extensive work on finding the maximum spectral radius of K ;-minor-
free graphs. Nikiforov [15] showed that every sufficiently large n-vertex Kj ;-minor-free
graph G satisfies A1 (G) < (t —1)/2 + y/n + (2 — 2t — 3) /4, with equality if and only if
n=1 (mod t) and G is K1V |n/t|K,. Tait [20] extended Nikiforov’s result to K ;-minor-
free graphs by giving an upper bound on the maximum spectral radius of a sufficiently

large n-vertex K ;-minor-free graph G, and showed that the upper bound is tight if and
onlyif n=s—1 (mod ¢t) and G is Ks_1 V [(n — s + 1)/t] K;. In the same paper, Tait
conjectured that for all ¢ > s > 2, the maximum spectral radius of a sufficiently large
n-vertex K ;-minor-free graph is attained by K,_1 V (pKy U K ), where p, g satisfy that
n—s+1=pt+qand q € [t]. Very recently, the K, ;-minor-free graphs with maximum
spectral radius were determined for ¢ > s > 2 by Zhai and Lin [24].

In this paper, we determine the maximum-spread K3 ;-minor-free graphs on n vertices
for sufficiently large n and for all ¢ > 2.
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Table 1

The values of & for 2 <t < 20.

|t|2|3|4|5|6||8| [0 11 12 [ 13 [ 14 [ 15 [ 16 [ 17 [ 18 [ 19 [ 20 |
[&Jo]1J2]1]oJo[—-2]-3]-6]—-8]—-12]—-15] —20] —24 ] —28 [ —34 ] —40 [ —46 | —54 |

Theorem 1. Fort > 2 and n sufficiently large, the graph that mazximizes the spread over
the family of Ky t-minor-free graphs on n vertices is

gy (|2 mu (ne 1| 2208 ) )

where
9 {% _1- G 91) if t is even,
{% _ 9 _ 201 1) ift >3, and t is odd.

The extremal graph is unique unless t = 4 (mod 12) and 2"37";& is an integer. In this

special case, the mazximum spread is achieved by two extremal graphs

o (25 s o125 )
o (2552 (25 )).

We give a list of values of & for small ¢ in Table 1.

and

Our paper is organized as follows. In Section 2, we recall some useful lemmas and
prove that in any maximum-spread Ky ;-minor-free graph G, there is a vertex ug which
is adjacent to all other vertices in G. In Section 3, we show that G — ug is a disjoint
union of cliques on ¢ vertices and isolated vertices and complete the proof of Theorem 1.

2. Notations and lemmas

We first recall a result of Chudnovsky, Reed and Seymour [6] on the maximum number
of edges of a K ;-minor-free graph, which extends an earlier result of Myers [14].

Theorem 2. [6] Let t > 2 be a positive integer, and G be a graph on n > 0 vertices with
no Ko minor. Then

[E(G)] < 5(t+1)(n—1).

| =
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Let G be a graph which attains the maximum spread among all n-vertex Ks ;-minor-
free graphs. As a first step towards proving Theorem 1, we want to show that G must
contain a vertex of degree n — 1.

Recall the result of Nikiforov [15] on the maximum spectral radius of Ks ;-minor-free
graphs.

Theorem 3. [15] Let t > 3 and G be a graph of order n with no Ka; minor. If n > 400t5,
then the spectral radius M\ (G) satisfies

t—1 2 —2t—3
Al(G)STJr nt

with equality if and only if n =1 (mod t) and G = K1 V |n/t| K;.

We first give some upper and lower bounds on A1 (G) and |\, (G)| when n is sufficiently
large. We use known expressions for the eigenvalues of a join of two regular graphs [4,

pg.19].

Lemma 1. [/] Let G and H be regular graphs with degrees k and ¢ respectively. Suppose
that |V(G)| = m and |V(H)| = n. Then, the characteristic polynomial of GV H is
pava(t) = (= k)t -1 — mn)%. In particular, if the eigenvalues of G are
k=X >...> A\p and the eigenvalues of H are = pqy > ... > pyn, then the eigenvalues

of GVH are {\; :2<i<m}U{p;:2<j<ntU{z:(r—k)(z—~ —mn=0}
We will apply Lemma 1 to the graph K; V ¢K; to obtain a lower bound on S(G).

Lemma 2. Let G be a graph which attains the mazimum spread among all n-vertex Ko ¢-
minor-free graphs. Then

\/ﬁ%o(%)gAn(G)gxl(G)S\/ﬁ+%+o(%>.

Proof. The upper bound of A;(G) is due to Theorem 3. Now let us prove the lower
bound. We will compute S(K; V ¢K;), where ¢ = |[(n — 1)/t]. Note that K; V ¢K; is
K -minor-free. Hence, we can lower bound S(G) by S(K; V ¢K};). By Lemma 1, both
M (K7 VgKy) and A\, (K V gKy) satisfy the equation

AN = (t—1)) — gt = 0.

Thus, we have
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Thus S(K; V ¢K;) = \/4qt + t2 — 2t + 1. Since ¢ = |(n — 1)/t|, we then have

S(G) > \Agt+12 —2t+1>/An—t) + 2 -2+ 1=/4n+12 —6t+1

:2@4—0(%).

Therefore,

For the rest of this paper, let \; > --- > \,, be the eigenvalues of the adjacency matrix
A(G) of G. Given a vector w € R", let w’ denotes its transpose, and for each i € [n], let
w; denote the i-th coordinate of w. Using the Rayleigh quotient of symmetric matrices,
we have the following equalities for A\; and A,:

! . .
wA(G)w 23 W W
A1 = max # = max ”EEEG) ’. (1)
weR”  ww weR"? w'w
w#0 w#0
! . .
wA(G)w 2> . W W
Ap = min wAG)w = min ¥EEE) z. (2)
weR” wW'w weR™ w'w
w#0 w#0

Let x and z be the eigenvectors of A(G) corresponding to the eigenvalues A; and
A respectively. For convenience, let x and z be indexed by the vertices of G. By the
Perron-Frobenius theorem, we may assume that all entries of x are positive. We also
assume that x and z are normalized so that the maximum absolute values of the entries
of x and z are equal to 1, and so there are vertices ug and wg with x,, = 2, = 1.

Let Vi ={v: z, > 0}, Vo = {v: z, = 0}, and V_ = {v: z, < 0}. Since z is a non-zero
vector, at least one of V, and V_ is non-empty. By considering the eigen-equations of
An D vev, Zv OF A D ,cy Zv, we obtain that both Vi and V_ are non-empty. For any
vertex subset S, we define the volume of S, denoted by Vol(S), as Vol(S) = >, cg |Z0|-
In the following lemmas, we use the bounds of A,, to deduce some information on V,,
V_ and V;.

Lemma 3. We have
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Proof. For any vertex v € V(G), we have

dw) 2| Y zl=Aallzl.

yEN (v)

Applying Theorem 2, we have

(t+D)n > dw) = > [Aallz] = [An[Vol(V).

veV veV(G)
By Lemma 2, [A,| > /(n—1) — &2 - O (ﬁ) We thus have Vol(V) = O(y/n). O
Lemma 4. There exists some constant Cy such that for all n sufficiently large, we have

1. d(UJ()> >n— Cl\/ﬁ

2. For any vertex u # wy, d(u) < 2C1v/n and |z,| = O(ﬁ)

Proof. For any u € V., we have

|/\n|zu = -2y = Z Zy < Z |ZU|

vEN (u) vEN (u)NV_

Therefore, for any v € V5,

vEN (u)NV_ vEN (u)NV_

< ) Y &

vEN (u)NV_ yeN (v)NV4

< d(u)zy + Z 2y|N(y) "N (u) N V_|
yeVi\{u}

< d(u)z, + Z y(t—1) since G is Ky ;-minor-free
Y€V \{u}

< d(u)z, + (t — 1)Vol(V).
Similarly, if v € V_, we have
Azl < d(u)lzu] + (¢ = 1)VoL(V2).
Setting u = wy, we get
[Anl? = d(wo) < (t = 1)Vol(V) = O(v/n).

Hence,



358 W. Linz et al. / Linear Algebra and its Applications 676 (2023) 352-373

d(wp) > n — O(y/n) > n — Ciy/n, for some Cy > 0.

Now we show d(u) < 2C7+/n for any vertex u other than wg. Otherwise, if d(u) > 2C1+/n,
then u and wy have at least C1/n > t neighbors (when n is sufficiently large). Thus G
contains the subgraph Ky ;, contradicting that G is Ky ;-minor-free. It then follows that
for all u # wg, we have

(t—)Vol(V) (1
< oy =0 (3R) - ©

Lemma 5. We have

(l) Ug = wWo-

(i) For any vertex v # wo, X, = O (%)

n

Proof. We will prove (ii) first. For any v € V(G)\{wo}, we have

Alxvf)\l Z Xg

sEN(v)

S )\1 Xwo + Z Xs
sEN(v)\{wo}

<X+ Z th

s€N(v)\{wo} tEN(s)

<A+ Z Xy + Z Xy

sEN(v)\{wo} teN(s)\{wo}
< M+ (2C1VNn) Xy, + Z Z Xt (3)

seN(v)\{wo} teN(s)\{wo}

Claim 1. For any v € V(G)\{wo}, we have Z Z x; = O(yv/n).

seEN(v)\{wo} teN(s)\{wo}

Proof. Observe that
>, ) wms > 1
sEN(v)\{wo} tEN(s)\{wo} sEN(v)\{wo} tEN(s)\{wo}
= {(s,t) € V(G)* : s € N(v)\{wo},t € N(s)\{wo} }|-
< 2|EG—wo (N ()| + [Eg—w, (N (v), V(G)\N (v))|
< 2[Eg—uw, (N ()| + |EG—w, (N (v), N (wo) \N (v)) |+
[EG—w, (N (v), V(G)\(Ng (wo) U N (v))] (4)

(
(
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By Theorem 2 and Lemma 4,

2|Eg—_w,(N(v))| < (t+ 1)2C1v/n.
Since G is K ;-minor-free, the bipartite graph induced by Eq_, (N (v), Ng(wo)\N (v))

is K 4-free. Hence every vertex in N(v) has at most ¢t — 1 neighbors in Ng(wo)\N(v).
It follows that

|EG—uw, (N (v), Na(wo)\N (v))] < (t = 1)|N(v)] < 2(t = 1)C1v/n.

Similarly, every vertex in V(G)\(Ng(wo) U N(v)) has at most ¢t — 1 neighbors in N (v).
It follows that

|EG—uw, (N (v), V(G)\(Ng (wo) UN (v))] < (t=1)[V(G)\(Na(wo) UN(0))] < (t=1)Crv/n.

Hence by (4),

> > xS (t+1)201Vn+2(t—1)Civn+ (t—1)C1vn=0(Vn). O

seEN(v)\{wo} teN(s)\{wo}

Now by the claim above and (3), we have that
M, < A\ +2C1vn + O(vVn) = O(V/n).

n

Using the fact that [A| > /(n—1)— 51 - O (L), we have that

It follows that wg = ug. O
Lemma 6. We have that d(ug) =n — 1.

Proof. Suppose for contradiction that d(ug) < n — 1. Let S = V(G)\(N(ug) U {uo}).
Then S # (. By Lemma 4, |S| < C1y/n. Note that G[S] is also K ;-minor-free. Hence
by Theorem 2, |E(G[S])| < 5(t + 1)|S]. It follows that there exists a vertex v € S such
that dg(v) < t+1. Moreover, since G is K3 ;-minor-free, we have that dy,,)(v) <t —1.
Hence dg(v) <t+1+(t—1) = 2t. Let G’ be obtained from G by removing all the edges
of GG incident with v and adding the edge vuyg.

We claim that A\, (G’) < A\, (G). Indeed, consider the vector z such that z, = z, for
u # v and Z, = —|z,|. Then for sufficiently large n, we have
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7 A(Gz < Z A(G)z + 2 Z |ZyZy | — 2|2y |20,

y~v

1
< g .9t . . _
<ZAG)z+2-2t-0O (ﬁ) |Zy| — 2|2y |

<7z AG)z.
By the Rayleigh quotient, we have

ZAGE _ 7 AG)

Z/

M (G < =\ (G).

z'z

N

Similarly, we claim that A1(G’) > A1 (G). Indeed,

x'A(Gx = x'A(G)x — 2 Z Xy Xy + 2Xp Xy,

y~v

>x'M(G)x—2-2t-0 (%) - X, + 2%,

> x'A(G)x.
Using the Rayleigh quotient again,

x' A(G")x - x' A(G)x

x'x x'x

(G > =\ (G).
Therefore, we have S(G') = A1 (G') — A (G') > M(G) — M\ (G) = S(G), giving a contra-
diction. O

3. Proof of Theorem 1

By Lemma 6, a maximum-spread K3 ;-minor-free graph G has a vertex ug with degree
n—1. Let a be a normalized eigenvector corresponding to an eigenvalue A of the adjacency
matrix of G so that o, = 1. Let H = G—ug and Ay be the adjacency matrix of H. Note
that H is K ;-minor-free since G is K> ;-minor-free. Let I denote the identity matrix of
dimension n — 1 and let 1 denote the all one vector of dimension n — 1. Moreover, let
x denote the restriction of « to the vertices of H. The following lemma computes the
vector X.

Lemma 7. We have

X = Z AT(FD gk (5)
k=0

Proof. Since H is K ;-minor-free, the maximum degree of H is at most ¢ — 1. For
sufficiently large n, both A1(G) and |\, (G)| are greater than ¢ — 1. Each vertex v # ug
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is adjacent to up and oy, = 1. Hence when restricting the coordinates of A(G)a to
V(G)\{uo}, we have that

Agx+1=Xx. (6)
It then follows that

X = (AI - AH)711
=\ HI-2tAp)T

=271y (A Ag)k
k=0

o
=> A kapL (7)
k=0

Here we use the assumption that |[A\| > ¢t — 1 > A(Ap) so that the infinite series
converges. [

Lemma 8. Both Ay and \,, satisfy the following equation.
N =(n-1)+> AFUARL (8)
k=1

Proof. The eigen-equation at ug gives

A=Axyy = Y Xy (9)

veV (H)

Applying Lemma 7, we get

Z x,=1"-x

veEV (H)

(o)
=1 Z)\—(k-s-l)A/;’{l
k=0

A~k Ak 7

o

k=0
Plugging it to Equation (9), we have
1 (o)
A=(n-1)y+ oAt aka, (10)
k=1

Multiplying by A on both sides, we get Equation (8). O
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For k = 1,2,3..., let a = 1’A%1. In particular, a; = 1’Agl = ZUGV(H) dp(v) =
2|E(H)|; aa = 1"A%1 = D vV (i) dg(v)2.

Lemma 9. We have the following estimation of the spread of G:

202 204 206 —7/2
S(G) = 2vn =1 o( /). 11
(@ =2n=tt =t o P o PO 1)
Here
2
3 aq 1 a9
@ _g(n—l> 2n—1’ (12)
C*—@ ai 4+§ ar \? a 0 a ?
T s \n—1 6\n-1) n—1 8\n-1
5 a1 as 1 a4
- 1
4n—1n—1+2n—1 (13)
b 3003 (i \° 3003 (a4 \' ap
67 71024 \n—1 256 \n—1) n—1
2

098 (e \T( e NP 2 e )
64 \n—1 n—1 1 n—1
21 1 ai 3_12 ai as as _Z as 2
32 n—1 n—1 n—1 n—1 8\n—-1

7 ai 2 a9 Qa4 7 aq asy 1 ae
+1_6<9(n—1> _4n—1>n—1_1n—1n—1+§n—1' (14)

Proof. Recall that by (8), we have that for A € {A\1, A, },

1 o0
A= (n—1)5 + PPt LA
k=1

Multiplying by A on both sides, we have that
N =(n-1) Z (15)
k=1

By similar logic in the main lemma of the appendix in [13], A has the following series
expansion:

- C2 C3 Cq Cs Ce —7/2
M=) +e+ + 2y + + +0 .
p= VDt S T T T 02 T 1)t (n7?)

Similarly,
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Co c3 Cy Cs Ce n=7/2
— -1 — - - .
Vin-Dte -2t 2 - e o1y (n71)5+0( )

Using SageMath (computation available at https://github.com/wzy3210/graph
spreads), we get that ca, ¢4, cs are the values in Equations (12), (13), (14) respectively.
It follows that

2¢y 2¢4 2cq —7/2
S(G) =X\ — A\, =2 —1)+ + . s +0 2) . o
(G) =\ R s By Bl oy (n72)

Lemma 10. For sufficiently large n, a mazimum-spread Ko ;-minor-free n-vertex graph
G must be of the form

Kl\/(EKtﬁ(n—l—ét)Pl).
Proof of Lemma 10. By Lemma 6, there exists a vertex ug € V(G) of degree n — 1. Let

H = G — ug. Since G is K; -minor-free, every vertex in H has at most ¢ — 1 neighbors
in H. Thus A(H) <t —1, and it follows that

ay=1VA31= > dg@)?<(t—-1) Y  du(v)=(t—1)as.

veV (H) veV(H)

Note that
ar = 2/E(H)| < ACH)|V(H)| < (= 1)(n - 1).

It follows that a; < (t — 1)i(n — 1) for all i > 2. By Lemma 9, we have the following
estimation of the spread of G:

262 204 26 —7/2
S(G) = 2= T+ = o )5/2+O( 2, ()

where ¢, ¢4, cg are computed in Lemma 9, and all ¢;s are bounded by constants depending
on t. Note

. 3 +1 az
>7 8 \n-1 2n—1
2
§_§ al +lt—1)a1
8\n—1 2 n—1
t—12 3/ a 2
= -2 — -1
6 8\n—1 3( )
12
(=1
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where in the last inequality, the equality is only achieved when a; = %(t —1)(n—1). For
GO = K1 V (L—2ng;£tJ Kt U (n —1-—t {—2n£§tJ) P1>, we have na_ll = %(t — 1) + 0 (%)
Thus

(t—1)? 1
S(Go)=2vVn—-14+ —=+0| —5 |-
(Go) =2vn =1+ 3 7m== O\ L572
Claim 2. There exists a constant C' > 0 such that the value of a1 that mazimizes S(G)
lies in the interval (3(t —1)(n—1) — Cn'/?, 2t-1D(n—1)+ Cn'/?).

Proof. Let C be a sufficiently large constant chosen later. Suppose for contradiction that
a1 is not contained in the interval above. Then, we must have that

(t—1)? B 3C%n

< .
2=""% 8(n—1)

This implies that
(t*1)2 o 3C%n
S(@)<2vn—14+2. -8 8(”‘”2+0<
(@)= Vi1 (

when C' is chosen to be large enough such that

2.3C? n 1
- +0| —== | <O.
8n—12n—-1 (n—1)3/2
This gives us a contradiction since G is assumed to be an extremal graph that maximizes
the spread over all K3 ;-minor-free graphs. O

From now on, we assume that a; € (2(t—1)(n—1)—Cn'/2, 2(t—1)(n— 1)+ Cn'/?)
for some constant C' > 0.

Claim 3. There is a constant Co such that the value of as lies in the interval [(t — 1)a; —

Ca, (t — 1)ay].

Proof. Let C5 be a sufficiently large constant chosen later. Suppose for contradiction
that as < (t — 1)a; — Cy. We then have that

t—1)2 Oy 1
3(\/71——)1 T (n—1)32 +0 <n3/2> < 5(Go),

if we choose C5 large enough, giving a contradiction. O

S(G)<2vn—1+

Claim 4. For i > 2, we have a; € [(t — 1)"" (a1 — (i — 1)Cq),aq(t — 1)"71].
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Proof. We will show this claim by inducting on ¢ > 2. Note that by Claim 3, we have
that ag > (t — 1)a; — Cy. Moreover, ay < (t — 1)ay since A(H) <t — 1. Hence the base
case holds. Moreover, we also obtain from above that Cy > (t — 1)a; — as.

Let H' be the set of vertices in H such that its degree is in the interval [1,¢ — 2]. We
have

Cy>(t—1ay—ap= Y (t—1—d(v))d(v) > (t—2)|H'|.
veH’
This implies

Cy

H'| < 2
t—2

For a vertex v € H and non-negative integer k, let wy(v) denote the number of walks of
length k in H starting at v. Observe that

(t—1Daj—1—a;=(t—-1) Z w;—1(v) — Z w;(v)

veV (H) veV (H)
<D (=1 —du(v) (-1
veH'
< |H'|(t=2)(t - 1)
< Cy(t—1)F
Thus,
a; > (t —1)a;_1 — Co(t — 1)1
> (t—1)((t—1a;_2 — Co(t —1)"72) — Oyt — 1)1 by induction
= (t—1)%a;_9 —2Cy(t —1)"*
> (t—1)""tar = (i = 1)Co(t — 1)

where the last inequality is obtained by repeatedly applying induction. O
Claim 5. as = (t — 1)ag

Proof. Assume that a; = 2(t — 1)(n — 1) + A, and az = (t — 1)a; — B, where A €
[~Cn!/2,Cn'/?] and 0 < B < Csy. For i > 2, let ¢;(G), c;(Go) denote the ¢; values of G
and G respectively. Observe that

3 1
cz(G):—§< “ ) + o2

n—1 2n—1
_(t—1)? 3A2 B

6 8(n—12 2(n-1)
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It follows that

e3(G) — es(Go) = —8(;":‘ e Q(HB_ [+ 0.

Moreover, by Claim 4, for all ¢ > 4, we have that

¢i(G) — ci(Go) = O(n™172).

Thus
(@) - 81(Go) = 2. AP 5 D _ell) 4 ooy
0(n?) - 2455 - 5l O(n-1/2 )
<2 87(171 (n—1) +2. (n< 1)3/)2 +0((n—1) 5/2>.

Since S(G) > S(Gy), this implies that A = O(n'/*), B =0 and thus as = (t — 1)a;. O
Claim 6. H is the union of vertex disjoint Kys and isolated vertices.

Proof. Recall that a1 = 1Axl = 3y du(v) = 2|E(H)|, and az = 1'A}1 =
2 vev(m) dg(v)?. By Claim 5, we have that

Y du()?=(t-1) > du(v).

veV (H) veV (H)

Since dg (v) < t—1 for every v € V(H), it follows that H is the disjoint union of (¢ —1)-
regular graphs and isolated vertices. Let K be an arbitrary non-trivial component of H.
We will show that K is a clique on ¢ vertices.

We first claim that for any u,v € V(K), N(u) N N(v) # 0. Otherwise, pick a shortest
path P between u and v in P. Observe that |[V(P)NN(u)| = |V(P)NN(v)| = 1. Contract
wPuv into one vertex x (call the new graph G’). Note that x and N (u)U N (v) form a K7,
in G'. Together with uo which is adjacent to every vetex in K, we have a K5, minor in
G, giving a contradiction.

Next, we claim that for any u,v € V(K) with wv ¢ E(K), |[N(u) N N(v)] > t — 2.
Otherwise, |[N(u)\N(v)| > 2 and |N(v)\N(u)| > 2. Similar to before, pick an arbitrary
vertex w € N(u) N N(v) and contract the path uwv, we then obtain a Kj ;-minor in K,
and thus a Ks;-minor in G. Similarly, for any u,v € V(K) with uv € E(K), we have
|N(u) N N(v)| >t — 3. Moreover, note that for any u,v € V(K), |[N(u) N N(v)| <t — 2,
since otherwise {u, v} and (N (u)NN(v))U{uo} forms a K ; in G, giving a contradiction.
Hence, we have that for any u,v € V(K) with uv ¢ E(K), [N(u) N N(v)| =1t —2.

Now if K is not a clique on t vertices, then let u,v € V(K) be two vertices in
K such that uwv ¢ E(K). By the above claim, there exists u/,v’ € V(K) such that
v € N(w)\N(v) and v' € N(v)\N(u).
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We claim that v'v" ¢ E(K). Indeed, if v'v' € E(K), contract v'v’ into w’. Then
{u, v}U({w’, uo} U (N(u) N N(v))) is a Ky, minor in G, giving a contradiction. Now note
that since u'v ¢ F(K), we have |[N(u') N N(v)| =t — 2. It follows that N(u') N N(v) =
N(u) N N(v). Similarly, N(v') N N(u) = N(u) N N(v).

We claim that each vertex in N (u)NN (v) has exactly one non-neighbor in N (u)NN (v).
Indeed, let w be an arbitrary vertex in N(u) N N(v). Note that w cannot be adjacent
to all other vertices in N(u) N N (v); otherwise since w is adjacent to «',u, and v’, we
then have d(w) > (t — 3) + 3 = t, contradicting that K is (¢ — 1)-regular. On the
other hand, suppose w has at least two non-neighbors in N(u) N N(v). Then it follows
that |[N(w) N (N(u) N N(v))] < t—2-3 =1t— 5. Now observe that N(u) N N(w) =
(N(w) N N(u) N N(v)) U{u'}. It follows that |N(u) N N(w)| < t — 4, contradicting our
claim before that any two adjacent vertices must have at least t — 3 common neighbors.
Hence w has exactly one non-neighbor in N(u) N N(v), say w’. But now observe that

N(w)NN(w') 2 (N(u) N N@)\{w,w'}) U{u,u, v,v'},

which implies that |N(w)NN(w’)| > t—4+4 = t, contradicting that K is (t —1)-regular.
Hence by contradiction, K is a clique on t vertices. 0O

This completes the proof of Lemma 10. O

Proof of Theorem 1 . For sufficiently large n, let G be an extremal graph attaining the
maximum spread among all n-vertex Ks -minor-free graphs. By Lemma 10, we only
need to consider graphs in the form of Gy, = K3 V ((K; U (n — 1 — £t)Py). It also follows
from Lemma 10 that for ¢ > 1,

a; = 0t —1)% (17)

For each i > 2, let ¢;(¢) denote the ¢; value of G;. Plugging a;’s into Equations (12),
(13), and (14), we get

L3t —1)% 5, 1t(t—1)

) =5 g ey b (18)
- R T e,
m;’wﬁ _ ?Mﬁ ;Hz (20)

Let ¢4 = 2(n71), which is the (possibly real) argmax value of ¢o(¢). Let £y = | 225t
3t 3t

be the target maximum integer point of S(Gy). By Claim 2, we assume that ¢ € ({1 —
Cvn—1,01 + Cy/n—1). Let us compute S(Gyi1) — S(Gy). We have




368 W. Linz et al. / Linear Algebra and its Applications 676 (2023) 352-373

cs(+1) —ea(l) = —%2%(4@3 +602+40+1) + ?—2%(362 +30+1)
1562t —1)* 14(t— 1)
TF o AU Ty
el +1) — o) = O <ni1) .

Plugging ¢ = ¢; - (1 +0 < )) into c4(£ + 1) — ca(£), we have

n—1

el 1) —ex() = L=V g (%) .

18 n—1 n—1)3/2

Therefore, we have

S(G@+1) . S(G() _ 2(62(£ +n1)__1 62(6)) 2(64(fn+_1:)l)g/§4(£)) + 2(86(fn+_1])-);/§6(€))

(=)

:%(_gt(wﬂwé(n—l)— (t_1)2)+0< : 3)

18

3t2(t — 1)2 1 2 2t — 1)2 1
= -+ 2—2L)+0
TSI G R G e I Gy
Case a: t > 3 and ¢ is odd. Recall that in this case we let

o[z

where

o-[2--205|

For ¢ > ¢y, we have

1 2 2t — 1)2 1 2 2t — 1)2
AT e N GO T S
27 3¢ T A R
Jts (1), 1 2n—1) 21— 1)
3t 2 3t 27t
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e )

Plugging it into Equation (21), we have that for £ > ¢y,

=12 (g +1- (% -2 250)))

1
S(Gey1) — S(Gy) < — 2(n — 1)5/2 +0 <(n1)3) < 0.

When ¢ < ¢y — 1, we have

1 2 2(t —1)? 1 2 2(t — 1)?
Z 2 (n - N« — Z_Z(n—= N 7
g gD+ =5 sb-l+g— g -+
on + & 1 2(n—1) 20—1)2
< —14=-
- 3t *3 3 o
1 3t 2(t — 1)?
<—(g-(Z—-2-2—2
3t<£t <2 9 )>
<0.

2
At the last step, we observe that % —-2— @ is not an integer for odd t. Thus, the
inequality is strict. Therefore, for £ < £y — 1,

— 12 (—n, 3t 9 20—1)?
S(Ges1) = S(Ge) = A 772(2(41)5/3 ) +O<(n—11)3> "

Therefore, S(Gy) reaches the unique maximum at ¢, for sufficiently large n. This
completes the case for odd ¢.
Case b: t > 2 even. Let

where

For ¢ > /4y, we have

1 2 2t —1)?
s S p—1)
8—1—2 3t(n )+ >
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2 3t (t—1)?
> 2 - (21—
=3t ("t * ( 4 9
> 0.

Plugging it into Equation (21), we have that for £ > £,

12 (n, (8t _q_ =1?
S(Ge+1)—S(G€>§_t(t K (77 z(ln—(l;/zl : >)+O(( : )3><O.

When ¢ < lg — 1, we have

1 2 2t — 1)2 1 2 2t — 1)2
Sy NI Ul My A Tl (S | i Gl
(gDt =5 <b-1+5 -5 -+ —0
T 1 2 2(t-1)?
< M g4y AT
Sy ety Ty
2 3t (t—1)2
< - (21—
_3t<m <4 9 >>
<0. (22)

If Z(n+n,) is not an integer, we have

B _n, 3t _q_ (t=1?
O i x _(})5/21 ; ))+O<(n+m)>o.

Therefore £y is the unique maximum point of S(Gy).

Now we assume %(n + n;) is an integer. Observe that % -1- % is an integer if
and only if ¢ is divisible by 4 and ¢ — 1 is divisible by 3. Therefore, the inequality (22) is
strict except for the case when t =4 mod 12 and ¢ = ¢y — 1. It implies that for ¢ # 4
mod 12,

tt—1)2 (=g + (3t —1 - 207
( Z(n_(;)wz ’ ))+O<ﬁ)>0.

Thus for t # 4 mod 12, S(Gy) reaches the unique maximum at £y = V"S—";&J for suffi-
ciently large n.

S(Gry1) — S(Ge) >

Now we consider the remaining case that ¢ =4 (mod 12) and %(n—l— 7¢) is an integer.
In this case, S(Gy) can only achieve the maximum at £y, or £y — 1, or both. In fact, we
claim both of them are maximum points.

Let k = (t —4)/12 and ¢y = 2 (n + ;). Note that by our assumption k and ¢, are
both integers. Rearranging the terms, we have
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t =12k + 4, (23)
ne =1+ k — 16k2, (24)
n=6(3k+ 1)l + 16k* — k — 1. (25)

Now we compute the spread of GGy where £ = ¢ or ; — 1. By Lemma 8, A\; and A,, of
G satisfies the equation

N=(n-1)+> AF1rAf

k=1

=(n-1)+ i A Fet(t — 1)k
k=1

_ (t—1)/A

=(n-1)+ ftm

B bt(t —1)

Simplifying it, we get
Mot-DN—n—-DA+({t—-1)(n—-1—14)=0. (26)

Let us define the spread of a polynomial ¢, denoted by S(¢), as the difference of largest
root and the smallest root. Thus, we have

S(Ge) = S(¢e)s

where ¢, is defined by the left hand side of Equation (26). Let A = x + % The cubic
equation (26) can be written as

1 1
3 — g(n+t2 —2t—2)z+ 2—7(—27lt2 — 263 4271t + 18nt + 6t — 18n — 24t +20) = 0. (27)

=

Now plugging ¢ = £y, t as in Equation (23), and n as in Equation (25), into Equation
(27), we get

23 — (6(3k + 1)l + 64k* + 23k + 1)z — (72k* + 42k + 6) = 0. (28)

Similarly, plugging £ = ¢y — 1, ¢ as in Equation (23), and n as in Equation (25), into
Equation (27), we get

23 — (6(3k + 1)l + 64k* + 23k + 1)z + (72k* + 42k + 6) = 0. (29)
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Let the ¢; (or ¢2) denote the cubic polynomial in the left hand of Equation (28) (or
Equation (29) respectively). Observe that ¢o(z) = —¢1(—z). If ¢; has three real roots
r1 <z < x3, then ¢ has three real roots —x3 < —x9 < —x1. Thus

S(¢1) =23 — 11 = (—11) — (—23) = S(¢h2).

It then follows that

S(Geo) = S(d)%) = S(d)l) = S(¢2) = S(¢€0—1) = S(Gfo—l)'

Therefore both Gy, and Gy,_1 are extremal graphs for this special case. This completes
the proof of Theorem 1. O
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