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The spread of a graph G is the difference between the largest 
and smallest eigenvalues of the adjacency matrix of G. In this 
paper, we consider the family of graphs which contain no K2,t-
minor. We show that for any t ≥ 2, there is an integer ξt

such that the maximum spread of an n-vertex K2,t-minor-
free graph is achieved by the graph obtained by joining a 
vertex to the disjoint union of � 2n+ξt

3t
� copies of Kt and n −

1 − t� 2n+ξt

3t
� isolated vertices. The extremal graph is unique, 

except when t ≡ 4 (mod 12) and 2n+ξt

3t
is an integer, in which 

case the other extremal graph is the graph obtained by joining 
a vertex to the disjoint union of � 2n+ξt

3t
� − 1 copies of Kt and 

n − 1 − t(� 2n+ξt

3t
� − 1) isolated vertices. Furthermore, we give 

an explicit formula for ξt.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Given a square matrix M , the spread of M , denoted by S(M), is defined as S(M) :=
maxi,j |λi − λj |, where the maximum is taken over all pairs of eigenvalues of M . In other
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words, S(M) is the diameter of the spectrum of M . Given a graph G = (V, E) on n

vertices, the spread of G, denoted by S(G), is defined as the spread of the adjacency 
matrix A(G) of G. Let λ1(G) ≥ · · · ≥ λn(G) be the eigenvalues of A(G). Here λ1 is 
called the spectral radius of G. Since A(G) is a real symmetric matrix, we have that the 
λis are all real numbers. Thus S(G) = λ1 − λn.

The systematic study of the spread of graphs was initiated by Gregory, Hershkowitz, 
and Kirkland [10]. One of the central focuses of this area is to find the maximum or 
minimum spread over a fixed family of graphs and characterize the extremal graphs. 
Problems of such extremal flavor have been investigated for trees [1], graphs with few 
cycles [8,16,23], the family of all n-vertex graphs [2,3,17–19,21], the family of bipartite 
graphs [3], graphs with a given matching number [12], girth [22], or size [11], and very 
recently for the families of outerplanar graphs [9,13] and planar graphs [13]. We note 
that the spreads of other matrices associated with a graph have also been extensively 
studied (see e.g. references in [9,5,7]).

Given two graphs G and H, the join of G and H, denoted by G ∨ H, is the graph 
obtained from the disjoint union of G and H by connecting every vertex of G with every 
vertex of H. Let Pk denote the path on k vertices. Given two graphs G and H, let 
G ∪ H denote the disjoint union of G and H. Given a graph G and a positive integer 
k, we use kG to denote the disjoint union of k copies of G. Given v ⊆ V (G), let NG(v)
denote the set of neighbors of v in G, and let dG(v) denote the degree of v in G, i.e., 
dG(v) = |N(v)|. Given S ⊆ V (G), define NG(S) as NG(S) = ∪v∈S(NG(v)\S). Given a 
graph G and disjoint vertex subsets S, T ⊆ V (G), we use EG(S) to denote the set of 
edges in E(G[S]), and use EG(S, T ) to denote the set of edges with one endpoint in S
and the other endpoint in T . For all above definitions, we may omit the subscript G when 
there is no ambiguity. A graph H is called a minor of a graph G if a graph isomorphic 
to H can be obtained from a subgraph of G by contracting edges. A graph G is called 
H-minor-free if H is not a minor of G.

There has been extensive work on finding the maximum spectral radius of Ks,t-minor-
free graphs. Nikiforov [15] showed that every sufficiently large n-vertex K2,t-minor-free 
graph G satisfies λ1(G) ≤ (t − 1)/2 +

√
n + (t2 − 2t − 3)/4, with equality if and only if 

n ≡ 1 (mod t) and G is K1∨�n/t	Kt. Tait [20] extended Nikiforov’s result to Ks,t-minor-
free graphs by giving an upper bound on the maximum spectral radius of a sufficiently 
large n-vertex Ks,t-minor-free graph G, and showed that the upper bound is tight if and 
only if n ≡ s − 1 (mod t) and G is Ks−1 ∨ �(n − s + 1)/t	Kt. In the same paper, Tait 
conjectured that for all t ≥ s ≥ 2, the maximum spectral radius of a sufficiently large 
n-vertex Ks,t-minor-free graph is attained by Ks−1 ∨ (pKt ∪ Kq), where p, q satisfy that 
n − s + 1 = pt + q and q ∈ [t]. Very recently, the Ks,t-minor-free graphs with maximum 
spectral radius were determined for t ≥ s ≥ 2 by Zhai and Lin [24].

In this paper, we determine the maximum-spread K2,t-minor-free graphs on n vertices 
for sufficiently large n and for all t ≥ 2.
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Table 1
The values of ξt for 2 ≤ t ≤ 20.

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ξt 0 1 2 1 0 0 −2 −3 −6 −8 −12 −15 −20 −24 −28 −34 −40 −46 −54

Theorem 1. For t ≥ 2 and n sufficiently large, the graph that maximizes the spread over 
the family of K2,t-minor-free graphs on n vertices is

K1 ∨
(⌊

2n + ξt

3t

⌋
Kt ∪

(
n − 1 − t

⌊
2n + ξt

3t

⌋)
P1

)

where

ξt =

⎧⎨
⎩

2
⌊

3t
4 − 1 − (t−1)2

9

⌋
if t is even,⌊

3t
2 − 2 − 2(t−1)2

9

⌋
if t ≥ 3, and t is odd.

The extremal graph is unique unless t ≡ 4 (mod 12) and 2n+ξt

3t is an integer. In this 
special case, the maximum spread is achieved by two extremal graphs

K1 ∨
(⌊

2n + ξt

3t

⌋
Kt ∪

(
n − 1 − t

⌊
2n + ξt

3t

⌋)
P1

)

and

K1 ∨
((⌊

2n + ξt

3t

⌋
− 1

)
Kt ∪

(
n − 1 − t

(⌊
2n + ξt

3t

⌋
− 1

))
P1

)
.

We give a list of values of ξt for small t in Table 1.
Our paper is organized as follows. In Section 2, we recall some useful lemmas and 

prove that in any maximum-spread K2,t-minor-free graph G, there is a vertex u0 which 
is adjacent to all other vertices in G. In Section 3, we show that G − u0 is a disjoint 
union of cliques on t vertices and isolated vertices and complete the proof of Theorem 1.

2. Notations and lemmas

We first recall a result of Chudnovsky, Reed and Seymour [6] on the maximum number 
of edges of a K2,t-minor-free graph, which extends an earlier result of Myers [14].

Theorem 2. [6] Let t ≥ 2 be a positive integer, and G be a graph on n > 0 vertices with 
no K2,t minor. Then

|E(G)| ≤ 1(t + 1)(n − 1).
2
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Let G be a graph which attains the maximum spread among all n-vertex K2,t-minor-
free graphs. As a first step towards proving Theorem 1, we want to show that G must 
contain a vertex of degree n − 1.

Recall the result of Nikiforov [15] on the maximum spectral radius of K2,t-minor-free 
graphs.

Theorem 3. [15] Let t ≥ 3 and G be a graph of order n with no K2,t minor. If n ≥ 400t6, 
then the spectral radius λ1(G) satisfies

λ1(G) ≤ t − 1
2 +

√
n + t2 − 2t − 3

4 ,

with equality if and only if n ≡ 1 (mod t) and G = K1 ∨ �n/t	Kt.

We first give some upper and lower bounds on λ1(G) and |λn(G)| when n is sufficiently 
large. We use known expressions for the eigenvalues of a join of two regular graphs [4, 
pg.19].

Lemma 1. [4] Let G and H be regular graphs with degrees k and � respectively. Suppose 
that |V (G)| = m and |V (H)| = n. Then, the characteristic polynomial of G ∨ H is 
pG∨H(t) = ((t − k)(t − �) − mn)pG(t)pH (t)

(t−k)(t−�) . In particular, if the eigenvalues of G are 
k = λ1 ≥ . . . ≥ λm and the eigenvalues of H are � = μ1 ≥ . . . ≥ μn, then the eigenvalues 
of G ∨ H are {λi : 2 ≤ i ≤ m} ∪ {μj : 2 ≤ j ≤ n} ∪ {x : (x − k)(x − �) − mn = 0}.

We will apply Lemma 1 to the graph K1 ∨ qKt to obtain a lower bound on S(G).

Lemma 2. Let G be a graph which attains the maximum spread among all n-vertex K2,t-
minor-free graphs. Then

√
n − 1 − t − 1

2 − O

(
1√
n

)
≤ −λn(G) ≤ λ1(G) ≤

√
n − 1 + t − 1

2 + O

(
1√
n

)
.

Proof. The upper bound of λ1(G) is due to Theorem 3. Now let us prove the lower 
bound. We will compute S(K1 ∨ qKt), where q = �(n − 1)/t	. Note that K1 ∨ qKt is 
K2,t-minor-free. Hence, we can lower bound S(G) by S(K1 ∨ qKt). By Lemma 1, both 
λ1(K1 ∨ qKt) and λn(K1 ∨ qKt) satisfy the equation

λ(λ − (t − 1)) − qt = 0.

Thus, we have

λ1(K1 ∨ qKt) = t − 1
2 +

√
qt + t2 − 2t + 1

4 ,

λn(K1 ∨ qKt) = t − 1
2 −

√
qt + t2 − 2t + 1

4 .
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Thus S(K1 ∨ qKt) =
√

4qt + t2 − 2t + 1. Since q = �(n − 1)/t	, we then have

S(G) ≥
√

4qt + t2 − 2t + 1 ≥
√

4(n − t) + t2 − 2t + 1 =
√

4n + t2 − 6t + 1

= 2
√

n − 1 + O

(
1√
n

)
.

Therefore,

−λn(G) = S(G) − λ1(G)

≥ 2
√

n − 1 + O

(
1√
n

)
−

(√
n − 1 + t − 1

2 + O

(
1√
n

))

=
√

n − 1 − t − 1
2 − O

(
1√
n

)
. �

For the rest of this paper, let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix 
A(G) of G. Given a vector w ∈ Rn, let w′ denotes its transpose, and for each i ∈ [n], let 
wi denote the i-th coordinate of w. Using the Rayleigh quotient of symmetric matrices, 
we have the following equalities for λ1 and λn:

λ1 = max
w∈Rn

w�=0

w′A(G)w
w′w = max

w∈Rn

w�=0

2
∑

ij∈E(G) wiwj

w′w , (1)

λn = min
w∈Rn

w�=0

w′A(G)w
w′w = min

w∈Rn

w�=0

2
∑

ij∈E(G) wiwj

w′w . (2)

Let x and z be the eigenvectors of A(G) corresponding to the eigenvalues λ1 and 
λn respectively. For convenience, let x and z be indexed by the vertices of G. By the 
Perron-Frobenius theorem, we may assume that all entries of x are positive. We also 
assume that x and z are normalized so that the maximum absolute values of the entries 
of x and z are equal to 1, and so there are vertices u0 and w0 with xu0 = zw0 = 1.

Let V+ = {v : zv > 0}, V0 = {v : zv = 0}, and V− = {v : zv < 0}. Since z is a non-zero 
vector, at least one of V+ and V− is non-empty. By considering the eigen-equations of 
λn

∑
v∈V+

zv or λn

∑
v∈V−

zv, we obtain that both V+ and V− are non-empty. For any 
vertex subset S, we define the volume of S, denoted by Vol(S), as Vol(S) =

∑
v∈S |zv|. 

In the following lemmas, we use the bounds of λn to deduce some information on V+, 
V− and V0.

Lemma 3. We have

Vol(V (G)) = O(
√

n).
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Proof. For any vertex v ∈ V (G), we have

d(v) ≥ |
∑

y∈N(v)

zy| = |λn||zv|.

Applying Theorem 2, we have

(t + 1)n ≥
∑
v∈V

d(v) ≥
∑

v∈V (G)

|λn||zv| = |λn|Vol(V ).

By Lemma 2, |λn| ≥
√

(n − 1) − t−1
2 − O

(
1√
n

)
. We thus have Vol(V ) = O(

√
n). �

Lemma 4. There exists some constant C1 such that for all n sufficiently large, we have

1. d(w0) ≥ n − C1
√

n.
2. For any vertex u �= w0, d(u) ≤ 2C1

√
n and |zu| = O( 1√

n
).

Proof. For any u ∈ V+, we have

|λn|zu = −λnzu = −
∑

v∈N(u)

zv ≤
∑

v∈N(u)∩V−

|zv|.

Therefore, for any u ∈ V+,

|λn|2zu ≤
∑

v∈N(u)∩V−

|λn||zv| =
∑

v∈N(u)∩V−

λnzv

≤
∑

v∈N(u)∩V−

∑
y∈N(v)∩V+

zy

≤ d(u)zu +
∑

y∈V+\{u}
zy|N(y) ∩ N(u) ∩ V−|

≤ d(u)zu +
∑

y∈V+\{u}
zy(t − 1) since G is K2,t-minor-free

≤ d(u)zu + (t − 1)Vol(V+).

Similarly, if u ∈ V−, we have

|λn|2|zu| ≤ d(u)|zu| + (t − 1)Vol(V−).

Setting u = w0, we get

|λn|2 − d(w0) ≤ (t − 1)Vol(V ) = O(
√

n).

Hence,
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d(w0) ≥ n − O(
√

n) ≥ n − C1
√

n, for some C1 > 0.

Now we show d(u) ≤ 2C1
√

n for any vertex u other than w0. Otherwise, if d(u) ≥ 2C1
√

n, 
then u and w0 have at least C1

√
n ≥ t neighbors (when n is sufficiently large). Thus G

contains the subgraph K2,t, contradicting that G is K2,t-minor-free. It then follows that 
for all u �= w0, we have

|zu| ≤ (t − 1)Vol(V )
|λn|2 − d(u) = O

(
1√
n

)
. �

Lemma 5. We have

(i) u0 = w0.
(ii) For any vertex v �= w0, xv = O

(
1√
n

)
.

Proof. We will prove (ii) first. For any v ∈ V (G)\{w0}, we have

λ2
1xv = λ1

∑
s∈N(v)

xs

≤ λ1

⎛
⎝xw0 +

∑
s∈N(v)\{w0}

xs

⎞
⎠

≤ λ1 +
∑

s∈N(v)\{w0}

∑
t∈N(s)

xt

≤ λ1 +
∑

s∈N(v)\{w0}

⎛
⎝xw0 +

∑
t∈N(s)\{w0}

xt

⎞
⎠

≤ λ1 + (2C1
√

n)xw0 +
∑

s∈N(v)\{w0}

∑
t∈N(s)\{w0}

xt (3)

Claim 1. For any v ∈ V (G)\{w0}, we have 
∑

s∈N(v)\{w0}

∑
t∈N(s)\{w0}

xt = O(
√

n).

Proof. Observe that
∑

s∈N(v)\{w0}

∑
t∈N(s)\{w0}

xt ≤
∑

s∈N(v)\{w0}

∑
t∈N(s)\{w0}

1

= |{(s, t) ∈ V (G)2 : s ∈ N(v)\{w0}, t ∈ N(s)\{w0}}|.
≤ 2|EG−w0(N(v))| + |EG−w0(N(v), V (G)\N(v))|
≤ 2|EG−w0(N(v))| + |EG−w0(N(v), NG(w0)\N(v))|+

|EG−w0(N(v), V (G)\(NG(w0) ∪ N(v))| (4)
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By Theorem 2 and Lemma 4,

2|EG−w0(N(v))| ≤ (t + 1)2C1
√

n.

Since G is K2,t-minor-free, the bipartite graph induced by EG−w0(N(v), NG(w0)\N(v))
is K1,t-free. Hence every vertex in N(v) has at most t − 1 neighbors in NG(w0)\N(v). 
It follows that

|EG−w0(N(v), NG(w0)\N(v))| ≤ (t − 1)|N(v)| ≤ 2(t − 1)C1
√

n.

Similarly, every vertex in V (G)\(NG(w0) ∪ N(v)) has at most t − 1 neighbors in N(v). 
It follows that

|EG−w0(N(v), V (G)\(NG(w0)∪N(v))| ≤ (t−1)|V (G)\(NG(w0)∪N(v))| ≤ (t−1)C1
√

n.

Hence by (4),

∑
s∈N(v)\{w0}

∑
t∈N(s)\{w0}

xt ≤ (t + 1)2C1
√

n + 2(t − 1)C1
√

n + (t − 1)C1
√

n = O(
√

n). �

Now by the claim above and (3), we have that

λ2
1xv ≤ λ1 + 2C1

√
n + O(

√
n) = O(

√
n).

Using the fact that |λ1| ≥
√

(n − 1) − t−1
2 − O

(
1√
n

)
, we have that

xv = O

(
1√
n

)
.

It follows that w0 = u0. �
Lemma 6. We have that d(u0) = n − 1.

Proof. Suppose for contradiction that d(u0) < n − 1. Let S = V (G)\(N(u0) ∪ {u0}). 
Then S �= ∅. By Lemma 4, |S| ≤ C1

√
n. Note that G[S] is also K2,t-minor-free. Hence 

by Theorem 2, |E(G[S])| ≤ 1
2 (t + 1)|S|. It follows that there exists a vertex v ∈ S such 

that dS(v) ≤ t + 1. Moreover, since G is K2,t-minor-free, we have that dN(u0)(v) ≤ t − 1. 
Hence dG(v) ≤ t + 1 + (t − 1) = 2t. Let G′ be obtained from G by removing all the edges 
of G incident with v and adding the edge vu0.

We claim that λn(G′) < λn(G). Indeed, consider the vector z̃ such that z̃u = zu for 
u �= v and z̃v = −|zv|. Then for sufficiently large n, we have
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z̃′A(G′)z̃ ≤ z′A(G)z + 2
∑
y∼v

|zyzv| − 2|zv|zu0

≤ z′A(G)z + 2 · 2t · O

(
1√
n

)
· |zv| − 2|zv|

< z′A(G)z.

By the Rayleigh quotient, we have

λn(G′) ≤ z̃′A(G′)z̃
z̃′z̃ <

z′A(G)z
z′z = λn(G).

Similarly, we claim that λ1(G′) > λ1(G). Indeed,

x′A(G′)x = x′A(G)x − 2
∑
y∼v

xyxv + 2xvxu0

≥ x′λ1(G)x − 2 · 2t · O

(
1√
n

)
· xv + 2xv

> x′A(G)x.

Using the Rayleigh quotient again,

λ1(G′) ≥ x′A(G′)x
x′x >

x′A(G)x
x′x = λ1(G).

Therefore, we have S(G′) = λ1(G′) − λn(G′) > λ1(G) − λn(G) = S(G), giving a contra-
diction. �
3. Proof of Theorem 1

By Lemma 6, a maximum-spread K2,t-minor-free graph G has a vertex u0 with degree 
n −1. Let α be a normalized eigenvector corresponding to an eigenvalue λ of the adjacency 
matrix of G so that αu0 = 1. Let H = G −u0 and AH be the adjacency matrix of H. Note 
that H is K1,t-minor-free since G is K2,t-minor-free. Let I denote the identity matrix of 
dimension n − 1 and let 1 denote the all one vector of dimension n − 1. Moreover, let 
x denote the restriction of α to the vertices of H. The following lemma computes the 
vector x.

Lemma 7. We have

x =
∞∑

k=0

λ−(k+1)Ak
H1. (5)

Proof. Since H is K1,t-minor-free, the maximum degree of H is at most t − 1. For 
sufficiently large n, both λ1(G) and |λn(G)| are greater than t − 1. Each vertex v �= u0
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is adjacent to u0 and αu0 = 1. Hence when restricting the coordinates of A(G)α to 
V (G)\{u0}, we have that

AHx + 1 = λx. (6)

It then follows that

x = (λI − AH)−11

= λ−1(I − λ−1AH)−11

= λ−1
∞∑

k=0

(λ−1AH)k1

=
∞∑

k=0

λ−(k+1)Ak
H1. (7)

Here we use the assumption that |λ| > t − 1 ≥ λ1(AH) so that the infinite series 
converges. �
Lemma 8. Both λ1 and λn satisfy the following equation.

λ2 = (n − 1) +
∞∑

k=1

λ−k1′Ak
H1. (8)

Proof. The eigen-equation at u0 gives

λ = λxu0 =
∑

v∈V (H)

xv. (9)

Applying Lemma 7, we get
∑

v∈V (H)

xv = 1′ · x

= 1′ ·
∞∑

k=0

λ−(k+1)Ak
H1

=
∞∑

k=0

λ−(k+1)1′Ak
H1.

Plugging it to Equation (9), we have

λ = (n − 1) 1
λ

+
∞∑

k=1

λ−(k+1)1′Ak
H1. (10)

Multiplying by λ on both sides, we get Equation (8). �
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For k = 1, 2, 3 . . ., let ak = 1′Ak
H1. In particular, a1 = 1′AH1 =

∑
v∈V (H) dH(v) =

2|E(H)|; a2 = 1′A2
H1 =

∑
v∈V (H) dH(v)2.

Lemma 9. We have the following estimation of the spread of G:

S(G) = 2
√

n − 1 + 2c2√
n − 1

+ 2c4

(n − 1)3/2 + 2c6

(n − 1)5/2 + O
(

n−7/2
)

. (11)

Here

c2 = −3
8

(
a1

n − 1

)2

+ 1
2

a2

n − 1 , (12)

c4 = −105
128

(
a1

n − 1

)4

+ 35
16

(
a1

n − 1

)2
a2

n − 1 − 5
8

(
a2

n − 1

)2

− 5
4

a1

n − 1
a3

n − 1 + 1
2

a4

n − 1 (13)

c6 = −3003
1024

(
a1

n − 1

)6

+ 3003
256

(
a1

n − 1

)4
a2

n − 1

− 693
64

(
a1

n − 1

)2 (
a2

n − 1

)2

+ 21
16

(
a2

n − 1

)3

− 21
32

(
11

(
a1

n − 1

)3

− 12
(

a1

n − 1

) (
a2

n − 1

)) (
a3

n − 1

)
− 7

8

(
a3

n − 1

)2

+ 7
16

(
9

(
a1

n − 1

)2

− 4 a2

n − 1

)
a4

n − 1 − 7
4

a1

n − 1
a5

n − 1 + 1
2

a6

n − 1 . (14)

Proof. Recall that by (8), we have that for λ ∈ {λ1, λn},

λ = (n − 1) 1
λ

+
∞∑

k=1

λ−(k+1)1′Ak
H1.

Multiplying by λ on both sides, we have that

λ2 = (n − 1) +
∞∑

k=1

ak

λk
. (15)

By similar logic in the main lemma of the appendix in [13], λ has the following series 
expansion:

λ1 =
√

(n − 1) + c1 + c2√
n − 1

+ c3

n − 1 + c4

(n − 1) 3
2

+ c5

(n − 1)2 + c6

(n − 1) 5
2

+ O
(

n−7/2
)

.

Similarly,



W. Linz et al. / Linear Algebra and its Applications 676 (2023) 352–373 363
λn = −
√

(n − 1)+ c1 − c2√
n − 1

+ c3

n − 1 − c4

(n − 1) 3
2

+ c5

(n − 1)2 − c6

(n − 1) 5
2

+O
(

n−7/2
)

.

Using SageMath (computation available at https://github .com /wzy3210 /graph _
spreads), we get that c2, c4, c6 are the values in Equations (12), (13), (14) respectively. 
It follows that

S(G) = λ1 − λn = 2
√

(n − 1) + 2c2√
n − 1

+ 2c4

(n − 1) 3
2

+ 2c6

(n − 1) 5
2

+ O
(

n−7/2
)

. �
Lemma 10. For sufficiently large n, a maximum-spread K2,t-minor-free n-vertex graph 
G must be of the form

K1 ∨ (�Kt ∩ (n − 1 − �t)P1) .

Proof of Lemma 10. By Lemma 6, there exists a vertex u0 ∈ V (G) of degree n − 1. Let 
H = G − u0. Since G is K2,t-minor-free, every vertex in H has at most t − 1 neighbors 
in H. Thus Δ(H) ≤ t − 1, and it follows that

a2 = 1′A2
H1 =

∑
v∈V (H)

dH(v)2 ≤ (t − 1)
∑

v∈V (H)

dH(v) = (t − 1)a1.

Note that

a1 = 2|E(H)| ≤ Δ(H)|V (H)| ≤ (t − 1)(n − 1).

It follows that ai ≤ (t − 1)i(n − 1) for all i ≥ 2. By Lemma 9, we have the following 
estimation of the spread of G:

S(G) = 2
√

n − 1 + 2c2√
n − 1

+ 2c4

(n − 1)3/2 + 2c6

(n − 1)5/2 + O
(

n−7/2
)

, (16)

where c2, c4, c6 are computed in Lemma 9, and all cis are bounded by constants depending 
on t. Note

c2 = −3
8

(
a1

n − 1

)2

+ 1
2

a2

n − 1

≤ −3
8

(
a1

n − 1

)2

+ 1
2

(t − 1)a1

n − 1

= (t − 1)2

6 − 3
8

(
a1

n − 1 − 2
3(t − 1)

)2

≤ (t − 1)2

6 ,

https://github.com/wzy3210/graph_spreads
https://github.com/wzy3210/graph_spreads
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where in the last inequality, the equality is only achieved when a1 = 2
3 (t − 1)(n − 1). For 

G0 = K1 ∨
(⌊

2n+ξt

3t

⌋
Kt ∪

(
n − 1 − t

⌊
2n+ξt

3t

⌋)
P1

)
, we have a1

n−1 = 2
3 (t − 1) + O

( 1
n

)
. 

Thus

S(G0) = 2
√

n − 1 + (t − 1)2

3
√

n − 1
+ O

(
1

n3/2

)
.

Claim 2. There exists a constant C > 0 such that the value of a1 that maximizes S(G)
lies in the interval (2

3 (t − 1)(n − 1) − Cn1/2, 23 (t − 1)(n − 1) + Cn1/2).

Proof. Let C be a sufficiently large constant chosen later. Suppose for contradiction that 
a1 is not contained in the interval above. Then, we must have that

c2 ≤ (t − 1)2

6 − 3C2n

8(n − 1)2 .

This implies that

S(G) ≤ 2
√

n − 1 + 2 ·
(t−1)2

6 − 3C2n
8(n−1)2

√
n − 1

+ O

(
1

(n − 1)3/2

)
< S(G0),

when C is chosen to be large enough such that

− 2 · 3C2

8(n − 1)2
n√

n − 1
+ O

(
1

(n − 1)3/2

)
< 0.

This gives us a contradiction since G is assumed to be an extremal graph that maximizes 
the spread over all K2,t-minor-free graphs. �

From now on, we assume that a1 ∈ ( 2
3 (t − 1)(n − 1) − Cn1/2, 23 (t − 1)(n − 1) + Cn1/2)

for some constant C > 0.

Claim 3. There is a constant C2 such that the value of a2 lies in the interval [(t − 1)a1 −
C2, (t − 1)a1].

Proof. Let C2 be a sufficiently large constant chosen later. Suppose for contradiction 
that a2 < (t − 1)a1 − C2. We then have that

S(G) ≤ 2
√

n − 1 + (t − 1)2

3
√

n − 1
− C2

(n − 1)3/2 + O

(
1

n3/2

)
< S(G0),

if we choose C2 large enough, giving a contradiction. �
Claim 4. For i ≥ 2, we have ai ∈ [(t − 1)i−1(a1 − (i − 1)C2), a1(t − 1)i−1].
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Proof. We will show this claim by inducting on i ≥ 2. Note that by Claim 3, we have 
that a2 ≥ (t − 1)a1 − C2. Moreover, a2 ≤ (t − 1)a1 since Δ(H) ≤ t − 1. Hence the base 
case holds. Moreover, we also obtain from above that C2 ≥ (t − 1)a1 − a2.

Let H ′ be the set of vertices in H such that its degree is in the interval [1, t − 2]. We 
have

C2 ≥ (t − 1)a1 − a2 =
∑

v∈H′

(t − 1 − d(v))d(v) ≥ (t − 2)|H ′|.

This implies

|H ′| ≤ C2

t − 2 .

For a vertex v ∈ H and non-negative integer k, let wk(v) denote the number of walks of 
length k in H starting at v. Observe that

(t − 1)ai−1 − ai = (t − 1)
∑

v∈V (H)

wi−1(v) −
∑

v∈V (H)

wi(v)

≤
∑

v∈H′

((t − 1) − dH(v)) (t − 1)i−1

≤ |H ′|(t − 2)(t − 1)i−1

≤ C2(t − 1)i−1

Thus,

ai ≥ (t − 1)ai−1 − C2(t − 1)i−1

≥ (t − 1)((t − 1)ai−2 − C2(t − 1)i−2) − C2(t − 1)i−1 by induction

= (t − 1)2ai−2 − 2C2(t − 1)i−1

≥ (t − 1)i−1a1 − (i − 1)C2(t − 1)i−1,

where the last inequality is obtained by repeatedly applying induction. �
Claim 5. a2 = (t − 1)a1.

Proof. Assume that a1 = 2
3 (t − 1)(n − 1) + A, and a2 = (t − 1)a1 − B, where A ∈

[−Cn1/2, Cn1/2] and 0 ≤ B ≤ C2. For i ≥ 2, let ci(G), ci(G0) denote the ci values of G
and G0 respectively. Observe that

c2(G) = −3
8

(
a1

n − 1

)2

+ 1
2

a2

n − 1

= (t − 1)2

6 − 3A2

8(n − 1)2 − B

2(n − 1) .
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It follows that

c2(G) − c2(G0) = − 3A2

8(n − 1)2 − B

2(n − 1) + O(n−2).

Moreover, by Claim 4, for all i ≥ 4, we have that

ci(G) − ci(G0) = O(n−1/2).

Thus

S(G) − S(G0) = 2 · c2(G) − c2(G0)√
n − 1

+ 2 · c4(G) − c4(G0)
(n − 1)3/2 + O((n − 1)−5/2)

≤ 2 ·
O

(
n−2)

− 3A2

8(n−1)2 − B
2(n−1)√

n − 1
+ 2 · O(n−1/2)

(n − 1)3/2 + O((n − 1)−5/2).

Since S(G) ≥ S(G0), this implies that A = O(n1/4), B = 0 and thus a2 = (t − 1)a1. �
Claim 6. H is the union of vertex disjoint Kts and isolated vertices.

Proof. Recall that a1 = 1′AH1 =
∑

v∈V (H) dH(v) = 2|E(H)|, and a2 = 1′A2
H1 =∑

v∈V (H) dH(v)2. By Claim 5, we have that

∑
v∈V (H)

dH(v)2 = (t − 1)
∑

v∈V (H)

dH(v).

Since dH(v) ≤ t − 1 for every v ∈ V (H), it follows that H is the disjoint union of (t − 1)-
regular graphs and isolated vertices. Let K be an arbitrary non-trivial component of H. 
We will show that K is a clique on t vertices.

We first claim that for any u, v ∈ V (K), N(u) ∩ N(v) �= ∅. Otherwise, pick a shortest 
path P between u and v in P . Observe that |V (P ) ∩N(u)| = |V (P ) ∩N(v)| = 1. Contract 
uPv into one vertex x (call the new graph G′). Note that x and N(u) ∪N(v) form a K1,t

in G′. Together with u0 which is adjacent to every vetex in K, we have a K2,t minor in 
G, giving a contradiction.

Next, we claim that for any u, v ∈ V (K) with uv /∈ E(K), |N(u) ∩ N(v)| ≥ t − 2. 
Otherwise, |N(u)\N(v)| ≥ 2 and |N(v)\N(u)| ≥ 2. Similar to before, pick an arbitrary 
vertex w ∈ N(u) ∩ N(v) and contract the path uwv, we then obtain a K1,t-minor in K, 
and thus a K2,t-minor in G. Similarly, for any u, v ∈ V (K) with uv ∈ E(K), we have 
|N(u) ∩ N(v)| ≥ t − 3. Moreover, note that for any u, v ∈ V (K), |N(u) ∩ N(v)| ≤ t − 2, 
since otherwise {u, v} and (N(u) ∩N(v)) ∪{u0} forms a K2,t in G, giving a contradiction. 
Hence, we have that for any u, v ∈ V (K) with uv /∈ E(K), |N(u) ∩ N(v)| = t − 2.

Now if K is not a clique on t vertices, then let u, v ∈ V (K) be two vertices in 
K such that uv /∈ E(K). By the above claim, there exists u′, v′ ∈ V (K) such that 
u′ ∈ N(u)\N(v) and v′ ∈ N(v)\N(u).
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We claim that u′v′ /∈ E(K). Indeed, if u′v′ ∈ E(K), contract v′u′ into w′. Then 
{u, v} ∪({w′, u0} ∪ (N(u) ∩ N(v))) is a K2,t minor in G, giving a contradiction. Now note 
that since u′v /∈ E(K), we have |N(u′) ∩ N(v)| = t − 2. It follows that N(u′) ∩ N(v) =
N(u) ∩ N(v). Similarly, N(v′) ∩ N(u) = N(u) ∩ N(v).

We claim that each vertex in N(u) ∩N(v) has exactly one non-neighbor in N(u) ∩N(v). 
Indeed, let w be an arbitrary vertex in N(u) ∩ N(v). Note that w cannot be adjacent 
to all other vertices in N(u) ∩ N(v); otherwise since w is adjacent to u′, u, and v′, we 
then have d(w) ≥ (t − 3) + 3 = t, contradicting that K is (t − 1)-regular. On the 
other hand, suppose w has at least two non-neighbors in N(u) ∩ N(v). Then it follows 
that |N(w) ∩ (N(u) ∩ N(v))| ≤ t − 2 − 3 = t − 5. Now observe that N(u) ∩ N(w) =
(N(w) ∩ N(u) ∩ N(v)) ∪ {u′}. It follows that |N(u) ∩ N(w)| ≤ t − 4, contradicting our 
claim before that any two adjacent vertices must have at least t − 3 common neighbors. 
Hence w has exactly one non-neighbor in N(u) ∩ N(v), say w′. But now observe that

N(w) ∩ N(w′) ⊇ (N(u) ∩ N(v)\{w, w′}) ∪ {u, u′, v, v′},

which implies that |N(w) ∩N(w′)| ≥ t −4 +4 = t, contradicting that K is (t −1)-regular. 
Hence by contradiction, K is a clique on t vertices. �

This completes the proof of Lemma 10. �
Proof of Theorem 1 . For sufficiently large n, let G be an extremal graph attaining the 
maximum spread among all n-vertex K2,t-minor-free graphs. By Lemma 10, we only 
need to consider graphs in the form of G� = K1 ∨ (�Kt ∪ (n − 1 − �t)P1). It also follows 
from Lemma 10 that for i ≥ 1,

ai = �t(t − 1)i. (17)

For each i ≥ 2, let ci(�) denote the ci value of G�. Plugging ai’s into Equations (12), 
(13), and (14), we get

c2(�) = −3
8

t2(t − 1)2

(n − 1)2 �2 + 1
2

t(t − 1)2

(n − 1) �, (18)

c4(�) = −105
128

t4(t − 1)4

(n − 1)4 �4 + 35
16

t3(t − 1)4

(n − 1)3 �3 − 15
8

t2(t − 1)4

(n − 1)2 �2 + 1
2

t(t − 1)4

(n − 1) �, (19)

c6(�) = −3003
1024

t6(t − 1)6

(n − 1)6 �6 + 3003
256

t5(t − 1)6

(n − 1)5 �5 − 1155
64

t4(t − 1)6

(n − 1)4 �4

+ 105
8

t3(t − 1)6

(n − 1)3 �3 − 35
8

t2(t − 1)6

(n − 1)2 �2 + 1
2

t(t − 1)6

(n − 1) �. (20)

Let �1 = 2(n−1)
3t , which is the (possibly real) argmax value of c2(�). Let �0 = � 2n+ξt

3t 	
be the target maximum integer point of S(G�). By Claim 2, we assume that � ∈ (�1 −
C

√
n − 1, �1 + C

√
n − 1). Let us compute S(G�+1) − S(G�). We have
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c2(� + 1) − c2(�) = −3
8

t2(t − 1)2

(n − 1)2 (2� + 1) + 1
2

t(t − 1)2

(n − 1) ,

c4(� + 1) − c4(�) = −105
128

t4(t − 1)4

(n − 1)4 (4�3 + 6�2 + 4� + 1) + 35
16

t3(t − 1)4

(n − 1)3 (3�2 + 3� + 1)

− 15
8

t2(t − 1)4

(n − 1)2 (2� + 1) + 1
2

t(t − 1)4

(n − 1) ,

c6(� + 1) − c6(�) = O

(
1

n − 1

)
.

Plugging � = �1 ·
(

1 + O
(

1√
n−1

))
into c4(� + 1) − c4(�), we have

c4(� + 1) − c4(�) = − 1
18

t(t − 1)4

n − 1 + O

(
1

(n − 1)3/2

)
.

Therefore, we have

S(G�+1) − S(G�) = 2(c2(� + 1) − c2(�))√
n − 1

+ 2(c4(� + 1) − c4(�))
(n − 1)3/2 + 2(c6(� + 1) − c6(�))

(n − 1)5/2

+ O

(
1

(n − 1)3

)

= 2t(t − 1)2

(n − 1)5/2

(
−3

8 t(2� + 1) + 1
2(n − 1) − (t − 1)2

18

)
+ O

(
1

(n − 1)3

)

= − 3t2(t − 1)2

2(n − 1)5/2

(
� + 1

2 − 2
3t

(n − 1) + 2(t − 1)2

27t

)
+ O

(
1

(n − 1)3

)
.

(21)

Case a: t ≥ 3 and t is odd. Recall that in this case we let

�0 =
⌊

2n + ξt

3t

⌋

where

ξt =
⌊

3t

2 − 2 − 2(t − 1)2

9

⌋
.

For � ≥ �0, we have

� + 1
2 − 2

3t
(n − 1) + 2(t − 1)2

27t
≥ �0 + 1

2 − 2
3t

(n − 1) + 2(t − 1)2

27t

≥ 2n + ξt −
(

1 − 1
)

+ 1 − 2(n − 1) + 2(t − 1)2
3t 3t 2 3t 27t
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≥ 1
3t

(
ξt + 1 −

(
3t

2 − 2 − 2(t − 1)2

9

))

> 0.

Plugging it into Equation (21), we have that for � ≥ �0,

S(G�+1) − S(G�) ≤ −
t(t − 1)2

(
ξt + 1 −

(
3t
2 − 2 − 2(t−1)2

9 )
))

2(n − 1)5/2 + O

(
1

(n − 1)3

)
< 0.

When � ≤ �0 − 1, we have

� + 1
2 − 2

3t
(n − 1) + 2(t − 1)2

27t
≤ �0 − 1 + 1

2 − 2
3t

(n − 1) + 2(t − 1)2

27t

≤ 2n + ξt

3t
− 1 + 1

2 − 2(n − 1)
3t

+ 2(t − 1)2

27t

≤ 1
3t

(
ξt −

(
3t

2 − 2 − 2(t − 1)2

9

))

< 0.

At the last step, we observe that 3t
2 − 2 − 2(t−1)2

9 is not an integer for odd t. Thus, the 
inequality is strict. Therefore, for � ≤ �0 − 1,

S(G�+1) − S(G�) ≥
t(t − 1)2

(
−ηt +

(
3t
4 − 2 − 2(t−1)2

9 )
))

2(n − 1)5/2 + O

(
1

(n − 1)3

)
> 0.

Therefore, S(G�) reaches the unique maximum at �0 for sufficiently large n. This 
completes the case for odd t.

Case b: t ≥ 2 even. Let

�0 =
⌊

n + ηt

3t/2

⌋

where

ηt =
⌊

3t

4 − 1 − (t − 1)2

9

⌋
.

For � ≥ �0, we have

� + 1
2 − 2

3t
(n − 1) + 2(t − 1)2

27t
≥ �0 + 1

2 − 2
3t

(n − 1) + 2(t − 1)2

27t

≥ n + ηt −
(

1 − 1
)

+ 1 − 2(n − 1) + 2(t − 1)2
3t/2 3t/2 2 3t 27t
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≥ 2
3t

(
ηt + 1 −

(
3t

4 − 1 − (t − 1)2

9

))

> 0.

Plugging it into Equation (21), we have that for � ≥ �0,

S(G�+1) − S(G�) ≤ −
t(t − 1)2

(
ηt + 1 −

(
3t
4 − 1 − (t−1)2

9

))
2(n − 1)5/2 + O

(
1

(n − 1)3

)
< 0.

When � ≤ �0 − 1, we have

� + 1
2 − 2

3t
(n − 1) + 2(t − 1)2

27t
≤ �0 − 1 + 1

2 − 2
3t

(n − 1) + 2(t − 1)2

27t

≤ ηt

3t/2 − 1 + 1
2 + 2

3t
+ 2(t − 1)2

27t

≤ 2
3t

(
ηt −

(
3t

4 − 1 − (t − 1)2

9

))

≤ 0. (22)

If 2
3t (n + ηt) is not an integer, we have

S(G�+1) − S(G�) >
t(t − 1)2

(
−ηt +

(
3t
4 − 1 − (t−1)2

9

))
2(n − 1)5/2 + O

(
1

(n − 1)3

)
≥ 0.

Therefore �0 is the unique maximum point of S(G�).
Now we assume 2

3t (n + ηt) is an integer. Observe that 3t
4 − 1 − (t−1)2

9 is an integer if 
and only if t is divisible by 4 and t − 1 is divisible by 3. Therefore, the inequality (22) is 
strict except for the case when t ≡ 4 mod 12 and � = �0 − 1. It implies that for t �≡ 4
mod 12,

S(G�+1) − S(G�) ≥
t(t − 1)2

(
−ηt +

(
3t
4 − 1 − (t−1)2

9

))
2(n − 1)5/2 + O

(
1

(n − 1)3

)
> 0.

Thus for t �≡ 4 mod 12, S(G�) reaches the unique maximum at �0 =
⌊

2n+ξt

3t

⌋
for suffi-

ciently large n.
Now we consider the remaining case that t ≡ 4 (mod 12) and 2

3t (n + ηt) is an integer. 
In this case, S(G�) can only achieve the maximum at �0, or �0 − 1, or both. In fact, we 
claim both of them are maximum points.

Let k = (t − 4)/12 and �0 = 2
3t (n + ηt). Note that by our assumption k and �0 are 

both integers. Rearranging the terms, we have
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t = 12k + 4, (23)

ηt = 1 + k − 16k2, (24)

n = 6(3k + 1)�0 + 16k2 − k − 1. (25)

Now we compute the spread of G� where � = �0 or �0 − 1. By Lemma 8, λ1 and λn of 
G� satisfies the equation

λ2 = (n − 1) +
∞∑

k=1

λ−k1′Ak
H1

= (n − 1) +
∞∑

k=1

λ−k�t(t − 1)k

= (n − 1) + �t
(t − 1)/λ

1 − (t − 1)/λ

= (n − 1) + �t(t − 1)
λ − (t − 1) .

Simplifying it, we get

λ3 − (t − 1)λ2 − (n − 1)λ + (t − 1)(n − 1 − �t) = 0. (26)

Let us define the spread of a polynomial φ, denoted by S(φ), as the difference of largest 
root and the smallest root. Thus, we have

S(G�) = S(φ�),

where φ� is defined by the left hand side of Equation (26). Let λ = x + t−1
3 . The cubic 

equation (26) can be written as

x3 − 1
3(n+ t2 −2t−2)x+ 1

27(−27lt2 −2t3 +27lt+18nt+6t2 −18n−24t+20) = 0. (27)

Now plugging � = �0, t as in Equation (23), and n as in Equation (25), into Equation 
(27), we get

x3 − (6(3k + 1)�0 + 64k2 + 23k + 1)x − (72k2 + 42k + 6) = 0. (28)

Similarly, plugging � = �0 − 1, t as in Equation (23), and n as in Equation (25), into 
Equation (27), we get

x3 − (6(3k + 1)�0 + 64k2 + 23k + 1)x + (72k2 + 42k + 6) = 0. (29)
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Let the φ1 (or φ2) denote the cubic polynomial in the left hand of Equation (28) (or 
Equation (29) respectively). Observe that φ2(x) = −φ1(−x). If φ1 has three real roots 
x1 ≤ x2 ≤ x3, then φ2 has three real roots −x3 ≤ −x2 ≤ −x1. Thus

S(φ1) = x3 − x1 = (−x1) − (−x3) = S(φ2).

It then follows that

S(G�0) = S(φ�0) = S(φ1) = S(φ2) = S(φ�0−1) = S(G�0−1).

Therefore both G�0 and G�0−1 are extremal graphs for this special case. This completes 
the proof of Theorem 1. �
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