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1. Introduction

When conducting a real-time hybrid simulation (RTHS), a structural system is discretized into an
experimental and numerical substructure, where the former is used to physically model components
for which no accurate numerical models exist, and the latter to model the remaining parts of the
system for which accurate numerical models can be used. The substructures lead to the defining of
degrees of fredome (DOF) associated with the equations of motion for the system. In a RTHS the
equations of motion are integrated to obtain the displacement commands for the simulation that lead
to the state determination of a structural system, including the determination of the restoring forces,
velocities, and accelerations. For each time step, the displacement compatibility between the analytical
and experimental substructure is enforced in real-time to ensure that the rate of loading is maintained
in real time. As indicated in Fig. 1, the simulation coordinator integrates the equations of motion and
the target displacement commands x* and x° are sent to the analytical and experimental substructures,
respectively. The measured restoring forces R* and R® from the analytical and experimental sub-
structures, respectively, are then obtained and used to complete the integration of the equations of
motion for the given time step. This process is then repeated for each subsequent time step.

The Central Difference (CD) algorithm is a popular method for integrating the equations of motion
in many applications such as wave propagation problems (Noh and Bathe 2013). The method is
advantageous because it is computational efficient and the solution is determined explicitly, even for
problems that exhibit nonlinear behavior. Thus, no iterations are required to satisfy equilibrium at the
end of the integration time step. Another feature of the algorithm is that the calculation of the velocity
and acceleration at the end of an integration time step is optional because the recursive relation of the
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Figure 1. Representative RTHS of a 40-story tall building.

displacement depends only on the displacement of the previous two-time steps. These attributes are
appealing when applied to RTHS. However, the velocity is implicit in nature since at time step i it is
a function of the displacement at time step i +1 (see Eq. (4a,b)). Thus, to maintain the explicit form of
the CD algorithm for both velocity and displacement, modifications are required when it is applied to
RTHS. Wu et al. (2005) developed a modification of the CD algorithm to overcome this barrier,
thereby enabling it to be applied to RTHS. Stability and accuracy analysis of the modified CD
algorithm by Wu et al. (2005) found that the modified CD algorithm suffers a deterioration in its
stability as the damping ratio of the experimental substructure increases. Wu et al. (2005) recom-
mended that the algorithm was most suitable for an RTHS of systems that have a lightly damped
experimental substructure and recomended that small time steps be used to ensure accuracy.

The CD algorithm, however, is only conditionally stable for linear and nonlinear problems (Chopra
2012), where the maximum permissible time step size to maintain numerical stability is dependent on
the highest frequency of the system. It is therefore computationally expensive to integrate the
equations of motion via the CD algorithm if the structural system possesses many DOFs, for a small
time step is required. In a RTHS, the minimum time step is dictated by the servo controller’s clock
speed, digital controllers typically have a 1024 Hz clock speed and therefore restrict the minimum time
step to be 1/1024 sec. For a RTHS’s numerical substructure with many DOFs, the choice of the
integration time step when using the CD algorithm can be governed by numerical stability rather
than the required accuracy of the solution. The computational cost associated with a small time step
can thus hinder the implementation of the CD algorithm for RTHS with large structural models.

Unconditionally stable algorithms assure a numerically stable solution of the integration
process, irrespective of the selected integration time step. These types of algorithms offer the
advantage that the selection of the time step is governed by the required accuracy of the
solution instead of the numerical stability requirement (Hilber, Hughes, and Taylor 1977).
This can be beneficial since the computational effort for integrating the equations of motion
can be significantly reduced when a larger time step is used. Most well-known unconditionally
stable algorithms are implicit in their formulation and require iterations to guarantee equili-
brium at the end of each integration time step when solving nonlinear problems (Chung and
Hulbert 1993; Hilber, Hughes, and Taylor 1977; Newmark 1959). Iterating in a RTHS is not
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conducive, since the number of iterations needed to achieve equilibrium is not deterministic
and can extend beyond the time allocated for such a process (which is a fraction of the time
step for the simulation). Jung et al. (2007) developed an implicit time-integration method for
real-time hybrid simulation, where a nonlinear solution strategy that combines Newton-type
iteration with sub-increments based on the HHT-a method (Hilber, Hughes, and Taylor
1977). Chen and Ricles (2012) however determined using discrete control theory that the
algorithm proposed by Jung et al. (2007) is only conditionally stable for nonlinear softening or
hardening structures. Wu et al. (2007) proposed a real-time sub-structuring method called the
equivalent force control (EFC) method that unified the effective force and hybrid simulation
techniques in order to eliminate the numerical iteration process in implicit time integration.
One of the important issues that Wu et al. (2007) noted is that restoring force measurement
errors in the experimental substructure is an important issue for EFC. Noise resulting from
measurement errors can develop that can affect the accuracy of the test results, depending on
the contribution of the measured force to the total equivalent force. Wu et al. (2007)
recommended that this phenomenon required further evaluation.

Conversely, as noted above, explicit integration algorithms do not require iterations, mak-
ing them favorable when performing RTHS of nonlinear systems. Among the first uncondi-
tionally stable explicit algorithms is that developed by Chang for pseudo dynamic testing
(Chang 2002). Chen and Ricles (2008a) later developed the unconditionally stable explicit CR
algorithm using discrete control theory. Both Chang’s and the CR algorithm are second order
accurate, possess no numerical damping, and are only conditionally stable for hardening type
nonlinear problems. Unconditionally stable explicit algorithms with controllable numerical
damping have been developed, including the KR-a method by Kolay and Ricles (2014) and
the algorithm developed by Chang (2014). The modified KR-a method was then proposed to
improve the stability and the overshoot characteristics of the KR-a method (Kolay and Ricles
2019).

Another disadvantage of the CD algorithm is the presence of high frequency spurious oscillations
that can appear in the solution (Noh and Bathe 2013). These oscillations are caused by various
phenomena, including numerical rounding error, nonlinearities that can occur in the system within
the time step (e.g. inelastic material response), and the inaccurate integration of the higher modes of
vibration. One of the solutions to the spurious oscillations problem is to use numerical damping that
can suppress these high frequency oscillations while leaving the lower modes of interest unaffected
(Hilber, Hughes, and Taylor 1977). However, the CD algorithm is not dissipative, and these spurious
oscillations can therefore be inherent in the solutions obtained using the algorithm.

In this paper, the conventional CD algorithm characteristics are reviewed using discrete control
theory, which is then used to formulate a new algorithm that overcomes the disadvantages mentioned
above. A modified version of the conventional CD algorithm (referred to as the Model-based Central
Difference, MCD, algorithm) is shown to be unconditionally stable for linear and softening-type
nonlinear problems. A single free parameter for controllable numerical damping is incorporated
into the MCD algorithm to control spurious high-frequency oscillations. Numerical analyses of
systems are performed to demonstrate the algorithm’s characteristics, and the results are compared
to solutions based on other algorithms and exact solutions to verify the MCD algorithm. To
demonstrate the robustness and computational efficiency of the MCD algorithm for a RTHS, this
paper concludes with a 3D RTHS of a tall building subjected to bidirectional earthquake ground
motions, where the structure has a vast number of DOFs and undergoes nonlinear behavior during the
simulation.

2. Analysis of Conventional CD Algorithm Using Discrete Control Theory

In control theory, the z-transform is used to find the transfer function of a discrete system given its
difference equation. The transfer function of a linear system is defined as the ratio between the output



4 (&) S.AL-SUBAIHAWI ET AL.

to the input of the system. The z-transform of a discrete time signal is mathematically defined as
follows:

X(z) = 32 x(k)z (1)

where x(k) is a discrete sample of the continuous function x(t) at discrete points k € {0, 1,..00} in
time t. For example, the difference equation that describes the relation between the output y(k) and
the input x(k) of a system is given as (Franklin, Powell, and Emami 2009):

y(k) = —ap(k — 1) —ayy(k — 2) + box(k) + byx(k — 1) + by (k — 2) (2)

where a;, ay, by, by, and b, are constant coefficients. Taking the z-transform of Eq. (2) using the
definition described in Eq. (1) and then solving for the transfer function (also known as the discrete
transfer function) defined as G(z) = Y(z)/X(z) results in

Y(Z) B b022 + b]Z —+ b2
X(z) Z2tazta

G(z) = 3)

where Y(z) and X(z) are the z-transforms of y(k) and x(k).

The transfer function of a system provides valuable information about its behavior (Franklin,
Powell, and Emami 2009). Specifically, the solution of the roots of the polynomial equation in the
denominator of the transfer function when equated to zero provides the poles of the transfer function.
The location of the poles in the complex z-plane not only effects how the system behaves due to an
external disturbance, but also the tendency of the system to be stable. The roots to the numerator of the
transfer function that make it equal to zero are called the zeros of the transfer function.

Figure 2 shows the expected response of a system based on the location of the poles in the complex
z-plane (Franklin, Powell, and Emami 2009) (only the upper part of the plane is shown in order to to
conserve space in the figure). Three important characteristics are shown in Fig. 2 (via the use of
displacement time history x(t) plots): (1) the response of the poles outside the unit circle becomes
unbounded (indicating instability); (2) the response of the poles on the unit circle is stable and
possesses no damping; and (3) the response of the poles inside the unit circle is stable and possesses
damping. Inside the unit circle, the magnitude of damping increases as the distance between the pole
location and the origin is reduced.
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Figure 2. System response based on the location of the poles in the complex z-plane (only the upper part of the plane is shown in
order to conserve space in the figure).
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The procedure explained above can be used to obtain the discrete transfer function for the
conventional CD algorithm (Chen and Ricles 2008a) and provide insight into the characteristics of
the CD algorithm. The velocity and acceleration difference equations of the CD algorithm are given by
Eq. (4a) and (5a). Taking the z-transform of these difference equations leads to the expressions in Egs.
(4b) and (5b).

2
1 — Xio -1
Velocity: v; = XIHZTtXl, V(z) = (Z-1) X(z) (4a,b)

. Xit1 — 2Xi + Xi_
Acceleration: a; = —— Atzl 2LA(z) =

(22 —2z+1)
Atz

X(2) (52,b)

Egs. (4b) and (5b) can be substituted into the equation of motion for a single degree of freedom
(SDOF) system (Eq. (6a), where Eq. (6b) is the associated z-transform form):

aAt + 208Aty; + Q%x; = A8, A(2) A 4 20Q8AtV (z) + Q*X(z) = F(z) At (6a,b)

where f; is the forcing function at time i divided by the mass m. Substituting Eq. 4(b) and 5(b) into 6(b)
leads to the discrete transfer function G(z) = X(z)/F(z):

_X(z) _ At’z 7

G(z) F(z) (1+Q82+ (Q*—2)z—Qf+1

In Egs. (6) and (7), Q = w,At, where w, is the undamped natural frequency, At is the integration
time step, and & is the viscous damping ratio. Eq. (7) represents an open loop system with no feedback
and is therefore an open loop transfer function. The solution for z of the polynomial of the numerator
of the transfer function when set equal to zero is associated with the open loop zero(s), while that of the
denominator is associated with the open loop pole(s). The denominator of Eq. (7) is known as the
characteristic equation (Franklin, Powell, and Emami 2009). By equating the characteristic equation to
zero and subsequently solving for the two poles z; , gives the open loop poles when Q = 0 and the
open loop zeros when Q = oo, where:

—Q? 42+ \/Q4+4QZ(22 —1)

20842 ®

Z1p =

The location of the poles z; , of the characteristic equation in the complex plane start from the open
loop poles and terminate at the open loop zeros, unless an instability exists as () is increased from zero
to infinity. Figure 3 shows the location of the poles z; ; as Q) increases for the case when § = 0 (referred
as the root locus plot). The two root loci branches in Fig. 3 both begin at the open loop poles and travel
around the non-dissipative region of the complex z-plane (i.e., along the circumference of the unit
circle) indicating that the CD algorithm is non-dissipative. One of the branches terminates at the open
loop zero while the other branch leaves the unit circle, as seen in Fig. 3. The latter is an indication of
instability. The value of Q that induces instability can be found by setting z; = —1 in Eq. (8) and
solving for ) which leads to Q.. = 2. This result agrees with the well-known stability limit of w,At = 2
for the CD algorithm.

Thus, the well-known characteristics for the CD algorithm of being non-dissipative and condi-
tionally stable are confirmed by the root loci in Fig. 3. To obtain a dissipative, unconditional stable
form of the CD algorithm, the poles of the algorithm must migrate inwards and remain within the unit
circle. In the next section of this paper the MCD is developed based on this requirement.
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Figure 3. Closed loop poles of the conventional central difference algorithm transfer function.

3. Development of the MCD Algorithm
3.1. SDOF Systems

To overcome the shortcomings of the CD algorithm, the following two characteristics of the MCD
algorithm are necessary: (1) unconditional stability; and (2) providing controlled numerical damping
to remove oscillatory behavior at high frequencies (i.e., dissipative). The MCD algorithm is developed
using control theory where a controller and compensator are incorporated into the design of the
algorithm to enable it to possess these required characteristics. The formulation is based on the
following weighted CD equations for velocity and acceleration:

(L= y)xien +yixi — (1= v,)xi1 — vp%i
2At ’
(1 - Yl)xH-l + VX — 2% + (1 - Yz)xi—l + VX
At2y,

Vi =

i =

(9a,b)

In Eq. (9) the parameters y,, Yy, and y, are feedback gains for the controller and compensator that
enables the new algorithm to have the above characteristics. Taking the z-transform of Eq. (9) and
substituting the result into the equation of motion leads to the following transfer func-
tion G(z) = X(z)/F(z)

X(z) bz
F(z) apz® +aiz+a,

(10)

where ag, a;, a5, and b; are constant coefficients and defined in Table 1. The feedback gains y;, y,, and
Yy, that appear in the denominator (i.e., characteristic equation) of the transfer function control the
location of the poles in the complex z-plane.

Table 1. Coefficients of the MCD transfer function.

Coefficient Value

by APy,

ap —Q&y1y; +Q8y; —y; +1

a Q&yqys — Qy,ys + QzV3 +y+y,—2

a Qbyys —Qlys —y, +1
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Unconditional stability of the MCD algorithm is achieved through the controller gain y, that makes
the poles of the algorithm remain on the unit circle VOR > 0. In addition, y, helps to improve the
overshoot properties of the MCD, which are presented later in the paper. The value of y, is obtained by
matching the poles of the transfer function for the non-dissipative form of the MCD algorithm to that
of the unconditionally stable Newmark Constant Average Acceleration (CAA) algorithm (Newmark
1959). A similar pole matching technique was previously used in developing other integration
algorithms such as the CR and KR-a methods (Chen and Ricles 2008a; Kolay and Ricles 2014). The
compensator gains y; and y, are not used in this stage of the controller design and are temporarily set
to zero. The poles for the non-dissipative unconditionally stable CAA are

— 2 +44+4/Q% - 02

v/ = 11
CAAL2 0?1 40E+ 4 (11)

while those of the non-dissipative form of the MCD algorithm are

—Qy; +2£ \/Q4Y§ + 402&2\(% —4Q%y;,
: 12
ZMCDnonDisl,2 ZQEY3 12 ( )
and the result for y, is therefore
4

= 13
Y3 QZ 14 ( )
The root loci of the MCD transfer function with y, = y,=0 (i.e., Eq. (12)) end in the
oscillatory region of the complex z-plane for the Qlim ZMcD nonbis12 = —1. The compensator is

now incorporated into the derivation to eliminate the oscillatory behavior at high frequencies,
making use of the feedback gains y, and y,. The compensator adds two open loop zeros to the
MCD transfer function located in the dissipative region of the complex z-plane at a distance of
p,, from the origin, where the root loci terminate when Q — co. p_ is analogous to the
spectral radius of the amplification matrix at high frequencies (i.e., when Q — o0), where the
spectral radius p is defined as the distance of the pole from the origin in the complex z-plane.

The compensator feedback gains y, and y, are found by matching the poles of the
dissipative form of the MCD algorithm (i.e., when y, and y, are non-zero values) to
a desired set of poles that are selected using discrete control theory to satisfy the following
conditions: (1) convergence of %13})2 =T =1, where T is the sampling period; (2) the root

loci branches end in the dissipative region of the complex z-plane at the two open loop zeros
of the MCD algorithm located at the distance p_ € [0, 1] from the origin; and (3) the root loci
branches travel within the unit circle ’zl7z| < 1,VQ € R > 0. The resulting two poles of the
MCD are a function of y;, y,, and y, and equal to

axye (14)

ZMCD12 =
C3

where the coefficients c;, ¢y, and c; are given in Table 2. The set of desired poles having
dissipative characteristics are derived in the Appendix based on satisfying the above condi-
tions, and equal to

di £ Vd,

& (15)

Z1p =

where the coefficients d;, d,, and ds are given in Table 2. Equating the two sets of poles to each other
leads to
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Table 2. Coefficients for the poles of zycp1 > and z; ;.

Coefficient Values
G Q&yrys — Q&yyys + Qys +vr +y, —2
S (@ +208(y; —v2) + € +v2 — D)XV + 2001 + v, — 2)(Q+ £ — v))vs + (n — 1)’
QG 2(Qy,y3 — Q8ys +y; — 1)
ds Poo + 1
d, (0 + & —1)p2 + (-2 +26 - 2)p,, + & + Q¢ — 1)
ds O+ Q6P + 1) +po + 1
- (P — 3)? b= (3p,, — 1) 16)
e )@ a0 4)) T\ o) (07 a0E )

The two gains y,and vy, are functions of p__ € [0, 1] due to setting the poles equal to +,/=p__
as ) — o0, (see the Appendix). All of the feedback gains y,,y, and y, represent integration
parameters and depend on the model properties of the dynamic system, and therefore the MCD
algorithm is a model-based integration algorithm (Chang 2002, 2014; Chen and Ricles 2008a;
Kolay and Ricles 2014).

3.2. Multi-Degree of Freedom (MDOF) Systems

For a multi-degree of freedom (MDOF) system, the algorithm is described by the following equations:

Vi = [2At}*1 [(I - V1)Xi+1 T yiX — (I - Yz)xifl - szi]’

t (17a.b)
a = [ACy,] 7 [(T— )%+ yy% — 25+ (I )% + %]

Moreover, the equations of motion are
Mai + CVi + KXi = Fi (18)

where items in bold are matrices or vectors, and M, C, and K are the system’s mass, damping, and
stiffness matrices, respectively, of dimension NDOF x NDOF for an MDOF system, where NDOF is
the number of DOF. Considering the damping matrix C to be classical and using the orthogonality of
modes, Egs. (17) and (18) can be written in modal coordinates:

Y= A7 (1= y)) Yir + )Y — (1 - y3)Yii — v3Yi],
Vi = (A% (1= yi) Yir + VY —2Yi + (T - y3) Yooy + VY] (19a,b)

where
M*Y; + C*Y; + K'Y, = ®TF, (20)

In the aforementioned equations, ® = [¢,¢,...¢,] is the mode shape matrix, and ¢, the eigen-
vector for the i™ mode (i€ 1...n); Y,Y,Y are the complete set of displacement, velocity, and
accelerations in modal coordinates, respectively, which are related to physical coordinates by
x = DY, etc; M* = CI)TM(I), C' = (DTC(I), K* = ®"K® are the modal diagonal mass, damping, and
stiffness matrices, respectively; and yi = ®Ty,®,y; = ®Ty,® andy; = ®Ty,® are diagonal
matrices of the integration parameter. Egs. (19) and (20) each represent a set of NDOF uncoupled
equations. The integration parameters for any mode j can be determined based on the integration
parameters for an SDOF system presented in Eq. (13) and (16), where:
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(P —3)9 (P — 3)K7AE
i = = (21)
(P + 1) (0} +405 +4) ) (pe +1) (KjAC + 2/ At + 4\ )

(3P — 1) (3p, — 1)KAE
Va5 = = (22)
Do\ ) (03405 - 4) ) (o +1)(KAR 4+ 207 A - aM))
4 4M*
Y;,j = : (23)

Q2 +4 T KAC +4M

where Mj*,Cj* = ZM; w;§;, and K%* = Mj* wjz are the modal mass, damping coefficient, and stiffness
coefficient, respectively, for the j" mode. The integration parameters in modal coordinates are the
diagonal terms of the following matrices:

¥ = (p, = 3) [(po + 1)[K*AR + 2C"At + 4M*]] 'K AL (24)
s = (3p — 1) [(ps + 1) [-K*AE +2C* At — 4M*]] 'K AL (25)
y; = [K*AC + 4M*] ' 4M* (26)

Pre- and post-multiplying the aforementioned equations by (<I:'T)_1 and @', respectively, and
using the relationships among the integration parameters in the physical and modal coordinate
systems as presented earlier, the integration parameters in physical coordinates can be determined as

Y, = (@) 'yi@ ! = [(p + 1) (KAE + 2CAt + 4M)] ' ((p,, — 3)KAL) 27)
Y, = (@) 'y;07! = [(p. + 1) (—KAE + 2CAt — 4M)] ' ((3p,, — 1)KAE) (28)
s = (®7) 'y;@ ! = [KA? + 4M]'4M (29)

4. Characteristics of the MCD Integration Algorithm

The integration parameters y,, Y,, and y, are a function of one free parameter p_ € [0,1], and
therefore the MCD algorithm is a one parameter model-based algorithm. Figure 4 illustrates that
the MCD algorithm is unconditionally stable for linear type problems with p__ € [0, 1]. Observe in
Fig. 4a that in the limit Q — oo, and p__ € [0, 1], that the MCD is mapped into € [0, /2], where

is defined below in Eq. (31b). The value of p__ is equated to (p*oo)2 allowing the expression p_ to then
used to aesthetically present Fig. 4 with evenly spaced spectral radii.The root loci presented in Fig. 4a
show that: (1) the poles of the MCD transfer function are moving either on or within the unit circle, (2)
that the poles are complex conjugate pairs, and (3) that the spectral radius (Fig. 4b) of the MCD poles
is always less than unity. As noted previously, the spectral radius is defined as the distance from the
origin to the location of the pole in the complex z-plane, where a value larger than unity indicates an
instability.

Numerical dispersion and energy dissipation of an integration algorithm are generally measured in
terms of relative period error (PE) and equivalent damping ratio &, respectively, where:
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Figure 4. Characteristics of the MCD algorithm: (a) root loci branches; and, (b) spectral radius.

(30)

where @ is defined in Eq. (31b). The equivalent damping ratio £ and apparent frequency Q for an
integration algorithm is determined from the position of the poles in the complex z-plane,

E=— %ln(az +&),0=0wAt= (1 — §2> 70‘5tan’1 (2) (31a,b)

where 0 =Re{z;,} and e =1Im{z, ,}, and z;, are the pair of complex conjugate poles. The PE and
equivalent damping ratio € are plotted in Fig. 5a,b, respectively, for various values of P> and the
PE compared to the Generalized-a method (G-a) method (Chung and Hulbert 1993). The G-a
method is an implicit method that has controlled numerical damping, and is often used to
compare with the controlled numerical damping properties of other algorithms. As illustrated in
Fig. 5b maximum numerical damping for the higher frequencies is achieved when p_ = 0, while
P, = 1 changes the MCD algorithm into a non-dissipative scheme. Like the G-a method, it is seen
in Fig. 5 that the PE and £ are minimal at the lower frequencies for the MCD algorithm, before

25 : 100
Solid (MCD) ,
Dashed (G-a) , (b)
P =10 80
= 60
= = P = 0.25
L 7
o 40+
Peo = 0.5
RTHS
20+
range Pw = 0.75
O pDO o
10° 102 10" 10° 102 10*

Figure 5. Characteristics of the MCD algorithm: (a) period elongation; and, (b) equivalent damping ratio.
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they increase as Q) increases. Both the G-a and the MCD algorithms converge asymptotically to
the same amount of numerical damping at the high frequencies as shown in Fig. 5b. The MCD
algorithm experiences period elongation as Q) increases contrary to the conventional CD scheme,
which exhibits period shortening at high Q values. While the PE and & are minimal at the lower
frequencies for the MCD algorithm, they are somewhat larger than that of the G-a algorithm. An
exception is when p_ = 0 where it is found that the period elongation for the MCD algorithm is
lower compared to the Generalized-a algorithm. The motivation for developing the MCD was to
enable RTHS of systems with a large number of DOFs. For RTHS the time steps that are selected
are a multiple of the clock speed of the servo controller, and typically range from At=1/1024 sec
to 6/1024 sec (Al-Subaihawi 2023; Kolay et al. 2015). Hence, Q for RTHS typically is less than 0.02,
where as shown in Fig. 5, the value of £ is extremely small.

4.1. Special Starting Procedure

Like the CD algorithm, the MCD is not a self-starting algorithm. Considering a SDOF system, x_;
needs to be calculated based on the initial conditions x¢,vy and f;. Setting i = 0 and solving for x; from
Eq. (9a) and substituting the result into Eq. (9b) leads to the following expression for x_;:

2At —At?
X_1 = Xo + Gvo + Hag, where G = ,H= Y3 (32a,b,c¢,d)
2y, —2 2y, — 2
The initial acceleration a, is obtained directly from the equation of motion, Eq. 6(a), with
i=0. The quantity x_; in Eq. (32a) is identical to that of the conventional CD algorithm
when Q =0, since glllmo Y, = }zm}) Y, =0, and (l)m}) y; = 1. The denominator of Eq. (32b-c) is

invertible for any underdamped system with a finite value of Q. If the value for Q is infinite,
then the denominator is non-invertible when p_ = 0, hence caution must be used to avoid
assigning p_ = 0 for the MCD. The determination of the displacement vector x_; for MDOF
systems is similar to Eq. (32), where G and H are replaced with their matrix equivalents with
Y, and y; determined from Egs. (28) and (29).

4.2. Stability for Linear Systems

The unconditional stability of integration algorithms can be assessed by examining the
eigenvalues of the amplification matrix (Hilber 1976) of a SDOF system subjected to free
vibration. The spectral radius p of the eigenvalues A needs to satisfy the requirement that the
spectral radius p = max(|A|) <1 in order to achieve unconditional stability. This section
presents the amplification matrix of the MCD algorithm and shows that the algorithm is
unconditionally stable for linear problems.

The recurrence relationship of the MCD algorithm for a SDOF system is expressed by Eq.
(33), where A is the amplification matrix of the MCD algorithm, as given by Eq. (34a). The
recurrence relationship for the displacement x;;; is obtained by substituting the acceleration
and velocity from Eq. (9) into the equation of motion, Eq. 6(a), and solving for the displace-
ment Xji.

[XH-lXi]T = A[XiXi—l]T + Lf; (33)

where

(34a,b)

2p.+2 —Q%p +QEp +QE—p. -1 (p +1)AE
A = | Q?+Qfp +QE+p +1 Q2 4+Qp_ +QE+p_+1 ,L = | O°+0Q8 +0%+p +1
1 0 0
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The free vibration problem is associated with setting the forcing function f; equal to 0 and
specifying the initial displacement. The eigenvalues A of A are the solution of the characteristic
equation, Eq. (35), resulting from the eigenvalue problem applied to the amplification matrix. The
eigenvalues are equivalent to the poles of the transfer function of the algorithm.

AZ—F( _zpoo —2 >A_ <_szoo+ﬂzpoc+ﬂﬁ_poo — 1) —0 (35)
QP+ Qfp  +QE+p +1 QP+ Qfp, +QE+p+1

The solution for the eigenvalues is given by Eq. (36):

b1+ \/—Q4poc + O (E—Ep2 ) + Q7 (Ep2 + 28, + & —p2 —2p, — 1)
QP+ Qfp +QE+p, +1

hp = (36)

Taking the limits of Eq. (36) as O — 0 and Q — oo leads to
(l)iLT})(/ll,z) =1 andéijfolo(ll,z) =+ P (37a,b)

Eq. (37) reveals that the eigenvalues start on the positive real axis with a value of 1 and end on
the imaginary axis of the complex z-plane at +,/=p_, as expected and consistent with Fig. 4a.
While it is shown that the eigenvalues of the MCD algorithm’s transfer function start and end in
the stable region of the complex z-plane, it is also of interest to investigate the stability in the
intermediate range of Q € (0...00). This is accomplished by examining the maximum value for
the spectral radius of the MCD algorithm’s amplification matrix, which can be obtained by setting
the partial derivatives of |)t172| from Eq. (36) with respect to Q and § equal to zero. The resulting
simultaneous equations have a solution at Q =0,§ =0 which satisfies the requirement
VQ,VE € R >0 and Vp_ € [0,1]. Substituting O =0, = 0 into Eq. (36) with p__ =1 leads to
a maximum value of the spectral radius p equal to unity. These results are consistent with the root
locus plot shown in Fig. 4a and prove the unconditional stability of the MCD algorithm for linear
problems.

4.3. Stability for Nonlinear Systems

The root locus method is utilized to investigate the stability of the MCD for nonlinear systems (Chen
and Ricles 2008b). Discussion is limited to SDOF systems because the root locus method is applicable
to Single-Input Single-Output (SISO) systems. Considering the equation of motion at time step i

ma; + cv; = p; — kx; =1 (38)

where the term p, — kx; is defined as ;. In the above equation of motion, m, ¢, and p; are the mass,
damping coefficient, and load at time step i, respectively, of the SDOF. The nonlinear stiffness between
integration time steps is linearized to k, where k; is the tangent stiffness matrix at time step i, in order
to perform the root locus analysis where the incremental equation of motion becomes

mAa; + cAv; = Ap; — kiAx; = Al (39)

where Aa; = a; —ai_1, Av; =V; — vi_1, AX; = X; — X;_1, and Ap, = p; — p;_;- The block diagram of
the MCD algorithm for nonlinear problems applied to the SDOF is shown in Fig. 6 where
o0
Fz) = Y p(k)z™ Gi(z) = (1 —z"), Gs(z) = (1 —z!)"". The block diagram shown in Fig. 6
k=—00

is a closed loop system due to the feedback associated with the gain of k.

The open loop transfer function G,(z) is obtained by taking the z-transform of Eq. (9), substituting
the results into the incremental equation of motion, and solving for the resulting transfer function
Gz (z) = A X(z)/A L(z), whereby:
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F(2) AX(2) 5| X(2)

G3(z) ——>

G1(2) G2(2)

Figure 6. Closed loop block diagram of the MCD algorithm for nonlinear problems of an SDOF system.

Table 3. Coefficients of G,(z) transfer function.

Coefficient Value
hy 2(po + 1AL
Po 2m(p,, + 1) + cbt(p,, + 1) + 2koAt?
Py —4m(py, + 1) — 2koAt (0, + 1)
[oN 2m(p,, + 1) — cAt(p,, + 1) + 2koAt?p,,
AX(z) h;z
G2 (Z) = (40)

AL(z)  pyZ +piz+p,

The parameters of the G,(z) transfer function of Eq. (40) are given in Table 3. Since the MCD
algorithm is a model-based algorithm it is therefore assumed that the parameters y,,y, and y, are
calculated based on the initial stiffness kg and mass m, where Q = \/ko/mAt. The closed loop transfer
function G)j«;, for nonlinear problems is determined using the block diagram of Fig. 6, whereby

X(z

GNen0) = ) =61

The denominator of G, is the characteristic equation which provides the poles that govern the

stability of the integration algorithm. The solution of the characteristic equation z; ; is dependent on

the ratio k/ko, and the location of the poles in the complex z-plane is dependent on the feedback gain

k. If the poles associated for a specified k; lie within the unit circle in the complex z-plane then the
MCD is stable.

Consider an SDOF system with an initial elastic natural frequency associated with ko of w, = 5,

m = 1, ¢ = 0, and At = 0.1sec. The root loci of the G}, transfer function is presented in Fig. 7 for

three values of p_ for this SDOF, where the ratio k,/k, was varied from 0 to 10 to generate the root

loci. The poles z,; , are complex conjugate pairs with one of the branches of the root locus exiting the

G2 (Z)

O]
kG @

1+ kGy(2) “1)

unit circle at z = —1 at a feedback gain of k; = 3.62k, for all three cases. Recall that instability occurs
2 Poo =1 5, poo = 0.5 2 Poo =10
Unit circle - - 2, =2,
§= s t .l
g = g SN g 1
> / \ - , N > /,<1\ .
S 0--<4t->O X S 0}——<-»O XX S 0 p--—tPOX)- X
= \ /: 5 S Y ‘S N 4_/,/
@ L S © g ©
E-1 o E-1 E-1|
X Open loop pole X Open loop pole X Open loop pole
5 O Open loop zero 5 O Open loop zero 5 O Open loop zero
-2 0 2 -2 0 2 -2 0 2
Real part Real part Real part

Figure 7. Root locus of an SDOF system for several p values.
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Figure 8. Stability region of the MCD algorithm for an SDOF system with w, = 5m, m =1, c = 0, and At = 0.1 sec.

when any of the branches exits the unit circle. Thus substituting z = —1 into the characteristic
equation for G)jc.pand solving for k; leads to

L + 4 (42)
ko - Qz

The stability limit of the MCD algorithm expressed by Eq. (42) shows that the tangent
stiffness can increase up to two times the initial stiffness used in determining the model
parameters y,,y, and y,, with an additional amount expressed by the second term in Eq. (42).
Reducing the integration time step At is shown to increase the stability limit of the MCD
algorithm. In addition, the amount of inherent damping or numerical damping does not
influence the stability limit of the MCD algorithm, as it does not appear in Eq. (42). Eq. (42)
is the same stability limit as that for the CR algorithm (Chen and Ricles 2008b). The MKR-a
algorithm’s stability limit is dependent on the numerical damping, where an increase in amount
of numerical damping reduces the stability limit to be less than that of the MCD algorithm
(Kolay and Ricles 2019).

The location of the poles in the complex z-plane was examined for Q in the range of [0.01,1000] and
k¢/ko in the range of [0, 10] where the resulting range of instability is determined using Eq. (42). The
stability limit is shown in Fig. 8, where it is apparent that the lower bound value for k;/ky is 2.0 and
occurs when Q) exceeded a value of about 20. The contribution of the second term of Eq. (42) is small
when the time step becomes larger. Figure 8 shows that reducing the size of the time step increases the
stability limit and is associated with the second term in Eq. (42).

The above example can be applied to any SDOF, whereby the stability limit for k¢ /ky is established.
It can also be applied to multi-degree of freedom systems, as demonstrated by Chen and Ricles (2010),
but requires expressing the proportionality of the tangent stiffnesses of each element of the structure to
a common value in order to utilize the root locus. It is worth noting that demonstrating that the
spectral radius of the amplification matrix or the poles of the transfer function are within the unit
circle for nonlinear problems is necessary but not insufficient to guarantee unconditional stability for
nonlinear problems (Liang and Mosalam 2016).

4.4. Consistency, Accuracy, and Convergence

This section investigates the consistency, accuracy, and convergence of the MCD algorithm. Applying
Taylor Series expansion to the displacements X4 ¢ and x¢_a ¢ leads to
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dx 1 /&%, , 5 dx 1 /dx\ , , 5
o= () (G o+ 0(ae)na = x - (5 Jawr (5 Jae o)
(43a,b)

Eq. (43) along with y,,y, and y, defined by Eqs. (13) and (16) when substituted into Egs. (9), where
the notation i is replaced with t, i + 1 is replaced with t+At, and i-1 is replaced with ¢-At in Eq. (9), and
then the result substituted into the equation of motion for an SDOF system, Eq. (6a), with no external
force leads to the following expressions:

m(42) + c() + kox + E(80) = 0, B(AY) = —k (185 (%) At + O(a8), lim (B(A1)) =0

(44a,b, c)

The local truncation error E(At) of the MCD algorithm is a function of the integration time step At.
The MCD is therefore considered consistent because the error term E(At) diminshes as the time step is
decreased. The order of accuracy of the MCD algorithm is found to be second order when p_ =1
(since the first term on the right-hand side of Eq. (44b) would equal zero) and first order accurate
when p_ <1.

A convergence study was performed of a SDOF system subjected to a unit initial velocity and
displacement. The time step is systematically decreased and the displacement Root Mean Square Error
(RMSE) between the MCD algorithm’s solution and the analytical solution of the free vibration
problem is evaluated. The results are plotted in Fig. 9 (where both axes are log-scale) for p_ =1
and 0.5 for an undamped (§ = 0) and damped (§ = 0.2) SDOF system. The RMSE of the CD
algorithm versus the analytical solution are also plotted for comparison. The slope of each curve is
associated with the order of accuracy, which in turn defines the rate of convergence of the algorithm.
In both plots, the CD algorithm and the MCD with p_ = 1 both have a slope of 2.0, while the MCD
with p_ = 0.5 has a slope of 1.0. These results confirm the analytical proof of the MCD order of
accuracy. Furthermore, the order of accuracy of the MCD algorithm is demonstrated to be indepen-
dent of the inherent damping & of the system. Since the MCD algorithm is proven to be consistent and
stable for linear systems, it is therefore concluded that the MCD is convergent according to the Lax
Equivalence Theorem.
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Figure 9. Rate of displacement convergence of the MCD and CD algorithms for an SDOF system subjected to uy = 1,vy = 1: (a) with;
and, (b) without inherent damping, (k =1,m = 1).
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4.5. Overshoot Assessment

Overshoot is the tendency of an integration scheme to overestimate the exact solution of the initial
value (i.e., free vibration) problem of the higher modes that are characterized by a large Q value
(Goudreau and Taylor 1973; Zhou and Tamma 2004). To assess the tendency of an integration
algorithm to overshoot the exact solution, especially in the first few steps, one can determine the
free vibration response of a SDOF system (Hilber and Hughes 1978). When Q — 0, the MCD
algorithm is convergent and there is no overshoot. On the other hand, ) — oo gives an indication
of the overshoot characteristics of the high-frequency modes present in a system. Although higher
modes may have little contribution to the response in a structural dynamics problem, significant
overshoot of the higher modes can influence the response of the lower modes of interest if non-
classical damping is used.

The displacement x;yicp) and velocity viicp) of the MCD algorithm at time step i are obtained by
applying the recurrence relationship of the MCD algorithm, Eq. (33), to the initial conditions and
considering the value for x_; from Eq. (32a). Applying § = 0 to the result for the displacement and
velocity as () — oo at the first-time step (i= 1) leads to

1— 14+
X1(McD) = ( pOO>X0 + ( 4p°°>AtV0, (45a)

2

14+p —1
Vi(Mcp) = —< Af°°>xo + <p°c2> Vo (45b)

where x¢ and v, are the initial displacement and initial velocity, respectively. The velocity of
the first-time step (i=1) in Eq. (45b) is calculated using the recurrence relationship and Eq.
(9a). Eq. (45a) indicates that the displacement x;cp) is proportional to the initial displace-
ment X, and linearly increases with respect to the integration time step At due to the initial
velocity vy. It is concluded from Eq. (45a) that the MCD overshoots the displacement of the
first-time step linearly with respect to ) when subjected to an initial velocity vo. However, this
is considered an improved overshoot response compared to the conventional CD algorithm
response when Q>1, as shown in Eq. (46a). The inclusion of numerical damping alleviates the
magnitude of the MCD displacement overshoot as noticed in Eq. (45a). The velocity viycp) at
the first-time step (i=1) as given by Eq. (45b) indicates a linear increase with the inverse of
the integration time step At due to an initial displacement xo. A similar tendency is observed
in the conventional CD algorithm as shown in Eq. (46b):

=1 o + At _ (e + (1 o (46a,b)
Xi(cp) = ) Xo Vo, Vi(cD) = AAL Xo ) Vo a,

The displacement and velocity response of the MCD algorithm at time step i (with QO — o0, § =0,
and i > 1) are shown in Egs. (47) and (48):

(‘Poc)%l(lisz))(o + (—px)F%(Hf“)Atvo, iodd

i, (o) _{ ‘ (47)
Q—00 (MCD (_poo)ixo7 oven
—1)(—p ) (e o Vet odd
&im (Vi(MCD)) = { ( )( iPoc) ( At )Xo + ( Poo) ( 3 )VO, io )
- (7p°°)zvo’ ieven

Egs. (47) and (48) are obtained using the following steps:
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1. Substitute the velocity v; and acceleration a; from Eq. (9) into the equation of motion (Eq. (6a)) of
a SDOF system subjected to an initial displacement x, and velocity v, without external loads
(ie., f; = 0);

2. Solve for x;+1 and note the value for x_; from Eq. (32a);

3. Solve for the velocity v; from Eq. (9a);

4. Repeat Steps 2 and 3 recursively and take the limit of the computed values as ) — oo.

The displacement and velocity responses, Xjmcp) and Vivicp), of the MCD algorithm shown in Egs.
(47) and (48) are bounded and do not grow with each time step. The inclusion of numerical damping
(i.e, where p_ < 1) accelerates the rate of decay of the response, xjvcp) and viumcp), since all terms in
Egss. (47) and (48) are multiplied by p__ raised to a power that includes the time step number i. The
general displacement and velocity of the CD algorithm with Q — oo are not shown here because the
CD algorithm is only conditionally stable. Further discussion about the overshoot characteristics of the
MCD are given below in the example where the algorithm is applied to the free vibration of an SDOF
system. It should be noted that the overshoot characteristics of the MCD are influenced by y,, where
by including it in the development of the MCD algorithm not only enables unconditional stability but
also results in improved overshooting characteristics.

5. Implementation and Example Usage of the MCD Algorithm

The implementation of the MCD to numerically integrate the equations of motion for a RTHS is
summarized in Table 4. The model parameters and the recurrence relation of the displacement are
presented in terms of the model properties of the system, namely the initial stiffness matrix K,, mass
matrix M, and viscous damping matrix C. The displacement vector x;; is obtained by substituting the
acceleration and velocity vectors from Eq. (17) into the equations of motion, Eq. (18), and solving for
the displacement x;.;. The restoring force vector in Table 4 is denoted as R; and the applied load
vector is F;. The integration parameters need to be initialized only once at the beginning of the

Table 4. Implementation of the MCD algorithm for integration of the equations of motion.

Step 1 Select time step and p., initialize initial acceleration, integration parameters, and use special starting procedure:
a = M” (Fo — (Vg — KOXO)
V1 = ((0s + 1D (Kelt? + 200t + 4M)) ™" (05 — 3)Keit?)
V2 = ((Po + 1) (—KAt + 204t — 4M)) ' ((3p,, — 1)KeA?)
Y5 = (KAt + 4M) " 4M
X_1 = Xo + Gvp + Hag
where, | which appears below is the identity matrix

6 = (241)Z,
H = (—=4t)Zy;,
Z=(y,-1)"
Step 2 Select value for p, and initialize ¥, ¥;, ¥,, and ¥;

where, ¥ = 2M(p,, + 1) + Ut(p, + 1) + 2K At?
¥, = (—2M(p., +1) + Ut(ps, +1) — 20, KeAit?),
W, = (4M(ps. + 1) + 2KA8 (. + 1)),
Y; = (24(p., +1))
Step 3 For time step i, determine the displacement vector x4
Wi = (Yixiog +¥ox + W3(F —R))
where R; is the restoring force vector at time step i obtained from the
state determination of the element internal forces, and F; is the external load vector
Step 4 Determine the velocity and acceleration vectors at time step i
(Optional)
Vi = (ZA")71(1(| S L TR o 20 e (R V) R 2 )
a = (A2%3)" (1= vy Xisr +vi% — 26+ (1= V)% 4 V%)

Step 5 Continue to the next integration time step: replace i with i + 1 and repeat Steps 3 through 4
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analysis. Step 4 is optional and only required if the velocities v; and accelerations a; are values of
interest since they are not used to compute x; ;.

The computational efficiency of the MCD algorithm depends on the sparsity of the M, C, and
K, matrices. While a lumped mass M and the initial stiffness K, matrices are often sparse, the
sparsity of the damping matrix C depends on the choice of damping model. If Rayleigh damping
is used as a linear combination of a lumped mass and initial stiffness matrices, then the MCD
algorithm is computationally efficient because the damping matrix C will be sparse and leads to
a linear system of sparse equations. If the damping matrix C is formulated based on the
superposition of modal damping ratios, then the damping matrix is dense when a consistent
mass matrix is used (Chopra 2012). The MCD algorithm is not as computational efficient when
the damping matrix C is dense.

For large structural dynamics problems where M, K,, and C are sparse, ¥, ¥;, and ¥, are also
sparse, leading to a linear system of sparse equations that can be solved efficiently during a RTHS
where matrix operations are performed only on non-zero elements. The matrix ¥ would need to be
decomposed into lower and upper triangular matrices to efficiently solve for the x;; vector in Table 4.
Additional computational effort is required to compute the velocities and accelerations. However,
unlike other RTHS algorithms that include the MKR-a algorithm, the computational of the velocities
and accelerations are not required to be computed in the MCD algorithm in each time step during
a RTHS and can be computed afterwards. This represents additional computational saving of the
MCD algorithm over other RTHS integration algorithms.

When using the MCD algorithm, the linearized stiffness k and damping c of the analytical
and experimental substructures need to be included in the system’s initial stiffness matrix K, and
viscous damping matrix C, respectively, in order to determine the algorithm’s integration
parameters y;, y,, and y; (see Step 1 in Table 4) and ¥, ¥, ¥, in the recursive relationship
(Step 4 in Table 4). An example of where nonlinear viscous dampers existed in the experimental
substructure of a RTHS is given in Kolay et al. (2018), in which k and ¢ for the nonlinear
viscous damper were based on the equivalent Kelvin-Voigt model of a linearized Maxwell model.
The determination of the restoring forces at time step i of any numerically-modeled velocity-
dependent device (e.g. nonlinear viscous damper) that contributes to the structural system’s
restoring force vector R; requires the velocity vector v;. Since v; is not yet readily available until
Step 4 of the algorithm (see Table 4) it is recommended to use the backward finite difference to
determine the velocity in a device associated with its DOF at each time step in order to avoid
iterating.

Four examples that illustrate the use of the MCD algorithm follow below. These examples illustrate
the overshoot characteristics of the MCD algorithm associated with initial conditions (Example 1), the
dissipative characteristics of the MCD algorithm (Example 2), the application and efficiency of the
MCD algorithm when solving large dynamic analysis problems involving either linear or nonlinear
response (Example 3), and the use of the MCD algorithm for conducting multi-natural hazard 3D
RTHS of a tall building with nonlinear response (Example 4).

5.1. Example 1: Free Vibration of an SDOF System

This example illustrates the overshoot characteristics of the MCD algorithm associated with initial
conditions. An SDOF system with =0 is subjected to two sets of initial conditions: (1) initial
displacement xo = lmeter, initial velocity vo = 0; and (2) initial displacement xo = 0, initial velocity
voAt = 1 meter. The mass m and stiffness k of the SDOF are equal to 0.01 kN-s*/m and 1 kN/m,
respectively. The time step At is chosen such that Q = 207. Computations are done for cases without
(ps, = 1) and with numerical damping (p., = 0.75,0.5,0.25,0). The comparison with the conven-
tional CD algorithm is not given herein because the CD algorithm is unstable under the selected time
step. Instead, the MCD results are compared to the analytical solution via the time history of
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normalized displacement (x(t)/A%), velocity (v(t)/wA?) and the normalized total energy (E(t)/E,),
where A* and E, are the exact displacement amplitude and total energy of the solution to the initial
value problem of the homogeneous ODE, where

L \/()+<+_€w> E() _ (Av(1))’ + (0x(1) (458, b)

oo ) Ea (Atve)’ + (Qxo)

Because of the normalization of the responses, x(t)/A% >1, v(t)/wA? >1, and (E(t)/E,)> 1 indicates
overshoot in displacement, velocity, and total energy, respectively.

The normalized displacement response under the first set of initial conditions xo = 1,vo = 0 is
shown in Fig. 10. The MCD algorithm results are shown to be bounded by the exact solution without
overshoot. Numerical damping is shown to damp out the response and reduce the displacement
amplitude with each integration time step. The velocity response based on Eq. (9a) never overshoots
the exact answer, and numerical damping decreases the amplitude quickly. The total energy is also
shown to not overshoot. The trend in the MCD algorithm results is consistent with the closed form
expressions for the displacement and velocity given by Eqs. (47) and (48) where the response remains
bounded shows decay over time with smaller values of p__.

For the second set of initial conditions the MCD algorithm exhibits displacement overshoot but the
response remains bounded as shown in Fig. 11. Incorporating numerical damping for the MCD
algorithm not only accelerates the decay of the response, but also reduces the magnitude of overshoot
for the first-time step. There is no overshoot in the velocity response as indicated in Fig. 11. The MCD
overestimates the energy if an initial velocity is present (which as discussed above causes
a displacement overshoot), while including numerical damping alleviates this overestimation. The
trend in the MCD algorithm results are again consistent with the closed form expressions for the
displacement and velocity given in Egs. (47) and (48) where the response remains bounded and is
reduced with smaller values of p__.
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Figure 10. Free vibration response of SDOF system with Q = 207 subjected to initial conditions xo = 1,vy = 0.
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Figure 11. Free vibration response of SDOF system with Q = 207 subjected to initial conditions xo = 0, voAt = 1.

5.2, Example 2: Free Vibration of an MDOF System

This example illustrates the dissipative characteristics of the MCD algorithm of the free vibration
response of an undamped two degrees of freedom system subjected to initial displacements. The
properties of the system include

~[1 0], [8w00 -sw00] . [o o]  T[o7a6] [ 0254 o Mu
M_{o 1}’K_{—8000 8000}’C_[0 0}"11_{0.751]"12_{—0.251}’Whereqn_¢n¢3mn

(50)

The natural frequencies w, of the system are equal to 7.06 and 126.69 rad/sec for the 1°' and
2"4 modes of vibration, respectively. The modal expansion of the initial displacement vector X,
into q, and q, associated with the two modes are given in Eq. (50), where ¢, is the
eigenvector for mode n. The system is subjected to the initial displacement x, = [1,0.5)",
which contains a contribution from both modes of vibration. The second mode is intention-
ally set to have a high frequency to demonstrate the ability of the numerical damping to
suppress its contribution to the response. The integration time step is chosen to be At=0.001
sec. The first and second modes have Q = 0.007 and Q = 0.126, respectively.

The response of the CD and MCD algorithms with (p__ = 0.5) and without numerical damping
(po, = 1) is shown in Fig. 12. The exact solution shown plotted in Fig. 12 is obtained by solving the
initial value problem involving the homogenous ODE. The solutions using the CD and the MCD
algorithms coincide with the exact solution when p_ =1 and the high frequency response of
the second mode is prevalent in the displacement. Numerical damping is shown to suppress the
contribution of the second mode to the response based on the MCD algorithm when p_, = 0.5. Modes
1 and 2 have a £ of 0.1% and 2%, respectively, and 0.001% and 0.3% period elongation, respectively,
with p__ = 0.5. Reducing the time step can reduce this period distortion because the MCD is proven to
be convergent.
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Figure 12. Free vibration response 2-DOF system.

5.3. Example 3: 2D Tall Building Subjected to Wind and Earthquake Natural Hazards

This example demonstrates the application and efficiency of the MCD algorithm when solving large
dynamic analysis problems involving either linear or nonlinear response. The efficiency will be assessed
by comparing the total central processing unit (CPU) time to complete the analysis using the MCD
algorithm with the MKR-a and CCA algorithms, which are described below. The example consists of two
analyses of a 40-story tall building that includes a strong windstorm and a strong earthquake. The
building is taken from one of the designs of California Tall Building Initiative (Moehle et al. 2011). The
lateral force resisting system of the building consists of six buckling-restrained braced frames (BRBFs) in
the N-S and E-W directions and six outrigger trusses in the N-S direction as depicted in Fig. 13a. The
columns of the BRBFs are composed of steel tubes filled with high strength concrete, while the outrigger
columns consist of wide flange steel sections ranging from W14 x 283 at the 40 story to W14x455at the
1% story. The BRBFs have W16 x 100 steel beams that are attached to the columns via shear connections
(i.e., no moment transfer). The buckling restrained braces (BRBs) of the BRBFs have a cross sectional
area ranging from 0.011 m” at the 1% story level to 0.007 m? at the 40™ story level, and are constructed
using 262 MPa steel with a yieldable core over 70% of the brace length.

The building is modeled in 2D using HybridFEM-MH (Kolay, Marullo, and Ricles 2018), a computer
program capable of performing nonlinear time history analysis of structures subjected to wind or
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Figure 13. Tall building prototype per Moehle et al. (2011): (a) 3D finite element model of the tall building used in 3D RTHS in
example 4; (b) typical floor plan; and, (c) planar 2D finite element model of the building used in example 3.
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earthquake loading. A 3D RTHS of this structure was performed and is discussed in Example 4. The
structure in this example is subjected to loading in the N-S direction, and hence symmetry is implemented
to model only half of the tributary area of the floor in the N-S direction. The columns and beams are
modeled using beam-column elements where the moment at the ends of the beam are released because the
beam-to-column connections transfer shear and axial forces only. The outrigger columns are modeled
using beam-column elements. A lean-on column is used to account for P-delta effects. The diagonal brace
members are modeled using truss elements. The Giuffre-Menegotto-Pinto formulation is used to define the
stress-strain curve to capture nonlinear behavior in the elements, where the final tangent modulus is 0.028
of the initijal elastic modulus. A master node with an equal displacement constraint is applied to each floor
of the BRBFs to simulate rigid floor diaphragm action of the building floor. The mass of the gravity load
system is based on the dead load and lumped at the master node of each floor level, where the master node
is located at the middle of the left-hand BRBF bay shown in Fig. 13c. The HybridFEM-MH model, shown
in Fig. 13c, is a planar model that contains 1590 degrees of freedom and 902 elements. Complete details of
the building design, member sizes, and the live and dead loads can be found in Moehle et al. (2011). The
building was assigned 2% damping for modes 1 through 10 and stiffness proportional damping for modes
11 and beyond. A consistent mass matrix was used to model the mass of the members of the lateral load
resisting frames (i.e., BRBFs and outriggers) and therefore the damping matrix is dense.

In the first analysis, the building is subjected to a 177 km/h wind loading having a 700-year Mean
Recurrence Interval (MRI). The wind profile is based on the wind tunnel data available from the
Aerodynamic Database of High-Rise Buildings of Tokyo Polytechnic University (Tokyo Polytechnic
University 2019). In the second analysis the building is subjected to the Northridge earthquake, using
the RSN1084_NORTHR_SCS052 component (PEER 2019). This record was scaled to the target
uniform hazard spectrum for the MCE hazard level (2,475-year return period) over a period range
of interest using the procedure outlined in the Tall Building Initiative of this same building by Moehle
et al. (2011). The site of the building is Los Angeles. In the scaling procedure the scale factor for a pair
of records is determined by minimizing the weighted sum of square errors between the target
spectrum and the geometric mean spectrum of the pair over the period range of 0.5 to 10 s with an
interval of 0.1 s. As given in the TBI case studies, the errors in the period ranges of 0.5-3.0, 3.0-7.0 and
7.0-10.0 sec were weighted 10%, 60%, and 30%, respectively. The same ground motion record was also
used by SGH in the performance evaluation of the prototype building (Moehle et al. 2011).

It is impractical to solve this problem with the conventional CD algorithm, for the structure has high
natural frequencies and therefore the required integration time step to guarantee a stable solution is
unrealistically small. Instead, the solution of the MCD is compared to Newmark Constant Average
Acceleration (CAA) (Newmark 1959) and MKR-a algorithms (Kolay and Ricles 2019), where the latter
is another unconditionally stable explicit model-based algorithm that possesses controlled numerical
damping. The details of the CAA algorithm for linear and nonlinear problems are presented in (Chopra
2012) and not repeated herein. The damping matrix C is dense; therefore, the CAA formulation involves
the full matrix multiplication for both linear and nonlinear problems, respectively (Chopra 2012).

The MKR-a algorithm solves the following weighted equations of motion:

MXi 1 o + CXip1-op T KXip1of = Fip1 (51)

The MKR-a algorithm uses the forward difference approximation of the derivative where the
displacement, velocity, and acceleration are obtained using (Kolay and Ricles 2019; Kolay et al. 2015):

Xy =X + A% + (4 Y)A&i,fim = X; + X, &ip1 = DXip (52a,b,¢c)

Xiy = A(Fiﬂfaf - FIDM,Gf - Ri+17af - Bf‘i) , Fi+17af = asFj1 + (1 - Otf)Fi;

FIDH _— = C(Xl + (]. — C(f)gi\i) (532[7 b, C)
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Fin, ., = C(ki+ (1 - &)%), Rip1 = arRivy + (1 - ap)R; (53d, )

where Fiyi_q,, FIDHHf» and Ri;1_q, are the weighted applied load vector, damping force vector, and
restoring force vector, respectively, and

_ 1 1
A = Ata; (M — Mas) 17B:BMa3afl,D :A—tal—l (54a, b, ¢)

The model parameters are calculated as follows:
2 -1 1
a; = (M+YAtC+ﬁAt Ko) M, a = (E—FY)QI,
az = (M + yAtC + ﬁAtZKoy1 (amM + aryAtC + arPALK, ) (55a, b, ¢)

where

1 1 1 203, +pA —1
BZE(Y+E)’Y:E_am+af7af: Poo Am = P F Poc (56a,b, ¢, d)

P T 17T P PR o T 1

A and B are often dense matrices, making the reoccurrence relationship of the MKR-a algorithm
expressed by Eq. (53a requiring more computational effort than the recurrence relationship for the
MCD algorithm (Step 3 of Table 4).

The formulation of the CAA algorithm is documented in (Chopra 2012; Newmark 1959) and
therefore not presented here. The Newton Raphson method (i.e., tangent stiffness iteration) with
a convergence tolerance of ||R"||/max|R"| < 0.001 is used to check convergence, where ||.|| represents
the Euclidian norm of a vector and R" is the unbalanced force vector; max|R"| is the maximum
absolute unbalanced force in R" during the first cycle of iteration. The integration time step is chosen
to be 6/1024 seconds with p_ = 0.86 for the MCD and MKR-a algorithms.

The building response is linear under the wind loading and nonlinear under earthquake loading.
Figure 14a-c show the calculated lateral displacement at the 40™ 25™ and 15" floors under the wind
excitation, with the wind loads at these floor levels shown in Fig. 14d. The response based on the CAA,
MKR-a, and MCD algorithms is essentially identical. Using the response based on the CAA as the
reference solution, the MKR-a and MCD algorithms produced Normalized Mean Square Error
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Figure 14. Comparison of the CAA, MKR-a, and MCD algorithms under wind loading: (a, b, and c) roof level, 25% and 15" floor
displacements response; and, (d) wind loads at selected floor levels.
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Figure 15. Comparison of the CAA, MKR-a, and MCD algorithms under seismic loading: (a, b, and c) roof level, 25" and 15 floor
displacements response; (d) ground acceleration; and, (e, f) brace axial force-deformation hysteresis at stories 35 and 40.

(NRMSE) values of 0.06% and 0.09%, respectively, for displacement at these selected floors. Other
floors had results for the NRMSE that were less than or equal to these results. The NRMSE is defined as

VD e (57)

max(x")—min(x")

NRMSE =

where the xP is the predicted solution, while x* is the reference solution (i.e., the CAA solution). The
building re-centered by the end of the windstorm as shown in Fig. 14, as it responded linearly to the
event.

Figure 15a—c show the calculated lateral displacement of the 40, 25™ and 15™ floors under the
earthquake. The scaled ground accelerations are shown in Fig. 15d. Good agreement is shown to exist
between the CAA, MKR-a, and MCD results, where the NRMSE is 0.18%, 0.18%, and 0.32% for the
40, 25th, and 15" floors, respectively, for the MKR-a algorithm, and 0.31%, 0.34%, and 0.47%,
respectively, for the MCD algorithm. Again, the response based on the CAA is considered the
reference solution when calculating the NRMSE values. Other floors had results for the NRMSE
where the maximum NRMSE was less than or equal to the above values. The hysteretic axial force-
deformation response of a BRB at the 35" and 40™ stories is shown in Figure 15e,f, where good
agreement between the solutions using the CAA, MKR-a, and MCD algorithms can be seen. It is not
possible to compute an NRMSE for the BRB force response since the associated BRB deformations
obtained from the different integration methods do not coincide with the respective time steps for the
CAA algorithm. Therefore, NRMSE values are not given. The degree of nonlinearity in these members
is evident in this figure. Similar response occurred in the BRBs at other floors.

Table 5. Comparison of CPU time required for tall building analysis.

Normalized time NRMSE Roof Displacements
Wind Analysis Seismic Analysis
Integration algorithm Formulation type (linear elastic response)  (nonlinear response) Wind Earthquake
CAA Implicit 1.96 2.85 - -
MKR-a Explicit 1.55 1.06 0.06% 0.18%

MCD Explicit 1.0 1.0 0.09% 0.31%
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Shown in Table 5 is the CPU time needed to obtain the solution for the CAA, MKR-a, and MCD
algorithms for the analyses involving the two natural hazards. All cases in Table 5 were executed on the
same Intel i9-9900X CPU having ten cores and 4.4 GHz maximum clock speed. For purposes of
comparison the CPU times have been normalized by that of the MCD algorithm. The computational
efficiency of the MCD algorithm is apparent under wind loading where linear response occurred, with
CPU reductions by a factor of 1.96 and 1.55 compared to the CAA and MKR-a algorithms,
respectively. For analysis of linear problems, the restoring force is obtained by multiplying the global
structural stiffness by the displacement in lieu of a state determination process applied to each element
in the model. For the earthquake loading, the MCD enables reductions by a factor of 2.85 and 1.06 in
the computational time compared to the CAA and MKR-a algorithms, respectively. The latter
comparison demonstrated smaller reductions versus the MKR-a algorithm because the CPU time
for the seismic case is dominated by the time required to compute the nonlinear restoring forces R;.
The NRMSE for the roof displacements for the wind and earthquake RTHS are also given in Table 5,
where for the MCD algorithm they are shown to be equal to 0.09% and 0.31% for the wind and
earthquake RTHS, respectively. The NRMSE values for the MKR-a algorithm are slightly smaller,
being equal to 0.06% and 0.18% for the wind and earthquake RTHS, respectively. Although the MCD
algorithm’s NRMSE values are slightly larger compared to those for the MKR-a algorithm, the MCD
NRMSE values are exceptionally small and provide evidence that the MCD algorithm gives accurate
results. Overall, the MCD algorithm is shown in Table 5 to be accurate and more efficient than the
CAA and MKR-a algorithms and therefore its use in solving structural dynamics problems is
warranted.

This example uses a consistent mass matrix; therefore, the damping matrix C based on the
superposition of modal damping ratios is dense. The recurrence relations of the CAA, MCD and
MKR-a integration algorithms are therefore not sparse. The only exception is in the MCD algorithm
where the parameter W, is not a function of the damping matrix C and the multiplication of the matrix
¥, and the vector x; in Table 4 was performed only on the nonzero elements when computing the
CPU time in Table 5. Hence, an additional reduction in the computational time required for the MCD
algorithm could be achieved when a lumped mass matrix is used, for the resulting damping matrix
would become less dense. The reason for using the consistent mass matrix in the above example is
because the MRK-a algorithm requires the use of a consistent mass matrix, and hence the comparisons
between the algorithms are based on using the same mass matrix formulation.

5.4. Example 4: 3D RTHS of a Tall Building Subjected to Multi-Natural Hazards

The computational efficiency of the MCD algorithm makes it well suited for performing 3D RTHS,
where an increased number of DOF in 3D models of a system exists that requires more computational
effort. The integration of the equations of motion must be completed within the time step of a RTHS,
where time steps of adequate size (i.e., not too large) are required to ensure that the algorithm’s results
are accurate. Hence, computational efficiency of the integration algorithm is of utmost importance to
enable 3D RTHS with complex models to be performed. The following example illustrates the use of
the MCD algorithm to integrate the equations of motion during a 3D RTHS of the 40-story building
discussed above. The 3D model shown in Fig. 13a with a lumped mass matrix RTHS are used. In the
model each member of the structure is modeled, with each node having six DOF. Three 3-D RTHS
were performed, each with a different value for p_ (1.0,0.86,and 0) to illustrate the effect of p_ on
the results. The sparsity of the mass M, damping C, and intial stifness K, associated with the equations
of motion is exploited in the RTHS as described below. The building is modeled in HyCoM-3D (Ricles,
Kolay, and Marullo 2020), a computer program capable of performing 3-D nonlinear RTHS of
structures subjected to wind or earthquake loading. Only earthquake response is presented in this
example. The building is supplemented with nonlinear viscous dampers between the outriggers and
perimeter columns to improve building performance (Smith and Willford 2007). A full scale nonlinear
viscous damper is used as the experimental substructure of the RTHS as shown in Fig. 16a. The
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Figure 16. Full scale nonlinear viscous damper: (a) test setup for RTHS experimental substructure and damper characterization tests;
(b) damper force-displacement response from characterization tests; and, (c) cumulative distribution function of the force-
displacement slope from the characterization tests. (*damper force limit is reached at 1.5Hz).

remaining parts of the structure are modeled in the analytical substructure. The three-dimensional
model of the building has the same element types used in Section 5.3; however, it includes a larger
number of degrees of freedom (3,974), 1,828 nonlinear truss elements and 1,079 linear beam-column
elements. The MKR-a algorithm cannot be used for this RTHS because the matrices are too large and
dense (e.g. matrix A in Eq. 53a) that prevent the recursive relationship, Eq. (53a), from being
calculated in real time within the time step. Note that the CR algorithm for RTHS (Chen and Ricles
2008a) is among the same family of algorithms as the MKR-a algorithm and equivalent when p_ = 1.0
is used. The CR algorithm lacks the dissipative characteristics necessary for a RTHS integration
algorithm. Only the MCD algorithm can handle an analytical substructure model with these many
DOFs and perform a RTHS.

The MKR-a algorithm requires statically condensing the column and beam elements in to order to
reduce the NDOF in the model to 1680, limiting the ability for the model to capture any nonlinear
behavior that occurs in the beams or columns of the building during a RTHS. The CAA algorithm
cannot be used in a real-time hybrid simulation for it is an implicit integration algorithm which
requires a nondeterministic number of iterations within a time step when nonlinearities occur. If
convergence is not achieved within the time step the real-time hybrid simulation would then suffer
a delay in the restoring force feedback, causing the simulation to become unstable.

Rigid floor diaphragms are used in the model, with a master node located at the centroid of each floor
plan. The floor mass is lumped at the master node at each floor level. A lean-on-column is used that is
loaded with the floor gravity loading to account for the P-delta effect. The inherent damping of the
building is modeled by assigning 2% modal damping to modes 1 through 30 and a superimposed
stiffness proportional damping for modes 31 and beyond. A lumped mass matrix formulation was used
in order to reduce the density of the damping matrix and therefore as noted above make the recurrence
relationship of the MCD more efficient. The building is subjected to the 1989 Loma Prieta earthquake,
where the horizontal components RSN802-LOMAP-STG000 and RSN802_LOMAP_STG090 (PEER
2019) are scaled to the target uniform hazard spectrum for the MCE hazard level as described previously.
These same ground motion records were also used by SGH in the performance evaluation of the
prototype building with conventional outriggers (Moehle et al. 2011). In the building three nonlinear
viscous dampers that act in parallel are located between each outrigger truss and perimeter column for
a total of 36 dampers. Each damper has a nominal force capacity and stroke of 600 kN and +125 mm,
respectively. Only one damper is modeled experimentally (at the north-west corner of the building at the
40" story) while the remaining ones were modeled analytically using an explicit-nonlinear Maxwell
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model with an online model approach as indicated in Fig. 1 (see (Al-Subaihawi, Ricles, and Quiel 2022)
for more on-line modeling details). The members of the outrigger trusses and perimeter columns, which
are in the load path of the dampers, have their axial stiffness increased by a factor three to make the
dampers more effective (Al-Subaihawi et al. 2020). Additional information regarding the modeling of
the building is given in (Moehle et al. 2011).

In order to obtain the model integration parameters required by the MCD algorithm, the model
stiffness ko of the nonlinear viscous damper needs to be identified. To achieve this, characterization
tests were performed where the damper is subjected to a set of predefined displacement histories with
an amplitude of 75 mm and frequency range from 0.15 Hz to 1.5 Hz which corresponds to the range of
frequencies that participate in the building response. The displacement included two ramping up
cycles, seven cycles with constant amplitude, and three ramping down cycles, all sampled at 1/1024 sec.
The test setup for the characterization tests was the same as the RTHS experimental substructure, see
Fig. 16a. The damper force-displacement response is given in Fig. 16b, and the instantaneous stiffness
defined as the instantaneous stiffness of the force-displacement response is obtained by dividing the
change in the measured damper force by the change in displacement. The cumulative distribution
function of the instantaneous stiffness is plotted in Fig. 16c. Based on the results shown in Fig. 16¢
a value of k, = 7.1x10°kN/m was used for the damper stiffness, which is associated with 99.99% of all
measured stiffness being less than this value. If an estimated damper stiffness is used that under-
estimates the maximum instantaneous stiffness an instability can occur in the RTHS.

The matrices ¥, ¥,, and ¥, from Table 4 are formulated based on the model properties of the
building. It is important to emphasize that the stiffness matrix Ky includes the initial stiffness of the
building and the estimated model stiffness ko of the nonlinear viscous dampers. For RTHS it is ill-
advisable to invert the matrix ¥ in Table 4 because the resulting ¥~" matrix will be dense. For RTHS,
computational efficiency is critical. Therefore, the user is advised to keep ¥ on the left-hand side in
order to solve the system of sparse matrices. The matrix ¥ has 58,622 non-zero elements, where the
profile is shown in Fig. 17a and where white space is associated with zero elements in the matrix. To
efficiently solve the system of equations, the matrix ¥ is decomposed into a lower (L) triangular matrix
such that P'S W SP = LDL”, where P and S are permutation and scaling matrices, respectively, to
improve the numerical stability of the calculations with § and D both diagonal matrices (Anderson
et al. 1999; Ashcraft, Grimes, and Lewis 1998; Duff 2004). ¥ is re-ordered using the reverse Cuthill-
McKee (RCM) algorithm (George and Liu 1981; Gilbert, Moler, and Schreiber 1992) before it is
decomposed to reduce the number of non-zero elements in the resulting matrix L. If ¥ is decomposed
without the RMC ordering, the resulting L matrix has the profile shown in Fig. 17b with 69,646 non-
zero elements. Decomposing the ¥ after the RCM ordering results in L with the profile shown in
Fig. 17c which has a smaller number of non-zero elements of 64,822. The RCM ordering is used during
the RTHS. While decomposing W results in a greater density in L, which can be reduced by applying
the RCM algorithm yet the result is still more dense than W, it is still more computationally efficient to
perform the decomposition rather than invert V.
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Figure 17. Profile of the matrix ¥: (a) before RCM ordering; (b) resulting L matrix without RCM ordering; and, (c) resulting L matrix
with RCM ordering.



28 (&) S.AL-SUBAIHAWI ET AL.

The sparse matrices L, P, ¥;, and ¥, are stored by index (i.e., the sparse matrix is stored in three
one dimensional arrays representing the row location, column location, and the corresponding non-
zero value of the element of the matrix). The recurrence relationship is recast where W is on the left-
hand side of the expression:

‘I’Xi+1 == ‘I’lxi,l + \Ilin + \P3(Fi - Ri)7 where PTS‘PSP = LDLT (58)

Solving this recurrence relation during the RTHS involves two steps: Step 1: After decomposing ¥ into
LD (which has to be done only once since elements in ¥ remain constant), solve for Y; from Eq. (59).
The size of the vector Y; is NDOF x1 where NDOF is the number of degrees of freedom of 3,974.

LDY, = P'Sb, whereb = ¥ x;_; + ¥,x; + ¥3(F; — R)) (59)

Obtaining the right-hand side b from Eq. (59) involves multiplying the NDOF x NDOF sparse
matrices ¥; and ¥, by two NDOF x 1 vectors x;_; and x;. The multiplication is performed only on
the non-zero elements of the matrices. The vector b needs to be arranged in accordance with the RCM
re-numbering. The matrix PTS is also sparse and therefore multiplication operations are performed
only on the non-zero elements when multiplied by the vector b. Solving for Y, is performed by making
use of the triangular shape and sparsity of the matrix resulting from the multiplication LD.

Step 2: Solve for the vector Y, from Eq. (60) by making use of the triangular shape and sparsity of
the matrix L. Then solve for x;;, from Eq. (61) by making use of the fact that the matrix SP is sparse.

LY, =Y, (60)

xiy1 = SPY, (61)

The resulting x;;; needs to be re-arranged based on the RCM re-numbering. The sparsity of the model
integration parameters is exploited during the RTHS where the multiplication operations are per-
formed only on the non-zero elements. This results in a substantial savings in the cost of integrating
the equations of motion during the RTHS, where a time step of 6/1024 sec was used.

Figure 18 shows the time history response of the roof displacement and torsional twist during the
RTHS for different values of p_ . The cases with p_ =1 and p_ = 0.86 have comparable time
histories because the adds numerical damping to the lower modes when p_ = 0.86 is negligible;
however, using p_ = 0 imposes excessive numerical damping that not only suppressed the higher
modes, as will be discussed later, but also affected the response of the lower modes to some extent as
evident in Fig. 18. Recall that the purpose of the numerical damping is to suppress high frequency
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Figure 18. Roof displacement during the 3D real-time hybrid simulations for different p_ values in (a) the E-W, (b) N-S directions;
and, () twist at the roof level.
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Figure 19. Damper force-displacement response during real-time hybrid simulations for different p_ values.

oscillations. The building experienced residual displacement at the end of the RTHS because of
nonlinear behavior (yielding of the BRBs) in the analytical substructure.

Figure 19 shows the force-displacement response of the damper of the experimental substructure
during the RTHS for the cases of p_ = 1.0,0.86,and0. A comparison of the results shows that the
damper force-displacement response when p_ = 1.0 or p_, = 0.86 are comparable, with the excep-
tion of the removal of high frequency oscillations that occurred when p_ = 1.0. However, using
P, = 0is shown to be inappropriate where the damper displacement decreases substantially because
of the added numerical damping has greater influence on the lower modes of interest. Care must be
taken to establish an appropriate value for p__ . Figure 5 can be used to provide guidance for selecting
the value of p__and adjusting the time step At (i.e., the value of Q) such that the frequency range of
interest is not affected by numerical damping. Figure 20 shows the axial force-deformation response of
different braces at stories 35 and 40 in the N-S and E-W directions for the case of p_, = 0.86. The BRBs
are seen to exhibit nonlinear behavior in both directions of the building.
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Figure 20. Brace axial force-deformation hysteresis at stories 35 and 40 with p_, = 0.86: (a) 35t story, NS direction, (b) 35t story, EW
direction, (c) 40" story, NS direction; and, (d) 40" story, EW direction.
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The time history response of the experimental damper for the case of p_ = 0.86 is shown in Fig. 21a
where the target displacement x' is the motion required to be imposed on the damper and based on the
result of integrating the equations of motion using the MCD algorithm. The compensated signal is the
modified input to the actuator to compensate for amplitude error and delay associated with servo-
hydraulic actuator dynamics (Chae, Kazemibidokhti, and Ricles 2013), and the measured damper
displacement x™ is the measured displacement during the RTHS. In this study, the second-order
adaptive time series compensator (Chae, Kazemibidokhti, and Ricles 2013) is used for each actuator
target displacement x'. The associated synchronization plot of measured displacement plotted against
the target displacement is given in Fig. 21b. The NRMSE is 0.08%, and is considered small. The
NRMSE is calculated using Eq. (57), where xP and x" are replaced by x' and x™, respectively. These
results, which are representative of all of the three RTHS, show excellent actuator control is achieved
and any delay and error amplitude is minimal. The time history of the adaptive compensator
parameters is shown in Fig. 22, where the maximum compensated delay ranged from 13msec to
21msec and the maximum compensated amplitude error from 0.98 to 1.01 for the p__ = 0.86 RTHS.
The other RTHS has similar results.

It is of interest to study the sensitivity of the RTHS to the model stiffness of the damper k,. Hence,
additional RTHS were performed, where the value for k, was varied. The hysteretic response of the damper
in the experimental substructure is plotted in Fig. 23 for several values of the damper model stiffness. The
model stiffness k is normalized by the baseline value discussed previously where k, = 7.1 x 10°kN/m, and
the results are shown for normalized stiffness values of 0.75, 1.0, 1.5, and 2.5. A case of a normalized
stiffness of 0.75 underestimates the maximum actual stiffness of the damper, while the later cases over-
estimates it. The associated energy dissipated by the damper for these cases is summarized in Table 6.
These results correspond to a reduction of 16.7%, 8.4%, and 22.2% in the total energy dissipation when the
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Figure 22. Time history of the adaptive time series compensator parameters, o, = 0.86.
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Table 6. Effect of damper model stiffness k, on energy dissipation of damper and accuracy of roof motions, p,, = 0.86.
NRMSE of Roof Displacements

Total energy dissipation of damper (%) NRMSE of Roof Twist
Model stiffness ratio (k/k,) (kN-m) E-W N-S (%)
0.75 1383 0.22 1.26 1.37
1 166.1 - - -
1.5 152.0 0.31 1.77 1.92
2.5 129.1 0.62 3.36 3.52

model stiffness factor is 0.75, 1.5, and 2.5, respectively. Reducing the damper model stiffness to less than
0.75 of the baseline stiffness resulted in underestimating the maximum instantaneous stiffness which led to
the RTHS becoming unstable. On the contrary, increasing the damper model stiffness to 2.5 times the
baseline stiffness had the RTHS remain stable but at the expense of smaller energy dissipation compared to
the baseline case (for the damper stiffness is overestimated which enables the poles to remain within the
unit circle). The instability caused by underestimating the stiffness k, of the experimental substructure also
occurs in the MKR-a and MR-a algorithms (Kolay and Ricles 2019; Kolay et al. 2015). It is advised that the
user of the MCD algorithm perform trial numerical simulations to explore the sensitivity of the stability of
the RTHS to selected values of k, to ensure that the actual RTHS will remain stable.

The effect of varying the value of k, on the accuracy is reflected in the NRMSE values given in
Table 6 for the roof bi-directional displacements and twist. The NRMSE for the E-W and
N-S displacements range from 0.22% to 0.62% and 1.26% to 3.36%, respectively, while the NRMSE
roof twist is shown to range from 1.27% to 3.52%. The error is considered to be small in terms of an
experimental error, although the NRSME values become larger as the value for k, is reduced. (i.e., the
ratio k/k, increases). It is also observed that the NRMSE is larger in the N-S direction due to the
greater effectiveness of the dampers in the outrigger system influencing motions parallel to the plane
of the outriggers. The NRMSE is also greater in the roof twist since there is motion in the N-S direction
to accommodate the twisting motion of the building.

Like any direct integration algorithm, it is recommended to perform a convergence study in order
to assure that the results using the MCD algorithm are accurate. It is recommended that users of the
MCD algorithm perform such studies, where a systematic variation of the time step At, spectral radius
P> and the assumed values for the model-based parameters of initial stiffness k and damping c of the
experimental substructure are systematically varied in order to assess the effects on the accuracy of the
results. For these studies, unless it is convenient to incorporate the experimental substructure, these
studies can be conducted using hydraulics-off mode where the complete system is modeled
analytically.

6. Summary and Conclusions

This paper proposes the Model-based Central Difference (MCD) algorithm for use in real-time hybrid
simulations. The MCD algorithm has the following characteristics: (1) explicit, where it does not
require iterations to solve nonlinear dynamics problems; (2) unconditional stability for linear and
softening-type nonlinear problems; (3) controllable numerical damping that is adjustable using
a single free parameter; and (4) the displacement calculation is computationally efficient. The MCD
is an efficient integration algorithm for large real-time hybrid simulation (RTHS) nonlinear structural
problems with a sparse system of matrices. The reduction in the computational effort is achieved by
performing the matrix operations only on the non-zero elements.

Control theory is used to develop the MCD algorithm. The feedback gain of the controller is found
by mapping the poles of the transfer function for the non-dissipative form of the algorithm onto the
circumference of the unit circle in the complex z-plane, which is in the region of stability. Numerical
damping is then incorporated into the MCD algorithm by adding a compensator to the non-
dissipative form of the algorithm and mapping the poles of the transfer function for the dissipative
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form of the algorithm to lie within the unit circle, which is in the dissipative and stable region of the
complex z-plane.

The MCD algorithm is shown to be consistent, convergent, and possess second order accuracy
when p__ =1 and first-order accuracy when p__ € [0,1]. The overshoot characteristics of the MCD
algorithm are shown to be improved compared to the conventional CD algorithm. The displace-
ment and velocity are shown to remain bounded and stable, with the inclusion of numerical
damping reducing the amount of overshooting in the first time step (when the maximum over-
shoot would occur) for problems involving an initial velocity. The period elongation and the
equivalent damping of the MCD algorithm are shown to be a function of Q, which is associated
with the product of the natural frequency and time step. It is found that the period elongation for
the MCD algorithm is higher compared to the Generalized-a algorithm, except when p__ = 0. The
equivalent damping of the MCD algorithm is a function of p_, and varies from zero damping
(when p_ = 1) to asymptotic annihilation (when p_ = 0), that is 100% numerical dissipation at
the high-frequency limit of QO — .

A closed-form derivation of the stability limit of the MCD algorithm for nonlinear problems is
presented. If the feedback gains of the controller and the compensator are calculated based on the
initial state of the structural system and kept constant, it is shown that instability may occur in
hardening-type nonlinear SDOF problems when the structure stiffens by a factor of roughly two or
more compared to the initial stiffness of the structure. This was found to occur in the RTHS when
a value of the estimated damper model stiffness is used that is too small compared to the maximum
instantaneous damper stiffness. However, there is some leeway in selecting the value as shown in the
RTHS. The user will need to investigate what is a reasonable value for the equivalent stiffness of any
experimental substructure component and use a conservative value, such as 1.5 times the estimated
stiffness. It is also shown that the MCD algorithm is unconditionally stable for linear and softening
type nonlinear problems that are associated with a reduction in structural stiffness.

The computational efficiency of the MCD algorithm is demonstrated by the analysis of a prototype
tall building subjected to two natural hazards, namely a wind storm and strong earthquake ground
motion. The MCD enables reductions in computational effort by a factor of 1.96 and 1.55 compared to
the CAA and MKR-a algorithms, respectively, when the structural response is linear under wind
loading, and 2.85 and 1.06 compared to the CAA and MKR-a algorithms, respectively, when the
structural response is nonlinear under earthquake loading. The MCD algorithm is implemented in the
real-time hybrid simulation (RTHS) of a tall 40 story building with 3,974 degrees of freedoms and
a lumped mass matrix and subjected to an earthquake. The MCD algorithm enabled a 3D RTHS
simulation to be successfully performed of this structure.

Like any direct integration algorithm, a convergence study should be performed in order to assure
that the results using the MCD algorithm are accurate. It is recommended that users of the MCD
algorithm perform such studies, where a systematic variation of the time step At, spectral radius p__,
and the assumed values for the model-based parameters of initial stiffness k and damping c of the
experimental substructure are systematically varied in order to assess the effects on the accuracy and
stability of the results. For these studies, unless it is convenient to incorporate the experimental
substructure into the simulation, the studies can be conducted using a hydraulics-off mode where
the complete system is modeled analytically.
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Appendix

The poles must satisfy the requirements of convergence, stability, and removal of the undesirable oscillatory behavior at
high frequencies. The derivation starts with the following discrete weighted difference equations for velocity and
acceleration:

(A=y)xi+yxi—(1—¢)xi 1 —¢xi a = (I=y)xis 1 +yxi—2x+(1—¢)x; 1 +¢x;

Vi = 24t » i A (A1,2)

Taking the z-transform of these equations and then substituting the result into the equation of motion, the resulting
solution for the resulting transfer function produces the following characteristic equation:

(O +QE—y+ 122+ (> + Qly — QEp+y+ ¢ —2)z+ (AP —QE—¢+1) =0 (A3)

The parameters y and ¢ are obtained by substituting the poles for the unconditionally stable Newmark Constant
Average Acceleration method (see Eq. (11)) into Eq. (A3):

Y= 4QE+47¢ 4OE 7 (A4,5)

To introduce dissipative characteristics into the transfer function, Eqs. (A1,2) are further weighted in order to shape the
root loci of the transfer function such that the root loci branches terminate in the dissipative region of the z-plane, where:

_ (1 — Cll\//)XiJrl + o yxi — (1 — a2¢)xi,1 — Clz(pxi 4 — (1 — Clll[/)Xi+1 + ayx; — 2x; + (1 — G.z(P)Xi,l + a2¢xi

Vi 24t o Ar
(A6a,b)
Solving for the resulting transfer function leads to the following characteristic equation:
(Q%ay + 408+ 4)2% + (—Q%0y — QP + 407 — 8)z+ (Q%a, —4QE+4) =0 (A7)

To shape the root loci of the transfer function so that the branches terminate in the dissipative region of the
z-plane when Q — oo, the poles of Eq. (A7) are equated to a pair of complex conjugate poles that lie on the
imaginary axis having the values of +,/=p__. Taking the limit of Q — oo in Eq. (A7) with the two poles leads
to the following:

__4 — AP
G =R = 5 (A8)

The desired set of poles are then obtained for a general value of Q) by substituting a; and a, from Eq. (A8) into (A7) and
solving for the roots to the characteristic equation:

px+1i\/ —QEFE-1)p2 +(— Q24288 2)p, +EEHOQE- 1)@

A9
Q2 +0E(p +1)+p, +1 (A9)

Z12 =

The above poles were produced using a modified form of the difference equations compared to Eq. (9a,b). This enabled
an improvement in the overshooting properties of the MCD algorithm to be achieved. It is possible to arrive at an
unconditionally stable and dissipative MCD algorithm using Egs. (A1) and (A2) and the model parameters in Eqs. (A4),
(A5); however, the resulting MCD algorithm tends to possess less favorable overshoot characteristics compared to the
one presented within the body of the manuscript.
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