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ABSTRACT
The central difference is a popular algorithm used to integrate the equations 
of motion, yet suffers from two drawbacks: (1) it is only conditionally stable 
and requires a small-time step to maintain numerical stability; (2) it is non- 
dissipative, and high-frequency spurious oscillations may appear and com
promise the accuracy of the solution. These drawbacks are detrimental to 
applying the algorithm to the real-time hybrid simulation of large, complex 
nonlinear structural systems. In this paper, the conventional central differ
ence algorithm is modified to overcome these drawbacks, and the modified 
algorithm is applied to the real-time hybrid simulation of complex structural 
systems.
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1. Introduction

When conducting a real-time hybrid simulation (RTHS), a structural system is discretized into an 
experimental and numerical substructure, where the former is used to physically model components 
for which no accurate numerical models exist, and the latter to model the remaining parts of the 
system for which accurate numerical models can be used. The substructures lead to the defining of 
degrees of fredome (DOF) associated with the equations of motion for the system. In a RTHS the 
equations of motion are integrated to obtain the displacement commands for the simulation that lead 
to the state determination of a structural system, including the determination of the restoring forces, 
velocities, and accelerations. For each time step, the displacement compatibility between the analytical 
and experimental substructure is enforced in real-time to ensure that the rate of loading is maintained 
in real time. As indicated in Fig. 1, the simulation coordinator integrates the equations of motion and 
the target displacement commands xa and xe are sent to the analytical and experimental substructures, 
respectively. The measured restoring forces Ra and Re from the analytical and experimental sub
structures, respectively, are then obtained and used to complete the integration of the equations of 
motion for the given time step. This process is then repeated for each subsequent time step.

The Central Difference (CD) algorithm is a popular method for integrating the equations of motion 
in many applications such as wave propagation problems (Noh and Bathe 2013). The method is 
advantageous because it is computational efficient and the solution is determined explicitly, even for 
problems that exhibit nonlinear behavior. Thus, no iterations are required to satisfy equilibrium at the 
end of the integration time step. Another feature of the algorithm is that the calculation of the velocity 
and acceleration at the end of an integration time step is optional because the recursive relation of the 
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displacement depends only on the displacement of the previous two-time steps. These attributes are 
appealing when applied to RTHS. However, the velocity is implicit in nature since at time step i it is 
a function of the displacement at time step i +1 (see Eq. (4a,b)). Thus, to maintain the explicit form of 
the CD algorithm for both velocity and displacement, modifications are required when it is applied to 
RTHS. Wu et al. (2005) developed a modification of the CD algorithm to overcome this barrier, 
thereby enabling it to be applied to RTHS. Stability and accuracy analysis of the modified CD 
algorithm by Wu et al. (2005) found that the modified CD algorithm suffers a deterioration in its 
stability as the damping ratio of the experimental substructure increases. Wu et al. (2005) recom
mended that the algorithm was most suitable for an RTHS of systems that have a lightly damped 
experimental substructure and recomended that small time steps be used to ensure accuracy.

The CD algorithm, however, is only conditionally stable for linear and nonlinear problems (Chopra  
2012), where the maximum permissible time step size to maintain numerical stability is dependent on 
the highest frequency of the system. It is therefore computationally expensive to integrate the 
equations of motion via the CD algorithm if the structural system possesses many DOFs, for a small 
time step is required. In a RTHS, the minimum time step is dictated by the servo controller’s clock 
speed, digital controllers typically have a 1024 Hz clock speed and therefore restrict the minimum time 
step to be 1/1024 sec. For a RTHS’s numerical substructure with many DOFs, the choice of the 
integration time step when using the CD algorithm can be governed by numerical stability rather 
than the required accuracy of the solution. The computational cost associated with a small time step 
can thus hinder the implementation of the CD algorithm for RTHS with large structural models.

Unconditionally stable algorithms assure a numerically stable solution of the integration 
process, irrespective of the selected integration time step. These types of algorithms offer the 
advantage that the selection of the time step is governed by the required accuracy of the 
solution instead of the numerical stability requirement (Hilber, Hughes, and Taylor 1977). 
This can be beneficial since the computational effort for integrating the equations of motion 
can be significantly reduced when a larger time step is used. Most well-known unconditionally 
stable algorithms are implicit in their formulation and require iterations to guarantee equili
brium at the end of each integration time step when solving nonlinear problems (Chung and 
Hulbert 1993; Hilber, Hughes, and Taylor 1977; Newmark 1959). Iterating in a RTHS is not 

Figure 1. Representative RTHS of a 40-story tall building.
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conducive, since the number of iterations needed to achieve equilibrium is not deterministic 
and can extend beyond the time allocated for such a process (which is a fraction of the time 
step for the simulation). Jung et al. (2007) developed an implicit time-integration method for 
real-time hybrid simulation, where a nonlinear solution strategy that combines Newton-type 
iteration with sub-increments based on the HHT-α method (Hilber, Hughes, and Taylor  
1977). Chen and Ricles (2012) however determined using discrete control theory that the 
algorithm proposed by Jung et al. (2007) is only conditionally stable for nonlinear softening or 
hardening structures. Wu et al. (2007) proposed a real-time sub-structuring method called the 
equivalent force control (EFC) method that unified the effective force and hybrid simulation 
techniques in order to eliminate the numerical iteration process in implicit time integration. 
One of the important issues that Wu et al. (2007) noted is that restoring force measurement 
errors in the experimental substructure is an important issue for EFC. Noise resulting from 
measurement errors can develop that can affect the accuracy of the test results, depending on 
the contribution of the measured force to the total equivalent force. Wu et al. (2007) 
recommended that this phenomenon required further evaluation.

Conversely, as noted above, explicit integration algorithms do not require iterations, mak
ing them favorable when performing RTHS of nonlinear systems. Among the first uncondi
tionally stable explicit algorithms is that developed by Chang for pseudo dynamic testing 
(Chang 2002). Chen and Ricles (2008a) later developed the unconditionally stable explicit CR 
algorithm using discrete control theory. Both Chang’s and the CR algorithm are second order 
accurate, possess no numerical damping, and are only conditionally stable for hardening type 
nonlinear problems. Unconditionally stable explicit algorithms with controllable numerical 
damping have been developed, including the KR-α method by Kolay and Ricles (2014) and 
the algorithm developed by Chang (2014). The modified KR-α method was then proposed to 
improve the stability and the overshoot characteristics of the KR-α method (Kolay and Ricles  
2019).

Another disadvantage of the CD algorithm is the presence of high frequency spurious oscillations 
that can appear in the solution (Noh and Bathe 2013). These oscillations are caused by various 
phenomena, including numerical rounding error, nonlinearities that can occur in the system within 
the time step (e.g. inelastic material response), and the inaccurate integration of the higher modes of 
vibration. One of the solutions to the spurious oscillations problem is to use numerical damping that 
can suppress these high frequency oscillations while leaving the lower modes of interest unaffected 
(Hilber, Hughes, and Taylor 1977). However, the CD algorithm is not dissipative, and these spurious 
oscillations can therefore be inherent in the solutions obtained using the algorithm.

In this paper, the conventional CD algorithm characteristics are reviewed using discrete control 
theory, which is then used to formulate a new algorithm that overcomes the disadvantages mentioned 
above. A modified version of the conventional CD algorithm (referred to as the Model-based Central 
Difference, MCD, algorithm) is shown to be unconditionally stable for linear and softening-type 
nonlinear problems. A single free parameter for controllable numerical damping is incorporated 
into the MCD algorithm to control spurious high-frequency oscillations. Numerical analyses of 
systems are performed to demonstrate the algorithm’s characteristics, and the results are compared 
to solutions based on other algorithms and exact solutions to verify the MCD algorithm. To 
demonstrate the robustness and computational efficiency of the MCD algorithm for a RTHS, this 
paper concludes with a 3D RTHS of a tall building subjected to bidirectional earthquake ground 
motions, where the structure has a vast number of DOFs and undergoes nonlinear behavior during the 
simulation.

2. Analysis of Conventional CD Algorithm Using Discrete Control Theory

In control theory, the z-transform is used to find the transfer function of a discrete system given its 
difference equation. The transfer function of a linear system is defined as the ratio between the output 
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to the input of the system. The z-transform of a discrete time signal is mathematically defined as 
follows: 

where x kð Þ is a discrete sample of the continuous function x tð Þ at discrete points k 2 0; 1; ::1f g in 
time t. For example, the difference equation that describes the relation between the output y kð Þ and 
the input x kð Þ of a system is given as (Franklin, Powell, and Emami 2009): 

where a1, a2, bo, b1, and b2 are constant coefficients. Taking the z-transform of Eq. (2) using the 
definition described in Eq. (1) and then solving for the transfer function (also known as the discrete 
transfer function) defined as G zð Þ ¼ Y zð Þ=X zð Þ results in 

where Y zð Þ and X zð Þ are the z-transforms of y kð Þ and x kð Þ.
The transfer function of a system provides valuable information about its behavior (Franklin, 

Powell, and Emami 2009). Specifically, the solution of the roots of the polynomial equation in the 
denominator of the transfer function when equated to zero provides the poles of the transfer function. 
The location of the poles in the complex z-plane not only effects how the system behaves due to an 
external disturbance, but also the tendency of the system to be stable. The roots to the numerator of the 
transfer function that make it equal to zero are called the zeros of the transfer function.

Figure 2 shows the expected response of a system based on the location of the poles in the complex 
z-plane (Franklin, Powell, and Emami 2009) (only the upper part of the plane is shown in order to to 
conserve space in the figure). Three important characteristics are shown in Fig. 2 (via the use of 
displacement time history x(t) plots): (1) the response of the poles outside the unit circle becomes 
unbounded (indicating instability); (2) the response of the poles on the unit circle is stable and 
possesses no damping; and (3) the response of the poles inside the unit circle is stable and possesses 
damping. Inside the unit circle, the magnitude of damping increases as the distance between the pole 
location and the origin is reduced.

Figure 2. System response based on the location of the poles in the complex z-plane (only the upper part of the plane is shown in 
order to conserve space in the figure).
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The procedure explained above can be used to obtain the discrete transfer function for the 
conventional CD algorithm (Chen and Ricles 2008a) and provide insight into the characteristics of 
the CD algorithm. The velocity and acceleration difference equations of the CD algorithm are given by 
Eq. (4a) and (5a). Taking the z-transform of these difference equations leads to the expressions in Eqs. 
(4b) and (5b). 

Eqs. (4b) and (5b) can be substituted into the equation of motion for a single degree of freedom 
(SDOF) system (Eq. (6a), where Eq. (6b) is the associated z-transform form): 

where f i is the forcing function at time i divided by the mass m. Substituting Eq. 4(b) and 5(b) into 6(b) 
leads to the discrete transfer function G zð Þ ¼ X zð Þ=F zð Þ: 

In Eqs. (6) and (7), Ω ¼ ωnΔt; where ωn is the undamped natural frequency, Δt is the integration 
time step,  and ξ is the viscous damping ratio. Eq. (7) represents an open loop system with no feedback 
and is therefore an open loop transfer function. The solution for z of the polynomial of the numerator 
of the transfer function when set equal to zero is associated with the open loop zero(s), while that of the 
denominator is associated with the open loop pole(s). The denominator of Eq. (7) is known as the 
characteristic equation (Franklin, Powell, and Emami 2009). By equating the characteristic equation to 
zero and subsequently solving for the two poles z1;2 gives the open loop poles when Ω ¼ 0 and the 
open loop zeros when Ω ¼ 1, where: 

The location of the poles z1;2 of the characteristic equation in the complex plane start from the open 
loop poles and terminate at the open loop zeros, unless an instability exists as Ω is increased from zero 
to infinity. Figure 3 shows the location of the poles z1;2 as Ω increases for the case when ξ ¼ 0 (referred 
as the root locus plot). The two root loci branches in Fig. 3 both begin at the open loop poles and travel 
around the non-dissipative region of the complex z-plane (i.e., along the circumference of the unit 
circle) indicating that the CD algorithm is non-dissipative. One of the branches terminates at the open 
loop zero while the other branch leaves the unit circle, as seen in Fig. 3. The latter is an indication of 
instability. The value of Ω that induces instability can be found by setting z2 ¼ �1 in Eq. (8) and 
solving for Ω which leads to Ωcr ¼ 2. This result agrees with the well-known stability limit of ωnΔt ¼ 2 
for the CD algorithm.

Thus, the well-known characteristics for the CD algorithm of being non-dissipative and condi
tionally stable are confirmed by the root loci in Fig. 3. To obtain a dissipative, unconditional stable 
form of the CD algorithm, the poles of the algorithm must migrate inwards and remain within the unit 
circle. In the next section of this paper the MCD is developed based on this requirement.
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3. Development of the MCD Algorithm

3.1. SDOF Systems

To overcome the shortcomings of the CD algorithm, the following two characteristics of the MCD 
algorithm are necessary: (1) unconditional stability; and (2) providing controlled numerical damping 
to remove oscillatory behavior at high frequencies (i.e., dissipative). The MCD algorithm is developed 
using control theory where a controller and compensator are incorporated into the design of the 
algorithm to enable it to possess these required characteristics. The formulation is based on the 
following weighted CD equations for velocity and acceleration: 

In Eq. (9) the parameters γ1; γ2 and γ3 are feedback gains for the controller and compensator that 
enables the new algorithm to have the above characteristics. Taking the z-transform of Eq. (9) and 
substituting the result into the equation of motion leads to the following transfer func
tion G zð Þ ¼ X zð Þ=F zð Þ

where a0, a1, a2, and b1 are constant coefficients and defined in Table 1. The feedback gains γ1; γ2; and 
γ3 that appear in the denominator (i.e., characteristic equation) of the transfer function control the 
location of the poles in the complex z-plane.

Table 1. Coefficients of the MCD transfer function.

Coefficient Value

b1 Δt2γ3
a0 �Ω�γ1γ3 þ Ω�γ3 � γ1 þ 1
a1 Ω�γ1γ3 � Ω�γ2γ3 þ Ω2γ3 þ γ1 þ γ2 � 2
a2 Ω�γ2γ3 � Ω�γ3 � γ2 þ 1

Figure 3. Closed loop poles of the conventional central difference algorithm transfer function.
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Unconditional stability of the MCD algorithm is achieved through the controller gain γ3 that makes 
the poles of the algorithm remain on the unit circle "ΩR � 0. In addition, γ3 helps to improve the 
overshoot properties of the MCD, which are presented later in the paper. The value of γ3 is obtained by 
matching the poles of the transfer function for the non-dissipative form of the MCD algorithm to that 
of the unconditionally stable Newmark Constant Average Acceleration (CAA) algorithm (Newmark  
1959). A similar pole matching technique was previously used in developing other integration 
algorithms such as the CR and KR-α methods (Chen and Ricles 2008a; Kolay and Ricles 2014). The 
compensator gains γ1 and γ2 are not used in this stage of the controller design and are temporarily set 
to zero. The poles for the non-dissipative unconditionally stable CAA are 

while those of the non-dissipative form of the MCD algorithm are 

and the result for γ3 is therefore 

The root loci of the MCD transfer function with γ1 = γ2 = 0 (i.e., Eq. (12)) end in the 
oscillatory region of the complex z-plane for the lim

Ω!1
zMCD nonDis1;2 ¼ �1. The compensator is 

now incorporated into the derivation to eliminate the oscillatory behavior at high frequencies, 
making use of the feedback gains γ1 and γ2. The compensator adds two open loop zeros to the 
MCD transfer function located in the dissipative region of the complex z-plane at a distance of 
ρ1 from the origin, where the root loci terminate when Ω ! 1. ρ1 is analogous to the 
spectral radius of the amplification matrix at high frequencies (i.e., when Ω ! 1Þ, where the 
spectral radius ρ is defined as the distance of the pole from the origin in the complex z-plane.

The compensator feedback gains γ1 and γ2 are found by matching the poles of the 
dissipative form of the MCD algorithm (i.e., when γ1 and γ2 are non-zero values) to 
a desired set of poles that are selected using discrete control theory to satisfy the following 
conditions: (1) convergence of lim

T!0
z ¼ esT ¼ 1, where T is the sampling period; (2) the root 

loci branches end in the dissipative region of the complex z-plane at the two open loop zeros 
of the MCD algorithm located at the distance ρ1 2 0; 1½ � from the origin; and (3) the root loci 
branches travel within the unit circle z1;2

�
�

�
� � 1; "Ω 2 R � 0. The resulting two poles of the 

MCD are a function of γ1, γ2, and γ3 and equal to 

where the coefficients c1, c2, and c3 are given in Table 2. The set of desired poles having 
dissipative characteristics are derived in the Appendix based on satisfying the above condi
tions, and equal to

where the coefficients d1, d2, and d3 are given in Table 2. Equating the two sets of poles to each other 
leads to 
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The two gains γ1and γ2 are functions of ρ1 2 0; 1½ � due to setting the poles equal to � ffiffiffiffiffiffiffiffiffiffi
�ρ1

p

as Ω ! 1, (see the Appendix). All of the feedback gains γ1; γ2 and γ3 represent integration 
parameters and depend on the model properties of the dynamic system, and therefore the MCD 
algorithm is a model-based integration algorithm (Chang 2002, 2014; Chen and Ricles 2008a; 
Kolay and Ricles 2014).

3.2. Multi-Degree of Freedom (MDOF) Systems

For a multi-degree of freedom (MDOF) system, the algorithm is described by the following equations: 

Moreover, the equations of motion are 

where items in bold are matrices or vectors, and M, C, and K are the system’s mass, damping, and 
stiffness matrices, respectively, of dimension NDOF x NDOF for an MDOF system, where NDOF is 
the number of DOF. Considering the damping matrix C to be classical and using the orthogonality of 
modes, Eqs. (17) and (18) can be written in modal coordinates: 

where 

In the aforementioned equations, Φ ¼ ϕ1ϕ2 . . . ϕn
� �

is the mode shape matrix, and ϕi the eigen
vector for the ith mode (i 2 1 . . . nÞ; Y; _Y;€Y are the complete set of displacement, velocity, and 
accelerations in modal coordinates, respectively, which are related to physical coordinates by 
x ¼ ΦY, etc.; M� ¼ ΦTMΦ; C� ¼ ΦTCΦ; K� ¼ ΦTKΦ are the modal diagonal mass, damping, and 
stiffness matrices, respectively; and γ�

1 ¼ ΦTγ1Φ; γ�
2 ¼ ΦTγ2Φ; andγ�

3 ¼ ΦTγ3Φ are diagonal 
matrices of the integration parameter. Eqs. (19) and (20) each represent a set of NDOF uncoupled 
equations. The integration parameters for any mode j can be determined based on the integration 
parameters for an SDOF system presented in Eq. (13) and (16), where: 

Table 2. Coefficients for the poles of zMCD1;2 and z1;2.

Coefficient Values

c1 Ω�γ1γ3 � Ω�γ2γ3 þ Ω2γ3 þ γ1 þ γ2 � 2
c2 ðΩ2 þ 2Ω� γ1 � γ2ð Þ þ �2 γ1 þ γ2 � 2ð Þ

2
ÞΩ2γ2

3 þ 2Ω γ1 þ γ2 � 2ð Þ Ω þ � γ1 � γ2ð Þð Þγ3 þ γ1 � γ2ð Þ
2

c3 2(Ω�γ1γ3 � Ω�γ3 þ γ1 � 1Þ

d1 ρ1 þ 1
d2 ((�Ω� þ �2 � 1Þρ2

1 þ �Ω2 þ 2�2 � 2
� �

ρ1 þ �2 þ Ω� � 1ÞΩ2

d3 Ω2 þ Ω� ρ1 þ 1ð Þ þ ρ1 þ 1
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where M�
j ; C�

j ¼ 2M�
j ωjξj; and K�

j ¼ M�
j ω2

j are the modal mass, damping coefficient, and stiffness 
coefficient, respectively, for the jth mode. The integration parameters in modal coordinates are the 
diagonal terms of the following matrices: 

Pre- and post-multiplying the aforementioned equations by ΦT� ��1 and Φ�1, respectively, and 
using the relationships among the integration parameters in the physical and modal coordinate 
systems as presented earlier, the integration parameters in physical coordinates can be determined as 

4. Characteristics of the MCD Integration Algorithm

The integration parameters γ1, γ2, and γ3 are a function of one free parameter ρ1 2 0; 1½ �, and 
therefore the MCD algorithm is a one parameter model-based algorithm. Figure 4 illustrates that 
the MCD algorithm is unconditionally stable for linear type problems with ρ1 2 0; 1½ �. Observe in 
Fig. 4a that in the limit Ω ! 1, and ρ1 2 0; 1½ �, that the MCD is mapped into �Ω 2 0; π=2½ �, where �Ω 
is defined below in Eq. (31b). The value of ρ1 is equated to ρ�

1

� �2 allowing the expression ρ�
1 to then 

used to aesthetically present Fig. 4 with evenly spaced spectral radii.The root loci presented in Fig. 4a 
show that: (1) the poles of the MCD transfer function are moving either on or within the unit circle, (2) 
that the poles are complex conjugate pairs, and (3) that the spectral radius (Fig. 4b) of the MCD poles 
is always less than unity. As noted previously, the spectral radius is defined as the distance from the 
origin to the location of the pole in the complex z-plane, where a value larger than unity indicates an 
instability.

Numerical dispersion and energy dissipation of an integration algorithm are generally measured in 
terms of relative period error (PE) and equivalent damping ratio �ξ, respectively, where: 
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where �ω is defined in Eq. (31b). The equivalent damping ratio �ξ and apparent frequency �Ω for an 
integration algorithm is determined from the position of the poles in the complex z-plane, 

where σ = Re{z1;2} and ε = Im{z1;2}, and z1;2 are the pair of complex conjugate poles. The PE and 
equivalent damping ratio �ξ are plotted in Fig. 5a,b, respectively, for various values of ρ1, and the 
PE compared to the Generalized-α method (G-α) method (Chung and Hulbert 1993). The G-α 
method is an implicit method that has controlled numerical damping, and is often used to 
compare with the controlled numerical damping properties of other algorithms. As illustrated in 
Fig. 5b maximum numerical damping for the higher frequencies is achieved when ρ1 ¼ 0, while 
ρ1 ¼ 1 changes the MCD algorithm into a non-dissipative scheme. Like the G-α method, it is seen 
in Fig. 5 that the PE and �ξ are minimal at the lower frequencies for the MCD algorithm, before 

Figure 4. Characteristics of the MCD algorithm: (a) root loci branches; and, (b) spectral radius.

Figure 5. Characteristics of the MCD algorithm: (a) period elongation; and, (b) equivalent damping ratio.
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they increase as Ω increases. Both the G-α and the MCD algorithms converge asymptotically to 
the same amount of numerical damping at the high frequencies as shown in Fig. 5b. The MCD 
algorithm experiences period elongation as Ω increases contrary to the conventional CD scheme, 
which exhibits period shortening at high Ω values. While the PE and �ξ are minimal at the lower 
frequencies for the MCD algorithm, they are somewhat larger than that of the G-α algorithm. An 
exception is when ρ1 ¼ 0 where it is found that the period elongation for the MCD algorithm is 
lower compared to the Generalized-α algorithm. The motivation for developing the MCD was to 
enable RTHS of systems with a large number of DOFs. For RTHS the time steps that are selected 
are a multiple of the clock speed of the servo controller, and typically range from Δt = 1/1024 sec 
to 6/1024 sec (Al-Subaihawi 2023; Kolay et al. 2015). Hence, Ω for RTHS typically is less than 0.02, 
where as shown in Fig. 5, the value of �ξ is extremely small.

4.1. Special Starting Procedure

Like the CD algorithm, the MCD is not a self-starting algorithm. Considering a SDOF system, x�1 
needs to be calculated based on the initial conditions x0,v0 and f0. Setting i = 0 and solving for x1 from 
Eq. (9a) and substituting the result into Eq. (9b) leads to the following expression for x�1: 

The initial acceleration a0 is obtained directly from the equation of motion, Eq. 6(a), with 
i ¼ 0. The quantity x�1 in Eq. (32a) is identical to that of the conventional CD algorithm 
when Ω ¼ 0, since lim

Ω!0
γ1 ¼ lim

Ω!0
γ2 ¼ 0, and lim

Ω!0
γ3 ¼ 1. The denominator of Eq. (32b-c) is 

invertible for any underdamped system with a finite value of Ω. If the value for Ω is infinite, 
then the denominator is non-invertible when ρ1 ¼ 0, hence caution must be used to avoid 
assigning ρ1 ¼ 0 for the MCD. The determination of the displacement vector x�1 for MDOF 
systems is similar to Eq. (32), where G and H are replaced with their matrix equivalents with 
γ2 and γ3 determined from Eqs. (28) and (29).

4.2. Stability for Linear Systems

The unconditional stability of integration algorithms can be assessed by examining the 
eigenvalues of the amplification matrix (Hilber 1976) of a SDOF system subjected to free 
vibration. The spectral radius ρ of the eigenvalues λ needs to satisfy the requirement that the 
spectral radius ρ ¼ max λj jð Þ � 1 in order to achieve unconditional stability. This section 
presents the amplification matrix of the MCD algorithm and shows that the algorithm is 
unconditionally stable for linear problems.

The recurrence relationship of the MCD algorithm for a SDOF system is expressed by Eq. 
(33), where A is the amplification matrix of the MCD algorithm, as given by Eq. (34a). The 
recurrence relationship for the displacement xiþ1 is obtained by substituting the acceleration 
and velocity from Eq. (9) into the equation of motion, Eq. 6(a), and solving for the displace
ment xiþ1. 

where 
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The free vibration problem is associated with setting the forcing function fi equal to 0 and 
specifying the initial displacement. The eigenvalues λ of A are the solution of the characteristic 
equation, Eq. (35), resulting from the eigenvalue problem applied to the amplification matrix. The 
eigenvalues are equivalent to the poles of the transfer function of the algorithm. 

The solution for the eigenvalues is given by Eq. (36): 

Taking the limits of Eq. (36) as Ω ! 0 and Ω ! 1 leads to 

Eq. (37) reveals that the eigenvalues start on the positive real axis with a value of 1 and end on 
the imaginary axis of the complex z-plane at �

ffiffiffiffiffiffiffiffiffiffi
�ρ1

p , as expected and consistent with Fig. 4a. 
While it is shown that the eigenvalues of the MCD algorithm’s transfer function start and end in 
the stable region of the complex z-plane, it is also of interest to investigate the stability in the 
intermediate range of Ω 2 0 . . . 1ð Þ: This is accomplished by examining the maximum value for 
the spectral radius of the MCD algorithm’s amplification matrix, which can be obtained by setting 
the partial derivatives of λ1;2

�
�

�
� from Eq. (36) with respect to Ω and ξ equal to zero. The resulting 

simultaneous equations have a solution at Ω ¼ 0; ξ ¼ 0 which satisfies the requirement 
"Ω; "ξ 2 R � 0 and "ρ1 2 0; 1½ �. Substituting Ω ¼ 0; ξ ¼ 0 into Eq. (36) with ρ1 ¼ 1 leads to 
a maximum value of the spectral radius ρ equal to unity. These results are consistent with the root 
locus plot shown in Fig. 4a and prove the unconditional stability of the MCD algorithm for linear 
problems.

4.3. Stability for Nonlinear Systems

The root locus method is utilized to investigate the stability of the MCD for nonlinear systems (Chen 
and Ricles 2008b). Discussion is limited to SDOF systems because the root locus method is applicable 
to Single-Input Single-Output (SISO) systems. Considering the equation of motion at time step i 

where the term pi � kxi is defined as li. In the above equation of motion, m, c, and pi are the mass, 
damping coefficient, and load at time step i, respectively, of the SDOF. The nonlinear stiffness between 
integration time steps is linearized to kt, where kt is the tangent stiffness matrix at time step i, in order 
to perform the root locus analysis where the incremental equation of motion becomes 

where Δai ¼ ai � ai�1, Δvi ¼ vi � vi�1, Δxi ¼ xi � xi�1, and Δpi ¼ pi � pi�1. The block diagram of 
the MCD algorithm for nonlinear problems applied to the SDOF is shown in Fig. 6 where 

F zð Þ ¼
P1

k¼�1

p kð Þz�k, G1 zð Þ ¼ 1 � z�1ð Þ, G3 zð Þ ¼ 1 � z�1ð Þ
�1. The block diagram shown in Fig. 6 

is a closed loop system due to the feedback associated with the gain of kt.
The open loop transfer function G2 zð Þ is obtained by taking the z-transform of Eq. (9), substituting 

the results into the incremental equation of motion, and solving for the resulting transfer function 
G2 zð Þ ¼ Δ X zð Þ=Δ L zð Þ, whereby: 
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The parameters of the G2 zð Þ transfer function of Eq. (40) are given in Table 3. Since the MCD 
algorithm is a model-based algorithm it is therefore assumed that the parameters γ1; γ2 and γ3 are 
calculated based on the initial stiffness k0 and mass m, where Ω ¼

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
Δt. The closed loop transfer 

function GNL
MCD for nonlinear problems is determined using the block diagram of Fig. 6, whereby

The denominator of GNL
MCD is the characteristic equation which provides the poles that govern the 

stability of the integration algorithm. The solution of the characteristic equation z1;2 is dependent on 
the ratio kt=k0, and the location of the poles in the complex z-plane is dependent on the feedback gain 
kt. If the poles associated for a specified kt lie within the unit circle in the complex z-plane then the 
MCD is stable.

Consider an SDOF system with an initial elastic natural frequency associated with k0 of ωn ¼ 5π, 
m ¼ 1, c ¼ 0, and Δt ¼ 0:1sec. The root loci of the GNL

MCD transfer function is presented in Fig. 7 for 
three values of ρ1 for this SDOF, where the ratio kt=k0 was varied from 0 to 10 to generate the root 
loci. The poles z1;2 are complex conjugate pairs with one of the branches of the root locus exiting the 
unit circle at z ¼ �1 at a feedback gain of kt ¼ 3:62k0 for all three cases. Recall that instability occurs 

Figure 7. Root locus of an SDOF system for several ρ1 values.

Figure 6. Closed loop block diagram of the MCD algorithm for nonlinear problems of an SDOF system.

Table 3. Coefficients of G2 zð Þ transfer function.

Coefficient Value

h1 2ðρ1 þ 1ÞΔt2

p0 2m ρ1 þ 1ð Þ þ cΔt ρ1 þ 1ð Þ þ 2k0Δt2

p1 �4m ρ1 þ 1ð Þ � 2k0Δt2 ρ1 þ 1ð Þ
p2 2m ρ1 þ 1ð Þ � cΔt ρ1 þ 1ð Þ þ 2k0Δt2ρ1
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when any of the branches exits the unit circle. Thus substituting z ¼ �1 into the characteristic 
equation for GNL

MCDand solving for kt leads to

The stability limit of the MCD algorithm expressed by Eq. (42) shows that the tangent 
stiffness can increase up to two times the initial stiffness used in determining the model 
parameters γ1; γ2 and γ3, with an additional amount expressed by the second term in Eq. (42). 
Reducing the integration time step Δt is shown to increase the stability limit of the MCD 
algorithm. In addition, the amount of inherent damping or numerical damping does not 
influence the stability limit of the MCD algorithm, as it does not appear in Eq. (42). Eq. (42) 
is the same stability limit as that for the CR algorithm (Chen and Ricles 2008b). The MKR-α 
algorithm’s stability limit is dependent on the numerical damping, where an increase in amount 
of numerical damping reduces the stability limit to be less than that of the MCD algorithm 
(Kolay and Ricles 2019).

The location of the poles in the complex z-plane was examined for Ω in the range of [0.01,1000] and 
kt=k0 in the range of [0, 10] where the resulting range of instability is determined using Eq. (42). The 
stability limit is shown in Fig. 8, where it is apparent that the lower bound value for kt=k0 is 2.0 and 
occurs when Ω exceeded a value of about 20. The contribution of the second term of Eq. (42) is small 
when the time step becomes larger. Figure 8 shows that reducing the size of the time step increases the 
stability limit and is associated with the second term in Eq. (42).

The above example can be applied to any SDOF, whereby the stability limit for kt=k0 is established. 
It can also be applied to multi-degree of freedom systems, as demonstrated by Chen and Ricles (2010), 
but requires expressing the proportionality of the tangent stiffnesses of each element of the structure to 
a common value in order to utilize the root locus. It is worth noting that demonstrating that the 
spectral radius of the amplification matrix or the poles of the transfer function are within the unit 
circle for nonlinear problems is necessary but not insufficient to guarantee unconditional stability for 
nonlinear problems (Liang and Mosalam 2016).

4.4. Consistency, Accuracy, and Convergence

This section investigates the consistency, accuracy, and convergence of the MCD algorithm. Applying 
Taylor Series expansion to the displacements xtþΔ t and xt�Δ t leads to 

Figure 8. Stability region of the MCD algorithm for an SDOF system with ωn ¼ 5π, m ¼ 1, c ¼ 0, and Δt ¼ 0:1 sec.
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Eq. (43) along with γ1; γ2 and γ3 defined by Eqs. (13) and (16) when substituted into Eqs. (9), where 
the notation i is replaced with t, i + 1 is replaced with t+Δt, and i-1 is replaced with t-Δt in Eq. (9), and 
then the result substituted into the equation of motion for an SDOF system, Eq. (6a), with no external 
force leads to the following expressions: 

The local truncation error E Δtð Þ of the MCD algorithm is a function of the integration time step Δt. 
The MCD is therefore considered consistent because the error term E Δtð Þ diminshes as the time step is 
decreased. The order of accuracy of the MCD algorithm is found to be second order when ρ1 ¼ 1 
(since the first term on the right-hand side of Eq. (44b) would equal zero) and first order accurate 
when ρ1 < 1:

A convergence study was performed of a SDOF system subjected to a unit initial velocity and 
displacement. The time step is systematically decreased and the displacement Root Mean Square Error 
(RMSE) between the MCD algorithm’s solution and the analytical solution of the free vibration 
problem is evaluated. The results are plotted in Fig. 9 (where both axes are log-scale) for ρ1 ¼ 1 
and 0.5 for an undamped (ξ ¼ 0Þ and damped (ξ ¼ 0:2Þ SDOF system. The RMSE of the CD 
algorithm versus the analytical solution are also plotted for comparison. The slope of each curve is 
associated with the order of accuracy, which in turn defines the rate of convergence of the algorithm. 
In both plots, the CD algorithm and the MCD with ρ1 ¼ 1 both have a slope of 2.0, while the MCD 
with ρ1 ¼ 0:5 has a slope of 1.0. These results confirm the analytical proof of the MCD order of 
accuracy. Furthermore, the order of accuracy of the MCD algorithm is demonstrated to be indepen
dent of the inherent damping ξ of the system. Since the MCD algorithm is proven to be consistent and 
stable for linear systems, it is therefore concluded that the MCD is convergent according to the Lax 
Equivalence Theorem.

Figure 9. Rate of displacement convergence of the MCD and CD algorithms for an SDOF system subjected to u0 ¼ 1; v0 ¼ 1: (a) with; 
and, (b) without inherent damping, (k ¼ 1; m ¼ 1Þ.
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4.5. Overshoot Assessment

Overshoot is the tendency of an integration scheme to overestimate the exact solution of the initial 
value (i.e., free vibration) problem of the higher modes that are characterized by a large Ω value 
(Goudreau and Taylor 1973; Zhou and Tamma 2004). To assess the tendency of an integration 
algorithm to overshoot the exact solution, especially in the first few steps, one can determine the 
free vibration response of a SDOF system (Hilber and Hughes 1978). When Ω → 0, the MCD 
algorithm is convergent and there is no overshoot. On the other hand, Ω → ∞ gives an indication 
of the overshoot characteristics of the high-frequency modes present in a system. Although higher 
modes may have little contribution to the response in a structural dynamics problem, significant 
overshoot of the higher modes can influence the response of the lower modes of interest if non- 
classical damping is used.

The displacement xi MCDð Þ and velocity vi MCDð Þ of the MCD algorithm at time step i are obtained by 
applying the recurrence relationship of the MCD algorithm, Eq. (33), to the initial conditions and 
considering the value for x�1 from Eq. (32a). Applying ξ ¼ 0 to the result for the displacement and 
velocity as Ω → ∞ at the first-time step (i = 1) leads to 

where x0 and v0 are the initial displacement and initial velocity, respectively. The velocity of 
the first-time step (i = 1) in Eq. (45b) is calculated using the recurrence relationship and Eq. 
(9a). Eq. (45a) indicates that the displacement x1 MCDð Þ is proportional to the initial displace
ment x0 and linearly increases with respect to the integration time step Δt due to the initial 
velocity v0. It is concluded from Eq. (45a) that the MCD overshoots the displacement of the 
first-time step linearly with respect to Ω when subjected to an initial velocity v0. However, this 
is considered an improved overshoot response compared to the conventional CD algorithm 
response when Ω> 1, as shown in Eq. (46a). The inclusion of numerical damping alleviates the 
magnitude of the MCD displacement overshoot as noticed in Eq. (45a). The velocity v1 MCDð Þ at 
the first-time step (i = 1) as given by Eq. (45b) indicates a linear increase with the inverse of 
the integration time step Δt due to an initial displacement x0. A similar tendency is observed 
in the conventional CD algorithm as shown in Eq. (46b): 

The displacement and velocity response of the MCD algorithm at time step i (with Ω ! 1, ξ ¼ 0, 
and i � 1) are shown in Eqs. (47) and (48): 

Eqs. (47) and (48) are obtained using the following steps:
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1. Substitute the velocity vi and acceleration ai from Eq. (9) into the equation of motion (Eq. (6a)) of 
a SDOF system subjected to an initial displacement x0 and velocity v0 without external loads 
(i.e., f i ¼ 0);
2. Solve for xiþ1 and note the value for x�1 from Eq. (32a);
3. Solve for the velocity vi from Eq. (9a);
4. Repeat Steps 2 and 3 recursively and take the limit of the computed values as Ω → ∞.

The displacement and velocity responses, xi MCDð Þ and vi MCDð Þ, of the MCD algorithm shown in Eqs. 
(47) and (48) are bounded and do not grow with each time step. The inclusion of numerical damping 
(i.e., where ρ1 < 1) accelerates the rate of decay of the response, xi MCDð Þ and vi MCDð Þ; since all terms in 
Eqss. (47) and (48) are multiplied by ρ1 raised to a power that includes the time step number i. The 
general displacement and velocity of the CD algorithm with Ω ! 1 are not shown here because the 
CD algorithm is only conditionally stable. Further discussion about the overshoot characteristics of the 
MCD are given below in the example where the algorithm is applied to the free vibration of an SDOF 
system. It should be noted that the overshoot characteristics of the MCD are influenced by γ3, where 
by including it in the development of the MCD algorithm not only enables unconditional stability but 
also results in improved overshooting characteristics.

5. Implementation and Example Usage of the MCD Algorithm

The implementation of the MCD to numerically integrate the equations of motion for a RTHS is 
summarized in Table 4. The model parameters and the recurrence relation of the displacement are 
presented in terms of the model properties of the system, namely the initial stiffness matrix Ko, mass 
matrix M, and viscous damping matrix C. The displacement vector xiþ1 is obtained by substituting the 
acceleration and velocity vectors from Eq. (17) into the equations of motion, Eq. (18), and solving for 
the displacement xiþ1. The restoring force vector in Table 4 is denoted as Ri and the applied load 
vector is Fi. The integration parameters need to be initialized only once at the beginning of the 

Table 4. Implementation of the MCD algorithm for integration of the equations of motion.

Step 1 Select time step and ρ1 , initialize initial acceleration, integration parameters, and use special starting procedure:
a0 ¼ M�1 F0 � Cv0 � Kox0ð Þ

γ1 ¼ ððρ1 þ 1Þ KoΔt2 þ 2CΔt þ 4Mð ÞÞ
�1

ðρ1 � 3ð ÞKoΔt2Þ

γ2 ¼ ððρ1 þ 1Þ �KoΔt2 þ 2CΔt � 4Mð ÞÞ
�1

ð3ρ1 � 1ð ÞKoΔt2Þ

γ3 ¼ KoΔt2 þ 4Mð Þ
�14M 

x�1 ¼ x0 þ Gv0 þ Ha0 
where, I which appears below is the identity matrix 

G ¼ 2Δtð ÞZ;

H ¼ �Δt2ð ÞZγ3;

Z ¼ 2 γ2 � Ið Þð Þ
�1

Step 2 Select value for ρ1 and initialize Ψ; Ψ1; Ψ2, and Ψ3 

where, Ψ ¼ 2M ρ1 þ 1ð Þ þ CΔt ρ1 þ 1ð Þ þ 2KoΔt2 

Ψ1 ¼ �2M ρ1 þ 1ð Þ þ CΔt ρ1 þ 1ð Þ � 2ρ1KoΔt2ð Þ, 
Ψ2 ¼ 4M ρ1 þ 1ð Þ þ 2KoΔt2 ρ1 þ 1ð Þð Þ;

Ψ3 ¼ 2Δt2 ρ1 þ 1ð Þð Þ

Step 3 For time step i, determine the displacement vector xiþ1
Ψxiþ1 ¼ Ψ1xi�1 þ Ψ2xi þ Ψ3ðFi � Rið ÞÞ

where Ri is the restoring force vector at time step i obtained from the 
state determination of the element internal forces; and Fi is the external load vector

Step 4 
(Optional)

Determine the velocity and acceleration vectors at time step i

vi ¼ 2Δtð Þ
�1 I � γ1ð Þxiþ1 þ γ1xi � I � γ2ð Þxi�1 � γ2xið Þ

ai ¼ Δt2γ3ð Þ
�1 I � γ1ð Þxiþ1 þ γ1xi � 2xi þ I � γ2ð Þxi�1 þ γ2xið Þ

Step 5 Continue to the next integration time step: replace i with i þ 1 and repeat Steps 3 through 4
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analysis. Step 4 is optional and only required if the velocities vi and accelerations ai are values of 
interest since they are not used to compute xiþ1.

The computational efficiency of the MCD algorithm depends on the sparsity of the M, C, and 
Ko matrices. While a lumped mass M and the initial stiffness Ko matrices are often sparse, the 
sparsity of the damping matrix C depends on the choice of damping model. If Rayleigh damping 
is used as a linear combination of a lumped mass and initial stiffness matrices, then the MCD 
algorithm is computationally efficient because the damping matrix C will be sparse and leads to 
a linear system of sparse equations. If the damping matrix C is formulated based on the 
superposition of modal damping ratios, then the damping matrix is dense when a consistent 
mass matrix is used (Chopra 2012). The MCD algorithm is not as computational efficient when 
the damping matrix C is dense.

For large structural dynamics problems where M, Ko, and C are sparse, Ψ, Ψ1, and Ψ2 are also 
sparse, leading to a linear system of sparse equations that can be solved efficiently during a RTHS 
where matrix operations are performed only on non-zero elements. The matrix Ψ would need to be 
decomposed into lower and upper triangular matrices to efficiently solve for the xiþ1 vector in Table 4. 
Additional computational effort is required to compute the velocities and accelerations. However, 
unlike other RTHS algorithms that include the MKR-α algorithm, the computational of the velocities 
and accelerations are not required to be computed in the MCD algorithm in each time step during 
a RTHS and can be computed afterwards. This represents additional computational saving of the 
MCD algorithm over other RTHS integration algorithms.

When using the MCD algorithm, the linearized stiffness k and damping c of the analytical 
and experimental substructures need to be included in the system’s initial stiffness matrix Ko and 
viscous damping matrix C, respectively, in order to determine the algorithm’s integration 
parameters γ1, γ2, and γ3 (see Step 1 in Table 4) and Ψ; Ψ1; Ψ2 in the recursive relationship 
(Step 4 in Table 4). An example of where nonlinear viscous dampers existed in the experimental 
substructure of a RTHS is given in Kolay et al. (2018), in which k and c for the nonlinear 
viscous damper were based on the equivalent Kelvin-Voigt model of a linearized Maxwell model. 
The determination of the restoring forces at time step i of any numerically-modeled velocity- 
dependent device (e.g. nonlinear viscous damper) that contributes to the structural system’s 
restoring force vector Ri requires the velocity vector vi. Since vi is not yet readily available until 
Step 4 of the algorithm (see Table 4) it is recommended to use the backward finite difference to 
determine the velocity in a device associated with its DOF at each time step in order to avoid 
iterating.

Four examples that illustrate the use of the MCD algorithm follow below. These examples illustrate 
the overshoot characteristics of the MCD algorithm associated with initial conditions (Example 1), the 
dissipative characteristics of the MCD algorithm (Example 2), the application and efficiency of the 
MCD algorithm when solving large dynamic analysis problems involving either linear or nonlinear 
response (Example 3), and the use of the MCD algorithm for conducting multi-natural hazard 3D 
RTHS of a tall building with nonlinear response (Example 4).

5.1. Example 1: Free Vibration of an SDOF System

This example illustrates the overshoot characteristics of the MCD algorithm associated with initial 
conditions. An SDOF system with ξ = 0 is subjected to two sets of initial conditions: (1) initial 
displacement x0 ¼ 1meter, initial velocity v0 ¼ 0; and (2) initial displacement x0 ¼ 0, initial velocity 
v0Δt ¼ 1 meter. The mass m and stiffness k of the SDOF are equal to 0.01 kN-s2/m and 1 kN/m, 
respectively. The time step Δt is chosen such that Ω ¼ 20π. Computations are done for cases without 
(ρ1 ¼ 1Þ and with numerical damping (ρ1 ¼ 0:75; 0:5; 0:25; 0Þ. The comparison with the conven
tional CD algorithm is not given herein because the CD algorithm is unstable under the selected time 
step. Instead, the MCD results are compared to the analytical solution via the time history of 
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normalized displacement (x(t)/AA), velocity (v(t)/ωAA) and the normalized total energy (E(t)=EA), 
where AA and EA are the exact displacement amplitude and total energy of the solution to the initial 
value problem of the homogeneous ODE, where 

Because of the normalization of the responses, x(t)/AA >1, v(t)/ωAA >1, and (E(t)/EA)> 1 indicates 
overshoot in displacement, velocity, and total energy, respectively.

The normalized displacement response under the first set of initial conditions x0 ¼ 1; v0 ¼ 0 is 
shown in Fig. 10. The MCD algorithm results are shown to be bounded by the exact solution without 
overshoot: Numerical damping is shown to damp out the response and reduce the displacement 
amplitude with each integration time step. The velocity response based on Eq. (9a) never overshoots 
the exact answer, and numerical damping decreases the amplitude quickly. The total energy is also 
shown to not overshoot. The trend in the MCD algorithm results is consistent with the closed form 
expressions for the displacement and velocity given by Eqs. (47) and (48) where the response remains 
bounded shows decay over time with smaller values of ρ1.

For the second set of initial conditions the MCD algorithm exhibits displacement overshoot but the 
response remains bounded as shown in Fig. 11. Incorporating numerical damping for the MCD 
algorithm not only accelerates the decay of the response, but also reduces the magnitude of overshoot 
for the first-time step. There is no overshoot in the velocity response as indicated in Fig. 11. The MCD 
overestimates the energy if an initial velocity is present (which as discussed above causes 
a displacement overshoot), while including numerical damping alleviates this overestimation. The 
trend in the MCD algorithm results are again consistent with the closed form expressions for the 
displacement and velocity given in Eqs. (47) and (48) where the response remains bounded and is 
reduced with smaller values of ρ1.

Figure 10. Free vibration response of SDOF system with Ω ¼ 20π subjected to initial conditions x0 ¼ 1; v0 ¼ 0.
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5.2. Example 2: Free Vibration of an MDOF System

This example illustrates the dissipative characteristics of the MCD algorithm of the free vibration 
response of an undamped two degrees of freedom system subjected to initial displacements. The 
properties of the system include 

The natural frequencies ωn of the system are equal to 7.06 and 126.69 rad/sec for the 1st and 
2nd modes of vibration, respectively. The modal expansion of the initial displacement vector x0 
into q1 and q2 associated with the two modes are given in Eq. (50), where ϕn is the 
eigenvector for mode n. The system is subjected to the initial displacement x0 ¼ 1; 0:5½ �

T, 
which contains a contribution from both modes of vibration. The second mode is intention
ally set to have a high frequency to demonstrate the ability of the numerical damping to 
suppress its contribution to the response. The integration time step is chosen to be Δt = 0.001  
sec. The first and second modes have Ω ¼ 0:007 and Ω ¼ 0:126, respectively.

The response of the CD and MCD algorithms with (ρ1 ¼ 0:5) and without numerical damping 
(ρ1 ¼ 1) is shown in Fig. 12. The exact solution shown plotted in Fig. 12 is obtained by solving the 
initial value problem involving the homogenous ODE. The solutions using the CD and the MCD 
algorithms coincide with the exact solution when ρ1 ¼ 1 and the high frequency response of 
the second mode is prevalent in the displacement. Numerical damping is shown to suppress the 
contribution of the second mode to the response based on the MCD algorithm when ρ1 ¼ 0:5. Modes 
1 and 2 have a �ξ of 0.1% and 2%, respectively, and 0.001% and 0.3% period elongation, respectively, 
with ρ1 ¼ 0:5. Reducing the time step can reduce this period distortion because the MCD is proven to 
be convergent.

Figure 11. Free vibration response of SDOF system with Ω ¼ 20π subjected to initial conditions x0 ¼ 0; v0Δt ¼ 1.
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5.3. Example 3: 2D Tall Building Subjected to Wind and Earthquake Natural Hazards

This example demonstrates the application and efficiency of the MCD algorithm when solving large 
dynamic analysis problems involving either linear or nonlinear response. The efficiency will be assessed 
by comparing the total central processing unit (CPU) time to complete the analysis using the MCD 
algorithm with the MKR-α and CCA algorithms, which are described below. The example consists of two 
analyses of a 40-story tall building that includes a strong windstorm and a strong earthquake. The 
building is taken from one of the designs of California Tall Building Initiative (Moehle et al. 2011). The 
lateral force resisting system of the building consists of six buckling-restrained braced frames (BRBFs) in 
the N-S and E-W directions and six outrigger trusses in the N-S direction as depicted in Fig. 13a. The 
columns of the BRBFs are composed of steel tubes filled with high strength concrete, while the outrigger 
columns consist of wide flange steel sections ranging from W14 × 283 at the 40th story to W14×455at the 
1st story. The BRBFs have W16 × 100 steel beams that are attached to the columns via shear connections 
(i.e., no moment transfer). The buckling restrained braces (BRBs) of the BRBFs have a cross sectional 
area ranging from 0.011 m2 at the 1st story level to 0.007 m2 at the 40th story level, and are constructed 
using 262 MPa steel with a yieldable core over 70% of the brace length.

The building is modeled in 2D using HybridFEM-MH (Kolay, Marullo, and Ricles 2018), a computer 
program capable of performing nonlinear time history analysis of structures subjected to wind or 

Figure 13. Tall building prototype per Moehle et al. (2011): (a) 3D finite element model of the tall building used in 3D RTHS in 
example 4; (b) typical floor plan; and, (c) planar 2D finite element model of the building used in example 3.

Figure 12. Free vibration response 2-DOF system.
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earthquake loading. A 3D RTHS of this structure was performed and is discussed in Example 4. The 
structure in this example is subjected to loading in the N-S direction, and hence symmetry is implemented 
to model only half of the tributary area of the floor in the N-S direction. The columns and beams are 
modeled using beam-column elements where the moment at the ends of the beam are released because the 
beam-to-column connections transfer shear and axial forces only. The outrigger columns are modeled 
using beam-column elements. A lean-on column is used to account for P-delta effects. The diagonal brace 
members are modeled using truss elements. The Giuffre-Menegotto-Pinto formulation is used to define the 
stress-strain curve to capture nonlinear behavior in the elements, where the final tangent modulus is 0.028 
of the initial elastic modulus. A master node with an equal displacement constraint is applied to each floor 
of the BRBFs to simulate rigid floor diaphragm action of the building floor. The mass of the gravity load 
system is based on the dead load and lumped at the master node of each floor level, where the master node 
is located at the middle of the left-hand BRBF bay shown in Fig. 13c. The HybridFEM-MH model, shown 
in Fig. 13c, is a planar model that contains 1590 degrees of freedom and 902 elements. Complete details of 
the building design, member sizes, and the live and dead loads can be found in Moehle et al. (2011). The 
building was assigned 2% damping for modes 1 through 10 and stiffness proportional damping for modes 
11 and beyond. A consistent mass matrix was used to model the mass of the members of the lateral load 
resisting frames (i.e., BRBFs and outriggers) and therefore the damping matrix is dense.

In the first analysis, the building is subjected to a 177 km/h wind loading having a 700-year Mean 
Recurrence Interval (MRI). The wind profile is based on the wind tunnel data available from the 
Aerodynamic Database of High-Rise Buildings of Tokyo Polytechnic University (Tokyo Polytechnic 
University 2019). In the second analysis the building is subjected to the Northridge earthquake, using 
the RSN1084_NORTHR_SCS052 component (PEER 2019). This record was scaled to the target 
uniform hazard spectrum for the MCE hazard level (2,475-year return period) over a period range 
of interest using the procedure outlined in the Tall Building Initiative of this same building by Moehle 
et al. (2011). The site of the building is Los Angeles. In the scaling procedure the scale factor for a pair 
of records is determined by minimizing the weighted sum of square errors between the target 
spectrum and the geometric mean spectrum of the pair over the period range of 0.5 to 10 s with an 
interval of 0.1 s. As given in the TBI case studies, the errors in the period ranges of 0.5–3.0, 3.0–7.0 and 
7.0–10.0 sec were weighted 10%, 60%, and 30%, respectively. The same ground motion record was also 
used by SGH in the performance evaluation of the prototype building (Moehle et al. 2011).

It is impractical to solve this problem with the conventional CD algorithm, for the structure has high 
natural frequencies and therefore the required integration time step to guarantee a stable solution is 
unrealistically small. Instead, the solution of the MCD is compared to Newmark Constant Average 
Acceleration (CAA) (Newmark 1959) and MKR-α algorithms (Kolay and Ricles 2019), where the latter 
is another unconditionally stable explicit model-based algorithm that possesses controlled numerical 
damping. The details of the CAA algorithm for linear and nonlinear problems are presented in (Chopra  
2012) and not repeated herein. The damping matrix C is dense; therefore, the CAA formulation involves 
the full matrix multiplication for both linear and nonlinear problems, respectively (Chopra 2012).

The MKR-α algorithm solves the following weighted equations of motion: 

The MKR-α algorithm uses the forward difference approximation of the derivative where the 
displacement, velocity, and acceleration are obtained using (Kolay and Ricles 2019; Kolay et al. 2015): 
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where Fiþ1�αf , FIDiþ1�αf
, and Riþ1�αf are the weighted applied load vector, damping force vector, and 

restoring force vector, respectively, and 

The model parameters are calculated as follows:

where 

A and B are often dense matrices, making the reoccurrence relationship of the MKR-α algorithm 
expressed by Eq. (53a requiring more computational effort than the recurrence relationship for the 
MCD algorithm (Step 3 of Table 4).

The formulation of the CAA algorithm is documented in (Chopra 2012; Newmark 1959) and 
therefore not presented here. The Newton Raphson method (i.e., tangent stiffness iteration) with 
a convergence tolerance of Ruj jj j=max Ruj j � 0:001 is used to check convergence, where ||.|| represents 
the Euclidian norm of a vector and Ru is the unbalanced force vector; max Ruj j is the maximum 
absolute unbalanced force in Ru during the first cycle of iteration. The integration time step is chosen 
to be 6/1024 seconds with ρ1 ¼ 0:86 for the MCD and MKR-α algorithms.

The building response is linear under the wind loading and nonlinear under earthquake loading. 
Figure 14a–c show the calculated lateral displacement at the 40th, 25th, and 15th floors under the wind 
excitation, with the wind loads at these floor levels shown in Fig. 14d. The response based on the CAA, 
MKR-α, and MCD algorithms is essentially identical. Using the response based on the CAA as the 
reference solution, the MKR-α and MCD algorithms produced Normalized Mean Square Error 

Figure 14. Comparison of the CAA, MKR-α, and MCD algorithms under wind loading: (a, b, and c) roof level, 25th, and 15th floor 
displacements response; and, (d) wind loads at selected floor levels.
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(NRMSE) values of 0.06% and 0.09%, respectively, for displacement at these selected floors. Other 
floors had results for the NRMSE that were less than or equal to these results. The NRMSE is defined as

where the xp is the predicted solution, while xr is the reference solution (i.e., the CAA solution). The 
building re-centered by the end of the windstorm as shown in Fig. 14, as it responded linearly to the 
event.

Figure 15a–c show the calculated lateral displacement of the 40th, 25th and 15th floors under the 
earthquake. The scaled ground accelerations are shown in Fig. 15d. Good agreement is shown to exist 
between the CAA, MKR-α, and MCD results, where the NRMSE is 0.18%, 0.18%, and 0.32% for the 
40th, 25th, and 15th floors, respectively, for the MKR-α algorithm, and 0.31%, 0.34%, and 0.47%, 
respectively, for the MCD algorithm. Again, the response based on the CAA is considered the 
reference solution when calculating the NRMSE values. Other floors had results for the NRMSE 
where the maximum NRMSE was less than or equal to the above values. The hysteretic axial force- 
deformation response of a BRB at the 35th and 40th stories is shown in Figure 15e,f, where good 
agreement between the solutions using the CAA, MKR-α, and MCD algorithms can be seen. It is not 
possible to compute an NRMSE for the BRB force response since the associated BRB deformations 
obtained from the different integration methods do not coincide with the respective time steps for the 
CAA algorithm. Therefore, NRMSE values are not given. The degree of nonlinearity in these members 
is evident in this figure. Similar response occurred in the BRBs at other floors.

Table 5. Comparison of CPU time required for tall building analysis.

Integration algorithm Formulation type

Normalized time NRMSE Roof Displacements

Wind Analysis 
(linear elastic response)

Seismic Analysis 
(nonlinear response) Wind Earthquake

CAA Implicit 1.96 2.85 – –
MKR-α Explicit 1.55 1.06 0.06% 0.18%
MCD Explicit 1.0 1.0 0.09% 0.31%

Figure 15. Comparison of the CAA, MKR-α, and MCD algorithms under seismic loading: (a, b, and c) roof level, 25th, and 15th floor 
displacements response; (d) ground acceleration; and, (e, f) brace axial force-deformation hysteresis at stories 35 and 40.
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Shown in Table 5 is the CPU time needed to obtain the solution for the CAA, MKR-α, and MCD 
algorithms for the analyses involving the two natural hazards. All cases in Table 5 were executed on the 
same Intel i9-9900X CPU having ten cores and 4.4 GHz maximum clock speed. For purposes of 
comparison the CPU times have been normalized by that of the MCD algorithm. The computational 
efficiency of the MCD algorithm is apparent under wind loading where linear response occurred, with 
CPU reductions by a factor of 1.96 and 1.55 compared to the CAA and MKR-α algorithms, 
respectively. For analysis of linear problems, the restoring force is obtained by multiplying the global 
structural stiffness by the displacement in lieu of a state determination process applied to each element 
in the model. For the earthquake loading, the MCD enables reductions by a factor of 2.85 and 1.06 in 
the computational time compared to the CAA and MKR-α algorithms, respectively. The latter 
comparison demonstrated smaller reductions versus the MKR-α algorithm because the CPU time 
for the seismic case is dominated by the time required to compute the nonlinear restoring forces Ri. 
The NRMSE for the roof displacements for the wind and earthquake RTHS are also given in Table 5, 
where for the MCD algorithm they are shown to be equal to 0.09% and 0.31% for the wind and 
earthquake RTHS, respectively. The NRMSE values for the MKR-α algorithm are slightly smaller, 
being equal to 0.06% and 0.18% for the wind and earthquake RTHS, respectively. Although the MCD 
algorithm’s NRMSE values are slightly larger compared to those for the MKR-α algorithm, the MCD 
NRMSE values are exceptionally small and provide evidence that the MCD algorithm gives accurate 
results. Overall, the MCD algorithm is shown in Table 5 to be accurate and more efficient than the 
CAA and MKR-α algorithms and therefore its use in solving structural dynamics problems is 
warranted.

This example uses a consistent mass matrix; therefore, the damping matrix C based on the 
superposition of modal damping ratios is dense. The recurrence relations of the CAA, MCD and 
MKR-α integration algorithms are therefore not sparse. The only exception is in the MCD algorithm 
where the parameter Ψ2 is not a function of the damping matrix C and the multiplication of the matrix 
Ψ2 and the vector xi in Table 4 was performed only on the nonzero elements when computing the 
CPU time in Table 5. Hence, an additional reduction in the computational time required for the MCD 
algorithm could be achieved when a lumped mass matrix is used, for the resulting damping matrix 
would become less dense. The reason for using the consistent mass matrix in the above example is 
because the MRK-α algorithm requires the use of a consistent mass matrix, and hence the comparisons 
between the algorithms are based on using the same mass matrix formulation.

5.4. Example 4: 3D RTHS of a Tall Building Subjected to Multi-Natural Hazards

The computational efficiency of the MCD algorithm makes it well suited for performing 3D RTHS, 
where an increased number of DOF in 3D models of a system exists that requires more computational 
effort. The integration of the equations of motion must be completed within the time step of a RTHS, 
where time steps of adequate size (i.e., not too large) are required to ensure that the algorithm’s results 
are accurate. Hence, computational efficiency of the integration algorithm is of utmost importance to 
enable 3D RTHS with complex models to be performed. The following example illustrates the use of 
the MCD algorithm to integrate the equations of motion during a 3D RTHS of the 40-story building 
discussed above. The 3D model shown in Fig. 13a with a lumped mass matrix RTHS are used. In the 
model each member of the structure is modeled, with each node having six DOF. Three 3-D RTHS 
were performed, each with a different value for ρ1 (1:0; 0:86; and 0) to illustrate the effect of ρ1 on 
the results. The sparsity of the mass M, damping C, and intial stifness Ko associated with the equations 
of motion is exploited in the RTHS as described below. The building is modeled in HyCoM-3D (Ricles, 
Kolay, and Marullo 2020), a computer program capable of performing 3-D nonlinear RTHS of 
structures subjected to wind or earthquake loading. Only earthquake response is presented in this 
example. The building is supplemented with nonlinear viscous dampers between the outriggers and 
perimeter columns to improve building performance (Smith and Willford 2007). A full scale nonlinear 
viscous damper is used as the experimental substructure of the RTHS as shown in Fig. 16a. The 
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remaining parts of the structure are modeled in the analytical substructure. The three-dimensional 
model of the building has the same element types used in Section 5.3; however, it includes a larger 
number of degrees of freedom (3,974), 1,828 nonlinear truss elements and 1,079 linear beam-column 
elements. The MKR-α algorithm cannot be used for this RTHS because the matrices are too large and 
dense (e.g. matrix A in Eq. 53a) that prevent the recursive relationship, Eq. (53a), from being 
calculated in real time within the time step. Note that the CR algorithm for RTHS (Chen and Ricles  
2008a) is among the same family of algorithms as the MKR-α algorithm and equivalent when ρ1 = 1.0 
is used. The CR algorithm lacks the dissipative characteristics necessary for a RTHS integration 
algorithm. Only the MCD algorithm can handle an analytical substructure model with these many 
DOFs and perform a RTHS.

The MKR-α algorithm requires statically condensing the column and beam elements in to order to 
reduce the NDOF in the model to 1680, limiting the ability for the model to capture any nonlinear 
behavior that occurs in the beams or columns of the building during a RTHS. The CAA algorithm 
cannot be used in a real-time hybrid simulation for it is an implicit integration algorithm which 
requires a nondeterministic number of iterations within a time step when nonlinearities occur. If 
convergence is not achieved within the time step the real-time hybrid simulation would then suffer 
a delay in the restoring force feedback, causing the simulation to become unstable.

Rigid floor diaphragms are used in the model, with a master node located at the centroid of each floor 
plan. The floor mass is lumped at the master node at each floor level. A lean-on-column is used that is 
loaded with the floor gravity loading to account for the P-delta effect. The inherent damping of the 
building is modeled by assigning 2% modal damping to modes 1 through 30 and a superimposed 
stiffness proportional damping for modes 31 and beyond. A lumped mass matrix formulation was used 
in order to reduce the density of the damping matrix and therefore as noted above make the recurrence 
relationship of the MCD more efficient. The building is subjected to the 1989 Loma Prieta earthquake, 
where the horizontal components RSN802-LOMAP-STG000 and RSN802_LOMAP_STG090 (PEER  
2019) are scaled to the target uniform hazard spectrum for the MCE hazard level as described previously. 
These same ground motion records were also used by SGH in the performance evaluation of the 
prototype building with conventional outriggers (Moehle et al. 2011). In the building three nonlinear 
viscous dampers that act in parallel are located between each outrigger truss and perimeter column for 
a total of 36 dampers. Each damper has a nominal force capacity and stroke of 600 kN and ±125 mm, 
respectively. Only one damper is modeled experimentally (at the north-west corner of the building at the 
40th story) while the remaining ones were modeled analytically using an explicit-nonlinear Maxwell 

Figure 16. Full scale nonlinear viscous damper: (a) test setup for RTHS experimental substructure and damper characterization tests; 
(b) damper force-displacement response from characterization tests; and, (c) cumulative distribution function of the force- 
displacement slope from the characterization tests. (*damper force limit is reached at 1.5Hz).
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model with an online model approach as indicated in Fig. 1 (see (Al-Subaihawi, Ricles, and Quiel 2022) 
for more on-line modeling details). The members of the outrigger trusses and perimeter columns, which 
are in the load path of the dampers, have their axial stiffness increased by a factor three to make the 
dampers more effective (Al-Subaihawi et al. 2020). Additional information regarding the modeling of 
the building is given in (Moehle et al. 2011).

In order to obtain the model integration parameters required by the MCD algorithm, the model 
stiffness k0 of the nonlinear viscous damper needs to be identified. To achieve this, characterization 
tests were performed where the damper is subjected to a set of predefined displacement histories with 
an amplitude of 75 mm and frequency range from 0.15 Hz to 1.5 Hz which corresponds to the range of 
frequencies that participate in the building response. The displacement included two ramping up 
cycles, seven cycles with constant amplitude, and three ramping down cycles, all sampled at 1/1024 sec. 
The test setup for the characterization tests was the same as the RTHS experimental substructure, see 
Fig. 16a. The damper force-displacement response is given in Fig. 16b, and the instantaneous stiffness 
defined as the instantaneous stiffness of the force-displacement response is obtained by dividing the 
change in the measured damper force by the change in displacement. The cumulative distribution 
function of the instantaneous stiffness is plotted in Fig. 16c. Based on the results shown in Fig. 16c 
a value of ko = 7:1x105kN/m was used for the damper stiffness, which is associated with 99.99% of all 
measured stiffness being less than this value. If an estimated damper stiffness is used that under
estimates the maximum instantaneous stiffness an instability can occur in the RTHS.

The matrices Ψ, Ψ1, and Ψ2 from Table 4 are formulated based on the model properties of the 
building. It is important to emphasize that the stiffness matrix K0 includes the initial stiffness of the 
building and the estimated model stiffness k0 of the nonlinear viscous dampers. For RTHS it is ill- 
advisable to invert the matrix Ψ in Table 4 because the resulting Ψ−1 matrix will be dense. For RTHS, 
computational efficiency is critical. Therefore, the user is advised to keep Ψ on the left-hand side in 
order to solve the system of sparse matrices. The matrix Ψ has 58,622 non-zero elements, where the 
profile is shown in Fig. 17a and where white space is associated with zero elements in the matrix. To 
efficiently solve the system of equations, the matrix Ψ is decomposed into a lower (L) triangular matrix 
such that PTS Ψ SP = LDLT, where P and S are permutation and scaling matrices, respectively, to 
improve the numerical stability of the calculations with S and D both diagonal matrices (Anderson 
et al. 1999; Ashcraft, Grimes, and Lewis 1998; Duff 2004). Ψ is re-ordered using the reverse Cuthill- 
McKee (RCM) algorithm (George and Liu 1981; Gilbert, Moler, and Schreiber 1992) before it is 
decomposed to reduce the number of non-zero elements in the resulting matrix L. If Ψ is decomposed 
without the RMC ordering, the resulting L matrix has the profile shown in Fig. 17b with 69,646 non- 
zero elements. Decomposing the Ψ after the RCM ordering results in L with the profile shown in 
Fig. 17c which has a smaller number of non-zero elements of 64,822. The RCM ordering is used during 
the RTHS. While decomposing Ψ results in a greater density in L, which can be reduced by applying 
the RCM algorithm yet the result is still more dense than Ψ, it is still more computationally efficient to 
perform the decomposition rather than invert Ψ.

Figure 17. Profile of the matrix Ψ: (a) before RCM ordering; (b) resulting L matrix without RCM ordering; and, (c) resulting L matrix 
with RCM ordering.
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The sparse matrices L, P, Ψ1, and Ψ2 are stored by index (i.e., the sparse matrix is stored in three 
one dimensional arrays representing the row location, column location, and the corresponding non- 
zero value of the element of the matrix). The recurrence relationship is recast where Ψ is on the left- 
hand side of the expression: 

Solving this recurrence relation during the RTHS involves two steps: Step 1: After decomposing Ψ into 
LD (which has to be done only once since elements in Ψ remain constant), solve for Y1 from Eq. (59). 
The size of the vector Y1 is NDOF x1 where NDOF is the number of degrees of freedom of 3,974. 

Obtaining the right-hand side b from Eq. (59) involves multiplying the NDOF x NDOF sparse 
matrices Ψ1 and Ψ2 by two NDOF x 1 vectors xi�1 and xi. The multiplication is performed only on 
the non-zero elements of the matrices. The vector b needs to be arranged in accordance with the RCM 
re-numbering. The matrix PTS is also sparse and therefore multiplication operations are performed 
only on the non-zero elements when multiplied by the vector b. Solving for Y1 is performed by making 
use of the triangular shape and sparsity of the matrix resulting from the multiplication LD.

Step 2: Solve for the vector Y2 from Eq. (60) by making use of the triangular shape and sparsity of 
the matrix LT. Then solve for xiþ1 from Eq. (61) by making use of the fact that the matrix SP is sparse. 

The resulting xiþ1 needs to be re-arranged based on the RCM re-numbering. The sparsity of the model 
integration parameters is exploited during the RTHS where the multiplication operations are per
formed only on the non-zero elements. This results in a substantial savings in the cost of integrating 
the equations of motion during the RTHS, where a time step of 6/1024 sec was used.

Figure 18 shows the time history response of the roof displacement and torsional twist during the 
RTHS for different values of ρ1. The cases with ρ1 ¼ 1 and ρ1 ¼ 0:86 have comparable time 
histories because the adds numerical damping to the lower modes when ρ1 ¼ 0:86 is negligible; 
however, using ρ1 ¼ 0 imposes excessive numerical damping that not only suppressed the higher 
modes, as will be discussed later, but also affected the response of the lower modes to some extent as 
evident in Fig. 18. Recall that the purpose of the numerical damping is to suppress high frequency 

Figure 18. Roof displacement during the 3D real-time hybrid simulations for different ρ1 values in (a) the E-W, (b) N-S directions; 
and, (c) twist at the roof level.
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oscillations. The building experienced residual displacement at the end of the RTHS because of 
nonlinear behavior (yielding of the BRBs) in the analytical substructure.

Figure 19 shows the force-displacement response of the damper of the experimental substructure 
during the RTHS for the cases of ρ1 ¼ 1:0; 0:86; and0. A comparison of the results shows that the 
damper force-displacement response when ρ1 ¼ 1:0 or ρ1 ¼ 0:86 are comparable, with the excep
tion of the removal of high frequency oscillations that occurred when ρ1 ¼ 1:0. However, using 
ρ1 ¼ 0 is shown to be inappropriate where the damper displacement decreases substantially because 
of the added numerical damping has greater influence on the lower modes of interest. Care must be 
taken to establish an appropriate value for ρ1. Figure 5 can be used to provide guidance for selecting 
the value of ρ1and adjusting the time step Δt (i.e., the value of Ω) such that the frequency range of 
interest is not affected by numerical damping. Figure 20 shows the axial force-deformation response of 
different braces at stories 35 and 40 in the N-S and E-W directions for the case of ρ1 ¼ 0:86. The BRBs 
are seen to exhibit nonlinear behavior in both directions of the building.

Figure 19. Damper force-displacement response during real-time hybrid simulations for different ρ1 values.

Figure 20. Brace axial force-deformation hysteresis at stories 35 and 40 with ρ1 ¼ 0:86: (a) 35th story, NS direction, (b) 35th story, EW 
direction, (c) 40th story, NS direction; and, (d) 40th story, EW direction.

Figure 21. Experimental damper: (a) time history response of damper displacement; and, (b) synchronization subspace plot, ρ1 ¼ 0:86.
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The time history response of the experimental damper for the case of ρ1 = 0.86 is shown in Fig. 21a 
where the target displacement xt is the motion required to be imposed on the damper and based on the 
result of integrating the equations of motion using the MCD algorithm. The compensated signal is the 
modified input to the actuator to compensate for amplitude error and delay associated with servo- 
hydraulic actuator dynamics (Chae, Kazemibidokhti, and Ricles 2013), and the measured damper 
displacement xm is the measured displacement during the RTHS. In this study, the second-order 
adaptive time series compensator (Chae, Kazemibidokhti, and Ricles 2013) is used for each actuator 
target displacement xt. The associated synchronization plot of measured displacement plotted against 
the target displacement is given in Fig. 21b. The NRMSE is 0.08%, and is considered small. The 
NRMSE is calculated using Eq. (57), where xp and xr are replaced by xt and xm, respectively. These 
results, which are representative of all of the three RTHS, show excellent actuator control is achieved 
and any delay and error amplitude is minimal. The time history of the adaptive compensator 
parameters is shown in Fig. 22, where the maximum compensated delay ranged from 13msec to 
21msec and the maximum compensated amplitude error from 0.98 to 1.01 for the ρ1 = 0.86 RTHS. 
The other RTHS has similar results.

It is of interest to study the sensitivity of the RTHS to the model stiffness of the damper ko. Hence, 
additional RTHS were performed, where the value for ko was varied. The hysteretic response of the damper 
in the experimental substructure is plotted in Fig. 23 for several values of the damper model stiffness. The 
model stiffness k is normalized by the baseline value discussed previously where ko = 7:1 x 105kN/m, and 
the results are shown for normalized stiffness values of 0.75, 1.0, 1.5, and 2.5. A case of a normalized 
stiffness of 0.75 underestimates the maximum actual stiffness of the damper, while the later cases over
estimates it. The associated energy dissipated by the damper for these cases is summarized in Table 6. 
These results correspond to a reduction of 16.7%, 8.4%, and 22.2% in the total energy dissipation when the 

Figure 22. Time history of the adaptive time series compensator parameters, ρ1= 0.86.

Figure 23. Effects of damper model stiffness on damper hysteretic behavior, ρ1 ¼ 0:86.
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model stiffness factor is 0.75, 1.5, and 2.5, respectively. Reducing the damper model stiffness to less than 
0.75 of the baseline stiffness resulted in underestimating the maximum instantaneous stiffness which led to 
the RTHS becoming unstable. On the contrary, increasing the damper model stiffness to 2.5 times the 
baseline stiffness had the RTHS remain stable but at the expense of smaller energy dissipation compared to 
the baseline case (for the damper stiffness is overestimated which enables the poles to remain within the 
unit circle). The instability caused by underestimating the stiffness ko of the experimental substructure also 
occurs in the MKR-α and MR-α algorithms (Kolay and Ricles 2019; Kolay et al. 2015). It is advised that the 
user of the MCD algorithm perform trial numerical simulations to explore the sensitivity of the stability of 
the RTHS to selected values of ko to ensure that the actual RTHS will remain stable.

The effect of varying the value of ko on the accuracy is reflected in the NRMSE values given in 
Table 6 for the roof bi-directional displacements and twist. The NRMSE for the E-W and 
N-S displacements range from 0.22% to 0.62% and 1.26% to 3.36%, respectively, while the NRMSE 
roof twist is shown to range from 1.27% to 3.52%. The error is considered to be small in terms of an 
experimental error, although the NRSME values become larger as the value for ko is reduced. (i.e., the 
ratio k/ko increases). It is also observed that the NRMSE is larger in the N-S direction due to the 
greater effectiveness of the dampers in the outrigger system influencing motions parallel to the plane 
of the outriggers. The NRMSE is also greater in the roof twist since there is motion in the N-S direction 
to accommodate the twisting motion of the building.

Like any direct integration algorithm, it is recommended to perform a convergence study in order 
to assure that the results using the MCD algorithm are accurate. It is recommended that users of the 
MCD algorithm perform such studies, where a systematic variation of the time step Δt, spectral radius 
ρ1, and the assumed values for the model-based parameters of initial stiffness k and damping c of the 
experimental substructure are systematically varied in order to assess the effects on the accuracy of the 
results. For these studies, unless it is convenient to incorporate the experimental substructure, these 
studies can be conducted using hydraulics-off mode where the complete system is modeled 
analytically.

6. Summary and Conclusions

This paper proposes the Model-based Central Difference (MCD) algorithm for use in real-time hybrid 
simulations. The MCD algorithm has the following characteristics: (1) explicit, where it does not 
require iterations to solve nonlinear dynamics problems; (2) unconditional stability for linear and 
softening-type nonlinear problems; (3) controllable numerical damping that is adjustable using 
a single free parameter; and (4) the displacement calculation is computationally efficient. The MCD 
is an efficient integration algorithm for large real-time hybrid simulation (RTHS) nonlinear structural 
problems with a sparse system of matrices. The reduction in the computational effort is achieved by 
performing the matrix operations only on the non-zero elements.

Control theory is used to develop the MCD algorithm. The feedback gain of the controller is found 
by mapping the poles of the transfer function for the non-dissipative form of the algorithm onto the 
circumference of the unit circle in the complex z-plane, which is in the region of stability. Numerical 
damping is then incorporated into the MCD algorithm by adding a compensator to the non- 
dissipative form of the algorithm and mapping the poles of the transfer function for the dissipative 

Table 6. Effect of damper model stiffness ko on energy dissipation of damper and accuracy of roof motions, ρ1 ¼ 0:86.

Model stiffness ratio (k/ko)
Total energy dissipation of damper

NRMSE of Roof Displacements 
(%) NRMSE of Roof Twist 

(%)(kN-m) E-W N-S

0.75 138.3 0.22 1.26 1.37
1 166.1 - - -
1.5 152.0 0.31 1.77 1.92
2.5 129.1 0.62 3.36 3.52
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form of the algorithm to lie within the unit circle, which is in the dissipative and stable region of the 
complex z-plane.

The MCD algorithm is shown to be consistent, convergent, and possess second order accuracy 
when ρ1 = 1 and first-order accuracy when ρ1 2 0; 1½ �. The overshoot characteristics of the MCD 
algorithm are shown to be improved compared to the conventional CD algorithm. The displace
ment and velocity are shown to remain bounded and stable, with the inclusion of numerical 
damping reducing the amount of overshooting in the first time step (when the maximum over
shoot would occur) for problems involving an initial velocity. The period elongation and the 
equivalent damping of the MCD algorithm are shown to be a function of Ω, which is associated 
with the product of the natural frequency and time step. It is found that the period elongation for 
the MCD algorithm is higher compared to the Generalized-α algorithm, except when ρ1 ¼ 0. The 
equivalent damping of the MCD algorithm is a function of ρ1, and varies from zero damping 
(when ρ1 ¼ 1) to asymptotic annihilation (when ρ1 ¼ 0), that is 100% numerical dissipation at 
the high-frequency limit of Ω → ∞.

A closed-form derivation of the stability limit of the MCD algorithm for nonlinear problems is 
presented. If the feedback gains of the controller and the compensator are calculated based on the 
initial state of the structural system and kept constant, it is shown that instability may occur in 
hardening-type nonlinear SDOF problems when the structure stiffens by a factor of roughly two or 
more compared to the initial stiffness of the structure. This was found to occur in the RTHS when 
a value of the estimated damper model stiffness is used that is too small compared to the maximum 
instantaneous damper stiffness. However, there is some leeway in selecting the value as shown in the 
RTHS. The user will need to investigate what is a reasonable value for the equivalent stiffness of any 
experimental substructure component and use a conservative value, such as 1.5 times the estimated 
stiffness. It is also shown that the MCD algorithm is unconditionally stable for linear and softening 
type nonlinear problems that are associated with a reduction in structural stiffness.

The computational efficiency of the MCD algorithm is demonstrated by the analysis of a prototype 
tall building subjected to two natural hazards, namely a wind storm and strong earthquake ground 
motion. The MCD enables reductions in computational effort by a factor of 1.96 and 1.55 compared to 
the CAA and MKR-α algorithms, respectively, when the structural response is linear under wind 
loading, and 2.85 and 1.06 compared to the CAA and MKR-α algorithms, respectively, when the 
structural response is nonlinear under earthquake loading. The MCD algorithm is implemented in the 
real-time hybrid simulation (RTHS) of a tall 40 story building with 3,974 degrees of freedoms and 
a lumped mass matrix and subjected to an earthquake. The MCD algorithm enabled a 3D RTHS 
simulation to be successfully performed of this structure.

Like any direct integration algorithm, a convergence study should be performed in order to assure 
that the results using the MCD algorithm are accurate. It is recommended that users of the MCD 
algorithm perform such studies, where a systematic variation of the time step Δt, spectral radius ρ1, 
and the assumed values for the model-based parameters of initial stiffness k and damping c of the 
experimental substructure are systematically varied in order to assess the effects on the accuracy and 
stability of the results. For these studies, unless it is convenient to incorporate the experimental 
substructure into the simulation, the studies can be conducted using a hydraulics-off mode where 
the complete system is modeled analytically.
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Appendix

The poles must satisfy the requirements of convergence, stability, and removal of the undesirable oscillatory behavior at 
high frequencies. The derivation starts with the following discrete weighted difference equations for velocity and 
acceleration: 

vi ¼
1�ψð Þxiþ1þψxi� 1�ϕð Þxi�1�ϕxi

2Δt ; ai ¼
1�ψð Þxiþ1þψxi�2xiþ 1�ϕð Þxi�1þϕxi

Δt2 (A1; 2) 

Taking the z-transform of these equations and then substituting the result into the equation of motion, the resulting 
solution for the resulting transfer function produces the following characteristic equation: 

�Ωξψ þ Ωξ � ψ þ 1ð Þz2 þ Ω2 þ Ωξψ � Ωξϕ þ ψ þ ϕ � 2
� �

z þ Ωξϕ � Ωξ � ϕ þ 1ð Þ ¼ 0 (A3) 

The parameters ψ and ϕ are obtained by substituting the poles for the unconditionally stable Newmark Constant 
Average Acceleration method (see Eq. (11)) into Eq. (A3): 

ψ ¼ � Ω2

4Ωξþ4 ; ϕ ¼ Ω2

4Ωξ�4 (A4; 5) 

To introduce dissipative characteristics into the transfer function, Eqs. (A1,2) are further weighted in order to shape the 
root loci of the transfer function such that the root loci branches terminate in the dissipative region of the z-plane, where: 

vi ¼
1 � α1ψð Þxiþ1 þ α1ψxi � 1 � α2ϕð Þxi�1 � α2ϕxi

2Δt
; ai ¼

1 � α1ψð Þxiþ1 þ α1ψxi � 2xi þ 1 � α2ϕð Þxi�1 þ α2ϕxi

Δt2

(A6a; b) 

Solving for the resulting transfer function leads to the following characteristic equation: 

ðΩ2α1 þ 4Ωξ þ 4Þz2 þ ð�Ω2α1 � Ω2α2 þ 4Ω2 � 8Þz þ Ω2α2 � 4Ωξ þ 4
� �

¼ 0 (A7) 

To shape the root loci of the transfer function so that the branches terminate in the dissipative region of the 
z-plane when Ω ! 1, the poles of Eq. (A7) are equated to a pair of complex conjugate poles that lie on the 
imaginary axis having the values of �

ffiffiffiffiffiffiffiffiffiffi
�ρ1

p . Taking the limit of Ω ! 1 in Eq. (A7) with the two poles leads 
to the following: 

α1 ¼ 4
ρ1þ1 ; α2 ¼

4ρ1

ρ1þ1 (A8) 

The desired set of poles are then obtained for a general value of Ω by substituting α1 and α2 from Eq. (A8) into (A7) and 
solving for the roots to the characteristic equation: 

z1;2 ¼
ρ1þ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Ωξþξ2

�1ð Þρ2
1þ �Ω2þ2ξ2

�2ð Þρ1þξ2
þΩξ�1ð ÞΩ2

p

Ω2þΩξ ρ1þ1ð Þþρ1þ1
(A9) 

The above poles were produced using a modified form of the difference equations compared to Eq. (9a,b). This enabled 
an improvement in the overshooting properties of the MCD algorithm to be achieved. It is possible to arrive at an 
unconditionally stable and dissipative MCD algorithm using Eqs. (A1) and (A2) and the model parameters in Eqs. (A4), 
(A5); however, the resulting MCD algorithm tends to possess less favorable overshoot characteristics compared to the 
one presented within the body of the manuscript.
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