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EV Charging Scheduling Under Demand Charge:
A Block Model Predictive Control Approach
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and Lang Tong , Fellow, IEEE

Abstract— This paper studies the online scheduling of electric
vehicle charging by a service provider subject to a demand charge
in a distribution system. Demand charge imposes a penalty on the
peak power consumption over each billing period, representing a
substantial cost for the service provider with a large number of
clients. Because the demand charge is calculated at the end of the
billing period, it poses challenges in real-time scheduling when
energy demand forecasts are inaccurate, resulting in either overly
conservative power consumption or substantial demand charge.
We propose a block model predictive control approach that
decomposes the demand charge into a sequence of stage costs.
Optimality conditions on demand patterns are also presented and
analyzed. Numerical simulations demonstrate the efficacy of the
proposed approach.

Note to Practitioners—This paper addresses a significant prac-
tical problem of minimizing the demand charge on the real-time
scheduling of deferrable demands. In particular, we consider a
setting where a commercial electric vehicle (EV) charging service
provider has to manage the online scheduling of a large number
of arriving EVs at a charging facility subject to a maximum
charging power constraint and a tariff with the demand charge.
A major practical challenge is to balance the tradeoff between
maximizing profit in scheduling as much EV charging as possible
and the need to minimize penalty on the peak charging power.
We propose a model predictive control strategy that decomposes
the overall demand charge into a sequence of terminal costs. Also
addressed is the practical constraint arising from the mismatched
EV charging decision period and the power measurement period
used to compute the demand charge. Using real data collected
at the Adaptive Charging Network (ACN) testbed in simulations,
the proposed approach yields 8-12% improvement in operational
profit over existing benchmarks, while it has yet been tested in
actual charging systems. In the future research, we will address
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the charging scheduling under demand charge over multiple
charging stations.

Index Terms— Demand charge, demand side management,
online scheduling, charging of electric vehicles, model predictive
control (MPC).

I. INTRODUCTION

WE CONSIDER the problem of scheduling electric vehi-
cle (EV) charging in an EV charging facility by a

commercial service provider. The EV charging model accounts
for the stochastic arrival of EVs and their charging demands,
the need to constrain total charging power imposed by the
distribution grid, and the costs of EV charging arising from
the energy and the demand charge set by the tariff of a local
utility. At a higher level, such a scheduling problem falls in
the category of stochastic dynamic programming, for which
the optimal solution suffers from the curse of dimensionality,
making it unrealistic for practical implementations.

The importance of a carefully designed EV charging sched-
ule is well understood, and there is extensive literature on
various approaches, each capturing certain aspects of the
EV charging problem; see a brief review in Section I-A.
Among the most significant factors are the need to exploit
the flexibility of charging demands, avoid peak-demand hours
during which the energy cost is high, incorporate colocated
renewables, and deal with dynamically varying electricity
prices.

This paper focuses on two nontrivial but less studied
aspects of centralized EV charging in a distribution system
by a profit-seeking service provider: the stochastic arrival of
charging demands and the high cost of the demand charge.
Without a computationally tractable optimal scheduling solu-
tion, we aim to develop a suboptimal model predictive control
(MPC) strategy that exploits the structure of EV charging char-
acteristics and incorporates the demand charge as a sequence
terminal cost associated with the optimization at each stage.

The centralized EV charging in a distribution system allows
us to remove or deemphasize some of the complications
commonly considered in the literature, some of which can be
incorporated under the general MPC framework, while others
become unnecessary for the problem at hand. Specifically,
we assume that the marginal cost of electricity is deterministic
and the demand charge price fixed as part of a long-term
contract with the distribution utility. The behind-the-meter
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renewable is not considered. While such resources can be
incorporated in the MPC-based dynamic optimization, their
significance rests primarily in the scheduling performance
rather than in developing an MPC-based solution.

A. Related Work

The literature on EV charging scheduling is vast. Here we
restrict our review to centralized scheduling of a large number
EV chargings by a profit-seeking operator.

A significant line of contributions to the EV charging lit-
erature follows a baseline of charging optimizations involving
a fixed set of EVs [1], [2], [3], [4], [5], [6], [7], [8], [9].
Most work under such formulations applies naturally to the
residential EV charging problems, where distributed imple-
mentations are often important. While these approaches can
be adapted to the centralized EV charging problem considered
in this paper, they have very different objectives from that
of a commercial EV charging service provider. Some of
the missing ingredients in these models are the stochastic
arrival/departure of charging requests, charging demands, and
charging completion deadlines.

Our approach presented in this paper follows the online
job-scheduling formulation where charging demands (jobs)
arrive and depart sequentially with uncertainty. One line of
approaches is to cast the problem as the classical (deter-
ministic) deadline scheduling problem [10], [11], [12], [13],
[14], [15] where jobs with completion deadlines are centrally
scheduled in real-time. In the context of EV charging, jobs
are EVs with stochastic demands, processors are EV charging
connecting ports, and the operator is the scheduler. The simple
and sometimes optimal deterministic scheduling schemes such
as the earliest deadline first (EDF) and the least-laxity-first
(LLF) algorithms remain to be the benchmarks for compar-
isons. These approaches treat job arrivals as deterministic and
arbitrary.

The scheduling of EV charging under stochastic arrivals
starts with a Markov decision process (MDP) formulation of
the scheduling problem [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25]. The approach presented in this paper follows
the problem formulation of these approaches. Recognizing that
the MDP solutions are intractable in practice, efforts have
been made to discover and exploit the structural properties of
the problem to achieve suboptimal (sometimes asymptotically
optimal) performance [21], [22], [23], [24], [25]. In partic-
ular, when the charging demand arrival is light relative to
overall system charging capacity, it is shown in [23] that,
without the demand charge, the Whittle’s index policy [26]
is asymptotically optimal. Outside the light traffic regime
and without demand charge, the Less Laxity First with Later
Deadline (LLF-LD) scheduling algorithm proposed in [27]
exhibits near-optimal performance in simulations.

MPC, more precisely receding-horizon economic MPC
(EMPC) [28], is a computationally tractable solution that often
performs well in practice when dealing with optimization
problems involving dynamic systems and economic objectives.
Such a model fits naturally to the large-scale EV charging
problem for a service provider with a profit-maximizing

objective. EMPC has been applied to centralized EV charging
problem in [29] and [30]. The EMPC models considered
in these contributions differ considerably from our paper’s
approach. Halvgaard et al. [29] formulated one of the earliest
EMPC approaches to EV charging that minimizes charging
costs involving a fixed set of EVs over a scheduling interval.
More recent work of Engel et al. [30] considers the cen-
tralized co-optimization of EV charging and building energy
management systems. Missing in these formulations are the
arrival and departure dynamics of EV demands and stochastic
charging completion deadlines.

Demand charge can be a significant part of its cost for
a profit-maximizing operator of a large EV charging ser-
vice. Because demand charge is determined by the maximum
power consumption (typically measured over multiple charg-
ing periods), it is nontrivial to capture such cost within each
receding-horizon MPC optimization. In [8], Lee et al. proposed
an MPC method that decomposed the demand charge into
multiple convex problems, where heuristics were introduced
to weight the demand charge to influence the performance on
the overall profit. Although not designed for the EV charging
problem, the work of Kumar et al. [31] and the recent paper of
Risbeck and Rawlings [32] also bear significant relevance to
our work. Similarly to [8], the approach of Kumar et al. [31]
to incorporating the demand charge in MPC is heuristic by
setting a time-varying weight at each optimization problem.
Risbeck and Rawlings, on the other hand, proposed a princi-
pled approach that explicitly incorporated the demand charge
as a terminal cost of each EMPC optimization in [32]. Their
approach, however, is designed with respect to a reference tra-
jectory that can only be derived from perfect demand forecasts,
and the maximum consumption that sets the demand charge
must be computed within a single decision interval. In practice,
the EV charging decision interval can be significantly shorter
than the period over which the maximum demand charge is
computed, for which no existing techniques explicitly account,
to our best knowledge.

B. Summary of Results and Contributions

We formulate a centralized EV charging problem as an
MDP where our model captures the arrival dynamics of EVs,
stochastic charging demands, and stochastic completion dead-
lines. A significant contribution is incorporating the demand
charge in the MDP formulation and deriving a novel block
economic MPC solution, referred to as BMPC, to deal with
the demand charge that must be computed over multiple
scheduling intervals. A key ingredient of BMPC is to trans-
form the terminal demand charge into a sequence of stage
terminal costs of each BMPC optimization by tracking the
peak consumption and assessing the impact of the demand
charge in each stage. Although the idea of tracking the peak
demand was considered in [33], [34], and [32], BMPC differs
from existing techniques in terms of the specific stage costs
used in the BMPC optimization and how the peak consumption
is computed over multiple scheduling intervals. To support an
MPC approach for EV charging applications, we show that the
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MPC solution is optimal when the traffic arrivals are clustered
and sparse.

Extensive numerical simulations were performed based on
the real dataset collected from the Adaptive Charging Network
(ACN) testbed, which has provided an open database of
EV charging since February 2016 and successfully operated
and delivered over 1000 MWh to avoid tons of greenhouse
gases [8]. We compared BMPC with four benchmark algo-
rithms, including MPC with scaled demand charge (MPC-
scaled), EMPC [32], MPC without demand charge (MPC-w/o)
and LLF-LD [27]. Numerical results demonstrate that BMPC
achieves the best performance in most cases. In particular,
BMPC can achieve 8% more total reward than the second-best
approach when EV charging requests are stochastic. Compared
with MPC-w/o and LLF-LD, BMPC can obtain more than
12% total reward on average, even under 80% forecast accu-
racy.

The remainder of this paper is organized as follows.
We formulate the EV-DC problem as an MDP in Section II.
In Section III, we develop BMPC as the online scheduling
algorithm and demonstrate the numerical results in Section
IV. Finally, we conclude the paper in Section V.

II. EV CHARGING UNDER DEMAND CHARGE

We consider the problem of scheduling of EV charging
under demand charge (EV-DC) at a public facility [16], [18],
[23], [35], [36], where EVs with charging demands arrive
stochastically, each with a random amount of energy request
and specified deadline for completion [23].

A. Nominal Model Assumptions

Consider an EV charging facility with N chargers (charging
ports) as illustrated in Fig. 1. EVs arriving at the charging
facility are assigned randomly to one of the available chargers.
We assume that, upon arrival, the EV reveals to the operator
its charging demand and deadline for completion.1

The operator faces a deadline scheduling problem, aimed
at completing as many EV charging jobs as possible by their
deadlines. The reward for the operator is the revenue from
serving EV demands. The cost, on the other hand, comes from
the electricity consumed in EV charging, the demand charge
imposed by the distribution utility, and the penalty when the
charging demands are not fulfilled. The operator also faces
the constraint that only a finite number of chargers can be
activated simultaneously due to transformer constraints from
the distribution circuit.

We consider a finite scheduling horizon T , indexed by
t ∈ T := {0, 1, · · · , T − 1}. Some of the key details and
assumptions of EV-DC are outlined below.

1For EV charging at public parking facilities at shopping and office
complex, a customer may not stand by until the charging is completed.
It is therefore natural that a deadline for completion is included in the
charging demand so that the customer can be away and return at the time
of completion [37], [38].

Fig. 1. Schematic of EV-DC at a public facility.

A1) At each interval,2 a charger can only work on one
EV, and each EV can receive service from only one
charger at any given time.

A2) Each charger has a constant charging rate R at each
interval t ∈ T . The charging decision at interval t
for the i-th charger is a binary variable ui,t , i =

1, . . . , N , with 1 activating and 0 deactivating the
charging port.

A3) The EV arriving at the i-th charger at the beginning
of interval t0 reveals random Di,t0 (total amount of
energy to be completed) and Ti,t0 (deadline). An EV
will be automatically removed at the end of deadline.

A4) The operator receives a per unit reward π r and
pays a time-varying charging cost π e

t if it serves
an EV at interval t . For simplicity, we assume that
parameters π r and {π e

t }
T−1
t=0 are deterministic. The

proposed approaches can be easily extended towards
stochastic settings.

A5) If the total charging demand of EV i is not completed
before it leaves, then a penalty occurs at unit price q.
We also assume that the penalty price is greater than
the largest charging cost over the whole horizon, i.e.,
q ≥ π e

t , ∀t ∈ T .
Remark 1: Comments and justifications for these assump-

tions are in order. Assumption A1 is standard and holds for
most existing charging stations [39]. The on-off charging
model assumed in A2 is a reasonable approximation to the
actual charging profile3 [40], and it can be extended to cases
with continuously varying charging rates [8]. A3 assumes that
random charging requests and completion time are known
upon arrival, which is necessary for quality-differentiated EV
charging services. Some commercial and business EV charging
facilities impose the duration of charging [37], [38]. A4 is
the standard assumption that the price of charging (per kWh)
is the same for all the EVs [41]. The marginal cost of EV
charging (mostly from the energy cost for the service provider)
is constant for EVs processed within the same interval t .
Generalizations to the time-varying case such as [42] are
possible. Because there are physical constraints (e.g., from

2Throughout the paper, we use “stage” to index optimization and “interval”
to index time (decision epoch).

3In practice, the charging rate may vary depending on the SoC, especially
when the battery is nearly fully charged.
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power system transformers) that limits the amount of power
delivery at any given time, the EV charging service provider
may not be able to complete charging requests by the deadline
when the demand is high. In such cases, we assume in
A5 that the service provider must compensate the customer
with the penalty price q to enhance the quality of charging
services [43], [44], where the soft deadline can be hardened
by setting the non-completion penalty much higher than the
charging cost. Thus it is always optimal (i.e., reward maxi-
mizing) to finish as many EV requests as possible.

B. Problem Formulation

EV loads are flexible demands such that their services can
be delayed. By shifting part or all of the demands, EV-DC
has strong inter-temporal dependencies. We present in section
a Markov decision process (MDP) model for EV-DC [21],
[27], subject to various constraints including the maximum
charging rate, time-varying electricity price and a monthly
demand charge.

1) Exogenous Stochastic Input ξ : The input of EV-DC
model is a vector random process that models the arrivals of
EV demands at individual chargers. The occupancy of each
charger is an on-off process with the charger being occupied
for the duration of the EV charging deadline and being idle for
the duration of a Bernoulli process based on with parameter
αi set by the overall arrival rate of the EV demands.4 At
the beginning of an occupied period of charger i , say at t0,
an EV arrives with random energy demand Di,t0 and random
deadline Ti,t0 . Thus the input process at charger i is given by
ξi,t = (Di,t0 , Ti,t0) for t = t0, . . . , Ti,t0 . When the charger is
idle, ξi,t = (0, 0). With probability αi , ξi,t = (0, 0) transitions
to ξi,t+1 = (Di,t+1, Ti,t+1).

2) System State and State Evolution: The state of charger
i at interval t is given by a tuple xi,t = (ri,t , τi,t ), where ri,t

represents the remaining demand to be served by deadline Ti,t

at charger i and τi,t = Ti,t − t the lead time to the EV’s
deadline at interval t . Hence, the system state is modeled as

xi,t+1 =

{
xi,t − (ui,t , 1) if τi,t ) > 1,
ξi,t if τi,t ≤ 1.

(1)

Note that when the charger is free, its state is (0, 0). When
there is no EV arriving at charger i , the state of the charger
remains at (0, 0).

3) Constraints: The total amount of power used for charg-
ing at one interval is limited by

N∑
i=1

ui,t ≤ M, t ∈ T , (2)

where M denotes the maximum number of simultaneous
chargers allowed by the maximum power constraint of the
local transformer (M < N ). The charger cannot be activated
when no EV is connected:

ui,t ≤ xi,t , i ∈ {1, . . . , N }, t ∈ T . (3)
4The assumption on the Bernoulli process is made for the theoretical

analysis shown in Section III-C, whereas the algorithm proposed in this paper
does not require specific EV arrival process. Thus ACN dataset can be used
for the numerical tests shown in Section IV.

Fig. 2. Temporal structure of ℓ scheduling intervals and one measurement
window under the monthly demand charge (DC). The average power con-
sumption over a measurement window is calculated as R

ℓ
(ut + · · · ,ut+ℓ−1).

4) Demand Charge: Based on the pricing of the demand
charge, the average power consumption over ℓ consecutive
scheduling intervals is calculated for each non-overlapping
measurement window.5 The maximum value among these
measurement windows for the demand charge is represented
by variable ψ and calculated as follows:

ψ = max
t∈T ′

R
ℓ

t+ℓ−1∑
τ=t

N∑
i=1

ui,τ , (4)

where T ′
= {0, ℓ, 2ℓ, . . . , T − ℓ} denotes the set of the

beginning interval of each measurement window. Thus the
demand charge is computed as C(ψ) = πdψ , where πd is
the unit price of the demand charge.

Remark 2: For the computation of the demand charge,
practically the length of a measurement window may not
match the control resolutions, e.g., operating a charger at every
1-5 minutes for fast charging rather than 15 minutes [45].
Therefore, we introduces an integral parameter ℓ representing
the total number of scheduling intervals contained in a mea-
surement window, i.e., the length of a measurement window
is identical to ℓ intervals, and its value obviously relies on the
specific application settings, as shown in Fig. 2.

5) Reward: The reward collected from all the EVs at
interval t is given by

G(xt ,ut , ξ t ) = R1

(π r
− π e

t )

N∑
i=1

ui,t − q
∑
i∈Jt

(ri,t − ui,t )


(5)

where 1 denotes the length of a scheduling interval and Jt

the set of EVs that will leave at interval t + 1, i.e., Jt := {i :
τi,t = 1}.

6) MDP Formulation: The objective of EV scheduling is
to find the optimal control policy {µ∗

t }t∈T to maximize the
expected total reward in the presence of the demand charge.
At each interval t , a control law maps states to controls:

ut = µt (xt , ξ t ). (6)

5For demand side management applications of power systems, the length
of a measurement window is often 15 or 30 minutes. In this paper we fix the
value at 15 minutes.
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Given an initial state x0, the EV-DC can be formulated as an
integer linear program:

max
{µt }t∈T

Eξ

[
T−1∑
t=0

G(xt ,ut , ξ t )− C(ψ)
]

s.t. (1)(2)(3)(4)(6), (7)

Remark 3: The model defined in (7) can be easily extended
to a much broader class of deferrable load scheduling under
demand charge problems beyond EV-DC, such as applications
mentioned in [46] and [33]. The main difficulties of dealing
with the demand charge in the MDP framework come from the
mismatch of different timescales. In particular, three timescales
coexist in the formulated model (See Fig. 2):

(1) the control ut = µt (xt , ξ t ) happens at every t ∈ T =

{0, 1, · · · , T − 1};
(2) the peak average consumption that sets the demand charge

is calculated at the end of each measurement window at
t = {ℓ, 2ℓ, · · · , T };

(3) the demand charge is imposed at the terminal T .

Because the reward G(·) is realized at every interval t whereas
the demand charge C(ψ) is levied at the end of the entire
control horizon, it is challenging to balance the trade-off
between the immediate reward and the uncertain demand
charge set at the end of the scheduling horizon.

III. BLOCK MODEL PREDICTIVE CONTROL

We present a variation of the standard MPC scheduling to
address two demand charge related issues. The first arises from
the mismatch between the EV charging control intervals and
the demand charge measurement periods. Instead of realizing a
single decision in each decision epoch in the traditional MPC,
BMPC realizes a block of decisions. The second arises from
the need of appropriating the terminal demand charge cost to
each stage decision. The proposed framework is termed Block
MPC because the rolling window moves a block of ℓ intervals
at a time.

A. Block Model Predictive Control Under Demand Charge

To address the timescale mismatch issues arising from the
demand charge (see Remark 2), we introduce an additional
system state φt at every interval t , which represents the highest
average consumption over an ℓ-sized measurement window
until interval t . The new state variable φt evolves according
to

φt+1 =

max

{
φt ,

∑t
τ=t−ℓ+1

∑N
i=1 ui,τ

ℓ

}
if t + 1 ∈ T ′

φt otherwise,
(8)

Note that φt+1 ≥ φt for every t ∈ T . Therefore, given the
system state x0 and φ0, the EV-DC (7) can be equivalently

formulated as:

max
{µt }t∈T

Eξ

[∑
t∈T

G(xt ,ut , ξ t )− C(φT )

]
s.t. (1)(2)(3)(6)(8),

(9)

With the amended state, it is much easier to apply the
idea of MPC-based approaches on the reformulated problem
(9). Generally, MPC considers the optimization problem of
a shorter horizon {t, · · · , t + W } and utilizes a predicted
trajectory {ξ̂ k}

t+W−1
k=t . As a result, BMPC solves the following

deterministic problem for a forecast window of length W with
the current state xt and φt at t ∈ T ′:

max
{uk }

t+W−1
k=t

t+W−1∑
k=t

G
(
xk,uk, ξ̂ k

)
−H(φt+W ) (10a)

s.t. xi,k+1 =

{
xi,k − (ui,k, 1) if τi,k > 1,
ξ̂ i,k if τi,k ≤ 1,

(10b)

N∑
i=1

ui,k ≤ M, (10c)

ui,k ≤ xi,k, i ∈ {1, . . . , N } (10d)
φk updates as in (8), (10e)
k = t, . . . , t + W − 1,

where H(φt+W ) is the BMPC end-of-horizon cost (to be spec-
ified in Section III-B). The main difference between BMPC
and the nominal MPC is the block structure. Instead of moving
from t to t + 1, BMPC moves one block (ℓ intervals) at each
stage, i.e., from t to t + ℓ. The optimal controls of (10) in
the first block {u∗

t , · · · ,u∗

t+ℓ−1} will be implemented. Others
{u∗

t+ℓ, · · · ,u∗

t+W−1} are only advisory.
Remark 4: Different from those EMPC methods [28] that

aim to minimize the gap between a controlled system and
a reference in process control engineering, BMPC aims to
maximize total reward for EV charging applications where
stability and tracking error are not of concern.

Remark 5: Generally, the complexity of BMPC grows
exponentially with the number of unfinished jobs, since the
decision variables are integers. However, the state-of-art com-
mercial solvers such as Gurobi and CPLEX work efficiently
to handle integer programs with over thousands of variables
[47], [48], and the computation time of the proposed approach
is in an acceptable range, as shown in Section IV.

The BMPC approach is summarized as Algorithm 1. Two
factors affect the performance of BMPC: an end-of-horizon
cost H(φt+W ), and an initial guess on the maximum aver-
age consumption φ0. The choice of the end-of-horizon cost
H(φt+W ) lies at the heart of BMPC solution to EV-DC.
Detailed discussions and comparisons are in Section III-B. The
initial guess φ0 can be derived by the mainstream techniques
for load forecasting at the distribution level [49], [50], such as
regression or neural networks by using the historical demands
as the training samples. The influence on this value is also
discussed in Section III-C.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2024 at 03:51:37 UTC from IEEE Xplore.  Restrictions apply. 



2130 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

Algorithm 1 BMPC Under Demand Charge
1: Initialization: Initialize system with x0, φ0, W .
2: for t ∈ {0, ℓ, · · · , T − ℓ} do
3: Observe the system current state xt , the up-to-date

highest average consumption φt and the EV arrival ξ t ;
4: Forecast the future EV arrivals {ξ̂ k}

t+W−1
k=t+1 over t + 1 to

t + W − 1;
5: Solve the BMPC Problem (10);

{u∗

k}
k+W−1
k=t = BMPC(xt , φt , {ξ̂ k}

t+W−1
k=t ) (11)

6: Take the first block (ℓ intervals) of controls from the
solution to (10): U∗

t = (u∗
t , . . . ,u∗

t+ℓ−1)

7: for j ∈ {t, t + 1, . . . , t + ℓ− 1} do
8: Observe the system state x j and the input ξ j ;
9: Take u∗

j = µ∗

j (x j , ξ j ) as the decision at j and update
the system state to x j+1 according to (1);

10: Update φ j according to (8).
11: end for
12: end for

B. BMPC End-of-Horizon Cost H(φt+W )

Intuitively, good choices of the end-of-horizon cost
H(φt+W ) should reflect the amortization of the demand charge
in the current interval t . Some primitive forms could be:

H(φt+W ) := C(φt+W ), t ∈ T ′, (12a)

H(φt+W ) :=
W
T
C(φt+W ), t ∈ T ′. (12b)

However, these two choices perform poorly in practice because
(12a) imposes the demand charge over the entire control
horizon T on the rolling window. When W ≪ T , the demand
charge C(φt+W ) would dominate the total reward of the rolling
window. As a result, the solution in this setting will often be
so conservative that the operator would rather sacrifice most of
the reward than incur a large demand charge cost. In addition,
(12a) fails to capture the fact that demand charge is only posed
for the peak consumption.

A slightly better choice is (12b), which splits the demand
charge equally among T intervals. This choice essentially
assumes that the states of EV charging loads within each
measurement window are almost identical, which is often not
true in practice.

We propose a more judicious choice

H(φt+W ) := C(φt+W − φt ), t ∈ T ′. (13)

The rationale behind (13) is twofold. First, it is clear that
φt+W ≥ φt always holds true according to (8). If the peak
consumption of the current rolling window {t, · · · , t + W } is
no higher than the previous one (φt+W = φt ), no additional
cost should be considered, i.e., H(φt+W ) = 0. Additional
cost occurs only when the peak consumption increases, i.e.,
φt+W > φt .

Remark 6: For EV-DC where the demand charge cost func-
tion is linear, the BMPC end-of-horizon cost can be further

justified. In this case, we have

C(φT ) = C(φ0)+
∑
t∈T ′

H(φt+W ) = C(φ0)+
∑
t∈T

C(φt+1 − φt ),

(14)

which enables us to define a revised reward function that
considers the cost of demand charge at each t ∈ T :

V(xt ,ut , ξ t , φt ) := G(xt ,ut , ξ t )− C(φt+1 − φt ). (15)

It is clear that (13) is a direct result of formulating BMPC
using (15). The equation above reveals that (13) embeds
the demand charge cost, which occurs at the end of control
horizon, into each stage as decomposed in (15). Therefore,
(13) effectively avoids the inferior performance by directly
using the demand charge structure such as (12a) or (12b).

C. Optimality of BMPC

MPC rarely achieves optimality in general. To justify and
support the proposed solution, we consider the particular case
when the proposed BMPC happens to be optimal. Specifically,
we assume that EV arrivals are clustered during operation
hours; many EVs sometimes arrive close to one another,
and no EV arrives between clusters.6 Such characteristics are
supported by the real-data set collected at the ACN testbed.

To formalize the “clustered arrival characteristics”, we intro-
duce the notion of the decoupling interval.

Definition 1: An interval td
∈ T is a decoupling interval if

(xi,td , ξi,td ) = (0, 0) for all i ∈ {1, . . . , N }.
For the EV-DC problem, a decoupling interval corresponds

to the time period when the total charging demands are zero,
i.e., energy demands of all the parking EVs have been finished
before td and no new ones arrive at td . We also have several
assumptions:

A7) The length of a scheduling interval of (7) is the same
as the measurement window, i.e., ℓ = 1.

A8) For ∀t ∈ T , the forecasts of the exogenous variables
{ξ k}

t+W−1
k=t+1 are accurate within the forecast window.

For a given arrival trajectory ξ with an initial state x0, let
J BMPC
ξ (x0, φ0) be the total reward produced by Algorithm 1,

J ∗

ξ (x0) the optimal reward of (7) and ψ∗

ξ the corresponding
optimal maximum average consumption. Then we present the
following optimality conditions of BMPC:

Proposition 1: Under Assumption A7 and A8, for every
arrival trajectory ξ and initial condition x0, BMPC achieves
optimal reward, i.e., J BMPC

ξ (x0, φ0) = J ∗

ξ (x0), if
(i) each stage optimization includes at least one decou-

pling interval,
(ii) the initial estimate of the maximum consumption is

perfect, i.e., φ0 = ψ∗

ξ .
The proof of Proposition 1 is given in Appendix A.
Remark 7: We take Proposition 1 not as a theoretical guar-

antee in practice but as a theoretical ideal for EV charging
in practice as the two conditions for optimality are strong; a
justification of these conditions is in order.

6Theoretically, under the general Markovian arrival model, there are always
periods when no job arrives.
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Fig. 3. Demonstration of optimality of BMPC under ℓ > 1.

The first condition on traffic pattern implies that the arrival
traffic is bursty and clustered, which has been observed
in practice [51] and justified by the ACN dataset (see
Section IV-C). The specific condition in (i), however, depends
on the window size used in BMPC. In practice, the window
size is chosen a priori, which may not guarantee (i). In such
cases, one can create virtual decoupling intervals by elimi-
nating some jobs from scheduling and paying for the penalty
for those unscheduled jobs. The optimal selection of jobs for
elimination requires further study and is outside the scope of
this paper.

The second condition on the perfect initial estimation of
ψ∗

ξ cannot generally hold. In practice, ψ∗

ξ is estimated using
historical data and is bound to have errors. Empirically, we find
in our experiments that the performance of BMPC is not
sensitive to the estimation error, and the loss of total reward
diminishes when the total scheduling horizon is long. In our
simulations, the performance loss could be negligible when
the estimation errors are below 10% (see Section IV-D).

Remark 8: Proposition 1 enables us to operate BMPC by
less number of stage optimizations for EV-DC problems.
Suppose there are total of P (P ≥ 1) decoupling intervals
in an arrival trajectory ξ , indexed by td

p , p = 1, . . . , P . The
first condition indicates that the schedules before and after any
td

p are only coupled by φtd
p
. The second condition gives the

optimal threshold on the maximum average consumption for
all the BMPC problems, i.e., φtd

p
= ψ∗

ξ ,∀p. Therefore, when
BMPC starts at the beginning of each td

p , it always produces
the optimal solution over td

p to td
p+1 − 1, thus the next BMPC

problem can start directly at td
p+1 but not necessarily t + 1.

Remark 9: To guarantee the optimality of BMPC when the
system has the setting ℓ > 1, A7 can be further relaxed by
slightly modifying Algorithm 1, as demonstrated in Fig. 3.
Suppose BMPC is running at t from an optimal state x∗t and
we take the decisions of the first block (the blue frame).
Clearly, {ut , . . . ,utd

p−1} produced by BMPC are the optimal

TABLE I
PARAMETER SETTINGS

schedules for the demands between t and td
p , whereas the

rest {utd
p
, . . . ,ut+ℓ−1} are sub-optimal since only part of the

demand information has been considered. If the next BMPC
starts at t+ℓ, the decisions of the corresponding block are still
sub-optimal, hence BMPC would never reach the optimum
under ℓ > 1. To mitigate this effect, we only need to take
decisions {ut , . . . ,utd

p−1} and start the next BMPC at td
p .

Thus, with the optimality conditions in Proposition 1 satisfied,
BMPC also produces an optimal solution under ℓ > 1.

IV. NUMERICAL RESULTS

To evaluate the online algorithm proposed in Section III,
we used a large-scale EV charging dataset, collected from a
smart charging facility at Caltech on the ACN testbed.7 The
relevant parameters were summarized in Table I. We assumed
that the time-varying electricity prices were deterministic
and collected from the Electric Reliability Council of Texas
(ERCOT).8 Note that we set πr > maxt∈T π

e
t and q > πr

to encourage chargers to serve as many charging requests as
possible rather than cause large penalty. All the simulations
were conducted by a computer with i7-10700 CPU and 16 GB
RAM using MATLAB and Gurobi.

A. Aggregated EV Loads

To investigate the impact of the demand charge under
different volumes of traffic, we generated a series of charging
loads based on the original dataset, by aggregating the EVs
arriving during the same time period on each day into one day.
For example, 2-day aggregation level represents the one-day
EV loads that are aggregated from a two-day ACN dataset,
as shown in Table II. To quantify the traffic of these aggregated
data, we adopted the following metric:

Intensity =

∑
t0∈Ta

∑
i∈{1,...,N }

Di,t0

RMT
× 100%, (16)

where Ta denotes the horizon of the aggregation level a.
We increased the average intensity (over 30 trajectories) of the
original traffic from 5% to 29%. In the subsequent sections,
all the simulations were conducted based on these aggregated
one-day data with different intensities. Furthermore, to balance
the weight of the demand charge, we scaled down the monthly
demand charge price9 to a single day and varied it from 0.2

7The details of this facility can be found in [52] and the data is available
at http://ev.caltech.edu

8We adopted Day-ahead Market (DAM) prices. Available at
http://www.ercot.com/mktinfo/dam

9For simplity, we assume fixed monthly demand charge price that ranges
from 6 $/kW to 18 $/kW [34].
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TABLE II
AGGREGATION OF EV LOADS

$/kW to 0.6 $/kW, where the length of a measurement window
was still fixed at 15 minutes.

B. On Gap to Optimality

For the optimal offline charging solution, an integer program
that defined the deterministic EV-DC was solved to compute
the upper bound of the total reward by using realizations of
the EV loads from each arrival trajectory ξ , as shown below:

J ∗(ξ) = max
{ut }t∈T

T−1∑
t=0

G(xt ,ut , ξ t )− C(ψξ )

s.t. (1)(2)(3)(4). (17)

By solving (17), we also obtained the optimal demand charge.
Furthermore, three related MPC approaches and one index
rule were included as benchmarks in our comparison studies:
MPC with scaled demand charge (MPC-scaled), EMPC [32],
MPC without demand charge (MPC-w/o) and LLF-LD [27]
(see Appendix B). Then we ran each algorithm and computed
its total reward gap to the upper bound (in percentage) as
the performance measure. For a given scenario, we simulated
all the methods over 30 trajectories and reported the average
performance.

C. Performance Under Perfect Forecast

This section validates the performance of BMPC and other
benchmarks under the ideal scenario, where we assume all the
clients use reservation apps to offer accurate information on
EV arrivals, charging demands and deadlines.

1) Single-Resolution Case (ℓ = 1): We first considered the
case when the resolution of measurement window matched
that of the decision, i.e. ℓ = 1 (1 = 15 minutes). In this
case, BMPC operated at the same timescales as the other
MPC-based benchmarks and the forecast window length was
set to W = 4 hours.

Fig. 4a showed the performance of BMPC with other
methods under different intensities of EV loads (x-axis) at
a fixed demand charge price 0.3 $/kW, where the average
gaps to the upper bound over all the sampled trajectories
(y-axis) were compared. The best method was EMPC [32],
which actually reached the upper bound (0% gaps at all
traffic levels) because it tracked the optimal reference tra-
jectory. BMPC also produced the optimal solutions before
the intensity of the EV loads reached 17%, where all the
optimality conditions of BMPC could be met and therefore
validated Proposition 1. Then slightly bigger gaps were shown
when the EV loads went more intensive, since the number
of the decoupling intervals became less and the optimality
conditions could not be held at 17%-intensity and the above.
Consequently, a 0.6% gap rose up at 29%-intensity. The other
methods (MPC-scaled, MPC-w/o and LLF-LD) had much

larger gaps (near 40% at most) and showed better performance
when the aggregation level increased. This was due to the less
flexibility of scheduling so that the demand charge tended to
be close to each other.

Another factor that affects the performance of BMPC is
the parameter M that limits the number of simultaneously
activated charging. According to (16), decreasing the value of
M is equivalent to increasing the traffic intensity. In Fig. 4b,
we showed that the variation of M had the minimal influence
on the gap to optimality of BMPC.

Then we fixed the traffic intensity at 17% and demonstrated
the average performance gaps of BMPC and other methods
with the variation of the demand charge prices, as shown in
Fig. 4b. EMPC [32] obtained the optimal reward over all the
demand charge prices, while the results of BMPC were also
close, showing only 1% gap when the demand charge price
reached 0.6 $/kW. The gap produced by MPC-scaled had a
steady growth from 0 to 35% since its fixed weight of the
demand charge could not accommodate high demand charge
prices. For the methods that do not consider demand charge,
MPC-w/o and LLF-LD both experienced rapid increase as the
demand charge price was over 0.4 $/kW, hitting over 100%
due to the large demand charge costs.

2) Multi-Resolution Case (ℓ = 3): In practice, the reso-
lution of control can be significantly finer than that of the
demand charge measurement. For example, the measurement
window size can be 15 minutes whereas the EV charging
decisions can be made at the one to five minute resolution,
i.e., ℓ = 3-15. The results presented in this section are from
simulations with ℓ = 3, i.e., 1 = 5 minutes.

Fig. 5a illustrated the performance of BMPC with the
benchmarks over varied intensity of EV loads at a fixed
demand charge price 0.3 $/kW. Although Proposition 1 did
not hold when ℓ = 3, the average gap produced by BMPC
was close to the optimal at light traffic regime and less than
1% even the traffic level reached 29%-intensity. On the other
hand, EMPC [32] showed sub-optimal solutions (between 2%
and 10%) compared to the ℓ = 1 case, which resulted from the
mismatching of the timescales of peak consumption from
the reference trajectory (see (31) and (32) in Appendix B).
The performance of the rest of the methods, MPC-scaled,
MPC-w/o and LLF-LD, all had improvements when the EV
loads became heavier. Due to the consideration of the demand
charge, MPC-scaled outperformed MPC-w/o and LLF-LD by
4% and 2% on average, respectively.

The influence of the demand charge prices was also com-
pared in Fig. 5b, where the traffic intensity was also fixed at
17% as the previous section. BMPC was the best method to
handle the increase of the demand charge price, making only
1.5% gap at 0.6 $/kW. The performance of EMPC gradually
deviated from the optimum compared to the ℓ = 1 case and
peaked at 6%. MPC-scaled had less than 2% performance gap
when the demand charge price was below 0.2 $/kW, whereas
it caused larger gaps (over 10%) as the demand charge was
more expensive. As for MPC-w/o and LLF-LD, they both
showed a fast degradation on the total reward (at around 30%),
resulting from the ignorance of the increasing demand charge
costs.
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Fig. 4. Average performance gap to the upper bound under perfect forecast
with the system setting ℓ = 1. The average computation time of the BMPC
problems is 0.66s.

D. Performance Under Forecast Errors

This section investigates the performance of BMPC and the
benchmarks under forecast errors. Here we mainly focuses
on the multi-resolution case (1 = 5 minutes), which fits the
practical settings but has been less addressed by the existing
works.

Although the reservation mechanism can be adopted, some
clients may not follow their reservations. For an EV i that
actually arrives at t0 with Di,t0 , we assume a probability
δr (0 < δr < 1) that the reservation information on this EV
is not accurate. If so, its arrival time and the energy demand
reported on the reservation apps were uniformly sampled from
[t0(1−δa), t0(1+δa)] (0 < δa < 1) and [Di,t0(1−δe), Di,t0(1+
δe)] (0 < δe < 1), respectively. Meanwhile, the forecast on the
initial value φ0 for BMPC was set as (1−δm)ψ

∗

ξ (0 < δm < 1).
As shown in Table III, we set up four cases to demonstrate
the influence of the forecast errors under different demand
intensities and demand charge prices.

Fig. 5. Average performance gap to the upper bound under perfect forecast
with the system setting ℓ = 3. The average computation time of the BMPC
problems is 0.86s.

TABLE III
CASES FOR SIMULATIONS UNDER FORECAST ERRORS

Table IV reported the average performance of BMPC and
the benchmarks under forecast errors δr = δa = δe = δm =

0.1, where the reward and demand charge gap were both
compared. BMPC consistently obtained the largest reward over
all the cases (between 2.09% and 5.07% reward gap), and
it always captured the optimal demand charge even though
starting from a smaller value. When the traffic was less intense
with a low demand charge price, i.e., Case I, MPC-scaled was
the second best method with 4.70% reward gap, whereas its
demand charge was identical to MPC-w/o and LLF-LD. This
indicates that such method had more revenue from charging

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2024 at 03:51:37 UTC from IEEE Xplore.  Restrictions apply. 



2134 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

TABLE IV
AVERAGE PERFORMANCE OF BMPC AND BENCHMARKS UNDER 10% FORECAST ERRORS (δr = δa = δe = δm = 0.1)

TABLE V
AVERAGE PERFORMANCE OF BMPC AND BENCHMARKS UNDER 20% FORECAST ERRORS (δr = δa = δe = δm = 0.2)

the EVs. However, LLF-LD outperformed MPC-scaled by
around 1% when more demands were involved (see Case III)
since more EVs would be reported inaccurately. When the
demand charge price was high, i.e., Case II and Case IV,
EMPC [32] was the second best method (6.69% and 12.51%
reward gap respectively) with around 22% demand charge
gap. It was found that the reward from EMPC [32] was
more sensitive to the intensity levels rather than demand
charge prices, which might result from the predictions over the
entire trajectories (see Appendix C). It was also worth noting
that the demand charge was the major factor to determine
the performance of MPC-w/o and LLF-LD, where MPC-w/o
showed the least performance in each case and could reach
over 18% reward gap.

Table V reported the performance of all the methods when
all the forecast errors increased to 0.2. Generally, the reward
gaps from MPC-based methods became larger than the previ-
ous case, while LLF-LD was not affected since its performance
did not depend on any predictions. BMPC continued to be the
best method in all the cases except 1.33% more reward gap
than LLF-LD in Case III. This would result from the fact
that BMPC took a block of controls based on the inaccurate
information for the near future. To be more specific, BMPC
committed to the charging actions {u∗

t ,u∗

t+1, · · · ,u∗

t+ℓ−1} after
solving (10) at t . The subsequent actions from u∗

t , which
were optimal for the predicted EV trajectory, would become
sub-optimal for the realized EV profile. Such impact to lose
the schedule revenue would become more dominant when the
forecast error was larger under heavier traffics. On the other
hand, although BMPC did not follow the optimal demand
charge when φ0 was 20% less than the optimal peak, it pro-
duced the closest gap between 7.69% and 25.00% among all
the benchmarks.

Similarly to Table IV, MPC-scaled had good performance
with just 0.08% and 3.02% less reward than BMPC in Case I
and Case III, respectively, and thus showed that the fix weight

W/T on the demand charge was only able to handle low
demand charge prices. EMPC [32], however, was dramatically
affected by the increase of the forecast error in both reward and
demand charge, causing nearly 20% reward gap in Case IV.
Although MPC-w/o still produced the same demand charge as
LLF-LD, their reward gap was getting larger to over 10% since
more forecast errors were imposed to the forecast window.

V. CONCLUSION

We consider the problem of EV-DC to maximize the reward
from charging services at a charging station. Due to the
difficulties of multiple timescales posed by the demand charge
pricing, we propose the BMPC algorithm with a special end-
of-horizon cost to incorporate the demand charge at each stage
optimization, and the optimality conditions of the proposed
method are presented and analyzed based on characterized
demand patterns. Through the simulations on the ACN testbed,
our proposed approach shows advantageous performances
compared to the benchmark methods, highlighting the signifi-
cant impact of demand charge on the EV charging scheduling.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We first show that the original EV-DC problem
(7) can be decomposed by td . For a given trajectory ξ and x0,
We rewrite (7) in the deterministic form:

max
{ut }t∈T

Jξ (x0) =

T−1∑
t=0

G(xt ,ut , ξ t )− C(ψξ )

s.t. (1)(2)(3)(4) (18)

We denote T d
= {td

p , p = 1, . . . , P} as the set of the
decoupling intervals over trajectory ξ . For each td

p where
(xtd

p
, ξ td

p
) = (0, 0), the system state at td

p + 1 is not relevant
to the previous states, i.e., (1) is decoupled. Since the energy
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requests before td
p cannot be deferred to intervals after td

p + 1,
the EV-DC problem (7) can be decomposed into P + 1 seg-
ments: S(0) = {0, . . . , td

1 −1}, S(p) = {td
p , . . . , td

p+1−1} (1 ≤

p < P), and S(P) = {td
P , . . . , T − 1}. Let the optimal reward

of (7) be J ∗

ξ (x0) and the optimal solution u∗, then we have:

J ∗

ξ (x0) =J ∗

ξ ,S(0)(x0)+

P−1∑
p=1

J ∗

ξ ,S(p)(xtd
p
)+ J ∗

ξ ,S(P)(xtd
P
)

− C
(

max
(
ψ∗

ξ ,S(0), max
1≤p<P

ψ∗

ξ ,S(p), ψ
∗

ξ ,S(P)

))
,

(19)

where

J ∗

ξ ,S(0)(x0) =

td
1 −1∑
t=0

G(xt ,u∗

t , ξ t ), (20a)

J ∗

ξ ,S(p)(xtd
p
) =

td
p+1−1∑
t=td

p

G(xt ,u∗

t , ξ t ), 1 ≤ p < P, (20b)

J ∗

ξ ,S(P)(xtP ) =

T−1∑
t=tP

G(xt ,u∗

t , ξ t ), (20c)

ψ∗

ξ ,S(0) = max
t∈S(0)

N∑
i=1

u∗

i,t , (20d)

ψ∗

ξ ,S(p) = max
t∈S(p)

N∑
i=1

u∗

i,t , 1 ≤ p < P, (20e)

ψ∗

ξ ,S(P) = max
t∈S(P)

N∑
i=1

u∗

i,t . (20f)

where (20d), (20e) and (20f) are the results based on Assump-
tion 1. Let ψ∗

ξ be the optimal maximum consumption of (7),
which is clearly the maximum of (20d), (20e) and (20f).
We also denote X∗ and U ∗ as the optimal system state and
solution set of the problem (7), respectively.

Then we show that for each segment above, the correspond-
ing BMPC (10) reaches an optimal solution. Suppose BMPC
operates at t = 0. The first optimality condition is equivalent
to W ≥ max(td

1 ,maxk=1,...,P−1(tk+1 − tk), T − td
P), i.e., the

length of the forecast window is no shorter than the largest
gap of adjacent decoupling intervals. Thus, the current BMPC
can be decomposed into two sub-problems by td

1 , as shown
below10

SP(BMPC)− S(0):

max
u′∈S(0)

Jξ ,S(0)(x′

0, φ0) =

td
1 −1∑
k=0

G(x′k,u′

k, ξ̂ k)− C(φtd
1
− φ0)

(21a)
s.t. (10b)(10c)(10d)(10e) (21b)

x′0 = x0, (21c)

10Here to distinguish from (7), we use x′ and u′ to represent the system
state and the decision variable used in all the BMPC problems, respectively.

SP(BMPC)− S ′(0) = {td
1 , . . . ,W − 1}:

max
u′∈S ′(0)

Jξ ,S ′(0)(x′td
1
, φtd

1
) =

W−1∑
k=td

1

G(x′

k,u′

k, ξ̂ k) (22a)

− C(φt+W − φtd
1
)

s.t. (10b)(10c)(10d)(10e) (22b)

According to A8, {ξ̂ k}
td
1

k=0 = {ξ t }
td
1

t=0, i.e., the scheduler knows
the accurate information to solve (21). The second optimality
condition shows that φ0 = ψ∗

ξ , which indicates that φ0 ≥

ψ∗

ξ ,S(0). Without loss of generality, two cases are discussed.
1) ψ∗

ξ Happens in S(0): We have φ∗

td
1
= φ0 = ψ∗

ξ = ψ∗

ξ ,S(0)
since the scheduler would not necessarily rise the consumption
level beyond the optimal one. Otherwise, more penalty from
demand charge would reduce the total reward of the segment
S(0). In other words, the optimal reward of (21) is the identical
to J ∗

ξ ,S(0)(x0).
2) ψ∗

ξ Happens Out of S(0): It is obvious that φ0 >

ψ∗

ξ ,S(0). This provides a higher threshold on the maximum
consumption of the segment S(0), and indicates that the last
term of (21a) is not effective. Hence, the scheduler would
not take demand charge into consideration so that the optimal
reward of (21) is also identical to the J ∗

ξ ,S(0)(x0), where the
latter also ignores the demand charge in the one-shot solution.

Consequently, for both cases shown above, we have the
optimal reward of (21) J ∗

ξ ,S(0)(x
′

0, φ0) = J ∗

ξ ,S(0)(x0), and the
optimal solution u′∗

0 of (21) must be within the optimal set
U ∗, i.e., u′∗

0 ∈ U ∗.
Then the system updates to x′1 and we have x′1 ∈ X∗ and

φ1 = φ0 = ψ∗

ξ . Then we assume td
1 > 1 (this would not

make any difference if td
1 = 1). Similarly to the above, the

new forecast window still contains td
1 so that the new BMPC

problem can also be decomposed into two sub-problems as
follows:
SP(BMPC)− S(0, 0) = S(0) \ {0}:

max
u′∈S(0,0)

Jξ ,S(0,0)(x′1, φ1) =

td
1 −1∑
k=1

G(x′k,u′

k, ξ̂ k) (23a)

− C(φtd
1
− φ1)

s.t. (10b)(10c)(10d)(10e) (23b)

SP(BMPC)− S ′(0): see (22)
The last term of (23a) follows the same rule as dis-

cussed above. Based on the Principle of Optimality, we have
J ∗

ξ ,S(0)(x
′

1, φ1) the optimal reward from t = 1 to td
1 − 1 and

thus u′∗

1 ∈ U ∗. As BMPC rolls to the subsequent stage starting
at td

1 − 1, BMPC always produces the optimal solutions, thus
we have

td
1 −1∑
t=0

G(x′t ,u′∗

t , ξ t ) = J ∗

ξ ,S(0)(x0), (24)

where the left hand side is the total reward produced by BMPC
from t = 1 to td

1 − 1. And then BMPC starts at t = td
1 and

repeats as above until the last segment S(P). Consequently,
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we have
td

p+1−1∑
t=td

p

G(x′

t ,u′∗

t , ξ t ) = J ∗

ξ ,S(p)(xtd
p
), ∀1 ≤ p < P, (25)

T−1∑
t=td

P

G(x′

t ,u′∗

t , ξ t ) = J ∗

ξ ,S(P)(xtd
P
). (26)

and

φT = φT−1 = · · · = φ0 = ψ∗

ξ . (27)

According to (19)(20) and (24)-(27), we have

J BMPC
ξ (x′0, φ0) =

T−1∑
t=0

G(x′t ,u′∗

t , ξ t )− C(φT ) = J ∗

ξ (x0), (28)

and thus BMPC produces an optimal solution. □

APPENDIX B
BENCHMARKS

1) MPC With Scaled Demand Charge (MPC-Scaled):
MPC-scaled imposes a fraction of the demand charge in each
rolling-window optimization, and such form is adopted in [31].
At each t ∈ T , MPC-scaled solves the following problem:

max
{uk }t∈T

J MPC-scaled
t :=

t+W−1∑
k=t

G(xk,uk, ξ̂ k)

−
W
T
C
(

max
k∈[t,t+W−1]

(
N∑

i=1

ui,k

))
s.t. (10b)(10c)(10d). (29)

Unlike BMPC, only the optimal control u∗
t will be imple-

mented and the temporal structure of MPC-scaled is identical
to the nominal MPC.

2) EMPC [32]: EMPC [32] aims to track a predetermined
reference schedule with the consideration of demand charge
for the setting that ℓ = 1. Here we present a slight modification
of EMPC [32] so that it applies to cases when ℓ > 1.

Let (xref,uref, ξ ref) be an arbitrarily known reference trajec-
tory over T (see Appendix C for the reference trajectory). For
each t ∈ T , the objective of EMPC [32] is defined as

J EMPC
t :=

t+W−1∑
k=t

Gk(xk,uk, ξ
ref
k )

− C(max(φt+W , ψ̆
ref
t+W ))− C(ψ ref), (30)

where parameters ψ ref and ψ̆ ref
t+W denote the peak consumption

over the entire (from 0 to T − 1) and the remaining horizon
(from t +W to T −1) of the reference trajectory respectively,
and are computed as

ψ ref
:= max

t∈T ′

{
1
ℓ

t+ℓ∑
τ=t

N∑
i=1

uref
i,τ

}
, (31)

ψ̆ ref
t := max

k∈T ′,k≥t

{
1
ℓ

k+ℓ−1∑
τ=k

N∑
i=1

uref
i,τ

}
, t ∈ T . (32)

At t ∈ T with the system state xt and φt , EMPC can be
formulated as

max
{uk }

t+W−1
k=t

J EMPC
t

s.t. xi,k+1 =

{
xi,k − (ui,k, 1) if τi,k > 1,
ξ ref

i,k if τi,k ≤ 1.
, (33a)

N∑
i=1

ui,k ≤ M, (33b)

ui,k ≤ xi,k, i ∈ {1, . . . , N } (33c)

φk+1 = max(φk,

N∑
i=1

ui,k) (33d)

k = t, . . . , t + W − 1,

xt+W = xref
t+W , (33e)

Note that the temporal structure is also the same as the nominal
MPC.

3) MPC Without Demand Charge (MPC-w/O): MPC-w/o
follows the framework of the nominal MPC, that moves
only one interval at each time, i.e., solving the following
optimization problem consisting of W intervals at every t ∈ T
starting at current state xt :

max J MPC-w/o
t :=

t+W−1∑
k=t

G(xk,uk, ξ̂ k)

s.t. (10b)(10c)(10d).

(34)

Note that MPC-w/o does not take demand charge into consid-
eration, which is another major difference from BMPC.

4) LLF-LD [27]: LLF-LD is an online algorithm for
deferrable load scheduling, which prioritizes tasks with less
laxity at each interval. Laxity, as defined in [27], is the
difference between a server’s lead time and its remaining
processing time, reflecting the maximum number of intervals
that a task can tolerate before the time it has to be continuously
processed to avoid non-completion penalty. For the EV-DC
problem in Section II, the laxity of an EV at charger i at t
is τi,t − ri,t . If the laxity of two tasks are the same, then it
prioritizes the one with later deadline. Note that the available
total charging power at each interval for LLF-LD is always
M R. Based on the LLF-LD rule, the scheduler assigns each
unit of charging power to each unfinished EVs from the top
priority to the bottom (or until all the M R charging power has
been scheduled). If the number of unfinished EVs is greater
than M , then the scheduler would leave the rest to the next
interval. Thus, LLF-LD could yield significant demand charge
when the traffic is intensive.

APPENDIX C
REFERENCE TRAJECTORY OF EMPC [32]

The reference trajectory sets the states and decisions for the
EMPC to track. Here we consider to generate the reference
trajectory by solving the EV-DC problem (7) in one-shot, and
therefore the whole trajectory of all the EVs must be forecast,
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i.e., from t = 0 to T − 1. We denote {ξ ref
t }t∈T as the forecast

EV loads, then the reference trajectory can be computed by
the following deterministic EV-DC problem:

max
{ut }t∈T

∑
t∈T

Gt (xt ,ut , ξ
ref
t )− C(ψ)

s.t. xi,t+1 =

{
xi,t − (ui,t , 1) if τi,t > 1,
ξ ref

i,t if τi,t ≤ 1,

and (2)(3)(4),

(35)

By denoting (xref,uref) as the optimal solution of (35), the
reference trajectory can be obtained as (xref,uref, ξ ref).
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