IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

1559

A Computing-in-Memory-Based One-Class
Hyperdimensional Computing Model
for Outlier Detection

Ruixuan Wang

Xiaobo Sharon Hu®, Fellow, IEEE, Xun Jiao

Abstract—In this work, we present ODHD, an algorithm for
outlier detection based on hyperdimensional computing (HDC), a
non-classical learning paradigm. Along with the HDC-based algo-
rithm, we propose IM-ODHD, a computing-in-memory (CiM) im-
plementation based on hardware/software (HW/SW) codesign for
improved latency and energy efficiency. The training and testing
phases of ODHD may be performed with conventional CPU/GPU
hardware or our IM-ODHD, SRAM-based CiM architecture
using the proposed HW/SW codesign techniques. We evaluate the
performance of ODHD on six datasets from different application
domains using three metrics, namely accuracy, F1 score, and
ROC-AUC, and compare it with multiple baseline methods such
as OCSVM, isolation forest, and autoencoder. The experimental
results indicate that ODHD outperforms all the baseline methods
in terms of these three metrics on every dataset for both
CPU/GPU and CiM implementations. Furthermore, we perform
an extensive design space exploration to demonstrate the tradeoff
between delay, energy efficiency, and performance of ODHD. We
demonstrate that the HW/SW codesign implementation of the
outlier detection on IM-ODHD is able to outperform the GPU-
based implementation of ODHD by at least 331.5x/889 x in terms
of training/testing latency (and on average 14.0x/36.9x in terms
of training/testing energy consumption).

Index Terms—Hyperdimensional computing, outlier detection,
computing-in-memory, hardware/software codesign.

I. INTRODUCTION

UTLIER detection, also referred to as anomaly detection,
O is a crucial technique utilized in various application
domains like medical diagnosis, Internet-of-Things (IoT), and
financial fraud detection. Outliers are generally extreme or
out-of-distribution values in a dataset that deviate from other
samples or an observation that does not fit the overall pattern.

Manuscript received 9 May 2023; revised 12 February 2024; accepted
21 February 2024. Date of publication 1 March 2024; date of current version
10 May 2024. This work was supported in part by the College of Engineering
at USF, the U.S. NSF under Grant 2202310, and in part by ACCESS — AI Chip
Center for Emerging Smart Systems, sponsored by InnoHK funding, Hong
Kong SAR. Recommended for acceptance by T. Adegbija. (Ruixuan Wang
and Sabrina Hassan Moon contributed equally to this work.) (Corresponding
authors: Xun Jiao; Dayane Reis.)

Ruixuan Wang and Xun Jiao are with the Department of Electrical and
Computer Engineering, Villanova University, Villanova, PA 19085 USA
(e-mail: xun.jiao@villanova.edu).

Sabrina Hassan Moon and Dayane Reis are with the Department of
Computer Science and Engineering, University of South Florida, Tampa, FL
33620 USA (e-mail: dayane3 @usf.edu).

Xiaobo Sharon Hu is with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA.

Digital Object Identifier 10.1109/TC.2024.3371782

. Graduate Student Member, IEEE, Sabrina Hassan Moon
, Member, IEEE, and Dayane Reis

, Student Member, IEEE,
, Senior Member, IEEE

These outliers typically suggest measurement variability,
experimental errors, or novelty. In machine learning, outliers
in the training or testing set may cause failure in the detection
or classification tasks. Additionally, in recent times, cyber
attackers deliberately fabricate outliers, posing a threat to the
security of cyber-physical systems.

Over the years, researchers continue to design robust solu-
tions to detect outliers efficiently and effectively, where statis-
tical methods and machine learning methods are the two most
popular types of solutions. Statistical methods include paramet-
ric methods such as Gaussian mixture model (GMM) methods
[1] and non-parametric methods such as kernel density estima-
tion methods [2]. While statistical methods are mathematically
well explainable, fast to evaluate, and easy to implement, their
results could be unreliable for practical applications due to their
dependency on assumptions of a specific distribution model.

Recently, using machine learning techniques for outlier de-
tection has witnessed a significant surge. Among the most
effective methodologies, one-class support vector machine
(OCSVM), isolation forest, and autoencoder-based neural net-
work approaches are the most notable. OCSVM, which is a
variant of the conventional SVM, distinguishes outliers from in-
liers by maximizing the margin [3]. The isolation forest method,
on the other hand, utilizes an ensemble model consisting of
isolation trees, with outliers being more vulnerable to isolation
and having shorter traversal path lengths [4]. The autoencoder-
based method is a novel unsupervised learning approach that
uses neural networks to reconstruct data samples, identifying
outliers based on the reconstruction errors [5]. These traditional
machine learning-based methods can achieve accurate outlier
detection but may lack consideration for computation and en-
ergy efficiency.

In this paper, we present a novel approach for outlier de-
tection based on hyperdimensional computing (HDC). HDC
is an emerging computing paradigm inspired by the human
brain circuitry that exhibits high-dimensionality and fully dis-
tributed holographic representation [6], [7]. HDC represents
data samples using high-dimensional hypervectors, typically
dimension D = 10, 000, which can be generated, manipulated,
and compared to perform learning tasks. Compared to deep neu-
ral networks (DNNs), HDC offers several advantages, including
smaller model size, lower computational cost, and one/few-
shot learning, making it an attractive alternative, particularly

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2575-0142
https://orcid.org/0000-0001-7277-2067
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0003-4476-2501
https://orcid.org/0000-0002-8571-1308
mailto:xun.jiao@villanova.edu
mailto:dayane3@usf.edu

1560

for low-cost computing platforms [7]. HDC has demonstrated
promising results in diverse applications such as computer
vision [8].

Specifically, we propose ODHD, which is a novel one-class
HDC-based outlier detection method using a positive-unlabeled
(P-U) learning structure [9]. Our approach is based on the
simple yet reasonable assumption that a single hypervector
(HV) can represent the abstract information of all inlier sam-
ples, which can be distinguished from outlier samples repre-
sented in HVs. Although HDC has been extensively studied
for supervised learning tasks such as classification in various
domains [7], there is limited research on using HDC for other
tasks. Furthermore, recognizing the memory-centric computing
properties of ODHD, we propose a hardware/software code-
sign implementation of ODHD’s both training and inference
phases on top of a computing-in-memory (CiM) architecture
(IM-ODHD). CiM can curtail the memory access bottleneck
by leveraging parallelism inside the memory array structure,
which enables computation at the bitline level along several
current paths simultaneously. CiM has emerged as one of the
most promising approaches for signal processing, optimization,
deep learning and stochastic computing [10]. Our experimental
results indicate that CiM can significantly accelerate the ODHD
algorithm and deliver superior energy efficiency.

Built on top of our previous study in [11], this paper makes
the following contributions:

1) We introduce ODHD, a novel one-class outlier detection
method based on HDC and P-U learning. Our approach
forms a high-dimensional representation of inlier sam-
ples and is a viable alternative to existing outlier detec-
tion approaches.

2) We develop a comprehensive pipeline for ODHD
algorithm. First, we map all inliers samples to a high-
dimensional space and create a one-class HV to represent
the abstract information of inliers. Next, we propose
a confidence-based method to automatically compute
a threshold that is used for outlier detection. During
testing, we compute the similarity between the unseen
testing sample and the one-class HV and compare it to
the pre-computed threshold to detect outliers.

3) We propose a static random-access memory (SRAM)-
based CiM architecture, IM-ODHD, to implement
ODHD. Our CiM architecture leverages customized
elements (sense amplifiers), mat-level row/column
decoders, logarithmic bit shifters, etc., to attain reduced
latency and increased parallelism supporting different
parameters of HDC, such as a number of dimensions
and hypervector seeds.

4) We apply a hardware/software codesign approach to fur-
ther improve the functionality of IM-ODHD on CiM
architecture. Specifically, we adjust the algorithm-level
design of ODHD and show that the proposed changes
speed up the runtime of both training and inference with
insignificant accuracy loss.

To evaluate ODHD, we use six datasets from the Outlier
Detection Datasets (ODDS) Library [12] and compare our
approach with baseline methods such as OCSVM, isolation
forest, autoencoder, and HDAD. The comprehensive evaluation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

results show that ODHD outperforms all the baseline meth-
ods on all six datasets in all metrics, including accuracy, F1
score, and ROC-AUC with both CPU/GPU and CiM imple-
mentations. Furthermore, after the hardware/software codesign
adjustment, we demonstrate that our hardware/software code-
sign implementation of IM-ODHD is able to outperform the
GPU-based implementation of the same algorithm by at least
293x/419x in terms of training/testing latency (and on average
16.0x/15.9x in terms of training/testing energy consumption).
Our study demonstrates the effectiveness of ODHD in the realm
of both software and hardware and highlights its potential for
research in outlier detection.

The rest of the paper is structured as follows. In
Section II, we discuss the fundamentals of HDC and CiM.
Section III introduces the ODHD algorithm. An SRAM-based
CiM architecture for ODHD (IM-ODHD) is proposed in
Section IV. We evaluate the performance, energy, and latency
of ODHD and IM-ODHD in Section V. Related works are
presented and discussed in Section VI. Finally, Section VII
concludes the paper.

1I. BACKGROUND

Here, we discuss the mathematical foundations and opera-
tions of HDC. Furthermore, we discuss the basics of CiM.

A. Hyperdimensional Computing

Basic HDC Component: Hypervectors (HVs) are the funda-
mental components of HDC. An HV is a holographic and high-
dimensional vector with independent and identically distributed
(i.i.d.) elements. The HV with D = d dimensions is denoted as
H= (h1,ha,...,hs). In this paper, we employ bipolar HVs,
which means each element in an HV is either —1 or 1 [7].

In HDC, HVs are used as the information representation in
different scales and levels, such as embedding new information
or aggregating existing information. To measure the correlation
between information representation, we use cosine distance to
measure the similarity of information between two HVs, as
shown in Eq. 1. Moreover, one property of HVs is, when the
dimensionality is sufficiently high (e.g., D = 10, 000), HVs are
quasi-orthogonal whereas any two random bipolar HVs are
nearly orthogonal [6].

g(ﬁb L—r*) _ E " E —_ Eg;l hxi " hyi
O el x (| Hy| d 2 d 2
Ez‘:l hai” - Es:l hyi
1)

Basic HDC Operations: HDC supports three basic arithmetic
operations including bundling, binding and permutation, as
illustrated in Eq. 2. Additions and multiplications both take
two input HVs as operands and perform element-wise add or
multiply operations. Permutation takes one HV as the input
operand and performs cyclic rotation.

bundling(Hy+Hy) = (ha1 + hy1, haa+hys, - . ., Bea+hya)
binding(H * Hy) = (ho1 * hy1, haz * hyz, ..., hoa * hya)
permutation'(H) = (hg, hy, ha, ... ha_1) 2)

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

All three operations preserve the dimensionality of the input
HVs, i.e., the input HVs and the output HVs have the same
dimension. Considering the three main operations, bundling
adds the same type of information, binding aggregates various
types of information together to generate new information, and
permutation reflects the spatial or temporal changes, such as
time series or spatial coordinates [6].

B. Computing-in-Memory

The limited processor-memory bandwidth significantly im-
pacts a system’s performance. Computing-in-memory (CiM)
performs the logic and memory operations associated with
a given task within the memory boundaries. CiM exploits
the large, internal bandwidth of memory to achieve par-
allelism, which reduces latency and saves energy due to
fewer external memory references. CiM architectures may tar-
get either general-purpose or application-specific designs, as
described below.

1) Application-Specific CiM Designs: Examples of
application-specific CiM designs include the in-memory
computation of dot-products with crossbars [13] and search
with non-volatile ternary content addressable memories
(TCAMs) [14], which are suitable for performing nearest
neighbor operations. The majority of CiM implementations
for HDC rely on application-specific designs based on
crossbars and TCAMs. These CiM architectures typically
employ emerging memory technologies (EMTs) such as
Ferroelectric Field-Effect Transistors (FeFETs) (e.g., [15]) and
Resistive Random-Access Memories (ReRAMs) (e.g., [16]).
EMTs have great potential for high-density and low-power
implementations of CiM-based HDC. For instance, CiM
improves energy consumption by 826 and latency by 30x
for a classification task with HDC when compared to a GPU
baseline [15]. However, as development on EMTSs is still in
its early phases, there is a lack of large-scale solutions for
CiM-based HDC that can be promptly integrated into real
systems. Furthermore, much of the computation with EMTs in
application-specific CiM designs occurs in the analog domain,
which limits the bit precision due to the physical limits of the
EMTs, as well as the errors induced by circuit components
such as the analog-to-digital converters (ADCs). The limited
precision makes it challenging to match software accuracies.

2) General-Purpose CiM Designs: General purpose CiM
(GPCiM) designs support logic and arithmetic operations that
can benefit different applications as they can be used to im-
plement different algorithms [17]. In this work, we propose
a GPCiM architecture that is capable of performing all the
operations needed by HDC-based outlier detection. The algo-
rithmic flow for outlier detection with HDC running on our CiM
architecture is presented in Section III. The CiM architecture
of ODHD, which we name as IM-ODHD, is described in
Section IV, along with a hardware/software codesign approach
for ODHD that allows for mapping of the outlier detection algo-
rithm onto IM-ODHD. IM-ODHD operates in the digital do-
main, with customized sense amplifiers, local copy drivers, and
bit shifters, achieving high parallelism with multiple subarrays

1561

operating simultaneously to perform in-memory operations.
The circuits employed in IM-ODHD are illustrated in part b
of Fig. 2 and described below.

Word Line Decoders [18]: The simultaneous sensing of
multiple rows in an SRAM subarray is possible by lowering
the word line voltage to bias against the write of the SRAM. As
shown in Fig. 2, to leverage double sensing, our design imple-
ments two-word line decoders in the same PE to simultaneously
activate two rows for performing computation between them.

Customized Sense Amplifier (CSA) [19]: Once the subar-
ray rows are activated, voltage drops on the memory bitlines
(and negated bitlines), while the actual values depend on the
operands stored in the SRAM. The voltage drop can be sensed
with CSA, which will generate the results for different bitwise
logic operations (e.g., AND, OR, XOR) and arithmetic between
the two rows of data. The output of the CSA depends on the
desired operation, which is selected with an internal multi-
plexer circuit.

Logarithmic Bit Shifters [18]: The output of the CSA is
passed as input to the logarithmic bit shifter, which can shift the
output to the left or right. The number of bit positions by which
a binary number is shifted left or right is determined by the
logarithm of a shift amount (i.e., the shift mask in our circuit).
The main advantage of this circuit over a traditional linear bit
shifter is that it can perform larger shifts in a single clock cycle,
rather than shifting one-bit position at a time. The logarithmic
bit shifter in IM-ODHD can accelerate permutations and divi-
sions by powers-of-two in ODHD. In the logarithmic bit shifter
used in IM-ODHD (shown in Fig. 2), a 3-bit shift mask goes
into each PE to configure 0-3 bit shifts to the left or right (1 bit
of the mask determines the shift direction, while the other two
bits are for the shift amount). Shift amounts larger than 3 bits
are possible through a multi-step approach.

Write and Copy Drivers [20]: Memory write drivers are
circuits that play a crucial role in writing data into the 6T-
SRAM memory cells. These drivers work by amplifying the
signals from an external memory controller to generate the
required voltage levels for writing data into the memory cells
through the bit lines. In the context of the ODHD, write drivers
are utilized to write both the initial HVs and intermediated
HVs from the mat-level registers into the PEs. Copy drivers
are another type of circuitry used in ODHD specifically for
copying the results of CiM operations, such as bitwise logic,
addition, or right/left bit shift, to a designated address within
the same PE. To ensure efficient and effective copying, copy
drivers are placed in alignment with the CSA columns in
the subarray.

III. ODHD: ALGORITHM

We leverage the mathematical properties of HDC to develop a
novel one-class HDC-based outlier detection algorithm, which
essentially learns an abstract representation of inlier samples
and then performs one-class classification-based outlier detec-
tion. In ODHD, the outlier detection process is based on a
P-U learning structure [9], which means we use only inlier
samples for training and test on a testing set (may contain

1562

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Seed HVs generation Encoding
S max BE=1f, fare s finl
se| | [a]=[al]1]1]1]
1)fhp(s E) l 1 l
ISRREINEIEEIRRE)ﬂmm 5 So S - S
s1|-1|=|-1|1|1]|-1|1 Of pl| . pm=1
[4]1] Gonn | ° E |- \
Lsni| 1 [1]- wlaf1]1]a]1] Y
’) flipGsis) |
oin I3[t [[[[e[[a [1] 1] o H @
Training Ei Threshold Calculation EE Fine-Tunning Outlier Detection
T= {HFll ---;HFN} Ei T= {HF‘I.’ ey HFN} ii Ht Hoc
i il '
I :
] I
I > s i 9 Lo
| I } !
ii l Sim, Simy
5 = (Simy, ..., Simy} l <R l <R
1
| one class HV Hyc Iii | Hoc += H,
Outlier
@ii |Threshold Rl ® o)

Fig. 1. The algorithmic flow of ODHD with six key phases.

both inliers and outliers) without the information of labels. The
one-class HV we trained contains the information from all the
patterns of inlier (training) samples. For inference, we detect
whether a query HV conforms to the one-class HV according
to cosine similarity. In ODHD, we utilize a confidence-based
procedure to calculate a threshold based on training HVs. If
the cosine similarity between a query HV and one-class HV is
lower than the threshold, the query HV will be detected as an
outlier. Fig. 1 illustrates the whole algorithmic flow of ODHD,
which is divided into six key phases: Seed HV Generation,
Encoding, Training, Threshold Calculation, Fine-Tuning, and
Outlier Detection. We describe each phase of the algorithm in
detail in the following sections.

A. Seed HVs Generation

As the first step, we need to generate seed HVs so that
we can encode the raw sample features into HVs. As noted
previously, each HV is a high-dimensional vector with i.i.d
elements [6]. We employ an HV-generating method consis-
tent with the one in [21] to create k seed HVs that can sup-
port later encoding, which is more computationally efficient
compared to randomly generating k£ random HVs straightfor-
wardly while preserving the orthogonality of HVs. As part A of
Fig. 1 illustrates, we initiate a random bipolar D-dimension HV,
51, and then generate all the seed HVs by randomly flipping
E = D/2Fk elements. Specifically, k is a configurable parameter
depending on how we discretize the input data. Consequently, a
set of seed HVs {571, 53, . . ., 5 } is generated. For the following

encoding procedure, assume for a specific dataset, we have each
feature vector with m feature elements F (fi,f2s s fm)-
According to the training set, we can capture the minimum and
the maximum values of each feature value f,;, and f;,q-. Then
we can discretize the input feature space (fmin, frmaz) into k
uniform intervals. Thus, each feature value corresponds to a
specific interval, and we can map the feature vector into an
integer vector for encoding.

B. Encoding

The encoding step projects the original feature vector
into an HV. The encoding process of feature vector F, =
(f1, f2,..., fm) is shown in part B of Fig. 1. We first index
the seed HV corresponding to each feature value. For example,
if the feature element f; falls into the 5°" interval among the
k intervals, the corresponding seed HV is the 5" of the k seed
HVs. Then, we employ the permutation operation to embed the
information of the feature position into the seed HV. As the per-
mutation operation reflects the spatial change of information,
we bundle the information of feature position by deploying a
cyclic rotation on each seed HV as shown in Eq. 2. Particularly,
we keep the first seed HV un-permuted (p°(57,)), and for seed
HV 53 to 53, we circularly rotate the i*" seed HV by i — 1
elements, i.e., p'~1(57).

At the end of the encoding process, we aggregate all per-
muted seed HVs corresponding to all feature values into one HV
Hp representing the entire feature vector F Note that if we
have 100 inlier samples (i.e., 100 feature vectors) in the training

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

1563

PE B address (col.)
ilohlm

Register B LN 3-bit
Shift mask
Px
= 2
5] ;
I s o J
1 m m
! 5 3 & SR
1 - ;/ m
& 7 =
o o o [-
@ 2 2 |jogulP) “
- logi) 8 g |put -
£] o
! B o
! N ™
1 I m
! = L)
1
) ‘ Mat-level Column Decoder (PE A) ‘ .
Register A e
[N
1 log,(Q) e
! PE A address (col.)
i
(a)

Fig. 2.
of one (M x N) subarray.

dataset, we would have 100 corresponding encoded HVs. The
overall encoding process is denoted as Eq. 3.

Hp, =p’Gr) +p'Gr) + -+ 0" (Gr) B
C. Training

As part C in Fig. 2 indicates, after encoding all feature vectors
in the training set, the training phase generates the one-class
HV (Hoc) of the entire training set, i.e., all inlier samples.
Eq. 4 illustrates the process of HDC training, which bundles
all the HV representing each inlier feature vector. For example,
if there are 100 inlier samples, then the 100 corresponding
encoded HVs generated by the encoding process are added
together to generate a single one-class HV Hgp representing
inlier samples or patterns.

L N o
Hoc = Z Hp, “)
i=1
D. Threshold Calculation

In ODHD, we propose a confidence-based threshold calcu-
lation approach. In order to calculate a threshold to separate
inliers and outliers, we measure the cosine similarity between
HEE and all training HVs to obtain a similarity array S. As
part D in Fig. 1 shows, each similarity Sém; in array .S can be
considered as the confidence of the training HV to be an inlier
sample.

We calculate the mean value z(.5) and the standard deviation
o(S) over all the similarity values in array S. We then deploy
the threshold estimation strategy shown in Eq. 5, which is
established in prior research [5], [22].

R=pu(S)+2+a(S) (5)

(Connected to bitlines) ‘
!

! . Copy driver (local writes) |
Vg | 3-bit |
Iy | e

¥ Shift Logarithmic bit shifter |
/ | mask |

|
| Customized sense amplifier
(5] [l - IN] |'

Word line decoder X
Word line decoder Y

IMC architecture for outlier detection. (a) (P x Q) mat-level architecture. The PEs are marked green for source and blue for destination. (b) Detail

Ultimately, we compute the threshold R based on the confi-
dence of all training HVSs. In the outlier detection domain, only
the samples with cosine similarity higher than the threshold
are determined as an inlier, while all the samples with cosine
similarity lower than the threshold are identified as outliers.

E. Fine-Tuning

After the training phase, we expect that all training HVs
should be properly determined as inliers (but this may not be
the case). Hence, we perform fine-tuning for ODHD to enhance
the performance of outlier detection. The fine-tuning process,
shown in part E of Fig. 1, is automatically conducted via pre-
defined rules consisting of two steps: (1) measure the similarity
metric between the encoded training HVs and the one-class HV;
(2) if this similarity metric falls below the threshold calculated
in step (D) of Fig. 1, incorporate the training HV into the
one-class HV.

The fine-tuning process acts as an auto-calibration process,
and the single parameter that needs to be set by the user is the
number of epochs for the fine-tuning process, e.g., in this paper,
we executed the fine-tuning process for a total of 10 epochs.
Note that we still only use the given training dataset for the fine-
tuning process. In each fine-tuning epoch, we feed all the train-
ing samples to ODHD. For each training sample, we estimate
the cosine similarity Sim, between the training HV H; and
one-class HV Hoor oc. If Sim, is higher than threshold R, which
means the estimation is correct, we do not make any changes to
E;E. However, if Sim; is lower than R, which means ODHD
mistakenly considers the inlier sample ¢ as an outlier, we update
the one-class HV: we add the misclassified training HV H,
into the one-class HV to update the corresponding information
in H oc-

1564

F. Outlier Detection

After we train I?ZE and obtain threshold R based on the
confidences of the training HVs, we deploy the outlier detection
on an unseen sample without knowledge of the labels. The
outlier detection process is shown as part F in Fig. 1.

During the outlier detection phase, we encode testing sample
g into an HV called query HV, ff: , following the same encoding
process in Eq. 3 based on the same seed HVs. Then we compute
the cosine similarity Sim, between the query HV Hg and the
one-class HV Hpc. In the event that Simy, is lower than the
pre-computed threshold, the sample g will be determined as

an outlier.
E:: {Inh'er Simg > R

6
Simg < R ©

Outlier

IV. IM-ODHD: HARDWARE

In this section, we first describe IM-ODHD, the CiM-based
hardware architecture for ODHD (Section IV-A). We then
discuss our hardware-algorithm codesign effort in adjusting
ODHD to the IM-ODHD hardware (Section IV-B).

A. GPCiM Architecture

The combination of HDC and CiM can be particularly ben-
eficial since HDC operations involve the manipulation of holo-
graphic HVs, which can be performed efficiently in memory.
By performing HDC operations in memory using CiM, it is
possible to achieve significant improvements in performance
and energy efficiency compared to traditional von Neumann
architectures (as demonstrated in [15], [16]).

In this work, to implement the HDC-based outlier detec-
tion algorithms, we depart from the use of application-specific
CiM designs based on NVM. Instead, we design IM-ODHD
as a general-purpose CiM architecture based on CMOS (i.e.,
with 6T-SRAMs). The use of an SRAM-based design instead
of an NVM-based one leads to several advantages: (1) Our
architecture can perform both the training and testing phases
of HDC-based outlier detection in memory since SRAM has
a much lower writing cost than NVMs. (2) Easier prototyping
and fabrication, as CMOS is readily available as opposed to
NVMs. (3) Computation in the digital domain which reduces
the need for sophisticated peripherals such as ADCs, DACs, and
current-based programming circuits. (4) Our general-purpose
CiM architecture has the ability to easily accommodate changes
in the algorithm (as long as implementing them only requires
the same key operations of HDC, which are binding, bundling,
and permutation). (5) Prior research on system-level integration
and compiler support for CiM architectures, such as [23], could
be readily leveraged to bolster the integration of our CiM archi-
tecture into a broader computing stack as it can support all the
operations realized by IM-ODHD.

IM-ODHD is depicted in Fig. 2. The design contains P x Q)
subarrays, each of which acts as a processing element (PE) in
the CiM architecture. Each PE contains M x N SRAM cells.
The tile-styled architecture enables high throughput for the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

HDC operations (binding, bundling, permutation) due to par-
allel computation across the different subarrays. The elements
of the mat-level design (depicted in Fig. 2(a)) are explained
in Section IV-Al. The subarray design with its storage and
computing capabilities is discussed in detail in Section IV-A2.

1) Mat Design: Our CiM architecture implements the fol-
lowing new elements — decoders, registers, and buses — which
enable computation at the mat level. Below, we describe each
component of the architecture in detail.

Decoders: Decoders orchestrate data access and facilitate
data movement across the different PEs in our IM-ODHD
fabric. For instance, an example of PE A and PE B is given
in Fig. 2(a) by the tiles colored green and blue, respectively).
PE A and PE B can be accessed concurrently using two pairs
of decoders. Two (logs P 4 logz@Q)-bit addresses are used to
activate each of the PEs A and B. To access the PE A, we divide
its (loga P 4 log2@)-bit address into two parts; the logz P most
significant bits of the address are used as the input to the row
decoder (Mat-level Row Decoder (PE A) in Fig. 2(a)), and the
log2@ least significant bits of the address are used as the input
to the column decoder (Mat-level Column Decoder (PE B)
in Fig. 2(a)). Analogously, when accessing the PE B, the loga P
bits of its address are used as the input to the Mat-level Row
Decoder (PE B) in Fig. 2(a), while the log2(bits of the address
are used as the input to the Mat-level Column Decoder (PE
B) in Fig. 2(a).

Registers: After the decoders select PE A and PE B, the data
from the output of each PE is transferred to its correspond-
ing register, either register A or register B (as illustrated in
Fig. 2(a)). The data traffic between each PE and the registers A
and B is managed via two dedicated buses, which will be elabo-
rated upon in the subsequent paragraph. Once the data has been
stored in either register A or B, it can be rerouted back to any
PE through a reverse pathway, which is leveraged by the per-
mutation operations are used in the encoding phase of ODHD.
Section IV-B provides details about performing this step
with IM-ODHD.

Buses A and B: Our CiM design employs dedicated buses
A and B to support (1) data movement from/to the PEs to/from
registers A and B, and (2) the setup of a bit shift amount and
direction for each PE so reads, divisions, and multiplications
by powers-of-two are possible with our IM-ODHD fabric. To
achieve (1), our proposed CiM architecture has two separate
sets of N-bit wide buses A and B that connect each PE to the
registers A and B. The width of the buses is chosen as N so it
matches the dimensions of an individual M x N PE. Further-
more, two pairs of selector lines come out of the row/column
decoders and spread through the P x @ PEs on the mat (see
green and blue wiring in Fig. 2(a)). These lines are used to
select the PE A and the PE B for data transfer. Note that only
two tiles, i.e., PE A and the PE B, can be selected at a given
time through each pair of decoders, which avoids data conflicts
on buses A and B. For (2), our proposed CiM architecture
implements a 3 x P x Q-bit wide bus on which the bit shift
amounts used at each PE can be set up individually (more
details about bit shifts with our CiM architecture can be found in
Section IV-A2).

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

2) Subarray Design: Subarrays are the fundamental PEs
of our design with their merged storage and processing ca-
pabilities. Fig. 2(b) illustrates our SRAM-based processing
element (PE), which utilizes 6T-SRAM memory cells, word
line decoders X and Y, customized sense amplifiers, write
and copy drivers, and logarithmic bit shifters. These compo-
nents, akin to [18], [19], [20], are crucial for facilitating the
necessary bundling, binding, and permutation operations re-
quired by ODHD. For an in-depth understanding of the role
each component plays within the PE, readers can refer to
Section II-B2.

Importantly, besides building on these established PE struc-
tures, our work introduces near-memory computing (NMC)
circuits at the mat level, such as the buses and auxiliary registers
managed by decoders (described in Section IV-Al). The intro-
duced NMC circuits enhance our design’s ability to carry out
permutations — a feature uniquely tailored to ODHD’s encod-
ing phase that represents a departure from previous in-SRAM
computing solutions. The introduction of NMC elements in our
CiM architecture sets our work apart, as existing in-SRAM
architectures do not address the challenge of data movement
between CiM PEs.

B. Hardware/Software (HW/SW) Codesign

This section explains the efficient mapping of the steps of
the ODHD algorithm (Section III) to the CiM architecture of
IM-ODHD (presented in Section IV-A). The mapping process
adopts the HW/SW codesign principle to adjust the ODHD al-
gorithm to better utilize the capabilities of IM-ODHD. HW/SW
codesign enforced in CiM architecture can significantly in-
crease the performance of ODHD while having high accuracy,
F1-score, and AUC, as evaluated and discussed in Section V.

1) Seed HVs Generation in IM-ODHD: The initial step
of creating the seed HVs involves generating them externally
using random bit flips. However, once k seed HVs, each with D
dimensions, are produced, they get distributed across the P x @
PEs of the IM-ODHD fabric. The PEs have a size of M x N,
where M is the number of rows, and N is the number of
columns. When a D-dimensional seed HV is distributed across
the PEs, its elements are indexed to the row 7 of each PE, where
ie[1, M]. The storage of all the elements within each seed HV
spreads across D /N PEs of the IM-ODHD fabric. Hence, to
store k seed HVs, the size of the GPCiM architecture needed
iskx D,ie.PxQxM x N>k x D.This k x D segment
of the IM-ODHD fabric is designated for our seed HV storage
and remains unaltered throughout the computation.

2) Encoding in IM-ODHD: Once the k seed HVs are
written to the IM-ODHD fabric, the next step is to encode a
given feature vector into an HV. The encoding step involves
applying permutation and bundling operations. Permutation
on IM-ODHD is implemented with circular shifts. The process
of performing a circular shift is implemented in two rounds,
as follows.

Round 1 (R1): Assume a D-dimensional seed HV is mapped
to the i*" row of D/N PEs. We simultaneously access i'" row
of the D/N PEs holding the HV, and refer to the PEs as the

1565

destination and source PEs, in an alternate fashion. The i?
row data at the source PE undergoes a bitwise AND operation
with a pre-stored mask filled with 1’s at the m least significant
bit positions and 0’s at the remaining N — m positions (recall
from Section III that m corresponds to the number of bits for
the circular shift). The resulting value is shifted left by N —m
bits using a logarithmic bit shifter and temporarily stored in
register Al. At the same time, the data on the destination PE
is shifted right by m bits and saved in a spare row in the same
subarray using the copy drivers. The value from register A is
moved to a second spare row in the destination PE, and an OR
operation is performed between the values in these two spare
rows to produce a circular right-shifted value, which is stored
in a third spare j" row in the destination PE. Note that the
original data of the source and destination PEs remain intact in
i" row during the permutation.

Round 2 (R2): In round 2, the former source PE becomes
the new destination PE, and the process described for round 1
repeats until all PEs holding the HV have been used as des-
tination PEs once. Afterwards, all the permuted values stored
in spare j*" rows are copied to i" row of bundle segment of
IM-ODHD to store the newly encoded HV.

In Fig. 3, we depict an example for the steps involved
in the two-round permutation with IM-ODHD. The exam-
ple performs a 2-bit circular shift (amount of 2 bits, to the
right) on the string ‘“ABCDEFGHIJKLMNOP’, which results
in ‘OPABCDEFGHIJKLMN’. The string is grouped into sub-
strings of 4 characters and stored in four PEs, labeled as source
(src) and destination (dest) PEs. A step-by-step explanation of
the permutation with IM-ODHD is below:

Rl-step (a), Fig. 3(a): Initially, the substrings in the
source PEs are subjected to an in-memory AND operation
with a ‘0011 mask.

R1-step (b), Fig. 3(b): The masked substrings from Step
(a) undergo a left shift, and the results get stored in regis-
ters A and B, placed near the CiM PEs.

Rl1-step (c), Fig. 3(c): Simultaneous to step (a), the
substrings in the destination PEs are subjected to an in-
memory AND operation with a ‘1100’ mask.

R1-step (d), Fig. 3(d): Parallel to step (b), the masked
substrings from Step (c) undergo a right shift, and are
stored in the 1st spare row in the destination tiles.
R1-step (e), Fig. 3(e): Substrings in registers A and B got
moved to a 2nd spare row in the destination PEs.
R1-step (f), Fig. 3(f): The results of an in-memory OR
between the contents of the 1st and 2nd spare rows get
stored in the 3rd spare row of the destination PEs, marking
the end of the first round of permutation.

R2, Fig. 3(g): Steps (a) through (f) of R1 repeat, with
source PEs becoming destination PEs and vice-versa.

Going through the steps (a) through (f) of round 1, and
round 2, permutes the original string ‘ABCDEFGHIJKLMOP’,
resulting in ‘OPABCDEFGHIJKLMN”.

'IM-ODHD can perform two of such operations by using the register B
to store the results, simultaneously to register A.

1566

dest 5rC dest S1C

M (OO
[OE0) @ [CGE0] DORO ®{G®®®
(2)
PR CCUO) w
dest h 5rC dest SIC
g‘ QoD 5/1000D
®e00| < [(eEeew OORO| < @@e®
(b)
parallel to step (a)
dest STC dest STC
@[{000] [___ | o000
(OG0 (GG [COG) BROE
(]
dest » . parallel tossmhsp (b)
[V GG) (VOO
‘%rm@ (G ‘% 0080] [GEo®
»-@@@@ 1=sp > Q@ODD s
(d)
" (0800
dest SrC dest S1C
[60) OO
2D Bpen DORO BEOE
QOBE |1sp QODD |1
’—~ @EO@ |2 RO [z~ sp
(e)
dest r dest src
[0 0) €GO
[O] [CEEG) DORO BEo®
QO®G® |1 @ODD 1=sp
RO |2~ ? @HO s
00BB|r = CBDD =

OPR®E

Fig. 3. An example for the permutation with our CiM architecture; (a-f)
corresponds to the steps of round 1; (g) depicts round 2.

Bundling on IM-ODHD is implemented through the in-
memory addition of the m permuted HVs with the CSA. Before
the in-memory addition, the permuted HVSs are positioned in the
IM-ODHD fabric so that the HV elements of the same column
map to the same PE (but in different rows). For this, at first
we copy the 1°* un-permuted feature HV sz, from the seed
HV segment to the 1°¢ spare row of IM-ODHD fabric. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

permuted HV for the second element of the original feature
vector is duplicated to the next spare row. Once the positioning
is done, the two HVs are added at a time with the CSA and
the intermediate result is overwritten to the 1°* row. In the next
round, the content of this row is added to the next permuted HV,
until the bundling of all HVs is concluded. The result generates
one encoded HV i.e. feature vector F per training dataset. To
get the encoded feature HV of the next training sample we
copy the 1% un-permuted feature HV 57, from the seed HV
segment to the 2™? row of bundle segment of IM-ODHD fabric
and repeat the operation for all of the training dataset in the
consecutive rows.

3) Training in IM ODHD: Our CiM architecture generates
the one-class HV (H oc) of the entire training set, i.e., all inlier
samples, leveraging the bundling operation exactly as deserlbed
in Section IV-B2.

4) HW/SW Codesign for Threshold Calculation: The
threshold calculation in Eq. 5 uses mean and standard devi-
ation, which requires division and a square root operation,
which are not well supported by our proposed CiM architecture.
Therefore, to make threshold calculation less computationally
expensive to implement with our CiM architecture, we carry
out three modifications to the algorithm proposed in Section III.
Namely, when running ODHD on IM-ODHD, we (1) realize
division with bit-shifts (enabled by logarithmic bit shifters),
(2) modify the cosine similarity calculation, and (3) replace
standard deviation with a more CiM-friendly mean absolute
deviation (MAD) metric.

For (1), most CiM architectures (including ours) are not
designed to efficiently support the division. In IM-ODHD,
division with our CiM hardware is approximated by shifting a
binary value by m bits to the right, which divides the value by
2™ and rounds down. The logarithmic bit shifters in IM-ODHD
support a shift amount of 0-3 bits to the left or right. Therefore,
divisions up to 23 are possible, which are controlled by the shift
mask (see Fig. 2). Moreover, larger shift amounts (for larger
divisors) are supported with multiple rounds of bit shifting.
Since we need the division operation for calculating 1(.S), we
increase the training set such that the number of training sam-
ples equals a power of two value. This is done by copying ran-
dom samples from the original training set without replacement.
Doing so may increase the training time since the encoding
phase has more samples to extract the information from. The
impact of this is reflected in the training time presented in
Section V-D.

In the case of (2), while cosine similarity is used in Sec-
tion III and in [11], our version of IM-ODHD uses only the
numerator part of the cosine distance (see Eq. 1) to make
the architecture more amenable to CiM by eliminating square
and square root operations [24]. This is basically the binding
operaﬂon or the dot product of two HVs, i.e., the one-class
HV Hoo oc and the training HVs, which generates the similarity
array S, followed by a sum (as shown in Eq. 7). This sum
operation, essentially a pop-count (counting the number of 1s
in a vector), is executed across several cycles. This operation
hinges on accumulating partial sums using in-memory adders
and bit shifters, key components of the subarrays in IM-ODHD.

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

1E+10
9.5E+09
9E+09

& 8.5E+09
3 8Ew09
2 7.5E+09
® 7E+09
£ 6.5E+09
6E+09
5.5E+09
5E+09

1 2 3 4 5 6 7 8 9 10 11
Epoch
——Rwith mad — -R with std

Fig. 4. Threshold trend on MNIST dataset with both standard deviation and
mean absolute deviation metrics.

Our evaluation incorporates this multi-cycle approach, which
consists of the accumulation of these partial sums with the
mentioned circuits.

d
S) =T Hy = i hys

i=1

7

Regarding (3), mean absolute deviation (MAD) is defined
as the average absolute deviation of a set of values from their
mean. MAD is calculated by finding the absolute difference be-
tween each data point and the mean (calculated in the previous
step), summing these differences, and then dividing by the num-
ber of data points. All these operations (modular subtraction,
addition, and division with bit shifts) are promptly supported
by the components of our CiM architecture. Subtraction, for
instance, can be performed as a 2’s complement subtraction
where we first negate the subtrahend with a NOT operation,
perform a local write of the result to the same subarray with
a copy driver, and then finally perform an in-memory addition
setting the carry of the first bit to 1.

Both standard deviation and MAD are measures of how much
the data points in a set deviate from the mean. The absolute
value function used in MAD treats positive and negative devia-
tions equally, making it more robust to outliers and emphasizing
extreme values in the dataset. As a result, MAD focuses more
on the extreme values in the dataset than standard deviation
does. Fig. 4 shows the epoch-wise threshold increment for the
MNIST dataset using both methods described in Section III-D
and Section IV-B4. We observe a higher threshold for MAD,
with a difference that leads to the need for more epochs. Using
the described methods, the mean value p(S) and the mean
absolute deviation M AD(S) are computed for each similarity
value in the array S to calculate the threshold R. The small
modifications to the threshold estimation approach described
in Section III-D are reflected in Eq. 8.

R=p(S)+2+«MAD(S) (8)

5) HW/SW Codesign for Fine-Tuning: As detailed in Sec-
tion III, fine-tuning is used to ensure that all training HVs will
be correctly identified as inliers. During each fine-tuning epoch,
we use all the training samples, previously encoded in the
encoding phase of IM-ODHD, and for each individual training

1567

sample, we calculate the similarity between its HV and the one-
class HV E*EE using Eq. 7. All the misclassified inliers are then
updated into the one-class HV I?gg exploiting the in-memory
addition with the CSA as described in Section II-B2. Once fine-
tuning is accomplished, we no longer need to store the encoded
training samples and only store the one-class HV Ho along
with the seed HVs that are used in Section I'V-B6.

6)____’0urlier Detection in IM-ODHD: Once we have trained
the Hoc and established the threshold R using the described
CiM-friendly method, we deploy ODHD to detect outliers in
unseen samples without knowledge of their labels. During the
outlier detection phase (i.e. the inference/test phase), we encode
the testing sample g into a query HV using the same encoding
process described in Section IV-B2 and the same seed HVs. We
then calculate the similarity between the query HV and the one-
class Hoc using the method described in Section IV-B5. If the
similarity is lower than the predetermined threshold, sample g
is classified as an outlier.

V. EVALUATION

In this section, we evaluate the performance of ODHD on
six datasets and compare the CiM, CPU, and GPU-based im-
plementations of ODHD with four baseline methods.

A. Experimental Setup

Herewith, we discuss the experimental setup for our software
and hardware-level evaluations.

1) Software Evaluation: We evaluate the performance of
ODHD on six datasets selected from the Outlier Detection
Datasets (ODDS) Library [12] spanning multiple application
domains such as medical diagnosis and wireless communi-
cation. These datasets are Wisconsin-Breast Cancer (Diag-
nostics) dataset (WBC), Mammography (MAMMO), MNIST,
Cardiotocography (CARDIO), lymphography (LYMPHO), and
Landsat Satellite (SATI2). These datasets are widely used as
benchmarks in existing outlier detection studies [25], [26]. Each
dataset contains a certain number of outliers specified by the
ODDS library, e.g., the WBC dataset has 21 outliers. The testing
dataset is mixed inliers and outliers, e.g., 25

We repeat the experiments independently 10 times and report
the average performance. We also present error bars as shown
in Fig. 5 to illustrate the performance variations due to the
randomness in different learning methods.

We compare our modified ODHD implemented on IM-
ODHD discussed in Section IV-B with the original ODHD
algorithm proposed in [11] and discussed in Section III, as well
as with the following four baseline outlier detection methods:

+ Autoencoder: Autoencoder is an emerging unsupervised
learning outlier detection approach based on a neural net-
work. In this paper, we use the same autoencoder archi-
tecture as [5].

« Isolation Forest: Isolation Forest is an ensemble model of
isolation trees, which uses the path length of each sample
to detect outliers. In this paper, we establish an isolation
forest model using the same configuration as [4].

1568

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

EHDAD w®IF mOCSVM " DNN mODHD =|M-ODHD

WEC MNIST CARDIO LYMPHO SATR2Z MAMMO WEC

(a) ACC

Fig. 5.

« OCSVM: OCSVM attempts to separate outliers from the
inliers with the maximum margin. We have a grid search
for an appropriate set of hyper-parameters such as kernel
functions and the value of gamma to fine-tune the OCSVM
model following [27].

« HDAD: HDAD follows similar principles of autoencoder;
it first “reconstruct™ the input samples and then detects
anomalies based on reconstruction error. We use the same
architecture of [22].

We implement ODHD and the four baseline methods in
Python and perform our experiments on a desktop with an i7-
7700 CPU, 12 GB RAM, and an NVIDIA P1000 GPU with 4
GB onboard memory. We implement the GPU version ODHD
based on Pytorch and use the HWiNFO tool [28] to measure
energy consumption. HWiNFO is a commercial tool for moni-
toring hardware circumstances and has been utilized in previous
work [29], [30].

Unlike traditional DNN operations such as the Conv2D layer,
the GPU version of ODHD does not have a specialized data
flow or CUDA optimization. In the GPU implementation, the
most time-consuming part is data transfer between the CPU
and GPU memory. Since the HV are high-dimension vectors,
the GPU acceleration can be slowed down by the data transfer.
According to our experimental results, the GPU version of
ODHD provides ~2-2.5x time efficiency compared with the
CPU version of ODHD, which is consistent with the results
presented in torchHD [31].

To comprehensively assess the algorithm-level performance
of ODHD, we use three metrics: accuracy (ACC), F1 score
(F1), and Area under ROC curve ROC-AUC (AUC). Note that
while accuracy is widely used and easy to understand, an out-
lier detection dataset may be significantly imbalanced. Hence,
accuracy may not precisely reveal the performance of outlier de-
tectors. Therefore, we also use ROC-AUC, which is widely used
for outlier detection as it can accurately represent the tradeoff
between true positive and false positive [32]. Meanwhile, the F1
score is also a widely-used metric in binary classification which
can comprehensively indicate the tradeoff between precision
and recall [33].

2) Hardware Evaluation: Besides the accuracy, F1, and
AUC, which are used to evaluate the algorithm-level perfor-
mance of ODHD, we measure the runtime and energy of
ODHD based on different platforms, i.e., CPU, GPU, and
CiM, to capture performance tradeoffs. For the CPU version
of ODHD, we measure the training and testing runtime of the

MNIST CARDIO LYMPHO SATHZz MAMMO ' WBC

(b) F1

MNIST CARDIO LYMPHO SATI2 MAMMO
(c) AUC

Comparison between ODHD, IM-ODHD and four baseline methods based on three metrics, ACC, Fl and ROC.

TABLE I
PARAMETERS USED IN OUR EVALUATION
OF THE CIM MAT

Parameter P Q M N
PE (L): Large PE 16 16 1024 1024
PE (M): Medium PE 32 32 512 512
PE (S): Small PE 64 64 256 256

application running on a desktop with an i7-7700 CPU, 12
GB RAM, and an NVIDIA P1000 GPU with 4 GB on-board
memory.

For the CiM implementation of ODHD, which we refer to
as IM-ODHD, we simulated the SRAM-based CiM mat of
Fig. 2 using Destiny [34], a tool for modeling emerging 2D
and 3D NVM and SRAM caches, which was extended with
the customized peripheral circuits employed by IM-ODHD
(i.e., customized sense amplifiers, logarithmic bit shifters, an
extra wordline decoder, and copy drivers). In our evaluation,
we employ the CMOS Predictive Technology Model (PTM)
from [35], specifically designed for a 45nm technology node
to simulate CiM circuits. Furthermore, our evaluation of IM-
ODHD accounted for all the components shown in Fig. 2 in
addition to those within each subarray. The registers, mat-level
decoders, and communication network were implemented using
Verilog and synthesized with Cadence Encounter RTL Com-
piler v14.10, using the NanGate 45nm open-cell library [36].

To accommodate a wide range of datasets with our SRAM-
based CiM architecture, we must carefully select values for P,
Q, M, and N. We conduct a design space exploration for the
IM-ODHD mat parameters, as outlined in Table 1. Table II
summarizes the latency and energy consumption of various in-
memory operations across the three simulated design configu-
rations from Table 1.

Notably, PE (S) exhibits shorter latency, along with reduced
energy consumption per PE. However, PE (S) also results in
an increased number of dedicated PEs, which necessitates an
expanded global address line and a larger amount of memory
peripherals, leading to a potential area disadvantage with re-
spect to PE (M) and PE (L). In contrast, PE (L) results in less
peripheral circuitry and it is more area efficient, at the same time
providing satisfactory latency and energy. To establish a lower-
bound for the performance of IM-ODHD, we employ PE (L)
throughout our latency and energy evaluation (Section V-D).

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

TABLE II
LATENCY (NS) AND ENERGY (NJ) FOR IM OPERATIONS, WITH RESPECT TO
THE ARCHITECTURES DEFINED IN TABLE I

Latency (ns) Energy (nl)

Operation PE(L) PEM) PE(S) PE(L) PE(M) PE(S)
Read/NOT 5.24 2.64 1.42 17.36 5.51 1.66
AND/OR 5.28 2.68 1.48 18.44 18.40 2.50
PointwiseMult. 5.28 2.68 1.48 18.44 18.40 2.50
Write 5.08 246 1.26 14.58 6.78 0.96
Add 12.87 10.20 9.04 19.97 96.30 47.30

Sub 17.96 12.70 10.30 21.43 103.08 48.21

Shift 5.24 2.64 1.42 17.36 5.51 1.66
Permut* 36.13 17.80 9.40 93.58 69.50 10.50

*For permutation, ~56.2% of the time (~37.7% of the energy) is spent
on operations between the PEs and the registers, while the rest of the time
(energy) is spent on operations performed within the PEs.

B. Performance Evaluation for ODHD

As shown in Fig. 5, we compare the performance of ODHD
and IM-ODHD with the baseline methods on six datasets for
the three metrics with error bar. IM-ODHD performs better
than the baseline models in all but one case (as will be discussed
in Section V-C). On the other hand, ODHD is able to consis-
tently outperform the four baseline methods on every dataset
for every metric.

First, for F1, the average F1 of ODHD is 82.3% on all
datasets, representing an improvement of 18.5% over OCSVM,
12.8% over isolation forest, 15.8% over HDAD and 19.8%
over autoencoder. For AUC, the average AUC of ODHD is
89.4%, representing an improvement of 10.9% over OCSVM,
6.5% over isolation forest, 6.8% over HDAD, and 12.7% over
autoencoder.

Second, while ODHD has a certain level of fluctuation (error
bars) in different runs (just like all the other models), we can
observe that even the low end of ODHD is higher than the high
end of any baseline method, representing the robustness of the
performance of ODHD.

Third, while the performance of different methods varies
with different datasets, ODHD shows better stability compared
to other methods. For example, for ACC, the lowest ACC of
ODHD is over 80%, while the lowest ACC are about 60%, 70%,
60% and 70% for OCSVM, Isolation Forest, Autoencoder and
HDAD, respectively. A similar phenomenon can also be seen
in F1 and AUC.

Last but not least, in certain datasets, e.g., LYMPHO, all
baseline methods significantly underperform while ODHD
maintains a high accuracy close to 100%. The reason is possibly
related to the fact that the lymphography data are relatively
small so that the baseline methods cannot converge to a proper
point; however, ODHD is able to learn useful information even
from a small amount of data. Similar advantages of HDC have
been observed in various supervised classification studies for
biomedical datasets that are often small [37].

C. Performance Evaluation for IM-ODHD

From Fig. 5 it is evident that IM-ODHD shows modest
accuracy loss with respect to ODHD due to algorithm-level

1569

modification of ODHD. To better understand the extent of this
accuracy loss, we analyze the average results for all datasets
(presented in Fig. 6).

For ACC, the average ACC of ODHD is 90.4% on all
datasets, representing an improvement of 17.1% over OCSVM,
11.1% over isolation forest, 10.5% over HDAD and 15.7%
over autoencoder. The average ACC, F1 score of IM-ODHD
degrades 6.37%, 8.1% respectively compared to ODHD. The
most important metric for outlier detection, ROC-AUC de-
grades only 3.3% i.e., IM-ODHD can still satisfactorily rep-
resent the tradeoff between true positive and false positive. It
is important to highlight that, even though these metrics do
not surpass the software level accuracy for ODHD, IM-ODHD
still shows better performance in terms of the average accuracy
i.e. 3.4% over HDAD, 6.6% over isolation forest, 15.4% over
OCSVM, 13.3% over DNN, the average F1 score i.e. 3.4% over
HDAD, 6.6% over isolation forest, 15.4% over OCSVM, 13.3%
over DNN and the average ROC i.e. 3.4% over HDAD, 6.6%
over isolation forest, 15.4% over OCSVM, 13.3% over DNN.

We observe that the performance of IM-ODHD is heavily
dependent on how well the high variability feature HVs capture
the diversity of each sample during the training stage. The
results show that IM-ODHD does not perform as well with the
mammography dataset as it does on other datasets, achieving
an accuracy of 68.7% and an Fl-score of 59.6%, which is
lower than other existing models. However, IM-ODHD ex-
hibits a 3.4% improvement in the ROC-AUC metric compared
to the baseline model DNN. Therefore, although IM-ODHD
can achieve high accuracy with small datasets like lympho,
its performance is highly dependent on the ability of the HVs
to interpret the data from the features. With an increase in
the number of features in the dataset, the accuracy of IM-
ODHD approaches the software level (i.e., ODHD) accuracy.
For instance, with the MNIST dataset, which has the highest
number of features among all the six datasets, the accuracy of
IM-ODHD is only 1% less accurate than ODHD’s accuracy.

D. Latency and Energy Evaluation

We also evaluated the execution time of outlier detec-
tion with the different models and datasets. Table IIl and
Table IV present a breakdown of latency/energy with IM-
ODHD during the different phases of training and testing,
respectively. For instance, the encoding of samples into HVs
is required for both training and testing phases and requires
permutation to be performed on the seed HVs, followed by the
bundling operation. While bundling can be performed entirely
within the PEs in the IM-ODHD architecture, permutation re-
quires transfers to/from registers A and B placed at the mat level
in our CiM architecture. During training (the most expensive
portion of ODHD), on average across all datasets, encoding
accounts for ~88%/~68.55% of the latency/energy. Communi-
cation from PEs to registers A and B, and vice-versa, dominate
the costs of encoding, accounting for ~58.7%/~63.2% of its
latency/energy.

Since the latency/energy of encoding during testing is still
(~99.31%/~98%, on average, with respect to the total testing

1570

90.4%

0.9
0.8
T1.1%

o7 69.5%

0.5

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

82.3%

T5.8%

HDAD IF OCSVM DNN ODHD IM-ODHD HDAD IF 0csVM DNN ODHD IM-ODHD HDAD IF OCSVM DNN ODHD IM-ODHD
(a) ACC (b) F1 (c) AUC
Fig. 6. Average performance of different models over six datasets.
TABLE III
LATENCY/ENERGY BREAKDOWN OF TRAINING WITH IM-ODHD USING PE (L)
Encoding: Permutation Enc: Bundling Bndl+Thr+Tun
Dataset IM Ops PE-to-REG REG-to-PE IM Ops IM Ops Total
w. PEs (us/pd) Comm. (pus/pJ) Comm. (us/pJ) w. PEs (us/ul) w. PEs (us/pd) (pes/ped)
WBC 307.6/980.8 153.3/474.3 75.5/216.5 17.2/205.8 91.1/1039.6 644.8/2917.0
MNIST 16802.5/53570.3 8374.5/25908.5 4121.5/11826.9 919.2/10973.4 1450.8/16548.4 31668.5/118827.5
CARDIO 848.6/2705.6 423.0/1308.5 208.2/597.3 48.3/576.1 363.0/4140.0 1890.9/9327.5
LYMPHO 45.1/143.7 22.5/69.5 11.1/31.7 2.6/30.9 22.8/260.0 104.0/535.8
SATI 5940.3/18939.0 2960.7/9159.6 1457.1/4181.2 330.9/3950.4 1459.1/16647.6 12148.1/52877.8
MAMMO 1697.2/5411.1 845.9/2617.0 416.3/1194.6 110.3/1316.8 2903.8/33123.7 5973.5/43663.3
TABLE IV
LATENCY/ENERGY BREAKDOWN OF TESTING WITH IM-ODHD USING PE (L)
Encoding: Permutation Enc: Bundling Outlier Detection
Dataset IM Ops PE-to-REG REG-to-PE IM Ops IM Ops Total
w. PEs (us/pJ) Comm. (ps/pJ) Comm. (us/pJ) w. PEs (us/pl) w. PEs (us/pJ) (ps/pd)
WBC 50.7/161.7 25.3/78.2 12.4/35.7 2.8/33.9 1.5/18.7 92.8/328.1
MNIST 5743.0/18310.2 2862.4/8855.4 1408.7/4042.4 314.2/3750.7 43.6/544.2 10371.9/35502.9
CARDIO 291.7/930.0 145.4/449.4 71.6/205.3 16.6/198.0 12.0/136.8 537.2/1920.0
LYMPHO 8.6/27.5 43/13.3 2.1/6.1 0.5/5.8 0.5/6.2 16.1/58.8
SATI 206.2/657.4 102.8/317.9 50.6/145.1 11.5/137.0 4.9/56.0 375.9/1313.4
MAMMO 107.7/343.5 53.71166.1 26.4/75.8 7.0/83.6 17.7/202.1 212.5/871.2
TABLE V

EXECUTION TIME (MS) OF DIFFERENT OUTLIER DETECTION MODELS OVER SIX DATASETS (TRAINING TIME/TESTING TIME)

OCSVM Isolation Forest HDAD ODHD ODHD(GPU) OM-ODHD

WBC 3.000/2.000 112.0/30.00 412.0/198.0 399.0/112.0 187.0/62.00 0.645/0.093

MNIST 925.0/782.0 355.0/198.0 20773/25662 18024/9631 8872/6159 31.67/10.372
CARDIO 31.00/45.00 115.0/42.00 1134/1248 1212/615.0 511.0/442.0 1.89/0.537
LYMPHO 1.000/1.000 111.0/28.00 169.0/53.00 119.0/20.00 45.00/12.00 0.104/0.016

SATI2 965.0/84.00 211.0/36.00 7205/704.0 9109/549.0 4194/267.0 12.148/0.376
MAMMO 1942/478.0 151.0/44.00 7474/1129 5644/555.0 2215/382.0 5.974/0.213

latency/energy), the cost of outlier detection with IM-ODHD
is insignificant, due to the need for successive shifts and ad-
ditions in the implementation of the pop-count operation in
the threshold calculation. Communication from PEs to registers
A and B, and vice-versa, during encoding, is similar to the
training phase, accounting for ~58.7%/~63.1% of the encoding
latency/energy.

Table V shows the execution time for training and testing
including the GPU implementation of ODHD and the CiM-
based implementation (IM-ODHD), along with other baseline
methods. In general, conventional models execute faster out-
lier inference than HDC-based models on the CPU. With a
significant amount of cores and faster data transmission be-
tween memory and computing unit, GPU achieves lower

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

1571

TABLE VI
ENERGY (MJ) COMPARISON ODHD vs.IM-ODHD

ODHD (GPU) OM-ODHD

Dataset Training Energy Testing Energy Training Energy Testing Energy

WBC 17.00 6.200 2917 0.328

MNIST 2162 1337 118.828 35.503
CARDIO 50.70 42.30 9.328 1.92
LYMPHO 5400 3.500 0.536 0.059

SATI2 770.50 49.10 52.878 1.313
MAMMO 1949 358.0 43.663 0.871

execution time. However, the HDC-based model still takes a
longer time to train and infer than conventional models, e.g.,
OCSVM and isolation forest.

Our proposed IM-ODHD significantly accelerates both the
training and testing phases of outlier detection. According to
Table V, IM-ODHD shows on average 331.5x speedup in
training and 889 x speedup in inference than ODHD running
on GPU (the fastest implementation). The training time of
IM-ODHD is slightly large due to the working principle of
IM-ODHD that is amiable with CiM architecture, yet shows
extensively superior performance since it is minimal compared
to other baseline models for outlier detection. It is challenging
to train the MNIST dataset because the model must learn a
representation of the input images that is resilient to changes
in writing style, stroke thickness, and other elements that can
impact how the digits appear. IM-ODHD can completely learn
this dataset in 31.67ms, with an inference time of 10.37 ms
whereas isolation forest takes 355ms/198ms to train/test on the
same dataset. Small datasets like Lympho can be learned in
104us and infer any outlier in 16.1us using IM-ODHD.

Last, energy results are reported in Table VI for the training
and testing phases of IM-ODHD. Due to highly parallel cal-
culation in IM-ODHD fabric, the energy consumption, which
factors in both power and latency, is advantageous compared
to the GPU-based implementation of ODHD. On average, en-
ergy improvement for IM-ODHD is at 14.0x / 36.9x for the
training/testing phase.

VI. RELATED WORK

In this section, we review related work on models for outlier
detection and hardware accelerators for HDC.

A. Models for Outlier Detection

Outlier detection has been a heavily researched topic with
various statistical and machine learning methods proposed. One
widely-used outlier detection method is the Exemplar-Based
Gaussian Mixture Model (GMM) proposed by Yang et al. [38],
which utilizes a globally optimal expectation maximization
(EM) algorithm to fit the GMM to the given dataset. Tang
et al. [1] further improved this method by combining GMM with
locality-preserving projections. Another approach uses linear
regression, such as the method proposed by Satman et al. [39],
which detects outliers based on a non-interactive covariance

matrix and concentration steps applied in the least trimmed
square estimation. However, despite their mathematical robust-
ness, statistical methods’ assumptions and dependence on a par-
ticular distribution model may limit their practical use. ODHD
provides a novel approach to outlier detection that does not rely
on specific distributional assumptions, making it a promising
alternative to existing methods.

Three widely used machine learning-based outlier detec-
tion methods are OCSVM, isolation forest, and autoencoder.
OCSVM separates outliers from inliers by maximizing the
margin and detects samples outside the estimated region as
outliers [3]. In isolation forest, outliers are detected by ex-
amining the path length, as they are more sensitive to iso-
lation and have a relatively short traversal path length [4].
Autoencoder, a neural network-based method, consists of an
encoding network and a decoding network. The encoder maps
input samples to a low-dimensional feature space, while the
decoder reconstructs the sample from the encoded feature.
Autoencoder is trained to minimize the reconstruction error
and preserve information relevant to normal instances. Out-
liers, which diverge from the majority of training samples, are
hardly reconstructed and lead to a high reconstruction error.
Thus, the outliers can be detected by examining the recon-
struction error [5]. Despite the popularity of these methods,
they rely on different assumptions and may not perform well in
various applications.

In recent years, several methods have been proposed for
anomaly detection using HDC. One such method, HDAD [22],
adopts an autoencoder-like approach to reconstruct the input
samples and detect anomalies based on reconstruction error.
However, this method requires tedious encoding and decod-
ing processes, making the detection process cumbersome. In
contrast, ODHD proposes a one-class HDC approach for out-
lier detection, which is fundamentally different from HDAD.
We evaluate the performance of ODHD against four baseline
methods, namely OCSVM, isolation forest, autoencoder, and
HDAD, and provide comprehensive comparison results.

B. CiM Accelerators for HDC

HDC with its inherent memory-centric operations motivates
to implement it in CiM since data movement reduction can
be achieved by HV computations fully in memory. Neverthe-
less, recent research on DRAM-based CiM designs is tailored

1572

to parallel Boolean bitwise operations and often lacks com-
prehensive support for all operations integral to ODHD. For
example, AMBIT [40], with triple-row activation can execute
bitwise majority function but misses native shift operation sup-
port essential for HDC encoding. DRISA [41] allows for shift
operations within subarrays at the cost of area overhead with
multiple microarchitectures for data movement making them
inadequate for host memory. DRAM-based CiM architectures,
while offering increased computational speed, entail a substan-
tial overhead in terms of processing time, usually requiring
several hundred clock cycles for operations involving inputs
exceeding three bits. While this approach may be well-suited
for tasks like image classification, it may not be a viable choice
when designing the architecture for applications involving HVs
of 10,000 dimensions. CiM architectures based on lookup tables
(LUTs) within DRAM enable fast operations while preserving
application level accuracy (e.g., [42], [43]). However, the use
of LUT-based CiM in DRAM may face challenges in managing
the size and volume of LUTS required for performing operations
in HDC, since the Hypervectors (HV) involved in the computa-
tions have thousands of dimensions (10,000+), which requires
further investigation.

The outlined issues with DRAM motivate the search for
CiM architectures based on non-volatile memories (NVMs)
and CMOS-based SRAMs (our work), which could support
more intricate operations. For the former, Imani et al. [44]
proposed SearcHD, which utilizes the analog properties of
ReRAM-based in-memory computing (IMC) arrays to employ
HD blocks in memory with a fully binarized computing al-
gorithm. However, the energy and time required to program
the MAJ IMC array from the XOR IMC array severely limit
their ability to be used efficiently. In our work, we distribute
each bipolar HV of D dimensions across the readily available
technology CMOS-based SRAM in a holistic way reducing
data transfer overheads. Leveraging from the digital domain
computation without any ADC/DAC or current controlled PEs,
computation is fully exerted in memory using elements with
smaller hardware footprints. By realizing training and test-
ing phases without using analog operations, our CiM archi-
tecture improves the time complexity and energy consump-
tion without trading off reliability, which makes it a good fit
for low-power hardware devices, aligned with other proposed
architectures [45].

VII. CONCLUSION

In this study, we propose ODHD, a novel outlier detec-
tion algorithm based on hyperdimensional computing (HDC),
a non-traditional machine learning paradigm. Additionally, we
present IM-ODHD, a computing-in-memory (CiM) hardware
and software (HW/SW) co-design implementation to enhance
latency and energy efficiency. The proposed ODHD algorithm
leverages a learning structure to generate a one-class hyper-
vector (HV) based on inlier samples. This HV represents the
abstract information of all inlier samples, and any testing sam-
ple with an HV dissimilar from this HV is identified as an
outlier. Both the training and testing phases of ODHD can

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

be performed using conventional CPU/GPU hardware or our
proposed SRAM-based CiM architecture using HW/SW co-
design techniques. We evaluate the performance of ODHD
on six datasets from different application domains using three
metrics — accuracy, F1 score, and ROC-AUC and compare
it with several baseline methods, such as OCSVM, isolation
forest, and autoencoder. The experimental results show that
ODHD outperforms all the baseline methods in terms of these
three metrics on every dataset for both CPU/GPU and CiM
implementations. Moreover, we conduct an extensive design
space exploration to demonstrate the tradeoff between delay,
energy efficiency, and performance of ODHD. We show that
IM-ODHD, the in-memory computing-based implementation
of ODHD, outperforms the GPU-based implementation of
ODHD by at least 331.5x/889x in terms of training/testing
latency and on average 14.0x/36.9x in terms of training/testing
energy consumption.

REFERENCES

[1] X.-m. Tang, R.-x. Yuan, and J. Chen, “Outlier detection in energy
disaggregation using subspace learning and Gaussian mixture model,”
Int. J. Control Automat., vol. 8, no. 8, pp. 161-170, 2015.

[2] L. J. Latecki, A. Lazarevic, and D. Pokrajac, “Outlier detection with
kernel density functions,” in Proc. Mach. Learn. Data Mining Pattern
Recognit. (MLDM), vol. 7, 2007, pp. 61-75.

[3] Y. Li, T. Zhang, Y. Y. Ma, and C. Zhou, “Anomaly detection of user
behavior for database security audit based on OCSVM,” in Proc. 3rd
Int. Conf. Inf. Sci. Control Eng. (ICISCE), Piscataway, NJ, USA: IEEE
Press, 2016, pp. 214-219.

[4] F T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. 8th
IEEE Int. Conf. Data Mining, Piscataway, NJ, USA: IEEE Press, 2008,
pp- 413422,

[5] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in Proc. 57th ACM/IEEE
Des. Automat. Conf. (DAC), Piscataway, NJ, USA: IEEE Press, 2020,
pp- 1-6.

[6] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cogn. Comput., vol. 1, pp. 139-159, 2009.

[7] L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-
ing: A review,” IEEE Circuits Syst. Mag., vol. 20, no. 2, pp. 3047,
2nd Quart. 2020.

[8] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and A. Rahimi,
“Integrating event-based dynamic vision sensors with sparse hyperdi-
mensional computing: A low-power accelerator with online learning
capability,” in Proc. ACM/IEEE Int. Symp. Low Power Electron. Des.,
2020, pp. 169-174.

[9] C. Elkan and K. Noto, “Learning classifiers from only positive and un-
labeled data,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2008, pp. 213-220.

[10] D. Ielmini and G. Pedretti, “Device and circuit architectures for in-
memory computing,” Adv. Intell. Syst., vol. 2, no. 7, 2020, Art. no.
2000040.

[11] R. Wang, X. Jiao, and X. S. Hu, “ODHD: One-class brain-inspired
hyperdimensional computing for outlier detection,” in Proc. 59th
ACM/IEEE Des. Automat. Conf., 2022, pp. 43-48.

[12] S. Rayana, “Outlier detection datasets (ODDS) library.” ODDS. Ac-
cessed: Feb 1, 2024. [Online]. Available: http://odds.cs.stonybrook.edu

[13] M. Kang, M. S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in Proc. Int. Conf. Acoust.,
Speech, Signal Process., 2014, pp. 8326-8330.

[14] X. Yin, K. Ni, D. Reis, 5. Datta, M. Niemier, and X. S. Hu, “An ultra-
dense 2FeFET TCAM design based on a multi-domain FeFET model,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 9, pp. 1577-1581,
Sep. 2018.

http://odds.cs.stonybrook.edu

WANG et al.: CIM-BASED ONE-CLASS HDC MODEL FOR OUTLIER DETECTION

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. Kazemi et al., “Achieving software-equivalent accuracy for hyperdi-
mensional computing with ferroelectric-based in-memory computing,”
Sci. Rep., vol. 12, no. 1, 2022, Art. no. 19201.

J. Liu, M. Ma, Z. Zhu, Y. Wang, and H. Yang, “HDC-IM: Hyperdimen-
sional computing in-memory architecture based on RRAM,” in Proc.
26th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), 2019, pp. 450
453.

D. Reis, M. Niemier, and X. S. Hu, “Computing in memory with
FeFETs,” in Proc. Int. Symp. Low Power Electron. Des., 2018, pp. 1-6.
D. Reis, A. F. Laguna, M. Niemier, and X. S. Hu, “A fast and
energy efficient computing-in-memory architecture for few-shot learning
applications,” in Proc. Des., Automat. Test Europe Conf. Exhib. (DATE),
2020, pp. 127-132.

S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb 2017, pp. 481-492.

D. Reis, J. Takeshita, T. Jung, M. Niemier, and X. S. Hu, “Computing-in-
memory for performance and energy-efficient homomorphic encryption,”
IEEE Trans. Very Large Scale Integr (VLSI) Syst., vol. 28, no. 11,
pp- 2300-2313, Nov. 2020.

Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recogni-
tion using hyperdimensional computing,” in Proc. 8th Int. Conf. Internet
Things, 2018, pp. 1-6.

R. Wang, F. Kong, H. Sudler, and X. Jiao, “Brief industry paper: HDAD:
Hyperdimensional computing-based anomaly detection for automotive
sensor attacks,” in Proc. IEEE 27th Real-Time Embedded Technol. Appl.
Symp. (RTAS), Piscataway, NJ, USA: IEEE Press, 2021, pp. 461-464.
D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data paral-
lel acceleration,” in Proc. 46th Int. Symp. Comput. Archit., 2019,
pp. 397-410.

A. Ranjan, S. Jain, J. R. Stevens, D. Das, B. Kaul, and A. Raghunathan,
“X-MANN: A crossbar based architecture for memory augmented
neural networks,” Proc. 56th ACM/IEEE Des. Automat. Conf. (DAC),
pp. 1-6, 2019.

A. Zimek, M. Gaudet, R. J. Campello, and J. Sander, “Subsampling
for efficient and effective unsupervised outlier detection ensembles,” in
Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2013, pp. 428-436.

S. Sathe and C. Aggarwal, “LODES: Local density meets spectral outlier
detection,” in Proc. SIAM Int. Conf. Data Mining. Philadelphia, PA,
USA: SIAM, 2016, pp. 171-179.

S. Wang, Q. Liu, E. Zhu, F. Porikli, and J. Yin, “Hyperparameter
selection of one-class support vector machine by self-adaptive data
shifting,” Pattern Recognit., vol. 74, no. C, pp. 198-211, Feb. 2018.
“Free system information monitoring and diagnostics.” HWINFO. Ac-
cessed: Feb 1, 2024. [Online]. Available: https:/www.hwinfo.com/

J. Mo, J. Gopinath, and B. Reagen, “HAAC: A hardware-software co-
design to accelerate garbled circuits,” in Proc. 50th Annu. Int. Symp.
Comput. Archit., 2023, pp. 1-13.

P. Maxwell, D. Niblick, and D. C. Ruiz, “Using side channel information
and artificial intelligence for malware detection,” in Proc. IEEE Int.
Conf. Artif. Intell. Comput. Appl. (ICAICA), Piscataway, NJ, USA: IEEE
Press, 2021, pp. 408—413.

M. Heddes, I. Nunes, P. Vergés, D. Desai, T. Givargis, and A. Nicolau,
“Torchhd: An open-source Python library to support hyperdimensional
computing research,” 2022, arXiv:2205.09208.

Z. Wang, B. Dai, D. Wipf, and J. Zhu, “Further analysis of outlier
detection with deep generative models,” Proc. 34th Conf. Neural Inf.
Process. Syst. (NeurIPS), 2020, pp. 8982—-8992.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A.
Zisserman, “The PASCAL Visual Object Classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 88, pp. 303-338, Jun. 2010.

M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “DESTINY: A
tool for modeling emerging 3D NVM and eDRAM caches,” in Proc.
Des., Automat. Test Europe Conf. Exhib. (DATE), Piscataway, NJ, USA:
IEEE Press, 2015, pp. 1543—1546.

W. Zhao and Y. Cao, “Predictive technology model for nano-CMOS
design exploration,” ACM J. Emerg. Technol. Comput. Syst. (JETC),
vol. 3, no. 1, pp. 1-es, 2007.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|
il

1573

A. Burrello, K. Schindler, L. Benini, and A. Rahimi, “One-shot learning
for iEEG seizure detection using end-to-end binary operations: Local bi-
nary patterns with hyperdimensional computing,” in Proc. IEEE Biomed.
Circuits Syst. Conf. (BioCAS), Piscataway, NJ, USA: IEEE Press, 2018,
pp- 14

X. Yang, L. J. Latecki, and D. Pokrajac, “Outlier detection with globally
optimal exemplar-based GMM,” in Proc. SIAM Int. Conf. Data Mining,
Philadelphia, PA, USA: SIAM, 2009, pp. 145-154.

M. H. Satman, “A new algorithm for detecting outliers in linear
regression,” Int. J. Statist. Probability, vol. 2, no. 3, 2013, Art. no. 101.
V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology.” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchit., 2017, pp. 273-287.

S.Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchit., 2017, pp. 288-301.

Q. Deng, Y. Zhang, M. Zhang, and J. Yang, “LAcc: Exploiting lookup
table-based fast and accurate vector multiplication in DRAM-based CNN
accelerator,” in Proc. 56th Annu. Des. Automat. Conf., 2019, pp. 1-6.
P. R. Sutradhar, M. Connolly, S. Bavikadi, S. M. P. Dinakarrao, M.
A. Indovina, and A. Ganguly, “pPIM: A programmable processor-in-
memory architecture with precision-scaling for deep learning,” IEEE
Comput. Archit. Lett., vol. 19, no. 2, pp. 118-121, Jul.-Dec. 2020.

M. Imani et al., “SearcHD: A memory-centric hyperdimensional com-
puting with stochastic training,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 39, no. 10, pp. 24222433, Oct. 2020.

M. Eggimann, A. Rahimi, and L. Benini, “A 5 pw standard cell memory-
based configurable hyperdimensional computing accelerator for always-
on smart sensing,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68,
no. 10, pp. 41164128, Oct. 2021.

Ruixuan Wang (Graduate Student Member, IEEE)
received the M.Sc. degree in computer engineering
from New York University, USA, in 2020. He is cur-
rently working toward the Ph.D. degree in computer
engineering (CpE) with the Department of Electrical
and Computer Engineering, Villanova University.
His research interests include deep learning, ap-
proximate computing, hyperdimensional computing,
machine learning security, and robustness.

Sabrina Hassan Moon (Student Member, IEEE)
received the B.S. degree from Shahjalal University
of Science and Technology, Bangladesh. She is
currently working toward the Ph.D. degree in com-
puter science and engineering with the University of
South Florida. Her research interests include com-
puting in memory, hardware-software co-design for
machine learning applications, emerging devices,
device characterization, and VLSI. She is a devoted
individual committed to promoting women’s contri-
butions in academia.

Xiaobo Sharon Hu (Fellow, IEEE) received the
B.S. degree from Tianjin University, the M.S. degree
from the Polytechnic Institute of New York, and
the Ph.D. degree from Purdue University. She is
a Professor with the University of Notre Dame.
Her research interests include energy/reliability-
aware system design, circuit and architecture design
with emerging technologies, real-time embedded
systems, and hardware-software co-design. She re-
ceived the NSF CAREER Award in 1997, the Best
Paper Award from Design Automation Conference

in 2001, ACM/IEEE International Symposium on Low Power Electronics and
J. Knudsen, “NanGate 45nm open cell library,” CDNLive, EMEA, 2008. Design in 2018, etc.

https://www.hwinfo.com/

1574

Xun Jiao (Member, IEEE) received the B.S. degree
from Beijing University of Posts and Telecommu-
nications, in 2013, and the Ph.D. degree from UC
San Diego, in 2018. He is an Assistant Professor
with the ECE Department, Villanova University.
He was a Visiting Scientist with Meta/Facebook,
and a Visiting Student Researcher with NXP Semi-
conductors. His research interests include software-
hardware codesign, design automation, bio-inspired
computing, and machine learning, with a particu-
lar focus on designing robust and energy-efficient
systems. His research is funded by NSF, NIH, and industry corporations
(L3Harris, NVIDIA).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Dayane Reis (Senior Member, IEEE) received the
B.S. degree from PUC-MG, Brazil, the M.S. de-
gree from the Federal University of Minas Gerais,
Brazil, and the Ph.D. degree from the University of
Notre Dame. She is an Assistant Professor with the
Department of CSE, University of South Florida.
Her research interests include the design of circuits
and architectures for data-intensive computing. She
was one of the Best Paper Award Winners in
the ACM/IEEE International Symposium on Low
Power Electronics and Design, and a recipient of

the Cadence Women in Technology (WIT) Scholarship 2018/2019.

