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Abstract—Dealing with data heterogeneity is a key challenge
in the theoretical analysis of federated learning (FL) algorithms.
In the literature, gradient divergence is often used as the sole
metric for data heterogeneity. However, we observe that the
gradient divergence cannot fully characterize the impact of the
data heterogeneity in Federated Averaging (FedAvg) even for
the quadratic objective functions. This limitation leads to an
overestimate of the communication complexity. Motivated by this
observation, we propose a new analysis framework based on the
difference between the minima of the global objective function
and the minima of the local objective functions. Using the new
framework, we derive a tighter convergence upper bound for het-
erogeneous quadratic objective functions. The theoretical results
reveal new insights into the impact of the data heterogeneity on
the convergence of FedAvg and provide a deeper understanding
of the two-stage learning rates. Experimental results using non-
IID data partitions validate the theoretical findings.

Index Terms—Federated Learning, Data Heterogeneity

I. INTRODUCTION

We consider the following federated optimization problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where n is the number of workers and fi(x) is the local
objective function of worker i. The most popular algorithm
for solving this problem is Federated Averaging (FedAvg) [1]–
[3], which can be found in Algorithm 1. In FedAvg, to reduce
the communication cost, workers often perform K > 1 local
iterations of stochastic gradient descent (SGD) on their own
devices before sending the updated models to the global server.
After receiving updated local models, the global server updates
the global model by averaging all local models then sends the
new global model back to all workers. The server and workers
collaboratively perform R communication rounds.

A key challenge in federated learning is the data heterogene-
ity, which severely restricts the usefulness of multiple local
iterations [4], [5]. Since workers can only use local data to
train the model, the local models often drift far away from
the global model. Therefore, global aggregations are needed
to mitigate the impact of data heterogeneity. In the literature,
the gradient divergence in Assumption 1 is widely applied
to characterize the impact of data heterogeneity. Based on
Assumption 1, existing results [5], [6] show that we have to
choose a small K to deal with the large gradient divergence.

Assumption 1 (Bounded Gradient Divergence): There exists
ζ > 0 such that ∀x ∈ Rd,

sup
i∈[n],x

∥∇fi(x)−∇f(x)∥2 = ζ2. (2)

However, in Section III, we show that the gradient diver-
gence does not fully capture the impact of data heterogeneity
on the convergence, which leads to a lack of understanding
or even misunderstanding of the behavior of local updates.
Specifically, this gap in understanding might result in an
overestimate of the communication complexity. Furthermore,
such misunderstandings could lead to improper choices of
learning rates, potentially causing the divergence of FedAvg.

In this work, we propose a new framework for the analysis
of FedAvg with quadratic objective functions, based on the
difference between the minima of the global objective function
and the minima of the local objective functions. The intuition
behind the new framework is that if the minima of the local
objective functions and the global objective function are close
to each other, then we can perform as many local updates
as possible until the local model converges to its minima
instead of doing a number of unnecessary global aggregations.
Our approach does not explicitly use the bounded gradient
divergence assumption, as most existing works do, since the
focus of our analysis is the heterogeneity on “destination”, (the
minima), instead of the “direction”, (the gradients). Thus, our
proposed framework can demonstrate convergence for hetero-
geneous objective functions even when the bounded gradient
divergence assumption fails. Using the new framework, we
derive a tighter convergence bound for quadratic objective
functions, which matches the lower bound for the convex
quadratic objective functions in [5]. The theoretical results
provide new insights into the impact of data heterogeneity on
the convergence of FedAvg and improve the understanding of
the two-stage learning rates. Experimental results with non-IID
data partitions further validate our theoretical findings.

II. RELATED WORKS

There have been a considerable amount of works analyzing
the convergence of FedAvg, for convex objective functions [7],
[8], non-convex objective functions [9], [10], and their variants
[5], [11], [12]. However, in these works, the convergence error
caused by the gradient divergence is given by O(γ2K2ζ2),
which means that when the gradient divergence is large, the
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Algorithm 1: Federated Averaging (FedAvg)
Input: γ, x̄0, K, η (if using two-stage learning rates)
Output: Global aggregated model x̄R

for r = 0 to R− 1 do
Distribute the current global model x̄r to workers;
for Each worker i, in parallel do

τ = 0;
while τ < K do

Compute ∇fi(xr,τ
i ) using the local dataset;

xr,τ+1
i ← xr,τ

i − γ∇fi(xr,τ
i );

τ ← τ + 1;

Send xr,K
i to the server;

if Using two-stage learning rates then
Update the global model
x̄r+1 ← x̄r + η( 1

n

∑n
i=1 x

r,K
i − x̄r);

else
Update the global model x̄r+1 ← 1

n

∑n
i=1 x

r,K
i ;

convergence error grows fast with K. Recently, a framework
with two-stage learning rates, η and γ, was proposed to
improve the convergence performance under severe non-IID
conditions [12]. Some work [13], [14] focus on the analysis
of FedAvg with two-stage learning rates. However, the conver-
gence bounds in these works imply that only when fixing the
product of η and γ, then letting γ become as small as possible,
the convergence error is minimized, which, as we will show
in Section IV-B, can lead to the divergence.

III. MOTIVATION: A SINGLE AGGREGATION CAN BE
SUFFICIENT

In this section, we present an example involving hetero-
geneous quadratic objective functions, where FedAvg can
converge to the global minima x∗, with only one aggregation,
while the gradient divergence can be arbitrarily large. We
attribute this phenomenon to the limitations of the gradient
divergence metric in capturing the difference between the
minima of the local objective function x∗

i and the minima of
the global objective function x∗. These observations motivate
us to shift our focus in the convergence analysis towards the
heterogeneity on minima of objective functions, rather than
relying solely on the gradient divergence.

We consider the following quadratic example. The global
objective function is given by

f(x) = c+ bTx+
1

2
xTAx,A ≻ 0, (3)

where A ≻ 0 means A is positive definite. The local objective
function of worker i is given by

fi(x) = ci + bTi x+
1

2
xTAx, ∀i ∈ [n]. (4)

Both the server and workers share the same Hessian matrix
A, while other coefficients ci, bi can be different. According
to Assumption 1, in this case, the gradient divergence is

ζ2 = sup
i

∥b− bi∥2. (5)

When the local objective functions are highly heterogeneous,
the gradient divergence can be arbitrarily large. In the litera-
ture, a large gradient divergence implies that frequent global
aggregations are needed [10], [15]. However, only one aggre-
gation is sufficient for this example. To see this, let workers
perform a sufficiently large number K of local iterations until
it converges to the minima of the local objective function x∗

i .
Then no matter which x̄0 is given, we always have x0,K

i = x∗
i .

According to Algorithm 1, after the aggregation we have

x̄1 =
1

n

n∑
i=1

x0,K
i =

1

n

n∑
i=1

x∗
i =

1

n

n∑
i=1

(
−A−1bi

)
= −A−1b = x∗, (6)

which means that after one aggregation, x̄1 converges to the
global minima x∗.

From the above example, we can observe that although
the heterogeneity on the direction of the gradient descent is
large, which is shown by the large ζ, there is no heterogeneity
on the destination, since the averaged minima of the local
objective functions 1

n

∑n
i=1 x

∗
i , is equal to x∗. Therefore,

one aggregation for all x∗
i ’s is sufficient. Motivated by these

observations, we develop a convergence analysis for quadratic
objective functions based on the heterogeneity on the minima
in the following section.

IV. THEORETICAL RESULTS

In this section, we provide the new theoretical analysis of
FedAvg for heterogeneous quadratic objective functions based
on the heterogeneity on the minima of the objective functions.
By the theoretical results, we show that the data heterogeneity
does not only decrease the convergence speed but also causes
the gap between the global model and the global minima
x∗, which dominates the convergence error. By extending the
framework to the analysis for two-stage learning rates, we
show that the optimal γ is not close to zero while keep the
product of γ and η, which corrects the misunderstand of the
two-stage learning rates in the literature.

A. Convergence Analysis for Quadratic Functions

1) Preliminaries: In this section, we introduce the objective
functions and the important relationship between x∗ and the
local minima x∗

i . The local objective function is given by

fi(x) = ci + bTi x+
1

2
xTAix,Ai ≻ 0, ∀i, (7)

where Ai’s can be different among workers. Since the Hessian
matrix Ai is positive definite, fi(x) is strongly convex. By (1),
for the global objective function, we have

A =
1

n

n∑
i=1

Ai ≻ 0, b =
1

n

n∑
i=1

bi, c =
1

n

n∑
i=1

ci. (8)

For quadratic functions, the minima x∗
i of fi(x) and the

minima x∗ of f(x) are respectively given by

x∗
i = A−1

i bi, x
∗ = A−1b. (9)
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We can rewrite x∗ as a weighted average of x∗
i ,

x∗ =
1

n

n∑
i=1

A−1Aix
∗
i , (10)

where

1

n

n∑
i=1

A−1Ai = A−1 1

n

n∑
i=1

Ai = A−1A = I. (11)

It is shown by (10) that x∗ is a weighted averaged of x∗
i ’s,

where the weight of x∗
i is 1

nA
−1Ai. In the example of

Section III, since Ai = A, the weight is given by 1
n .

2) Convergence Analysis: In this section, we provide the
convergence analysis for heterogeneous quadratic objectives
with one learning rate γ. We start with deriving the changes
on the global model after one round as shown in Lemma 1.

Lemma 1 (In One Round): Given x̄r, with γ ∈ (0, 1
maxi λi

),
after one round we have

x̄r+1 =

[
1

n

n∑
i=1

(I − γAi)
K

]
x̄r

+
1

n

n∑
i=1

[
I − (I − γAi)

K
]
x∗
i , (12)

where λi denotes the largest eigenvalue of Ai.
To obtain the the global model after r rounds, we apply the
recursion to (12). Then we have the following lemma.

Lemma 2 (After r Rounds): Given x̄0, with γ ∈ (0, 1
maxi λi

),
after r rounds we have

x̄r = Dr
K x̄0 + (I −Dr

K)
n∑

i=1

Wix
∗
i , (13)

where

Dr
K=

[
1

n

n∑
i=1

(I − γAi)
K

]r
, (14)

Wi =
1

n

[
I − 1

n

n∑
j=1

(I−γAj)
K

]−1[
I−(I−γAi)

K

]
. (15)

We define x̂ :=
∑n

i=1 Wix
∗
i . It is worth noting that∑n

i=1 Wi = I . Therefore,
∑n

i=1 Wix
∗
i can be seen as a

weighted average of x∗
i ’s with the weight matrix Wi, which

is determined by γ and K. When r increases, we have

lim
r→∞

x̄r =
n∑

i=1

Wix
∗
i = x̂, (16)

which means that given γ and K, the global model x̄r will
converge to x̂, which is called as the convergence point.

However, this implies that the global model might not be
able to converge to the global minima x∗. Only when K = 1,
we have x̂ = x∗, which means the global model can converge
to x∗. As K → ∞, we will have x̂ = 1

n

∑n
i=1 x

∗
i , which

means that the global model converges to 1
n

∑n
i=1 x

∗
i . We note

that the difference between x̂ and x∗ is bounded since

0 =

∥∥∥∥ n∑
i=1

A−1Aix
∗
i − x∗

∥∥∥∥ ≤
∥∥∥∥x̂− x∗

∥∥∥∥ ≤
∥∥∥∥ 1n

n∑
i=1

x∗
i − x∗

∥∥∥∥.
(17)

This property can help us understand the theoretical results
in Theorem 1. Based on Lemma 2, we have the following
theoretical results.

Theorem 1: For Algorithm 1, if the objective functions are
defined as (7), with a constant learning rate γ ∈ (0, 1

λmax
),

given K, after R rounds we have

∥x̄R − x∗∥2

≤2∥DR
K∥2∥(x̄0 − x∗)∥2 + 2∥I −DR

K∥2∥
n∑

i=1

Wix
∗
i − x∗∥2

≤ 2(1− γλmin)
2KR∥x̄0 − x∗∥2︸ ︷︷ ︸

error caused by initialization

+ 2(1− (1− γλmax)
KR)2 ∥x̂− x∗∥2︸ ︷︷ ︸

error caused by the convergence point

, (18)

where λmax = maxi λi, λmin = mini λ
min
i and λmin

i is the
minimum eigenvalue of Ai.

Remark 1 (Explanation for the Convergence Upper Bound):
The convergence bound in (18) is composed of two parts,
the error caused by initialization and the error caused by the
convergence point. Since γλmin < 1, increasing either K or
R can reduce the error caused by initialization. In contrast,
the error caused by the convergence point increases as R or
I increases. However, the impact of R and K is not exactly
the same for the error caused by the convergence point. While
the coefficient 1 − (1 − γλmax)

KR increases as R increases,
increasing K does not only increase the coefficient, but also
increases the gap between x̂ and x∗. This is because that as
shown in (17), when K increases, ∥x̂ − x∗∥ increases. In
addition, when K = 1, for any R ≥ 1, the error caused by the
convergence point becomes zero. In contrast, when K > 1,
we cannot find a R > 1 such that the error caused by the
convergence point is zero. In addition, for K > 1, it has been
shown in (17) that the error caused by the convergence point
is upper bounded by a constant ∥ 1

n

∑n
i=1 x

∗
i − x∗∥2. This is

a new finding, since in previous results, the divergence term
O(γ2K2ζ2) in the upper bound grows unbounded with K.

Remark 2 (New Insights for Data Heterogeneity): By The-
orem 1, the impact of data heterogeneity can be seen in two
aspects. First, the data heterogeneity causes the gap between
the convergence point and the minima. When data are IID,
by the definition of x̂, we have x̂ = x∗, which means that
the error caused by the convergence point is zero regardless
of K. However, when data are non-IID, with K > 1 and
a constant learning rate, the error caused by the convergence
point is nonzero. Second, larger data heterogeneity may lead to
a bigger error caused by initialization. When data are IID, we
have λmin = λ̄min, where λ̄min denotes the largest eigenvalue
of the global Hessian matrix A. In contrast, when data are
non-IID, we have 1− γλmin > 1− γλ̄min.

Now we show how the choice of learning rate affects the
upper bound in Theorem 1.

Lemma 3: Given the number of local iterations K,

lim
γ→0

∥x̂− x∗∥2 = 0. (19)
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Lemma 3 implies that a small learning rate can reduce the
gap between x∗ and the convergence point x̂. Based on
Lemma 3, we explicitly rewrite the convergence upper bound
as a function of γ, R and K as follows.

Corollary 1: For the convergence upper bound in Theo-
rem 1, when γ is sufficiently small, we have

∥x̄R − x∗∥2 ≤ 2e−2γλminKR∥x̄0 − x∗∥2 + 2Cγ2, (20)

where C is a constant and when Aj = A, ∀j, C = 0.
Then the learning rate can be chosen as

γ =
1

(KR)q
, q ∈ (0, 1). (21)

For example, by choosing q = 1
2 , we will obtain ∥x̄R−x∗∥2 =

O( 1
KR ), since the second term in (20) is the dominant term.

We note that in [5, Theorem II], the lower bound for the
convex quadratic objective function is Ω( 1

R2 ). We can see that
if q approaches 1, γ will go to 1

KR , and the convergence rate
will converge to O( 1

R2 ), which matches the lower bound with
respect to R.

B. Understanding the Two-Stage Learning Rates

In this section, we extend our analysis to FedAvg with two-
stage learning rates. We found that the choices for η and γ
implied by existing theoretical results [13] can lead to the
divergence. To see this, we provide the convergence upper
bound for non-convex local GD in [13, Theorem 1] as follows.

minr∈[R] ∥∇f(x̄r)∥2 ≤ f0−f∗
cηγKR + 15K2γ2L2ζ2, (22)

where c is a constant, L is the Lipschitz constant and ηγ ≤
1

KL . To minimize the convergence error, we should choose
ηγ = 1

KL which minimizes the first term. Then we should let
γ as small as possible since it makes the second term smaller.

However, as shown in Figure 1, if we keep the product
of γ and η, choosing a small γ can lead to the divergence
of FedAvg. This shows that in the literature, the impact of
the two-stage learning rates is not well understood. To obtain
a deeper understanding for the two-stage learning rates, we
extend our analysis to FedAvg with two-stage learning rates.
The results are shown in Theorem 2.

Theorem 2: For Algorithm 1 with two-stage learning rates,
if the objective functions are defined as (7), with a constant
local learning rate γ ∈ (0, 1

λmax
), a constant global learning

rate η ∈ (0, 1
1− 1

n

∑n
i=1(1−γλi)K

), given K, after R rounds,

∥x̄R − x∗∥2 ≤ 2∥D′R
K∥2∥x̄0 − x∗∥2︸ ︷︷ ︸

error caused by initialization

+2∥I −D′R
K∥2∥

n∑
i=1

Wix
∗
i − x∗∥2︸ ︷︷ ︸

error caused by the convergence point

, (23)

where D′R
K =

(
I − η

[
I − 1

n

∑n
i=1(I − γAi)

K

])R

.

In this case, according to the range of γ and η, we have

∥D′R
K∥ ∈ (0, 1), ∥I −D′R

K∥ ∈ (0, 1). (24)

(a) Linear model. (b) Two-layer neural network.

Fig. 1: Empirical results for the two-stage learning rates. For
each curve, we keep the product ηγ the same and we set
K = 10. In (a), η = 2, γ = 0.005 converges fastest while
η = 4, γ = 0.0025 cannot converge. In (b), η = 1, γ = 0.2
converges fastest while η = 10, γ = 0.02 is the worst.

Remark 3 (Advantage of Two-stage Learning Rates): First,
we compare Theorem 1 and Theorem 2 to show the advantage
of two-stage learning rates. It can be seen that the main
difference is on the coefficients, where DR

K is substituted
by D′R

K and D′R
K depending on η. In Theorem 1, we have

shown that when γ decreases, the error caused by initialization
increases while the error caused by the convergence point
decreases. However, in Theorem 2, when γ decreases, we
can still choose a large η such that both the error caused by
initialization and the error caused by the convergence point can
be smaller. Therefore, it can be seen that by choosing a large
η and a small γ, the two-stage learning rates can help improve
the convergence rate. It is worth noting that η is upper bounded
and cannot be arbitrarily large when fixing the product of η
and γ, which is not shown in the literature. More explanations
about the range of learning rates are provided in the following.

Remark 4 (New Insights for Two-stage Learning Rates):
From Theorem 2, it can be seen that the upper bound of
η depends on different parameters. However, the impact of
each parameter is different from that shown in the literature.
First, in the literature [13], the upper bound of η is given by
η ≤ 1

γKL , which is not affected by the data heterogeneity,
while in Theorem 2, we show that the upper bound of η is
affected by the data heterogeneity. The reason is that since
1
n

∑n
i=1(1− γλi)

K) < 1− γλ̄max, where λ̄max is the largest
eigenvalue of A, a larger heterogeneity can lead to a smaller
upper bound of η.

Second, the results in Theorem 2 imply that when K > 1,
we cannot increase η to a infinitely large value while fixing
the product of η and γ. When K > 1. we have a smaller
upper bound for η since 1

1− 1
n

∑n
i=1(1−γλi)K

< 1
γ 1

n

∑n
i=1 λi

.
Only when K = 1, we can have η < 1

γ 1
n

∑n
i=1 λi

. This also
explains why in Figure 1a, the curve with η = 4, γ = 0.0025
diverges. Since we fix the product of η and γ in this figure, η =
4 is greater than 1

1− 1
n

∑n
i=1(1−γλi)K

for K = 10. Therefore,
the convergence with η = 4 cannot be guaranteed.

Third, the convergence upper bound in Theorem 2 provides
insights into how to choose the optimal η and γ. When the
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error caused by initialization is large, we can choose a large
η such that the coefficient ∥D′R

K∥ is small. When the error
caused by the convergence point is large, we need to choose a
small η and a small γ, such that both the coefficient ∥I−D′R

K∥
and the gap between x̂ and x∗ become small.

V. EXPERIMENTS

We provide the experimental results with the MNIST
dataset, which consists of 10 classes. The number of workers
is n = 10. The dataset is partitioned in a non-IID manner
such that there is only one data class at each worker. We use
linear regression with mean square error (MSE) loss (quadratic
objective function) and a two-layer neural network with cross-
entropy loss (non-convex objective function). The learning
rates are set as γ = 0.01 and γ = 0.1 for linear regression
and neural network, respectively.

(a) Linear model. (b) Two-layer neural network.

Fig. 2: Empirical results with different K.

Figure 2a shows the results with linear regression and MSE
loss. It can be seen that the larger K means the global
model can converge faster to x̂. This is consistent with our
convergence upper bound in Theorem 1 since the first term
of (18) is an exponential function of K, a larger K implies
a faster decay of the first term. Figure 2a also shows that
a smaller K can lead to a smaller training loss when R is
sufficiently large. This is because that as shown in the second
term of (18), a smaller K can reduce the gap between x̂ and
x, which means the convergence point is closer to the global
minima so the loss on the convergence point is smaller. It is
worth noting that the difference between curves of K = 10 and
K = 50 is far more than that between K = 50 and K = 100.
This is because that as shown in Theorem 1, increasing K
makes the x̂ closer to 1

n

∑n
i=1 x

∗
i and the difference between

x̂ and x∗ is bounded by ∥x∗ − 1
n

∑n
i=1 x

∗
i ∥, which will not

increase as K becomes larger. Figure 2b shows the results
with a two-layer neural network and cross-entropy loss. It can
be seen that the observations obtained from Figure 2a can also
be applied to Figure 2b. This means that the insights shown
by our theoretical results have the potential to be extended to
the non-convex objective functions.

VI. CONCLUSION

In this paper, a new framework for the analysis of FedAvg
has been proposed. For heterogeneous quadratic objective

functions, we have derived a new convergence upper bound,
which shows that the data heterogeneity does not only lead
to the gap between the convergence point x̂ and the global
minima x∗, but also decreases the decaying coefficient of
the error caused by the initialization. We have extended the
new framework to the analysis for the two-stage rates. The
theoretical results reveal the insights behind the global learning
rate η and show that the optimal choice for the learning rates
is not fixing the product of γ and I and let γ become as small
as possible as a common understanding shown the literature.
The experiments have validated our theoretical results and
showed that our results have the potential to be applied to the
general non-convex objective functions. Future works include
extending the analysis to the general non-convex objective
functions and considering the stochastic gradients.
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