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Abstract—Secure aggregation, which is a core component
of federated learning, aggregates locally trained models from
distributed users at a central server. The ‘secure” nature of
such aggregation consists of the fact that no information about
the local users’ data must be leaked to the server except the
aggregated local models. In order to guarantee security, some
keys may be shared among the users (this is referred to as
the key sharing phase). After the key sharing phase, each user
masks its trained model which is then sent to the server (this is
referred to as the model aggregation phase). This paper follows
the information theoretic secure aggregation problem originally
formulated by Zhao and Sun, with the objective to characterize
the minimum communication cost from the K users in the model
aggregation phase. Due to user dropouts, which are common in
real systems, the server may not receive all messages from the
users. A secure aggregation scheme should tolerate the dropouts
of at most K — U users, where U is a system parameter. The
optimal communication cost is characterized by Zhao and Sun,
but with the assumption that the keys stored by the users could
be any random variables with arbitrary dependency. On the
motivation that uncoded groupwise keys are more convenient
to be shared and could be used in large range of applications
besides federated learning, in this paper we add one constraint
into the above problem, namely, that the key variables are
mutually independent and each key is shared by a group of
S users, where S is another system parameter. To the best of
our knowledge, all existing secure aggregation schemes (with
information theoretic security or computational security) assign
coded keys to the users. We show that if S > K— U, a new secure
aggregation scheme with uncoded groupwise keys can achieve the
same optimal communication cost as the best scheme with coded
keys; if S < K — U, uncoded groupwise key sharing is strictly
sub-optimal. Finally, we also implement our proposed secure
aggregation scheme into Amazon EC2, which are then compared
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with the existing secure aggregation schemes with offline key
sharing.

Index Terms—Secure aggregation, federated learning, uncoded
groupwise keys, information theoretic security

I. INTRODUCTION

Federated learning is essentially a distributed machine
learning framework, where a central server aims to solve a
machine learning problem by the help of distributed users with
local data [2]-[5]. A notable advantage of federated learning
compared to other distributed learning scenarios, is the security
protection on the users’ raw local data against the server.
Instead of asking the users to directly upload the raw data,
federated learning lets each user compute the model updates
using its local data and securely aggregates these updates at the
server (secure aggregation). In this paper, we use information
theoretic tools to focus on two core challenges of the secure
aggregation process in federated learning, namely the effect of
user dropouts and the communication efficiency [4]. First, in a
real environment some users may drop or reply slowly during
the training process due to the network connectivity or com-
putational capability. It is non-trivial to let the server recover
the aggregated updated models of the surviving users securely
while mitigating the effect of potential user dropouts. Second,
additional communication among the users and server may be
needed to guarantee the perfect security and mitigate the effect
of the user dropouts, for example, additional communications
on exchanging the keys among the users may be taken. Since
a federated learning system usually contains of a massive
number of devices, the minimization of the communication
cost is crucial.

The secure aggregation problem with user dropouts was
originally considered in [6], and generally contains two phases:
offline key sharing and model aggregation, where the user
dropouts may happen in either phase or both phases. In the
first phase, K users generate random seeds, and secretly share
their private random seeds such that some keys are shared
among the users. The offline key sharing phase is independent
of the users’ local training data, and thus can take place
during off-peak traffic times when the network is not busy.
For example, the secure aggregation schemes in [6]-[10] all
make use of offline key sharing protocols.! If there is no

'Online key sharing protocols (for example the ones proposed in [11]-[13])
which are beyond the scope of this paper, allow users to communicate some
information about the updated models and keys among each other, while in
offline protocols users can only share keys.
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private link among users, the communication among users
should go through the central server, and some key agreement
protocol such as [14] is needed, whereby two or more parties
can agree on a key by communicating some local information
through a public link, such that even if some eavesdropper
can observe the communication in the public link, it cannot
determine the shared key. Once the keys are shared among
the users, in the model aggregation phase the users mask
the updated models by the keys; then send masked models
and masks to the server through multiple rounds. When the
server receives the transmissions of a threshold number of
users, the server should recover the aggregated updated models
of these users without getting any other information about
the users’ local data, such that the effect of user dropouts
could be resolved. The secure aggregation protocol in [6]
uses the pairwise offline key sharing based on Diffie-Hellman
key agreement [14] between each two users, where each
key is then shared to all other users through Shamir’s secret
sharing [15] in order to deal with user dropouts. By relaxing
the resilience on the worst-case dropouts, secure aggregation
schemes with probabilistic dropout-resiliency guarantee were
proposed in [7], [8], where the number of required keys is
further reduced compared to the one in [6]. Following the
secure aggregation problem with user dropouts in [6], several
works have developed more efficient and/or more secure
schemes for aggregation, for example, by using common seeds
through homomorphic pseudorandom generator [16], secure
multi-party computing [17], non-pairwise keys [9], online key
sharing [11]-[13], improved El Gamal encryption [18]. The
readers can refer to the survey for more details [19], [20].

Recently, the authors in [9] proposed an information the-
oretic formulation of the secure aggregation problem with
user dropouts originally considered in [6], whose objective is
to characterize the fundamental limits of the communication
cost while preserving the information theoretic security of
the users’ local data.> Due to the difficulty to characterize
the fundamental limits of the communication rates in both
two phases, with the assumption that the key sharing phase
has been already performed during network off-traffic times
and any keys with arbitrary dependency could be used in the
model aggregation phase (i.e., we only consider the model
aggregation phase and ignore the cost of the key sharing
phase), the authors in [9] formulated a (K, U) two-round in-
formation theoretic secure aggregation problem for the server-
users communication model, where K represents the number
of users, U represents the minimum number of surviving
users.®> Each user can communicate with the server while the
communication among users is not allowed. The server aims
to compute the element-wise sum of the vector inputs (i.e.,
updated models) of K users, where the input vector of user k
is denoted by W}, and contains L uniform and i.i.d. symbols

2Among the existing secure aggregation schemes with user dropouts,
the ones in [9], [10], [13] considered the information theoretic security
constraint [21], while the others considered the computational security.

3The problem in [9] only considers one epoch of the learning process.

over a finite field ]Fq.4 Each user £ has stored a key Z, which
can be any random variable independent of Wy,..., Wk.
The transmissions (in the model aggregation phase) contains
two rounds.’ In the first round of transmission, each user
k € {1,...,K} sends a coded message X}, as a function of
Wi and Zj, to the server. Since some users may drop during
its transmission, the server only receives the messages from
the users in I{; where |Uf;| > U. Then the server informs the
users in the subset Uf; of non-dropped users. In the second
round of transmission, after knowing the set {{;, each user
k € U, transmits another coded message Y as a function
of (W, Zx,U;) to the server. Due to the user dropouts in the
second round, letting (/> denote the set of surviving users in
the second round with Uy C U, and |Us] > U, the server
receives Y,i”l where k € Us. By receiving (X : k € U;) and
(qul : k € Usp), the server should recover the element-wise
sum Y reu, Wi without getting any other information about
W1, ..., Wk even if the server can receive (Xy, : k € [K]\U1),
(Y,ﬁ”1 : k € Uy \Us) (e.g., the users are not really dropped but
too slow in the transmission). Since the identity of the dropped
users in each round is not known a priori by the users unless
they receive the list of surviving users from the server, we
should design (Xj : k € {1,...,K}) and (Y} : k € Uy)
for any sets Uy,Us where Us C U; C {1,...,K} and
[U1] > |Uz| > U, while minimizing the communication rates
by the users in two rounds. It was shown in [9] that the
minimum numbers of symbols that each user needs to send are
L over the first round, and L/U over the second round, which
can be achieved simultaneously by a novel secure aggregation
scheme. Another secure aggregation scheme was proposed
in [10] for the above problem, which needs a less amount
of generated keys in the system than that of [9].

To the best of our knowledge, all existing secure aggregation
schemes with offline key sharing let the users share and
store coded keys, through secret sharing (such as [6]-[8])
or Minimum Distance Separable (MDS) codes (such as [9],
[10]).6 In this paper, we follow the information theoretic
secure aggregation problem with user dropouts in [9], while
adding the additional constraint of uncoded groupwise keys
as illustrated in Fig. 1.7 By defining a system parameter
Se{l,...,K},foreach V C {1,...,K} where |V| =S, there
exists a key Zy shared by the users in V, which is independent
of other keys.® The uncoded groupwise keys could be directly
generated and shared among users by some key agreement

#Information theoretic secure aggregation problem with non-i.i.d. input
vectors was considered in [22], where the server aims to estimate the empirical
frequency of K items each of which is held by a user. Thus by formulating
the input vector as a one-hot vector (i.e., a vector with only one element 1
while the others are 0), the required communication cost is much less than
the secure aggregation problem for input vectors with i.i.d. elements.

STt was shown in [9] that for the sake of security under user dropouts, at
least two rounds communications must be taken.

The key sharing protocols in [6]-[8] are designed for the network where no
private links exist among users, under the constraint of computational security.
The key sharing protocols in [9], [10] lead to information theoretic privacy,
but under the constraint that there are private links among users or a trusted
server who assigns keys for the key sharing phase.

"The constraint of uncoded groupwise keys means that, the keys are
independent among each other and each key is stored by a set of users.

8Note that all existing secure aggregation schemes fail to satisfy this
constraint when S < K, due to the coded keys shared among users.
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User 1 User 2 User 3 User 4
Wy w, Wy W,
Z(1,2,3) Z(1,2,3) Z(1,23) Z124)
Z(1,2,4) Z(1,2,4) Z1,3.4) Z(1,3.4)
Z(1,3,4) Z(2,3,4) Z3,3.4) Z3,3.4)
X X, X3 X,

Server U, ={1,34}
The server receives X1, X3, X3.
(a) First round.

User 1 User 2 User 3 User 4
Wy w, Ws W,
Z(12,3) Z(12,3) Z(1,2,3) Z1,2,4)
Z(1,2,4) Z(1,2,4) Z1,3,4) 1,34}
Z(1,34) Z(2,3,4) Z(2,3,4) (2,343

Yl(l’3’4) dropped in

the first round

U, ={1,4}

. 1,34} {134
The server receives Yl{ },Y4{ },

and recovers Wy + W3 + W, from
the two rounds.

Server

(b) Second round.

Fig. 1: (K,U,S) = (4,2, 3) information theoretic secure
aggregation problem with uncoded groupwise keys.

protocol such as [23]-[30], even if there do not exist private
links among users nor a trusted server.In addition, uncoded
groupwise keys may be preferred in practice since they can be
generated with low complexity and shared conveniently, and
find a wide range of applications besides secure aggregation
in federated learning.” Our objective is to characterize the
capacity region of the numbers of transmissions by the users
in two rounds of the model aggregation phase (i.e., the rates
region).

A. Main Contributions

In this paper, we first formulate the new information the-
oretic secure aggregation problem with uncoded groupwise
keys. Then our main contributions on this new model are as
follows:

9For example, the uncoded pairwise key shared among each two users are
independent of the other keys and thus can guarantee the information theoretic
secure communication between these two users, while the other users (who
may collude) are eavesdropper listening to the communication [21]. However,
the pairwise coded keys used in the scheme [10] cannot guarantee secure
communication between any two users, because the coded key shared by
these two users are correlated to other keys stored by the other users.

e When S > K — U, we propose a new secure aggregation
scheme which achieves exactly the same capacity region
as in [9]; this means that, when S > K — U, secure
aggregation with uncoded groupwise key sharing has no
loss on the communication efficiency. It is also interesting
to see that by increasing S above K — U + 1 yields no
reduction in the transmission cost; i.e., S=K—-U+1 is
sufficient and no larger value of S provide improvements.
The main technical challenge of the proposed scheme
based on linear coding is to determine the coefficients
of the keys in the two round transmissions, satisfying
the encodability (i.e., the keys cannot appear in the
transmitted linear combinations by the users who do not
know them), decodability, and security constraints. We
overcome these challenges by designing new interference
alignment strategies.'” Note that, to achieve the optimal
rates region by our proposed scheme, not all the keys Zy,
where V C {1,...,K} and |V| = S are needed during the
transmission. The number of needed keys is either O(K)
or O(K?), where each key has (K— U +1)L/U symbols.

e When S < K — U, we derive a new converse bound
to show that the optimal rates region of the considered
problem is a strict subset of that in [9] (which is without
any constraint on the keys). This implies that in this
regime using uncoded keys strictly hurts.

o Experimental results over the Amazon EC2 cloud show
that the proposed secure aggregation scheme reduces the
communication time in the model aggregation by up to
53% compared to the original secure aggregation scheme
in [6], and reduces the key sharing time up to 31.7%
compared to the best existing information theoretic secure
aggregation scheme with offline key sharing in [10].

B. Paper Organization

The rest of this paper is organized as follows. Section II
formulates the considered secure aggregation problem with
uncoded groupwise keys. Section III lists the main results
of this paper. The proposed secure aggregation scheme is
introduced in Section IV. Experimental results are provided
in Section V. Section VI concludes the paper, while some
proofs can be found in the Appendices.

C. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors and matrices, and sans-serif symbols denote system
parameters. We use | - | to represent the cardinality of a set
or the length of a vector; [a : b] := {a,a+1,...,b} and
[n] := [1 : n]; Fq represents a finite field with order q; e, ;
represents the vertical n-dimensional unit vector whose entry
in the 7™ position is 1 and 0 elsewhere; 1,, and 0,, represent the
vertical n-dimensional vector whose elements are all 1 and all
0, respectively; AT and A~ represent the transpose and the
inverse of matrix A, respectively; rank(A) represents the rank
of matrix A; I,, represents the identity matrix of dimension

10nterference alignment was originally proposed in [31] for the wireless
interference channel, which aligns the undesired packets (i.e., interference) by
each user such that their linear space dimension is reduced.
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n x n; Op, , represents all-zero matrix of dimension m X n;
1, represents all-one matrix of dimension m X n; (A);xn
explicitly indicates that the matrix A is of dimension m X n;
(-), represents the modulo operation with integer quotient
a > 0 and in this paper we let (), € {1,...,a} (ie., we
let (b), = a if a divides b); let () = 0if <0 or y <0 or
x < y; let (?;):{SQX:|S|:y}where\X\2y>0.
In the rest of the paper entropies will be in base q, where q
represents the field size.

II. SYSTEM MODEL

We formulate a (K, U,S) information theoretic secure ag-
gregation problem with uncoded groupwise keys as illustrated
in Fig 1, which contains one epoch of the learning process
among K users and one server. For each k € [K], user k
holds one input vector (i.e., updated model) W} composed of
L uniform and i.i.d. symbols over a finite field Fy. As in [9],
we assume that L is large enough. Ideally, the server aims to
compute the element-wise sum of input vectors of all users.
However, due to the user dropouts, the server may not be
able to recover the sum of all input vectors. Hence, we let
the server compute the sum of the input vectors from the
surviving users, where the number of surviving users is at
least U. In this paper, we mainly deal with the user dropouts
and thus we assume that U € [K — 1].!! In addition, by the
secure aggregation constraint, the server must not retrieve any
other information except the task from the received symbols.
In order to guarantee the security, the users must share some
secrets (i.e., keys) which are independent of the input vectors.
Different from the secure aggregation problem in [9] which
assumes that the keys could be any random variables shared
among users, in this paper we consider uncoded groupwise
keys, where the keys are independent of each other and each
key is shared among S users where S € [K], which is shared
through private link between each two users or by the key
agreement protocols such as [23]-[30]. For each set V € ([g]),
there exists a key Zy independent of other keys. Thus

H ((ZV Ve <[PS<]))7 (W,.. .,WK))
= Z H(Zy) + Z H(Wy). (1)

ve() kelK]

We define 7, = (ZV Ve ([g]),k € V) , as the keys ac-
cessible by the user &k € [K]. The whole secure aggregation
procedure contains the following two rounds.

First round. In the first round, each user k € [K] generates
a message Xy as a function of Wy and Zj, without knowing
the identity of the dropped users. The communication rate of
the first round R; is defined as the largest transmission load
among all users normalized by L, i.e.,
H(Xk)

'When U = K, it was shown in [32, Theorem 2] (by taking N, = N in [32,
Theorem 2]) that one round transmission is enough and that the minimum
number of transmitted symbols by each user is L.

User k then sends X}, to the server.

Some users may drop in the first round transmission, and
the set of surviving users after the first round is denoted as
Uy, where Uy C [K] and |U;| > U. Thus the server receives
Xy where k € U.

Second round. In the second round, the server first sends
the list of the surviving users (i.e., the set {{;) to each user in
U;. Then each user k£ € U; participates in the second round
transmission by generating and sending a message qul as a
function of Wy, Z;, and U;. The communication rate of the
second round Ry is defined as the largest transmission load
among all ¢/, and all users in U; normalized by L, i.e.,

Uy
Ro := max max M 3)
U CIK]:[th >V keth L

Some users may also drop in the second round transmission,
and the set of surviving users after the second round is denoted
as Uy, where Uy C Uy and |Us| > U. Thus the server receives
Y where k € Us.

Decoding. The server should recover ), ., Wi from
(Xkl c k1 € Z/ll) and (Y]i;{l t ko € Z/{Q), ie.,

H (Z Wk‘(Xkl k€ UL, (Yt ky eu2)> =0, (4
kel

for each Uy C [K] and each Uy C U : |Uh| > |Uz] > U.
Meanwhile, the security constraint imposes that after receiving
all messages sent by the users including the dropped users
(e.g., the users are not really dropped but too slow in the
transmission), the server cannot get any other information
about the input vectors except » kel Wy, i.e.,

I(Wl,...,WK;Xl,...,XK,(Y]gl ;keul)’ Z Wk) =0,
kel
4)

for each Uy C [K] where |U;] > U.

Objective. A rate tuple (Rq, R2) is achievable if there exist
keys (Zy Ve (“g])) satisfying (1) and a secure aggregation
scheme satisfying the decodability and security constraints
in (4) and (5). Our objective is to determine the capacity region
(i.e., the closure of all achievable rate tuples) of the considered
problem, denoted by R*.

A converse bound from [9]. By removing the uncoded
groupwise constraint on the keys in our considered problem,
we obtain the information theoretic aggregation problem in [9].
Hence, the converse bound on the capacity region in [9] is also
a converse bound for our considered problem, which leads to
the following lemma.

Lemma 1 ( [9]). For the (K,U,S) information theoretic
secure aggregation problem with uncoded groupwise keys, any
achievable rate tuple (R1,R2) satisfies

1
Ri>1, Ry > U (6)
]

However, the achievable secure aggregation schemes in [9],
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TABLE I: Comparison on the information theoretic secure aggregation schemes. Our scheme 1 represents the proposed
scheme for the case 2U — 1 < K < U + S, while Our scheme 2 reprsents the proposed scheme for the case
K < min{2U — 1,U + S}.

\ [6] \ [9] | [10] | Our scheme 1 | Our scheme 2 |
Storage K2 14 & ((Sj) I (ﬁj)) 14K K-Uils | Oo(K=UtlsK)
R, 1 1 1 1 1
R: | 0(BHK) 1 T T 1

[10] cannot work in our considered problem with S < K,
since the schemes in [9], [10] assign correlated coded keys to
users, while in our considered problem the keys are uncoded,
groupwise-sharing and independent.

Another observation is that the capacity region of the
(K, U,S;) information theoretic secure aggregation problem
with uncoded groupwise keys covers that of the (K, U, Ss) in-
formation theoretic secure aggregation problem with uncoded
groupwise keys, where S; > So. This is because, without
collusion between the server and the users, having more users
knowing the same key will not hurt. So any key Zy, could
be generated by extracting some symbols from Zy, where
Vo C V.

III. MAIN RESULTS
We first present the main result of our paper.

Theorem 1. For the (K,U,S) information theoretic secure
aggregation problem with uncoded groupwise keys, when S >
K — U, we have

)
]

R* = {(R1,R2) Ry > 1,Ry > EJ}

The converse bound for Theorem 1 is directly from
Lemma 1. For the achievability, we propose a new secure
aggregation scheme based on linear coding and interference
alignment, which is described in Section IV.

When S > K — U, the proposed scheme for Theorem 1
achieves the same capacity region as the optimal secure
aggregation scheme without any constraint on the keys in [9].
It is also interesting to see that increasing S above K — U + 1
will not reduce the communication cost.

There are totally (%) subsets of [K] with cardinality S. By
the problem setting, we can use at most ('g) keys each of
which is shared by S users. However, we do not need to use
generate all these (';) keys in our proposed secure scheme
for Theorem 1. It will be clarified in Section IV that, the
number of needed keys by the proposed secure aggregation
scheme for Theorem 1 is K when U < K — U + 1 and is
O(K?) when U > K — U + 1, where each key has (K —
U + 1)L/U symbols.'? Since in our proposed schemes, each
key should be stored by K users, the average storage cost
normalized by L of each user is %S when U < K—-U+

2The selection on the keys is done before the model aggregation phase,
and only depends on the system parameters K, U, and S, independent of the
realizations of sets (/1 and U/ in the model aggregation phase.

1, and O(X=§*LSK) when U > K — U + 1."* In Table I,
we compare the proposed secure aggregation scheme and the
existing information theoretic secure aggregation schemes with
offline key sharing in [6], [9], [10], in terms of the storage cost
normalized by L at each user, first-round transmission rate Ry,
and second-round transmission rate R,.'* More precisely,

o The secure aggregation scheme in [6] could be modi-
fied to guarantee information theoretic security if each
key is generated with i.i.d. symbols (i.e., without using
pseudorandom generator). In the rest of this paper, while
comparing the performance of the scheme in [6] and the
proposed scheme, we consider the modified version of
the scheme in [6] which guarantees information theoretic
security. Note that if there does not exist any colluding
user, the secrete sharing parameter ¢ in [6] could be set
to 1 and thus the keys in the secure aggregation scheme
in [6] are shared by all users.

o If coded key assignment is allowed, the secure aggrega-
tion scheme in [9] needs to generate U coded keys with
L/U symbols for each group of users V C [K] where
[V| € [U : K], where each user in the group stores a
linear combination of these U coded keys; for each pair
of users V C [K] where |V| = 2, the secure aggregation
scheme in [10] lets each user in the pair generate a coded
key with L/U symbols and share it to the other user in
the pair.

It can be seen from Table I that, the proposed scheme could
significantly reduce the storage cost and the second-round
transmission rate of the secure aggregation scheme in [6];
the proposed scheme has lower storage cost than the scheme
in [9]; in addition, the proposed scheme has higher storage cost
than the scheme in [10]. Furthermore, we want to emphasize
that if the constraint of uncoded groupwise keys is imposed,
the schemes in [6], [9], [10] can only work when S = K.

For the case S < K — U, the following theorem shows
that the communication rate of the optimal secure aggregation
scheme without any constraint on the keys in [9] cannot be
achieved; i.e., the capacity region of the considered problem
is a strict subset of the one in [9].

3If we require the same storage cost at each user, we can take K cyclic
wrap-around permutations on the users and divide the computation task into K
non-overlapping and equal-length pieces. Then we use the proposed scheme
K times independently to construct the keys and transmissions, where each
time we refer to one permutation of users and one piece of computation task
(thus the lengths of keys and transmissions in each time are divided by K).

14The secure aggregation schemes in [6], [9], [10] can tolerate up to T < U
users who collude with the server. However, in this paper we do not consider
user collusion; thus in our comparison (and also in the later experiments) we
set T =0.
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Theorem 2. For the (K,U,S) information theoretic secure
aggregation problem with uncoded groupwise keys, when 1 =
S < K—U, secure aggregation is not possible; when 2 < S <
K — U, the communication rate of the first round must satisfy
that

1
Ri >14 ——. )]
(so1) -1
O

The proof of Theorem 2 can be found in Appendix A. From
Theorem 2, when 2 < S < K—U, it is not enough for each user
to transmit one (normalized) linear combination of the input
vector and keys. Intuitively, this is because the total number
of dropped users after the second round could be larger than
or equal to S, which is the number of users sharing each key;
thus some key(s) appearing in the transmission of the first
round, may not be received in the received packets of the
second round due to the user dropouts. Hence, we need to
transmit more than one (normalized) linear combination in
the first round. It is one of our on-going works to design tight
achievable schemes and converse bounds for the case 2 < S <
K-U.

IV. PROOF OF THEOREM 1: NEW SECURE AGGREGATION
SCHEME

To present the proposed scheme, we only need to focus on
the case where S = K — U+ 1. As we explained at the end of
Section II, this is because if S > K — U + 1, we can generate
any key Zy, where V € (K U} +1) by extracting some symbols
from Zy, where V; € (“g]) and V C V,, while the users
in V1 \ V will not use Zy even they know it. Thus a secure
aggregation scheme for the case S = K — U + 1 could also
work for the case S > K — U + 1.

The construction structure of the achievable scheme is as
follows.

« Since the length of each input vector W}, where k € [K] is
large enough, as explained in [9], we can consider blocks
of symbols of W}, as an element of a suitably large field
extension and consider operations such as element wise
sum as operations over the field extension. Hence, without
loss of generality, in the scheme proposed in this paper we
can assume that q is large enough. We then divide each
input vector W}, where k € [K] into U non-overlapping
and equal-length pieces, where the ;" piece denoted by
Wy,,; contains L/U symbols on Fy. In addition, for each
Ve ( ) and each k € V.15 we let Zy k. denote a vector
of L/ U uniform i.i.d. symbols on F,. Then, we define a
key Zy = (Zy i : k € V) with totally L symbols and let
Zy be shared by all users in V.

o In the first round, each user k € [K] sends

Xpj=Wij+ Y
ve (') key

ay jZy i, ¥j € U], (9)

where ay; € Fq is a coefficient to be designed.'s

SRecall that (“:) ={S§ C X :|S| =y} where |X| >y > 0.
161 this paper, the product ab where a is a scalar and b is a vector or a
matrix, represents multiplying each element in b by a.

Note that each X} ; contains L/U symbols, and thus

Xy = (Xga,...,Xpu) contains L symbols, which leads
to Ry = 1.
We let ay := [ay,...,apy]". By the security con-

straint, W}, should be perfectly protected by the keys
in X = (Xg1,...,Xgu); otherwise, the server can
retrieve some information about Wy, from X which hurts
the security. Thus, by denoting the sets V € ([g]) where
k €V by Sk@,...,Sk (1), we aim to have that the

S—1

coefficients matrix (whose dimension is U x (’éj))

has rank equal to U, Vk € [K].
(10)

agm, ey aSk,(g:%)

If the constraints in (10) are satisfied, we have
I(Wy, ..., Wk; Xyq,...,Xk) =0, (11)

i.e., the server cannot get any information about
Wi, ..., Wk even if the server receives all Xq,..., Xk
(this will be formally proved in (92) in Appendix C,
where we also show that (11) is required for our scheme
satisfying the security).

Since the set of surviving users after the first round is
Uy, the server receives X where k € U1, and thus can
recover

> X

kel

:Z Wi + Z (aw Z ZV,k1>(12)

kel VG([g]):VﬂLﬁ;ﬁ@ k1 €VNUL

_Z Wi + Z (avd Z Zy k1> , Vje[U],

kel Ve [K]) ki1€VNUL
(13)

where (13) follows since S = K — U + 1 >
K — |Uy1|. Hence, the server still needs to recover
qup;]) (av.j Yk, evru, Zv.k, ) for each j € [U] in the
next round. We can treat

Z0 = > Zyk, vm(“g]), (14)

k1 €VNUL

as one coded key, which can be encoded by all users in
VN, and contains L /U uniform and i.i.d. symbols. Thus
by the construction of the first round transmission, we
only need to transmit linear combinations of coded
keys in the second round, such that the server can
recover ZVE( )aijgl for each j € [U].

In the second round, we denote the sets in (['g]) by
S1,...,8ky, and for each k € [K] denote the sets in
S

([K]\S{k}) by gk’17...,§k7<Kg1). Thus the server should
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recover

P zg!
: :F&””%®] J ; (15)
FU ZSIK

()

where each F}, j € [U], contains L/U symbols.

Note that each user k € U; cannot encode Z\Z’,’1 where
Ve ([K]\s{k}). If the U-dimensional vectors ay where
Ve (“g]) satisfy the constraints that

)} has rank equal to U — 1,Vk € [K],
(16)

as ...,ag
|: Sk,1? ’ Sk_(Kgl

then the matrix [askyl,...,as contains exactly

(KoL
one linearly independent left null VCSCtOI‘. To achieve (16),
we will propose some interference alignment tech-
niques to align the U-dimensional vectors of the (")
unknown Kkeys to a linear space spanned by U — 1
linearly independent vectors.

Thus we can let each user k € U{; transmit

F
Y =sp ||, (17)

Fy
where s, represents the left null vector of
ag, s ,agk s By construction, in Yé’{l

the coefficients osf the coded keys which cannot be
encoded by user k are 0. Note that V" contains L/U
symbols, which leads to Ry = 1/U.

For the decodability, from any set of surviving users
after the second round U/, C U where |Us| > U,
we should recover Fi, ..., Fy from the second round
transmission; i.e., we aim to have

any U vectors in {sj : k € U, } are linearly independent.
(18)

Thus from (13) and (18), the server can recover
Fy, ..., Fy and then recover ), o, Wi ; forall j € [U];
thus it can recover > _; o, Wi.

In addition, for the security constraint, by construction
we have

H@f%kem)zu (19)
which follows since each Y,f,’{l where k£ € U, is in
the linear space spanned by Fi,...,Fy, where each
F;, j € [U], contains L/U symbols. Intuitively, from
(X% : k € [K]), the server cannot get any information
about Wry,..., Wk. Together with (Y,il1 ke U)
whose entropy is L, the server can at most get L symbols
information about Wiy, ..., Wy, which are exactly the
symbols in Zkel/ll Wi. Hence, the proposed scheme is
secure. The rigorous proof on the security constraint
in (5) can be found in Appendix C.

We conclude that the achieved rates are (Ry,Ry) = (1,1/U),
coinciding with Theorem 1.

For what said above, it is apparent that the key challenge
in the proposed scheme is to design the U-dimensional
vectors a, where V € (“g]), such that the constraints
in (10), (16), and (18) are satisfied. As showed above, if such
constraints are satisfied, the proposed scheme is decodable
and secure.

Another important observation is that, the constraints
in (10), (16) are not related to 41 ; in addition, if the constraint
in (18) is satisfied for the case U; = [K], this constraint also
holds for any other I/;. Hence, we only need to consider
the case Uf; = [K] to design the U-dimensional vectors ay
where V € (1)),

In the following, we will further divide the considered case
U < K into three regimes: a) U < K—U+1;b) U > K—U+1
and U =K-1;¢c)U>K-U+1land U < K—1. We
will propose our scheme for each regime which achieves the
capacity region in Theorem 1. In each regime, we propose
a different selection on the U-dimensional vectors ay, where
Ve ([é]), such that the constraints in (10), (16), and (18) are
satisfied. For the ease of reading, in Table II we summarize the
main parameters and variables used in the proposed scheme.

A. Case U<K-U+1

We first illustrate the proposed scheme for this case through
an example.

Example 1 ((K,U,S)) = (3,2,2)). Consider the (K,U,S) =
(3,2,2) information theoretic secure aggregation problem
with uncoded groupwise keys. While illustrating the proposed
scheme through examples, we perform a field extension on
the input vectors to a large enough prime field IFq. In general
this assumption on prime field size is not necessary in our
proposed scheme.

For each V € ([g]), we generate akey Zy = (Zy 1k €V)
shared by users in V, where each Zy j, contains L/2 uniform
and i.i.d. symbols over F,. We also divide each input vector
Wy, where k € [3] into two pieces, Wy, = (Wy 1, Wi.2), where
each piece contains L/2 uniform and i.i.d. symbols over F,.

First round. In the first round, user 1 transmits X; =
(X171, X172), where

Xip=Wi1+Zpuaa+ 23315

Xig=Wi2a+Zpua1+2Z03,1-
User 2 transmits Xo = (X2 1, X2 2), where

Xog=Wai+Zpi0y0+ Z23),2;

Xoo=Waa+ Zi10120+ 3212312
User 3 transmits X3 = (X3 1, X32), where

X311 =Ws1+ Z13y3+ Zi2,3},3;

X3 =Wso 4274133 +3Z12,3),3-
In other words, we let

agioy = [1,1]", apsy =[12]", aps =[1,3]".  (20)
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8
TABLE II: Notations and main variables used in the proposed scheme.
Notations Semantics
K number of users and number of input vectors
U minimum number of non-dropped users
S number of users sharing each key
Ri, Ry first-round and second-round communication rates
Wi =Wy, :j€[U]) input vector of user k
where W}, ; has L/U i.i.d. symbols on Fy
X = (Xg,;:j €[U]), first-round transmission of user k,
for k € [K] where X, ; defined in (9) has L/U symbols on F
Zy=(Zyy:keV),forVe ( ) key shared by users in V,
where Zy j has L/U ii.d. symbols on F,
Z9, for Uy C [K], [Uh| > U, V € (“;]) >k evuy 2V ks coded key with L/U i.i.d. symbols on Fq
ay = lay1,av.2, .. aV7U]T, U-dimensional column vector, which needs to be selected
for V € ([K]) satisfying the constraints in (10), (16), (18)
K
81,82,...,5'(;;) sets 1n ([S])
. K .
Sk1,Sk2, -5 S, (5°1); for k € [K] sets in ([S]) To}nt{m;nng k
< o = — ([KI\{F
Sk,1,Sk,2, --,Sk,(Kgl) sets in ("IL)
F} for j € [U] L/U symbols on F, defined in (15) which should be
recovered by the server in the second round
sy for k € [K] U-dimensional vector,
which is a left null vector of {as N }
k,1 k,(Kgl)
Y,i’{l forty C[K], [Ui| > U, k elhy second-round transmission of user k defined in (17),
containing L/U symbols on F,
In X, the coefficient matrix of the keys (Z{l)z})l, Z{1’3},1) L1l Z?,z}
- 3]
1 e which has rank equal to 2 (recall that the field size - L 2 3} Z f 1],3} (21b)
3
is large enough), i.e., the constraint in (10) is satisfied for user Z {2,3}

1. Thus W7 is perfectly protected by (Z{1,2},1, Z{1,3},1) from
X1. Similarly, the constraints in (10) are satisfied for user 2, 3.

Second round. In the second round, we only need to consider
the case where Uy = [3], as explained before. Since U; = [3],
the server should recover Wi + Wy + W3, By the definition
of coded key in (14), we define the coded keys

Zﬁ]_g} =Zuoat+ 22y,
Zﬁ],g} = Z1,311 + 2{1,3),35
ZF;],?,} = Z23y2 + Z{2,3} 3,

each of which contains L/2 uniform and i.i.d. symbols. From
the transmission of the first round, the server can recover

Xig+Xo1 + X1 =Wy +Wo1+Wsy
(3] (3] [3]
20y T 201y T 22y

X1+ Xoo+ Xz =Wio+Wso+ Wso

(3] (3] (3]
Z{1 0y T 2Z{173} + 3Z{2 3}

Hence, the server should further recover
(3 ]

N

2}
I =[a a a z®
Ry| = [Br2nansaes)] Pg}

{2,3}

(21a)

N

totally L symbols in the second round. Since || > S = 2,
the second round transmission should be designed such that
from any two of Y[ ] Y[ ] Y3[3], we can recover (21b).

(3]

For user 1 who cannot encode 2 (2.3 the sub-matrix
[ag2,31] has rank equal to 1; thus the constraint in (16) is
satisfied for user 1. The left null space of [a(s33] contains
exactly one linearly independent 2-dimensional vector, which
could be [3, —1]. Thus we let user 1 transmit

- F27 (22)

in which the coefficient of Zg 3} is 0. Similarly, we let user

2 transmit
(23)

in which the coefficient of Z‘[{gl] 3} is 0, and let user 3 transmit

v =11,-1) {F} =F - F,, (24)
2

in which the coefficient of ZH 2} is 0. The constraints in (16)
are also satisfied for users 2, 3.

By construction, any two of Yl[?’],YQ[S],YB[S} are linearly
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independent. Hence, for any Us C [3] where |Uz| > 2, the
server can recover F; and F5; thus the constraint in (18) is
satisfied. Hence, from the two round transmissions, the server
can recover Wy 4+ Wy + Wi,

Since the constraints in (10), (16), and (18) are satisfied, by
the security proof in Appendix C, the scheme is secure for the
case Uy = [3].

In conclusion, in the first round, each user transmits L
symbols. In the second round, each user in U{; transmits L/2
symbols. Hence, the achieved rates are (Ry,Rz) = (1,1/2),
coinciding with Theorem 1. O

We are now ready to generalize the proposed scheme in
Example 1 to the case where U < K — U + 1. For the
sake of simplicity, we directly describe the choice of the U-
dimensional vectors and show that such choice satisfies the
constraints in (10), (16), and (18).

We use a cyclic key assignment, by defining a collection of
cyclic sets

Co={{i, (i+ Dy, (i + K= Ul } i € [K]).

For the ease of notation, we sort the sets in C in an order where
the i™ set denoted by C(i) is {4, (i + 1)y, ..., (i + K—U)},
for each i € [K].!” It can be seen that each of the sets
C(k),C({k—1)k),...,C((k — K+ U)y) contains k, for each
k € [K].

We select the U-dimensional vectors a), where V € ([é]) as
follows:

(25)

o if V € C, we let ap be uniform and i.i.d. over IF;J;
« otherwise, we let each element in ay be 0.

Next we will show that the above choice of these U-
dimensional vectors satisfies the constraints in (10), (16),
and (18), with high probability.

Constraints in (10): Since q is large enough and U <
K — U+ 1, for each k € [K] the matrix

[ac(h)> Ac (k1)) - - -+ AC((k—K+U)y)]

whose dimension is U x (K— U+ 1), has rank equal to U with
high probability; thus the constraints in (10) are satisfied with
high probability.

Constraints in (16): Among the sets in C, each
of the sets C((k+1)y),C({k+2)k),....,C((k+U—1)y)
does not contain k, where k € [K]. It can be seen
that [ac(<k+1>K), ac((k+2)) -+ - ,ac(<k+u,1>K)] has dimension
equal to U x (U—1), and that its elements are uniformly and
i.i.d. over Fq. So the left null space contains U—(U—1) =1
linearly independent U-dimensional vector with high probabil-
ity, and we let s;, be this vector. Hence, the constraints in (16)
are satisfied with high probability.

Constraint in (18): Recall that we only need to consider
the case where U; = [K]. In the second round transmission,

7For example, when K = 4 and U = 2, we have C(1) = {1,2,3},
C(2) ={2,3,4}, C(3) ={1,3,4}, and C(4) = {1,2,4}.

the server should recover U linear combinations of coded keys,

(K]
Fy Ze 1y
D =[acay - acw] ||
[K]
Fy Ze

from the answers of any U of the K users, each of whom
knows K — U + 1 coded keys in a cyclic way. This problem
is equivalent to the distributed linearly separable computation
problem in [33], where we aim to compute U linear combi-
nations of K messages (whose coefficients are uniformly and
iid. over Fy) through K distributed computing nodes, each
of which can stores K — U + 1 messages, such that from the
answers of any U nodes we can recover the computing task.
From [33, Lemma 2], we have the following lemma.

Lemma 2 ( [33]). For any set A € ([ﬁ]), the vectors s,,,n €
A, are linearly independent with high probability. O

Thus by Lemma 2, the constraint in (18) is satisfied with
high probability.

In conclusion, all constraints in (10), (16), and (18) are
satisfied with high probability. Hence, there must exist a choice
of [ac(1),...,ac)] satisfying those constraints. Thus the
proposed scheme is decodable and secure. In this case, we
need the keys Zy, where V € C, totally K keys each of which
is shared by S users.

B. Case U>K—-U+1and U=K -1

When U > S, the proposed secure aggregation scheme with
cyclic assignment does not work. This is because, among C,
the number of sets containing each k € [K] is K—U+1 < U,
which are C(k),C((k—1)x),...,C((k =K+ U)y).
Hence, the coefficient matrix of keys in X,
[ac(k), ac((k—1),)r - - ,ac(<k,K+U>K)] , 1s with dimension
U x (K— U+ 1) and with rank strictly less than U. Thus the
constraint in (10) is not satisfied. In other words, W}, is not
perfectly protected from Xj.

In this subsection, we present our proposed secure aggrega-
tion scheme for the case where U > K—U+1and U =K—-1.
We first illustrate the main idea through the following example.

Example 2 ((K,U,S)) = (4, 3,2)). Consider the (K, U,S) =
(4, 3,2) information theoretic secure aggregation problem with
uncoded groupwise keys. For each V € ([3]), we generate a
key Zy = (Zy, : k € V) shared by users in V, where each
Zy i, contains L/3 uniform and ii.d. symbols over F,. We
also divide each input vector Wy, where k € [4] into three
pieces, Wy, = (Wy 1, Wy 2, Wi 3), where each piece contains
L/3 uniform and i.i.d. symbols over F.
In the first round, each user k € [4] transmits

>

ve(ih):kev

Xk}j = Wk’j + ay’ij’k, V] S [3} (26)

Now we select the 3-dimensional vectors afy 23, a1 3}, (1,4}
ago 3}, (2,4}, and ayz 4) as follows,

a{l,?} = [1a050]T7 a{l,?}} = [Oa 170]Ta a{1,4} = [0707 1]T7
(27a)
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age3y =ag o —ags = [1,—1,0, (27b)
agey =ag oy —agy = [1,0,-1]", (27¢)

a3y =ag13) — a4y = [0,1, —1]T. (274d)

We next show that by the above choice the constraints
in (10), (16), and (18) are satisfied.

For user 1, the matrix [a; 9y,a513},a51,4y] = I3 has
rank 3, where we recall that Is represents the identity ma-
trix with dimension 3 x 3. Hence, the constraint in (10)
is satisfied for user 1. Thus W is perfectly protected by
(Zg1,2y,055 Z11,33,1> Z{1,4y,1) from X;. For user 2, the matrix

1 1 1
[ag1,2),a(2,3),80241] = [0 =1 0

0o 0 -1
the constraint in (10) is satisfied for user 2. Thus W5 is
perfectly protected by (Z(12},2,, Z{2,3},2> Z{2,4},2) from Xo.
Similarly, the constraints in (10) are also satisfied for users
3,4.

In the second round, we only need to consider the case
U, = [4], where the server should recover Wy + - - -+ Wy. By
defining the coded keys as in (14), the server needs to further
recover

has rank 3. Hence,

- [4] -
Zl,2}
i
1,3}
F Z&]
_ 1,4}
Fy| = [agi2y,a71,3}, 41,4}, A(2,3}, A{2,4} A{3,4}] Zh]
F B
: i
2%24}
4]
[ Z 1541
(28a)
- [4] —
Z*{ii]ﬂ}
ZF,s}
100 1 1 0]y
=010 -1 0 1 o (28b)
001 0 -1 -1 ngg}
T
4
[ Z (3,43 ]

For user 1 who cannot encode Z‘[é]’g}, ZE]A}’ Z@A}’ it can

be seen that the sub-matrix [afs 31,224}, a(3,43] has rank 2,
equal to the rank of [ajs3y,a52,41], since agy 3y — a4y =
fa{374};18 thus the constraint in (16) is satisfied for user 1.
Hence, the left null space of [a(s3},a24},a3,4}] contains
exactly one linearly independent 3-dimensional vector, which
could be [1,1,1]. Thus we let user 1 compute

"
Y =111 |R| =R +R+F (29)
I3
For user 2, who cannot encode Zﬁ]ﬁ}, ZE]’ e Zﬁ]’ e it can

be seen that the sub-matrix [afy 3y,a¢1,4},a(3,4}] has rank 2,
equal to the rank of [a; 3},a(1 4}, since a;z 4y = ag 3y —
a(1,4y; thus the constraint in (16) is satisfied for user 2. Hence,

8In other words, we align the three vectors a(g3),a(2,4},a(3,4} into
the linear space spanned by a(5 3y and ajs 43.

the left null space of [afy 3},a(1,4},a(34}] contains exactly
one linearly independent 3-dimensional vector, which could
be [1,0,0]. Thus we let user 2 compute

£
v =11,0,0] || = F.
3

(30)

Similarly, the constraints in (16) are satisfied for users 3,4;
thus we let user 3 compute

Fy
Vil =[0,1,0] || = B, (31)
_F3_
and let user 4 compute
]
v =10,0,1] | | = Fs. (32)
F3

It can be seen that any 3 of Y1[4], Y2[4], K3[4], 4[4] are linearly

independent; thus the constraint in (18) is satisfied. Hence,
for any Us € (1)), the server can recover Fi, Fy, F3 from
the second round. Thus from the two round transmissions, the
server can recover Wy + - - - + Wj.

Since the constraints in (10), (16), and (18) are satisfied, by
the security proof in Appendix C, the scheme is secure for the
case U = [4].

In conclusion, the achieved rates of the proposed scheme
are (R1,Rq) = (1,1/3), coinciding with Theorem 1.

O

We are now ready to generalize the proposed scheme in
Example 2 to the case where U > K —-U+1and U=K—-1.
In this case, we have S = 2. As the previous case, we directly
describe the choice of the U-dimensional vectors and show that
such choice satisfies the constraints in (10), (16), and (18).

Let us first consider the sets V € (“2@) where 1 € V. Each
of such sets could be written as {1, 5}, where j € [2: K—1].
We let

af14} = eu,j-1, Vj c [2 : K], (33)

where e, ; represents the vertical n-dimensional unit vector
whose entry in the i position is 1 and O elsewhere. We
then consider the sets V € ([QQK]). Each of such sets could
be written as {i, 7}, where 1 < i < j < K. We let

ayg; 4y = a{1,4} — a1} = €u,i—1 — €u,j—1, Vli<i<j<K
(34)

Next we will show that the above choice of these U-
dimensional vectors satisfies the constraints in (10), (16),

and (18).
Constraints in (10): For wuser 1, the matrix
[a{172},a{173}, ... ,a{LK}] is the identity matrix Ix_; = Iy,

whose rank is U; thus the constraint in (10) is satisfied for
user 1. For each user k € [2 : K], by a simple linear transform
on the matrix

[3{1,1@}7 A2k} - o Ak—1,k} Xk, k+1}> A{k,k+2}> - - ~a{k,K}] )

35)
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we obtain the matrix

[ariky + Ak}, A0k T Ak} - A0k} T Alk—1,k)

ALk} A{1,k} — A{k,k+1}> {1k} — A{k,k+2}>
S A1k} T a{k,K}]
LR eU,K—l]v

= [eu,17eu,2, ...,€Uk—2,eU,k—1,CU k; €U k+1; -

which is the identity matrix Ix_; = Iy with rank equal to U,
which is also full rank. Hence, the matrix in (35) is full rank,
with rank equal to U; thus the constraint in (10) is satisfied
for user k.

Constraints in (16): For user 1, among the sets in V €
(K1, the sets {2,3},{2,4},...,{2,K}, {3,4}, ..., {K-1,K}
do not contain 1. It can be seen that the following K—2 vectors,

agp31 = €y,1 —euz2, af24} (36a)
=€yl —eugs, ---, A2K} (36b)
= ey,1 — euyK-1, (36¢)

are linearly independent. In addition, for each set {i, j} where
2 <i < j <K, wehave a; ;3 = agp ;) — ago;)- Hence,

the matrix |ag ... has rank equal to K — 2 =
1,1

yag
(%)
U — 1," satisfying the constraint in (16).

For each user k € [2 : K], among the sets in V € ([g]), the
sets {1,2},{1,3},..., {1,k -1}, {1,k +1},...,{1,K} and
the sets {4,5} where 1 < i < j < K and i,5 # k, do not
contain k. It can be seen that the following K — 2 vectors,

ag12) = €y,1,a{1,3} =€u,2,---,a{1 k—1} (37a)
= €U k—2,a[1,k+1} = €Uk, -+ A{1,K} (37b)
= euk-1, (370)

are linearly independent. In addition, for each set {i, j} where
1<i<j<Kandi,j+#k, we have ag 1 = ag,} —ag -

Hence, the matrix |as ... has rank equal to
Sk

) agk, (KE 1) |
K —2 = U — 1, satisfying the constraint in (16).
Constraint in (18): For user 1, recall that s; is a left null

vector of the matrix ag, - , whose rank is U —

~
L ]

1. The left null space of {331 N is the same as
. 1

(“z")
that of its column-wise sub-matrix [a{273}, a4y, ,a{27K}} ,
whose rank is also U — 1 and dimension is U x (U —1). Since
[3{2,3}7 A24},- .- 73{2,K}} = [3{2,3}7 Ar24};- .- 73{2,K}}
= [eu,l —€uyz2,€ul —€eus,-..,eul — eU,Kfl]

contains exactly one linearly independent left null vector,
which could be (recall that 1, represents the vertical n-

dimensional vector whose elements are all 1)
1y = s;. (38)

719Recallithat for each k € [K], the sets V € ([K]\S{k}) are
Sk’l"“73k,(Kg1)'

For each user £k € [2 : K], s; is a left null vector

of the matrix |ag ,...,ag , whose rank is
k.1 k’(Kgl)
U — 1. The left null space of agkyﬁ...,agk,(%l)
is the same as that of its column-wise sub-matrix
[3{1,2}, AL1,3Ys s AL k—1} A1, k+1}s - -+ 7a{1,K}} > whose
rank is also U — 1 and dimension is U x (U — 1). Since
[3{1,2}7 Ar1,3}y -+ A1, k—1}> A1 k+1}5 -+ - ,3{17K}]
= [eu1,€u2; .-, €Uk-2,€Uk,- -, €UK 1]

contains exactly one linearly independent left null vector,
which could be

eyk—1 = Sk. (39)

From (38) and (39), it can be seen that any U vectors of
s1,...,Sk are linearly independent; thus the constraint in (18)
is satisfied.

In conclusion, all constraints in (10), (16), and (18) are
satisfied; thus the proposed scheme is decodable and secure.
In this case, we need the keys Zy, where V € (“;]), totally
K(K —1)/2 keys each of which is shared by 2 users.

C Case U>K—-U+1land U< K-1

Finally, we focus on the most involved case where U >
K—-—U+1and U < K— 1. In this case, we have S > 2
and 2U > K + 1. Recall that our objective is to determine
the U-dimensional vectors ay where V € (“g]), such that the
constraints in (10), (16), and (18) are satisfied. We start by
illustrating the main idea through an example.

Example 3 ((K,U,S)) = (6,4, 3)). Consider the (K,U,S) =
(6,4, 3) information theoretic secure aggregation problem with
uncoded groupwise keys. We determine the 4-dimensional
vectors ay where V € ([g]) following three steps.
o Step 1: Select base unit vectors. We first consider each
ay where [2] C V and let ay, be a distinct vertical unit
vector; i.e., we let

(40a)
(40b)

a3 = €4,1, A{1,24} = €42, A{1,25} = €43,
a{1,2,6} = €44

Define that G; = {[3],{1,2,4},{1,2,5},{1,2,6}}.

o Step 2: Determine the composition of each coefficient
vector ay. For any V € ([g]), we let ay be a linear
combination of some base unit vectors; the composition
of ay represents the set of base unit vectors involved in
the linear combination. For each i € [3: 6] NV, e4;_2
is in the composition of ay,. After fixing the composition
of ay, we can write

ay = E by i—2€4;_2,
1€[3:6]NV

where by := (by1,...,by |j3:60v)) is an |[3 : 6] N V|-
dimensional vector to be designed. By this rule, we
determine the composition of each ay (i.e., the base
vertical unit vectors which compose ay)) where V € ([é]) ,
as illustrated in Table III.

(41)
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o Step 3: Determine the vector by, for each a). Next we
need to determine the coefficient vector of the vertical
base unit vectors by, for each V € ([g]) \ Gi.

For each set ay where {3,4} C V, we choose each
element of by, uniformly and i.i.d. over [Fq. For example,
by choosing by; 541 = [1,4], we have

a1 34) = ag) +4ag124) = €41 +4eqo. (42)

Similarly, by choosing by 34y = [1,8], bgas =
[1,1,1], and bys 46y = [1,2,1], we have

agp34) = apz) +8ay124) = €41 + ey 2, (43a)
argasr = a3 +a124) HA71,25) = €41 €42 +(j§i;3),
arz46) = 3] + 224124} + {126}

=ey1 +2e42 +eyq. (43¢)

Define that G- =
{{1,3,4},{2,3,4},{3,4,5},{3,4,6}}.
We then define G3 as the collection of the
sets in ([g]) \ (G1 U Gy) where 3 € V; thus
Gs = {{1,3,5},{1,3,6},{2,3,5},{2,3,6},{3,5,6}}.
For each set V € G3, we search for the minimum subset
of G5 the union of whose elements is a super-set of V;
we denote this minimum subset by Mj,. We let ay
be a linear combination of ay, where Vo € Mj,. For
example, if V = {1,3,5}, the minimum subset of Gy
the union of whose elements is a super-set of {1,3,5},
is M{{I,S,S} = {{1,3,4},{3,4,5}}. We let aj; 35, be
a linear combination of af;34; = €41 + 4e42 and
a345) = €41+ €412+ €3 Recall from (41) that, the
base unit vectors of a(1,3,5) are 4 and ey 3, which do
not contain e4 2. Hence, we let

ag35) =4agz a5y —ag34) = 3e41 +4ey3, (44)
to ‘zero-force’ the term ey o. Similarly, we let
afi 36} = 2a{34,6) — A{1,34} = €41 + 2€14, (452)

agp35) = 8arza5) — Ag234) = 7€41 +8eq3, (45b)
agp36) = 4agzs6) — ag234) = €41 +4eq4, (45¢)

a3 56) = 2a(345) — A(34,6) — €41 1+ 2€43 — 6(4445,(1)

to ‘zero-force’ the term ey ».
It will be checked soon that by using the above coefficient
vectors, the full rank constraint in (10) can be satisfied,
and thus we can let all the remaining coefficient vectors
be zero vectors, in order to reduce the number of required
keys. More precisely, for each set V € ([g]) \ (G1 UG U
Gs), we let ay, = 04, where 0,, represents the vertical
n-dimensional vector whose elements are all 0.

As a result, we have determined ay, for each V € ([g]) as

illustrated in Table III. We then show the such choice satisfies
the constraints in (10), (16), and (18).

Constraints in (10): For wusers 1,2, the matrix
[3[3] »A{1,2,4}, (1,25}, 3{1’2’6}} is the identity matrix
I, whose rank is 4. For wusers 3,4, the matrix

[a{17374},a{27374},a{37475},a{3,476}] has rank equal to 4.

For user 5, the matrix [3{17375},a{2’375},a{374’5},a{31576}]
has rank equal to 4. For wuser 6, the matrix
[3{1,3,6}73{2,3,6}73-{3,4,6}7a{3,5,6}} has rank equal to 4.
Hence, the constraints in (10) are satisfied.

Constraints in (16): For user 1, we first remove the

columns of 0’s from the matrix |as ,...,as , to
S1,1° » IS

L(51)

obtain

[ag25.4}, 872,35} 22,36}, (3,45}, A{3,.4,6} A(3,5,6}| - (46)

By construction, we have ags35},a(23,6},a(3,5,6) are lin-
ear combinations of ags34),a(345), (34,6} In addition,
agp34),8(34,5),a(3,4,6) are linearly independent. Hence, the
rank of the matrix in (46) is 3, equal to the rank of
[3{2’3’4},3{37475}73{3)4,6}]. Hence, the constraint in (16) is
satisfied for user 1. Similarly, this constraint is also satisfied
for user 2.

For user 3, by construction, in each ay where V €
([6]\3{3}), the coefficient of es; is 0. In addition,
ag12.4),841,2,5),a(1,2,6) are linearly independent. Thus the

matrix |ag,  ,...,ag has rank equal to 3, equal to
3, 5

(“3")

the rank of [a(y 24},a71,2,5},a(1,2,6})- Hence, the constraint
in (16) is satisfied for user 3. Similarly, this constraint is also
satisfied for each user in {4,5,6}.

Constraint in (IT: For user 1, recall that s; is a left null

vector of the matrix |ag ...
1,1

3
As explained before, its column-wise submatrix

[af2,3,4),a(3,4,5},a(3,4,6)] has the same rank. Hence, the
left null space of [as34y,a(3.4,5),a(34,6}] is the same as

,ag , whose rank is 3.
1, K—l)

that of [aslll,...,a . So we let s; be a left null

511 K—1
vector of [a{2’3,4},a{3’i51,)a{374$6}], which could be s; =
[—8,1,7,6]T. Similarly, we let s, be a left null vector of
[a(1,3.4},a(3,4,5},a{3,4,6}]» Which could be sy = [—4,1,3,2]™;
we let s3 be a left null vector of [a(y 24},871,2,5), (1,26}
which could be s3 = ey 1; we let s4 be a left null vector
of [af23},a(1,2,5},8{1,2,6}), Which could be s;5 = eqyp;
we let S5 be a left null vector of [8{1’2)3},3{1,2}4},3{1’2’6}],
which could be s5 = ey 3; we let sg be a left null vector of
[af1,2,3), (1,24}, a{1,2,5}], Which could be sg = €4 4.

Since any two rows of [s1,ss] are linearly independent
and [s3,sS4,85,8¢] = Iy, we can see that any 4 vectors
of si1,89,83,84,85,8¢ are linearly independent. Hence, the
constraint in (18) is satisfied.

In conclusion, all constraints in (10), (16), and (18) are
satisfied; thus the proposed scheme is decodable and secure.
O

To summarize Example 3, our selection on the U-
dimensional vectors ay, where V € ([g]), contains the fol-

lowing steps from a high-level viewpoint:

o Step 1: Select base unit vectors: choose a) where [K—
U] C V as the base vertical unit vectors.

o Step 2: Determine the composition of each coefficient
vector ay: fix the composition of each ay, where [K —

Ul ¢ V.
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TABLE II: Choice of 4-dimensional vectors ay in the (K, U,S) = (6,4, 3) information theoretic secure aggregation problem.

’ ay \ Composition \ Value H ay \ Composition \ Value ‘
a) €41 €41 ar234) €4,1,€42 ey +8ey2
a12.4) €42 [T ar93 51 €41,€43 Teq1 +8ey3
(12,5} €43 €43 (236} €41,€44 3eq1 +4eqq
ar 2.6} €44 €44 ar2.4,5) €42,€43 04
a1,3,4} €4.1,€4,2 €41+ 494,2 a[2.4,6} €42,€4.4 04
ar 3.5 €4,1,€43 3eq1 +4eqs || 256} €43,€44 04
af1.3.6} €41,€4.4 es1 +2e44 A[3.45)1 | ©4,1,€42,€43 | €41t €12+ e€yq3
a{1.4,5} €42,€43 04 (34,6} | ©4,1,€42,€44 | €41+ 242+ €44
a11,4,6} €42,€4.4 04 a{3561 | ©4,1,€43,€44 | €41 + 2e43 — €4y
{156} €4,3,€44 04 Aar456) | ©4,2,€43,€44 04
o Step 3: Determine the vector by, for each ay: for each o We first consider the sets in’!

ay where [K — U] € V, determine the coefficients of the

base vertical unit vectors which compose ay. Ga 1= {[K —U+1:2K-20]U{j}:

6([K7U}U[2K72U+1:K])}.
Recall that 2U > K + 1, thus K > 2K — 2U + 1 and

In the following, we describe the three-step vector selection
for the general case where U >K —-U+1and U< K—11in

detail. ' [2K —2U + 1 : K] is not empty. Since U < K — 1, we
Step 1. For each j € [K — U +1: K], we let have K—U > 2 and thus G; NGy = (. It can be seen that
AK-_UJU{j} = €U,j—K+U- 47) |Go] = K—U+ (K—2K+2U) = U. (50)
In other words, we let F(\)r eeTch V € Ga, we choose by, uniformly and i.i.d. over
My .
[A[K—UJU{K—U+1}» AK—UJU{K—U+2}» - - - » AK—UJU{K}] Fq™"". More precisely,
be the ident T — for each j € [K— U], by assuming ¥V = [K—U+1:
¢ the identity matrix ly. 2K — 2U] U {34}, it can be seen that
For the ease of notation, we define that° Juis}
My ={K—U+1,K—U+2,...,2K—2U},
G ={[K=-VUJu{j}:jeK=U+1:K]} v=A1 )
I b n and thus from (49), ay, is with the form
t can be seen that
G| = U 48) ay =byjeyr+---+byk_ueyk-uy. (1)
1 = .

We let each by ;, i € [K — U], be chosen uniformly

Step 2. For each ay, where V € ([K]) \ Gi1, we let ap be a
linear combination of some base unit vectors; the composition
of ay represents the set of base unit vectors involved in the
linear combination. For each i € [K—U+1: K|NV, ey ;—(k—u)
is in the composition of ay. After fixing the composition of
ay, we can write

)3

1€[K=U+1:K]NY

ay = by i—(K—U)€u,i—(K—U)> (49)

where bV = (()]}717 ce 7bV,|[K7U+1:K]ﬁV\) is an HK —U+1:
K] N V|-dimensional vector to be designed. For the ease of
notation, we define My :=[K—-U+1:KNV.

Step 3. We divide the sets in (“g]) \ G1 into three classes,
which are then considered sequentially. In short, for each set
V in the first class (denoted by G- to be clarified later), we
choose by, uniformly and i.i.d. over IF‘MVl for each set V
in the second class (denoted by Gs3 to be clarified later), we
choose by, such that ay, is also a linear combination of some
vectors avl where V; € Gy; for each set V in the third class
(i.e., ( ) \ (G1 UGy UGs)), we let by be a all-zero vector.

More precisely,

2In Example 3, when (K,U,S) =
{[3]7{17274}7{172?5}7{17276}}'

(6,4,3), we have G; =

and i.i.d. over IFg;
— for each j € 2K —2U 4+ 1 : K], by assuming V =
[K—U+1:2K—-2U]U{j}, it can be seen that

My ={K-U+1,K-U+2,...,2K—2U,j},
and thus from (49), ay is with the form

ay=byieyr+- - +byk_u euk-u

+ by K—U+t1 €U j—K+U- (52)

We let each by ;, i € [K—U+1], be chosen uniformly
and i.i.d. over Fy.

o We then consider the sets in??

ggzz{TU[K—U+1:2K—2U—1]:TG
([K—U]U[QK—2U+1:K]
2

Since K—U > 2, we have G3 NG, = (J; since the integer
2K — 2U appears in each set in G» and does not appear

),TO[ZK—2U+1:K]7£(Z)}.

2'In Example 3, when (K,U,S) =

{{1,3,4},{2,3,4},{3,4,5},{3,4,6}}.
22In Example 3, when (K,U,S) = (6,4,3), we have G3
{{1,3,5},{1,3,6},{2,3,5},{2,3,6},{3,5,6}}.

(6,4,3), we have Go =
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in any set in Gs, we have G3 N Gy = 0. It can be seen

that
K—(K-U)\ (K-U
o ees) L)

:f—U.

For each V € G3, we search for the minimum subset of

Go the union of whose elements is a super-set of V; we

denote this minimum subset by Mj,. We let ay be a

linear combination of ay, where V, € M},

More precisely, for each 7 € ([Kfu]u[zK{zUH:K])

TN2K—-2U+1:K] # 0,

— if T ={i,j} wherei € [K—U] and j € 2K—2U+1 :

K], by assuming V = [K—U+1 : 2K—2U—-1]U{é, 5},
we have

My, ={[K-U+1:2K-2U]U{i},
[K—U+1:2K-2U]U{j}}.
Define M{,(1) = [K—U+1:2K —2U] U {3} and

M, (2) = [K=U+1:2K—2U]U {j}. Hence, we
aim to let a), be a linear combination of

|Gs] (53a)

(53b)

where

anmi, (1) = bag, (1)1 eur + -+ bag,(1),k-U €uk-u;

(54a)
and a g, (2) = b, (2)0 €u1 + o+

bat,(2),k—U €UK—-U + bty (2) K—U+1 €U,j—K+U,
(54b)

where (54a) and (54b) come from (51) and (52),
respectively. Recall that each element in b, (1) and
by, (2) 18 chosen uniformly and i.i.d. over Fg.

In addition, we have

My ={K-U+1,K-U+2,...,2K-2U-1,5}.
Hence, from (49), ay, is with the form

ay = by ak_ujuk-us1y +-+

by K—U—1 AK—UJuf2k—2U—1} T by K—U AK_UJu{j}

(55a)
=by1eyr+--+byk_u-_1 €uk-U-1
+byK-U €uj—K+U- (55b)

By comparing (54) with the form of ay, in (55b), we
need to ‘zero-force’ ey k_y, which could be done
by letting

ay = by 2),k—u amy, (1) — by, (1),K—U aAm,(2)-
(56)

- if T = {i,j} where 2K —2U +1 < i < j <K, by
assuming V = [K—U+1:2K—-2U - 1]U {3, j}, it
can be seen that

My, ={[K-U+1:2K-2U]U{i},
[K—U+1:2K—2U]U {j}}.

Hence, we aim to let ay, be a linear combination of

amy, (1) = bmy 1)1 eun -+ by, (1),k—U euk-u

14
+ b, (1),k—U+1 €Ui—K+U, (57a)
and ang,(2) = Opg,(2)1 €01+ F
bat,(2),k—U €UK—U F Drt),(2) K—U+1 €U j—K+U,
(57b)

where (57a) and (57b) come from (52).
In addition, we have

My ={K-U+1,K-U+2,...,2K—-2U - 1,4,5}.
Hence, from (49), ay, is with the form

ay = by 1 aK_yjufK-U+1} T F
by K—u—1aK—_Ujuf2zK—20—1} T bV K—UAK—_UJU{:}
+ by K—U+1[K—UJU{;} (58a)
=byieyr+---+byk_u—1 €uK-U-1
+ by k—U €u,i—k+U + by k—u+1 €u,j—k+u- (58b)
By comparing (57) with the form of ay, in (58b), we
need to ‘zero-force’ ey k_y, which could be done
by letting

ay = by, (2),k—U amy, (1) — b, (1),k-U amy,(2)-
(59)

— Finally, for each V € (§1)\ (G1 UG> U G3), we let

ay = OU . (60)

This concludes our selection on ay, where V € (['g]). Next
we will show that the above choice of these U-dimensional
vectors satisfies the constraints in (10), (16), and (18), with
high probability.

Constraints in (10): For each user k € [K— U], the matrix

[AK—U)U{K—U+1}+ A[K—UJU{K—U+2} s - - - » AK—UJU{K}]

is the identity matrix I, whose rank is U.

For each user k € [K — U+ 1 : 2K — 2U], let us focus on
the matrix

[a[K—U+1:2K—2U]U{1}> ey AK—U41:2K—2U]JU{K—-U}>

A[K U4 1:2K—2U)U{2K—2U+1} 5 - - - » AK—U41:2K—20]u{K} )5 (61)

whose dimension is U x U. By our construction, for each j €
[K — U], by (51) we have (assume V = [K — U +1: 2K —
2UJ U {j}

ay =byiey1+ - +byk_u euk-u, (62)

where bik_y1:2k—2ujufj}.i» ¢ € [K— U], is chosen uniformly
and i.i.d. over [Fq. In addition, for each j € 2K—2U+1: K],
by (52) we have (assume V = [K— U +1:2K —-2UJU {j})

ay = by ey + -+ by k_veuk-u + by k—ut+1€U j—K+U,
(63)

where each b[K7U+1:2K72U]U{j},7L’ S [K —-U+ 1], is chosen
uniformly and i.i.d. over IFq. Since q is large enough, from (62)
and (63), it can be seen that the matrix in (61) has rank equal
to U with high probability.

For each user k£ € 2K — 2U + 1 : K], let us focus on the
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matrix

[a{l}U[K7U+1:2K72U7l]u{k}> AL2JUIK—U+1:2K—2U—1]U{k}s -+ -

A(K—UIU[K—U+1:2K—2U—1]u{k}> AK—U+1:2K—2U—1]U{2K—2U,k}»

AK—U+1:2K—2U—1JU{2K—2U+1,k}5 « - = » A[K—U+1:2K—2U—1]U{k—1,k}>

.. 7a[K—U+1:2K—2U—1]U{k,K}] )
(64)

A[K—U+1:2K—2U—1]U{k,k+1}>5 *

whose dimension is U x U. For each j € [K— U], by (56), we
have

AL IUK—U+1:2K—2U—1]U{k}
= DK —U+1:2K—2U]U{k},K—U B{j}U[K—U+1:2K—2U]

— D{j}UK—U+1:2K—2U] KU &[K—U+1:2k—20)u{k},  (65)

where bk _ut1:2k—20ju{k},k—U and byjyUK-U+1:2K—2U],K—U
are chosen uniformly and iid. over Fy. For each
j € 2K—=2U+1: K]\ {k}, by (59), we have (66) at
the top of the next page, where bk_ui1:2k—20ju{k},K—U

and  bk_ys12k—2uju{j},k—u are  chosen  uniformly
and iid. over T, In addition, as we showed
before, AK_U+1:2K—2UJU{1}5 - - - » A[K—U+1:2K—2U]U{K—U} s

AK—U+1:2K—2U]U{2K—2U+1}: - - - » AK—U+1:2K—20]u{k} Which
are the columns of the matrix in (61), are linearly independent
with high probability. Hence, by (65), (66), and the fact that
AK_U+1:2K—2U—1JU{2K—2U,k} = &[K—U+1:2K—2Uju{k} 18 in the
matrix in (64), we can see that the matrix in (64) is full rank
with high probability.

Hence, the constraints in (10) are satisfied with high prob-
ability.

Constraints in (16): For each user k € [K — U], the sets

inVy e ([K]\S{k} ) do not contain k. By our construction, it can
be seen that

(M \S{k}> NG =0, (67a)
<[K]\S{k}) NGy ={{j}UK-U+1:2K-2U]:
je K\ ({kYU[K—=U+1:2K—2U))}, (67b)

(W\S{k})mggz{Tu[K—U+1:2K—2U—1]:

([K = UJU[2K — 2U + 1 : K]) \ {k}
Te( 9 >,
Tﬁ[2K—2U+1:K]7é(Z)}. (67¢)

Focus on the sets in (67b). Since the matrix in (61) is full
rank with high probability, the U — 1 vectors in

{agjjuk-—ut1:2k—2u;

jeKI\{kTUK=U+1:2K—-2U])} (68)
are linearly independent with high probability.
Focus on the sets in (67c). For each T €

((K-UIVRK=2UFEKDMEY) here 77N [2K — 2U 41 : K] # 0,
by assuming that V = TU[K—-—U+1: 2K — 2U — 1] and
T = {i,j} where i < j, it can be seen from (56) and (59)
that

ay = DK_U41:2K—2U]U{j},K—U @[K—U+1:2K—2U]U{i}

— bK—U41:2K—2U)U{i},K—U AK—U+1:2k—20]u{j}> (69)

where both ajk_uyy1.2k—2uju{s} and aK_uy1:2k—20ju{y} are
in (68).

Recall that for each set V € ([E]) \ (G1 U Gy U G3),
from (60) we have ay = O0y. As a result, the matrix

g, A8 ey has rank equal to U — 1 with high
'\, S
probability, which is the same as its column-wise sub-matrix

(whose dimension is U x (U — 1))

[a{l}U[K7U+1:2K72U]a <o A —1}U[K—U+1:2K—2U]

ALE+1U[K=U+1:2K—2U]5 - + + » A{K—UIU[K—U+1:2K—2U]5

A[K U4 1:2K—2U)U{K—U+1}5 - - - AK—U+1:2k—20]u{k} ],  (70)

where a;, yuk—u+1:2k—2u> J1 € [K=U]\ {k} is given in (62)
and ag;, uK—ut1:2k—2u]» J2 € [2K —2U + 1 : K] is given
in (63).

For each user k¥ € [K — U + 1 : K], among the sets in
S ([K]\S{k }) which do not contain k, we can see that in
ay the coefficient of ey ;_k4y is 0. This could be directly
checked from the second step to select the U-dimensional
vectors, where we fix the composition of ay in (49). Thus

the rank of |a=s ,...,a= is no more than U — 1. In
Sk’ ’ Sk'(x?)

addition, its column-wise sub-matrix

[AK—UJU{K—U+1} 5 - - » AK—UJU{k—1}» RK—UJU{k+1}> - - - »

a[K—UJU{K}]
=[eu,1,---,€Uk—K+U—1;€Uk—K+U+1,---,€uu),  (71)
has rank equal to U — 1. Hence, the rank of

agk)l,...,agk, - is U—1.
Hence, the constraints in (16) are satisfied with high prob-
ability.

Constraint in (18): For each user k € [K — U], as we

showed before, the matrix |ag ;... has the same

’ agh(Kgl
rank equal to U — 1, as its column-wise sub-matrix in (70).

Hence, the left null space of the matrix [ask RN S
: o (K=

is the same as that of its column-wise sub-matrix in (70). Ssince
the matrix in (70) has dimension U x (U —1) and rank U — 1
with high probability, its left null space contains exactly one
linearly independent left null vector (with dimension 1 x U).
Let si be one left null vector of the matrix in (70).

For each user £ € [K - U +1 K], the matrix

[asmv“"aS o has the same rank equal to U — 1, as
’ S
its column-wise sub-matrix in (71). Hence, the left null space

of the matrix ag, ;- is the same as that of its

.,as
s, K1
column-wise sub-matrix in (71), which contains exactly one

linearly independent left null vector. One possible choice of
the left null vector could be

Sk = eE,k—K-ﬁ-U' (72)

The most difficult part in the proof of the constraint in (18)
is the following lemma, which will be proved in Appendix D
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AK—-U+1:2K—2U—-1]U{j,k} =

DIK—U+1:2K—2U]U{k},K—U B[K—U+1:2K—2U]U{5} — O[K—U+1:2K—2U]U{j}.K—U B[K—U+1:2K—2U]U{k}>
DIK—U41:2K—2U]U{j},K—U B[K—U+1:2K—2U]U{k} — D[K—U41:2K—2U]U{k},K—U B[K—U+1:2K—2U]U{j}>

by the Schwartz-Zippel lemma [34]-[36].

Lemma 3. For any A C [K] where |A| = U, the U-
dimensional vectors sy, where k € A are linearly independent
with high probability. O

Directly from Lemma 3, it can be seen that the constraint
in (18) is satisfied with high probability.

In conclusion, all constraints in (10), (16), and (18) are
satisfied with high probability. Hence, there must exist a choice
of by where V € G, satisfying those constraints. Thus the
proposed scheme is decodable and secure. In this case, we
need the keys Zy where V € (G; U Gy U Gs). It can be seen
from (48), (50), and (53b) that there are totally

K(2U -K+1 KU -K+1
g —U=U+ M
2 2

keys each of which is shared by S users.

U+U+

V. EXPERIMENTAL RESULTS

We implement our proposed secure aggregation scheme
(which is referred to as Group for the sake of simplicity)
in Python2.7 by using the MPI4py library over the Amazon
EC2 cloud, which is then compared to the original secure
aggregation scheme in [6] (referred to as Sec), and the
best existing information theoretic secure aggregation scheme
with offline key sharing in [10] (referred to as Light). We
compare the key sharing times of Group and Light, since
the communication costs in the model aggregation phase of
these two schemes are the same. In addition, since Sec pro-
vides computational security instead of information theoretic
security, the total size of needed keys is much smaller in Sec.
Thus we compare the model aggregation times of Group and
Sec. Note that in the experiments, we only record the the
communication time as the running time in each procedure; the
detail of running times in each procedure of Group, Light,
and Sec could be found in Appendix E.

Amazon EC2 Setup. The Amazon EC2 t2.large and
t2.xlarge instances are selected, where we take one spe-
cific t2.xlarge instance as the server and all the other
instances are users. The Amazon EC2 T2 instances have a
3.0 GHz Intel Scalable Processor, and all instances which we
use in this experiment have the same capacity of computation,
memory and network resources. The transmission speed is up
to 100MB/s between the server and users. By setting the field
size q as 7, we generate the input vectors uniformly i.i.d. over
[, and consider the three sizes of each input vector (100KB,
200KB, 300KB) as suggested in [6]. In the offline key sharing
phase, we consider that each two users have a private link to
communicate as in [10];3* thus between each two users, we

231n this framework, to generate an uncoded groupwise key shared among
S users, we need S — 1 pairwise key sharing communications.

if j < k;

66
it j >k, (66)

use the MPI.send command. For each considered system
with (K, U,S), we use Monte-Carlo methods with 20 samples
and take the average times over these 20 samples.

Group v.s. Light. We first compare our Group with
Light, by considering the two cases where U = (K + 1)/2
illustrated in Fig. 2a and U = K — 1 illustrated in Fig. 2b,
respectively. For each case, our Group needs S = K— U+ 1.

In Fig. 2a, since U = (K+1)/2, we have U = K—U+1 and
thus our secure aggregation scheme is the one in Section IV-A.
We use the cyclic key assignment; more precisely, for each
i € [K], we let user i randomly generate a key Zc(;) with
(K—=U+1)L/U = L symbols, and transmit Z¢ ;) to the other
U — 1 users in C(4), where C is defined in (25). Compared
to Light, Group reduces the key sharing time by at least
16.5% and at most 31.7% in Fig. 2a. The improvement of
Group is mainly because the number of keys is smaller than
that of Light, and thus less number of connections is needed
to build among users.

In Fig. 2b, since U = K —1, our secure aggregation scheme
is the one in Section IV-B. In this case, for each pair of
users V = {V(1),V(2)} where ¥V C [K], |V| = 2, and
V(l) < V(2), there is one key Zv = {ZV,V(l)’ZV,V(Q)}
with (K — U 4+ 1)L/U = 2L/U symbols shared by users in
V. We consider two ways of key sharing: (i) “Group” in
Fig. 2b: user V(1) randomly generates Zy, and sends Zy to
user V(2); (ii) “Group_1~ in Fig. 2b: user V(1) randomly
generates Zy 11y and sends Zy y (1) to user V(2), while user
V(2) randomly generates Zy y 2y and sends Zy y(2) to user
V(1). Compared to Light, Group increase the key sharing
time by at least 11.2% and at most 23.7% in Fig. 2b, while the
key sharing time of Group_1 is close to that of Light. The
reason that the key sharing time of Group is more than that
of Light is because the transmissions of users in Amazon
EC2 are parallel, and in Group the users with smaller indices
transmit more keys in the key sharing phase. In Group_1,
we “balance” the numbers of user transmissions which reduce
key sharing time.

Group v.s. Sec. We then compare our Group with Sec,
by considering the two cases where U = (K + 1)/2 illustrated
in Fig. 2c and U = K — 1 illustrated in Fig. 2d, respectively.
Compared to Sec, Group reduces the model aggregation time
by at least 48% and at most 53% in Fig. 2¢, and reduces the
model aggregation time by at least 33% and at most 44% in
Fig. 2d. From the theoretic viewpoint, this improvement is
because our Group achieves the optimal communication cost
in the model aggregation phase, while Sec is sub-optimal.

VI. CONCLUSIONS

In this paper, we formulated the information theoretic secure
aggregation problem with uncoded groupwise keys, where the
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Fig. 2: The key sharing time and the model aggregation time
of Group versus Light and Sec, respectively.

keys are independent of each other and each of them is shared
by a group of users. For the case S > K — U, we proposed a
new secure aggregation scheme, which is the first scheme with
uncoded keys. Quite surprisingly, the proposed scheme with
uncoded groupwise keys achieves the same capacity region of
the communication rates in the two-round transmissions as the
optimal scheme with any possible keys. In addition, to achieve
the capacity region, we showed that not all keys shared by S
users are needed; instead, the number of keys used in the
proposed scheme is no more than O(K?). When S < K — U,
by proposing a new converse bound under the constraint of
uncoded groupwise keys, we showed that uncoded groupwise
keys sharing is strictly sub-optimal compared to coded keys
sharing.

Ongoing work includes the characterization of the capacity
region for the case S < K — U and the extension of the
proposed secure aggregation scheme to tolerate the collusion
between the server and the users.

APPENDIX A
PROOF OF THEOREM 2

We first consider the case 1 = S < K—U. In this case, it can
be seen that U < K — 1. We will show by contradiction that
there does not exist any feasible secure aggregation scheme.

Assume that there exists one feasible secure aggregation
scheme. When Uy = [U + 1] and Uy = [2 : U + 1], the server
can recover Zke[U-H] W; thus

0=

H (W1 Fo e W X, (X, YT ke 2: U+ 1]))
(73a)

>H Wi+ +Wup| X1, Wiy, Zigyy k1 € 2: U+ 1))
(73b)

=H (Wi| X1, Wiy, Z(g,y : k1 € [2: U+1])) (73¢)

= H(W1|X1), (73d)

where (73b) follows since (Xkl,Yk[iH_l] tke2:U41])
is a function of (Wi,,Zg,y @ ki € [2 ¢ U+ 1]) and
condition does not increase entropy, (73d) follows since Xy
is a function of (W1, Z¢1y) and (W, Zgyy) is independent of
(Wa, ..., Wuy1,Ziay, - - -, Z{u+1y)- However, by the security
constraint in (5), we should have I(X;;W;) = 0, which leads
(recall that W, contains L uniform and i.i.d. symbols over [F)

HWh|X1) = HWh) — I(X1;Wh) = L. (714)

Hence, (74) contradicts to (73d).

In the rest of this proof, we consider the case where 2 <
S < K — U. By the converse bound in Lemma 1, we have
R1 > 1. Hence, for any feasible secure aggregation scheme,
we can assume that it achieves Ry = 1+a, where a > 0. Then
in the following, we focus on this scheme.

For each k € [K], when |Us| > U+ 1, k € Uy, and Uy =
Ui \ {k}, the server can recover », o, Wi, ; thus we have

0=H

3 Wkl‘Xk7 (Xiay YO i iy € Up) (752)

k1€l
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H( > Wi | Xk Zie, Wiy, Ziy : ke eu2)> (75b)

ki€U;
= HWy| Xy, Zi, Wiy, Zi,

t ko € Z/{Q)),
where (75b) follows since (X kakL;l

(75¢)

: ko € Us) is a function

of (Wk,,Zx, : ko € Us), and condition does not increase
entropy. From (75c), we have
H(Xy|Zy) > H(Xg|Zy, Wiy, Zk, 1 ko €Us))  (T62)
= I(Wy; Xi| Z, Wiy, Zi, : ko € Us))
+ H(Xp| Wi, Zi, Wiy, Zi, : ko € Us)) (76b)
= IT(Wi; Xi|Zk, Wiy, Zk, : ko € Us)) (76¢)
= HWg|Zk, Wiy, Zi, : ko € Us))
— HWy| Xy, Zi, Wi, Zy, : ka € Us)) (76d)
S H Wil Ze, (Way Za, < s € U)) (76¢)
= H(Wj) =L, (76f)

where (76¢) follows since Xj is a function of (W, Zy).
From (76f), we have

I(Wi; Xi|Zi) = H(Xk|Z)) — H(Xk|Zk, W) (T7a)
= H(Xk|Zk) (77b)
(760)
> L. (77¢)
From (77c), we have
H(Xi|Zy) = IWy; Xp| Zr) + H(Xk| Zr, Wi) > L. (78)
In addition, from (77c) we also have
H(Wk‘Zk,Xk) ZH(Wk|Zk) —I(Wk;Xk|Zk) (793.)
(77¢)
< H(Wi|Zy) —L =0. (79b)

We define that Vj, := {V c(®):ke V} and sort the sets
in V;, in a lexicographic order. V(j) represents the j™ set in
Vk, where j € [(K 1)} Since 2 < S < K — U, we can see

S—1
that (g:ll) > 2. For any set S C V}, from (78) we have

(78)
L < H(Xy|Zy) < HXk|(Zyv :V €S))
< H(Xy) <Ry =L(1+a).

Hence, we have

L< H(Xy|(Zy:VES)) <L(1+a). (80)

For any collections of sets S,S" C V;, we have (which will
be proved in Appendix B)
HWy| X, (Zv, : V1 €8)) + HWy| Xk, (Zy,
> H(Wi| Xy, (Zy, : Vo € SUS))
+ H(Wk|Xk, (ZV5 V5 € S ﬂS'))

Vs € Sl))

—I((Zy, : Vs €S\ S');

(Zvy 1 V3 € 8"\ S)| Xk, (Zvy : Vs €SN S)). 81)
In addition, we have
I((Zv4 Vi eS\S);
(ZV3 V3 € S’ \S)|Xk, (Z];5 Vs8N Sl)) (82a)

IA
~

((ZV1 : Vl € 8)7 (ZV3 : VB € S’ \8)‘Xk) (82b)

=H((Zy, : V1 € 8)|Xy) + H(Zy, : V3 € S\ S)| Xk)
—H(Zy, : Vo € SUS"|Xk) (82¢)
< H(Zy, V1 €S)+H(Zy, : V3€8\S)
—H((Zy, : VoS US/)|Xk) (82d)
=H(Zy, V1 €S8)+ H(Zy, : V3€8"\S)
H(ZVO Vo GSUS/)—FI((ZVO Vo ESUS’);Xk)
(82e)
=1((Zy, : Vo € SUS"); Xk) (82f)
= H(Xy) — HXk|(Zy, : Vo eSUS")) (82g)
(? L(14a)—L=al. (82h)
By taking (82h) into (81), we have
H(Wk|Xk, (Zvl V€ S)) + H(Wk|Xk, (ZV2 YV, € S/))
> H(Wk‘Xk, (ZVO VoeSU S/))
+ H(Wk|Xk, (sz Vs €S8 ﬂSl)) —al. (83)

Hence, by using (83) iteratively, we have

> H(Wil Xk, (Zy, : Vi € S\ {SL()})
i€[(521)]

> H(Wi|Xp) — (<§_ D — 1) al

(- ((520) )

where (84b) comes from the security constraint I(Wp; Xj) =
0 and H(Wj) = L.*
For each set V € V},, we have

H(ijxk, Wi, : k1€ [K]\ {k)),

(Zv1¢V1€< ) V175V

> 1(Wis Zv| Xoes Wiy b e[ I\ {k}),

(84a)

(84b)

(Zvl Ve < >,v (85a)
= I(Wk, Zv'Xk, ( Vl S Vk \ {V})) (85b)
= H(Wg| Xk, (Zy, V1 eVi\{V})

— H(Wy| Xk, (Zy, : V1 €V})) (85¢)
= H(Wi| Xk, (Zy, : V1 € Vi \ {V})), (85d)

24To make the derivation of (84a) more clear, we first consider the first
two terms on the LHS of (84a). We can see that (V}, \ {V’( ) U
Vi \ {V,;(Q))}) = Vi, and (V; \ {V.(DD) N (V’ Vi) =
Vi \ {V;,(1),V},(2)}. From (83), we have Z el (Wk\Xk,(Zvl :
Vi € Vi \ {(Vi(1)}) > HWg|Xy, Z) +H(Wk\Xk,(Zv1 V1€
Vi \{V;(1),V.(2)})) — aL, and we recall that H (W}, | X, Z;) = 0. Next,
from (83) again, we can lower bound the sum of H(Wy|Xy,(Zy, : V1 €
Vi \ (V. (1),V7(2)})) and H(Wg| Xy, (Zy, = V1 € Vi \ {V(3)})), by
H(Wg| Xy, (Zy, : V1 € VL \{V.(1), V’( ), V5. (3)})) — aL. We repeat
this iteratively. The last (i.e., ((
sum of H(Wp| Xy, (Zy, : V1 € Vi \{V,.(1),...
H(Wg| Xy, (Zy, : V1 € V,g\{vg((ﬁii
conclusion, we can obtain (84a).

) - 1) ) step is to lower bound the

VL((E2]) = 1)) and
)}). by H(Wk|Xy) — aL. In
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where (85b) follows since (W, : ki €
{k1}) and 2y, s € (M)
(X, Z, W), (85d) comes from (79b).

On the other hand, when U; = ([K]\ V) U {k} and Uy =
K]\ V,® we have

0:H<Z Wi,

k1€l

LY

are independent of

Xy (X, VI kg € u2)> (862)

> H ( S Wi | Xe (Wi Zi, o € u2)> (86b)
k€U,
= H(Wk‘Xk, (I/Vk27 Zk2 t ko € Z/[Q)) (860)
> H(Wk‘Xk, (Wi, : k1 € [K]\ {K}),
K
(Zvl Ve <[S]>,V1 ] v)) (86d)

where (86b) follows since (X ;@,YIZI) is a function of
(Wky, Zk, ), and (86d) follows since k ¢ Us and V NUy = (.
From (85d) and (86d), we have

H(Wk|Xk7 (Zvl S V]/C \ V)) <0. 87)
By taking (87) into (84b), we have
K-1
- - <
1 <<S—1> 1>a_0, (88a)
<—a> 1 (88b)

(51) -1

Hence, Theorem 2 can be proved from R; = 1+ a and (88b).

APPENDIX B
PROOF OF (81)

The proof of (81) follows the proof of [37, Proposition 3]
(which shows a generalized version of the submodularity of
entropy). More precisely, we have

H(Wk|Xk, (ZV1 VNS 8)) — H(Wk|Xk7

(ZVO Vo €S US/)) + H(Wk‘Xk, (Zy2 Vs € SI))

= I(Wk; (Zv, : V3 € S'\ S)| Xk, (2, : V1 €95))

+ HWi| Xy, (Zy, : Vo € 8")) (89a)
= I(Wg; (Zy, : V3 € 8"\ 8)| Xk, (Zy, : V1 €8))

S H(Wi| X, (Zv, - Vo € SUSY))

S I(Wis (Zy, - Vi € S\ 8)| Xy (Zv, : Vo €8')). (89b)

In addition, we have (90) at the top of the next page. By
taking (90d) into (89b), we have

APPENDIX C
PROOF OF THE SECURITY CONSTRAINT IN (5) FOR THE
PROPOSED SECURE AGGREGATION SCHEME

Assume that in the proposed secure aggregation scheme for
Theorem 1, the U-dimensional vectors ay, where V € (“g]) are
determined, such that the constraints in (10), (16), and (18) are
satisfied.

Let us then prove that the scheme is secure. By our
construction, since the constraint in (10) is satisfied, we have

I(Xy,. o X Wi, W) = Y I(Xs We) (92a)
ke[K]

= Y (H(Xx) — H(Xg|Wy)) (92b)
ke[K]

= > (L— H(Xy[Wy)) (92¢)
ke[K]

=> (L-L =0, (92d)
ke[K]

where (92a) follows since (X1, W1),...,(Xk, Wk) are
mutually independent in our scheme (Recall (1) and that
X1,..., Xk use different keys), (92c) follows since each W
contains L uniform and i.i.d. symbols over F; and the keys
are independent of W}, and (92d) follows since (recall that
each Zy ; where V € (“g]) and k € V contains L/U uniform
and i.i.d. symbols over [Fq)

H(Xy|Wy) =

(Wt X avgZuaiielu)) vy el

ve('h:kev
(93a)
1 .
Qg S avZviijelUl (93b)
ve(d)key

U (93c¢)

By (92d), we can immediately obtain
0=1(X1,..., Xe; Wi,...,Wk) (94a)
:I(Xl,...,XK;Wl,...,WK,ZWk> (94b)

kel
=1 (Xl,...,XK;Wl,...,WK| > Wk> =0, (94c)

kel

where
Wi, ..

(94b) follows since Zkeul Wy is a function of
., Wk and (94c) follows since the non-negativity of

HWg| Xy, (Zy, : V1 €8)) — HWi| Xy, (Zy, : Vo € SUS")) mutual information.

+ H(Wi| Xy, (Zy, : V2 € 8))

> H(Wi| Xk, (Zvy : Vs €SNS')) = I((Zy, : Vs € S\ S);

(Zvy 1 V3 € 8"\ 8)| Xk, (Zy, : Vs €SN S)), 1)

which coincides with (81).

25This case is possible because, |[V| =S < K—U, and thus |[K]\ V| > U.

Hence, we have

I <W1,...,WK;Xl,...,XK,(Y,f’l ik eul)‘ > Wk>
kel

=71 (Wl,...,WK;(YkZ;{l ;keul)’ Z Wk,Xl,...,XK>
kel
(95a)
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I(Wi; (Zvy : V3 € 8"\ S)| Xy, (Zy, : V1 €8)) + I(Wi; (Zv, : Va € S\ S')| Xk, (Zy, : V2 €F))
= I(Wk, (ZV4 NS S\SI), (ZV3 V3 € S’ \S)‘Xk, (Zv5 Vs € SQS/))
- I((ZV4 :V4 € S\Sl)a (ZV3 :V3 € S/ \S)|Xk7 (ZV5 : V5 S Sﬂsl))

+I(Wy; (Zy, - Va € S\ S')| Xy, (Zy, : Vo €8'))

(90a)

> H(Wi, (Zy, : Va € S\ S')| Xy, (Zy, : Vs € SNS')) = HWi| Xy, (Zy, : V2 €S))
— I((ZV4 VYV, € S\S/), (ZV3 V3 € S’ \$)|Xk, (ZV5 Vs € SQS/))

+ I(Wka (ZV4 : V4 €S \ S/)|Xk7 (ZV2 : V2 € 8/))

(90b)

= H(Wk, (Zv4 VYV, € S\S/)le, (ZVs Vs € 8ﬂ5/>) — H(Wk|Xk7 (ZVO Vo € SUS/))

—I((Zy, :Vs€ S\S/)7 (Zy, 1 V5 € S \ &) | Xk, (Zy, : Vs € SQS/))
> H(Wk|Xk, (ZV5 V5 €S8 ﬂSl)) — H(Wlek, (ZVO V€S US/))
— I((ZV4 VY, € S\S/), (ZV3 V3 € S’ \$)|Xk, (Zv5 Vs €S ﬂSl)).

gI(Wl,...,WK;Fl,...,FU’ 3 Wi X1,
kel

aXK>

(95b)

—0, (95¢)

where (95a) comes from (94c), (95b) comes from (Y,g1 ke
U,) are in the linear space spanned by Fi,..., Fy and thus
are determined by F1, ..., Fy, (95¢c) follows since Fi, ..., Fy
can be recovered from }, ., Wy and >, o, Xj. Hence, the
security constraint in (5) is satisfied.

APPENDIX D
PROOF OF LEMMA 3
Consider one set A C [K] where |A] = U. Assume
that A = {A(1),..., A(U)} where A(1) < --- < A(U).
We also assume that the sets in Go = {[K — U+ 1 :

2K —2U]U{j} : j € (K=UJU2K—2U +1: K])} are
Go,1,---,G2k-U,G2,2k—20+1, - - -, G2k, Where Gy ; = [K —
U+1: 2K—2U]U{j} for each j € ([K—UJU[2K—2U+1 : K]).
Recall that by our construction, for each user k € [K — U],
sy 1s a left null vector of the matrix in (70). Note that each
column of the matrix in (70) is ay;yuKk—u41:2k—2u] Where
je ([K=UJ\{k})U[2K—=2U + 1 : K]. In addition, it can
be seen that {j} U[K — U+ 1:2K — 2U] is in Gy; thus each
element of by 3uK—u+1:2k—2y] is chosen uniformly and i.i.d.
over . For each user k € [K—U+1 : K], from (72) we have
that s, = e() k. y-
Hence, the determinant of the matrix
SA(1)
(96)
SA)

could be seen as Dy = L. o where P4 and Q4 are multi-

variate polynomials whose variables are the elements in by,
where V € G,. Since each element in by where V € Gy is
uniformly and i.i.d. over IFq where q is large enough, by the
Schwartz-Zippel Lemma [34]-[36], if we can further show that
the multivariate polynomial P4 is non-zero (i.e., a multivariate
polynomial whose coefficients are not all 0), the probability
that this multivariate polynomial is equal to O over all possible

(90c)

(90d)

realization of the elements in by, where V € G5 goes to 0 when
g goes to infinity, and thus the matrix in (96) is full rank with
high probability. So in the following, we need to show that
P4 is non-zero. For the matrix G in (97) whose dimension is
U x U, where 71, ..., ry denote the labels of rows, cq,...,cy
denote the labels of columns, and each ‘x’ denotes a symbol
uniformly and i.i.d. over Fq. With a slight abuse of notation,
we define that G\ ag, ; where j € [K—UJU[2K—-2U +1 : K]
as the column-wise sub-matrix of G by removing the column
ag, ;. For each k € (AN [K - U]), by our construction, sj
is a left null vector of G \ ag, ,. Hence, to show that Py is
non-zero, we need to find one realization of the ‘*’s in G such
that
1) G\ ag,, has rank equal to U — 1 for each k € (AN
[K—U]) (such that sj, exists by using the Cramer’s rule
and thus @ 4 is not zero);
2) the U rows of the matrix in (96), including s; where
ke (AN[K—U]) and e} ; «, where j € (AN[K—
U+ 1 : K]), are linearly independent (such that D 4 is
not zero).
We divide the set AN [K — U+ 1 : K] into two subsets,
A = ANK—=U+1:2K —2U] where

r= A =|ANK—-U+1:2K—-2U]| <K-U, (98)
and Ay = AN 2K —2U + 1 : K] where
y=|As] =|AN[2K —2U +1: K]| < 2U — K. (99)

For each user j; € A;, we have j; — K4+ U € [K — U]; for
each user jo € Ay, we have jo —K+U e [K—-U+1:U.
Since z+y = |AN[K—-U+1:K]| and |A] = U, we have

U-(K-—U)<z+y<U. (100)

If x+y = U, we can see that the matrix in (96) is the identity
matrix Iy which is full rank. Hence, in the rest of the proof,
we focus on the case where 2U — K <z 4y < U.

By symmetry, we only need to consider the case where
ANK=Ul=U-z—y], A1 = AN[K-U+1:2K-2U] =
[K—U+1:K=U+4z]and Ag=AN2K-2U+1:K] =
[2K —2U 4+ 1 : 2K — 2U + y), and find one realization of the
‘*’s in G satisfying the constraints 1) and 2). Thus the last
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G= [392,1 o3 Gy K yy AGg ok_aug1r tt ag2,K] (97a)
& C2 CK—-U CK—U+1 CK—U+2 e Cuy
1 r * * . ]
T2 k %
— TK—U * * * B * (97b)
rk—u+1 [0 0 * 0 0
TK—U+2 0 0 0 * 0
U LO O 0 0 *

A\ [K = U]| = 2 + y rows of the matrix in (96) includes
el,; where i € ([z] U[K—U+1:K—U+y]). To determine
the first U — x — y rows of the matrix in (96), we select a
realization of G in (101) at the top of the next page, where
Opm,n and 1,,,, represents all-zero matrix and all-one matrix
of dimension m x n, respectively. Note that g; :== K—U —z,
g2 =z +y — 2U + K, ry;; represents 7,741, ..,7;, and
C[i:5) TEPIESeNts C;, Cit1, - - -, Cj. Let us then derive s;. for each
user k € (ANK—=U])=[U—-z—y].

For each user k € [g;], the matrix G \ ag, , has rank equal
to U — 1, since one can easily check that the columns in G
are linearly independent. Thus G \ ag, , contains exactly one
linearly independent left null vector. We can check that this
vector could be (recall that 1,, and 0,, represent the vertical
n-dimensional vector whose elements are all 1 and all O,
respectively)

S = [15U—K—y7 1§2a egl,ka _1;5a OgU—K—y]a (102)

for each k € [¢g1].

For each user k € [g1 + 1 : U — 2 — y], since the columns
in G are linearly independent, the matrix G \ ag, , has rank
equal to U — 1. Thus G \ ag,, contains exactly one linearly
independent left null vector. We can check that this vector
could be

Sk = [€5u_k_yk_g1> Ogs Oy 00, €3y Ky g,)s (103)

g2’ g1’
foreach k€ [g1 +1:U—z —y].
Recall that the last « 4+ y rows of the matrix in (96) include
e}, where i € ([z]U[K—U+1: K—U+y]). Hence, together
with the first U — 2 — y rows as shown in (102) and (103),
we can see that the matrix in (96) is (104) at the top of the
next page, which is full rank. Thus we proved that with the
choice of G in (101), the constraints 1) and 2) are satisfied;
thus P4 is a non-zero polynomial. This completes the proof
of Lemma 3.

APPENDIX E
DATA TABLES OF THE EXPERIMENTAL RESULTS IN
SECTION V

In the following, we consider the cases where U = (K+1)/2
and U = K—1, and list the running times of each procedure in
our experiments. In the tables provided in this Section, we use

“IPS” to represent the size of each input vector; use “KST”
to represent key sharing time; use “RI1AT” and “R2AT” to
represent the running times in the first and second rounds of
model aggregation, respectively; use ‘R3AT” and “R4AT” to
represent the running times in the third and fourth rounds of
model aggregation (only needed by Sec), respectively; use
“TMA” to represent the total model aggregation time.

1) Case U= (K+1)/2: Group vs. Light vs. Sec:

Running Times (ms): K=5,U =3
Scheme IPS KST RIAT | R2AT | TMA
Group 10° 62270 | 19.42 | 4.45 | 23.88
Light 10° 707.12 | 19.26 | 4.16 | 23.42
Group | 2x 10° | 1232.11 | 31.66 | 9.90 | 41.56
Light | 2x10° | 1313.31 | 32.79 | 9.71 | 42.50
Group | 3 x10° | 1854.66 | 42.62 | 19.11 | 61.73
Light | 3x10° | 2024.43 | 41.30 | 23.46 | 64.76
Running Times (ms): K=5,U =3

Scheme 1PS RIAT | R2AT | R3AT | R4AT TMA
Sec 10° 7.41 3.53 38.51 0.94 47.75
Sec 2x10° | 13.74 3.15 77.50 0.87 84.84
Sec 3x10° | 27.02 3.16 116.57 0.82 124.07

Running Times (ms): K =10,U =5

Scheme IPS KST R1AT R2AT | TMA
Group 10° 1268.69 | 27.843 7.26 | 35.10
Light 10° 1422.05 | 29.9577 | 7.31 | 37.27
Group | 2x 10° | 2536.10 | 49.15 12.40 | 61.55
Light | 2x10° | 2911.85 | 54.28 11.75 | 66.03
Group | 3 x 10° | 3810.15 74.56 18.79 | 93.34
Light | 3x10° | 4729.24 | 73.53 18.63 | 92.17

Running Times (ms): K =10,U =5

Scheme IPS R1AT | R2AT | R3AT | R4AT | TMA
Sec 10° 10.65 4.13 59.22 0.88 71.91
Sec 2x10° | 12.15 4.52 118.30 1.23 133.91
Sec | 3x10° | 947 | 410 [ 179.67 | 1.10 | 191.94
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G = [agz,lv < AGs Yy AGs ak_out1 7ag2,K] (101a)
Clg1] Clg1+1:U—z—1y)] ClU—z—y+1:K-U]  CK-U+1:K—U+y] C[K—U+ty+1:U]
T[2U—K—y] O20-K—y,01 oy k—y O20-K—y,g2 020—K—y,y Ty _—k—y
T2Uu—-K—y+1:2] 0927g1 092,2U—K—y 192 09272/ 09272U—K—y
Tlz+1:K-U] Iyl _191,2U7K7y _191,92 1917y 191,2U7K7y (101b)
TK—U+1:K—-U+y] U Oy,20—K—y Oy,g» I, 0y,20-K—y
TIK—Uty+1:U] O020-K—y,9;  O20—K—y,20-K—y 020—K—y,g» O2u—K—y,y Lou—k—y
Clz] Clz+1:K—-U]  CK-U+1:K—U+y] C[K—-U+y+1:U]
Tg1] lgi 2 I, —lgiy Ogy ,20-K—y
Tlg1+1:U—z—1y] (I2U7K7y7 02U7K7y,gg) 02U7K7y,g1 02U7K7y,y IQUfoy , (104)
TU—z—y+1:U—y] I, Ow,Kfox Oa:,y 0x,2U7K7y
TU—y+1:U] Oy,LE 0y7K—U—w Iy 0y,2U—K—y
Running Times (ms): K = 15,U =8 Running Times (ms): K=5,U =14
Scheme IPS KST RIAT | R2AT | TMA Scheme IPS KST RIAT | R2AT | TMA
Group 10° 1853.25 | 4597 | 10.52 | 56.49 Group 10° 573.52 | 32.09 | 4.55 36.64
Light 10° 2061.42 | 40.46 | 10.44 | 50.90 Groupl 10° 565.96 | 32.09 | 4.55 36.64
Group | 2 x 10° | 3704.39 | 90.76 | 18.58 | 109.34 Light 10° 571.29 | 3142 | 4.51 35.93
Light | 2x10° | 4650.02 | 92.16 | 16.35 | 108.51 Group | 2x10° | 121292 | 61.32 | 9.82 71.14
Group | 3 x 10° | 5556.72 | 140.93 | 22.20 | 163.13 Groupl | 2 x 10° | 1180.77 | 61.32 | 9.82 71.14
Light | 3x10° | 7346.74 | 130.83 | 22.80 | 153.63 Light | 2x10° | 121537 | 61.66 | 9.89 71.55
Group | 3 x10° | 1808.52 | 92.88 | 14.32 | 107.20
Groupl | 3x 10° | 1674.90 | 92.88 | 14.32 | 107.20
Light | 3x10° | 1714.31 | 90.65 | 15.02 | 105.68

Running Times (ms): K= 15U =8

Scheme IPS RIAT | R2AT | R3AT | R4AT | TMA
Sec 10° 12.78 | 6.64 90.32 1.41 107.59
Sec 2x10° | 1202 | 727 182.66 | 1.40 | 199.31 Running Times (ms): K=5,U =4
Sec 3x10° | 13.62 | 6.59 | 279.80 | 1.32 | 298.55 Scheme IPS RIAT | R2AT | R3AT | R4AT | TMA

Sec 10° 8.04 2.39 52.24 0.85 63.53
Sec 2x10° | 6.03 4.52 99.12 096 | 110.62
Sec 3x10° | 1333 | 248 | 14846 | 0.85 | 165.12

Running Times (ms): K =20,U = 10

Scheme IPS KST RIAT | R2AT | TMA

Group 10° 2510.21 | 51.54 | 1443 | 6597 Running Times (ms): K =10,U =9

Light 10° 292539 | 53.71 | 1391 | 67.62 Scheme IPS KST RIAT | R2AT | TMA
Group | 2 x 10° | 5038.56 | 110.70 | 20.68 | 131.37 Group 10° 1290.11 | 60.14 6.58 66.71
Light | 2x10° | 6314.36 | 111.00 | 20.78 | 131.78 Groupl 10° 109028 | 60.14 6.58 66.71
Group | 3 x 10° | 7501.90 | 165.40 | 29.39 | 194.79 Light 10° 1165.68 | 61.82 6.13 67.95
Light | 3x10° | 9878.07 | 158.98 | 28.13 | 187.10 Group | 2x 10° | 2590.86 | 119.60 | 13.55 | 133.15

Groupl | 2 x 10° | 2231.25 | 119.60 | 13.55 | 133.15
Light | 2x10° | 2372.63 | 122.31 | 12.76 | 135.07

5
Running Times (ms)r K =20, U = 10 Group | 3 x 10° | 4000.38 | 189.28 | 16.93 | 206.21

5
Scheme PS RIAT | R2AT | R3AT | R4AT | TMA Groupl | 3 x 10° | 3122.44 | 189.28 | 16.93 | 206.21

Sec 2 x 10° | 20.30 | 8.65 | 236.04 | 1.61 | 260.71

Sec 3x10° | 3458 | 8.10 | 33095 | 1.89 | 359.95

Running Times (ms): K =10,U =9

Scheme | _IPS | RIAT | R2AT | R3AT | RAAT | TMA

, Sec | _10° | 650 | 539 | 1061 | 1.8 | 114.78

2) Case U = K —1: Group (Group_1) vs. Light vs. 5o [3x10° | 6.14 | 570 | 20290 | 134 | 21608
Sec: Sec_ | 3x10° | 550 | 500 | 30392 | .19 | 315.62
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Running Times (ms): K= 15,U = 14
Scheme IPS KST R1AT | R2AT | TMA
Group 10° 2003.57 | 99.94 2.68 | 102.62
Groupl 10° 1699.15 | 99.94 2.68 | 102.62
Light 10° 1748.13 | 98.91 2.89 | 101.80
Group | 2x 10° | 4017.40 | 201.35 | 13.69 | 215.05
Groupl | 2 x 10° | 3293.68 | 201.35 | 13.69 | 215.05
Light | 2x10° | 3514.38 | 196.78 | 14.78 | 211.57
Group | 3 x 10° | 6020.53 | 285.31 | 21.70 | 307.01
Group | 3 x 10° | 4605.54 | 285.31 | 21.70 | 307.01
Light | 3x10° | 4657.34 | 299.46 | 19.53 | 318.99
Running Times (ms): K=15,U =14
Scheme IPS RI1AT | R2AT | R3AT | R4AT | TMA
Sec 10° 17.82 | 8.34 | 153.16 | 1.58 | 180.90
Sec 2x10° | 10.62 | 7.61 | 303.97 | 1.68 | 323.87
Sec 3x10° | 9.14 8.31 | 459.96 | 1.78 | 479.20
Running Times (ms): K =20,U =19
Scheme IPS KST RIAT | R2AT | TMA
Group 10° 2724.81 | 132.58 | 4.03 | 136.61
Groupl 10° 2387.80 | 132.58 | 4.03 | 136.61
Light 10° 2419.75 | 128.80 | 3.71 | 132.51
Group | 2x 10° | 5460.64 | 263.68 | 16.17 | 279.86
Groupl | 2 x 10° | 4466.25 | 263.68 | 16.17 | 279.86
Light | 2x10° | 4680.18 | 260.38 | 14.64 | 275.02
Group | 3 x 10° | 8230.29 | 404.78 | 24.86 | 429.64
Groupl | 3 x 10° | 6114.46 | 404.78 | 24.86 | 429.64
Light | 3 x10° | 6277.13 | 400.43 | 25.45 | 425.88
Running Times (ms): K =20,U =19
Scheme IPS RI1AT | R2AT | R3AT | R4AT | TMA
Sec 10° 10.17 | 11.63 | 204.31 2.04 228.15
Sec 2x10° | 11.14 | 11.81 | 406.37 2.51 431.83
Sec 3x10° | 1024 | 1228 | 611.32 2.10 635.94
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