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Abstract—Secure aggregation, which is a core component
of federated learning, aggregates locally trained models from
distributed users at a central server. The “secure” nature of
such aggregation consists of the fact that no information about
the local users’ data must be leaked to the server except the
aggregated local models. In order to guarantee security, some
keys may be shared among the users (this is referred to as
the key sharing phase). After the key sharing phase, each user
masks its trained model which is then sent to the server (this is
referred to as the model aggregation phase). This paper follows
the information theoretic secure aggregation problem originally
formulated by Zhao and Sun, with the objective to characterize
the minimum communication cost from the K users in the model
aggregation phase. Due to user dropouts, which are common in
real systems, the server may not receive all messages from the
users. A secure aggregation scheme should tolerate the dropouts
of at most K − U users, where U is a system parameter. The
optimal communication cost is characterized by Zhao and Sun,
but with the assumption that the keys stored by the users could
be any random variables with arbitrary dependency. On the
motivation that uncoded groupwise keys are more convenient
to be shared and could be used in large range of applications
besides federated learning, in this paper we add one constraint
into the above problem, namely, that the key variables are
mutually independent and each key is shared by a group of
S users, where S is another system parameter. To the best of
our knowledge, all existing secure aggregation schemes (with
information theoretic security or computational security) assign
coded keys to the users. We show that if S > K−U, a new secure
aggregation scheme with uncoded groupwise keys can achieve the
same optimal communication cost as the best scheme with coded
keys; if S ≤ K − U, uncoded groupwise key sharing is strictly
sub-optimal. Finally, we also implement our proposed secure
aggregation scheme into Amazon EC2, which are then compared
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with the existing secure aggregation schemes with offline key
sharing.
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I. INTRODUCTION

Federated learning is essentially a distributed machine
learning framework, where a central server aims to solve a
machine learning problem by the help of distributed users with
local data [2]–[5]. A notable advantage of federated learning
compared to other distributed learning scenarios, is the security
protection on the users’ raw local data against the server.
Instead of asking the users to directly upload the raw data,
federated learning lets each user compute the model updates
using its local data and securely aggregates these updates at the
server (secure aggregation). In this paper, we use information
theoretic tools to focus on two core challenges of the secure
aggregation process in federated learning, namely the effect of
user dropouts and the communication efficiency [4]. First, in a
real environment some users may drop or reply slowly during
the training process due to the network connectivity or com-
putational capability. It is non-trivial to let the server recover
the aggregated updated models of the surviving users securely
while mitigating the effect of potential user dropouts. Second,
additional communication among the users and server may be
needed to guarantee the perfect security and mitigate the effect
of the user dropouts, for example, additional communications
on exchanging the keys among the users may be taken. Since
a federated learning system usually contains of a massive
number of devices, the minimization of the communication
cost is crucial.

The secure aggregation problem with user dropouts was
originally considered in [6], and generally contains two phases:
offline key sharing and model aggregation, where the user
dropouts may happen in either phase or both phases. In the
first phase, K users generate random seeds, and secretly share
their private random seeds such that some keys are shared
among the users. The offline key sharing phase is independent
of the users’ local training data, and thus can take place
during off-peak traffic times when the network is not busy.
For example, the secure aggregation schemes in [6]–[10] all
make use of offline key sharing protocols.1 If there is no

1Online key sharing protocols (for example the ones proposed in [11]–[13])
which are beyond the scope of this paper, allow users to communicate some
information about the updated models and keys among each other, while in
offline protocols users can only share keys.
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private link among users, the communication among users
should go through the central server, and some key agreement
protocol such as [14] is needed, whereby two or more parties
can agree on a key by communicating some local information
through a public link, such that even if some eavesdropper
can observe the communication in the public link, it cannot
determine the shared key. Once the keys are shared among
the users, in the model aggregation phase the users mask
the updated models by the keys; then send masked models
and masks to the server through multiple rounds. When the
server receives the transmissions of a threshold number of
users, the server should recover the aggregated updated models
of these users without getting any other information about
the users’ local data, such that the effect of user dropouts
could be resolved. The secure aggregation protocol in [6]
uses the pairwise offline key sharing based on Diffie-Hellman
key agreement [14] between each two users, where each
key is then shared to all other users through Shamir’s secret
sharing [15] in order to deal with user dropouts. By relaxing
the resilience on the worst-case dropouts, secure aggregation
schemes with probabilistic dropout-resiliency guarantee were
proposed in [7], [8], where the number of required keys is
further reduced compared to the one in [6]. Following the
secure aggregation problem with user dropouts in [6], several
works have developed more efficient and/or more secure
schemes for aggregation, for example, by using common seeds
through homomorphic pseudorandom generator [16], secure
multi-party computing [17], non-pairwise keys [9], online key
sharing [11]–[13], improved El Gamal encryption [18]. The
readers can refer to the survey for more details [19], [20].

Recently, the authors in [9] proposed an information the-
oretic formulation of the secure aggregation problem with
user dropouts originally considered in [6], whose objective is
to characterize the fundamental limits of the communication
cost while preserving the information theoretic security of
the users’ local data.2 Due to the difficulty to characterize
the fundamental limits of the communication rates in both
two phases, with the assumption that the key sharing phase
has been already performed during network off-traffic times
and any keys with arbitrary dependency could be used in the
model aggregation phase (i.e., we only consider the model
aggregation phase and ignore the cost of the key sharing
phase), the authors in [9] formulated a (K,U) two-round in-
formation theoretic secure aggregation problem for the server-
users communication model, where K represents the number
of users, U represents the minimum number of surviving
users.3 Each user can communicate with the server while the
communication among users is not allowed. The server aims
to compute the element-wise sum of the vector inputs (i.e.,
updated models) of K users, where the input vector of user k
is denoted by Wk and contains L uniform and i.i.d. symbols

2Among the existing secure aggregation schemes with user dropouts,
the ones in [9], [10], [13] considered the information theoretic security
constraint [21], while the others considered the computational security.

3The problem in [9] only considers one epoch of the learning process.

over a finite field Fq.4 Each user k has stored a key Zk, which
can be any random variable independent of W1, . . . ,WK.
The transmissions (in the model aggregation phase) contains
two rounds.5 In the first round of transmission, each user
k ∈ {1, . . . ,K} sends a coded message Xk as a function of
Wk and Zk to the server. Since some users may drop during
its transmission, the server only receives the messages from
the users in U1 where |U1| ≥ U. Then the server informs the
users in the subset U1 of non-dropped users. In the second
round of transmission, after knowing the set U1, each user
k ∈ U1 transmits another coded message Y U1k as a function
of (Wk,Zk,U1) to the server. Due to the user dropouts in the
second round, letting U2 denote the set of surviving users in
the second round with U2 ⊆ U1 and |U2| ≥ U, the server
receives Y U1k where k ∈ U2. By receiving (Xk : k ∈ U1) and
(Y U1k : k ∈ U2), the server should recover the element-wise
sum

∑
k∈U1 Wk without getting any other information about

W1, . . . ,WK even if the server can receive (Xk : k ∈ [K]\U1),
(Y U1k : k ∈ U1 \U2) (e.g., the users are not really dropped but
too slow in the transmission). Since the identity of the dropped
users in each round is not known a priori by the users unless
they receive the list of surviving users from the server, we
should design (Xk : k ∈ {1, . . . ,K}) and (Y U1k : k ∈ U1)
for any sets U1,U2 where U2 ⊆ U1 ⊆ {1, . . . ,K} and
|U1| ≥ |U2| ≥ U, while minimizing the communication rates
by the users in two rounds. It was shown in [9] that the
minimum numbers of symbols that each user needs to send are
L over the first round, and L/U over the second round, which
can be achieved simultaneously by a novel secure aggregation
scheme. Another secure aggregation scheme was proposed
in [10] for the above problem, which needs a less amount
of generated keys in the system than that of [9].

To the best of our knowledge, all existing secure aggregation
schemes with offline key sharing let the users share and
store coded keys, through secret sharing (such as [6]–[8])
or Minimum Distance Separable (MDS) codes (such as [9],
[10]).6 In this paper, we follow the information theoretic
secure aggregation problem with user dropouts in [9], while
adding the additional constraint of uncoded groupwise keys
as illustrated in Fig. 1.7 By defining a system parameter
S ∈ {1, . . . ,K}, for each V ⊆ {1, . . . ,K} where |V| = S, there
exists a key ZV shared by the users in V , which is independent
of other keys.8 The uncoded groupwise keys could be directly
generated and shared among users by some key agreement

4Information theoretic secure aggregation problem with non-i.i.d. input
vectors was considered in [22], where the server aims to estimate the empirical
frequency of K items each of which is held by a user. Thus by formulating
the input vector as a one-hot vector (i.e., a vector with only one element 1
while the others are 0), the required communication cost is much less than
the secure aggregation problem for input vectors with i.i.d. elements.

5It was shown in [9] that for the sake of security under user dropouts, at
least two rounds communications must be taken.

6The key sharing protocols in [6]–[8] are designed for the network where no
private links exist among users, under the constraint of computational security.
The key sharing protocols in [9], [10] lead to information theoretic privacy,
but under the constraint that there are private links among users or a trusted
server who assigns keys for the key sharing phase.

7The constraint of uncoded groupwise keys means that, the keys are
independent among each other and each key is stored by a set of users.

8Note that all existing secure aggregation schemes fail to satisfy this
constraint when S < K, due to the coded keys shared among users.
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Fig. 1: (K,U, S) = (4, 2, 3) information theoretic secure
aggregation problem with uncoded groupwise keys.

protocol such as [23]–[30], even if there do not exist private
links among users nor a trusted server.In addition, uncoded
groupwise keys may be preferred in practice since they can be
generated with low complexity and shared conveniently, and
find a wide range of applications besides secure aggregation
in federated learning.9 Our objective is to characterize the
capacity region of the numbers of transmissions by the users
in two rounds of the model aggregation phase (i.e., the rates
region).

A. Main Contributions

In this paper, we first formulate the new information the-
oretic secure aggregation problem with uncoded groupwise
keys. Then our main contributions on this new model are as
follows:

9For example, the uncoded pairwise key shared among each two users are
independent of the other keys and thus can guarantee the information theoretic
secure communication between these two users, while the other users (who
may collude) are eavesdropper listening to the communication [21]. However,
the pairwise coded keys used in the scheme [10] cannot guarantee secure
communication between any two users, because the coded key shared by
these two users are correlated to other keys stored by the other users.

• When S > K− U, we propose a new secure aggregation
scheme which achieves exactly the same capacity region
as in [9]; this means that, when S > K − U, secure
aggregation with uncoded groupwise key sharing has no
loss on the communication efficiency. It is also interesting
to see that by increasing S above K − U + 1 yields no
reduction in the transmission cost; i.e., S = K−U+1 is
sufficient and no larger value of S provide improvements.
The main technical challenge of the proposed scheme
based on linear coding is to determine the coefficients
of the keys in the two round transmissions, satisfying
the encodability (i.e., the keys cannot appear in the
transmitted linear combinations by the users who do not
know them), decodability, and security constraints. We
overcome these challenges by designing new interference
alignment strategies.10 Note that, to achieve the optimal
rates region by our proposed scheme, not all the keys ZV
where V ⊆ {1, . . . ,K} and |V| = S are needed during the
transmission. The number of needed keys is either O(K)
or O(K2), where each key has (K−U+1)L/U symbols.

• When S ≤ K − U, we derive a new converse bound
to show that the optimal rates region of the considered
problem is a strict subset of that in [9] (which is without
any constraint on the keys). This implies that in this
regime using uncoded keys strictly hurts.

• Experimental results over the Amazon EC2 cloud show
that the proposed secure aggregation scheme reduces the
communication time in the model aggregation by up to
53% compared to the original secure aggregation scheme
in [6], and reduces the key sharing time up to 31.7%
compared to the best existing information theoretic secure
aggregation scheme with offline key sharing in [10].

B. Paper Organization

The rest of this paper is organized as follows. Section II
formulates the considered secure aggregation problem with
uncoded groupwise keys. Section III lists the main results
of this paper. The proposed secure aggregation scheme is
introduced in Section IV. Experimental results are provided
in Section V. Section VI concludes the paper, while some
proofs can be found in the Appendices.

C. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors and matrices, and sans-serif symbols denote system
parameters. We use | · | to represent the cardinality of a set
or the length of a vector; [a : b] := {a, a+ 1, . . . , b} and
[n] := [1 : n]; Fq represents a finite field with order q; en,i
represents the vertical n-dimensional unit vector whose entry
in the ith position is 1 and 0 elsewhere; 1n and 0n represent the
vertical n-dimensional vector whose elements are all 1 and all
0, respectively; AT and A−1 represent the transpose and the
inverse of matrix A, respectively; rank(A) represents the rank
of matrix A; In represents the identity matrix of dimension

10Interference alignment was originally proposed in [31] for the wireless
interference channel, which aligns the undesired packets (i.e., interference) by
each user such that their linear space dimension is reduced.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3422087

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on July 30,2024 at 03:03:06 UTC from IEEE Xplore.  Restrictions apply. 



4

n × n; 0m,n represents all-zero matrix of dimension m × n;
1m,n represents all-one matrix of dimension m× n; (A)m×n
explicitly indicates that the matrix A is of dimension m× n;
〈·〉a represents the modulo operation with integer quotient
a > 0 and in this paper we let 〈·〉a ∈ {1, . . . , a} (i.e., we
let 〈b〉a = a if a divides b); let

(
x
y

)
= 0 if x < 0 or y < 0 or

x < y; let
(X
y

)
= {S ⊆ X : |S| = y} where |X | ≥ y > 0.

In the rest of the paper entropies will be in base q, where q
represents the field size.

II. SYSTEM MODEL

We formulate a (K,U, S) information theoretic secure ag-
gregation problem with uncoded groupwise keys as illustrated
in Fig 1, which contains one epoch of the learning process
among K users and one server. For each k ∈ [K], user k
holds one input vector (i.e., updated model) Wk composed of
L uniform and i.i.d. symbols over a finite field Fq. As in [9],
we assume that L is large enough. Ideally, the server aims to
compute the element-wise sum of input vectors of all users.
However, due to the user dropouts, the server may not be
able to recover the sum of all input vectors. Hence, we let
the server compute the sum of the input vectors from the
surviving users, where the number of surviving users is at
least U. In this paper, we mainly deal with the user dropouts
and thus we assume that U ∈ [K − 1].11 In addition, by the
secure aggregation constraint, the server must not retrieve any
other information except the task from the received symbols.
In order to guarantee the security, the users must share some
secrets (i.e., keys) which are independent of the input vectors.
Different from the secure aggregation problem in [9] which
assumes that the keys could be any random variables shared
among users, in this paper we consider uncoded groupwise
keys, where the keys are independent of each other and each
key is shared among S users where S ∈ [K], which is shared
through private link between each two users or by the key
agreement protocols such as [23]–[30]. For each set V ∈

(
[K]
S

)
,

there exists a key ZV independent of other keys. Thus

H

((
ZV : V ∈

(
[K]

S

)
), (W1, . . . ,WK

))
=

∑
V∈([K]S )

H(ZV) +
∑
k∈[K]

H(Wk). (1)

We define Zk :=
(
ZV : V ∈

(
[K]
S

)
, k ∈ V

)
, as the keys ac-

cessible by the user k ∈ [K]. The whole secure aggregation
procedure contains the following two rounds.

First round. In the first round, each user k ∈ [K] generates
a message Xk as a function of Wk and Zk, without knowing
the identity of the dropped users. The communication rate of
the first round R1 is defined as the largest transmission load
among all users normalized by L, i.e.,

R1 := max
k∈[K]

H(Xk)

L
. (2)

11When U = K, it was shown in [32, Theorem 2] (by taking Nr = N in [32,
Theorem 2]) that one round transmission is enough and that the minimum
number of transmitted symbols by each user is L.

User k then sends Xk to the server.
Some users may drop in the first round transmission, and

the set of surviving users after the first round is denoted as
U1, where U1 ⊆ [K] and |U1| ≥ U. Thus the server receives
Xk where k ∈ U1.

Second round. In the second round, the server first sends
the list of the surviving users (i.e., the set U1) to each user in
U1. Then each user k ∈ U1 participates in the second round
transmission by generating and sending a message Y U1k as a
function of Wk, Zk, and U1. The communication rate of the
second round R2 is defined as the largest transmission load
among all U1 and all users in U1 normalized by L, i.e.,

R2 := max
U1⊆[K]:|U1|≥U

max
k∈U1

H(Y U1k )

L
. (3)

Some users may also drop in the second round transmission,
and the set of surviving users after the second round is denoted
as U2, where U2 ⊆ U1 and |U2| ≥ U. Thus the server receives
Y U1k where k ∈ U2.

Decoding. The server should recover
∑

k∈U1 Wk from
(Xk1

: k1 ∈ U1) and (Y U1k2
: k2 ∈ U2), i.e.,

H

(∑
k∈U1

Wk

∣∣∣(Xk1
: k1 ∈ U1), (Y U1k2

: k2 ∈ U2)

)
= 0, (4)

for each U1 ⊆ [K] and each U2 ⊆ U1 : |U1| ≥ |U2| ≥ U.
Meanwhile, the security constraint imposes that after receiving
all messages sent by the users including the dropped users
(e.g., the users are not really dropped but too slow in the
transmission), the server cannot get any other information
about the input vectors except

∑
k∈U1 Wk, i.e.,

I

(
W1, . . . ,WK;X1, . . . ,XK, (Y

U1
k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk

)
= 0,

(5)

for each U1 ⊆ [K] where |U1| ≥ U.

Objective. A rate tuple (R1,R2) is achievable if there exist
keys

(
ZV : V ∈

(
[K]
S

))
satisfying (1) and a secure aggregation

scheme satisfying the decodability and security constraints
in (4) and (5). Our objective is to determine the capacity region
(i.e., the closure of all achievable rate tuples) of the considered
problem, denoted by R?.

A converse bound from [9]. By removing the uncoded
groupwise constraint on the keys in our considered problem,
we obtain the information theoretic aggregation problem in [9].
Hence, the converse bound on the capacity region in [9] is also
a converse bound for our considered problem, which leads to
the following lemma.

Lemma 1 ( [9]). For the (K,U, S) information theoretic
secure aggregation problem with uncoded groupwise keys, any
achievable rate tuple (R1,R2) satisfies

R1 ≥ 1, R2 ≥
1

U
. (6)

�

However, the achievable secure aggregation schemes in [9],
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TABLE I: Comparison on the information theoretic secure aggregation schemes. Our scheme 1 represents the proposed
scheme for the case 2U− 1 ≤ K < U+ S, while Our scheme 2 reprsents the proposed scheme for the case

K < min{2U− 1,U+ S}.

[6] [9] [10] Our scheme 1 Our scheme 2

Storage K2 1 + 1
U

((
K−1
U−1
)
+ · · ·+

(
K−1
K−1
))

1 + K
U

K−U+1
U S O(K−U+1

U SK)

R1 1 1 1 1 1

R2 O
(
K−U+1

U K
)

1
U

1
U

1
U

1
U

[10] cannot work in our considered problem with S < K,
since the schemes in [9], [10] assign correlated coded keys to
users, while in our considered problem the keys are uncoded,
groupwise-sharing and independent.

Another observation is that the capacity region of the
(K,U, S1) information theoretic secure aggregation problem
with uncoded groupwise keys covers that of the (K,U, S2) in-
formation theoretic secure aggregation problem with uncoded
groupwise keys, where S1 > S2. This is because, without
collusion between the server and the users, having more users
knowing the same key will not hurt. So any key ZV2 could
be generated by extracting some symbols from ZV1 where
V2 ⊆ V1.

III. MAIN RESULTS

We first present the main result of our paper.

Theorem 1. For the (K,U, S) information theoretic secure
aggregation problem with uncoded groupwise keys, when S >
K− U, we have

R? =

{
(R1,R2) : R1 ≥ 1,R2 ≥

1

U

}
. (7)

�

The converse bound for Theorem 1 is directly from
Lemma 1. For the achievability, we propose a new secure
aggregation scheme based on linear coding and interference
alignment, which is described in Section IV.

When S > K − U, the proposed scheme for Theorem 1
achieves the same capacity region as the optimal secure
aggregation scheme without any constraint on the keys in [9].
It is also interesting to see that increasing S above K−U+1
will not reduce the communication cost.

There are totally
(
K
S

)
subsets of [K] with cardinality S. By

the problem setting, we can use at most
(
K
S

)
keys each of

which is shared by S users. However, we do not need to use
generate all these

(
K
S

)
keys in our proposed secure scheme

for Theorem 1. It will be clarified in Section IV that, the
number of needed keys by the proposed secure aggregation
scheme for Theorem 1 is K when U ≤ K − U + 1 and is
O(K2) when U > K − U + 1, where each key has (K −
U + 1)L/U symbols.12 Since in our proposed schemes, each
key should be stored by K users, the average storage cost
normalized by L of each user is K−U+1

U S when U ≤ K−U+

12The selection on the keys is done before the model aggregation phase,
and only depends on the system parameters K, U, and S, independent of the
realizations of sets U1 and U2 in the model aggregation phase.

1, and O(K−U+1
U SK) when U > K − U + 1.13 In Table I,

we compare the proposed secure aggregation scheme and the
existing information theoretic secure aggregation schemes with
offline key sharing in [6], [9], [10], in terms of the storage cost
normalized by L at each user, first-round transmission rate R1,
and second-round transmission rate R2.14 More precisely,
• The secure aggregation scheme in [6] could be modi-

fied to guarantee information theoretic security if each
key is generated with i.i.d. symbols (i.e., without using
pseudorandom generator). In the rest of this paper, while
comparing the performance of the scheme in [6] and the
proposed scheme, we consider the modified version of
the scheme in [6] which guarantees information theoretic
security. Note that if there does not exist any colluding
user, the secrete sharing parameter t in [6] could be set
to 1 and thus the keys in the secure aggregation scheme
in [6] are shared by all users.

• If coded key assignment is allowed, the secure aggrega-
tion scheme in [9] needs to generate U coded keys with
L/U symbols for each group of users V ⊆ [K] where
|V| ∈ [U : K], where each user in the group stores a
linear combination of these U coded keys; for each pair
of users V ⊆ [K] where |V| = 2, the secure aggregation
scheme in [10] lets each user in the pair generate a coded
key with L/U symbols and share it to the other user in
the pair.

It can be seen from Table I that, the proposed scheme could
significantly reduce the storage cost and the second-round
transmission rate of the secure aggregation scheme in [6];
the proposed scheme has lower storage cost than the scheme
in [9]; in addition, the proposed scheme has higher storage cost
than the scheme in [10]. Furthermore, we want to emphasize
that if the constraint of uncoded groupwise keys is imposed,
the schemes in [6], [9], [10] can only work when S = K.

For the case S ≤ K − U, the following theorem shows
that the communication rate of the optimal secure aggregation
scheme without any constraint on the keys in [9] cannot be
achieved; i.e., the capacity region of the considered problem
is a strict subset of the one in [9].

13If we require the same storage cost at each user, we can take K cyclic
wrap-around permutations on the users and divide the computation task into K
non-overlapping and equal-length pieces. Then we use the proposed scheme
K times independently to construct the keys and transmissions, where each
time we refer to one permutation of users and one piece of computation task
(thus the lengths of keys and transmissions in each time are divided by K).

14The secure aggregation schemes in [6], [9], [10] can tolerate up to T < U
users who collude with the server. However, in this paper we do not consider
user collusion; thus in our comparison (and also in the later experiments) we
set T = 0.
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Theorem 2. For the (K,U, S) information theoretic secure
aggregation problem with uncoded groupwise keys, when 1 =
S ≤ K−U, secure aggregation is not possible; when 2 ≤ S ≤
K−U, the communication rate of the first round must satisfy
that

R1 ≥ 1 +
1(

K−1
S−1
)
− 1

. (8)

�

The proof of Theorem 2 can be found in Appendix A. From
Theorem 2, when 2 ≤ S ≤ K−U, it is not enough for each user
to transmit one (normalized) linear combination of the input
vector and keys. Intuitively, this is because the total number
of dropped users after the second round could be larger than
or equal to S, which is the number of users sharing each key;
thus some key(s) appearing in the transmission of the first
round, may not be received in the received packets of the
second round due to the user dropouts. Hence, we need to
transmit more than one (normalized) linear combination in
the first round. It is one of our on-going works to design tight
achievable schemes and converse bounds for the case 2 ≤ S ≤
K− U.

IV. PROOF OF THEOREM 1: NEW SECURE AGGREGATION
SCHEME

To present the proposed scheme, we only need to focus on
the case where S = K−U+1. As we explained at the end of
Section II, this is because if S > K−U+ 1, we can generate
any key ZV where V ∈

(
[K]

K−U+1

)
by extracting some symbols

from ZV1 where V1 ∈
(
[K]
S

)
and V ⊆ V1, while the users

in V1 \ V will not use ZV even they know it. Thus a secure
aggregation scheme for the case S = K − U + 1 could also
work for the case S > K− U+ 1.

The construction structure of the achievable scheme is as
follows.
• Since the length of each input vector Wk where k ∈ [K] is

large enough, as explained in [9], we can consider blocks
of symbols of Wk as an element of a suitably large field
extension and consider operations such as element wise
sum as operations over the field extension. Hence, without
loss of generality, in the scheme proposed in this paper we
can assume that q is large enough. We then divide each
input vector Wk where k ∈ [K] into U non-overlapping
and equal-length pieces, where the jth piece denoted by
Wk,j contains L/U symbols on Fq. In addition, for each
V ∈

(
[K]
S

)
and each k ∈ V ,15 we let ZV,k denote a vector

of L/U uniform i.i.d. symbols on Fq. Then, we define a
key ZV = (ZV,k : k ∈ V) with totally L symbols and let
ZV be shared by all users in V .

• In the first round, each user k ∈ [K] sends

Xk,j = Wk,j +
∑

V∈([K]S ):k∈V

aV,jZV,k, ∀j ∈ [U], (9)

where aV,j ∈ Fq is a coefficient to be designed.16

15Recall that
(X
y

)
= {S ⊆ X : |S| = y} where |X | ≥ y > 0.

16In this paper, the product ab where a is a scalar and b is a vector or a
matrix, represents multiplying each element in b by a.

Note that each Xk,j contains L/U symbols, and thus
Xk = (Xk,1, . . . ,Xk,U) contains L symbols, which leads
to R1 = 1.
We let aV := [aV,1, . . . , aV,U]

T. By the security con-
straint, Wk should be perfectly protected by the keys
in Xk = (Xk,1, . . . ,Xk,U); otherwise, the server can
retrieve some information about Wk from Xk which hurts
the security. Thus, by denoting the sets V ∈

(
[K]
S

)
where

k ∈ V by Sk,1, . . . ,Sk,(K−1
S−1)

, we aim to have that the

coefficients matrix (whose dimension is U×
(
K−1
S−1
)
)[

aSk,1
, . . . ,aS

k,(K−1
S−1)

]
has rank equal to U, ∀k ∈ [K].

(10)

If the constraints in (10) are satisfied, we have

I(W1, . . . ,WK;X1, . . . ,XK) = 0, (11)

i.e., the server cannot get any information about
W1, . . . ,WK even if the server receives all X1, . . . ,XK

(this will be formally proved in (92) in Appendix C,
where we also show that (11) is required for our scheme
satisfying the security).
Since the set of surviving users after the first round is
U1, the server receives Xk where k ∈ U1, and thus can
recover∑

k∈U1

Xk,j

=
∑
k∈U1

Wk,j +
∑

V∈([K]S ):V∩U1 6=∅

(
aV,j

∑
k1∈V∩U1

ZV,k1

)
(12)

=
∑
k∈U1

Wk,j +
∑
V∈([K]S )

(
aV,j

∑
k1∈V∩U1

ZV,k1

)
, ∀j ∈ [U],

(13)

where (13) follows since S = K − U + 1 >
K − |U1|. Hence, the server still needs to recover∑
V∈([K]S )

(
aV,j

∑
k1∈V∩U1 ZV,k1

)
for each j ∈ [U] in the

next round. We can treat

ZU1V :=
∑

k1∈V∩U1

ZV,k1
, ∀V ∈

(
[K]

S

)
, (14)

as one coded key, which can be encoded by all users in
V∩U1 and contains L/U uniform and i.i.d. symbols. Thus
by the construction of the first round transmission, we
only need to transmit linear combinations of coded
keys in the second round, such that the server can
recover

∑
V∈([K]S )

aV,jZ
U1
V for each j ∈ [U].

• In the second round, we denote the sets in
(
[K]
S

)
by

S1, . . . ,S(KS), and for each k ∈ [K] denote the sets in(
[K]\{k}

S

)
by Sk,1, . . . ,Sk,(K−1

S ). Thus the server should
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recover F1

...
FU

 =

[
aS1 , . . . ,aS(KS)

]
ZU1S1

...
ZU1S

(KS)

 , (15)

where each Fj , j ∈ [U], contains L/U symbols.
Note that each user k ∈ U1 cannot encode ZU1V where
V ∈

(
[K]\{k}

S

)
. If the U-dimensional vectors aV where

V ∈
(
[K]
S

)
satisfy the constraints that[

aSk,1
, . . . ,aS

k,(K−1
S )

]
has rank equal to U− 1, ∀k ∈ [K],

(16)

then the matrix
[
aSk,1

, . . . ,aS
k,(K−1

S )

]
contains exactly

one linearly independent left null vector. To achieve (16),
we will propose some interference alignment tech-
niques to align the U-dimensional vectors of the

(
K−1
S

)
unknown keys to a linear space spanned by U − 1
linearly independent vectors.
Thus we can let each user k ∈ U1 transmit

Y U1k = sk

F1

...
FU

 , (17)

where sk represents the left null vector of[
aSk,1

, . . . ,aS
k,(K−1

S )

]
. By construction, in Y U1k

the coefficients of the coded keys which cannot be
encoded by user k are 0. Note that Y U1k contains L/U
symbols, which leads to R2 = 1/U.
For the decodability, from any set of surviving users
after the second round U2 ⊆ U1 where |U2| ≥ U,
we should recover F1, . . . ,FU from the second round
transmission; i.e., we aim to have

any U vectors in {sk : k ∈ U1} are linearly independent.
(18)

Thus from (13) and (18), the server can recover
F1, . . . ,FU and then recover

∑
k∈U1 Wk,j for all j ∈ [U];

thus it can recover
∑

k∈U1 Wk.
In addition, for the security constraint, by construction
we have

H
(
Y U1k : k ∈ U1

)
= L, (19)

which follows since each Y U1k where k ∈ U1 is in
the linear space spanned by F1, . . . ,FU, where each
Fj , j ∈ [U], contains L/U symbols. Intuitively, from
(Xk : k ∈ [K]), the server cannot get any information
about W1, . . . ,WK. Together with (Y U1k : k ∈ U1)
whose entropy is L, the server can at most get L symbols
information about W1, . . . ,WK, which are exactly the
symbols in

∑
k∈U1 Wk. Hence, the proposed scheme is

secure. The rigorous proof on the security constraint
in (5) can be found in Appendix C.

We conclude that the achieved rates are (R1,R2) = (1, 1/U),
coinciding with Theorem 1.

For what said above, it is apparent that the key challenge
in the proposed scheme is to design the U-dimensional
vectors aV where V ∈

(
[K]
S

)
, such that the constraints

in (10), (16), and (18) are satisfied. As showed above, if such
constraints are satisfied, the proposed scheme is decodable
and secure.

Another important observation is that, the constraints
in (10), (16) are not related to U1; in addition, if the constraint
in (18) is satisfied for the case U1 = [K], this constraint also
holds for any other U1. Hence, we only need to consider
the case U1 = [K] to design the U-dimensional vectors aV
where V ∈

(
[K]
S

)
.

In the following, we will further divide the considered case
U < K into three regimes: a) U ≤ K−U+1; b) U > K−U+1
and U = K − 1; c) U > K − U + 1 and U < K − 1. We
will propose our scheme for each regime which achieves the
capacity region in Theorem 1. In each regime, we propose
a different selection on the U-dimensional vectors aV where
V ∈

(
[K]
S

)
, such that the constraints in (10), (16), and (18) are

satisfied. For the ease of reading, in Table II we summarize the
main parameters and variables used in the proposed scheme.

A. Case U ≤ K− U+ 1

We first illustrate the proposed scheme for this case through
an example.

Example 1 ((K,U, S)) = (3, 2, 2)). Consider the (K,U, S) =
(3, 2, 2) information theoretic secure aggregation problem
with uncoded groupwise keys. While illustrating the proposed
scheme through examples, we perform a field extension on
the input vectors to a large enough prime field Fq. In general
this assumption on prime field size is not necessary in our
proposed scheme.

For each V ∈
(
[3]
2

)
, we generate a key ZV = (ZV,k : k ∈ V)

shared by users in V , where each ZV,k contains L/2 uniform
and i.i.d. symbols over Fq. We also divide each input vector
Wk where k ∈ [3] into two pieces, Wk = (Wk,1,Wk,2), where
each piece contains L/2 uniform and i.i.d. symbols over Fq.

First round. In the first round, user 1 transmits X1 =
(X1,1,X1,2), where

X1,1 = W1,1 + Z{1,2},1 + Z{1,3},1;

X1,2 = W1,2 + Z{1,2},1 + 2Z{1,3},1.

User 2 transmits X2 = (X2,1,X2,2), where

X2,1 = W2,1 + Z{1,2},2 + Z{2,3},2;

X2,2 = W2,2 + Z{1,2},2 + 3Z{2,3},2.

User 3 transmits X3 = (X3,1,X3,2), where

X3,1 = W3,1 + Z{1,3},3 + Z{2,3},3;

X3,2 = W3,2 + 2Z{1,3},3 + 3Z{2,3},3.

In other words, we let

a{1,2} = [1, 1]T, a{1,3} = [1, 2]T, a{2,3} = [1, 3]T. (20)
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TABLE II: Notations and main variables used in the proposed scheme.

Notations Semantics
K number of users and number of input vectors
U minimum number of non-dropped users
S number of users sharing each key

R1, R2 first-round and second-round communication rates
Wk = (Wk,j : j ∈ [U]) input vector of user k

where Wk,j has L/U i.i.d. symbols on Fq

Xk = (Xk,j : j ∈ [U]), first-round transmission of user k,
for k ∈ [K] where Xk,j defined in (9) has L/U symbols on Fq

ZV = (ZV,k : k ∈ V), for V ∈
(
[K]
S

)
key shared by users in V ,

where ZV,k has L/U i.i.d. symbols on Fq

ZU1V , for U1 ⊆ [K], |U1| ≥ U, V ∈
(
[K]
S

) ∑
k1∈V∩U1 ZV,k1

, coded key with L/U i.i.d. symbols on Fq

aV = [aV,1, aV,2, . . . , aV,U]
T, U-dimensional column vector, which needs to be selected

for V ∈
(
[K]
S

)
satisfying the constraints in (10), (16), (18)

S1,S2, . . . ,S(KS) sets in
(
[K]
S

)
Sk,1,Sk,2, . . . ,Sk,(K−1

S−1)
, for k ∈ [K] sets in

(
[K]
S

)
containing k

Sk,1,Sk,2, . . . ,Sk,(K−1
S ) sets in

(
[K]\{k}

S

)
Fj for j ∈ [U] L/U symbols on Fq defined in (15) which should be

recovered by the server in the second round
sk for k ∈ [K] U-dimensional vector,

which is a left null vector of
[
aSk,1

, . . . ,aS
k,(K−1

S )

]
Y U1k for U1 ⊆ [K], |U1| ≥ U, k ∈ U1 second-round transmission of user k defined in (17),

containing L/U symbols on Fq

In X1, the coefficient matrix of the keys (Z{1,2},1,Z{1,3},1)

is
[
1 1
1 2

]
, which has rank equal to 2 (recall that the field size

is large enough), i.e., the constraint in (10) is satisfied for user
1. Thus W1 is perfectly protected by (Z{1,2},1,Z{1,3},1) from
X1. Similarly, the constraints in (10) are satisfied for user 2, 3.

Second round. In the second round, we only need to consider
the case where U1 = [3], as explained before. Since U1 = [3],
the server should recover W1 + W2 + W3. By the definition
of coded key in (14), we define the coded keys

Z
[3]
{1,2} = Z{1,2},1 + Z{1,2},2,

Z
[3]
{1,3} = Z{1,3},1 + Z{1,3},3,

Z
[3]
{2,3} = Z{2,3},2 + Z{2,3},3,

each of which contains L/2 uniform and i.i.d. symbols. From
the transmission of the first round, the server can recover

X1,1 +X2,1 +X3,1 = W1,1 +W2,1 +W3,1

+ Z
[3]
{1,2} + Z

[3]
{1,3} + Z

[3]
{2,3},

X1,2 +X2,2 +X3,2 = W1,2 +W2,2 +W3,2

+ Z
[3]
{1,2} + 2Z

[3]
{1,3} + 3Z

[3]
{2,3}.

Hence, the server should further recover

[
F1

F2

]
= [a{1,2},a{1,3},a{2,3}]


Z

[3]
{1,2}

Z
[3]
{1,3}

Z
[3]
{2,3}

 (21a)

=

[
1 1 1
1 2 3

]
Z

[3]
{1,2}

Z
[3]
{1,3}

Z
[3]
{2,3}

 (21b)

totally L symbols in the second round. Since |U2| ≥ S = 2,
the second round transmission should be designed such that
from any two of Y [3]

1 ,Y
[3]
2 ,Y

[3]
3 , we can recover (21b).

For user 1 who cannot encode Z
[3]
{2,3}, the sub-matrix

[a{2,3}] has rank equal to 1; thus the constraint in (16) is
satisfied for user 1. The left null space of [a{2,3}] contains
exactly one linearly independent 2-dimensional vector, which
could be [3,−1]. Thus we let user 1 transmit

Y
[3]
1 = [3,−1]

[
F1

F2

]
= 3F1 − F2, (22)

in which the coefficient of Z
[3]
{2,3} is 0. Similarly, we let user

2 transmit

Y
[3]
2 = [2,−1]

[
F1

F2

]
= 2F1 − F2, (23)

in which the coefficient of Z [3]
{1,3} is 0, and let user 3 transmit

Y
[3]
3 = [1,−1]

[
F1

F2

]
= F1 − F2, (24)

in which the coefficient of Z [3]
{1,2} is 0. The constraints in (16)

are also satisfied for users 2, 3.

By construction, any two of Y
[3]
1 ,Y

[3]
2 ,Y

[3]
3 are linearly
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independent. Hence, for any U2 ⊆ [3] where |U2| ≥ 2, the
server can recover F1 and F2; thus the constraint in (18) is
satisfied. Hence, from the two round transmissions, the server
can recover W1 +W2 +W3.

Since the constraints in (10), (16), and (18) are satisfied, by
the security proof in Appendix C, the scheme is secure for the
case U1 = [3].

In conclusion, in the first round, each user transmits L
symbols. In the second round, each user in U1 transmits L/2
symbols. Hence, the achieved rates are (R1,R2) = (1, 1/2),
coinciding with Theorem 1. �

We are now ready to generalize the proposed scheme in
Example 1 to the case where U ≤ K − U + 1. For the
sake of simplicity, we directly describe the choice of the U-
dimensional vectors and show that such choice satisfies the
constraints in (10), (16), and (18).

We use a cyclic key assignment, by defining a collection of
cyclic sets

C :=
{
{i, 〈i+ 1〉K , . . . , 〈i+ K− U〉K} : i ∈ [K]

}
. (25)

For the ease of notation, we sort the sets in C in an order where
the ith set denoted by C(i) is {i, 〈i+ 1〉K , . . . , 〈i+ K− U〉K},
for each i ∈ [K].17 It can be seen that each of the sets
C(k), C(〈k − 1〉K), . . . , C(〈k − K+ U〉K) contains k, for each
k ∈ [K].

We select the U-dimensional vectors aV where V ∈
(
[K]
S

)
as

follows:

• if V ∈ C, we let aV be uniform and i.i.d. over FU
q ;

• otherwise, we let each element in aV be 0.

Next we will show that the above choice of these U-
dimensional vectors satisfies the constraints in (10), (16),
and (18), with high probability.

Constraints in (10): Since q is large enough and U ≤
K− U+ 1, for each k ∈ [K] the matrix[

aC(k),aC(〈k−1〉K), . . . ,aC(〈k−K+U〉K)
]

whose dimension is U× (K−U+1), has rank equal to U with
high probability; thus the constraints in (10) are satisfied with
high probability.

Constraints in (16): Among the sets in C, each
of the sets C(〈k + 1〉K), C(〈k + 2〉K), . . . , C(〈k + U− 1〉K)
does not contain k, where k ∈ [K]. It can be seen
that [aC(〈k+1〉K),aC(〈k+2〉K), . . . ,aC(〈k+U−1〉K)] has dimension
equal to U× (U− 1), and that its elements are uniformly and
i.i.d. over Fq. So the left null space contains U− (U− 1) = 1
linearly independent U-dimensional vector with high probabil-
ity, and we let sk be this vector. Hence, the constraints in (16)
are satisfied with high probability.

Constraint in (18): Recall that we only need to consider
the case where U1 = [K]. In the second round transmission,

17For example, when K = 4 and U = 2, we have C(1) = {1, 2, 3},
C(2) = {2, 3, 4}, C(3) = {1, 3, 4}, and C(4) = {1, 2, 4}.

the server should recover U linear combinations of coded keys,F1

...
FU

 =
[
aC(1), . . . ,aC(K)

] 
Z

[K]
C(1)
...

Z
[K]
C(K)

 ,

from the answers of any U of the K users, each of whom
knows K − U + 1 coded keys in a cyclic way. This problem
is equivalent to the distributed linearly separable computation
problem in [33], where we aim to compute U linear combi-
nations of K messages (whose coefficients are uniformly and
i.i.d. over Fq) through K distributed computing nodes, each
of which can stores K − U + 1 messages, such that from the
answers of any U nodes we can recover the computing task.
From [33, Lemma 2], we have the following lemma.

Lemma 2 ( [33]). For any set A ∈
(
[K]
U

)
, the vectors sn,n ∈

A, are linearly independent with high probability. �

Thus by Lemma 2, the constraint in (18) is satisfied with
high probability.

In conclusion, all constraints in (10), (16), and (18) are
satisfied with high probability. Hence, there must exist a choice
of
[
aC(1), . . . ,aC(K)

]
satisfying those constraints. Thus the

proposed scheme is decodable and secure. In this case, we
need the keys ZV where V ∈ C, totally K keys each of which
is shared by S users.

B. Case U > K− U+ 1 and U = K− 1

When U > S, the proposed secure aggregation scheme with
cyclic assignment does not work. This is because, among C,
the number of sets containing each k ∈ [K] is K−U+1 < U,
which are C(k), C(〈k − 1〉K), . . . , C(〈k − K+ U〉K).
Hence, the coefficient matrix of keys in Xk,[
aC(k),aC(〈k−1〉K), . . . ,aC(〈k−K+U〉K)

]
, is with dimension

U× (K− U+ 1) and with rank strictly less than U. Thus the
constraint in (10) is not satisfied. In other words, Wk is not
perfectly protected from Xk.

In this subsection, we present our proposed secure aggrega-
tion scheme for the case where U > K−U+1 and U = K−1.
We first illustrate the main idea through the following example.

Example 2 ((K,U, S)) = (4, 3, 2)). Consider the (K,U, S) =
(4, 3, 2) information theoretic secure aggregation problem with
uncoded groupwise keys. For each V ∈

(
[4]
2

)
, we generate a

key ZV = (ZV,k : k ∈ V) shared by users in V , where each
ZV,k contains L/3 uniform and i.i.d. symbols over Fq. We
also divide each input vector Wk where k ∈ [4] into three
pieces, Wk = (Wk,1,Wk,2,Wk,3), where each piece contains
L/3 uniform and i.i.d. symbols over Fq.

In the first round, each user k ∈ [4] transmits

Xk,j = Wk,j +
∑

V∈([4]2 ):k∈V

aV,jZV,k, ∀j ∈ [3]. (26)

Now we select the 3-dimensional vectors a{1,2}, a{1,3}, a{1,4},
a{2,3}, a{2,4}, and a{3,4} as follows,

a{1,2} = [1, 0, 0]T, a{1,3} = [0, 1, 0]T, a{1,4} = [0, 0, 1]T,
(27a)
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a{2,3} = a{1,2} − a{1,3} = [1,−1, 0]T, (27b)

a{2,4} = a{1,2} − a{1,4} = [1, 0,−1]T, (27c)

a{3,4} = a{1,3} − a{1,4} = [0, 1,−1]T. (27d)

We next show that by the above choice the constraints
in (10), (16), and (18) are satisfied.

For user 1, the matrix [a{1,2},a{1,3},a{1,4}] = I3 has
rank 3, where we recall that I3 represents the identity ma-
trix with dimension 3 × 3. Hence, the constraint in (10)
is satisfied for user 1. Thus W1 is perfectly protected by
(Z{1,2},1, ,Z{1,3},1,Z{1,4},1) from X1. For user 2, the matrix

[a{1,2},a{2,3},a{2,4}] =

1 1 1
0 −1 0
0 0 −1

 has rank 3. Hence,

the constraint in (10) is satisfied for user 2. Thus W2 is
perfectly protected by (Z{1,2},2, ,Z{2,3},2,Z{2,4},2) from X2.
Similarly, the constraints in (10) are also satisfied for users
3, 4.

In the second round, we only need to consider the case
U1 = [4], where the server should recover W1+ · · ·+W4. By
defining the coded keys as in (14), the server needs to further
recover

F1

F2

F3

 = [a{1,2},a{1,3},a{1,4},a{2,3},a{2,4},a{3,4}]



Z
[4]
{1,2}

Z
[4]
{1,3}

Z
[4]
{1,4}

Z
[4]
{2,3}

Z
[4]
{2,4}

Z
[4]
{3,4}


(28a)

=

1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1




Z
[4]
{1,2}

Z
[4]
{1,3}

Z
[4]
{1,4}

Z
[4]
{2,3}

Z
[4]
{2,4}

Z
[4]
{3,4}


. (28b)

For user 1 who cannot encode Z
[4]
{2,3},Z

[4]
{2,4},Z

[4]
{3,4}, it can

be seen that the sub-matrix [a{2,3},a{2,4},a{3,4}] has rank 2,
equal to the rank of [a{2,3},a{2,4}], since a{2,3} − a{2,4} =
−a{3,4};18 thus the constraint in (16) is satisfied for user 1.
Hence, the left null space of [a{2,3},a{2,4},a{3,4}] contains
exactly one linearly independent 3-dimensional vector, which
could be [1, 1, 1]. Thus we let user 1 compute

Y
[4]
1 = [1, 1, 1]

F1

F2

F3

 = F1 + F2 + F3. (29)

For user 2, who cannot encode Z
[4]
{1,3},Z

[4]
{1,4},Z

[4]
{3,4}, it can

be seen that the sub-matrix [a{1,3},a{1,4},a{3,4}] has rank 2,
equal to the rank of [a{1,3},a{1,4}], since a{3,4} = a{1,3} −
a{1,4}; thus the constraint in (16) is satisfied for user 2. Hence,

18In other words, we align the three vectors a{2,3},a{2,4},a{3,4} into
the linear space spanned by a{2,3} and a{2,4}.

the left null space of [a{1,3},a{1,4},a{3,4}] contains exactly
one linearly independent 3-dimensional vector, which could
be [1, 0, 0]. Thus we let user 2 compute

Y
[4]
2 = [1, 0, 0]

F1

F2

F3

 = F1. (30)

Similarly, the constraints in (16) are satisfied for users 3, 4;
thus we let user 3 compute

Y
[4]
3 = [0, 1, 0]

F1

F2

F3

 = F2, (31)

and let user 4 compute

Y
[4]
4 = [0, 0, 1]

F1

F2

F3

 = F3. (32)

It can be seen that any 3 of Y [4]
1 ,Y

[4]
2 ,Y

[4]
3 ,Y

[4]
4 are linearly

independent; thus the constraint in (18) is satisfied. Hence,
for any U2 ∈

(
[4]
3

)
, the server can recover F1,F2,F3 from

the second round. Thus from the two round transmissions, the
server can recover W1 + · · ·+W4.

Since the constraints in (10), (16), and (18) are satisfied, by
the security proof in Appendix C, the scheme is secure for the
case U1 = [4].

In conclusion, the achieved rates of the proposed scheme
are (R1,R2) = (1, 1/3), coinciding with Theorem 1.

�

We are now ready to generalize the proposed scheme in
Example 2 to the case where U > K−U+ 1 and U = K− 1.
In this case, we have S = 2. As the previous case, we directly
describe the choice of the U-dimensional vectors and show that
such choice satisfies the constraints in (10), (16), and (18).

Let us first consider the sets V ∈
(
[K]
2

)
where 1 ∈ V . Each

of such sets could be written as {1, j}, where j ∈ [2 : K− 1].
We let

a{1,j} = eU,j−1, ∀j ∈ [2 : K], (33)

where en,i represents the vertical n-dimensional unit vector
whose entry in the ith position is 1 and 0 elsewhere. We
then consider the sets V ∈

(
[2:K]
2

)
. Each of such sets could

be written as {i, j}, where 1 < i < j ≤ K. We let

a{i,j} = a{1,i} − a{1,j} = eU,i−1 − eU,j−1, ∀1 < i < j ≤ K.
(34)

Next we will show that the above choice of these U-
dimensional vectors satisfies the constraints in (10), (16),
and (18).

Constraints in (10): For user 1, the matrix[
a{1,2},a{1,3}, . . . ,a{1,K}

]
is the identity matrix IK−1 = IU,

whose rank is U; thus the constraint in (10) is satisfied for
user 1. For each user k ∈ [2 : K], by a simple linear transform
on the matrix[
a{1,k},a{2,k}, . . . ,a{k−1,k},a{k,k+1},a{k,k+2}, . . . a{k,K}

]
,

(35)
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we obtain the matrix

[a{1,k} + a{2,k},a{1,k} + a{3,k}, . . . ,a{1,k} + a{k−1,k},

a{1,k},a{1,k} − a{k,k+1},a{1,k} − a{k,k+2},

. . . ,a{1,k} − a{k,K}]

= [eU,1, eU,2, . . . , eU,k−2, eU,k−1, eU,k, eU,k+1, . . . , eU,K−1],

which is the identity matrix IK−1 = IU with rank equal to U,
which is also full rank. Hence, the matrix in (35) is full rank,
with rank equal to U; thus the constraint in (10) is satisfied
for user k.

Constraints in (16): For user 1, among the sets in V ∈(
[K]
2

)
, the sets {2, 3}, {2, 4}, . . . , {2,K}, {3, 4}, . . . , {K−1,K}

do not contain 1. It can be seen that the following K−2 vectors,

a{2,3} = eU,1 − eU,2, a{2,4} (36a)
= eU,1 − eU,3, . . . , a{2,K} (36b)
= eU,1 − eU,K−1, (36c)

are linearly independent. In addition, for each set {i, j} where
2 < i < j ≤ K, we have a{i,j} = a{2,j} − a{2,i}. Hence,

the matrix
[
aS1,1

, . . . ,aS
1,(K−1

2 )

]
has rank equal to K − 2 =

U− 1,19 satisfying the constraint in (16).
For each user k ∈ [2 : K], among the sets in V ∈

(
[K]
2

)
, the

sets {1, 2}, {1, 3}, . . . , {1, k − 1}, {1, k + 1}, . . . , {1,K} and
the sets {i, j} where 1 < i < j ≤ K and i, j 6= k, do not
contain k. It can be seen that the following K− 2 vectors,

a{1,2} = eU,1,a{1,3} = eU,2, . . . ,a{1,k−1} (37a)
= eU,k−2,a{1,k+1} = eU,k, . . . ,a{1,K} (37b)
= eU,K−1, (37c)

are linearly independent. In addition, for each set {i, j} where
1 < i < j ≤ K and i, j 6= k, we have a{i,j} = a{1,i}−a{1,j}.

Hence, the matrix
[
aSk,1

, . . . ,aS
k,(K−1

2 )

]
has rank equal to

K− 2 = U− 1, satisfying the constraint in (16).

Constraint in (18): For user 1, recall that s1 is a left null

vector of the matrix
[
aS1,1

, . . . ,aS
1,(K−1

2 )

]
, whose rank is U−

1. The left null space of
[
aS1,1

, . . . ,aS
1,(K−1

2 )

]
is the same as

that of its column-wise sub-matrix
[
a{2,3},a{2,4}, . . . ,a{2,K}

]
,

whose rank is also U−1 and dimension is U× (U−1). Since[
a{2,3},a{2,4}, . . . ,a{2,K}

]
=
[
a{2,3},a{2,4}, . . . ,a{2,K}

]
= [eU,1 − eU,2, eU,1 − eU,3, . . . , eU,1 − eU,K−1]

contains exactly one linearly independent left null vector,
which could be (recall that 1n represents the vertical n-
dimensional vector whose elements are all 1)

1U = s1. (38)

19Recall that for each k ∈ [K], the sets V ∈
([K]\{k}

S

)
are

Sk,1, . . . ,Sk,
(
K−1
S

).

For each user k ∈ [2 : K], sk is a left null vector

of the matrix
[
aSk,1

, . . . ,aS
k,(K−1

2 )

]
, whose rank is

U − 1. The left null space of
[
aSk,1

, . . . ,aS
k,(K−1

2 )

]
is the same as that of its column-wise sub-matrix[
a{1,2},a{1,3}, . . . ,a{1,k−1},a{1,k+1}, . . . ,a{1,K}

]
, whose

rank is also U− 1 and dimension is U× (U− 1). Since[
a{1,2},a{1,3}, . . . ,a{1,k−1},a{1,k+1}, . . . ,a{1,K}

]
= [eU,1, eU,2, . . . , eU,k−2, eU,k, . . . , eU,K−1]

contains exactly one linearly independent left null vector,
which could be

eU,k−1 = sk. (39)

From (38) and (39), it can be seen that any U vectors of
s1, . . . , sK are linearly independent; thus the constraint in (18)
is satisfied.

In conclusion, all constraints in (10), (16), and (18) are
satisfied; thus the proposed scheme is decodable and secure.
In this case, we need the keys ZV where V ∈

(
[K]
2

)
, totally

K(K− 1)/2 keys each of which is shared by 2 users.

C. Case U > K− U+ 1 and U < K− 1

Finally, we focus on the most involved case where U >
K − U + 1 and U < K − 1. In this case, we have S > 2
and 2U > K + 1. Recall that our objective is to determine
the U-dimensional vectors aV where V ∈

(
[K]
S

)
, such that the

constraints in (10), (16), and (18) are satisfied. We start by
illustrating the main idea through an example.

Example 3 ((K,U, S)) = (6, 4, 3)). Consider the (K,U, S) =
(6, 4, 3) information theoretic secure aggregation problem with
uncoded groupwise keys. We determine the 4-dimensional
vectors aV where V ∈

(
[6]
3

)
following three steps.

• Step 1: Select base unit vectors. We first consider each
aV where [2] ⊆ V and let aV be a distinct vertical unit
vector; i.e., we let

a[3] = e4,1, a{1,2,4} = e4,2, a{1,2,5} = e4,3, (40a)
a{1,2,6} = e4,4. (40b)

Define that G1 = {[3], {1, 2, 4}, {1, 2, 5}, {1, 2, 6}}.
• Step 2: Determine the composition of each coefficient

vector aV . For any V ∈
(
[6]
3

)
, we let aV be a linear

combination of some base unit vectors; the composition
of aV represents the set of base unit vectors involved in
the linear combination. For each i ∈ [3 : 6] ∩ V , e4,i−2
is in the composition of aV . After fixing the composition
of aV , we can write

aV =
∑

i∈[3:6]∩V

bV,i−2e4,i−2, (41)

where bV := (bV,1, . . . , bV,|[3:6]∩V|) is an |[3 : 6] ∩ V|-
dimensional vector to be designed. By this rule, we
determine the composition of each aV (i.e., the base
vertical unit vectors which compose aV ) where V ∈

(
[K]
S

)
,

as illustrated in Table III.
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• Step 3: Determine the vector bV for each aV . Next we
need to determine the coefficient vector of the vertical
base unit vectors bV for each V ∈

(
[6]
3

)
\ G1.

For each set aV where {3, 4} ⊆ V , we choose each
element of bV uniformly and i.i.d. over Fq. For example,
by choosing b{1,3,4} = [1, 4], we have

a{1,3,4} = a[3] + 4a{1,2,4} = e4,1 + 4e4,2. (42)

Similarly, by choosing b{2,3,4} = [1, 8], b{3,4,5} =
[1, 1, 1], and b{3,4,6} = [1, 2, 1], we have

a{2,3,4} = a[3] + 8a{1,2,4} = e4,1 + 8e4,2, (43a)
a{3,4,5} = a[3] + a{1,2,4} + a{1,2,5} = e4,1 + e4,2 + e4,3,

(43b)
a{3,4,6} = a[3] + 2a{1,2,4} + a{1,2,6}

= e4,1 + 2e4,2 + e4,4. (43c)

Define that G2 =
{{1, 3, 4}, {2, 3, 4}, {3, 4, 5}, {3, 4, 6}}.
We then define G3 as the collection of the
sets in

(
[6]
3

)
\ (G1 ∪ G2) where 3 ∈ V; thus

G3 = {{1, 3, 5}, {1, 3, 6}, {2, 3, 5}, {2, 3, 6}, {3, 5, 6}}.
For each set V ∈ G3, we search for the minimum subset
of G2 the union of whose elements is a super-set of V;
we denote this minimum subset by M′V . We let aV
be a linear combination of aV2 where V2 ∈ M′V . For
example, if V = {1, 3, 5}, the minimum subset of G2
the union of whose elements is a super-set of {1, 3, 5},
is M′{1,3,5} = {{1, 3, 4}, {3, 4, 5}}. We let a{1,3,5} be
a linear combination of a{1,3,4} = e4,1 + 4e4,2 and
a{3,4,5} = e4,1 + e4,2 + e4,3. Recall from (41) that, the
base unit vectors of a{1,3,5} are e4,1 and e4,3, which do
not contain e4,2. Hence, we let

a{1,3,5} = 4a{3,4,5} − a{1,3,4} = 3e4,1 + 4e4,3, (44)

to ‘zero-force’ the term e4,2. Similarly, we let

a{1,3,6} = 2a{3,4,6} − a{1,3,4} = e4,1 + 2e4,4, (45a)
a{2,3,5} = 8a{3,4,5} − a{2,3,4} = 7e4,1 + 8e4,3, (45b)
a{2,3,6} = 4a{3,4,6} − a{2,3,4} = 3e4,1 + 4e4,4, (45c)
a{3,5,6} = 2a{3,4,5} − a{3,4,6} = e4,1 + 2e4,3 − e4,4,

(45d)

to ‘zero-force’ the term e4,2.
It will be checked soon that by using the above coefficient
vectors, the full rank constraint in (10) can be satisfied,
and thus we can let all the remaining coefficient vectors
be zero vectors, in order to reduce the number of required
keys. More precisely, for each set V ∈

(
[6]
3

)
\ (G1 ∪ G2 ∪

G3), we let aV = 04, where 0n represents the vertical
n-dimensional vector whose elements are all 0.

As a result, we have determined aV for each V ∈
(
[6]
3

)
as

illustrated in Table III. We then show the such choice satisfies
the constraints in (10), (16), and (18).

Constraints in (10): For users 1, 2, the matrix[
a[3],a{1,2,4},a{1,2,5},a{1,2,6}

]
is the identity matrix

I4 whose rank is 4. For users 3, 4, the matrix[
a{1,3,4},a{2,3,4},a{3,4,5},a{3,4,6}

]
has rank equal to 4.

For user 5, the matrix
[
a{1,3,5},a{2,3,5},a{3,4,5},a{3,5,6}

]
has rank equal to 4. For user 6, the matrix[
a{1,3,6},a{2,3,6},a{3,4,6},a{3,5,6}

]
has rank equal to 4.

Hence, the constraints in (10) are satisfied.
Constraints in (16): For user 1, we first remove the

columns of 0’s from the matrix
[
aS1,1

, . . . ,aS
1,(K−1

3 )

]
, to

obtain[
a{2,3,4},a{2,3,5},a{2,3,6},a{3,4,5},a{3,4,6},a{3,5,6}

]
. (46)

By construction, we have a{2,3,5},a{2,3,6},a{3,5,6} are lin-
ear combinations of a{2,3,4},a{3,4,5},a{3,4,6}. In addition,
a{2,3,4},a{3,4,5},a{3,4,6} are linearly independent. Hence, the
rank of the matrix in (46) is 3, equal to the rank of
[a{2,3,4},a{3,4,5},a{3,4,6}]. Hence, the constraint in (16) is
satisfied for user 1. Similarly, this constraint is also satisfied
for user 2.

For user 3, by construction, in each aV where V ∈(
[6]\{3}

3

)
, the coefficient of e4,1 is 0. In addition,

a{1,2,4},a{1,2,5},a{1,2,6} are linearly independent. Thus the

matrix
[
aS3,1

, . . . ,aS
3,(K−1

3 )

]
has rank equal to 3, equal to

the rank of [a{1,2,4},a{1,2,5},a{1,2,6}]. Hence, the constraint
in (16) is satisfied for user 3. Similarly, this constraint is also
satisfied for each user in {4, 5, 6}.

Constraint in (18): For user 1, recall that s1 is a left null

vector of the matrix
[
aS1,1

, . . . ,aS
1,(K−1

3 )

]
, whose rank is 3.

As explained before, its column-wise submatrix
[a{2,3,4},a{3,4,5},a{3,4,6}] has the same rank. Hence, the
left null space of [a{2,3,4},a{3,4,5},a{3,4,6}] is the same as

that of
[
aS1,1

, . . . ,aS
1,(K−1

3 )

]
. So we let s1 be a left null

vector of [a{2,3,4},a{3,4,5},a{3,4,6}], which could be s1 =
[−8, 1, 7, 6]T. Similarly, we let s2 be a left null vector of
[a{1,3,4},a{3,4,5},a{3,4,6}], which could be s2 = [−4, 1, 3, 2]T;
we let s3 be a left null vector of [a{1,2,4},a{1,2,5},a{1,2,6}],
which could be s3 = e4,1; we let s4 be a left null vector
of [a{1,2,3},a{1,2,5},a{1,2,6}], which could be s4 = e4,2;
we let s5 be a left null vector of [a{1,2,3},a{1,2,4},a{1,2,6}],
which could be s5 = e4,3; we let s6 be a left null vector of
[a{1,2,3},a{1,2,4},a{1,2,5}], which could be s6 = e4,4.

Since any two rows of [s1, s2] are linearly independent
and [s3, s4, s5, s6] = I4, we can see that any 4 vectors
of s1, s2, s3, s4, s5, s6 are linearly independent. Hence, the
constraint in (18) is satisfied.

In conclusion, all constraints in (10), (16), and (18) are
satisfied; thus the proposed scheme is decodable and secure.
�

To summarize Example 3, our selection on the U-
dimensional vectors aV where V ∈

(
[K]
S

)
, contains the fol-

lowing steps from a high-level viewpoint:

• Step 1: Select base unit vectors: choose aV where [K−
U] ⊆ V as the base vertical unit vectors.

• Step 2: Determine the composition of each coefficient
vector aV : fix the composition of each aV where [K −
U] * V .
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TABLE III: Choice of 4-dimensional vectors aV in the (K,U, S) = (6, 4, 3) information theoretic secure aggregation problem.

aV Composition Value aV Composition Value
a[3] e4,1 e4,1 a{2,3,4} e4,1, e4,2 e4,1 + 8e4,2

a{1,2,4} e4,2 e4,2 a{2,3,5} e4,1, e4,3 7e4,1 + 8e4,3
a{1,2,5} e4,3 e4,3 a{2,3,6} e4,1, e4,4 3e4,1 + 4e4,4
a{1,2,6} e4,4 e4,4 a{2,4,5} e4,2, e4,3 04
a{1,3,4} e4,1, e4,2 e4,1 + 4e4,2 a{2,4,6} e4,2, e4,4 04
a{1,3,5} e4,1, e4,3 3e4,1 + 4e4,3 a{2,5,6} e4,3, e4,4 04
a{1,3,6} e4,1, e4,4 e4,1 + 2e4,4 a{3,4,5} e4,1, e4,2, e4,3 e4,1 + e4,2 + e4,3
a{1,4,5} e4,2, e4,3 04 a{3,4,6} e4,1, e4,2, e4,4 e4,1 + 2e4,2 + e4,4
a{1,4,6} e4,2, e4,4 04 a{3,5,6} e4,1, e4,3, e4,4 e4,1 + 2e4,3 − e4,4
a{1,5,6} e4,3, e4,4 04 a{4,5,6} e4,2, e4,3, e4,4 04

• Step 3: Determine the vector bV for each aV : for each
aV where [K−U] * V , determine the coefficients of the
base vertical unit vectors which compose aV .

In the following, we describe the three-step vector selection
for the general case where U > K− U+ 1 and U < K− 1 in
detail.

Step 1. For each j ∈ [K− U+ 1 : K], we let

a[K−U]∪{j} = eU,j−K+U. (47)

In other words, we let

[a[K−U]∪{K−U+1},a[K−U]∪{K−U+2}, . . . ,a[K−U]∪{K}]

be the identity matrix IU.
For the ease of notation, we define that20

G1 := {[K− U] ∪ {j} : j ∈ [K− U+ 1 : K]}.

It can be seen that

|G1| = U. (48)

Step 2. For each aV where V ∈
(
[K]
S

)
\ G1, we let aV be a

linear combination of some base unit vectors; the composition
of aV represents the set of base unit vectors involved in the
linear combination. For each i ∈ [K−U+1 : K]∩V , eU,i−(K−U)
is in the composition of aV . After fixing the composition of
aV , we can write

aV =
∑

i∈[K−U+1:K]∩V

bV,i−(K−U)eU,i−(K−U), (49)

where bV := (bV,1, . . . , bV,|[K−U+1:K]∩V|) is an |[K− U+ 1 :
K] ∩ V|-dimensional vector to be designed. For the ease of
notation, we define MV := [K− U+ 1 : K] ∩ V .

Step 3. We divide the sets in
(
[K]
S

)
\ G1 into three classes,

which are then considered sequentially. In short, for each set
V in the first class (denoted by G2 to be clarified later), we
choose bV uniformly and i.i.d. over F|MV |q ; for each set V
in the second class (denoted by G3 to be clarified later), we
choose bV such that aV is also a linear combination of some
vectors aV1 where V1 ∈ G2; for each set V in the third class
(i.e.,

(
[K]
S

)
\ (G1 ∪ G2 ∪ G3)), we let bV be a all-zero vector.

More precisely,

20In Example 3, when (K,U, S) = (6, 4, 3), we have G1 =
{[3], {1, 2, 4}, {1, 2, 5}, {1, 2, 6}}.

• We first consider the sets in21

G2 :=
{
[K− U+ 1 : 2K− 2U] ∪ {j} :

j ∈ ([K− U] ∪ [2K− 2U+ 1 : K])
}
.

Recall that 2U > K + 1, thus K > 2K − 2U + 1 and
[2K − 2U + 1 : K] is not empty. Since U < K − 1, we
have K−U ≥ 2 and thus G1∩G2 = ∅. It can be seen that

|G2| = K− U+ (K− 2K+ 2U) = U. (50)

For each V ∈ G2, we choose bV uniformly and i.i.d. over
F|MV |q . More precisely,

– for each j ∈ [K−U], by assuming V = [K−U+1 :
2K− 2U] ∪ {j}, it can be seen that

MV = {K− U+ 1,K− U+ 2, . . . , 2K− 2U},

and thus from (49), aV is with the form

aV = bV,1 eU,1 + · · ·+ bV,K−U eU,K−U. (51)

We let each bV,i, i ∈ [K − U], be chosen uniformly
and i.i.d. over Fq;

– for each j ∈ [2K − 2U + 1 : K], by assuming V =
[K− U+ 1 : 2K− 2U] ∪ {j}, it can be seen that

MV = {K− U+ 1,K− U+ 2, . . . , 2K− 2U, j},

and thus from (49), aV is with the form

aV = bV,1 eU,1 + · · ·+ bV,K−U eU,K−U

+ bV,K−U+1 eU,j−K+U. (52)

We let each bV,i, i ∈ [K−U+1], be chosen uniformly
and i.i.d. over Fq.

• We then consider the sets in22

G3 :=
{
T ∪ [K− U+ 1 : 2K− 2U− 1] : T ∈(

[K− U] ∪ [2K− 2U+ 1 : K]

2

)
, T ∩ [2K− 2U+ 1 : K] 6= ∅

}
.

Since K−U ≥ 2, we have G3 ∩G1 = ∅; since the integer
2K − 2U appears in each set in G2 and does not appear

21In Example 3, when (K,U, S) = (6, 4, 3), we have G2 =
{{1, 3, 4}, {2, 3, 4}, {3, 4, 5}, {3, 4, 6}}.

22In Example 3, when (K,U, S) = (6, 4, 3), we have G3 =
{{1, 3, 5}, {1, 3, 6}, {2, 3, 5}, {2, 3, 6}, {3, 5, 6}}.
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in any set in G3, we have G3 ∩ G2 = ∅. It can be seen
that

|G3| =
(
K− (K− U)

2

)
−
(
K− U

2

)
(53a)

=
K(2U− K+ 1)

2
− U. (53b)

For each V ∈ G3, we search for the minimum subset of
G2 the union of whose elements is a super-set of V; we
denote this minimum subset by M′V . We let aV be a
linear combination of aV2 where V2 ∈M′V .
More precisely, for each T ∈

(
[K−U]∪[2K−2U+1:K]

2

)
where

T ∩ [2K− 2U+ 1 : K] 6= ∅,
– if T = {i, j} where i ∈ [K−U] and j ∈ [2K−2U+1 :

K], by assuming V = [K−U+1 : 2K−2U−1]∪{i, j},
we have

M′V =
{
[K− U+ 1 : 2K− 2U] ∪ {i},

[K− U+ 1 : 2K− 2U] ∪ {j}
}
.

Define M′V(1) = [K − U + 1 : 2K − 2U] ∪ {i} and
M′V(2) = [K− U+ 1 : 2K− 2U] ∪ {j}. Hence, we
aim to let aV be a linear combination of

aM′V(1) = bM′V(1),1 eU,1 + · · ·+ bM′V(1),K−U eU,K−U,

(54a)
and aM′V(2) = bM′V(2),1 eU,1 + · · ·+
bM′V(2),K−U eU,K−U + bM′V(2),K−U+1 eU,j−K+U,

(54b)

where (54a) and (54b) come from (51) and (52),
respectively. Recall that each element in bM′V(1) and
bM′V(2) is chosen uniformly and i.i.d. over Fq.
In addition, we have

MV ={K− U+ 1,K− U+ 2, . . . , 2K− 2U− 1, j}.

Hence, from (49), aV is with the form

aV = bV,1 a[K−U]∪{K−U+1} + · · ·+
bV,K−U−1 a[K−U]∪{2K−2U−1} + bV,K−U a[K−U]∪{j}

(55a)
= bV,1 eU,1 + · · ·+ bV,K−U−1 eU,K−U−1

+ bV,K−U eU,j−K+U. (55b)

By comparing (54) with the form of aV in (55b), we
need to ‘zero-force’ eU,K−U, which could be done
by letting

aV = bM′V(2),K−U aM′V(1) − bM′V(1),K−U aM′V(2).

(56)

– if T = {i, j} where 2K − 2U + 1 ≤ i < j ≤ K, by
assuming V = [K−U+1 : 2K− 2U− 1]∪ {i, j}, it
can be seen that

M′V =
{
[K− U+ 1 : 2K− 2U] ∪ {i},

[K− U+ 1 : 2K− 2U] ∪ {j}
}
.

Hence, we aim to let aV be a linear combination of

aM′V(1) = bM′V(1),1 eU,1 + · · ·+ bM′V(1),K−U eU,K−U

+ bM′V(1),K−U+1 eU,i−K+U, (57a)

and aM′V(2) = bM′V(2),1 eU,1 + · · ·+
bM′V(2),K−U eU,K−U + bM′V(2),K−U+1 eU,j−K+U,

(57b)

where (57a) and (57b) come from (52).
In addition, we have

MV ={K− U+ 1,K− U+ 2, . . . , 2K− 2U− 1, i, j}.

Hence, from (49), aV is with the form

aV = bV,1 a[K−U]∪{K−U+1} + · · ·+
bV,K−U−1a[K−U]∪{2K−2U−1} + bV,K−Ua[K−U]∪{i}

+ bV,K−U+1a[K−U]∪{j} (58a)
= bV,1 eU,1 + · · ·+ bV,K−U−1 eU,K−U−1

+ bV,K−U eU,i−K+U + bV,K−U+1 eU,j−K+U. (58b)

By comparing (57) with the form of aV in (58b), we
need to ‘zero-force’ eU,K−U, which could be done
by letting

aV = bM′V(2),K−U aM′V(1) − bM′V(1),K−U aM′V(2).

(59)

– Finally, for each V ∈
(
[K]
S

)
\ (G1 ∪ G2 ∪ G3), we let

aV = 0U. (60)

This concludes our selection on aV where V ∈
(
[K]
S

)
. Next

we will show that the above choice of these U-dimensional
vectors satisfies the constraints in (10), (16), and (18), with
high probability.

Constraints in (10): For each user k ∈ [K−U], the matrix

[a[K−U]∪{K−U+1},a[K−U]∪{K−U+2}, . . . ,a[K−U]∪{K}]

is the identity matrix IU, whose rank is U.

For each user k ∈ [K − U + 1 : 2K − 2U], let us focus on
the matrix

[a[K−U+1:2K−2U]∪{1}, . . . ,a[K−U+1:2K−2U]∪{K−U},

a[K−U+1:2K−2U]∪{2K−2U+1}, . . . ,a[K−U+1:2K−2U]∪{K}], (61)

whose dimension is U×U. By our construction, for each j ∈
[K − U], by (51) we have (assume V = [K − U + 1 : 2K −
2U] ∪ {j})

aV = bV,1 eU,1 + · · ·+ bV,K−U eU,K−U, (62)

where b[K−U+1:2K−2U]∪{j},i, i ∈ [K−U], is chosen uniformly
and i.i.d. over Fq. In addition, for each j ∈ [2K− 2U+1 : K],
by (52) we have (assume V = [K− U+ 1 : 2K− 2U] ∪ {j})

aV = bV,1eU,1 + · · ·+ bV,K−UeU,K−U + bV,K−U+1eU,j−K+U,
(63)

where each b[K−U+1:2K−2U]∪{j},i, i ∈ [K − U + 1], is chosen
uniformly and i.i.d. over Fq. Since q is large enough, from (62)
and (63), it can be seen that the matrix in (61) has rank equal
to U with high probability.

For each user k ∈ [2K − 2U + 1 : K], let us focus on the
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matrix[
a{1}∪[K−U+1:2K−2U−1]∪{k},a{2}∪[K−U+1:2K−2U−1]∪{k}, . . . ,

a{K−U}∪[K−U+1:2K−2U−1]∪{k},a[K−U+1:2K−2U−1]∪{2K−2U,k},

a[K−U+1:2K−2U−1]∪{2K−2U+1,k}, . . . ,a[K−U+1:2K−2U−1]∪{k−1,k},

a[K−U+1:2K−2U−1]∪{k,k+1}, . . . ,a[K−U+1:2K−2U−1]∪{k,K}
]
,
(64)

whose dimension is U×U. For each j ∈ [K−U], by (56), we
have

a{j}∪[K−U+1:2K−2U−1]∪{k}

= b[K−U+1:2K−2U]∪{k},K−U a{j}∪[K−U+1:2K−2U]

− b{j}∪[K−U+1:2K−2U],K−U a[K−U+1:2K−2U]∪{k}, (65)

where b[K−U+1:2K−2U]∪{k},K−U and b{j}∪[K−U+1:2K−2U],K−U
are chosen uniformly and i.i.d. over Fq. For each
j ∈ [2K − 2U + 1 : K] \ {k}, by (59), we have (66) at
the top of the next page, where b[K−U+1:2K−2U]∪{k},K−U
and b[K−U+1:2K−2U]∪{j},K−U are chosen uniformly
and i.i.d. over Fq. In addition, as we showed
before, a[K−U+1:2K−2U]∪{1}, . . . ,a[K−U+1:2K−2U]∪{K−U},
a[K−U+1:2K−2U]∪{2K−2U+1}, . . . ,a[K−U+1:2K−2U]∪{K} which
are the columns of the matrix in (61), are linearly independent
with high probability. Hence, by (65), (66), and the fact that
a[K−U+1:2K−2U−1]∪{2K−2U,k} = a[K−U+1:2K−2U]∪{k} is in the
matrix in (64), we can see that the matrix in (64) is full rank
with high probability.

Hence, the constraints in (10) are satisfied with high prob-
ability.

Constraints in (16): For each user k ∈ [K− U], the sets
in V ∈

(
[K]\{k}

S

)
do not contain k. By our construction, it can

be seen that(
[K] \ {k}

S

)
∩ G1 = ∅, (67a)(

[K] \ {k}
S

)
∩ G2 = {{j} ∪ [K− U+ 1 : 2K− 2U] :

j ∈ [K] \ ({k} ∪ [K− U+ 1 : 2K− 2U])}, (67b)(
[K] \ {k}

S

)
∩ G3 =

{
T ∪ [K− U+ 1 : 2K− 2U− 1] :

T ∈
(
([K− U] ∪ [2K− 2U+ 1 : K]) \ {k}

2

)
,

T ∩ [2K− 2U+ 1 : K] 6= ∅
}
. (67c)

Focus on the sets in (67b). Since the matrix in (61) is full
rank with high probability, the U− 1 vectors in

{a{j}∪[K−U+1:2K−2U] :

j ∈ [K] \ ({k} ∪ [K− U+ 1 : 2K− 2U])} (68)

are linearly independent with high probability.
Focus on the sets in (67c). For each T ∈(

([K−U]∪[2K−2U+1:K])\{k}
2

)
where T ∩ [2K− 2U+ 1 : K] 6= ∅,

by assuming that V = T ∪ [K − U + 1 : 2K − 2U − 1] and
T = {i, j} where i < j, it can be seen from (56) and (59)
that

aV = b[K−U+1:2K−2U]∪{j},K−U a[K−U+1:2K−2U]∪{i}

− b[K−U+1:2K−2U]∪{i},K−U a[K−U+1:2K−2U]∪{j}, (69)

where both a[K−U+1:2K−2U]∪{i} and a[K−U+1:2K−2U]∪{j} are
in (68).

Recall that for each set V ∈
(
[K]
S

)
\ (G1 ∪ G2 ∪ G3),

from (60) we have aV = 0U. As a result, the matrix[
aSk,1

, . . . ,aS
k,(K−1

S )

]
has rank equal to U − 1 with high

probability, which is the same as its column-wise sub-matrix
(whose dimension is U× (U− 1))

[a{1}∪[K−U+1:2K−2U], . . . ,a{k−1}∪[K−U+1:2K−2U],

a{k+1}∪[K−U+1:2K−2U], . . . ,a{K−U}∪[K−U+1:2K−2U],

a[K−U+1:2K−2U]∪{K−U+1}, . . . ,a[K−U+1:2K−2U]∪{K}], (70)

where a{j1}∪[K−U+1:2K−2U], j1 ∈ [K−U]\{k} is given in (62)
and a{j2}∪[K−U+1:2K−2U], j2 ∈ [2K − 2U + 1 : K] is given
in (63).

For each user k ∈ [K − U + 1 : K], among the sets in
V ∈

(
[K]\{k}

S

)
which do not contain k, we can see that in

aV the coefficient of eU,k−K+U is 0. This could be directly
checked from the second step to select the U-dimensional
vectors, where we fix the composition of aV in (49). Thus

the rank of
[
aSk,1

, . . . ,aS
k,(K−1

S )

]
is no more than U− 1. In

addition, its column-wise sub-matrix

[a[K−U]∪{K−U+1}, . . . ,a[K−U]∪{k−1},a[K−U]∪{k+1}, . . . ,

a[K−U]∪{K}]

= [eU,1, . . . , eU,k−K+U−1, eU,k−K+U+1, . . . , eU,U], (71)

has rank equal to U − 1. Hence, the rank of[
aSk,1

, . . . ,aS
k,(K−1

S )

]
is U− 1.

Hence, the constraints in (16) are satisfied with high prob-
ability.

Constraint in (18): For each user k ∈ [K − U], as we

showed before, the matrix
[
aSk,1

, . . . ,aS
k,(K−1

S )

]
has the same

rank equal to U − 1, as its column-wise sub-matrix in (70).

Hence, the left null space of the matrix
[
aSk,1

, . . . ,aS
k,(K−1

S )

]
is the same as that of its column-wise sub-matrix in (70). Since
the matrix in (70) has dimension U× (U− 1) and rank U− 1
with high probability, its left null space contains exactly one
linearly independent left null vector (with dimension 1 × U).
Let sk be one left null vector of the matrix in (70).

For each user k ∈ [K − U + 1 : K], the matrix[
aSk,1

, . . . ,aS
k,(K−1

S )

]
has the same rank equal to U − 1, as

its column-wise sub-matrix in (71). Hence, the left null space

of the matrix
[
aSk,1

, . . . ,aS
k,(K−1

S )

]
is the same as that of its

column-wise sub-matrix in (71), which contains exactly one
linearly independent left null vector. One possible choice of
the left null vector could be

sk = eT
U,k−K+U. (72)

The most difficult part in the proof of the constraint in (18)
is the following lemma, which will be proved in Appendix D
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a[K−U+1:2K−2U−1]∪{j,k} ={
b[K−U+1:2K−2U]∪{k},K−U a[K−U+1:2K−2U]∪{j} − b[K−U+1:2K−2U]∪{j},K−U a[K−U+1:2K−2U]∪{k}, if j < k;

b[K−U+1:2K−2U]∪{j},K−U a[K−U+1:2K−2U]∪{k} − b[K−U+1:2K−2U]∪{k},K−U a[K−U+1:2K−2U]∪{j}, if j > k,
(66)

by the Schwartz-Zippel lemma [34]–[36].

Lemma 3. For any A ⊆ [K] where |A| = U, the U-
dimensional vectors sk where k ∈ A are linearly independent
with high probability. �

Directly from Lemma 3, it can be seen that the constraint
in (18) is satisfied with high probability.

In conclusion, all constraints in (10), (16), and (18) are
satisfied with high probability. Hence, there must exist a choice
of bV where V ∈ G2 satisfying those constraints. Thus the
proposed scheme is decodable and secure. In this case, we
need the keys ZV where V ∈ (G1 ∪ G2 ∪ G3). It can be seen
from (48), (50), and (53b) that there are totally

U+ U+
K(2U− K+ 1)

2
− U = U+

K(2U− K+ 1)

2

keys each of which is shared by S users.

V. EXPERIMENTAL RESULTS

We implement our proposed secure aggregation scheme
(which is referred to as Group for the sake of simplicity)
in Python2.7 by using the MPI4py library over the Amazon
EC2 cloud, which is then compared to the original secure
aggregation scheme in [6] (referred to as Sec), and the
best existing information theoretic secure aggregation scheme
with offline key sharing in [10] (referred to as Light). We
compare the key sharing times of Group and Light, since
the communication costs in the model aggregation phase of
these two schemes are the same. In addition, since Sec pro-
vides computational security instead of information theoretic
security, the total size of needed keys is much smaller in Sec.
Thus we compare the model aggregation times of Group and
Sec. Note that in the experiments, we only record the the
communication time as the running time in each procedure; the
detail of running times in each procedure of Group, Light,
and Sec could be found in Appendix E.

Amazon EC2 Setup. The Amazon EC2 t2.large and
t2.xlarge instances are selected, where we take one spe-
cific t2.xlarge instance as the server and all the other
instances are users. The Amazon EC2 T2 instances have a
3.0 GHz Intel Scalable Processor, and all instances which we
use in this experiment have the same capacity of computation,
memory and network resources. The transmission speed is up
to 100MB/s between the server and users. By setting the field
size q as 7, we generate the input vectors uniformly i.i.d. over
F7, and consider the three sizes of each input vector (100KB,
200KB, 300KB) as suggested in [6]. In the offline key sharing
phase, we consider that each two users have a private link to
communicate as in [10];23 thus between each two users, we

23In this framework, to generate an uncoded groupwise key shared among
S users, we need S− 1 pairwise key sharing communications.

use the MPI.send command. For each considered system
with (K,U, S), we use Monte-Carlo methods with 20 samples
and take the average times over these 20 samples.
Group v.s. Light. We first compare our Group with

Light, by considering the two cases where U = (K + 1)/2
illustrated in Fig. 2a and U = K − 1 illustrated in Fig. 2b,
respectively. For each case, our Group needs S = K−U+1.

In Fig. 2a, since U = (K+1)/2, we have U = K−U+1 and
thus our secure aggregation scheme is the one in Section IV-A.
We use the cyclic key assignment; more precisely, for each
i ∈ [K], we let user i randomly generate a key ZC(i) with
(K−U+1)L/U = L symbols, and transmit ZC(i) to the other
U − 1 users in C(i), where C is defined in (25). Compared
to Light, Group reduces the key sharing time by at least
16.5% and at most 31.7% in Fig. 2a. The improvement of
Group is mainly because the number of keys is smaller than
that of Light, and thus less number of connections is needed
to build among users.

In Fig. 2b, since U = K−1, our secure aggregation scheme
is the one in Section IV-B. In this case, for each pair of
users V = {V(1),V(2)} where V ⊆ [K], |V| = 2, and
V(1) < V(2), there is one key ZV = {ZV,V(1),ZV,V(2)}
with (K − U + 1)L/U = 2L/U symbols shared by users in
V . We consider two ways of key sharing: (i) “Group” in
Fig. 2b: user V(1) randomly generates ZV and sends ZV to
user V(2); (ii) “Group_1” in Fig. 2b: user V(1) randomly
generates ZV,V(1) and sends ZV,V(1) to user V(2), while user
V(2) randomly generates ZV,V(2) and sends ZV,V(2) to user
V(1). Compared to Light, Group increase the key sharing
time by at least 11.2% and at most 23.7% in Fig. 2b, while the
key sharing time of Group_1 is close to that of Light. The
reason that the key sharing time of Group is more than that
of Light is because the transmissions of users in Amazon
EC2 are parallel, and in Group the users with smaller indices
transmit more keys in the key sharing phase. In Group_1,
we “balance” the numbers of user transmissions which reduce
key sharing time.
Group v.s. Sec. We then compare our Group with Sec,

by considering the two cases where U = (K+1)/2 illustrated
in Fig. 2c and U = K − 1 illustrated in Fig. 2d, respectively.
Compared to Sec, Group reduces the model aggregation time
by at least 48% and at most 53% in Fig. 2c, and reduces the
model aggregation time by at least 33% and at most 44% in
Fig. 2d. From the theoretic viewpoint, this improvement is
because our Group achieves the optimal communication cost
in the model aggregation phase, while Sec is sub-optimal.

VI. CONCLUSIONS

In this paper, we formulated the information theoretic secure
aggregation problem with uncoded groupwise keys, where the
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(a) Group v.s. Light: U = (K+ 1)/2
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(b) Group (Group_1) v.s. Light: U = K− 1
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(c) Group v.s. Sec: U = (K+ 1)/2
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(d) Group v.s. Sec: U = K− 1

Fig. 2: The key sharing time and the model aggregation time
of Group versus Light and Sec, respectively.

keys are independent of each other and each of them is shared
by a group of users. For the case S > K− U, we proposed a
new secure aggregation scheme, which is the first scheme with
uncoded keys. Quite surprisingly, the proposed scheme with
uncoded groupwise keys achieves the same capacity region of
the communication rates in the two-round transmissions as the
optimal scheme with any possible keys. In addition, to achieve
the capacity region, we showed that not all keys shared by S
users are needed; instead, the number of keys used in the
proposed scheme is no more than O(K2). When S ≤ K− U,
by proposing a new converse bound under the constraint of
uncoded groupwise keys, we showed that uncoded groupwise
keys sharing is strictly sub-optimal compared to coded keys
sharing.

Ongoing work includes the characterization of the capacity
region for the case S ≤ K − U and the extension of the
proposed secure aggregation scheme to tolerate the collusion
between the server and the users.

APPENDIX A
PROOF OF THEOREM 2

We first consider the case 1 = S ≤ K−U. In this case, it can
be seen that U ≤ K − 1. We will show by contradiction that
there does not exist any feasible secure aggregation scheme.

Assume that there exists one feasible secure aggregation
scheme. When U1 = [U+ 1] and U2 = [2 : U+ 1], the server
can recover

∑
k∈[U+1] Wk; thus

0 =

H
(
W1 + · · ·+WU+1|X1, (Xk1

,Y
[U+1]
k1

: k1 ∈ [2 : U+ 1])
)

(73a)

≥ H
(
W1 + · · ·+WU+1|X1, (Wk1

,Z{k1} : k1 ∈ [2 : U+ 1])
)

(73b)

= H
(
W1|X1, (Wk1 ,Z{k1} : k1 ∈ [2 : U+ 1])

)
(73c)

= H(W1|X1), (73d)

where (73b) follows since (Xk1 ,Y
[U+1]
k1

: k1 ∈ [2 : U + 1])
is a function of (Wk1 ,Z{k1} : k1 ∈ [2 : U + 1]) and
condition does not increase entropy, (73d) follows since Xk

is a function of (W1,Z{1}) and (W1,Z{1}) is independent of
(W2, . . . ,WU+1,Z{2}, . . . ,Z{U+1}). However, by the security
constraint in (5), we should have I(X1;W1) = 0, which leads
(recall that W1 contains L uniform and i.i.d. symbols over Fq)

H(W1|X1) = H(W1)− I(X1;W1) = L. (74)

Hence, (74) contradicts to (73d).
In the rest of this proof, we consider the case where 2 ≤

S ≤ K − U. By the converse bound in Lemma 1, we have
R1 ≥ 1. Hence, for any feasible secure aggregation scheme,
we can assume that it achieves R1 = 1+a, where a ≥ 0. Then
in the following, we focus on this scheme.

For each k ∈ [K], when |U1| ≥ U + 1, k ∈ U1, and U2 =
U1 \ {k}, the server can recover

∑
k1∈U1 Wk1

; thus we have

0 = H

( ∑
k1∈U1

Wk1

∣∣∣Xk, (Xk2 ,Y
U1
k2

: k2 ∈ U2)

)
(75a)
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≥ H

( ∑
k1∈U1

Wk1

∣∣∣Xk,Zk, (Wk2
,Zk2

: k2 ∈ U2)

)
(75b)

= H(Wk|Xk,Zk, (Wk2 ,Zk2 : k2 ∈ U2)), (75c)

where (75b) follows since (Xk2
,Y U1k2

: k2 ∈ U2) is a function
of (Wk2 ,Zk2 : k2 ∈ U2), and condition does not increase
entropy. From (75c), we have

H(Xk|Zk) ≥ H(Xk|Zk, (Wk2 ,Zk2 : k2 ∈ U2)) (76a)
= I(Wk;Xk|Zk, (Wk2 ,Zk2 : k2 ∈ U2))
+H(Xk|Wk,Zk, (Wk2 ,Zk2 : k2 ∈ U2)) (76b)
= I(Wk;Xk|Zk, (Wk2 ,Zk2 : k2 ∈ U2)) (76c)
= H(Wk|Zk, (Wk2 ,Zk2 : k2 ∈ U2))
−H(Wk|Xk,Zk, (Wk2 ,Zk2 : k2 ∈ U2)) (76d)
(75c)
≥ H(Wk|Zk, (Wk2 ,Zk2 : k2 ∈ U2)) (76e)
= H(Wk) = L, (76f)

where (76c) follows since Xk is a function of (Wk,Zk).
From (76f), we have

I(Wk;Xk|Zk) = H(Xk|Zk)−H(Xk|Zk,Wk) (77a)
= H(Xk|Zk) (77b)
(76f)
≥ L. (77c)

From (77c), we have

H(Xk|Zk) = I(Wk;Xk|Zk) +H(Xk|Zk,Wk) ≥ L. (78)

In addition, from (77c) we also have

H(Wk|Zk,Xk) = H(Wk|Zk)− I(Wk;Xk|Zk) (79a)
(77c)
≤ H(Wk|Zk)− L = 0. (79b)

We define that V ′k :=
{
V ∈

(
[K]
S

)
: k ∈ V

}
, and sort the sets

in V ′k in a lexicographic order. V ′k(j) represents the jth set in
V ′k, where j ∈

[(
K−1
S−1
)]

. Since 2 ≤ S ≤ K − U, we can see

that
(
K−1
S−1
)
≥ 2. For any set S ⊆ V ′k, from (78) we have

L
(78)
≤ H(Xk|Zk) ≤ H(Xk|(ZV : V ∈ S))
≤ H(Xk) ≤ R1 = L(1 + a).

Hence, we have

L ≤ H(Xk|(ZV : V ∈ S)) ≤ L(1 + a). (80)

For any collections of sets S,S ′ ⊆ V ′k we have (which will
be proved in Appendix B)

H(Wk|Xk, (ZV1 : V1 ∈ S)) +H(Wk|Xk, (ZV2 : V2 ∈ S ′))
≥ H(Wk|Xk, (ZV0 : V0 ∈ S ∪ S ′))
+H(Wk|Xk, (ZV5 : V5 ∈ S ∩ S ′))− I

(
(ZV4 : V4 ∈ S \ S ′);

(ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′)
)
. (81)

In addition, we have

I
(
(ZV4 : V4 ∈ S \ S ′);

(ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′)
)

(82a)

≤ I ((ZV1 : V1 ∈ S); (ZV3 : V3 ∈ S ′ \ S)|Xk) (82b)
= H((ZV1 : V1 ∈ S)|Xk) +H((ZV3 : V3 ∈ S ′ \ S)|Xk)

−H((ZV0 : V0 ∈ S ∪ S ′)|Xk) (82c)
≤ H(ZV1 : V1 ∈ S) +H(ZV3 : V3 ∈ S ′ \ S)
−H((ZV0 : V0 ∈ S ∪ S ′)|Xk) (82d)
= H(ZV1 : V1 ∈ S) +H(ZV3 : V3 ∈ S ′ \ S)
−H(ZV0 : V0 ∈ S ∪ S ′) + I((ZV0 : V0 ∈ S ∪ S ′);Xk)

(82e)
= I((ZV0 : V0 ∈ S ∪ S ′);Xk) (82f)
= H(Xk)−H(Xk|(ZV0 : V0 ∈ S ∪ S ′)) (82g)
(80)
≤ L(1 + a)− L = aL. (82h)

By taking (82h) into (81), we have

H(Wk|Xk, (ZV1 : V1 ∈ S)) +H(Wk|Xk, (ZV2 : V2 ∈ S ′))
≥ H(Wk|Xk, (ZV0 : V0 ∈ S ∪ S ′))
+H(Wk|Xk, (ZV5 : V5 ∈ S ∩ S ′))− aL. (83)

Hence, by using (83) iteratively, we have∑
j∈[(K−1

S−1)]

H(Wk|Xk, (ZV1 : V1 ∈ S ′k \ {S ′k(j)}))

≥ H(Wk|Xk)−
((

K− 1

S− 1

)
− 1

)
aL (84a)

=

(
1−

((K− 1

S− 1

)
− 1
)
a

)
L, (84b)

where (84b) comes from the security constraint I(Wk;Xk) =
0 and H(Wk) = L.24

For each set V ∈ V ′k, we have

H
(
Wk

∣∣∣Xk, (Wk1
: k1 ∈ [K] \ {k}),(

ZV1 : V1 ∈
(
[K]

S

)
,V1 6= V

))
≥ I
(
Wk;ZV

∣∣∣Xk, (Wk1
: k1 ∈ [K] \ {k}),(

ZV1 : V1 ∈
(
[K]

S

)
,V1 6= V

))
(85a)

= I(Wk;ZV |Xk, (ZV1 : V1 ∈ V ′k \ {V})) (85b)
= H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ {V}))
−H(Wk|Xk, (ZV1 : V1 ∈ V ′k)) (85c)
= H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ {V})), (85d)

24To make the derivation of (84a) more clear, we first consider the first
two terms on the LHS of (84a). We can see that

(
V ′k \ {V

′
k(1)})

)
∪(

V ′k \ {V
′
k(2))}

)
= V ′k , and

(
V ′k \ {V

′
k(1)})

)
∩
(
V ′k \ {V

′
k(2))}

)
=

V ′k \ {V
′
k(1),V

′
k(2)}. From (83), we have

∑
j∈[2] H(Wk|Xk, (ZV1 :

V1 ∈ V ′k \ {V
′
k(j)})) ≥ H(Wk|Xk,Zk) + H(Wk|Xk, (ZV1 : V1 ∈

V ′k \{V
′
k(1),V

′
k(2)}))− aL, and we recall that H(Wk|Xk,Zk) = 0. Next,

from (83) again, we can lower bound the sum of H(Wk|Xk, (ZV1 : V1 ∈
V ′k \ {V

′
k(1),V

′
k(2)})) and H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ {V

′
k(3)})), by

H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ {V
′
k(1),V

′
k(2),V

′
k(3)})) − aL. We repeat

this iteratively. The last (i.e.,
((K−1

S−1

)
− 1
)th

) step is to lower bound the

sum of H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ {V
′
k(1), . . . ,V

′
k(
(K−1
S−1

)
− 1)})) and

H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ {V
′
k(
(K−1
S−1

)
)})), by H(Wk|Xk) − aL. In

conclusion, we can obtain (84a).
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where (85b) follows since (Wk1
: k1 ∈ [K] \

{k1}) and
(
ZV1 : V1 ∈

(
[K]\{k}

S

))
are independent of

(Xk,Zk,Wk), (85d) comes from (79b).
On the other hand, when U1 = ([K] \ V) ∪ {k} and U2 =

[K] \ V ,25 we have

0 = H

( ∑
k1∈U1

Wk1

∣∣∣Xk, (Xk2
,Y U1k2

: k2 ∈ U2)

)
(86a)

≥ H

( ∑
k1∈U1

Wk1

∣∣∣Xk, (Wk2
,Zk2

: k2 ∈ U2)

)
(86b)

= H(Wk|Xk, (Wk2 ,Zk2 : k2 ∈ U2)) (86c)

≥ H
(
Wk

∣∣∣Xk, (Wk1
: k1 ∈ [K] \ {k}),(

ZV1 : V1 ∈
(
[K]

S

)
,V1 6= V

))
, (86d)

where (86b) follows since (Xk2
,Y U1k2

) is a function of
(Wk2 ,Zk2), and (86d) follows since k /∈ U2 and V ∩ U2 = ∅.

From (85d) and (86d), we have

H(Wk|Xk, (ZV1 : V1 ∈ V ′k \ V)) ≤ 0. (87)

By taking (87) into (84b), we have

1−
((

K− 1

S− 1

)
− 1

)
a ≤ 0, (88a)

⇐⇒ a ≥ 1(
K−1
S−1
)
− 1

. (88b)

Hence, Theorem 2 can be proved from R1 = 1+ a and (88b).

APPENDIX B
PROOF OF (81)

The proof of (81) follows the proof of [37, Proposition 3]
(which shows a generalized version of the submodularity of
entropy). More precisely, we have

H(Wk|Xk, (ZV1 : V1 ∈ S))−H(Wk|Xk,

(ZV0 : V0 ∈ S ∪ S ′)) +H(Wk|Xk, (ZV2 : V2 ∈ S ′))
= I(Wk; (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV1 : V1 ∈ S))
+H(Wk|Xk, (ZV2 : V2 ∈ S ′)) (89a)
= I(Wk; (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV1 : V1 ∈ S))
+H(Wk|Xk, (ZV0 : V0 ∈ S ∪ S ′))
+ I(Wk; (ZV4 : V4 ∈ S \ S ′)|Xk, (ZV2 : V2 ∈ S ′)). (89b)

In addition, we have (90) at the top of the next page. By
taking (90d) into (89b), we have

H(Wk|Xk, (ZV1 : V1 ∈ S))−H(Wk|Xk, (ZV0 : V0 ∈ S ∪ S ′))
+H(Wk|Xk, (ZV2 : V2 ∈ S ′))
≥ H(Wk|Xk, (ZV5 : V5 ∈ S ∩ S ′))− I

(
(ZV4 : V4 ∈ S \ S ′);

(ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′)
)
, (91)

which coincides with (81).

25This case is possible because, |V| = S ≤ K−U, and thus |[K]\V| ≥ U.

APPENDIX C
PROOF OF THE SECURITY CONSTRAINT IN (5) FOR THE

PROPOSED SECURE AGGREGATION SCHEME

Assume that in the proposed secure aggregation scheme for
Theorem 1, the U-dimensional vectors aV where V ∈

(
[K]
S

)
are

determined, such that the constraints in (10), (16), and (18) are
satisfied.

Let us then prove that the scheme is secure. By our
construction, since the constraint in (10) is satisfied, we have

I(X1, . . . ,XK;W1, . . . ,WK) =
∑
k∈[K]

I(Xk;Wk) (92a)

=
∑
k∈[K]

(H(Xk)−H(Xk|Wk)) (92b)

=
∑
k∈[K]

(L−H(Xk|Wk)) (92c)

=
∑
k∈[K]

(L− L) = 0, (92d)

where (92a) follows since (X1,W1), . . . , (XK,WK) are
mutually independent in our scheme (Recall (1) and that
X1, . . . ,XK use different keys), (92c) follows since each Wk

contains L uniform and i.i.d. symbols over Fq and the keys
are independent of Wk, and (92d) follows since (recall that
each ZV,k where V ∈

(
[K]
S

)
and k ∈ V contains L/U uniform

and i.i.d. symbols over Fq)

H(Xk|Wk) =

H

(Wk,j +
∑

V∈([K]S ):k∈V

aV,jZV,k : j ∈ [U]

)∣∣∣∣(Wk,j : j ∈ [U])


(93a)

(1)
= H

 ∑
V∈([K]S ):k∈V

aV,jZV,k : j ∈ [U]

 (93b)

(10)
= L. (93c)

By (92d), we can immediately obtain

0 = I(X1, . . . ,XK;W1, . . . ,WK) (94a)

= I

(
X1, . . . ,XK;W1, . . . ,WK,

∑
k∈U1

Wk

)
(94b)

=⇒ I

(
X1, . . . ,XK;W1, . . . ,WK|

∑
k∈U1

Wk

)
= 0, (94c)

where (94b) follows since
∑

k∈U1 Wk is a function of
W1, . . . ,WK and (94c) follows since the non-negativity of
mutual information.

Hence, we have

I

(
W1, . . . ,WK;X1, . . . ,XK, (Y

U1
k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk

)

= I

(
W1, . . . ,WK; (Y

U1
k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk,X1, . . . ,XK

)
(95a)
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I(Wk; (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV1 : V1 ∈ S)) + I(Wk; (ZV4 : V4 ∈ S \ S ′)|Xk, (ZV2 : V2 ∈ S ′))
= I(Wk, (ZV4 : V4 ∈ S \ S ′); (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′))
− I ((ZV4 : V4 ∈ S \ S ′); (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′))
+ I(Wk; (ZV4 : V4 ∈ S \ S ′)|Xk, (ZV2 : V2 ∈ S ′)) (90a)
≥ H(Wk, (ZV4 : V4 ∈ S \ S ′)|Xk, (ZV5 : V5 ∈ S ∩ S ′))−H(Wk|Xk, (ZV2 : V2 ∈ S ′))
− I ((ZV4 : V4 ∈ S \ S ′); (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′))
+ I(Wk; (ZV4 : V4 ∈ S \ S ′)|Xk, (ZV2 : V2 ∈ S ′)) (90b)
= H(Wk, (ZV4 : V4 ∈ S \ S ′)|Xk, (ZV5 : V5 ∈ S ∩ S ′))−H(Wk|Xk, (ZV0 : V0 ∈ S ∪ S ′))
− I ((ZV4 : V4 ∈ S \ S ′); (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′)) (90c)
≥ H(Wk|Xk, (ZV5 : V5 ∈ S ∩ S ′))−H(Wk|Xk, (ZV0 : V0 ∈ S ∪ S ′))
− I ((ZV4 : V4 ∈ S \ S ′); (ZV3 : V3 ∈ S ′ \ S)|Xk, (ZV5 : V5 ∈ S ∩ S ′)) . (90d)

≤ I

(
W1, . . . ,WK;F1, . . . ,FU

∣∣∣ ∑
k∈U1

Wk,X1, . . . ,XK

)
(95b)

= 0, (95c)

where (95a) comes from (94c), (95b) comes from (Y U1k : k ∈
U1) are in the linear space spanned by F1, . . . ,FU and thus
are determined by F1, . . . ,FU, (95c) follows since F1, . . . ,FU

can be recovered from
∑

k∈U1 Wk and
∑

k∈U1 Xk. Hence, the
security constraint in (5) is satisfied.

APPENDIX D
PROOF OF LEMMA 3

Consider one set A ⊆ [K] where |A| = U. Assume
that A = {A(1), . . . ,A(U)} where A(1) < · · · < A(U).
We also assume that the sets in G2 =

{
[K − U + 1 :

2K − 2U] ∪ {j} : j ∈ ([K − U] ∪ [2K − 2U + 1 : K])
}

are
G2,1, . . . ,G2,K−U,G2,2K−2U+1, . . . ,G2,K, where G2,j = [K −
U+1 : 2K−2U]∪{j} for each j ∈ ([K−U]∪[2K−2U+1 : K]).

Recall that by our construction, for each user k ∈ [K− U],
sk is a left null vector of the matrix in (70). Note that each
column of the matrix in (70) is a{j}∪[K−U+1:2K−2U] where
j ∈ ([K − U] \ {k}) ∪ [2K − 2U + 1 : K]. In addition, it can
be seen that {j} ∪ [K− U+ 1 : 2K− 2U] is in G2; thus each
element of b{j}∪[K−U+1:2K−2U] is chosen uniformly and i.i.d.
over Fq. For each user k ∈ [K−U+1 : K], from (72) we have
that sk = eT

U,k−K+U.
Hence, the determinant of the matrixsA(1)

· · ·
sA(U)

 (96)

could be seen as DA = PA
QA

, where PA and QA are multi-
variate polynomials whose variables are the elements in bV
where V ∈ G2. Since each element in bV where V ∈ G2 is
uniformly and i.i.d. over Fq where q is large enough, by the
Schwartz-Zippel Lemma [34]–[36], if we can further show that
the multivariate polynomial PA is non-zero (i.e., a multivariate
polynomial whose coefficients are not all 0), the probability
that this multivariate polynomial is equal to 0 over all possible

realization of the elements in bV where V ∈ G2 goes to 0 when
q goes to infinity, and thus the matrix in (96) is full rank with
high probability. So in the following, we need to show that
PA is non-zero. For the matrix G in (97) whose dimension is
U×U, where r1, . . . , rU denote the labels of rows, c1, . . . , cU
denote the labels of columns, and each ‘∗’ denotes a symbol
uniformly and i.i.d. over Fq. With a slight abuse of notation,
we define that G\aG2,j where j ∈ [K−U]∪ [2K−2U+1 : K]
as the column-wise sub-matrix of G by removing the column
aG2,j . For each k ∈ (A ∩ [K − U]), by our construction, sk
is a left null vector of G \ aG2,k . Hence, to show that PA is
non-zero, we need to find one realization of the ‘∗’s in G such
that

1) G \ aG2,k has rank equal to U − 1 for each k ∈ (A ∩
[K−U]) (such that sk exists by using the Cramer’s rule
and thus QA is not zero);

2) the U rows of the matrix in (96), including sk where
k ∈ (A∩ [K− U]) and eT

U,j−K+U where j ∈ (A∩ [K−
U + 1 : K]), are linearly independent (such that DA is
not zero).

We divide the set A ∩ [K − U + 1 : K] into two subsets,
A1 = A ∩ [K− U+ 1 : 2K− 2U] where

x = |A1| = |A ∩ [K− U+ 1 : 2K− 2U]| ≤ K− U, (98)

and A2 = A ∩ [2K− 2U+ 1 : K] where

y = |A2| = |A ∩ [2K− 2U+ 1 : K]| ≤ 2U− K. (99)

For each user j1 ∈ A1, we have j1 − K + U ∈ [K − U]; for
each user j2 ∈ A2, we have j2 − K + U ∈ [K − U + 1 : U].
Since x+ y = |A ∩ [K− U+ 1 : K]| and |A| = U, we have

U− (K− U) ≤ x+ y ≤ U. (100)

If x+y = U, we can see that the matrix in (96) is the identity
matrix IU which is full rank. Hence, in the rest of the proof,
we focus on the case where 2U− K ≤ x+ y < U.

By symmetry, we only need to consider the case where
A∩ [K−U] = [U−x−y], A1 = A∩ [K−U+1 : 2K−2U] =
[K− U+ 1 : K− U+ x] and A2 = A ∩ [2K− 2U+ 1 : K] =
[2K− 2U+ 1 : 2K− 2U+ y], and find one realization of the
‘∗’s in G satisfying the constraints 1) and 2). Thus the last
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G =
[
aG2,1 , . . . ,aG2,K−U

,aG2,2K−2U+1
, . . . ,aG2,K

]
(97a)

=

c1 c2 · · · cK−U cK−U+1 cK−U+2 · · · cU



r1 ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
r2 ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

. . .
...

...
...

. . .
...

rK−U ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
rK−U+1 0 0 · · · 0 ∗ 0 · · · 0
rK−U+2 0 0 · · · 0 0 ∗ · · · 0

...
...

...
. . .

...
...

...
. . .

...
rU 0 0 · · · 0 0 0 · · · ∗

(97b)

|A \ [K − U]| = x + y rows of the matrix in (96) includes
eT
U,i where i ∈ ([x] ∪ [K− U+ 1 : K− U+ y]). To determine

the first U − x − y rows of the matrix in (96), we select a
realization of G in (101) at the top of the next page, where
0m,n and 1m,n represents all-zero matrix and all-one matrix
of dimension m×n, respectively. Note that g1 := K−U− x,
g2 := x + y − 2U + K, r[i:j] represents ri, ri+1, . . . , rj , and
c[i:j] represents ci, ci+1, . . . , cj . Let us then derive sk for each
user k ∈ (A ∩ [K− U]) = [U− x− y].

For each user k ∈ [g1], the matrix G \ aG2,k has rank equal
to U − 1, since one can easily check that the columns in G
are linearly independent. Thus G \ aG2,k contains exactly one
linearly independent left null vector. We can check that this
vector could be (recall that 1n and 0n represent the vertical
n-dimensional vector whose elements are all 1 and all 0,
respectively)

sk = [1T
2U−K−y, 1T

g2 , eT
g1,k, −1

T
y, 0T

2U−K−y], (102)

for each k ∈ [g1].
For each user k ∈ [g1 + 1 : U − x − y], since the columns

in G are linearly independent, the matrix G \ aG2,k has rank
equal to U − 1. Thus G \ aG2,k contains exactly one linearly
independent left null vector. We can check that this vector
could be

sk = [eT
2U−K−y,k−g1 , 0T

g2 , 0T
g1 , 0T

y, eT
2U−K−y,k−g1 ], (103)

for each k ∈ [g1 + 1 : U− x− y].
Recall that the last x+y rows of the matrix in (96) include

eT
U,i where i ∈ ([x]∪ [K−U+1 : K−U+y]). Hence, together

with the first U − x − y rows as shown in (102) and (103),
we can see that the matrix in (96) is (104) at the top of the
next page, which is full rank. Thus we proved that with the
choice of G in (101), the constraints 1) and 2) are satisfied;
thus PA is a non-zero polynomial. This completes the proof
of Lemma 3.

APPENDIX E
DATA TABLES OF THE EXPERIMENTAL RESULTS IN

SECTION V

In the following, we consider the cases where U = (K+1)/2
and U = K−1, and list the running times of each procedure in
our experiments. In the tables provided in this Section, we use

“IPS” to represent the size of each input vector; use “KST”
to represent key sharing time; use “R1AT” and “R2AT” to
represent the running times in the first and second rounds of
model aggregation, respectively; use ‘R3AT” and “R4AT” to
represent the running times in the third and fourth rounds of
model aggregation (only needed by Sec), respectively; use
“TMA” to represent the total model aggregation time.

1) Case U = (K+ 1)/2: Group vs. Light vs. Sec:

Running Times (ms): K = 5,U = 3
Scheme IPS KST R1AT R2AT TMA
Group 105 622.70 19.42 4.45 23.88
Light 105 707.12 19.26 4.16 23.42
Group 2× 105 1232.11 31.66 9.90 41.56
Light 2× 105 1313.31 32.79 9.71 42.50
Group 3× 105 1854.66 42.62 19.11 61.73
Light 3× 105 2024.43 41.30 23.46 64.76

Running Times (ms): K = 5,U = 3
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 7.41 3.53 38.51 0.94 47.75
Sec 2× 105 13.74 3.15 77.50 0.87 84.84
Sec 3× 105 27.02 3.16 116.57 0.82 124.07

Running Times (ms): K = 10,U = 5
Scheme IPS KST R1AT R2AT TMA
Group 105 1268.69 27.843 7.26 35.10
Light 105 1422.05 29.9577 7.31 37.27
Group 2× 105 2536.10 49.15 12.40 61.55
Light 2× 105 2911.85 54.28 11.75 66.03
Group 3× 105 3810.15 74.56 18.79 93.34
Light 3× 105 4729.24 73.53 18.63 92.17

Running Times (ms): K = 10,U = 5
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 10.65 4.13 59.22 0.88 71.91
Sec 2× 105 12.15 4.52 118.30 1.23 133.91
Sec 3× 105 9.47 4.10 179.67 1.10 191.94
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G =
[
aG2,1 , . . . ,aG2,K−U

,aG2,2K−2U+1
, . . . ,aG2,K

]
(101a)

=

c[g1] c[g1+1:U−x−y] c[U−x−y+1:K−U] c[K−U+1:K−U+y] c[K−U+y+1:U]


r[2U−K−y] 02U−K−y,g1 I2U−K−y 02U−K−y,g2 02U−K−y,y −I2U−K−y
r[2U−K−y+1:x] 0g2,g1 0g2,2U−K−y Ig2 0g2,y 0g2,2U−K−y
r[x+1:K−U] Ig1 −1g1,2U−K−y −1g1,g2 1g1,y 1g1,2U−K−y

r[K−U+1:K−U+y] 0y,g1 0y,2U−K−y 0y,g2 Iy 0y,2U−K−y
r[K−U+y+1:U] 02U−K−y,g1 02U−K−y,2U−K−y 02U−K−y,g2 02U−K−y,y I2U−K−y

(101b)

c[x] c[x+1:K−U] c[K−U+1:K−U+y] c[K−U+y+1:U]


r[g1] 1g1,x Ig1 −1g1,y 0g1,2U−K−y
r[g1+1:U−x−y] (I2U−K−y, 02U−K−y,g2) 02U−K−y,g1 02U−K−y,y I2U−K−y
r[U−x−y+1:U−y] Ix 0x,K−U−x 0x,y 0x,2U−K−y

r[U−y+1:U] 0y,x 0y,K−U−x Iy 0y,2U−K−y

, (104)

Running Times (ms): K = 15,U = 8
Scheme IPS KST R1AT R2AT TMA
Group 105 1853.25 45.97 10.52 56.49
Light 105 2061.42 40.46 10.44 50.90
Group 2× 105 3704.39 90.76 18.58 109.34
Light 2× 105 4650.02 92.16 16.35 108.51
Group 3× 105 5556.72 140.93 22.20 163.13
Light 3× 105 7346.74 130.83 22.80 153.63

Running Times (ms): K = 15,U = 8
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 12.78 6.64 90.32 1.41 107.59
Sec 2× 105 12.02 7.27 182.66 1.40 199.31
Sec 3× 105 13.62 6.59 279.89 1.32 298.55

Running Times (ms): K = 20,U = 10
Scheme IPS KST R1AT R2AT TMA
Group 105 2510.21 51.54 14.43 65.97
Light 105 2925.39 53.71 13.91 67.62
Group 2× 105 5038.56 110.70 20.68 131.37
Light 2× 105 6314.36 111.00 20.78 131.78
Group 3× 105 7501.90 165.40 29.39 194.79
Light 3× 105 9878.07 158.98 28.13 187.10

Running Times (ms): K = 20,U = 10
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 18.06 8.77 112.25 1.53 133.58
Sec 2× 105 20.30 8.65 236.04 1.61 260.71
Sec 3× 105 34.58 8.10 330.95 1.89 359.95

2) Case U = K − 1: Group (Group_1) vs. Light vs.
Sec:

Running Times (ms): K = 5,U = 4
Scheme IPS KST R1AT R2AT TMA
Group 105 573.52 32.09 4.55 36.64
Group1 105 565.96 32.09 4.55 36.64
Light 105 571.29 31.42 4.51 35.93
Group 2× 105 1212.92 61.32 9.82 71.14
Group1 2× 105 1180.77 61.32 9.82 71.14
Light 2× 105 1215.37 61.66 9.89 71.55
Group 3× 105 1808.52 92.88 14.32 107.20
Group1 3× 105 1674.90 92.88 14.32 107.20
Light 3× 105 1714.31 90.65 15.02 105.68

Running Times (ms): K = 5,U = 4
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 8.04 2.39 52.24 0.85 63.53
Sec 2× 105 6.03 4.52 99.12 0.96 110.62
Sec 3× 105 13.33 2.48 148.46 0.85 165.12

Running Times (ms): K = 10,U = 9
Scheme IPS KST R1AT R2AT TMA
Group 105 1290.11 60.14 6.58 66.71
Group1 105 1090.28 60.14 6.58 66.71
Light 105 1165.68 61.82 6.13 67.95
Group 2× 105 2590.86 119.60 13.55 133.15
Group1 2× 105 2231.25 119.60 13.55 133.15
Light 2× 105 2372.63 122.31 12.76 135.07
Group 3× 105 4000.38 189.28 16.93 206.21
Group1 3× 105 3122.44 189.28 16.93 206.21
Light 3× 105 3159.10 192.45 17.07 209.52

Running Times (ms): K = 10,U = 9
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 6.50 5.39 101.61 1.28 114.78
Sec 2× 105 6.14 5.70 202.90 1.34 216.08
Sec 3× 105 5.50 5.00 303.92 1.19 315.62
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Running Times (ms): K = 15,U = 14
Scheme IPS KST R1AT R2AT TMA
Group 105 2003.57 99.94 2.68 102.62
Group1 105 1699.15 99.94 2.68 102.62
Light 105 1748.13 98.91 2.89 101.80
Group 2× 105 4017.40 201.35 13.69 215.05
Group1 2× 105 3293.68 201.35 13.69 215.05
Light 2× 105 3514.38 196.78 14.78 211.57
Group 3× 105 6020.53 285.31 21.70 307.01
Group 3× 105 4605.54 285.31 21.70 307.01
Light 3× 105 4657.34 299.46 19.53 318.99

Running Times (ms): K = 15,U = 14
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 17.82 8.34 153.16 1.58 180.90
Sec 2× 105 10.62 7.61 303.97 1.68 323.87
Sec 3× 105 9.14 8.31 459.96 1.78 479.20

Running Times (ms): K = 20,U = 19
Scheme IPS KST R1AT R2AT TMA
Group 105 2724.81 132.58 4.03 136.61
Group1 105 2387.80 132.58 4.03 136.61
Light 105 2419.75 128.80 3.71 132.51
Group 2× 105 5460.64 263.68 16.17 279.86
Group1 2× 105 4466.25 263.68 16.17 279.86
Light 2× 105 4680.18 260.38 14.64 275.02
Group 3× 105 8230.29 404.78 24.86 429.64
Group1 3× 105 6114.46 404.78 24.86 429.64
Light 3× 105 6277.13 400.43 25.45 425.88

Running Times (ms): K = 20,U = 19
Scheme IPS R1AT R2AT R3AT R4AT TMA
Sec 105 10.17 11.63 204.31 2.04 228.15
Sec 2× 105 11.14 11.81 406.37 2.51 431.83
Sec 3× 105 10.24 12.28 611.32 2.10 635.94
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