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Abstract—Hyperdimensional Computing (HDC) has obtained
abundant attention as an emerging non von Neumann computing
paradigm. Inspired by the way human brain functions, HDC
leverages high dimensional patterns to perform learning tasks.
Compared to neural networks, HDC has shown advantages such
as energy efficiency and smaller model size, but sub-par learning
capabilities in sophisticated applications. Recently, researchers
have observed when combined with neural network components,
HDC can achieve better performance than conventional HDC
models. This motivates us to explore the deeper insights behind
theoretical foundations of HDC, particularly the connection and
differences with neural networks. In this paper, we make a
comparative study between HDC and neural network to provide
a different angle where HDC can be derived from an extremely
compact neural network trained upfront. Experimental results
show such neural network-derived HDC model can achieve up to
21% and 5% accuracy increase from conventional and learning-
based HDC models respectively. This paper aims to provide more
insights and shed lights on future directions for researches on
this popular emerging learning scheme.

I. INTRODUCTION

In recent years, machine learning has achieved tremendous

success in a diverse range of domains, even surpassing the

capability of human beings. However, such huge progress

on machine learning comes with the drastically growing

model complexity and the ever-increasing computation re-

sources [16]. On the other hand, as machine learning has been

continuously pushed to the edge such as embedded systems

or (near-)sensor devices, the computation resources allocated

for learning is significantly less than centralized servers or

data centers [15]. To address this challenge, researchers seek

for non-conventional computing paradigms, and Hyperdimen-

sional Computing (HDC), is one example seen as a promising

alternative of conventional machine learning models [9]. The

key idea of HDC is to leverage the computing capabilities

of distributed representation of high dimensional numerical

vectors referred to as Hypervectors (HV) [7]. Specifically,

HDC is formulated to leverage HVs and their associated

vector arithmetic to present, represent, and process information

from different modalities [18]. Related studies show that

HDC is able to achieve high energy efficiency on a diverse

set of applications, including speech recognition [6], human

activity recognition [14], [8], NLP [17], [12] and anomaly

detection [19].

One major obstacle preventing HDC to be applied for a

broader range of applications is its relatively lower learning

capability. For example, for a very basic benchmark of MNIST,

the baselines of HDC solutions can only achieve less than

95% accuracy [13], [3], which is much lower than a basic

LeNet-like network [11]. On the other hand, the application

datasets which HDC shows advantage on are mostly small and

relatively easier to differentiate. Therefore, such a limited set

of applications when evaluating HDC algorithm is unlikely to

justify the benefits of HDC and enable its practical use.

On the other hand, researchers endeavor to introduce tech-

niques from neural networks into HDC for performance en-

hancement. For example, a fixed random connection neural

network layer can be added into the HDC flow to achieve

better performance [2]. Perceptrons specific for HDC are also

proposed and further combined with other techniques such

as drop-out [1]. HDC is also found similar to binary neural

networks based on which loss functions are also defined so that

HDC can be trained with back propagation [3]. Those related

works reveals deeper connections between HDC and neural

network and also motivate us to further explore the HDC

foundations. This paper, specifically, present a comparative

study to show the similarities and differences between HDC

and neural networks. The main contributions are as follows:

• We present a recap of HDC preliminaries applied in the

majority of related works, which we recognize as the

“canonical” HDC flow. We then make a comparison be-

tween the HDC model and a two-layer “neural network”1,

including both the architecture and the learning process.

• Experiments using two datasets of MNIST and CIFAR-

10 show that HDC models can be directly transformed

from a neural network which outperforms SOTA HDC

models by 5% to 21% in accuracy. This paper provides

an alternative angle to assess the learning capabilities of

HDC and insights on future directions of enhancing and

optimizing this promising computing scheme.

II. RECAP OF HDC

In this section, we present a recap of the basic concepts in

HDC such as the notions like HVs, HDC operations, HDC

memories and similarity metrics, as well as the canonical

flow of using HDC to develop a classifier including encoding,

training, retraining and inference.

1Typically, neural networks have at least 3 layers. In other related works,
a network with first layer fixed can also be referred to as “Extreme Learning
Machines” [5]. However we use the term “Neural Network” throughout the
paper for explanatory purposes and consistency.
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A. Notions of HDC

1) Hypervector: Hypervector (HV) is the fundamental

“building block” of HDC. HVs have three most important

properties. First, HVs are high dimensional numerical vectors,

which are usually higher than 10,000 dimensions where each

dimension is a number. This provides an extremely large space

for HVs to represent information. Second, the HVs are usually

randomly initialized and the numbers generated follows i.i.d.

randomness. Because of the high dimensionality of HVs, this

can ensure that two randomly initialized HVs can be (almost)

orthogonal to each other. Third, HVs are holographic which

means that within an HV, all the dimensions are recognized

equally as to their contributions and there is no any dimension

that is more important than others. In other words, the HV

needs to be treated as a whole and not micro-coded. An HV

of D dimensions can be denoted as Eq. 1, where vd is the

number at the d-th dimension.

~V = (v1, v2, ..., vD) (1)

2) HDC operations: There are three types of HV operations

that are most frequently used in HDC:

• Addition +: takes two HVs as operands and performs

element-wise addition on the numbers at the same dimen-

sion. Addition is usually used to aggregate the information

of two HVs from the same modality and create a superpo-

sition of them.

• Multiplication ×: also takes two HVs as operands but

performs element-wise multiplication on the numbers at the

same dimension. Contrary to addition, multiplication is usu-

ally used to combine information from different modalities

and create new information of another modality based on

these two.

• Permutation ρ: takes one HV as the operand and perform

cyclic rotation (shift). Permutation is usually used to reflect

temporal or spatial patterns of information.

Note that all the three HV operations do not modify the

dimension of HV operands, i.e., the input and output HV of

each operation are in the same dimension.

3) HDC memories: Memories in HDC are a specific cluster

of HVs which serve different functions in developing a model.

Specifically, there are two types of memories: item memory

and associative memory. Item memory is related to the input

data, accommodates item HVs that are generated based on the

input features. Assume the input sample has M modalities of

features and each feature can have N possible values, then the

item memory of each modality of feature can be generated as

Im = {~I1, ~I2, ... ~IN}. On the other hand, associative memory is

related to the output of the model, namely making predictions.

If the classification task has C classes, then the associative

memory is configured as A = { ~A1, ~A2, ... ~AC}, in which each

HV ~Ac inside the memory is the representation of a class.

Associative memory is usually initialized with zero numbers.

4) Similarity metrics: Since each HV represents a specific

information, there is a natural need of metrics that could

represent the similarity between information that two HV

respectively accommodate. Hamming distance and cosine sim-

ilarity are the two mostly used similarity metrics. Hamming

distance is for calculating the similarity between binary or

bipolar HVs while cosine similarity can be used for HVs

in different data types. We show the calculation of cosine

similarity δcos in Eq. 2 as an example. A higher similarity

indicates that the two HVs compared share more information

in common.

δcos( ~Va, ~Vb) =
~Va · ~Vb

|| ~Va|| × || ~Vb||
(2)

B. HDC Model Development

A canonical flow of developing an HDC model features four

major phases: Encoding, Training, Inference, and Retraining.

1) Encoding: Encoding is the basic phase of HDC model

development. During encoding, the input samples are “en-

coded” into their representative HVs using a set of application-

dependent HD operations Φ and the item memories. For

example in Eq. 3, assume the input sample has M features:
~F = {f1, f2, ..., fM}, the values of each feature fm is used as

indices to fetch corresponding item HV in the item memories

Im. After encoding, the realistic features are now in the form

of high-dimensional representations, namely the HVs which

are used in all the other three phases of model development.

~V = Φ(I1.index(f1), I2.index(f2), ..., IM .index(fM )) (3)

2) Training: Training is the phase where associative mem-

ory is trained using the encoding HVs from the training

samples. As noted in Eq. 4, all the sample HVs sharing the

same label c are summed to the corresponding class HV ~Ac

in the associative memory. This is to collect and aggregate

information to build a representative HV for each class.

A = {
∑

~A1,
∑

~A2, ...,
∑

~AC} (4)

3) Inference: Inference is the phase where associative

memory is used to predict the class of unseen test samples.

During inference, the unseen samples are still encoded using

the same item memory as training. The encoded HV of the

unseen sample is often referred to as the query HV ~V?. As

shown in Eq. 5, the similarity between query HV and every

class HV in the associative memory is calculated and the class

with the highest similarity is then determined as the predicted

label l for this unseen sample.

l = argmax(δcos( ~V?,A)) (5)

4) Retraining: Retraining is an optional phase of fine-

tuning the trained associative memory to achieve higher per-

formance of model. During retraining, the model iterates over

the encoded training samples and make inference to obtain

the prediction labels using the trained associative memory.

Then the prediction label is compared with the ground truth

label to identify if there is a discrepancy. If so, the associative

memory is updated as Eq. 6 describes: the encoded HV of the
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sample is subtracted from the class HV of the wrong prediction

and added to the correct class. This is to reduce the wrong

information from the mis-classifications and instead enhance

the information of the correct class.

~Awrong = ~Awrong − ~V

~Acorrect = ~Acorrect + ~V
(6)

In the following sections, we depart from the canonical no-

tions of HDC as well as flow of developing an HDC classifier.

Instead, we make comparisons on both the architecture and the

learning process between a two-layer neural network and the

HDC model and show that an HDC model can be potentially

derived from a trained network as such.

III. HDC VERSUS NN: ARCHITECTURE

A. Item Memory vs. Input Layer
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Fig. 1. Architectural Comparison between HDC and neural network

We first formulate the item memory and the encoding

process as the processing of the input layer inside a neural

network. As noted in Sec. II-B, the input to the encoding

phase is the sample and the output of is the HV with a specific

(pre-defined) dimensionality. This resembles the classical input

layer of a neural network that takes the samples then produce

intermediate layer outputs. The encoding is conventionally

application or task dependent, however the set of the HDC

operations mostly features the three types of HDC operations

as introduced in Sec. II-A. Therefore, such a set can be

constructed by a combination of linear mappings, namely the

forward pass of a linear layer.

Without loss of generality, we consider the commonly used

record-based encoding, as Eq. 7: the samples HV is obtained

by adding up the item HVs indexed from the item memory

multiplied by the feature value. This is actually a matrix

multiplication between the input feature vector and the item

memory. Therefore, we can connect this to the linear layer

of neural network which can be described as Eq. 8, where x

and y are the input and output of the layer, and W and B

are the weights and biases respectively. From the perspective

of HDC, the weights are essentially the item memory and the

biases are set to 0. If the encoding process features more HV

operations beyond multiplication, then biases can be used and

multiple such layers can be cascaded.

We can also find the counterpart of activation functions in

neural networks in HDC. After the encoding of input samples,

HVs are often bipolarized or binarized, where the numbers

larger than 0 are set to 1 and numbers smaller than 0 are

set to -1 (or 0). Such bipolarization or binarization, similar

to the activation functions in neural networks, provide non-

linearity to HDC so that HDC models can be used to perform

classification tasks, which is similar to the kernel trick [4]

in other machine learning algorithms such as support vector

machines. In this paper specifically, we apply hyperbolic

tangent activation (tanh) after the input layer of the neural

network which has the similar effect of bipolarization.

~V =

M∑

m=1

I.index(fm)× fm (7)

y = WTx+B (8)

B. Associative Memory vs. Classifier Layer

We also formulate the associative memory as the classifier

layer, i.e., the output layer of a neural network. As introduced

in Sec. II-B, the inference process of HDC is the iterative

similarity calculation between the query HV and each class

HV in the associative memory. Recall the definition of cosine

similarity at Eq. 2, we can ignore the || ~Va||×|| ~Vb|| and simplify

the calculation into the vector product. This further transforms

the inference process into another matrix multiplication and

can subsequently be regarded as a linear layer just like the

classifier in a neural network. The activation function after

the classifier layer is softmax as it resembles argmax in

HDC inference which is used to locate the class with highest

similarity, but is differentiable.

IV. HDC VERSUS NN: LEARNING

We have already present the architectural comparison be-

tween an HDC model. To make a further step, we also analyze

in this subsection that the learning process of HDC is also

similar to the back-propagation. We address that three critical

characteristics of HDC learning process grant its advantages

such as energy efficiency, but on the other hand limit the po-

tential of the learning capability of high dimensional patterns

for more complicated and difficult datasets.

First, for the canonical HDC model, the item memory is

usually fixed. From the perspective of neural network, it means

that only the classifier layer of the formulated neural networks

is trainable while the input layer is “freezed”, which resembles

the “Extreme Learning Machine” [5]. The item memory will

not be updated during the training and retraining process.

For neural network, it means the gradients are not back-

propagated to the input layer and will stop at the classifier

layer, which is similar to fine-tuning a retrained network

model. Second, HDC training and retraining also features a

“coerce” version of back-propagation, which is different from

gradient descent: Unlike neural networks that the weights

of each neuron can be updated individually and freely, for

HDC, the weights representing associative memory can only

be updated together, limited by the set of encoded HVs

available from the training set. We recognize such training

is an “approximate back-propagation” as the encoded HVs
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of each training sample contribute to rather a limited vector

space. Third, HDC learning rate is much higher than that of

neural networks. The canonical HDC training and retraining

uses a learning rate of 1, this explains why HDC training is

much faster than the neural networks as the accuracy could

saturate after much less epochs.

V. EXPERIMENTAL RESULTS

In this section, based on the comparison and analysis we

present above, we show an experimental study that HDC

model can be derived from a trained neural network which

can surpass accuracy of conventional HDC models. As pre-

sented in Fig. 2, a two-layer neural network is trained using

conventional neural network training strategies. After training,

the weights of each layer is fetched and then duplicated as the

item and associative memory during encoding and inference.

A. Experimental Setup

We use MNIST [11] as our benchmark dataset because it is

one of the datasets that HDC performs much less than state-

of-the-art as most of the HDC models can only achieve less

than 95% accuracy [13]. We also use CIFAR-10 [10] which

SOTA HDC can only achieve around 45% accuracy [3].

input layer

output layer 10 × 10000

tanh

softmax

item 

memory

10000 × 768

(transpose)

associative 

memory

encoding

inference

weights

weights

train as NN and obtain weights inference as HDC

Fig. 2. Derive an HDC model from a trained neural network.

We use a typical configuration of HDC with the dimension-

ality of 10,000. For MNIST, we use the record-based encoding

as introduced in Eq. 7, which translates into a neural network

model with two layers as specifies by Fig. 1. For CIFAR-

10, as the input image has three channels (R, G and B),

therefore we modify the record-based encoding as Eq. 9 so

that each channel is encoded separately like MNIST dataset.

After encoding all the 3 channels, the HVs representing each

channel are added together each two so that different channel

information can be mixed together.

~VRG = ~VR + ~VG

~VRB = ~VR + ~VB

~VGB = ~VG + ~VB

~V = ~VRG + ~VRB + ~VGB

(9)

We also compare the performance with two baselines:

• HDC-base: This baseline is the HDC model trained with

canonical (record-based) encoding, training, and retraining

which can be found in the majority of related literature.

• LeHDC: This baseline is implemented according to the

learn-able HDC frameworks proposed in [3].

B. Training of Neural Network

We implement the neural network using PyTorch frame-

work, the HDC network architecture can be concisely defined

as a sequential model of PyTorch with just a few lines along

with the required activation functions. For example, the code

for defining HDC model for MNIST dataset is shown in

Listing 1 as an example. We train the neural network with

Adam optimizer and use learning rate 0.001 and the training is

terminated if inference accuracy does not substantially increase

after consecutive epochs.

1 def hdc(d_feature, d_HV, n_classes):

2 return nn.Sequential(

3 nn.Flatten(),

4 nn.Linear(d_feature, d_HV, bias = False),

5 nn.Tanh(),

6 nn.Linear(d_HV, n_classes, bias = False),

7 nn.Softmax(dim = 1))

Listing 1. Defining HDC Model for MNIST using PyTorch

C. Derive an HDC from NN

We derive an HDC model from a trained network by

extracting the weights of the input and classifier layers. For the

input layer, the size of the weight matrix is 10000× 768, thus

each column can be considered as an item HV and the entire

weight matrix, with a transpose, is thus the item memory. For

the classifier layer as the weight matrix size is 10 × 10000,

the row instead can be considered as the class HV thus the

weight matrix can be considered as the associative memory.

We present an accuracy comparison of the two baseline

models and the HDC model transformed from the trained

neural network in Table I. We can observe that for the MNIST

dataset, the HDC model derived from neural network can

achieve about 96.7% accuracy which surpasses the baseline

by nearly 6% and the learning based LeHDC by about 2%.

For the even more challenging CIFAR-10 dataset, the canon-

ical HDC-base model can only achieve unacceptable accuracy

of 30%. For the LeHDC baseline, the accuracy can increase

to 46%. Although for this paper with HDC model transformed

from neural network, the accuracy is still only 51%, there is

already a 20% increase from the baseline.

TABLE I
ACCURACY COMPARISON WITH TWO BASELINE MODELS

HDC-Base LeHDC [3] This Paper

MNIST 90.93
±0.52

94.74
±0.18

96.71
±0.37

CIFAR-10 30.28
±1.90

46.10
±0.20

51.08
±0.79

As to computation cost, the HDC model transformed from

the neural network performs the same amount of computations

as the HDC-Base during inference, since they share the same

architecture. The overhead is on the training process since a

neural network needs to be trained to obtain the parameters to

be transformed into the HDC memory elements. Additionally,

since the neural network architecture trained for transform is

compact (as shown in Listing 1), the training is also fast. With

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on July 30,2024 at 03:54:38 UTC from IEEE Xplore.  Restrictions apply. 



our experimental setup, it takes around 4 and 7 minutes to

achieve the reported accuracy even when trained afresh.

D. Discussion

HDC resembles the architecture of a extremely compact

neural network with just 2 layers. Both the encoding of HV

and the inference can be accomplished by a typical fully

connected layer. The item memory and the associative memory

can be transformed from the weights of a trained neural

network in such an architecture. The training of HDC models

is also similar to the training of a neural network. Instead of

using back-propagation with gradient descent, HDC use HV

addition and subtraction to guide model to converge at the

direction of higher accuracy which is easier to implement.

We recognize this as a compromise to sacrifice some of the

canonical neural network training schemes for more energy

efficiency and acceleration.

The learning capability of HDC is capped by the corre-

sponding neural network architecture. From the experimental

results, although a two-layer neural network can achieve

acceptable accuracy on the MNIST, when the dataset becomes

much complicated and challenging like the CIFAR-10, such

shallow network structure cannot achieve an acceptable accu-

racy. This explains the reason that the current HDC models

mostly focus on simple applications or datasets and cannot

achieve comparable performance on more demanding tasks.

One major challenge of HDC is that the encoding process

is not application-agnostic. System designers are required to

spend manual effort to design, develop, and evaluate the

encoding process, which can often lead to sub-par results as

there may exist undiscovered encoding methods with better

performance and also prohibits the scalability and flexibility.

Neural network has the advantage over HDC as the weights

of neural network is individually trainable, however, in HDC

only the associative memory is trainable and the elements

inside each class HV is not individually trainable due to the

holographic representation of HVs.

VI. CONCLUSION

The increasing popularity of Hyperdimensional Computing

(HDC) has attracted researchers from various domains to

invest their effort in this topic. The major advantages of

HDC are better energy efficiency, smaller model size, and

acceleration on heterogeneous platforms. In this paper, we

provide a new perspective of getting insights of this emerging

algorithm from the angle of neural networks. Specifically, we

present a comparative analysis and experiment to illustrate the

similarity between HDC and neural network on architecture

and learning process, and show that an HDC model can be

derived from a two-layer neural network. During experiments,

we illustrate that by training the neural network upfront and

then derive an HDC model based on the trained network, we

can achieve up to 21% accuracy improvement from baseline

HDC models and up to 5% improvement from SOTA learning

based HDC models.
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