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Abstract—This paper considers the secure aggregation problem
for federated learning under an information theoretic crypto-
graphic formulation, where distributed training nodes (referred
to as users) train models based on their own local data and a
curious-but-honest server aggregates the trained models without
retrieving other information about users’ local data. Secure
aggregation generally contains two phases, namely key sharing
phase and model aggregation phase. Due to the common effect of
user dropouts in federated learning, the model aggregation phase
should contain two rounds, where in the first round the users
transmit masked models and, in the second round, according
to the identity of surviving users after the first round, these
surviving users transmit some further messages to help the server
decrypt the sum of users’ trained models. The objective of the
considered information theoretic formulation is to characterize
the capacity region of the communication rates from the users
to the server in the two rounds of the model aggregation
phase, assuming that key sharing has already been performed
offline in prior. In this context, Zhao and Sun completely
characterized the capacity region under the assumption that
the keys can be arbitrary random variables. More recently, an
additional constraint, known as “uncoded groupwise keys,” has
been introduced. This constraint entails the presence of multiple
independent keys within the system, with each key being shared
by precisely S users, where S is a defined system parameter. The
capacity region for the information theoretic secure aggregation
problem with uncoded groupwise keys was established in our
recent work subject to the condition S > K − U, where K
is the number of total users and U is the designed minimum
number of surviving users (which is another system parameter).
In this paper we fully characterize the capacity region for this
problem by matching a new converse bound and an achievable
scheme. Experimental results over the Tencent Cloud show the
improvement on the model aggregation time compared to the
original secure aggregation scheme.
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I. INTRODUCTION

A. Background on secure aggregation for federated learning

Federated learning is a decentralized machine learning
approach that enables multiple devices or users (such as
smartphones, edge devices, or Internet of Things devices) to
collaboratively train a global model without sharing their local
raw data to the central server [1]–[4]. Rather than centralizing
all data in a single location, federated learning allows each
device training by using its own local data. After initialization,
the process of federated learning involves several iterations
among the users and the server. In one iteration, each user
trains the model using its own local data without sharing it
with the central server. After training on local data, the users
send their model updates (weights or gradients) to the server.
Then the central server collects the model updates from all the
users and aggregates the updated models to create an updated
global model. Federated learning has two main advantages
over traditional centralized and distributed learning: (i) it
reduces communication costs and eliminates the need for
frequent data transfers; (ii) it preserves data privacy against the
server by keeping data local. Despite these advantages, feder-
ated learning also suffers from some challenges. On the one
hand, assume that the training devices/users are smartphones
or edge devices; during the training process of federated
learning, the server may lose the connectivity to some users
due to user mobility and fluctuating communication quality.
Thus an efficient federated learning scenario should be resilient
to this unpredictable effect of user dropouts. On the other hand,
each user needs to transmit to the server the computed model
in terms of the local data; thus the information of local data
can be leaked at some level to the server, and this is known
as the model inversion attacks in federated learning [5].

To deal with the effect of user dropouts and strengthen
local data privacy in federated learning, a new cryptographic
problem, referred to as secure aggregation, was originally
introduced in [6]. Except the desired sum of the users’ updated
models, the server should not learn other information about the
users’ local data. In order to guarantee the computational or
information theoretic security, the key-based encryption could
be used, where keys are shared among the users and thus the
users’ updated models could be masked by the keys. The keys
are generated and then shared to the users according to some
key generation protocols. If the key generation is independent
of the training data, the key sharing is called offline; otherwise,
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it is called online. Model aggregation follows key sharing,
where the users compute, mask, and send their updated models
to the server. For the resilience to user dropouts, multi-round
communications among the users and server could be used,
where in the first round the users send masked updated models
and in the remaining rounds the users send some messages
composed of keys. The number of rounds depend on the
threat models of the server (e.g., the server may be honest-
but-curious, or be malicious and lie about the identity of
the dropping users, or even collude with some users). The
secure aggregation protocol in [6] uses pairwise offline key
sharing with Diffie-Hellman key agreement [7] between each
two users, where each key is then shared with all other users
through Shamir’s secret sharing [8] to deal with user dropouts.

Since the original secure aggregation work in [6], intensive
efforts have been put forth, introducing more efficient secure
aggregation schemes. For example, these include the schemes
utilizing common seeds via a homomorphic pseudorandom
generator [9], secure multi-party computing [10], non-pairwise
keys [11], online key sharing [12]–[14], and improved El
Gamal encryption [15]. For further details, readers are encour-
aged to consult the surveys in [16], [17].

B. Information theoretic secure aggregation

In this paper, we follow the (K,U) information theoretic
formulation on secure aggregation with user dropouts and
offline key sharing proposed in [11], where K represents
the number of users in the system and U represents the
minimum number of non-dropped users. The input vector (i.e.,
updated model) of each user k is denoted by Wk, which
contains L uniform and i.i.d. symbols over a finite field.1 In
this model, we aim to determine the optimal transmission
in the model aggregation phase with the assumption that
enough keys have been shared among the users in a prior
key sharing phase, such that the information theoretic security
of the users’ local data is protected against the server (except
the sum of the updated models of the non-dropped users).2

Thus each user k has a key Zk, which can be any random
variable independent of W1, . . . ,WK. It was proved in [11]
that to preserve the security of users’ local data against the
honest-but-curious server with the existence of user dropouts,
two-round transmissions in the model aggregation phase is
necessary and also sufficient. In the first round, each user
masks its input vector by the stored key and transmits the
masked input vector to the server. The server receives and
then returns a feedback to the non-dropped users about the
identity of the non-dropped users. In the second round, each
non-dropped user further transmits a coded message according
to the server’s feedback. The users may also drop in the second

1 Note that the system is designed to tolerate up to K− U user dropouts.
If more than K − U users drop, there is insufficient data for update and the
server does not update the model and will ask for a retransmission. In this
paper, we directly assume that there are at most K− U user dropouts.

2 Information theoretic security was proposed in the seminal work by
Shannon [18], under which constraint even if the adversary has infinite
computation power it still cannot get any information about the data. In the
literature of secure aggregation with user dropouts, the secure aggregation
schemes proposed in [11], [14], [19] guarantee the information theoretic
security constraint.

round; the secure aggregation scheme should guarantee that
by the two-round transmission the server could recover the
sum of the input vectors of the non-dropped users in the first
round. The objective of this information theoretic problem
is to characterize the region of all possible achievable rate
tuples (R1,R2), where Ri represents the largest number of
transmissions in the ith transmission round among all users
normalized by L for i ∈ {1, 2}. The capacity region was
proved to be {(R1,R2) : R1 ≥ 1,R2 ≥ 1/U} in [11] with an
achievability strategy based on Minimum Distance Separable
(MDS) codes in the key generation and one-time pad coding
in the model aggregation. Another secure aggregation scheme
which can also achieve capacity was proposed in [19], based
on a pairwise coded key generation. Compared to [11], the
scheme in [19] significantly reduces the size of keys stored
by each user.

There are some other extended information theoretic formu-
lations on secure aggregation in federated learning, following
the model in [11]. A weaker information theoretic security
constraint compared to the one in [11] was considered in [20],
where we only need to preserve the security on a subset
of users’ input vectors. User collusion was also considered
in [11], where the server may collude with up to T < U
users; to deal with potential user collusion, the capacity region
reduces to {(R1,R2) : R1 ≥ 1,R2 ≥ 1/(U − T)}, character-
ized in [11].3 Information theoretic secure aggregation with
cluster federated learning was originally considered in [22],
to aggregate the updated models from multiple clusters of
users simultaneously, without learning any information about
the cluster identities or users’ local data.

Recently a modified version of the above problem, re-
ferred to as (K,U, S) information theoretic secure aggrega-
tion problem with uncoded groupwise keys, was proposed
in [23] as illusrated in Fig. 1. An additional constraint on
the keys was considered, where the key sharing among the
users is “uncoded” and “groupwise”. More precisely, given
a system parameter S, the system generates

(
K
S

)
mutually

independent keys, such that each key is shared exactly by
one group of S distinct users and is also independent of the
input vectors.4 The constraint of uncoded groupwise keys is
motivated by the fact that, the uncoded groupwise keys could
be directly generated and shared among users by some key
agreement protocol such as [24]–[31] even if there do not
exist private links among users nor a trusted server, while
to share coded keys among users there should exist private
links among users or a trusted server who assigns keys for
the key sharing phase. An interesting question arises for
the (K,U, S) information theoretic secure aggregation with
uncoded groupwise keys: does the capacity region remain
the same as the secure aggregation problem in [11]? When
S > K − U, a secure aggregation scheme with groupwise
keys was proposed in [23] which achieves the same capacity

3In this paper we do not consider user collusion; thus we set T = 0 in this
paper. Secure aggregation with uncoded groupwise keys against user collusion
(i.e., T > 0) was considered in another paper of ours [21] and characterizing
the capacity region is an ongoing work.

4In contrast, coded pairwise keys were used in [6], [19] where the keys
shared by the users are not mutually independent.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3393740

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on July 30,2024 at 03:01:43 UTC from IEEE Xplore.  Restrictions apply. 



3

User 1

𝑋1

Server

𝑊1
𝑍{1,2}
𝑍{1,3}
𝑍{1,4}

User 2

𝑊2
𝑍{1,2}
𝑍{2,3}
𝑍{2,4}

User 3

𝑊3
𝑍{1,3}
𝑍{2,3}
𝑍{3,4}

User 4

𝑊4
𝑍{1,4}
𝑍{2,4}
𝑍{3,4}

𝑋3 𝑋4

The server receives 𝑋1, 𝑋3, 𝑋4.

𝑋2

U1 = 1,3,4

(a) First round.

User 1

𝑌1
{1,3,4}

Server

𝑊1
𝑍{1,2}
𝑍{1,3}
𝑍{1,4}

User 2

𝑊2
𝑍{1,2}
𝑍{2,3}
𝑍{2,4}

User 3

𝑊3
𝑍{1,3}
𝑍{2,3}
𝑍{3,4}

User 4

𝑊4
𝑍{1,4}
𝑍{2,4}
𝑍{3,4}

The server receives 𝑌1
{1,3,4}

,𝑌4
{1,3,4}

, 
and recovers 𝑊1 +𝑊3 +𝑊4 from 

the two rounds.

U1

dropped in 
the first round

𝑌3
{1,3,4}

U1
U1

𝑌4
{1,3,4}

U2 = 1,4

(b) Second round.

Fig. 1: (K,U, S) = (4, 2, 2) information theoretic secure
aggregation problem with uncoded groupwise keys.

region {(R1,R2) : R1 ≥ 1,R2 ≥ 1/U} as in [11]. Hence, in
this case, the key group sharing constraint does not involve
any loss of optimality. When S ≤ K − U, a converse bound
was proposed in [23] showing that the capacity region in [11]
is not achievable. However, the capacity region for the case
S ≤ K− U still remains open.

C. Main Contribution

The main contribution of this paper is to characterize the
capacity region on the rate tuples for the (K,U, S) information
theoretic secure aggregation problem with uncoded groupwise

keys,
{

(R1,R2) : R1 ≥
(K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
,R2 ≥ 1

U

}
. More pre-

cisely, our focus is on the open case S ≤ K − U, and we
develop the following results.
• We first derive a new converse bound on the rate of the

first round R1, which is strictly tighter than the converse
bound in [23].

• We propose a new secure aggregation scheme based
on the interference alignment strategy, which achieves
the converse bound. The main difference between the
proposed scheme and the secure aggregation scheme

in [23] (which works for the case S > K − U) is that,
when S ≤ K−U the optimal rate in the first round R1 is
strictly larger than 1, and in addition to the masked input
vector, each user should also transmit some additional
messages composed of the keys. Hence, when a whole
group of users sharing the same key drops in the second
phase, the server can leverage these additional messages
transmitted in the first round to decrypt.

• We implement the proposed secure aggregation scheme
into the Tencent Cloud. Experimental results show that
the proposed secure aggregation scheme reduces the
model aggregation time by up to 67.2% compared to the
original secure aggregation scheme in [6].

D. Paper Organization

The rest of this paper is organized as follows. Section II
reviews the information theoretic secure aggregation problem
with uncoded groupwise keys. Section III introduces the
main theorem of the paper, which characterizes the capacity
region. Sections IV and V present the converse and achiev-
ability proofs of the main theorem, respectively. Section VII
concludes the paper, while some proofs are given in the
Appendices.

E. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors and matrices, and sans-serif symbols denote system
parameters. We use | · | to represent the cardinality of a set
or the length of a vector; [a : b] := {a, a + 1, . . . , b} and
[n] := [1 : n]; Fq represents a finite field with order q; en,i
represents the vertical n-dimensional unit vector whose entry
in the ith position is 1 and 0 elsewhere; AT and A−1 represent
the transpose and the inverse of matrix A, respectively;
rank(A) represents the rank of matrix A; In represents the
identity matrix of dimension n × n; 0m,n represents all-zero
matrix of dimension m × n; 1m,n represents all-one matrix
of dimension m × n; (A)m×n explicitly indicates that the
matrix A is of dimension m × n; < · >a represents the
modulo operation with integer quotient a > 0 and in this
paper we let < · >a∈ {1, . . . , a} (i.e., we let < b >a= a if
a divides b); let

(
x
y

)
= 0 if x < 0 or y < 0 or x < y; let(X

y

)
= {S ⊆ X : |S| = y} where |X | ≥ y > 0. In this paper,

for a set of real numbers S , we sort the elements in S in an
increasing order and denote the ith smallest element by S(i),
i.e., S(1) < . . . < S(|S|). In the rest of the paper, entropies
will be in base q, where q represents the field size.

II. SYSTEM MODEL

We consider the (K,U, S) information theoretic secure ag-
gregation problem with uncoded groupwise keys originally
formulated in [23], as illustrated in Fig 1. Note that K,U, S
are given system parameters, where K represents the number
of users in the system, U represents the minimum number of
surviving users, and S represents the group-sharing parameter,
i.e., the size of the groups uniquely sharing the same key.
Each user k ∈ [K] holds one input vector Wk containing L
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uniform and i.i.d. symbols on a finite field Fq, where q is a
prime power. In addition, for each set V ∈

(
[K]
S

)
, the users in V

share a common key ZV with large enough size. Considering
that the key sharing is offline, the keys and the input vectors
are assumed to be mutually independent, i.e.,

H

((
ZV : V ∈

(
[K]

S

))
, (W1, . . . ,WK)

)
=

∑
V∈([K]

S )

H(ZV) +
∑
k∈[K]

H(Wk). (1)

We define Zk :=
(
ZV : V ∈

(
[K]
S

)
, k ∈ V

)
, as the keys acces-

sible by user k ∈ [K].
A server is connected with the users via dedicated error-

free links.5 The server aims to aggregate the input vectors
computed by the users. In this paper, we consider the effect
of user dropouts, i.e., the system is designed to tolerate up to
K − U > 0 user dropouts; in this case, it was proved in [11]
that one transmission round in the model aggregation is not
enough. Thus we consider the two-round model aggregation
as in [11], [23].

First round. In the first round, each user k ∈ [K] sends a
coded message Xk to the server without knowing which user
will drop in the future, where Xk is completely determined
by Wk and Zk, i.e,

H(Xk|Wk,Zk) = 0, (Encodability for the first round).
(2)

The transmission rate of the first round R1 is defined as the
largest transmission load among all users normalized by L,
i.e.,

R1 := max
k∈[K]

H (Xk)

L
. (3)

Users may drop during the first round. We denote the set of
surviving users after the first round by U1. Since U represents
the minimum number of surviving users, we have U1 ⊆ [K]
and |U1| ≥ U. Hence, the server receives (Xk : k ∈ U1).

Second round. In the second round, the server first sends the
list of the surviving users U1 to the users in U1. According
to this information, each user k ∈ U1 sends another coded
message Y U1k to the server, where

H(Y U1k |Wk,Zk,U1) = 0,

(Encodability for the second round). (4)

The transmission rate of the second round R2 is defined as
the largest transmission load among all U1 and all users in U1
normalized by L, i.e.,

R2 := max
U1⊆[K]:|U1|≥U

max
k∈U1

H
(
Y U1k

)
L

. (5)

5In this context, the nature of these links is irrelevant. Federated learning
is a distributed process running at the application layer, i.e., on top of some
possibly heterogeneous networks with possibly different lower protocol layers.
In any case, at the application layer, it is reasonable and practical to assume
that the server and the users establish end-to-end communication sessions
using TCP/IP. In fact, in most practical applications federated learning runs
over geographically widely separated users (imagine to run such application
on the local picture library of smartphones all over the world).

Users may also drop during the second round transmission,
and the set of surviving users after the second round is denoted
as U2. By definition, we have U2 ⊆ U1 and |U2| ≥ U. Thus
the server receives Y U1k where k ∈ U2.

Decoding. From the two-round transmissions, the server
totally receives (Xk1 : k1 ∈ U1) and (Y U1k2

: k2 ∈ U2), from
which the server should recover the sum of input vectors by
the first round surviving users, i.e.,

∑
k∈U1 Wk. Thus

H

(∑
k∈U1

Wk

∣∣∣(Xk1 : k1 ∈ U1), (Y U1k2
: k2 ∈ U2)

)
= 0,

∀U1 ⊆ [K],U2 ⊆ U1 : |U1| ≥ |U2| ≥ U, (Decodability). (6)

Security. For the security constraint, we consider the worst-
case, where the users may not be really dropped but be too
slow in the transmission and thus the server may receive
all the possible transmissions by the users. More precisely,
it may receive (Xk1 : k1 ∈ [K]) from the first round and
(Y U1k2

: k2 ∈ U1) from the second transmission. By security,
from the received messages, the server can only obtain the
computation task without retrieving other information about
the input vectors, i.e.,

I

(
W1, . . . ,WK;X1, . . . ,XK, (Y U1k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk

)
= 0,

∀U1 ⊆ [K] : |U1| ≥ U, (Security). (7)

It is worth noticing that this mutual information is strictly
equal to 0; that is, we consider zero leakage, instead of
vanishing leakage as L→∞.

Objective. A rate tuple (R1,R2) is achievable if there exist
keys

(
ZV : V ∈

(
[K]
S

))
satisfying (1) and a secure aggregation

scheme satisfying the decodability and security constraints
in (6) and (7), respectively. Our objective is to determine the
capacity region (i.e., the closure of all achievable rate tuples),
denoted by R?.

Existing converse bounds. By removing the uncoded group-
wise constraint on the keys from our problem, we obtain
the information theoretic aggregation problem in [11]. Hence,
the converse bound on the capacity region in [11] is also a
converse bound for our problem.

Theorem 1 ( [11]). For the (K,U, S) information theoretic
secure aggregation problem with uncoded groupwise keys, any
achievable rate tuple (R1,R2) satisfies

R1 ≥ 1, R2 ≥
1

U
. (8)

�

Considering the uncoded groupwise constraint, an improved
converse bound was given in [23] for the case S ≤ K− U.

Theorem 2 ( [23]). For the (K,U, S) information theoretic
secure aggregation problem with uncoded groupwise keys,
when 1 = S ≤ K − U, secure aggregation is not possible;
when 2 ≤ S ≤ K − U, any achievable rate tuple (R1,R2)
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satisfies

R1 ≥
(
K−1
S−1
)(

K−1
S−1
)
− 1

,R2 ≥
1

U
. (9)

�

Existing achievable bound. A secure aggregation scheme
with uncoded groupwise keys was proposed in [23] for the
case S > K− U, achieving the following rates.

Theorem 3 ( [23]). For the (K,U, S) information theoretic
secure aggregation problem with uncoded groupwise keys,
when S > K− U, the following rate tuples are achievable,

R1 ≥ 1,R2 ≥
1

U
. (10)

�

Comparing the achievable bound in Theorem 3 with the
converse bound in Theorem 1, we can characterize the capacity
region for the case S > K− U, which is

R? =

{
(R1,R2) : R1 ≥ 1,R2 ≥

1

U

}
. (11)

However, no achievable scheme has been provided in the
literature for the case S ≤ K − U, and the capacity region
for this case remained open until this paper.

III. MAIN RESULT

The main contribution of this paper is to fully characterize
the capacity region for the information theoretic secure aggre-
gation problem with uncoded groupwise keys. This is stated
in the following theorem.

Theorem 4. For the (K,U, S) information theoretic secure
aggregation problem with uncoded groupwise keys, when S =
1, secure aggregation is not possible; when S ≥ 2, we have

R? =

{
(R1,R2) : R1 ≥

(
K−1
S−1
)(

K−1
S−1
)
−
(
K−1−U
S−1

) ,R2 ≥
1

U

}
.

(12)

�

The converse proof of Theorem 4 is given in Section IV and
the achievability proof is given in Section V. The following
remarks on Theorem 4 are in order:
• When S > K − U, we have

(
K−1−U
S−1

)
= 0 and thus the

capacity region in (12) reduces to the one in (11), which
is also equal to the capacity region for the information
theoretic secure aggregation problem in [11] (the one
without the constraint on the uncoded groupwise keys).
When 2 ≤ S ≤ K − U, the additional communication
rate from the optimal secure aggregation scheme with
uncoded groupwise keys compared to the generally opti-
mal secure aggregation scheme in [11] is only at the first

round and is equal to (K−1−U
S−1 )

(K−1
S−1)−(K−1−U

S−1 )
.

• Comparing the proposed converse bound in (12) with
the existing converse bound in (9), we can see that the
two bounds differ in the first-round transmission rate R1

and that (K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
≥ (K−1

S−1)
(K−1
S−1)−1

. Hence, the existing

converse bound in (9) is strictly loose when
(
K−1−U
S−1

)
> 1

(i.e., when K > U + S).
• The secure aggregation scheme proposed in Section V

is a new and unified scheme working for all system
parameters when S > 1. In constrast, in [23] only the
regime S > K − U was considered, where this regime
was first divided into three cases and a different secure
aggregation scheme was proposed for each case.

• The scheme in Section V uses all the
(
K
S

)
keys in the

system , where each key contains SL

(K−1
S−1)−(K−1−U

S−1 )
symbols.

In comparison, the secure aggregation in [23] uses at most
O(K2) keys, where each key has (K−U+1)L

U symbols.

IV. CONVERSE PROOF OF THEOREM 4

Since the converse bound for the information theoretic
aggregation problem in [11] is also a converse bound for our
considered problem, by Theorem 1 we can directly obtain
R2 ≥ 1

U . Hence, for Theorem 4 we only need to prove

R1 ≥
(
K−1
S−1
)(

K−1
S−1
)
−
(
K−1−U
S−1

) , (13)

for the case S ≥ 2.
Let us focus on user 1 and derive the lower bound of H(X1)

L .
For each set U ∈

(
[2:K]
U

)
, letting U1 = {1} ∪ U and U2 = U ,

by the decodability constraint (6) the server can recover∑
i∈{1}∪U Wi from (Xk : k ∈ {1} ∪ U) and

(
Y U1k : k ∈ U

)
.

In addition, for each k ∈ U ,
(
Xk,Y U1k

)
is a function of

(Zk,Wk). Hence, the server can recover
∑

i∈{1}∪U Wi from
(X1, (Zk,Wk : k ∈ U)); thus

0 = H

 ∑
i∈{1}∪U

Wi

∣∣∣∣∣X1, (Zk,Wk : k ∈ U)

 (14a)

= H (W1|X1, (Zk,Wk : k ∈ U)) (14b)

= H

(
W1

∣∣∣X1,
(
ZV : V ∈

(
[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
(14c)

= H

(
W1

∣∣∣(ZV : V ∈
(

[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
− I

(
X1;W1

∣∣∣(ZV : V ∈
(

[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
,

(14d)

where (14c) comes from (1) and (2). In addition, from (14d)
we have

I

(
X1;W1

∣∣∣(ZV : V ∈
(

[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
= H

(
W1

∣∣∣(ZV : V ∈
(

[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
(15a)

= H(W1) = L, (15b)

where (15b) follows since W1 is independent of the keys.
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By the security constraint (7), we have

0 = I

(
W1, . . . ,WK;X1, . . . ,XK, (Y U1k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk

)
(16a)

≥ I

(
W1;X1

∣∣∣ ∑
k∈U1

Wk

)
(16b)

= I

(
W1;

∑
k∈U1

Wk,X1

)
− I

(
W1;

∑
k∈U1

Wk

)
(16c)

= I

(
W1;

∑
k∈U1

Wk,X1

)
(16d)

≥ I (W1;X1) (16e)
⇐⇒ I (W1;X1) = 0, (16f)

where (16d) follows since, the elements in W1, . . . ,WK are
i.i.d. over Fq and thus we can see that W1 is independent of∑

k∈U1 Wk =
∑

k∈{1}∪U Wk (recall that |U| = U ≥ 1).

In addition, we have

I

(
X1;

(
ZV : V ∈

(
[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

)∣∣∣W1

)
= I

(
X1;W1,

(
ZV : V ∈

(
[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
− I(X1;W1) (17a)

= I

(
X1;W1,

(
ZV : V ∈

(
[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
(17b)

≥ I

(
X1;W1

∣∣∣(ZV : V ∈
(

[K]

S

)
, 1 ∈ V ,U ∩ V 6= ∅

))
(17c)

= L, (17d)

where (17b) comes from (16f) and (17d) comes from (15b).

We sort the sets V ∈
(
[K]
S

)
where 1 ∈ V in the lexicographic

order, denoted by S1,1, . . . ,S1,(K−1
S−1)

. Then by the chain rule
of mutual information, we have

R1L ≥ H(X1) (18a)

≥ I

(
X1;ZS1,1 , . . . ,ZS

1,(K−1
S−1)
|W1

)
(18b)

=
∑

i∈[(K−1
S−1)]

I(X1;ZS1,i |W1,ZS1,1 , . . . ,ZS1,i−1
) (18c)

=

((
K− 1

U

)
−
(
K− S

U

))
∑

i∈[(K−1
S−1)]

1(
K−1
U

)
−
(
K−S
U

)I(X1;ZS1,i |W1,ZS1,1 , . . . ,ZS1,i−1
)

(18d)

=
∑

U∈([2:K]
U )

∑
i∈[(K−1

S−1)]:U∩S1,i 6=∅

1(
K−1
U

)
−
(
K−S
U

)I(X1;ZS1,i |W1,ZS1,1 , . . . ,ZS1,i−1
), (18e)

where (18e) follows since for each i ∈
[(

K−1
S−1
)]

, there are

exactly
(
K−1
U

)
−
(
K−S
U

)
sets in

(
[2:K]
U

)
, each of which intersects

S1,i.
From (18e), we have (19) at the top of the next page,

where (19c) follows since the uncoded keys and input vectors
are independent, (19e) comes from the chain rule of mutual
information, and (19f) comes from (17d).

Thus we have

R1 ≥
(
K−1
U

)(
K−1
U

)
−
(
K−S
U

) (20a)

=

(
K−1
S−1
)(

K−1
S−1
)
−
(
K−1−U
S−1

) , (20b)

where (20b) follows since(
K− 1

U

)(
(K− 1)− U

S− 1

)
=

(
K− 1

S− 1

)(
(K− 1)− (S− 1)

U

)
(21a)

=

(
K− S

U

)(
K− 1

S− 1

)
. (21b)

From (21b), we have(
K− 1

U

)((
K− 1

S− 1

)
−
(
K− 1− U

S− 1

))
=

(
K− 1

S− 1

)((
K− 1

U

)
−
(
K− S

U

))
. (22)

Hence, we proved (13) and thus proved the converse bound
in Theorem (4).

V. ACHIEVABILITY PROOF OF THEOREM 4

In this section, we describe the proposed secure aggregation
scheme achieving the rate region in Theorem 4. For the ease
of understanding, while providing the general description of
the proposed scheme, we also introduce a running example
to illustrate our construction. Note that to design achievable
schemes, as explained in [11], by field extension we can
assume that q is large enough without loss of generality.

First round. To achieve R1 =
(K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
coinciding

with the converse bound in Section IV, in the first round we
divide each input vector Wi where i ∈ [K] into

(
K−1
S−1
)
−(

K−1−U
S−1

)
non-overlapping and equal-length pieces, Wi =(

Wi,j : j ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)])
. Hence, each piece contains

L

(K−1
S−1)−(K−1−U

S−1 )
symbols. In addition, for each V ∈

(
[K]
S

)
we

generate a key ZV with SL

(K−1
S−1)−(K−1−U

S−1 )
symbols uniformly i.i.d.

over Fq, shared by the users in V . We further divide each
key ZV into S non-overlapping and equal-length sub-keys,
ZV = (ZV,k : k ∈ V), where each sub-key ZV,k contains

L

(K−1
S−1)−(K−1−U

S−1 )
symbols uniformly i.i.d. over Fq.

Note that, by the converse bound in Theorem (4), each
user k ∈ [K] transmits

(
K−1
S−1
)

linear combinations of pieces
and keys in the first round, while Wk only contains

(
K−1
S−1
)
−
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R1L ≥
1(

K−1
U

)
−
(
K−S
U

) ∑
U∈([2:K]

U )

∑
i∈[(K−1

S−1)]:U∩S1,i 6=∅

I(X1;ZS1,i |W1,ZS1,1 , . . . ,ZS1,i−1) (19a)

=
1(

K−1
U

)
−
(
K−S
U

) ∑
U∈([2:K]

U )

∑
i∈[(K−1

S−1)]:U∩S1(i)6=∅(
I(X1, (ZS1,j : j ∈ [i− 1],U ∩ S1,j = ∅);ZS1,i |W1, (ZS1,j : j ∈ [i− 1],U ∩ S1,j 6= ∅))

− I((ZS1,j : j ∈ [i− 1],U ∩ S1,j = ∅);ZS1,i |W1, (ZS1,j : j ∈ [i− 1],U ∩ S1,j 6= ∅))
)

(19b)

=
1(

K−1
U

)
−
(
K−S
U

) ∑
U∈([2:K]

U )

∑
i∈[(K−1

S−1)]:U∩S1,i 6=∅

I(X1, (ZS1,j : j ∈ [i− 1],U ∩ S1,j = ∅);ZS1,i |W1, (ZS1,j : j ∈ [i− 1],U ∩ S1,j 6= ∅)) (19c)

≥ 1(
K−1
U

)
−
(
K−S
U

) ∑
U∈([2:K]

U )

∑
i∈[(K−1

S−1)]:U∩S1,i 6=∅

I(X1;ZS1,i |W1, (ZS1,j : j ∈ [i− 1],U ∩ S1,j 6= ∅)) (19d)

=
1(

K−1
U

)
−
(
K−S
U

) ∑
U∈([2:K]

U )

I

(
X1;

(
ZS1,j : j ∈

[(
K− 1

S− 1

)]
,U ∩ S1,j 6= ∅

)∣∣∣W1

)
(19e)

≥ 1(
K−1
U

)
−
(
K−S
U

) ∑
U∈([2:K]

U )

L (19f)

=

(
K−1
U

)(
K−1
U

)
−
(
K−S
U

)L, (19g)

(
K−1−U
S−1

)
pieces.6 Hence, in the first round of the proposed

secure aggregation scheme, the first-round transmission by
user k, Xk =

(
Xk,j : j ∈

[(
K−1
S−1
)])

, contains two parts:

• for j ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)]
, we construct

Xk,j = Wk,j +
∑

V∈([K]
S ):k∈V

aV,jZV,k; (23)

• for j ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)
+ 1 :

(
K−1
S−1
)]

, we construct

Xk,j =
∑

V∈([K]
S ):k∈V

aV,jZV,k. (24)

For each V ∈
(
[K]
S

)
, define aV =

[
aV,1, aV,2, . . . , aV,(K−1

S−1)

]T
,

where each aV,j ∈ Fq is a coefficient to be clarified later.
The selection of aV where V ∈

(
[K]
S

)
is the most non-trivial

design in the proposed secure aggregation scheme, which
should satisfy the security constraint (49) and guarantee the
encodability and decodability of the second-round transmis-
sion. Our selection contains two steps:
• First step. For each V ∈

(
[K]
S

)
where 1 ∈ V , we let aV be

uniform and i.i.d. over F(K−1
S−1)

q . Thus we have fixed
(
K−1
S−1
)

6This is the main step to deal with the chanllenge arised in the case S ≤ K−
U compared to the secure aggregation scheme in [23] for the case S > K−U.
More precisely, when S ≤ K−U, there may exist some key where the whole
group of users knowing that key all drop after the second round. Thus we
need to transmit more than one (normalized) linear combinations in the first
round to deal with this event, such that even if all the knowing users drop
during the transmissions, we can still remove “interference” of this key to
recover the task.

coefficient vectors in random.
• Second step. For each V ∈

(
[2:K]
S

)
, we let aV be a

linear combination of some vectors fixed in the first step.
More precisely, we let (recall that V(i) represents the ith

smallest element in V)

aV =
∑
i∈[S]

(−1)i−1aV\{V(i)}∪{1}. (25)

The above selection leads to the following lemma, which is
crucial for Lemmas 2, 3, 4 (corresponding to the encodability
of the second round transmission, decodability, and security
of the proposed scheme, respectively).

Lemma 1. By the above selection of coefficient vectors, for
each V ∈

(
[K]
S

)
and each k ∈ [K] \ V , denoting the number of

elements in V smaller than k by nV,k, we have

aV =
∑

i1∈[nV,k+1:S]

(−1)i1−nV,k−1aV\{V(i1)}∪{k}

+
∑

i2∈[nV,k]

(−1)nV,k+i2aV\{V(i2)}∪{k}; (26)

in other words, aV is a linear combination of aV\{k1}∪{k}
where k1 ∈ V . �

The proof of Lemma 1 could be found in Appendix A.

Due to user dropouts, the server only receives (Xk : k ∈
U1). Hence, for each j ∈

[(
K−1
S−1
)
−
(
K−1−U
S−1

)]
, the server
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recovers∑
k1∈U1

Xk1,j =
∑

k2∈U1

Wk2,j +
∑

V∈([K]
S ):V∩U1 6=∅

aV,j
∑

k3∈V∩U1

ZV,k3︸ ︷︷ ︸
:=Z

U1
V

;

(27)

for each j ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)
+ 1 :

(
K−1
S−1
)]

, the server
recovers ∑

k1∈U1

Xk1,j =
∑

V∈([K]
S ):V∩U1 6=∅

aV,jZ
U1
V . (28)

Example 1. We consider the (K,U, S) = (5, 2, 3) information
theoretic secure aggregation problem with uncoded groupwise
keys. Note that in this example, for the ease of illustration, we
assume that the field size q is a large enough prime; it will
be proved later that our proposed scheme generally works for
arbitrary field size.

By the converse bound derived in Section IV, we have

R1 ≥
(K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
= 6

5 and R2 ≥ 1
U = 1

2 . Inspired by the

converse bound, we divide each input vector Wi where i ∈ [K]
into

(
K−1
S−1
)
−
(
K−1−U
S−1

)
= 5 non-overlapping and equal-length

pieces, Wi = (Wi,1, . . . ,Wi,5). For each set V ∈
(
[K]
S

)
, we

generate a key ZV containing SL

(K−1
S−1)−(K−1−U

S−1 )
= 3L

5 symbols

uniformly i.i.d. over Fq; let ZV be shared by the users in V .
In addition, we further divide each key ZV into S = 3 sub-
keys, ZV = (ZV,k : k ∈ V), where each sub-key ZV,k has L

5
symbols.

From the converse bound we see that in the first round
each user k ∈ [5] should send more than L symbols, while
input vector Wk contains L symbols. Thus, unlike the secure
aggregation scheme in [23] which has R1 = 1, in the first
round besides the encrypted input vector, we also need to
transmit some coded messages composed of keys, to cope with
the fact that some key(s) cannot be transmitted in the second
round due to user dropouts. For each key ZV , we select a
6-length vector aV = [aV,1, . . . , aV,6]T which will serve as
the coefficient vector of its sub-keys during the first round.
The selection of these coefficient vectors is the most important
step in the proposed secure aggregation scheme, which will
guarantee the encodability, decodability, and security. We
select the coefficient vectors by the following two steps:
• We first select each vector aV for each V ∈

(
[K]
S

)
where

1 ∈ V . More precisely, we choose each element in aV
uniformly i.i.d. over Fq. In this example, we let

a{1,2,3} = [0, 1, 0, 0, 1, 1]T, a{1,2,4} = [1, 0, 1, 1, 1, 1]T,

a{1,2,5} = [0, 0, 0, 1, 0, 1]T, a{1,3,4} = [0, 1, 1, 1, 0, 1]T,

a{1,3,5} = [1, 1, 0, 1, 0, 1]T, a{1,4,5} = [1, 0, 0, 0, 0, 1]T.

• Then we fix each of the remaining vectors by a linear
combination of the selected vectors in the first step.
More precisely, to fix a{2,3,4}, we let a{2,3,4} be a linear
combination of a{1,3,4}, a{1,2,4}, and a{1,2,3}, where the
coefficients are either +1 or −1 and alternated,

a{2,3,4} = a{1,3,4} − a{1,2,4} + a{1,2,3}. (29)

Similarly, for each V ∈
(
[2:K]
S

)
, we let aV be the following

linear combination of aV\{k}∪{1} where k ∈ V ,

aV =
∑
i∈[3]

(−1)i−1aV\{V(i)}∪{1}. (30)

The detailed selection on the coefficient vectors is given in
Table I.

It can be checked that this selection has the property in
Lemma 1, i.e., for each V ∈

(
[K]
S

)
and each k ∈ [K] \ V , aV

is a linear combination of aV\{k1}∪{k} where k1 ∈ V . For
example,

• let V = {3, 4, 5} and k = 1, we have

a{3,4,5} = a{1,4,5} − a{1,3,5} + a{1,3,4}; (31)

• let V = {3, 4, 5} and k = 2, we have

a{3,4,5} = a{2,4,5} − a{2,3,5} + a{2,3,4}; (32)

• let V = {2, 3, 5} and k = 1, we have

a{2,3,5} = a{1,3,5} − a{1,2,5} + a{1,2,3}; (33)

• let V = {2, 3, 5} and k = 4, we have

a{2,3,5} = a{2,3,4} − a{3,4,5} + a{2,4,5}. (34)

After the selection of the above coefficient vectors, the
transmission in the first round by each user k ∈ [5] can be
divided into two parts (as explained before):

• The first part contains
(
K−1
S−1
)
−
(
K−1−U
S−1

)
= 5 linear

combinations of pieces and sub-keys, where each linear
combination contains L/5 symbols. For each j ∈ [5], let
user k transmit

Xk,j = Wk,j +
∑

V∈([5]
3 ):k∈V

aV,jZV,k. (35)

• The second part contains
(
K−1−U
S−1

)
= 1 linear combina-

tion of sub-keys with L/5 symbols; let user k transmit

Xk,6 =
∑

V∈([5]
3 ):k∈V

aV,6ZV,k. (36)

Now we consider the case U1 = [5], i.e., no user drops in
the first round. From the first round, the server can recover∑

k1∈[5]

Xk1,j =
∑

k2∈[5]

Wk2,j +
∑
V∈([5]

3 )

aV,j
∑
k3∈V

ZV,k3︸ ︷︷ ︸
:=Z

[5]
V

(37)

for each j ∈ [5], and recover∑
k1∈[5]

Xk1,6 =
∑
V∈([5]

3 )

aV,6Z
[5]
V . (38)

Hence, the server should further recover the second term on
the RHS of (37),

∑
V∈([5]

3 ) aV,jZ
[5]
V for j ∈ [5], in the second

round. �

Next we describe the general description on the second
round transmission.

Second round. The task of the second round transmission
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TABLE I: Selection of 6-dimensional vectors aV in the (K,U, S)) = (5, 2, 3) information theoretic secure aggregation
problem.

aV Value aV Value
a{1,2,3} [0, 1, 0, 0, 1, 1]T a{1,4,5} [1, 0, 0, 0, 0, 1]T

a{1,2,4} [1, 0, 1, 1, 1, 1]T a{2,3,4} a{1,3,4} − a{1,2,4} + a{1,2,3} = [−1, 2, 0, 0, 0, 1]T

a{1,2,5} [0, 0, 0, 1, 0, 1]T a{2,3,5} a{1,3,5} − a{1,2,5} + a{1,2,3} = [1, 2, 0, 0, 1, 1]T

a{1,3,4} [0, 1, 1, 1, 0, 1]T a{2,4,5} a{1,4,5} − a{1,2,5} + a{1,2,4} = [2, 0, 1, 0, 1, 1]T

a{1,3,5} [1, 1, 0, 1, 0, 1]T a{3,4,5} a{1,4,5} − a{1,3,5} + a{1,3,4} = [0, 0, 1, 0, 0, 1]T

is to let each user k ∈ U1 transmit Y U1k such that from any
subset of users U2 ⊆ U1 where |U1| ≥ |U2| ≥ U, the server
can recover∑
V∈([K]

S ):V∩U1 6=∅

aV,j1Z
U1
V , ∀j1 ∈

[(
K− 1

S− 1

)
−
(
K− 1− U

S− 1

)]
,

(39)

from (Y U1k1
: k1 ∈ U2) and

(∑
k1∈U1 Xk1,j : j ∈[(

K−1
S−1
)
−
(
K−1−U
S−1

)
+ 1 :

(
K−1
S−1
)] )

in (28). In other words,

from (Y U1k1
: k1 ∈ U2) and the linear combinations in (28),

the server should recover∑
V∈([K]

S ):V∩U1 6=∅

aV,jZ
U1
V , ∀j ∈

[(
K− 1

S− 1

)]
. (40)

To achieve R2 = 1/U, we further divide each ZU1V where
V ∈

(
[K]
S

)
and V ∩ U1 6= ∅, into U non-overlapping and

equal-length coded keys, ZU1V =
(
ZU1V,i : i ∈ [U]

)
, where

each coded key contains L
U((K−1

S−1)−(K−1−U
S−1 ))

symbols. We de-

note the sets in the collection
{
V ∈

(
[K]
S

)
: V ∩ U1 6= ∅

}
, by

VU1,1,VU1,2, . . . ,VU1,P , where with a slight abuse of notation
P represents the number of sets in the above collection. Thus
the recovery task in (40) could be expressed in the matrix form

F



ZU1VU1,1,1

ZU1VU1,2,1

...
ZU1VU1,P ,1

ZU1VU1,1,2

...
ZU1VU1,P ,U


=

 F1

...
FU(K−1

S−1)

 (41)

where (recall that (M)m×n represents the dimension of matrix
M is m× n)

F =


(A)(K−1

S−1)×P
0(K−1

S−1)×P
· · · 0(K−1

S−1)×P
0(K−1

S−1)×P
(A)(K−1

S−1)×P
· · · 0(K−1

S−1)×P
...

...
. . .

...
0(K−1

S−1)×P
0(K−1

S−1)×P
· · · (A)(K−1

S−1)×P

 ,

(42)

with 0m×n representing the zero matrix with dimension m×n

and

(A)(K−1
S−1)×P

=


aVU1,1,1 aVU1,2,1 · · · aVU1,P ,1

aVU1,1,2 aVU1,2,2 · · · aVU1,P ,2

...
...

. . .
...

aVU1,1,(K−1
S−1)

aVU1,2,(K−1
S−1)

· · · aVU1,P ,(K−1
S−1)

 .

(43)

Note that
(
F(K−1

S−1)(i−1)+j : i ∈ [U], j ∈[(
K−1
S−1
)
−
(
K−1−U
S−1

)
+ 1 :

(
K−1
S−1
)] )

are the linear combinations
in (28), which have already been recovered by the server in
the first round.

Thus we can let each user k ∈ U1 transmit

Y U1k = Sk

 F1

...
FU(K−1

S−1)

 , (44)

where Sk with
(
K−1
S−1
)
−
(
K−1−U
S−1

)
rows represents the matrix

of second-round transmission by user k. The next step is to
determine Sk satisfying that

• (c1) encodability for the second-round transmission: in
the second-round transmission by each user k ∈ U1, the
coefficients of ZU1V,i where V ∈

(
[K]\{k}

S

)
and i ∈ [U] are

0, since user k cannot compute such coded keys;
• (c2) decodability: for any set U2 ⊆ U1 where |U2| =

U, the matrix (recall that en,i represents the vertical n-
dimensional standard unit vector whose ith element is 1)

SU2,1
...

SU2,U
eU(K−1

S−1),(
K−1
S−1)−(K−1−U

S−1 )+1

eU(K−1
S−1),(

K−1
S−1)−(K−1−U

S−1 )+2

...
eU(K−1

S−1),(
K−1
S−1)

eU(K−1
S−1),(

K−1
S−1)+(K−1

S−1)−(K−1−U
S−1 )+1

...
eU(K−1

S−1),(
K−1
S−1)+(K−1

S−1)
...

eU(K−1
S−1),U(K−1

S−1)



(45)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3393740

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on July 30,2024 at 03:01:43 UTC from IEEE Xplore.  Restrictions apply. 



10

with dimension U
(
K−1
S−1
)
× U

(
K−1
S−1
)

is full rank.

Note that (c1) guarantees in Y U1k , the transmitted linear
combinations of the coded keys do not contain the coded keys
which user k cannot compute; (c2) guarantees that from the
second-round transmissions by any U users in U1, the server
can recover (41) and then the computation task

∑
k′∈U1 Wk′,j

for each j ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)]
.

Let us focus on one user k ∈ [K] and construct Sk; note
that, our construction on Sk is independent of the value of
U1. Denote the sets in

(
[K]\{k}

S

)
by Sk,1, . . . ,Sk,(K−1

S ). By the

selection of the coefficient vectors aV where V ∈
(
[K]
S

)
, we

have the following lemma, whose proof could be found in
Appendix B.

Lemma 2 (Interference alignment for encodability). The ma-
trix [

aSk,1
,aSk,2

, . . . ,aS
k,(K−1

S )

]
(46)

with dimension
(
K−1
S−1
)
×
(
K−1
S

)
, has rank equal to

(
K−2
S−1
)

with
high probability. �

It can be seen from Lemma 2 that, by the selection of the
coefficient vectors, the “interferences” to user k (i.e., the coded
keys which user k cannot compute) are aligned. Thus with high
probability the left null space of the matrix in (46) contains(
K−1
S−1
)
−
(
K−2
S−1
)

=
(
K−2
S−2
)

linearly independent vectors, denoted
by sk,1, . . . , sk,(K−2

S−2)
, each with dimension 1×

(
K−1
S−1
)
.

Then considering the division of keys in the second-round
transmission, we construct the following matrix with dimen-
sion U

(
K−2
S−2
)
× U

(
K−1
S−1
)
,

S′k =



sk,1
...

sk,(K−2
S−2)

01×(K−1
S−1)

...
01×(K−1

S−1)

· · ·
. . .
· · ·

01×(K−1
S−1)

...
01×(K−1

S−1)
01×(K−1

S−1)
...

01×(K−1
S−1)

sk,1
...

sk,(K−2
S−2)

· · ·
. . .
· · ·

01×(K−1
S−1)

...
01×(K−1

S−1)
...

...
. . .

...
01×(K−1

S−1)
...

01×(K−1
S−1)

01×(K−1
S−1)

...
01×(K−1

S−1)

· · ·
. . .
· · ·

sk,1
...

sk,(K−2
S−2)



. (47)

Finally, we let Sk be
(
K−1
S−1
)
−
(
K−1−U
S−1

)
random linear

combinations of the rows in S′k, where each coefficient in
each linear combination is uniformly i.i.d. over Fq. These(
K−1
S−1
)
−
(
K−1−U
S−1

)
random linear combinations are linearly

independent with high probability since

U

(
K− 2

S− 2

)
≥
(
K− 1

S− 1

)
−
(
K− 1− U

S− 1

)
, (48)

whose proof could be found in Appendix C. Note that it will
be also proved in Appendix C that the equality in (48) holds
when K = S.

By construction, the columns in S′kA corresponding to the
coded keys ZU1V,j where V ∈

(
[K]\{k}

S

)
, V∩U1 6= ∅, and j ∈ [U],

are all 0U(K−2
S−2)×1

. Since the rows of Sk are linear combinations
of the rows in S′k, the columns in SkA corresponding to the
coded keys ZU1V,j where V ∈

(
[K]\{k}

S

)
, V∩U1 6= ∅, and j ∈ [U],

are also all 0((K−1
S−1)−(K−1−U

S−1 ))×1. Thus (c1) is satisfied with
high probability.

In Appendix D, by using the Schwartz-Zippel lemma [32]–
[34], we have the following lemma, which shows that (c2) is
satisfied with high probability by the proposed second-round
transmission.

Lemma 3 (Decodability). For any set U2 ⊆ [K] where |U2| =
U, the matrix in (45) is full rank with high probability. �

Finally, the following lemma shows that the proposed
scheme is information theoretically secure.

Lemma 4 (Security). By the proposed scheme, after receiving
all the linear combinations in X1, . . . XK and Y U1k where k ∈
U1, the server cannot get any information about W1, . . . ,WK

except
∑

k∈U1 Wk. �

In the following we provide an intuitive proof on Lemma 4,
while the formal proof is provided in Appendix E. By the
security constraint, as we proved in (16f), the server should not
get any information about Wk from Xk, which requires that
the rank of the sub-keys in Xk is equal to the dimension of Xk.
In other words, by denoting the sets V ∈

(
[K]
S

)
where k ∈ V

by Sk,1, . . . ,Sk,(K−1
S−1)

, we need to have that the coefficients

matrix (whose dimension is
(
K−1
S−1
)
×
(
K−1
S−1
)
)[

aSk,1
, . . . ,aS

k,(K−1
S−1)

]
has rank equal to

(
K− 1

S− 1

)
. ∀k ∈ [K].

(49)

It can be checked that (49) is satisfied by the above selection
of coefficient vectors. This is because by Lemma 1, it can be
directly seen that for each k ∈ [K], from the coefficient vectors
aV where V ∈

(
[K]
S

)
and k ∈ V , we can re-construct all

(
K
S

)
coefficient vectors; thus the constraint (49) is satisfied with
high probability.7

In addition, (X1,W1), . . . , (XK,WK) are mutually indepen-
dent in our scheme, because the keys and input vectors are
mutually independent and X1, . . . ,XK use different sub-keys.
Hence, from X1, . . . ,XK the server cannot get any information
about W1, . . . ,WK.

In the second round, all the transmissions are in
the linear space spanned by F1, . . . FU(K−1

S−1)
, totally

U
(
K−1
S−1
)

L
U((K−1

S−1)−(K−1−U
S−1 ))

= L
(K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
symbols. In

addition, the server can recover
(
F(K−1

S−1)(i−1)+j : i ∈ [U], j ∈[(
K−1
S−1
)
−
(
K−1−U
S−1

)
+ 1 :

(
K−1
S−1
)] )

from the first round.

7We generate
(K−1
S−1

)
coefficient vectors aV where V ∈

([K]
S

)
and 1 ∈ V ,

and each vector contains
(K−1
S−1

)
elements uniformly i.i.d. over a large enough

finite field. Hence, these
(K−1
S−1

)
coefficient vectors are linearly independent

with high probability.
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Hence, from the second round the server can get at most

L

(
K−1
S−1
)(

K−1
S−1
)
−
(
K−1−U
S−1

) − L
U
(
K−1−U
S−1

)
U
((

K−1
S−1
)
−
(
K−1−U
S−1

)) = L

symbols. Hence, by the Shannon’s seminal results in [18],
from the second round the server can get at most L symbols
information about W1, . . . ,WK, which are exactly the L sym-
bols in the computation task

∑
k∈U1 Wk by the decodability

proof. Hence, the server cannot get any information about
W1, . . . ,WK except the computation task.

In conclusion, since we show that the constraints (c1),
(c2) and in (49) are satisfied with high probability where
the randomness is in the selection on coefficients vectors aV
where V ∈

(
[K]
S

)
and 1 ∈ V and on Sk where k ∈ [K];8 thus

there must exist one selection such that all these constraints
are satisfied. So the proposed scheme is decodable and
secure satisfying the constraints in (6) and (7), with
R1 =

(K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
and R2 ≥ 1

U .
Example 1 (cont.) Let us return to Example 1 with

(K,U, S) = (5, 2, 3) and describe the second-round transmis-
sion of the proposed scheme. Recall that we consider the case
U1 = [5], i.e., no user drops in the first round. The server
should further recover

∑
V∈([5]

3 ) aV,jZ
[5]
V for j ∈ [5], in the

second round, where the coefficient vectors aV where V ∈
(
[K]
S

)
are given in Table I.

In the second round, to achieve R2 = 1/2, we divide each
Z

[5]
V where V ∈

(
[5]
3

)
into 2 non-overlapping and equal-length

coded keys, Z
[5]
V =

{
Z

[5]
V,1,Z

[5]
V,2

}
, where each coded key

contains L
10 symbols. Hence, we can write the recovery task

of the second round in the matrix form

 F1

...
F12

 = F



Z
[5]
{1,2,3},1

Z
[5]
{1,2,4},1

...
Z

[5]
{3,4,5},1

Z
[5]
{1,2,3},2

Z
[5]
{1,2,4},2

...
Z

[5]
{3,4,5},2


(50)

where

F =[
a{1,2,3},a{1,2,4}, . . . ,a{3,4,5} 06×10

06×10 a{1,2,3},a{1,2,4}, . . . ,a{3,4,5}

]
.

(51)

Note that F6 =
∑
V∈([5]

3 ) aV,6Z
[5]
V,1 and F12 =∑

V∈([5]
3 ) aV,6Z

[5]
V,2 have been already recovered by the

server from the first round.

8Recall that Sk contains
(K−1
S−1

)
−
(K−1−U

S−1

)
random linear combinations of

the rows in S′k , where each coefficient in each linear combination is uniformly
i.i.d. over Fq.

We focus on each user k ∈ [5], who should transmit
(
K−1
S−1
)
−(

K−1−U
S−1

)
= 5 linear combinations of F1, . . . ,F12 in the second

round; in the matrix form these 5 linear combinations are

Sk

 F1

...
F12

 , (52)

where Sk is a matrix with dimension 5×12. Note that for the
encodability, user k can only compute the coded keys Z

[5]
V,j

where k ∈ V; thus in the transmitted linear combinations the
coefficients of the coded keys which user k cannot compute
should be equal to 0.

For user 1, the columns of S1F with indices in [7 :
10] ∪ [17 : 20] should be 05×1, since these columns corre-
spond to Z{2,3,4},1, Z{2,3,5},1, Z{2,4,5},1, Z{3,4,5},1, Z{2,3,4},2,
Z{2,3,5},2, Z{2,4,5},2, Z{3,4,5},2, which cannot be computed by
user 1. Assume that the column-wise sub-matrix of F including
the columns with indices in [7 : 10] ∪ [17 : 20] is F1 with
dimension 12×8, given in (53) at the top of the next page. We
need to find 5 linearly independent left null vectors of F1, and
let S1 be the matrix of these 5 vectors. Note that if F1 is full
rank, the left null space of F1 only contains 12−8 = 4 linearly
independent vectors. However, by our construction, it has been
shown in (31) that a{3,4,5} = a{2,4,5} − a{2,3,5} + a{2,3,4};
in other words, the coefficient vectors corresponding to
the unknown coded keys of user 1 are aligned. Thus by
this interference alignment-like construction, the rank of F1

is 6, and thus the left null space of F1 contains 12 − 6 = 6
linearly independent vectors. More precisely, the left null space
of [a{2,3,4},a{2,3,5},a{2,4,5}] is the linear space spanned by
s1,1 = (0,−1,−2, 0, 0, 2), s1,2 = (−2,−1, 0, 0, 4, 0), s1,3 =
(0, 0, 0, 1, 0, 0). Hence, the left null space of F1 is the linear
space spanned by

(s1,1, 01×6), (s1,2, 01×6), (s1,3, 01×6),

(01×6, s1,1), (01×6, s1,2), (01×6, s1,3). (54)

We let each row of S1 be one random linear combination of
the vectors in (54); in this example, we let

S1=


0 −1 −2 0 0 2 0 0 0 0 0 0
−2 −1 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −2 0 0 2
0 0 0 0 0 0 −2 −1 0 0 4 0
0 0 0 1 0 0 0 0 0 1 0 0

 .

(55)

For user 2, the columns of S2F with
indices in {4, 5, 6, 10, 14, 15, 16, 20} should
be 05×1, since these columns correspond to
Z{1,3,4},1,Z{1,3,5},1,Z{1,4,5},1,Z{3,4,5},1,Z{1,3,4},2,Z{1,3,5},2,
Z{1,4,5},2,Z{3,4,5},2, which cannot be computed by user 2.
Assume that the column-wise sub-matrix of F including the
columns with indices in {4, 5, 6, 10, 14, 15, 16, 20} is F2 with
dimension 12×8, given in (56) at the top of the next page. By
construction we have a{3,4,5} = a{1,4,5}−a{1,3,5}+a{1,3,4} as
shown in (32). The left null space of [a{2,3,4},a{2,3,5},a{2,4,5}]
is the linear space spanned by s2,1 = (−1, 0,−1, 0, 0, 1),
s2,2 = (0, 0, 0, 0, 1, 0), s2,3 = (0,−1, 0, 1, 0, 0). Hence,
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F1 =

[
a{2,3,4},a{2,3,5},a{2,4,5},a{3,4,5} 06×4

06×4 a{2,3,4},a{2,3,5},a{2,4,5},a{3,4,5}

]
. (53)

F2 =

[
a{1,3,4},a{1,3,5},a{1,4,5},a{3,4,5} 06×4

06×4 a{1,3,4},a{1,3,5},a{1,4,5},a{3,4,5}

]
. (56)

the left null space of F2 is the linear space spanned
by (s2,1, 01×6), (s2,2, 01×6), (s2,3, 01×6), (01×6, s2,1),
(01×6, s2,2), (01×6, s2,3). We let each row of S2 be one
random linear combination of the vectors in (54); in this
example, we let

S2=


−1 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0
0 −1 0 1 0 0 0 −2 0 2 0 0

 .

(57)

We can also check that
• a{2,4,5} = a{1,4,5} − a{1,2,5} + a{1,2,4}; thus the rank of

[a{1,2,4},a{1,2,5},a{1,4,5},a{2,4,5}] is equal to the rank
of [a{1,2,4},a{1,2,5},a{1,4,5}] which is equal to 3;

• a{2,3,5} = a{1,3,5} − a{1,2,5} + a{1,2,3}; thus the rank of
[a{1,2,3},a{1,2,5},a{1,3,5},a{2,3,5}] is equal to the rank
of [a{1,2,3},a{1,2,5},a{1,3,5}] which is equal to 3;

• a{2,3,4} = a{1,3,4} − a{1,2,4} + a{1,2,3}; thus the rank of
[a{1,2,3},a{1,2,4},a{1,3,4},a{2,3,4}] is equal to the rank
of [a{1,2,3},a{1,2,4},a{1,3,4}] which is equal to 3.

So Lemma 2 holds in this example. Then by a similar way to
choose S1 and S2, we choose

S3=


−1 0 1 −1 0 1 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 −1 0 1
0 0 0 0 0 0 0 0 −1 0 1 0
0 1 0 0 0 0 0 3 0 0 0 0

 ,

(58)

S4=


1 −1 0 −1 0 1 0 0 0 0 0 0
1 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 −1 0 1
0 0 0 0 0 0 1 −1 0 0 1 0
0 0 1 0 0 0 0 0 4 0 0 0

 ,

(59)

S5=


−1 −1 0 0 0 1 0 0 0 0 0 0
−2 −1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 0 0 1
0 0 0 0 0 0 −2 −1 1 0 1 0
0 0 −1 1 0 0 0 0 −5 5 0 0

 .

(60)

As a summary, constraint (c1) is satisfied by the interference
alignment-like construction, while satisfying this constraint
leads to the successful encoding of each user.

Then we check the decodability. Note that F6 and F12 have
been recovered by the server from the first round. For any set

of two users U2 = {u1,u2} ⊆ [K] where |U2| = 2, one can
check that from (55)-(60) that the matrix

Su1

Su2

eT
12,6

eT
12,12

 (61)

whose dimension is 12× 12, is full rank; thus constraint (c2)
is satisfied (i.e., Lemma 3 holds in this example). So the server
can recover F1, . . . ,F12 and then recover W1 + · · ·+ W5.

Lastly, we check the security. Recall that we denote the sets
V ∈

(
[K]
S

)
where k ∈ V by Sk,1, . . . ,Sk,(K−1

S−1)
. It can be checked

from Table I that our selection on the coefficient vectors has
the following property:[

aSk,1
, . . . ,aS

k,(K−1
S−1)

]
has rank equal to

(
K− 1

S− 1

)
= 6,

(62)

for each k ∈ [K].
User k transmits Xk = (Xk,1, . . . ,Xk,6), totally 6L/5

symbols in the first round. Since the selection of the coefficient
vectors has the property in (62), the rank of the sub-keys
in Xk is equal to the dimension of Xk and thus from
Xk the server cannot get any information about Wk. In
addition, (X1,W1), . . . , (X5,W5) are mutually independent
in our scheme, because the keys and input vectors are mutually
independent and X1, . . . ,X5 use different sub-keys. Hence,
from X1, . . . ,X5 the server cannot get any information about
W1, . . . ,W5.

In the second round, all the transmissions by all users are
linear combinations of F1, . . . ,F12, where F6 and F12 can
be recovered from the first round. Since each Fi, where i ∈
[12] \ {6, 12} contains L/10 symbols, by [18] the server can
only obtain additional 10L/10 = L symbols about W1, . . . ,W5

from the second round, which are exactly the symbols in W1+
· · ·+ W5. Hence, the proposed secure aggregation scheme is
secure.

The above scheme could be directly extended to other U1 ⊆
[5] where U1 ≥ 2. For example, consider U1 = [4]. After the
first round, the server can recover∑
k1∈[4]

Xk1,j =
∑

k2∈[4]

Wk2,j +
∑
V∈([5]

3 )

aV,j
∑

k3∈V∩[4]

ZV,k3︸ ︷︷ ︸
:=Z

[4]
V

(63)

for each j ∈ [5], and recover∑
k1∈[4]

Xk1,6 =
∑
V∈([5]

3 )

aV,6Z
[4]
V . (64)
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Hence, the server should further recover in the second round

 F1

...
F12

 = F



Z
[4]
{1,2,3},1

Z
[4]
{1,2,4},1

...
Z

[4]
{3,4,5},1

Z
[4]
{1,2,3},2

Z
[4]
{1,2,4},2

...
Z

[4]
{3,4,5},2


, (65)

where F is given in (53), and F6,F12 have been recovered
from the first round. By choosing S1,S2,S3,S4 as in (55)-
(59), we let each user k ∈ [4] transmit SkF in the second
round. For any set of two users U2 = {u1,u2} ⊆ [4] where
|U2| = 2, the matrix in (61) is full rank; thus the decodability
was proved. By the same reason as the case U1 = [5], we can
also prove that the proposed scheme is secure for the case
U1 = [4].

As a result, the proposed secure aggregation scheme
achieves R1 = 6/5 and R2 = 1/2, coinciding with the
converse bound in Section IV. �

Remark 1. The proposed secure aggregation scheme in this
section can also work for the case S > K − U. In this case,

R1 =
(K−1
S−1)

(K−1
S−1)−(K−1−U

S−1 )
= 1 and each input vector is divided

into
(
K−1
S−1
)
−
(
K−1−U
S−1

)
=
(
K−1
S−1
)

non-overlapping and equal-
length pieces. In the first round transmission, we only transmit
the coded messages in (23), while the coded messages in (24)
does not exist since

(
K−1−U
S−1

)
= 0. In other words, since the

number of users knowing each key is larger than the maximal
number of dropped users, in the first round we do not need
to transmit coded messages in (24) which are only composed
of keys. In addition, in the second round transmission, the
proposed scheme also works with the optimal communication
rate R2 = 1/U, while the decodability and security constraints
are both satisfied.

For the case S > K−U, compared to the secure aggregation
scheme in [23] with the optimal communication rates, the
proposed secure aggregation scheme in this paper achieves
the same optimal communication rates. However, the proposed
scheme requires all the

(
K
S

)
keys each of which is shared by a

different set of S users and has S

(K−1
S−1)

symbols; the number of

keys required by the scheme in [23] is at most O(K2), where
each key is shared by S users and has (K−U+1)L/U symbols.
�

VI. EXPERIMENTAL RESULTS

We implement our proposed secure aggregation scheme in
Python3.11 by using the MPI4py library over the Tencent
Cloud, which is then compared to the original secure ag-
gregation scheme in [6] (referred to as SecAgg). Note that,
the secure aggregation scheme in [6] is modified to guarantee
information theoretic security if each key is generated with
i.i.d. symbols instead of being generated by pseudorandom
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Fig. 2: Model aggregation times of the proposed scheme and
SecAgg for U = b(K+ 1)/2c and S = K− U.

generator. Our comparison focuses on the model aggregation
times of the proposed protocol and SecAgg (including encryp-
tion, transmission, decryption times), by assuming the offline
keys have been already shared.

Tencent Cloud Setup. We choose Tencent Cloud instances,
specifically S6.LARGE16 and S6.MEDIUM2. Of these, one
S6.LARGE16 instance plays the role of the server and all
the users. These Tencent Cloud instances are equipped with
Intel Xeon Ice Lake processors running at a base clock speed
of 2.7 GHz with a turbo frequency of 3.3 GHz. All instances
used in our experiment are identical in terms of computing
power, memory and network resources. The communication
speed between the server and the users is a fast 100MB/s.
To generate our input vectors, we set the field size q to 7
and generate vectors that are uniformly i.i.d. over F7. We also
consider three different sizes for each input vector: 100KB,
200KB, and 300KB, following the suggestions in [6]. In the
system configuration represented by (K,U, S), we use Monte
Carlo methods with 100 samples and then average the resulting
times over these 100 samples.

Proposed scheme v.s. SecAgg. We compare the model
aggregation times of our proposed scheme and SecAgg, for
U = b(K + 1)/2c and S = K−U, as shown in Fig. 2. We can
see that the proposed scheme outperforms SecAgg by reducing
model aggregation time, where the reduction percent ranges
from 29.7% to 67.2%. This improvement coincides with the
theoretical perspective that the proposed scheme achieves the
optimal communication cost during the model aggregation
phase, while SecAgg does not.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we aimed to minimize the communication
rates in the two-round transmissions of the model aggrega-
tion phase, for the information theoretic secure aggregation
problem with uncoded groupwise keys. While preserving
the security on the users’ local data, the secure aggregation
scheme should also be able to tolerate user dropouts. By
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proposing a new and tight converse bound coinciding with the
achievable rates by the new secure aggregation scheme based
on interference alignment, we fully characterized the region
of all possible rates tuples for the considered problem.

There are several interesting and important future directions
on secure aggregation with uncoded groupwise keys. First,
when the total size of keys or the storage cost on keys by each
user is limited by a value, it is important to characterize the
optimal tradeoff between this value and the communication
rates.9 Second, it is important to consider the threat model
where the server can collude with some users; thus secure
aggregation with uncoded groupwise keys against user col-
lusion can be one of the future works. Third, the extension
of the secure aggregation scheme with uncoded groupwise
keys to the scenario of clustered federated learning is another
promising direction.

APPENDIX A
PROOF OF LEMMA 1

Consider one set V ∈
(
[K]
S

)
and one k ∈ [K] \ V . Recall

that nV,k represents the number of elements in V which are
smaller than k.

When k = 1, we have nV,1 = 0 and thus the equation to
be proved, (26), becomes

aV =
∑
i1∈[S]

(−1)i1−1aV\{V(i1)}∪{1}, (66)

which is exactly (25) and thus is proved.
When 1 ∈ V and k 6= 1, assume that V \ {1} = V ′ where
|V ′| = S− 1. Hence, (26) becomes

aV′∪{1} =
∑

i1∈[nV,k+1:S]

(−1)i1−nV,k−1aV\{V(i1)}∪{k}

+ (−1)nV,k+1aV′∪{k} +
∑

i2∈[2:nV,k]

(−1)nV,k+i2aV\{V(i2)}∪{k},

(67a)
⇐⇒ (−1)nV,kaV′∪{k} =∑
i1∈[nV,k+1:S]

(−1)i1−nV,k−1aV\{V(i1)}∪{k}

+
∑

i2∈[2:nV,k]

(−1)nV,k+i2aV\{V(i2)}∪{k} − aV′∪{1}, (67b)

⇐⇒ aV′∪{k} =
∑

i2∈[2:nV,k]

(−1)i2aV\{V(i2)}∪{k}

9 Without the constraint of uncoded groupwise keys, it was proved in [11,
Theorem 2] that the total size of keys and the communication rates can
simultaneously reach the minimum; i.e., there is no “tradeoff” between them.
However, with the constraint of uncoded groupwise keys, the problem on
the tradeoff among the total size of keys and the communication rates
becomes more complicated. If the value S is not a fixed system parameter,
the best scheme is to trivially let S = K and thus this constraint of uncoded
groupwise keys is actually meaningless (since we can directly use the scheme
in [11]). So the non-trivial setting is that S is a fixed system parameter,
as formulated in this paper, where we need to choose which of the keys
(ZV : V ∈

([K]
S

)
) should be generated and then how to use them in the

secure aggregation. Furthermore, for the optimal tradeoff among the storage
cost and the communication rates, it remains open even without the constraint
of uncoded groupwise keys.

+ (−1)nV,k+1aV′∪{1} +
∑

i1∈[nV,k+1:S]

(−1)i1−1aV\{V(i1)}∪{k},

(67c)

⇐⇒ aV′∪{k} =
∑

i4∈[1:nV,k−1]

(−1)i4−1aV∪{k}\{V′(i4)}

+ (−1)nV,k−1aV′∪{1} +
∑

i3∈[nV,k:S−1]

(−1)i3aV∪{k}\{V′(i3)},

(67d)

where (67a) follows since V(1) = 1 and (67d) follows since
we let i3 = i1−1 and i4 = i2−1. It can be seen that (67d) can
be derived by directly expanding aV′∪{k} according to (25).

Finally, we consider the most involved case where k 6= 1
and 1 /∈ V . We first expand the LHS of (26) as in (25); that
is,

aV =
∑
i∈[S]

(−1)i−1aV\{V(i)}∪{1}. (68)

Then for each i ∈ [S], we will show in the following that the
RHS of (26) also contains the term (−1)i−1aV\{V(i)}∪{1}.
We also expand each term on the RHS of (26) by using (25).
Note that aV\{V(i)}∪{1} can only appear in aV\{V(i)}∪{k}. We
consider two cases:

• V(i) > k. The coefficient of aV\{V(i)}∪{k} on the RHS
of (26) is (−1)i−nV,k−1. We expand aV\{V(i)}∪{k} by
using (25). Since the number of elements in V smaller
than k is nV,k and V(i) > k, the number of elements in
V \{V(i)}∪{k} smaller than k is also nV,k; thus by us-
ing (25), the coefficient of aV\{V(i)}∪{1} in aV\{V(i)}∪{k}
is (−1)nV,k . Hence, the coefficient of aV\{V(i)}∪{1} on
the RHS of (26) is (−1)i−nV,k−1(−1)nV,k = (−1)i−1.

• V(i) < k. The coefficient of aV\{V(i)}∪{k} on the RHS
of (26) is (−1)nV,k+i. We expand aV\{V(i)}∪{k} by
using (25). Since the number of elements in V smaller
than k is nV,k and V(i) < k, the number of elements in
V \ {V(i)} ∪ {k} smaller than k is nV,k − 1; thus by us-
ing (25), the coefficient of aV\{V(i)}∪{1} in aV\{V(i)}∪{k}
is (−1)nV,k−1. Hence, the coefficient of aV\{V(i)}∪{1} on
the RHS of (26) is (−1)nV,k+i(−1)nV,k−1 = (−1)i−1.

After expanding each aV\{V(i)}∪{k} where i ∈ [S] on the
RHS of (26) by using (25), the RHS of (26) may only contain
aV\{V(i)}∪{1} where i ∈ [S] and aV\{V(i′),V(i′′)}∪{1,k} where
1 ≤ i′ < i′′ ≤ S. Next we will prove that the coefficient of
each term aV\{V(i′),V(i′′)}∪{1,k} where 1 ≤ i′ < i′′ ≤ S, is 0.
aV\{V(i′),V(i′′)}∪{1,k} appears in the expansions of

aV\{V(i′)}∪{k} and aV\{V(i′′)}∪{k}. We consider three cases:

• V(i′) < V(i′′) < k. The coefficient of aV\{V(i′)}∪{k}
on the RHS of (26) is (−1)nV,k+i′ ; the coefficient of
aV\{V(i′),V(i′′)}∪{1,k} in the expansion of aV\{V(i′)}∪{k}
is (−1)i

′′−1−1 = (−1)i
′′

, since the number of el-
ements in V \ {V(i′)} ∪ {k} smaller than V(i′′) is
i′′ − 1 − 1. Similarly, the coefficient of aV\{V(i′′)}∪{k}
on the RHS of (26) is (−1)nV,k+i′′ ; the coefficient of
aV\{V(i′),V(i′′)}∪{1,k} in the expansion of aV\{V(i′′)}∪{k}
is (−1)i

′−1, since the number of elements in V\{V(i′′)}∪
{k} smaller than V(i′) is i′−1. Hence, the coefficient of
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aV\{V(i′),V(i′′)}∪{1,k} on the RHS of (26) is

(−1)nV,k+i′(−1)i
′′

+ (−1)nV,k+i′′(−1)i
′−1 = 0.

• k < V(i′) < V(i′′). The coefficient of aV\{V(i′)}∪{k}
on the RHS of (26) is (−1)i

′−nV,k−1; the coefficient of
aV\{V(i′),V(i′′)}∪{1,k} in the expansion of aV\{V(i′)}∪{k}
is (−1)i

′′−1, since the number of elements in V\{V(i′)}∪
{k} smaller than V(i′′) is i′′−1. Similarly, the coefficient
of aV\{V(i′′)}∪{k} on the RHS of (26) is (−1)i

′′−nV,k−1;
the coefficient of aV\{V(i′),V(i′′)}∪{1,k} in the expansion
of aV\{V(i′′)}∪{k} is (−1)i

′
, since the number of elements

in V \ {V(i′′)} ∪ {k} smaller than V(i′) is i′. Hence, the
coefficient of aV\{V(i′),V(i′′)}∪{1,k} on the RHS of (26)
is

(−1)i
′−nV,k−1(−1)i

′′−1 + (−1)i
′′−nV,k−1(−1)i

′
= 0.

• V(i′) < k < V(i′′). The coefficient of aV\{V(i′)}∪{k}
on the RHS of (26) is (−1)nV,k+i′ ; the coefficient of
aV\{V(i′),V(i′′)}∪{1,k} in the expansion of aV\{V(i′)}∪{k}
is (−1)i

′′−1, since the number of elements in V\{V(i′)}∪
{k} smaller than V(i′′) is i′′ − 1. In addition, the
coefficient of aV\{V(i′′)}∪{k} on the RHS of (26) is
(−1)i

′′−nV,k−1; the coefficient of aV\{V(i′),V(i′′)}∪{1,k}
in the expansion of aV\{V(i′′)}∪{k} is (−1)i

′−1, since
the number of elements in V \ {V(i′′)} ∪ {k} smaller
than V(i′) is i′ − 1. Hence, the coefficient of
aV\{V(i′),V(i′′)}∪{1,k} on the RHS of (26) is

(−1)nV,k+i′(−1)i
′′−1 + (−1)i

′′−nV,k−1(−1)i
′−1 = 0.

As a result, we proved (26).

APPENDIX B
PROOF OF LEMMA 2

For each k ∈ [K], we want to prove that the matrix in (46),
which is [

aSk,1
,aSk,2

, . . . ,aS
k,(K−1

S )

]
, (69)

has rank
(
K−2
S−1
)

with high probability, where
Sk,1,Sk,2, . . . ,Sk,(K−1

S ) denote the vectors V ∈
(
[K]\{k}

S

)
.

We select one user k′ ∈ [K] \ {k}. Denote the sets V ∈(
[K]\{k}

S

)
where k′ ∈ V by

Sk,k′,1, . . . ,Sk,k′,(K−2
S−1)

. It can be seen from Lemma 1 that, for

each V ∈
(
[K]\{k,k′}

S

)
we can re-construct the vector aV by a

linear combination of the vectors aV\{k′′}∪{k′} where k′′ ∈
V . Hence, all the vectors aSk,1

,aSk,2
, . . . ,aS

k,(K−1
S )

are linear

combinations of aSk,k′,1
, . . . ,aS

k,k′,(K−2
S−1)

. Hence, the rank of

the matrix in (69) is equal to the rank of[
aSk,k′,1

, . . . ,aS
k,k′,(K−2

S−1)

]
. (70)

By construction, all the vectors aV where V ∈
(
[K]
S

)
are

located in the linear space spanned by aV1 where V1 ∈
(
[K]
S

)
and 1 ∈ V1. Since each vector aV1 where V1 ∈

(
[K]
S

)
and

1 ∈ V1, is uniformly i.i.d. over F(K−1
S−1)

q with large enough q, the
above linear space has dimension

(
K−1
S−1
)

with high probability.
In addition by Lemma 1, the vectors aV2 where V2 ∈

(
[K]
S

)
and

k′ ∈ V2 can re-construct each vector in this
(
K−1
S−1
)
-dimensional

linear space. Hence, the
(
K−1
S−1
)

vectors V2 ∈
(
[K]
S

)
and k′ ∈

V2 are linearly independent with high probability. Hence, we
proved that the matrix in (70) is full rank with high probability,
with rank

(
K−2
S−1
)
. As a result, we proved that the rank of the

matrix in (69) is
(
K−2
S−1
)

with high probability.

APPENDIX C
PROOF OF (48)

We prove (48) by induction.
First consider the case U = 1. We need to prove(

K− 2

S− 2

)
≥
(
K− 1

S− 1

)
−
(
K− 2

S− 1

)
, (71)

which directly holds from Pascal’s triangle
(
K−2
S−2
)

=
(
K−1
S−1
)
−(

K−2
S−1
)
.

Then for any U ∈ [i], we assume that

i

(
K− 2

S− 2

)
≥
(
K− 1

S− 1

)
−
(
K− 1− i

S− 1

)
(72)

holds, and will prove

(i + 1)

(
K− 2

S− 2

)
≥
(
K− 1

S− 1

)
−
(
K− i− 2

S− 1

)
. (73)

Note that(
K− 2

S− 2

)
>

(
K− i− 2

S− 2

)
=

(
K− i− 1

S− 1

)
−
(
K− i− 2

S− 1

)
.

(74)

By summing (72) and (74), we can prove (73).

APPENDIX D
PROOF OF LEMMA 3

Consider one set U2 ⊆ [K] where |U2| = U. We want to
prove that the matrix in (45) with dimension U

(
K−1
S−1
)
×U
(
K−1
S−1
)

is full rank with high probability; i.e., the determinant of
the matrix in (45) is not zero with high probability. Note
that the determinant could be written as DA = PA

QA
. PA

and QA are multivariate polynomials whose variables are the
elements in aV where V ∈

(
[K]
S

)
, 1 ∈ V and the coefficients

in the
(
K−1
S−1
)
−
(
K−1−U
S−1

)
random linear combinations of the

rows in S′k for each k ∈ U2. Since the matrix in (45) exists
with high probability by Lemma 2 and (48), QA is not zero
with high probability. Hence, it remains to prove that PA
is not zero with high probability neither. Since the variables
in PA are uniformly i.i.d. over Fq where q is large enough,
by the Schwartz-Zippel Lemma [32]–[34], if the multivariate
polynomial PA is non-zero (i.e., a multivariate polynomial
whose coefficients are not all 0), the probability that PA is
equal to 0 over all possible realizations of variables goes to
0 when q goes to infinity, and thus the matrix in (45) is full
rank with high probability. So in the following, we need to
show that PA is a non-zero polynomial; i.e., we want to find
out one realization of the variables in PA, such that the matrix
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in (45) exists and is full rank (in this way, PA = DAQA is
not zero).

We pick one integer u ∈ [K] \ U2. We first select
the elements in aV where V ∈

(
[K]
S

)
, 1 ∈ V . Note that

the dimension of aV is
(
K−1
S−1
)
. We want to let [aV :

V ∈
(
[K]
S

)
,u ∈ V ] be an identity matrix with dimension(

K−1
S−1
)
×
(
K−1
S−1
)
. More precisely, we define a collection of sets

C1 =
{
V ∈

(
[K]
S

)
: u ∈ V ,V ∩ U2 6= ∅

}
and sort its sets as

C1,1, . . . , C1,(K−1
S−1)−(K−1−U

S−1 ). Let

aC1,i = e(K−1
S−1),i

, ∀i ∈
[(

K− 1

S− 1

)
−
(
K− 1− U

S− 1

)]
. (75)

In addition, we also define a collection of sets
C2 =

{
V ∈

(
[K]
S

)
: u ∈ V ,V ∩ U2 = ∅

}
and sort its sets

as C2,1, . . . , C2,(K−1−U
S−1 ). Let

aC2,i = e(K−1
S−1),(

K−1
S−1)−(K−1−U

S−1 )+i, ∀i ∈
[(

K− 1− U

S− 1

)]
.

(76)

There must exist a selection of aV where V ∈
(
[K]
S

)
, 1 ∈ V

which leads (75) and (76). This is because by Lemma 1, we
can obtain aV where V ∈

(
[K]
S

)
, 1 ∈ V from the vectors aV′

where V ′ ∈
(
[K]
S

)
,u ∈ V . Hence, those resulting vectors aV

where V ∈
(
[K]
S

)
, 1 ∈ V can in turn lead (75) and (76).

Focus on each user k ∈ U2. Recall that the sets in(
[K]\{k}

S

)
are denoted by Sk,1, . . . ,Sk,(K−1

S ). By Lemma 1,
aSk,1

,aSk,2
, . . . ,aS

k,(K−1
S )

are in the linear space spanned

by aV where V ∈
(
[K]\{k}

S

)
and u ∈ V . Hence, the rank

of the matrix [aSk,1
,aSk,2

, . . . ,aS
k,(K−1

S )
] is

(
K−2
S−1
)
; thus this

matrix with dimension
(
K−1
S−1
)
×
(
K−1
S

)
contains

(
K−2
S−2
)

linearly
independent left null vectors, which are aV where V ∈

(
[K]
S

)
and {u, k} ⊆ V . Let sk,1, . . . , sk,(K−2

S−2)
be these

(
K−2
S−2
)

vectors,
we can obtain S′k in (47). Since S′k exists, Sk, which are(
K−1
S−1
)
−
(
K−1−U
S−1

)
random linear combinations of the rows in

S′k, also exists and thus the matrix in (45) exists.
Let us then select the coefficients in the

(
K−1
S−1
)
−
(
K−1−U
S−1

)
random linear combinations of the U

(
K−2
S−2
)

rows in S′k for each
k ∈ U2. More precisely, we directly select

(
K−1
S−1
)
−
(
K−1−U
S−1

)
rows from S′k to compose Sk; i.e., in each linear com-
bination, the coefficient vector contains U

(
K−2
S−2
)
− 1 zeros

and 1 one. This is possible because of (48). Hence, Sk

contains
(
K−1
S−1
)
−
(
K−1−U
S−1

)
unit vectors, where these vectors

are selected from eU(K−1
S−1),j(

K−1
S−1)+i, for all j ∈ [0 : U − 1],

i ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)]
, and k ∈ C1,i, totally U

(
K−2
S−2
)

unit vectors. Recall that the users in U2 are denoted by
U2(1), . . . ,U2(U), where U2(1) < · · · < U2(U). Our objective
on the selection is that the U

((
K−1
S−1
)
−
(
K−1−U
S−1

))
rows inSU2(1)...

SU2(U)

 are exactly eU(K−1
S−1),j(

K−1
S−1)+i, where j ∈ [0 : U− 1]

and i ∈
[(

K−1
S−1
)
−
(
K−1−U
S−1

)]
; thus the matrix in (45) is an

identity matrix (with some row permutation) and is full rank.

The existence of the above selection is equivalent to the
following combinatorial problem:
(p1). There are

(
K−1
S−1
)
−
(
K−1−U
S−1

)
urns, where each urn is with

the index V ∈
(
[K]
S

)
where U2∩V 6= ∅ and u ∈ V . There are U

colors of balls, where the number of balls for each color with
index k ∈ U2 is

(
K−1
S−1
)
−
(
K−1−U
S−1

)
. A ball with color k can

be only put into an urn with index V where k ∈ V . We want
to put the balls into the urns such that each urn contains U
balls (not necessarily with the different colors).
If there exists a solution for Problem (p1), we can treat each
color as one user in our problem and each urn as a set in
V ∈

(
[K]
S

)
where U2 ∩V 6= ∅ and u ∈ V . Assume the urn with

index V contains x1 balls with color k1, x2 balls with color
k2, etc. Then for user k1, we select eU(K−1

S−1),j(
K−1
S−1)+i where

j ∈ [k1] and C1,i = V and put them into Sk1
; for user k2, we

select eU(K−1
S−1),j(

K−1
S−1)+i where j ∈ [k1 + 1 : k2] and C1,i = V

and put them into Sk2
, etc. Thus we can see that from the

solution for Problem (p1), we can design the selection of the
coefficients satisfying the matrix in (45) is full rank.

At the end of this section, we provide one solution for
Problem (p1), which is based the Pascal’s triangle(

K− 1

S− 1

)
−
(
K− 1− U

S− 1

)
=

(
K− 2

S− 2

)
+

(
K− 3

S− 2

)
+ · · ·+

(
K− 1− U

S− 2

)
. (77)

Let us focus on the
(
K−1
S−1
)
−
(
K−1−U
S−1

)
balls in color k ∈ U2,

and put these balls into urns by the following U step:
Step t ∈ [U]. We put one ball in color k into each urn with
index V where
V ∈

(
[K]\{U2(<k+1>U),U2(<k+2>U),...,U2(<k+t−1>U)}

S

)
, U2 ∩

V 6= ∅, and {u, k} ⊆ V . Thus in this step, we have put
(
K−1−t
S−2

)
balls in color k into urns.
Hence, by the Pascal’s triangle in (77), consider all the U steps
for the balls in color k, we have put all the

(
K−1
S−1
)
−
(
K−1−U
S−1

)
balls in color k into urns.

Let us then show that after considering the balls in all colors,
each urn has exactly U balls. Consider an urn with index V ∈(
[K]
S

)
where U2∩V 6= ∅ and u ∈ V . Assume that U2∩V = B =

{U2(i1),U2(i2), . . . ,U2(i|B|)}, where i1 < i2 < · · · < i|B|.
We consider two cases:
• |B| = 1. By construction, in each of the U steps for color
B(1), we put one ball in color B(1) into the urn with
index V . Hence, this urn totally contains U balls.

• |B| > 1. By construction, for each s ∈ [|B|], in each of
the first < i<s+1>|B| − is >U steps for color U2(s), we
put one ball in color U2(s) into the urn with index V .
Hence, considering all s ∈ [|B|], the number of balls in
this urn is

< i2 − i1 >U + < i3 − i2 >U + · · ·+
< i|B| − i|B|−1 >U + < i1 − i|B| >U

= i|B| − i1+ < i1 − i|B| >U

= U.

As a result, we proved that each urn has exactly U balls. Thus
the proposed solution is indeed a solution for Problem (p1).
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Hence, we showed that P (A) is a non-zero polynomial and
proved Lemma 3.

APPENDIX E
PROOF OF LEMMA 4

Recall that we have shown in Section V that the proposed
scheme satisfies that[

aSk,1
, . . . ,aS

k,(K−1
S−1)

]
has rank equal to

(
K− 1

S− 1

)
, (78)

for each k ∈ [K], and recall that each aSk,j
where j ∈ [

(
K−1
S−1
)
]

is a
(
K−1
S−1
)
-dimensional column-wise vector. Then for each k ∈

[K], we have (79) at the top of the next page, where (79c)
follows since the keys and input vectors are independently,
and (79d) follows since the proposed schemes satisfies the
constraint in (78) and each sub-key ZSk,i,k where i ∈ [

(
K−1
S−1
)
]

contains L

(K−1
S−1)−(K−1−U

S−1 )
uniformly i.i.d. symbols on Fq. Hence,

we have

I(Xk;Wk) = H(Xk)−H(Xk|Wk) (80a)

=

(
K−1
S−1
)(

K−1
S−1
)
−
(
K−1−U
S−1

)L− (
K−1
S−1
)(

K−1
S−1
)
−
(
K−1−U
S−1

)L = 0. (80b)

By (80b), we have

I(X1, . . . ,XK;W1, . . . ,WK)

= I(X1;W1) + I(X2;W2) + · · ·+ I(XK;WK) (81a)
= 0, (81b)

where (81a) follows since the keys and input vectors are
mutually independent and X1, . . . ,XK use different sub-keys.
In other words, (81b) shows that in the proposed scheme
(X1, . . . ,XK) and (W1, . . . ,WK) are independent; thus we
also have

0 = I

(
X1, . . . ,XK;W1, . . . ,WK,

∑
k∈U1

Wk

)
(82a)

= I

(
X1, . . . ,XK;W1, . . . ,WK

∣∣ ∑
k∈U1

Wk

)
. (82b)

Considering all transmissions which may be received by the
server, we have

I

(
W1, . . . ,WK;X1, . . . ,XK, (Y U1k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk

)

= I

(
W1, . . . ,WK; (Y U1k : k ∈ U1)

∣∣∣ ∑
k∈U1

Wk,X1, . . . ,XK

)
(83a)

≤ I

(
W1, . . . ,WK;F1, . . . ,FU(K−1

S−1)

∣∣∣ ∑
k∈U1

Wk,X1, . . . ,XK

)
(83b)

= 0, (83c)

where (83a) comes from (82b), (83b) follows since (Y U1k :
k ∈ U1) are linear combinations of F1, . . . ,FU(K−1

S−1)
, and (83c)

follows since by our construction F1, . . . ,FU(K−1
S−1)

can be

recovered from
∑

k∈U1 Wk and
∑

k∈U1 Xk. Hence, we prove
that the proposed scheme satisfies the security constraint in (7).
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