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Abstract—Generative probabilistic forecasting produces future
time series samples according to the conditional probability
distribution given past time series observations. Such techniques
are essential in risk-based decision-making and planning under
uncertainty with broad applications in grid operations, including
electricity price forecasting, risk-based economic dispatch, and
stochastic optimizations. Inspired by Wiener and Kallianpur’s
innovation representation, we propose a weak innovation au-
toencoder architecture and a learning algorithm to extract
independent and identically distributed innovation sequences
from nonparametric stationary time series. We show that the
weak innovation sequence is Bayesian sufficient, which makes the
proposed weak innovation autoencoder a canonical architecture
for generative probabilistic forecasting. The proposed technique
is applied to forecasting highly volatile real-time electricity prices,
demonstrating superior performance across multiple forecast-
ing measures over leading probabilistic and point forecasting
techniques.

Index Terms—Probabilistic time series forecasting, innovation
representation, autoencoder, generative adversarial networks

I. INTRODUCTION

We develop a generative probabilistic forecasting (GPF)
technique for unknown and nonparametric time series models.
Whereas standard probabilistic forecasting aims to estimate
the conditional probability distribution of the time series at
a future time, GPF obtains a generative model capable of
producing arbitrarily many Monte Carlo samples of future
time series realizations according to the conditional probability
distribution of the time series given past observations. As
a nonparametric probabilistic forecasting technique, GPF is
essential for decision-making under uncertainty where data-
driven risk-sensitive optimization requires conditional samples
of future randomness. The Monte Carlo samples generated
from GPF can be used to produce any form of point forecast.

Nonparametric probabilistic time series forecasting is chal-
lenging because the joint probability distributions that charac-
terize temporal dependencies are infinite-dimensional and un-
known. Most approaches rely on parametric and semiparametric
models, restricting the infinite-dimensional inference to a finite-
dimensional parameter space. Classic examples include the
forecasting based on autoregressive moving average, GARCH,
and Gaussian process models [1]–[3].

This work was supported in part by the National Science Foundation under
Award 2218110.

This work pursues a new path to nonparametric probabilistic
forecasting, following the generative AI principle and inspired
by the classic notion of innovation representation pioneered by
Norbert Wiener and Gopinath Kallianpur in 1958 [4]. In the
parlance of modern machine learning, the Wiener-Kallianpur
innovation representation is an autoencoder, where the causal
encoder transforms a stationary time series (Xt) to an inno-
vation process (Vt) defined by the independent and identical
(i.i.d.) uniformly distributed sequence, followed by a causal
decoder that reproduces almost surely the original time series.
The most striking feature of the Wiener-Kallianpur innovation
representation is that Vt at time t is statistically independent of
the past Xt := {Xt−1, Xt−2, · · · }, implying that Vt contains
only new information at time t. The autoencoder’s capability to
reproduce (Xt) makes the latent process sufficient statistics in
any decision-making. The innovation being i.i.d. uniform means
that the autoencoder captures the complete model temporal
dependencies of the time series. This particular feature of
the latent process plays a critical role in the proposed GPF
methodology.

The main challenge of applying Wiener-Kallianpur innova-
tion representation for inference and decision-making is twofold.
First, obtaining a causal encoder to extract the innovation
process requires knowing the marginal and joint distributions of
the time series, which is rarely possible without imposing some
parametric structure. Furthermore, even when the probability
distribution is known, there is no known computationally
tractable way to construct the causal encoder to obtain an
innovation process. Second, the Wiener-Kallianpur innovation
representation may not exist for a broad class of random
processes, including some of the important cases of finite-
state Markov chains [5]. These conceptual and computational
barriers prevent employing innovation representation to a broad
class of inference and decision problems except for Gaussian
and additive Gaussian models [6].

A. Summary of Contributions

This paper makes methodological and practical advances
in nonparametric probabilistic time series forecasting in three
aspects. First, we propose a Weak Innovation AutoEncoder
(WIAE) and a deep learning algorithm based on Rosenblatt’s
weak innovation representation [5], a relaxation of Wiener-
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Kallianpur’s strong innovation representation, significantly
extending the class of time series for which the canonical
uniform i.i.d. innovation representation exists. We show further
that the latent process of WIAE forms Bayesian sufficient
statistics for generative probabilistic forecasting, resulting in
no loss of optimality when the weak innovation representation
is used.

Second, we propose Generative Probabilistic Forecasting
with Weak Innovation (GPF-WI), a WIAE-based deep learning
technique that produces future time series samples according
to the conditional probability distribution on past realizations.
Through WIAE, GPF-WI transforms the problem of generating
Monte Carlo samples of the future time series with unknown
probability distributions to using past innovation observations
and Monte Carlo samples from the i.i.d. uniform distribution.
See Sec. III-A.

Third, we apply GPF-WI to probabilistic forecasting of
highly volatile wholesale electricity prices using real datasets
from several major independent system operators. The frequent
price spikes due to increasing renewable integration and signif-
icant weather events make conventional techniques ineffective.
The empirical results demonstrate marked improvement over
existing solutions, scoring near the top across multiple datasets
and under different performance metrics. See Sec. V.

B. A Contextual Review of Literature

Nonparametric probabilistic time series forecasting has a
long history. See [3] for a review up to the late 1990’s. Machine
learning techniques gained prominence in the last decade,
which were reviewed and compared by [7]. Here we restrict
our discussion to those machine learning techniques sharing
architectural or methodological similarities with our approach.
In particular, we focus on autoencoder-based forecasting
techniques and the generative methods that rely on Monte-
Carlo sampling to produce realizations of forecasts.

Most autoencoder-based GPF techniques rely on state-
of-the-art autoencoder architectures for latent representation
learning, followed by producing forecasts by Monte Carlo
sampling of the latent representation. These methods generally
adopt likelihood-based generative models such as Variational
Autoencoder (VAE) [8], [9], normalizing flows [10] and
denoising diffusion probabilistic models [11]. For instance,
the authors in [8] developed a technique that models the
conditional distribution of future time series as a Gaussian
latent process of an autoencoder trained with historical data.
A normalizing flow model conditioned on Recurrent Neural
Network (RNN) or transformer model is adopted to learn the
conditional probability distribution [10].

Both VAE and diffusion learning rely on statistically inde-
pendent training samples with log-likelihood function. When
deriving the variational lower bound for log-likelihood and
implementing it for training, those methods assume that the
samples in the training set are independent, which simplifies the
minimization of an upper bound of negative log-likelihood. For
time series segments, the samples aren’t independent. Hence,
minimizing the joint log-likelihood of multiple samples is

intractable, making these methods not suitable for time series.
In contrast, when learning weak innovation representation
through WIAE, as considered in our approach, time series
training samples are allowed to have unknown temporal
dependencies.

Novel learning architectures capable of modeling complex
temporal dependencies have been proposed in recent years.
In [12]–[14], the authors adopt RNN to develop a variety of
parametric probabilistic forecasting techniques. The authors in
[15], [16] adopted a dilated convolutional network to learn the
conditional distribution.

The success of transformer-based deep learning in natural
language processing inspired its applications to time series
forecasting [17]–[19], some demonstrating promising perfor-
mance. These point forecasting techniques have not been
tested on the more challenging time series with high volatility,
such as electricity prices. Although these techniques do not
produce probabilistic forecasts, their strong performance in
point forecasting makes them worth comparing with.

Clarification of notations used is in order. Random variables
are highlighted in capital letters and their realizations in lower
cases. When needed for clarity, vectors are in boldface. We use
(Xt) for a time series indexed by t, extending from −∞ to
∞. For a partial time series realization up to time t is denoted
by xt := (xt, xt−1, · · · ) and xto:t := (xt, xt−1, · · · , xto).

II. INNOVATION REPRESENTATION

Innovation representation can be viewed as a causal autoen-
coder transformation (G,H), as illustrated by Fig. 1. A key
characteristics separating innovation autoencoder from other
autoencoder architectures is that the latent process (Vt) is an
i.i.d. uniform sequence extracted through the causal encoder
G, and it can be used to produce an estimate (X̂t) of (Xt) by
a causal decoder H . Specifically,

Vt = G(Xt, Xt−1, · · · ), (1.1)

X̂t = H(Vt, Vt−1, · · · ), (1.2)

Vt
i.i.d.∼ U [0, 1]. (1.3)

The temporal independence of (Vt) implies that Vt is
independent of the past Xt := (Xt−1, Xt−2, · · · ). Hence, Vt

represents the new information not contained in Xt.

Encoder Decoder

Fig. 1: An autoencoder interpretation of innovation
representation.

The criterion for reconstruction distinguishes different types
of innovation representations. The Wiener-Kallianpur innova-
tion representation originally proposed by Wiener [4] requires
almost sure equality between (Xt) and (X̂t), hence referred to
as strong innovations representation. That is, the transformation
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pair (G,H) is causally invertible ensuring that (Xt)
a.s.
= (Xt).

The causal invertibility makes the Wiener-Kallianpur innovation
sequence (Vt) a sufficient statistic. Therefore, the decision-
making problem based on strong innovations is lossless.
Unforunately, the Wiener-Kallianpur innovation can only be
analytically computed for stationary Gaussian time series [20]
and additive Gaussian models [6]. For those time series, the
prediction error of the nonlinear minimum mean squared error
predictor is its innovation sequence. Methods of extracting
innovations from nonparametric time series were mostly
unknown until recently when we obtained the first machine
learning approach that learns the autoencoder of the Wiener-
Kallianpur innovation representation [21].

Rosenblatt was the first to state that the Wiener-Kallianpur
innovation does not exist for a broad class of random pro-
cesses [5]. He thus suggested a weaker version of the Wiener-
Kallianpur innovation representation by replacing the almost
sure equality with distribution-wise equality:

(X̂t)
d
= (Xt). (2)

Herein, we refer to the innovation representation with matching
input-output in distribution as weak innovation representation
and (G,H) as the weak innovation autoencoder.

Although the existence of a WIAE remains an open problem,
Rosenblatt has shown that his relaxation broadens the class of
random processes for which weak innovation exists. With (Vt)
not necessarily a sufficient statistic, decision-making based on
(Vt) is lossy in general. An open question is whether forecasting
decisions based on a weak innovation representation perform
optimally. To this end, we provide a definitive answer for the
probabilistic forecasting problem in Sec. III. Currently, there
are no known techniques to extract weak innovation sequences
from time series. We propose the first such technique based
generative adversary network (GAN) learning in Sec. IV.

III. GENERATIVE PROBABILISTIC FORECASTING

Consider a stationary time series (Xt). The probabilistic
forecasting of Xt+T given current and past realizations Xt =
xt is to estimate the conditional distribution Ft+T |t(x|xt):

Ft+T |t(x|xt) := Pr[xt+T ≤ x|Xt = xt]. (3)

In contrast, GPF produces Monte Carlo samples of Xt+T with
the conditional distribution Ft|t+T . This is nontrivial because
of the unknown and complex temporal dependencies of (Xt).

A. GPF with Weak Innovation

This section introduces GPF-WI for forecasting. Generating
samples directly from Ft+T |T is difficult. As shown in Fig. 2,
GPF-WI generates conditional samples (Vt+T , · · · , Vt+1) from
the i.i.d. uniform distribution, and uses WIAE decoder to
produce future samples. The key advantage of using innovations
rather than the original time series is that future innovations
are statistically independent of the past observations Vt = νt.

As illustrated by Fig. 2, the weak innovations up to time t is
the output of the weak innovation encoder G. Although future
innovation {Vt+1, · · · , Vt+T } are not yet realized, the fact that

Encoder Decoder

Fig. 2: Probabilistic Forecasting via Weak Innovations.

they are i.i.d. uniform allows us to sample them from the uni-
form marginal. These Monte Carlo samples (ut+1, · · · , ut+T ),
along with the encoder outputs (νt, νt−1, · · · ), form the input
of the decoder H that produces an estimate of xt+T . Different
sets of Monte Carlo samples produce different estimates of
Xt+T , generated from its conditional probability distribution.

While GPF-WI is easy to implement once the WIAE has
been learned, one should question whether replacing Xt by
Vt is justified, since weak innovations may not be sufficient
statistics. We address this question next.

B. Weak Innovation are Bayesian Sufficient

The objective of probabilistic forecasting is to estimate the
conditional probability distribution, which is deterministic once
past observation is given. In contrast, GPF aims to obtain a
generative model that produces estimates of a set of realizations
with conditional Ft+T |t. In this aspect, GPF is a Bayesian
estimation problem, where the notion of sufficient statistics
takes a different form. In particular, T (X) is Bayesian sufficient
for estimating a realization of random variable Y if the posterior
distribution given X is the same given T (X) [22].

The theorem below establishes that the weak innovation
sequence νt = G(xt), under a mild assumption on WIAE, is
Bayesian sufficient for estimating realizations of Xt+T . For
simplicity, we define the following notation for the conditional
distribution of Xt+T |Vt:

F
(ν)
t+T |t(x|νt) := Pr[Vt+T ≤ x|Vt = νt].

Theorem 1 (Bayesian Sufficiency): Let (Xt) be a stationary
time series for which the weak innovation exists. Let (Vt) be
the weak innovation sequence of (Xt), and assume that the
causal decoder H is injective. Then, for almost all xt and x
(with respect to Lebesgue measure),

Ft+T |t(x|xt) = F
(ν)
t+T |t(x|νt),

where Ft+T |t(x|xt) is defined in (3), νt = G(xt), and

F ν
t+T |t(x|νt) := Pr(Xt+T ≤ x|νt).

Proof: See the appendix of [23].

IV. LEARNING INNOVATION REPRESENTATION

This section focuses on the learning of WIAE that generates
the weak innovation sequence as its latent process. Shown
in Fig. 3 is the schematic, where both the encoder Gθ and
decoder Hη are convolutional neural networks parameterized
by neural network coefficients θ and η, respectively.
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Fig. 3: Training WIAE with discriminators.

The WIAE is trained to enforce the weak innovation
conditions for its latent process using gradients from two
discriminators: the innovation discriminator Dγ to force (νt)
to be i.i.d. uniform and the reconstruction discriminator
Dω to match the input-output distributions. We present the
objective and an algorithm for WIAE learning in the following
paragraphs.

We now define the objective and an algorithm for WIAE
learning to generate weak innovation sequence (Vt) as its latent
process. Both discriminators Dγ and Dω in Fig. 3 compare two
random processes to produce gradient updates: Dγ provides
gradient signals for encoder Gθ to enforce the i.i.d. uniform
condition on its output (νt), and Dω provides gradient signals
for the encoder-decoder pair (Gθ, Hη) to produce the input-
output matching distributions for WIAE. It is then natural to
define the training objective function by a weighted sum of
training losses observed by the two discriminators.

We use Wasserstein distance W (f1, f2) to measure the
distance between two distributions f1 and f2. In particular,
we adopt the learning paradigm of Wasserstein GAN (WGAN)
[24] to train deep neural network discriminators Dγ and Dω.
By the Kantorovich-Rubinstein duality, Wasserstein distance
between two random variables X ∼ f1 and Y ∼ f2 can be
written as the maximum expected difference between D(X)
and D(Y ) under a 1-Lipschitz function D:

W (f1, f2) = max
D:1−Lipschitz

(EX∼f1 [D(X)]− EY∼f2 [D(Y )]) .

(4)

WGAN employs a ω-parameterized neural network for the
1-Lipschitz function Dω , with ω optimized according to (4).

Specializing to WIAE learning in Fig. 3, the two discrimina-
tors in WIAE are deep neural networks Dγ and Dω minimized
jointly under the following risk measure:

L((Xt), θ, η) := max
γ,ω

(
E[Dγ(Ut)− E[Dγ(Vt)]]

+ λ(E[Dω(Xt)]− E[Dω(X̂t)])
)
. (5)

λ is a real number that scales the two Wasserstein distances.
The two parts of the loss function regularize the innovation
according to (1.3) and (2). Minimizing Eq. (5) with respect to
θ and η is thus equivalent to enforcing (Vt) being i.i.d uniform,
and (X̂t) having the same distribution as (Xt).

V. NUMERICAL RESULTS

This section presents an application of GPF-WI to real-world
time series forecasting problems. We conducted numerical
experiments on a benchmark M4 dataset and two real-time
wholesale electricity price datasets for their high volatility.
The detailed information about electricity price datasets can
be found in Sec. V-A. Among the M4 datasets, we chose the
electricity consumption one (hereafter referred to as Electricity)
consisting of hourly load measurements from 370 clients.

We compared our methods with 6 other state-of-the-art time
series forecasting techniques: DeepAR [12], Nonparametric
Time Series Forecaster (NPTS) [25], Pyraformer [19], TLAE
[8], Wavenet [15], and SNARX [1]. Both probabilistic fore-
casting methods and point-forecast methods were included.
DeepAR is an auto-regressive RNN time series model that
estimates the parameters of parametric distributions. NPTS
is a probabilistic forecasting technique that resembles naive
forecasters. It randomly samples a past time index following a
categorical probability distribution over time indices. TLAE is
a nonparametric probabilistic forecasting technique that utilizes
autoencoder architecture to learn the underlying Gaussian latent
process, and uses it as the estimator. Wavenet is a parametric
probabilistic forecasting technique that is based on dilated
causal convolutions. Pyraformer is a point estimation technique
that adopts multi-resolution attention modules, and is trained by
minimizing mean squared error. SNARX is a semiparametric
AR model that utilizes kernel density function to estimate the
distribution of noise, which has superior empirical performance
on electricity pricing datasets according to [2].

To comprehensively compare the strengths and weaknesses
of different forecasting techniques, we adopted multiple
evaluation metrics: normalized mean square error (NMSE),
normalized mean absolute error (NMAE), symmetric mean
absolute percentage error (sMAPE), and continuous ranked
probability score (CRPS). For probabilistic forecasting methods,
we used sample mean as the point estimator when calculating
square errors, and sample median for absolute errors. In
total, 1000 trajectories were sampled for probabilistic methods.
The commonly used mean absolute percentage error was not
adopted, since in electricity price datasets the absolute value
of the prices can be very close to 0, which nullifies the
effectiveness of the metrics. Since electricity price datasets
exhibit high variability, we excluded the outliers, which are
defined as samples that are three standard deviations away
from the sample mean, when calculating all metrics, for all
methods.

A. Electricity Prices and Datasets

Wholesale electricity prices in the U.S. are computed from
an optimization over the power generation and demand levels
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TABLE I: Numerical Results. The numbers in the parentheses after each dataset name indicates the prediction
step. The number in parentheses after each value of the metrics indicates the ranking of the algorithm.

Metrics Method ISONE (75 min) ISONE (2 hour) NYISO (75 min) NYISO (2 hour) Electricity (5 hour) Electricity (10 hour)

NMSE
GPF-WI 0.0857 (1) 0.0868 (1) 0.0876 (1) 0.0887 (1) 0.4682 (3) 0.5165 (3)
DeepAR 0.1064 (2) 0.2852 (6) 0.0952 (2) 0.1632 (3) 0.5290 (4) 0.6272 (4)
NPTS 0.1216 (3) 0.1250 (2) 0.1840 (5) 0.2031 (5) 1.3862 (6) 1.3867 (6)
Pyraformer 0.1247 (6) 0.1779 (4) 0.4031 (6) 0.4229 (6) 0.1422 (1) 0.1735 (1)
TLAE 0.1219 (4) 0.1837 (5) 0.1116 (3) 0.1492 (2) 0.1881 (2) 0.2304 (2)
Wavenet 0.1245 (5) 0.1643 (3) 0.1128 (4) 0.1809 (4) 1.3367 (5) 1.3575 (5)
SNARX 0.8632 (7) 0.9658 (7) 0.9586 (7) 1.8063 (7) 1.7193 (7) 1.8372 (7)

NMAE
GPF-WI 0.2327 (1) 0.2330 (1) 0.2112 (3) 0.2104 (1) 0.2296 (1) 0.3487 (1)
DeepAR 0.2969 (5) 0.4458 (6) 0.1799 (2) 0.2451 (4) 0.3360 (3) 0.3559 (2)
NPTS 0.2896 (4) 0.2958 (2) 0.2260 (4) 0.2138 (2) 0.4625 (5) 0.4627 (5)
Pyraformer 0.2570 (3) 0.3518 (4) 0.4892 (6) 0.5234 (6) 0.3396 (4) 0.3794 (4)
TLAE 0.2565 (2) 0.3536 (5) 0.2258 (5) 0.2590 (5) 0.3041 (2) 0.3597 (3)
Wavenet 0.3154 (6) 0.3310 (3) 0.1770 (1) 0.2330 (3) 0.6215 (6) 0.6216 (6)
SNARX 0.8317 (7) 0.9611 (7) 0.9299 (7) 0.9967 (7) 0.7243 (7) 0.7624 (7)

sMAPE
GPF-WI 0.2421 (2) 0.2419 (1) 0.2106 (4) 0.2091 (1) 0.3266 (1) 0.4034 (1)
DeepAR 0.2372 (1) 0.7076 (5) 0.1709 (1) 0.2236 (2) 0.4917 (3) 0.5004 (3)
NPTS 0.8601 (7) 0.8854 (6) 0.7395 (6) 0.7506 (6) 0.6051 (4) 0.6053 (4)
Pyraformer 0.2785 (4) 0.2896 (2) 0.3672 (5) 0.4095 (5) 0.6385 (5) 0.6546 (5)
TLAE 0.2440 (3) 0.3137 (3) 0.1974 (2) 0.2549 (4) 0.3974 (2) 0.4791 (2)
Wavenet 0.3057 (5) 0.3375 (4) 0.2090 (3) 0.2475 (3) 1.9877 (7) 1.9858 (7)
SNARX 0.5035 (6) 1.3589 (7) 1.2661 (7) 1.8736 (7) 1.0783 (6) 1.1125 (6)

CRPS
GPF-WI 0.4024 (1) 0.4215 (2) 0.0737 (1) 0.1038 (1) 0.1451 (1) 0.1944 (1)
DeepAR 0.4355 (4) 0.4984 (4) 0.0901 (2) 0.1065 (2) 1.8801 (3) 0.1946 (2)
NPTS 0.4154 (2) 0.4192 (1) 0.1098 (3) 0.1066 (3) 0.1703 (2) 0.2014 (3)
TLAE 0.4213 (3) 0.4544 (3) 0.7031 (5) 0.6912 (5) 0.6776 (6) 0.7662 (6)
Wavenet 0.4870 (5) 0.6832 (5) 0.2030 (4) 0.2198 (4) 0.3466 (4) 0.3474 (4)
SNARX 1.4593 (6) 1.5629 (6) 1.3264 (6) 1.7342 (6) 0.5263 (5) 0.6271 (5)
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Fig. 4: Trajectory of ISONE real-time electricity price.

based on offers from producers and bids from power generators,
subject to generation limits and power flow constraints. The
price of electricity at a particular location is the Lagrange
multiplier associated with the power balance constraint at that
location, which is very sensitive to the line congestion pattern
of the power grid. When a line changes from uncongested to
congested due to even a tiny change in power flow, the price
of electricity incurs a sudden change. Such discontinuities
make electricity prices highly volatile. See Fig. 4 for the price
trajectory of a typical day. The wholesale market price model
can be found in [26], [27], where the authors also considered
a very different price forecasting problem where the system
operator has access to the network operating conditions and
offers and bids from market participants. In contrast, the price
forecasting problem studied here is time series forecasting
without assuming how the time series is generated. We chose
two publicly available real-time electricity price datasets from
two independent system operators (ISO) to demonstrate the
ability of forecasting time series with higher sampling frequency

and larger variability. We named the datasets with the names
of the ISOs: New York ISO (NYISO) and ISO New England
(ISONE). NYISO and ISONE consist of 5-minute real time
electricity prices. We took one month (February of 2023) of
electricity prices for NYISO and ISONE.

We conducted 75-min and 2-hour ahead prediction for 5-
min real-time electricity price (ISONE & NYISO), and 5-hour
and 10-hour ahead prediction for hourly sampled electricity
consumption. The WIAE is trained with Adam optimizer.

B. Results

The simulation result is shown in Table. I. It can be
seen that GPF-WI had better performance for most of the
metrics. Pyraformer, as a point estimation technique optimized
by MSE, performed worse under metrics using absolute
errors. We also observed that the auto-regressive probabilistic
forecasting methods (DeepAR, NPTS, Wavenet,SNARX) have
the tendency to be affected by past observation, which leads
to better performance when the time series is smooth with
few fluctuations. Due to the fact that electricity prices being a
Lagrangian multiplier that doesn’t exhibit continuity as other
measurements taken from a physical system, the auto-regressive
methods predicted shifted peaks, which contributed to large
errors under more volatile datasets. On the other hand, the
generative probabilistic forecasting methods (GPF-WI, TLAE),
where the prediction is conditioned on latent processes, suffered
less from the volatility problem. For TLAE, the latent process
being a correlated Gaussian process posed great difficulty to
the Monte Carlo sampling of the latent process, essential to
probabilistic forecasting. This was exhibited by the instability of
probabilistic forecasts, which varies significantly with between
trajectories.
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VI. CONCLUSION

This paper presents a novel approach to generative proba-
bilistic forecasting (GPF) of nonparametric time series with
unknown probability structures, reviving the classic idea of
innovation representation of Wiener-Kallianpur and Rosenblatt
with modern generative machine learning techniques. Our
main theoretical contribution lies in establishing that the
weak innovation process of a time series forms Bayesian
sufficient statistics for probabilistic forecasting. These results
imply that WIAE is a canonical architecture for stochastic
decision-making such as probabilistic forecasting. We have
also made a methodological advance in developing a generative
forecasting algorithm that produces Monte Carlo samples of
future time series realizations. The application of the proposed
technique to real world datasets demonstrates that innovation-
based forecasting offers superior performance across multiple
performance measures over leading benchmarks.

The vanilla implementation of GPF presented here can be
extended in multiple directions; chief among them is the multi-
variate GPF. While the underlying principle of innovation-based
forecasting applies to multivariate time series, the condition
under which weak innovation representation exists may become
more tenuous and the training of WIAE more challenging. More
sophisticated neural network implementations such as RNN
and LSTM may also improve the forecasting performance.
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