
Efficient Privacy-Preserving Machine Learning with Lightweight
Trusted Hardware

Pengzhi Huang
Cornell University
ph448@cornell.edu

Thang Hoang
Virginia Tech

thanghoang@vt.edu

Yueying Li
Cornell University
yl3469@cornell.edu

Elaine Shi
Carnegie Mellon University

runting@gmail.com

G. Edward Suh
NVIDIA1 / Cornell University
edward.suh@cornell.edu

ABSTRACT

In this paper, we propose a new secure machine learning inference
platform assisted by a small dedicated security processor, which
will be easier to protect and deploy compared to today’s TEEs inte-
grated into high-performance processors. Our platform provides
three main advantages over the state-of-the-art: (i) We achieve sig-
nificant performance improvements compared to state-of-the-art
distributed Privacy-PreservingMachine Learning (PPML) protocols,
with only a small security processor that is comparable to a discrete
security chip such as the Trusted PlatformModule (TPM) or on-chip
security subsystems in SoCs similar to the Apple enclave processor.
In the semi-honest setting with WAN/GPU, our scheme is 4×-63×
faster than Falcon (PoPETs’21) and AriaNN (PoPETs’22) and 3.8×-
12× more communication efficient. We achieve even higher per-
formance improvements in the malicious setting. (ii) Our platform
guarantees security with abort against malicious adversaries under
honest majority assumption. (iii) Our technique is not limited by
the size of secure memory in a TEE and can support high-capacity
modern neural networks like ResNet18 and Transformer. While
previous work investigated the use of high-performance TEEs in
PPML, this work represents the first to show that even tiny secure
hardware with very limited performance can be leveraged to sig-
nificantly speed-up distributed PPML protocols if the protocol can
be carefully designed for lightweight trusted hardware.

KEYWORDS

Multi-party computation, Secure hardware, Machine learning

1 INTRODUCTION

As the world increasingly relies on machine learning (ML) for ev-
eryday tasks, a large amount of potentially sensitive or private data
need to be processed by ML learning algorithms. For example, ML
models for medical applications may need to use private datasets
distributed in multiple nations as inputs [39]. A cloud-based ML
services process private data from users with pre-trained models
to provide predictions [13, 50]. The data to be shared in these ap-
plications are often private and sensitive and must be protected
1This work was done while the author was at Meta.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 327–348
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0119

from the risk of leakage. Government regulations may play an es-
sential role as a policy, but cannot guarantee actual protection. We
need technical protection for privacy-preserving machine learning
(PPML) for strong confidentiality and privacy guarantees.

In this paper, we propose a new PPML framework, named Stamp
(Small Trusted hardware Assisted MPc), which enables far more
efficient securemultiparty computation (MPC) formachine learning
through a novel use of small lightweight trusted hardware (LTH).
MPC refers to a protocol that allows multiple participants to jointly
evaluate a particular function while preventing their inputs from
being revealed to each other. Ever since Yao’s initial studies (later
called Garbled Circuit) [96, 97] which gave such a secure protocol
in the case of two semi-honest parties, many studies have been
conducted to improve the efficiency, to expand to more than two
parties, and to ensure the feasibility against malicious behaviors.
Recently, there has been significant interest in using and optimizing
MPC for secure machine learning computation [42, 58, 71, 88, 89].
However, the overhead for MPC-based PPML is still significant.

For low-overhead secure computation, trusted execution envi-
ronments (TEEs) in modern microprocessors such as Intel SGX [14]
AMD SEV [72] aim to provide hardware-based protection for the
confidentiality and integrity of data and code inside. If the TEE
protection and the software inside can be trusted, secure machine
learning computation can be performed directly inside a TEE with
relatively low overhead [41]. The TEE can also be used to improve
cryptographic protocols by accelerating bootstrapping [40, 51] or
simplifying protocols [2, 12, 20, 40]. However, it is challenging to
build a secure environment inside a high-performance processor
due to its large trusted computing base (TCB) and complex perfor-
mance optimizations such as out-of-order execution, speculation,
and caching. For example, multiple attacks have been shown for
SGX [24, 84, 85]. Moreover, the TEE requires adding hardware
protection to each type of computing engines (CPU, GPU, and
accelerators), and significant changes to the software stack. As a
result, developing and deploying a TEE for a new piece of hardware
requires significant effort and time.

In this paper, we propose to leverage a small dedicated security
processor, another type of trusted hardware that is widely deployed
today, to reduce the MPC overhead. For example, small discrete
security chips such as trusted platform module (TPM), Google
Titan, and Apple T1 are widely used as a platform root-of-trust. For
system-on-chip (SoC) designs, on-chip security subsystems like the
Apple enclave processor perform security-critical operations such
as secure booting, attestation, and key management.

327

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0119

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

While the high-level idea to combine trusted hardware and MPC
has been explored before, we believe this work represents the first
to investigate MPC acceleration using a small security processor.
Clearly, such lightweight trusted hardware can only provide rela-
tively low performance. The main question is if a low-performance
trusted hardware can still be leveraged to provide meaningful speed-
ups for MPC. In the following discussion, we refer to such small
security processors as lightweight trusted hardware (LTH).

The key insight we leverage in Stamp is that non-linear oper-
ations, which can be performed very efficiently in plaintext, ac-
count for the major part of the overhead in MPC. MPC-based deep
learning inference is not particularly expensive in computation but
introduces large communication overhead due to multi-round data
exchanges, especially when the network latency is high. This over-
head leads to a very different cost distribution for MPC compared
to plaintext computation. Profiling an inference task of AlexNet
[44], which represents a classical deep learning model, shows that
85% of total plaintext execution time comes from linear opera-
tions such as convolution and fully-connected layers, while for
MPC, this portion drops to only 5% with the remaining 95% coming
from non-linear operations. Most of those non-linear operations
are simple and cheap in plaintext (e.g., ReLU,MaxPooling, which
are generally comparisons) with some exceptions (e.g., Softmax).
This observation implies that even a lightweight trusted hardware
can potentially speed up MPC-based PPML significantly if we can
efficiently offload non-linear operations.

Stamp combines the advantages of MPC and trusted hardware by
performing linear operations in MPC while leveraging LTH for non-
linear operations. To realize this approach, we introduce new MPC
protocols that efficiently offload non-linear operations while mini-
mizing communications among multiple parties and between the
LTH and an untrusted CPU/GPU. Although simple nonlinear oper-
ations can be performed inside the small LTH with sufficiently high
performance, expensive operations such as Softmax require higher
performance. To address the challenge, Stamp securely offloads
parts of the expensive exponentiation operations to an untrusted
CPU/GPU. The following describes the main technical contribu-
tions and advantages of Stamp.

Insight and performance improvement. Stamp represents
the first work to investigate if tiny low-performance security proces-
sors can still be leveraged to meaningfully speed-up MPC protocols.
Our results demonstrate that even with trust in a tiny piece of dis-
crete secure hardware similar to a TPM, significant speedups can
be achieved for privacy-preserving neural network inference when
the MPC protocol is carefully redesigned for efficient offloading of
non-linear operations. We compared Stamp with three state-of-the-
art MPC protocols (Falcon [89], AriaNN [71], and CryptGPU [81]).
The results show that Stamp achieves significantly lower infer-
ence overhead compared to the state-of-the-art MPC protocols on
either CPUs or GPUs, under either a WAN or LAN setting, and
using either a discrete security chip (LTH-chip) or a security pro-
cessor on an SoC (LTH-SoC). Stamp is 4× to 63× faster in the
semi-honest WAN/GPU setting, even with the tiny LTH-chip with
a low-bandwidth interconnection, and reduces the inter-party com-
munication by 7× to 10×. Stamp can also improve the performance
of the MPC-based secure inference in malicious settings. Interest-
ingly, the experimental results show that Stamp (LTH-SoC) can

even outperform a protocol that leverages a high-performance TEE
(Intel SGX) with secure GPU outsourcing (Goten [61]) thanks to its
ability to significantly reduce the inter-party communication.While
Stamp can also be used with a high-performance TEE to further im-
prove performance, this result suggests that tiny low-performance
secure hardware can indeed be sufficient if it is primarily used
for non-linear operations. Stamp provides the most significant
performance improvements under GPU/WAN settings when WAN
communication represents more of a performance bottleneck com-
pared to GPU-based computation.

Malicious security. Stamp provides security guarantees under
the honest-majority setting similar to previous schemes [58, 89],
assuming that the majority (2 out of the 3 participants) are behaving
honestly. If the corrupted party behaves semi-honestly, the proto-
col ensures that no information is obtained by any party without
reconstructing a value. If a party is actively corrupted and behaves
maliciously, we guarantee detection of such a behavior and out-
put “abort” while still keeping the confidentiality of the data with
extra steps. We show the security of Stamp using the standard
simulation-based paradigm in Appendix C. We implement both
semi-honest and malicious protocols in our end-to-end framework.

Prototype implementation. We implemented a functional
prototype of both semi-honest and malicious protocols of Stamp in
C++. The compilation framework and a small number of pure MPC-
based operations (see §3.2 and Appendix A) are based on [89]. The
baseline framework was significantly modified to incorporate new
non-linear operation protocols, GPUs support, new networks and
datasets, and a better socket library. The prototype implementation
supports both CPU-only and GPU-assisted settings, and adds the
same GPU support to our baseline for a fair comparison.

Evaluation and analysis. We demonstrate Stamp by support-
ing the secure inference of various networks including AlexNet
[44], VGG16 [74], ResNet18 [29] and Transformer [92], over multi-
ple datasets including MNIST [16], CIFAR-10 [43], ImageNet [70]
and Wikitext-2 [53], under both WAN and LAN, and semi-honest
and malicious settings. We provide theoretical analysis of the over-
head and scalability analysis. We perform detailed experimental
studies against state-of-the-art MPC protocols, and also protocols
leveraging high-performance TEEs for a balanced discussion on
the trade-off. We show that even a very small trusted hardware
reduces the overhead of MPC protocols significantly while support-
ing various high-capacity networks, and Stamp can support larger
models without extra overhead in most cases.

2 MODEL

System Model. In our system, there are three parties who want to
run a common ML model together using inputs from individuals.
We assume that the model structure is publicly known. We assume
that each party consists of two components: an untrusted machine
(CPU/GPU) and an LTH module whose computational power is
limited. LTH in each party communicates with each other through
its host by establishing pairwise secure communication channels.
Threat Model. The goal of Stamp is to protect the confidential-
ity and the integrity of ML model inference in the presence of a
malicious adversary. We capture such confidentiality and integrity
through simulation-based security [7, 8, 23]:

328

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

Untrusted Server

LTH
Masked
Secrets

LTH

Shars of
Secrets

Figure 1: Stamp system and threat model. The black local

machines owned by three parties, green local buses, and black

inter-party communication channels are untrusted. The blue

LTHs are trusted and contain secret keys shared amongLTHs.

P1

1.

Init ...Linear
Layer

Non-Linear
Layer

N
on-Linear
Layer Out

H1 Init ... End

P1

2.

Init ...Linear
Layer

Non-Linear
LayerTrunc

Out

H1 Init ... End

Figure 2: The Stamp execution flow on one of the parties.

Inter-party communication (wave symbol) and the local com-

munication with the LTH (green arrows) happen during ini-

tialization and execution, with (1) or without (2) the opti-

mization in §4.2. An adversary has complete control over the

data and operations in the red zone.

Definition 1 (Simulation-based security: privacy and verifia-

bility). A protocol 𝜋F is said to securely realize the ideal function-
ality F if for any probabilistic polynomial time (PPT) real-world
adversary A, there exists an ideal-world adversary S such that for
any PPT environment Z, there exists a negligible function negl

such that

| Pr[RealΠF,A,Z(𝜆) = 1] − Pr[IdealF,S,Z(𝜆) = 1] | ≤ negl(𝜆)

We consider honest majority, meaning that at most one party
(except its LTH) can be malicious. The other two parties can be
semi-honest, in which they may try to learn secrets (e.g., inputs or
weights provided by other parties) while still following the protocol
faithfully. The malicious adversary can deviate arbitrarily from the
honest protocol, and its goal can be breaking the integrity of the
evaluation by providing incorrect results without being noticed, or
breaking the confidentiality of the data by learning the secrets. We
assume that there is no collusion between any of the parties.

Figure 1 provides an overview of the Stamp system. We assume
that a party or its server is untrusted except for its LTH. In other
words, an adversary may control any part of the server, including
a virtual machine monitor, an operating system, drivers, storage,
and others except for LTH. We assume that the confidentiality and
integrity of LTH are protected and an adversary cannot obtain
data on an LTH or alter its execution. To ensure that only valid
secure hardware can participate in the protocol, LTH contains
a unique private key and is authenticated through a Certificate
Authority (CA) during the initialization step. As shown in Figure 1,
the three LTHs act as three trusted third parties with established
correlations (secret keys). Figure 2 shows that the data flow between
an untrusted server (red) and an LTH (blue) during the Stamp
execution. Data should be encrypted before being sent to the red
zone, and any data from or operations conducted in the red zone
should be verified assuming the presence of a malicious adversary.

Note that Stamp, similar to other secure computation techniques
based on TEE, MPC and / or homomorphic encryption (HE), does
not prevent attacks that poison the model through malicious in-
puts or extract information from the trained parameters or model
outputs [9, 83]. To defend against such algorithmic attacks, a se-
cure computing framework such as Stamp needs to be combined
with other orthogonal defense techniques (e.g., Differential Privacy
[1], out-of-distribution points removal [95]). Additionally, Stamp
primarily targets private inference, not training, so training data
poisoning attacks are not its main concern.

The security model and its detailed analysis are presented in
Appendix C. Although we assume that LTH is secure, we discuss
how LTH provides security benefits over TEEs in §3.3 under a
hybrid MPC+trusted hardware threat model.

3 BACKGROUND

In this section, we describe our notation, and then provide some
basics of MPC and trusted hardware.

3.1 Notation

We define 𝐿 as the finite field size, and Z𝐿 to be the finite field we
generally consider in this work. fp is the fix-point precision. We use
the bold font a orA to represent a vector or a matrix. We use 𝑎𝑖 , (a)𝑖
or𝐴𝑖, 𝑗 to represent the 𝑖𝑡ℎ element of the vector a or the element of
the matrix A in the 𝑖𝑡ℎ row and in the 𝑗𝑡ℎ column. This is different
from the bold A𝑖 , which still represents a matrix. Throughout the
paper, if not specifically mentioned, all operations are carried out
within the finite field Z𝐿 . When needed, we use (𝑎+𝑏)𝐿 to represent
the modulo 𝐿 operation for the output of the integer operations in
brackets. We add a bar to a variable or operation, as 𝑎, exp(𝑎), to
represent that a number or an output is a real number. The right-
shift operation is indicated as≫ (e.g., 𝑎 ≫ 𝑏 = 𝑎/2𝑏). We will often
use two signed integers𝑚,𝑞 to represent a positive real number
𝑎 as 𝑎 = 2𝑞 · (𝑚 ≫ 52) where𝑚 represents the mantissa part of
52 bits with𝑚 ≫ 52 ∈ [0, 1), and 𝑞𝐿 is the exponent part. This is
actually the format in which floating point numbers are represented
following the IEEE Standard for Binary Floating-Point Arithmetic
(IEEE 754-1985) [38], but without sign on the mantissa part. We use
⌊𝑎⌋ to round a real number 𝑎 down to an integer.

329

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

3.2 Multiparty Computation

Notation. The sharing scheme used in this work is the 2-out-of-3
replicated secret sharing scheme (RSS) modulo 𝐿. Let 𝑃1, 𝑃2, 𝑃3 be
the three parties participating in the evaluation. For convenience,
we use 𝑃𝑖−1, 𝑃𝑖+1 to refer to the previous and next party of one party
(e.g., the previous and the next party of 𝑃1 are 𝑃3 and 𝑃2). The RSS
of an integer secret 𝑥 ∈ Z𝐿 is denoted as J𝑥K𝐿 = (J𝑥K𝐿1 , J𝑥K𝐿2 , J𝑥K𝐿3),
where 𝐿 is the size of the finite field to which the shares belong
and 𝑥 = J𝑥K𝐿1 + J𝑥K𝐿2 + J𝑥K𝐿3 . When a secret 𝑥 is shared as J𝑥K𝐿 ,
party 𝑃𝑖 holds (J𝑥K𝐿

𝑖
, J𝑥K𝐿

𝑖+1) for 𝑖 = 1, 2, 3. To generate the integer
representation𝑥 based on the real value 𝑥 , we use two’s complement
fixed-point encoding with fp bits of precision. For a positive 𝑥 we
have 𝑥 = ⌊𝑥 ·2fp⌋, while for a negative 𝑥 , 𝑥 = ⌊𝑥 ·2fp⌋ +𝐿, assuming
that 𝑥 is within the bound [−𝐿/2fp, 𝐿/2fp).

In our experiments, we mainly use the cases of 𝑙 = 32, with
fp = 13 and 𝐿 = 2𝑙 (which supports inputs from -262144 to 262144−
2−13), to match the bit-width used in the baseline MPC schemes.
The security of a 𝑙 = 32 setting naturally comes from the random
masking creating the shares. Multiple existing MPC schemes [11,
69, 71, 89] use the 32-bit secret sharing setting and already prove
its security. Our protocol can also use a larger field such as a 64-bit
setting if a wider range of values need to be supported.

Here, we explain howmultiplications are performed under 2-out-
of-3 RSS. These operations follow the protocols defined in [15, 58, 88,
89]. We describe the rest of the baseline MPC operations including
share creation, reconstruction, and aggregation in Appendix A.

Multiplications. J𝑥 · 𝑦K𝐿 ← Π
Mul
(J𝑥K𝐿, J𝑦K𝐿) : To get J𝑧K𝐿 =

J𝑥 ·𝑦K𝐿 , 𝑃𝑖 first computes 𝑧𝑖 = J𝑥𝑖K𝐿J𝑦𝑖K𝐿+J𝑥𝑖+1K𝐿J𝑦𝑖K𝐿+J𝑥𝑖K𝐿J𝑦𝑖+1K𝐿 ,
then (𝑧1, 𝑧2, 𝑧3) is already a valid 3-out-of-3 secret sharing of 𝑥𝑦
since 𝑧1 + 𝑧2 + 𝑧3 = 𝑥𝑦. A reshare is needed to maintain the con-
sistency of the 2-out-of-3 sharing scheme. To avoid any possible
leakage of information, 𝑃𝑖 uses the 3-out-of-3 randomness {𝛼𝑖 } to
mask 𝑧𝑖 as 𝑧𝑖 = 𝑧𝑖 +𝛼𝑖 , then share it with 𝑃𝑖−1. Therefore, the parties
obtain the necessary shares and build J𝑧K𝐿 = J𝑥𝑦K𝐿 = (𝑧1, 𝑧2, 𝑧3).

Matrix Multiplications. (JABK𝐿) ← Π
MatMul

(JAK𝐿, JBK𝐿): To
perform matrix multiplication JC𝑎×𝑐K𝐿 = JA𝑎×𝑏B𝑏×𝑐K𝐿 , simply
applying Π

Mul
for each multiplication leads to O(𝑎𝑏𝑐) shares to be

sent. The parties can instead perform part of the addition of shares
locally (i.e., JĈK𝐿

𝑖
= JAK𝐿

𝑖
JBK𝐿

𝑖
+ JAK𝐿

𝑖
JBK𝐿

𝑖+1 + JAK𝐿
𝑖+1JBK𝐿

𝑖
) and then

share JĈK𝐿
𝑖
at once. This strategy yields only O(𝑎𝑐) transmission

overhead. As stated in [88], convolutions can be expanded into
overall larger matrix multiplications.

The above multiplication protocols work well for integer repre-
sentations, but will cause errors with fixed-point representations.
A truncation protocol (right-shift the results by fp bits) must follow
after a multiplication to correct the fixed-point precision in 3-party
MPC. We refer the readers to ABY3 [58] for more details on the
3-party truncation protocol, to prior work [22, 58] for the malicious
variant of Π

MatMul
, and to Appendix A for other basic operations.

3.3 Trusted/Secure Hardware

Dedicated security hardware has a long history of being successfully
used in many high-security use cases, starting as (co-)processors
specializing in crypto operations. For example, smart cards [67] are
widely used in financial transactions. Similarly, hardware security

CPUs
LTH
Chip Serial

Interface

(a) LTH-Chip

On-Chip Network
(64~256 bits, 1~3GHz)

SoC
LTH GPUs

(b) LTH-SoC

Figure 3: Two types of LTHs that Stamp considers.

modules (HSMs) such as IBM 4758 [18] have also been used to pro-
tect critical secret keys. Discrete security chips such as TPM [64],
Google Titan [33], and Apple T1 provide hardware root-of-trust on
many platforms. Modern System-on-Chip (SoC) designs also typi-
cally include a dedicated security processor with crypto engines for
secure booting and other high-security operations: Synopsys tRoot
hardware security module [80], Rambus RT-630 programmable
root-of-trust (RoT) [35], Apple secure enclave [32], Qualcomm se-
cure processing unit [34], etc. Even though their performance is
limited and their implementations may still have security vulner-
abilities [6, 27, 57], the small dedicated security processors are
considered to be far more secure compared to high-performance
processors. The dedicated security processors are also relatively
easy to deploy as a separate chip or as an IP block.

For high-performance processors, the idea of trusted hardware
developed into a trusted execution environment (TEE), which adds
hardware-based security protection on a shared general-purpose
processor running a full software stack [30, 72, 85]. A TEE aims to
protect the integrity and confidentiality of the code and data inside,
even when low-level software and/or the environment cannot be
trusted. TEEs on modern processors can typically provide much
higher performance compared to the dedicated security hardware,
but also introduce new security challenges due to the large TCB and
complex optimizations in high-performance processors [4, 19, 24,
26, 47, 48, 73, 90, 94]. The high-performance TEEs also require new
hardware protection for each computing engine and significant
changes to a complex software stack, making their deployment for
new hardware challenging.

In this work, we consider lightweight trusted hardware (LTH)
with performance and complexity similar to a traditional security
chip or on-chip security subsystems in modern SoCs: a dedicated
low-performance security processor that supports remote attesta-
tion to validate its identity and shared key exchanges (§4.1), has
hardware crypto engines, and includes a programmable processor
that can run code. We consider two types of LTH designs as shown
in Figure 3: 1) a discrete security chip similar to a TPM (LTH-chip)
running at a low clock frequency (tens of MHz), and connected to
a CPU through a low-bandwidth interface; and 2) a security sub-
system on an SoC (LTH-SoC) running at a much higher SoC clock
frequency (1-3GHz), and connected to other processing engines
(CPUs, GPUs, NPUs, etc.) on the same SoC through high-bandwidth
on-chip networks. Our study suggests that even the LTH-chip can
significantly improve the performance of the MPC-based PPML.

Notation. Each party 𝑃𝑖 is equipped with a LTH 𝐻𝑖 , which
has a built-in PRF unit 𝐹 (e.g., an AES engine) for pseudo-random
number generation. We assume that even malicious participants
cannot break the integrity and confidentiality guarantees that LTH
provides. The protocols executed in 𝐻𝑖 will be introduced in §4.

330

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

3.3.1 LTH Benefits. While it is difficult to quantify the security,
we believe that LTH provides strong security and deployment ben-
efits over high-performance TEEs. For example, the previous sur-
vey [19] provides an overview of the vulnerabilities in Intel SGX
(high-performance TEE) and countermeasures. Most vulnerability
categories (address translation, CPU cache, DRAM, branch predic-
tion, rowhammer) in the survey do not apply to LTH due to the
following reasons. Here, we provide a more detailed discussion of
the security of LTH and list some attacks that LTH is more robust to.

Physical isolation: LTH is dedicated to a small set of security
tasks, and physically separate from main processing cores with
potentially malicious software. LTH tightly controls its software
using secure booting and typically does not allow user software.
Because hardware is not shared with potential attack software,
there is much less concern for timing-channel attacks - a major
challenge in today’s TEEs.

Smaller TCB/attack surface, lower complexity: LTH uses a
simple (in-order) processor with limited interfaces/commands for a
small set of security tasks. Both hardware and software are much
smaller and simpler compared to the main processors. For example,
the dedicated security processors usually occupy less than 1𝑚𝑚2 of
the silicon area. On the other hand, a high-performance CPU takes
hundreds of𝑚𝑚2 and contains millions of lines of code (LoCs) [46],
and is shared with many software components. Because there is no
speculation or out-of-order execution, transient-execution attacks
such as Meltdown/Spectre that can run commands or read memory
without permission are not a concern for LTH. LTH does not have
external memory (DRAM), and is not exposed to attacks on external
memory such as DRAM probing and rowhammer attacks.

Side-channel protection: LTH such as smartcards, TPM, and
others are usually equipped with dedicated crypto engines and
countermeasures (e.g., tamper-resistant circuits [77] for TPM, ran-
domized block design [56] for smart cards, etc.) against physical
side channels such as power side channels, and without off-chip
memory. In that sense, LTH is more robust against physical attacks.
3.3.2 LTH Limitations. The main limitation of LTH comes from its
performance. LTH is typically not designed for high-performance
computation. Both computation and communication on LTH are
much slower compared to high-performance TEEs. As a result,
the use of LTH comes with the additional challenges to support
sufficient end-to-end performance. Traditionally, LTH is only used
for small security-critical operations such as key management and
infrequent signing. In order to leverage LTH for larger applications
such as ML inference, we need to divide the workload and only
offload small parts to LTH in a way that LTH does not become
the performance bottleneck. In fact, Stamp had to be carefully
designed to leverage low-performance LTH and our experimental
results show that the overall performance still depends on the
performance of LTH (LTH-chip vs. LTH-SoC). On the other hand,
TEEs can closely match the performance of the underlying high-
performance processors and can often be used to run the entire task
such as ML inference inside, with minimal changes to the workload.
If a high-performance TEE can be fully trusted, a TEE can replace
the LTH in our scheme to provide higher performance or be used
to run the entire ML inference without MPC.

While we believe that LTH provides stronger security compared
to high-performance TEEs, we note that LTH can still have security

vulnerabilities, similar to how secure cryptographic algorithms
can be broken due to implementation-level vulnerabilities. For
example, timing side channels and power interrupts may make
TPM private key recovery possible [27, 57]. Smart cards, although
practically considered secure enough and widely developed, have
faced challenges including reverse engineering [65], micro probing
[75], optical fault induction attacks [76], and others.

Compared to complex high-performance TEEs, LTH has far
fewer vulnerabilities, making countermeasures easier to apply in
terms of cost and design complexity. In practice, the main security
concerns for today’s TEE come from software-exploitable vulner-
abilities. In that sense, LTH provides a major security benefit by
removing most timing-channel or transient-execution vulnerabil-
ities. While physical attacks are not considered a major threat in
data-center environments, LTH can also provide strong physical
security. LTH has no off-chip memory to protect, and often has
anti-tamper/DPA countermeasures. In contrast, recent TEEs target
weaker threat models against physical attacks. Intel removed the
integrity tree for replay protection in Icelake/TDX. AMD SEV has
no replay protection against physical attacks. NVIDIA GPU TEE
(H100) does not even encrypt its high-bandwidth memory (HBM).

4 THE STAMP PROTOCOL

This section introduces the details of the Stamp protocols for both
semi-honest and malicious settings. We refer the reader to Appen-
dix C for detailed security analysis.

4.1 Initialization phase

The initialization phase ΠInit is a part of the offline phase (which
needs no input data or model weights) of the protocol where the
LTHs will have shared keys and initial values established in them
if their identities are proven. Although ΠInit plays an important
role in our scheme, it is not where our main contribution lies, since
mature remote attestation protocols already exist [3]. A simplified
description of ΠInit is shown in Protocol 1 .

The communication out of 𝐻𝑖 has to go through 𝑃𝑖 , which pro-
vides a corrupted party with a natural way to observe or even alter
the communication among the LTHs. For semi-honest adversaries,
the Diffie–Hellman key exchange protocol already prevents them
from obtaining the key with bounded computational resources. If
the corrupted party behaves maliciously, ΠInit does not have to
take extra steps to detect such actions. If a malicious 𝑃𝑖 modifies
the remote attestation, a CA will not provide a certificate and 𝑃𝑖
cannot create a certificate on its own, causing an abort. If a mali-
cious 𝑃𝑖 alters the transmission during key exchange, there will
be no correct initialization established, and the protocol will abort
later when data inconsistency is detected.

The shared keys and the PRF in the LTHs can support the pseu-
dorandom number generation and are kept only known to the
LTH, unlike the correlated randomness introduced in Appendix A.
With the shared keys in §4.1 and a built-in PRF 𝐹 , we can now
construct Π

LTH.GenMask
and Π

LTH.GenMaskShare
in the LTH as Pro-

tocol 2 and Protocol 3. They are very similar with only a minor dif-
ference that Π

LTH.GenMaskShare
always generates shares of 0. Four

counters {ctr𝑖1, ctr
𝑖
2, ctr

𝑖
3, ctr

𝑖
𝑠 } are used in each 𝐻𝑖 to maintain con-

sistency among 𝐻𝑖s in a semi-honest setting, and additional four
331

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

Protocol 1 ΠInit Initialization
Input. Security parameter 𝜆.
Result. Output (Success,𝐿) if the remote attestation succeeds and aborts if
failed. After the initialization, LTHs (𝐻𝑖) obtain shared keys and initial
parameters.

(1) Parties first agree to a 𝐿 for the finite field Z𝐿 , size 𝑙 = log𝐿 bits,
prime 𝑝 , and their order to define the previous and next party.

(2) 𝑃𝑖 s perform remote attestation on each 𝐻𝑖 to obtain a certificate
from the CA and publicly share them to validate 𝐻𝑖 . Abort if
validation fails.

(3) 𝐻𝑖 performs Diffie–Hellman key exchange with signature through
the secure channel between 𝑃𝑖 s to obtain O(𝜆)-bit PRF keys
𝑘𝑖,𝑖+1, 𝑘𝑖−1,𝑖 , then use 𝐹𝑘𝑖,𝑖+1 to mask one key
𝑘′
𝑖−1,𝑖 ≡ 𝑘𝑖−1,𝑖 + 𝐹𝑘𝑖,𝑖+1 (0) mod 𝑝 and send 𝑘′

𝑖−1,𝑖 to 𝐻𝑖+1 through
𝑃𝑖 . 𝐻𝑖 would receive 𝑘′

𝑖+1,𝑖−1 from 𝐻𝑖−1 and can recover
𝑘𝑖+1,𝑖−1 = 𝑘′

𝑖+1,𝑖−1 − 𝐹𝑘𝑖+1,𝑖−1 (0) .

Protocol 2 m← Π
LTH.GenMask

(𝑛, 𝐿, 𝑗 ; 𝑖, ctr𝑖
𝑗
, 𝑘 𝑗, 𝑗+1)

Input. The number of masks to be generated 𝑛, the index 𝑗 for which
counter, and which key to choose. The size of the finite field 𝐿, the counter
ctr

𝑖
𝑗
and the key 𝑘 𝑗,𝑗+1 are stored in the LTH.

Output. pseudo-random masks m ∈ Z𝐿 and updated counter ctr𝑖
𝑗
.

m = (𝐹𝑘 𝑗,𝑗+1 (ctr𝑖𝑗), 𝐹𝑘 𝑗,𝑗+1 (ctr𝑖𝑗 + 1), ..., 𝐹𝑘 𝑗,𝑗+1 (ctr𝑖𝑗 + 𝑛 − 1)) .
Update ctr𝑖

𝑗
← ctr

𝑖
𝑗
+ 𝑛.

Protocol 3 (Jm𝑗 K𝐿𝑖 , Jm𝑗 K𝐿𝑖+1) ← Π
LTH.GenMaskShare

(𝑛, 𝐿;
𝑖, ctr𝑖𝑠 , 𝑘𝑖,𝑖+1, 𝑘𝑖+1,𝑖−1, 𝑘𝑖−1,𝑖)
Input. The number of masks to be generated 𝑛. The size of the finite field
𝐿 and the counter and keys are stored in the LTH.
Output. pseudorandom masks JmK𝐿

𝑖
, JmK𝐿

𝑖+1 ∈ Z𝐿
J𝑚 𝑗 K𝐿𝑖 = 𝐹𝑘𝑖,𝑖+1 (ctr𝑖𝑠 + 𝑗) − 𝐹𝑘𝑖+1,𝑖−1 (ctr𝑖𝑠 + 𝑗) for 𝑗 = 0, ..., 𝑛 − 1
J𝑚 𝑗 K𝐿𝑖+1 = 𝐹𝑘𝑖+1,𝑖−1 (ctr𝑖𝑠 + 𝑗) − 𝐹𝑘𝑖−1,𝑖 (ctr𝑖𝑠 + 𝑗) for 𝑗 = 0, ..., 𝑛 − 1
Update ctr𝑖𝑠 ← ctr

𝑖
𝑠 + 𝑛.

{ ˆctr𝑖1, ˆctr𝑖2, ˆctr𝑖3, ˆctr𝑖𝑠 } are needed in a malicious setting for redu-
plicate execution for the detection of inconsistency. Notice that
Protocol 2 and Protocol 3 give the outputs to𝐻𝑖 , not 𝑃𝑖 , and𝐻𝑖 may
be set to give partial outputs in some protocols.

A proper remote attestation protocol is commonly supported
on secure hardware, such as a TPM [64], and validates the LTH’s
identity and its state. This process can involve the acquisition of the
certificate of a LTH from a trusted CA/Verifiers, which is usually
the manufacturer of it.𝐻𝑖 after being verified, can perform pairwise
Diffie-Hellman key exchanges with a signature to obtain the shared
key 𝑘𝑖−1,𝑖 with𝐻𝑖−1, 𝑘𝑖,𝑖+1 with𝐻𝑖+1, and then also 𝑘𝑖+1,𝑖−1 through
sharing masks. The shared keys can support the pseudorandom
number generation with PRF and are kept only known to the LTH.

4.2 Optimized ReLU with Matrix Multiplication

Non-linear layers used in a machine learning model are computa-
tionally light under plaintext. ReLU, for example, takes only one
comparison and multiplexing. However, its complexity gets ampli-
fied significantly under the RSS scheme with more local computa-
tion steps and significant communication overhead.

Using each party’s LTH and the common randomness established
in §4.1, we can significantly reduce the overhead by “offloading”
the non-linear operations to the LTH. For example, ReLU can be
performed by: invoking Π

LTH.GenMask
to get the pseudo-random

masks, transmitting the masked shares, recovering the plaintext to

compute inside LTHs, and then generate and distribute the psuedo-
random shares of the results. We show the details of this protocol
(ΠReLU) in Appendix B.

In Stamp, we further optimize ReLU by combining it with trun-
cation. For typical ML models [29, 44, 74, 92], ReLU is applied after
matrix multiplications in convolution (Conv) or fully-connected
(FC) layers. As introduced in §3.2, in a fixed-point setting, trunca-
tion is required after each multiplication to keep the consistency
of the precision. If we apply ΠReLU directly after the completion
of multiplications, the communication overhead will be the multi-
plication / truncation overhead and the ΠReLU overhead summed,
which is not optimal. Since the truncation itself is also a simple
non-linear function in plaintext (which is just right-shift), we can ex-
ploit this common structure in deep learning models and merge the
truncation with the following non-linear operations to be simply
computed together in plaintext inside the trusted LTH.

The protocol Π
MatMulReLU

, detailed in Protocol 4, demonstrates
how ReLU can be combined with truncation after matrix multipli-
cation. The steps for a semi-honest setting are colored black, with
additional steps for a malicious adversary marked blue. We use
this notation in other protocols as well. Π

MatMulReLU
reduces the

total communication rounds of matrix multiplication and ReLU
combined to 2 from at least 3, by merging the transmission needed
for truncation and sharing shares masked by psuedorandom masks
generated by LTHs in step 2) and 3). Themalicious version generally
adds replicate parallel operations and requires replicate sharing of
the same values to validate the integrity. Parties compare the copies
of intermediate results and final outputs from different sources to
achieve malicious security with abort. We also use Π

mal-arith-mult

of [58] to ensure correct 2-out-of-3 shares after local multiplication.
One may notice that the workload is not balanced among the

three parties if we fix 𝑖 . In the protocol, the party index 𝑖 can be any
of {1, 2, 3}, which means that the three parties can start the protocol
simultaneously with a disjoint dataset. Therefore, when provided
with a batch 𝐵 of inputs for evaluation, each party can work on
the 𝐵/3 data and start the corresponding protocol simultaneously,
balancing resource usage and reducing overall latency.

4.3 Extensions to Other Operations

ΠReLU can be extended to Π
MaxPooling

,Π
BatchNorm

,ΠLayerNorm that
are common non-linear operations needed in deep learning net-
works.Π

MaxPooling
needs comparisons andmultiplexing.Π

BatchNorm

need about two and ΠLayerNorm needs about three multiplications
for each element on average. Their low complexity allows them
to be offloaded to the LTH in a similar way as ΠReLU by changing
the exact plaintext function executed inside. Π

MatMulReLU
can be

extended to other operations in a similar way by changing step 5)
of it. To optimize neural networks in our experiments, we mainly
also use Π

MatMulMaxPoolReLU
, Π

MatMulBatchNormReLU
which merge

the truncation with different joint non-linear layers.

4.4 Softmax

Exponentiation is crucial in modern deep learning models, such as
logistic and softmax functions. In this work, we focus on softmax,
which is extensively used in modern models such as Transformers
[92]. Classical MPC softmax implementations [42, 66] leads to a
large overhead due to two main reasons: the complex protocol for

332

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

Protocol 4 JReLU(A × B)K𝐿 ← Π
MatMulReLU

(JAK𝐿, JBK): Multiply A and B, then output the shares of the ReLU of the results.
Input. {𝑃𝑖 } have shares of A ∈ Z𝑎×𝑏𝐿

and B ∈ Z𝑏×𝑐
𝐿

.
Output. {𝑃𝑖 } get shares of JZK𝐿 = JReLU(A × B)K𝐿 .

(1) 𝑃1, 𝑃2, and 𝑃3 locally computes JĈK𝐿
𝑖
= JAK𝐿

𝑖
× JBK𝐿

𝑖
+ JAK𝐿

𝑖
× JBK𝐿

𝑖+1 + JAK𝐿
𝑖+1 × JBK𝐿

𝑖
.

Malicious: Parties instead perform Π
mal-arith-mult

of [58] to ensure that the multiplications (before truncation) were performed faithfully by parties. In
the end, the 2-out-of-3 sharing JĈK is distributed.

(2) 𝑃𝑖 calls 𝐻𝑖 to execute Π
LTH.GenMaskShare

(𝑎 × 𝑐, 𝐿) to obtain the masks JMK𝑖 ∈ Z𝑎×𝑐𝐿
, then compute Ĉ′

𝑖
= JĈK𝐿

𝑖
+ JMK𝑖 . 𝑃𝑖−1 also calls 𝐻𝑖−1 to perform

Π
LTH.GenMaskShare

(𝑎 × 𝑐, 𝐿) to obtain JMK𝑖−1 ∈ Z𝑎×𝑐𝐿
and Ĉ′

𝑖−1 = JĈK𝐿
𝑖−1 + JMK𝑖−1.

Malicious: Instead of doing the semi-honest protocol, 𝑃𝑖+1, 𝑃𝑖−1 generates JMK𝑖+1 ← Π
LTH.GenMask

(𝑎 × 𝑐, 𝐿, 𝑖 + 1) and Ĉ′
𝑖+1 = JĈ′K𝐿

𝑖+1 + JMK𝑖+1. 𝑃𝑖−1,
𝑃𝑖 also generates JMK𝑖−1 invoking Π′

LTH.GenMask
(𝑎 × 𝑐, 𝐿, 𝑖 − 1) , Ĉ′

𝑖−1 = JĈ′K𝐿
𝑖−1 + JMK𝑖−1.

(3) 𝑃𝑖 and 𝑃𝑖−1 send Ĉ′
𝑖
and Ĉ′

𝑖−1to 𝑃𝑖+1.
Malicious: Instead of doing the semi-honest protocol, 𝑃𝑖+1, 𝑃𝑖−1 send Ĉ′

𝑖+1 to 𝑃𝑖 ; 𝑃𝑖−1, 𝑃𝑖 send C′
𝑖−1 to 𝑃𝑖+1.

(4) 𝑃𝑖+1 computes Ĉ′ = Ĉ′
𝑖
+ Ĉ′

𝑖−1 + JĈ′K𝐿
𝑖+1 and passes it to 𝐻𝑖+1.

Malicious: Instead of doing the semi-honest protocol, 𝑃𝑖 , 𝑃𝑖+1 compare the two received copies and abort if inconsistency is found. 𝑃𝑖 computes
Ĉ′ = Ĉ′

𝑖+1 + JĈK𝐿
𝑖−1 + JĈK𝐿

𝑖
and passes it to 𝐻𝑖 , 𝑃𝑖+1 computes Ĉ′ = Ĉ′

𝑖−1 + JĈK𝐿
𝑖
+ JĈK𝐿

𝑖+1 and passes it to 𝐻𝑖+1.
(5) LTH Only : 𝐻𝑖+1 generates the masks JMK𝑖+1 by invoking Π

LTH.GenMaskShare
(𝑎 × 𝑐, 𝐿) and recovers the plaintext through truncation:

Ĉ = ⌊ (Ĉ′ + JMK𝑖+1) ⌋ ≫ fp. Note that JMK𝑖+1 + JMK𝑖 + JMK𝑖−1 = 0.
Set D = (Ĉ > 0) . Then 𝐻𝑖+1 invokes ΠLTH.GenMaskShare

(𝑎 × 𝑐, 𝐿) to get JZ∗K𝐿
𝑖
∈ Z𝑎×𝑐

𝐿
, JZ∗K𝐿

𝑖+1 ∈ Z𝑎×𝑐𝐿
, and compute:

(J𝑍 𝑗,𝑘K𝐿
𝑖
, J𝑍 𝑗,𝑘K𝐿

𝑖+1) = ((𝐷 𝑗,𝑘?𝐶 𝑗,𝑘 : 0) + J𝑍 ∗
𝑗,𝑘

K𝐿
𝑖
, J𝑍 ∗

𝑗,𝑘
K𝐿
𝑖+1) . Return them to 𝑃𝑖+1.

𝑃𝑖 and 𝑃𝑖−1 call 𝐻𝑖 and 𝐻𝑖−1 to invoke Π
LTH.GenMaskShare

(𝑎 × 𝑐, 𝐿) to get JZK𝐿
𝑖−1 ∈ Z𝑎×𝑐𝐿

.
Malicious: Instead, 𝐻𝑖+1 generates masks with Π

LTH.GenMask
(𝑎 × 𝑐, 𝐿, 𝑖 − 1) to recover the plaintext Ĉ = ⌊ (Ĉ′ − JMK𝑖−1) ⌋ ≫ fp, with the remaining

being the same. 𝐻𝑖 does as above respectively with index 𝑖 replacing index 𝑖 + 1, replacing Π
LTH.GenMask

with Π′
LTH.GenMask

, and fixes that the
plaintext results are added to mask share 𝑖 . Π

LTH.GenMaskShare
(𝑎 × 𝑐, 𝐿) is invoked at last to generate the shares. 𝐻𝑖−1 also generates the remaining

share for 𝑃𝑖−1.
(6) 𝑃𝑖+1 send JZK𝐿

𝑖
, JDK𝐿

𝑖
to 𝑃𝑖 , send JZK𝐿

𝑖+1, JDK𝐿
𝑖+1 to 𝑃𝑖−1. Now, JZK𝐿 and JDK𝐿 are calculated and shared with each party.

Malicious: 𝑃𝑖 shares JZK𝐿
𝑖−1, JDK𝐿

𝑖−1 and JZK𝐿
𝑖
, JDK𝐿

𝑖
to 𝑃𝑖−1 and 𝑃𝑖+1 respectively. Each party checks the results from the two parallel computations

and aborts if an inconsistency is found.

approximating exponentiation and the max function applied before
softmax. A recent study [91] shows that softmax is the main source
of overhead when running a Transformer network with an MPC
protocol and also introduces a numerical stability problem.

The Softmax on a vector x is defined as follows:

Softmax(x) := exp (x)/
𝑛∑︁
𝑖=1

exp (x𝑖) (1)

In a regular ML setting, exponentiation can easily lead to over-
flow, a problem exacerbated in fixed-point representations used by
MPC protocols. The traditional solution is to subtract the maximum
value of the input vector x from every element before applying
the softmax function, ensuring the maximum input value is 0 and
preventing overflow. However, this additional max operation intro-
duces significant MPC overhead as shown in a recent study [91].

A naïve extension of the previous protocol for exp would be
to move exp to the LTH, similar to the other non-linear opera-
tions in ΠReLU. This would not work due to the low computational
power of the LTH and the large amount of computation required
for exp compared to other operations. Under our assumption on
the trusted hardware (details in §5), tests show that 1 million 32-
bit multiplications take less than a second, while double-precision
exponentiation takes over a minute. Unlike simple non-linear oper-
ations, exp needs to be done with floating point arithmetic for high
precision, involving tens of multiplications per exp and creating
significant overhead and a new bottleneck for our scheme on a
small LTH.

Our solution is to split and “offload” the computation to the un-
trusted local machine. The most complex part of the exp operation
is performed by the powerful but untrusted CPU/GPU, and then the

results are assembled within the LTH. The protocol is based on the
property exp(𝑎 +𝑏 + 𝑐) = exp(𝑎) exp(𝑏) exp(𝑐), allowing untrusted
machines to compute exp on individual shares so that only simple
multiplications are needed on LTH. However, the conversion be-
tween fixed-point representations and real-number arithmetic is
non-trivial under MPC. In Protocol 5, we expand the exponent part
(see §3.1) to contain all possible results of exp(J𝑥K𝐿

𝑖
), specifically

for 𝐿 = 232. Overflow would not occur after this adjustment, even
without invoking the max function before Softmax.

4.5 Integrating Stamp into Real Systems

A full implementation of Stamp requires four main functions to
be performed by LTH: attestation during the initialization phase,
pseudorandom number generation for masking, communication be-
tween LTH and a host CPU, and the rest of the protocol mainly for
in-LTH computation. From the functionality point of view, all these
operations can be implemented in software on any security proces-
sor if it is equipped with a unique device secret key in hardware that
can be used for attestation. Fortunately, most security hardware
today supports attestation and meets this requirement. From the
performance point of view, our prototype and experimental evalua-
tion assume that LTH has hardware AES engines for pseudorandom
number generation to match the LTH-CPU communication band-
width, while assuming that all other LTH operations are performed
in software. More specifically, the performance evaluation is based
on software run-time on a tiny microcontroller (Arduino Due) with
an ARM Cortext-M3 that is also used in TPM, which represents
today’s low-end security processor.

333

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

Protocol 5 Π
Softmax

(x) compute softmax
Input. {𝑃𝑖 } have replicative shares of x ∈ Z𝑛𝐿 .
Output. {𝑃𝑖 } get Jexp(x)K𝐿
Initial values. The LTHs save (𝑞𝐿,𝑚𝐿) for later use, setting (𝑚𝐿 ≫ 52) = ⌊exp(𝐿 ≫ fp) · 2−𝑞𝐿 ⌋ with fp = 13 is the fixed-point precision under 𝐿 = 232,
where we save 𝑞𝐿 ∈ Z232 ,𝑚𝐿 ∈ Z252 , so (𝑚𝐿 ≫ 52) ∈ [0, 1) and 𝑞𝐿 will not overflow. We note x̄ to be the real values that x represents.

(1) For each J𝑥 𝑗 K𝐿 , 𝑃𝑖 computes 𝑟 = exp(J𝑥 𝑗 K𝐿𝑖−1 ≫ fp) . Let 𝑟 = exp(J𝑥 𝑗 K𝐿𝑖−1 ≫ fp) = 2𝑞 𝑗 · (𝑚 𝑗 ≫ 52) where𝑚 𝑗 has no sign, since it is always positive.
(Notice that |𝑞 𝑗 | = | ⌊log2 (exp(J𝑥 𝑗 K𝐿𝑖−1 ≫ fp)) ⌋ | = ⌊ |J𝑥 𝑗 K𝐿𝑖−1 ≫ fp | · log2 (𝑒)) ⌋ < 230, so 32 bits are enough to store 𝑞 𝑗 and support additions
without overflow).
Invoke Π

LTH.GenMask
from 𝐻𝑖 to generate two masks 𝛼 𝑗 ∈ Z252 and 𝛽 𝑗 ∈ Z232 for 𝑗 = 1, ..., 𝑛 with the corresponding dimensions, and send

{𝑚∗
𝑗
= (𝑚 𝑗 + 𝛼 𝑗)252 , 𝑞∗𝑗 = (𝑞 𝑗 + 𝛽 𝑗)232 } for 𝑖 = 1, ..., 𝑛 to 𝑃𝑖+1.

Malicious: 𝑃𝑖−1 follows the same computation to get {𝑚∗
𝑗
, 𝑞∗

𝑗
} to 𝑃𝑖+1. 𝑃𝑖−1, 𝑃𝑖+1 additionally compute ′𝑟 = exp(J𝑥 𝑗 K𝐿𝑖+1 ≫ fp) and obtain {′𝑚∗

𝑗
,′𝑞∗

𝑗
}

by masking the mantissa and exponent part with masks from Π′
LTH.GenMask

, send them to 𝑃𝑖 .

(2) 𝑃𝑖+1 receives {𝑞∗𝑗 ,𝑚∗𝑗 } and computes 2𝑞̂ 𝑗 · 𝑚̂ 𝑗 := exp((J𝑥 𝑗 K𝐿𝑖+1 + J𝑥 𝑗 K𝐿𝑖)𝐿 ≫ fp) . Send {q∗ + q̂,m∗, m̂} to 𝐻𝑖+1.
Malicious: 𝑃𝑖+1 and 𝑃𝑖 compare the two received copies and abort if an inconsistency is found. 𝑃𝑖 do the same computation as above with index 𝑖
replacing index 𝑖 − 1, and send the obtained {′q∗ +′ q̂,′m∗,′ m̂} to 𝐻𝑖 .

(3) LTH Only: 𝐻𝑖+1 Generate 𝛼 𝑗 and 𝛽 𝑗 , Compute 𝑞′
𝑗
= (𝑞∗

𝑗
+ 𝑞 𝑗) − 𝛽 𝑗 = 𝑞 𝑗 + 𝑞 𝑗 ,𝑚′𝑗 = (𝑚∗𝑗 − 𝛼 𝑗) · 𝑚̂ 𝑗 =𝑚 𝑗 · 𝑚̂ 𝑗 . Define the results

2𝑞̂
′
𝑗 ·𝑚′

𝑗
:= exp(J𝑥 𝑗 K𝐿𝑖 ≫ fp) · exp((J𝑥 𝑗 K𝐿𝑖−1 + J𝑥 𝑗 K𝐿𝑖+1)𝐿 ≫ fp) = exp(((J𝑥 𝑗 K𝐿𝑖−1 + J𝑥 𝑗 K𝐿𝑖+1)𝐿 + J𝑥 𝑗 K𝐿𝑖) ≫ fp)

For the fixed-point representation 𝑥 𝑗 ∈ [0, 𝐿) , the real value it represents 𝑥 𝑗 ∈ [−𝐿/2 ≫ fp, 𝐿/2 ≫ fp) ,
⌈log2 (exp(𝑥)) ⌉ ∈ [−(𝐿/2) ≫ fp · log2 (𝑒), (𝐿/2) ≫ fp · log2 (𝑒)]. Set the 𝑞-bound: qb = ((𝐿/2) ≫ fp) · log2 (𝑒) . Define
exp(𝑥 𝑗) := 2𝑞

′′
𝑗 · (𝑚′′

𝑗
≫ 52) , then 𝑞′′

𝑗
should be in [−qb, qb].

𝑞′
𝑗
and𝑚′

𝑗
may alter from the correct 𝑞′′

𝑗
and𝑚′′

𝑗
for two possible reasons: We are missing an 𝐿 to be subtracted if

(J𝑥 𝑗 K𝐿𝑖−1 + J𝑥 𝑗 K𝐿𝑖+1)𝐿 + J𝑥 𝑗 K𝐿𝑖 ≠ (J𝑥 𝑗 K𝐿𝑖 + J𝑥 𝑗 K𝐿𝑖+1 + J𝑥 𝑗 K𝐿𝑖−1)𝐿 = 𝑥 𝑗 ; or 𝑥 𝑗 , or the real value 𝑥 𝑗 represents is actually negative, so
𝑥 𝑗 = ((J𝑥 𝑗 K𝐿𝑖 + J𝑥 𝑗 K𝐿𝑖+1 + J𝑥 𝑗 K𝐿𝑖−1)𝐿 − 𝐿) ≫ fp. 𝐻𝑖+1 runs:
(a) If 𝑞′

𝑗
∈ (0, qb], 𝑞′′

𝑗
= 𝑞′

𝑗
,𝑚′′

𝑗
=𝑚′

𝑗
.

(b) If 𝑞′
𝑗
∈ (qb, 3 ∗ qb], we are missing one exp(−𝐿 ≫ fp) to be multiplied for either reason mentioned above. Compute 𝑞′′

𝑗
= 𝑞′

𝑗
− 𝑞𝐿 ,

𝑚′′
𝑗
= (𝑚∗

𝑗
− 𝛼 𝑗) · 𝑚̂ 𝑗 /𝑚𝐿 .

(c) If 𝑞′
𝑗
∈ (3 ∗ qb, 5 ∗ qb], we are missing exp(−2𝐿 ≫ fp) to be multiplied for both reasons. Compute 𝑞′′

𝑗
= 𝑞′

𝑗
− 2 ∗ 𝑞𝐿 ,𝑚′′𝑗 = (𝑚∗

𝑗
− 𝛼 𝑗) · 𝑚̂ 𝑗 /(𝑚𝐿)2.

Now 𝐻𝑖+1 obtains the corrected exp(𝑥 𝑗) = 2𝑞
′′
𝑗 (𝑚′′

𝑗
≫ 52) . 𝐻𝑖+1.

•Then compute softmax of the real values directly by Softmax(x̄) = exp(x̄)/∑(exp(x̄)) which involves only O(𝑛) additions, O(1) multiplications
and divisions. Then convert the results to fixed-point representations, and invoke Π

LTH.GenMaskShare
for masks JmK𝐿

𝑖+1, JmK𝐿
𝑖
to output

(JyK𝐿
𝑖
, JyK𝐿

𝑖+1) = (Softmax(x) + JmK𝐿
𝑖
, JmK𝐿

𝑖+1) to 𝑃𝑖+1.
𝑃𝑖 and 𝑃𝑖−1 call 𝐻𝑖 and 𝐻𝑖−1 to generate JmK𝐿

𝑖
= Π

LTH.GenMaskShare
(𝑛) as JyK𝐿

𝑖−1.
Malicious: 𝐻𝑖 does the computation accordingly, while also masking the results with the index masks 𝑖 . 𝑃𝑖−1 calls 𝐻𝑖−1 to generate
(JmK𝐿

𝑖+1, JmK𝐿
𝑖−1) = Π

LTH.GenMaskShare
(𝑛, 𝐿) as (JyK𝐿

𝑖+1, JyK
𝐿
𝑖−1) .

(4) 𝑃𝑖+1 shares JyK𝐿
𝑖
with 𝑃𝑖 and JyK𝐿

𝑖+1 with 𝑃𝑖−1
Malicious: 𝑃𝑖 shares JyK𝐿

𝑖−1 to 𝑃𝑖−1 and JyK𝐿
𝑖
to 𝑃𝑖+1 respectively. Each party checks the results of the two parallel computations and aborts if an

inconsistency is found.

Consider Apple’s Secure Enclave [31] as another example, which
already includes a dedicated nonvolatile storage and a unique ID
root (UID) cryptographic key to protect device-specific secrets for
remote attestation, . It also includes a true random number genera-
tor (TRNG), an AES engine that may be used for pseudo-random
number generation, a general-purpose CPU (Secure Enclave Pro-
cessor), and a communication channel with the main CPU. While
Apple does not disclose the throughput of the AES engine or the per-
formance of the Secure Enclave Processor, they are likely sufficient
for Stamp, as the AES engine is designed to encrypt NAND flash
storage, and the processor runs at a high SoC clock frequency. Other
SoC security subsystems, such as the Synopsys tRoot hardware se-
curity module [80], the Rambus RT-630 programmable root-of-trust
(RoT) [35], and the Qualcomm secure processing unit [34] also
support comparable hardware features, including a device-specific
secret key, a hardware AES engine, and a general-purpose processor.
Thus, we believe that Stamp can be realized on today’s lightweight
security hardware with minimal changes.

Stamp is designed to be used even with a tiny low-performance
security processor, but it can also run on a high-performance TEE
such as Intel SGX and AMD SEV implemented in software inside.
Although performance should be better than the low-end LTH
implementation, we believe that LTH can provide stronger security
protection compared to the traditional TEEs (see §3.3).

5 EVALUATION

5.1 Experimental Setup

Implementation and baselines. We implemented Stamp in C++,
building on Falcon [89]. We introduced new protocols, GPU sup-
port for linear layers, and we switched to ZeroMQ for networking.
Falcon is the main framework we compare to, but the open-source
project was not implemented to support GPUs and does not address
a key protocol for Transformers: Softmax. Falcon+ introduces three
main improvements: (1) GPU support for linear layers, (2) a new
MPC protocol for Π

softmax
using the exponentiation protocol from

[42] combined with Falcon’s ΠDiv and ΠMax, and (3) ZeroMQ for
334

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

networking to ensure better performance and a fair comparison
with Stamp. These changes do not alter the threat model.

We also compare our scheme with AriaNN [71] and CryptGPU
[81] as additional pure MPC baselines. Appendix D compares the
theoretical complexities for Falcon+, AriaNN, and Stamp. AriaNN
and CryptGPU show both advantages and disadvantages relative
to Falcon in different settings prior to our optimizations. We dis-
cover in our experiment that AriaNN and CryptGPU consume a
significant amount of memory: a server with 64GB DRAM can only
process ResNet18 inference with a batch size of 8 using AriaNN,
whereas 32GB suffices for a batch size of 128 with Stamp. Similarly,
CryptGPU supports batch sizes of up to 8 for ResNet and 32 for
VGG16. We adjusted batch sizes accordingly for these experiments,
noting results with smaller batch sizes explicitly. Additionally, we
compare Stamp with two high-performance TEE-based schemes: a
full SGX solution, running entire inferences inside an SGX enclave;
and Goten [61], which accelerates TEE-based private inference by
offloading linear operations to untrusted GPUs using a secret mul-
tiplication protocol with Beaver triples. Both CryptGPU and Goten
support only a semi-honest GPU setting.

Hardware and network. We conducted our experiments on
Cloudlab c240g5 machines with Ubuntu 20.04 LTS, equipped with
an Intel Xeon Silver 4114 10-core CPU (2.20 GHz) and an NVIDIA
12GB P100 GPU. The network setupmirrors previous studies [59, 71,
88, 89], with a LAN bandwidth of 625MBps and a ping time of 0.2ms,
and a WAN bandwidth of 40 MBps and a ping time of 70 ms. Both
semi-honest and malicious settings were tested. For the LTH-chip,
we used an Arduino Due with an Atmel SAM3X8E ARM Cortex-M3
CPU (84MHz, 512 KB of Flash, and up to 96 KB of SRAM), which
is used for a commercial implementation of TPM [78], to evaluate
the LTH runtime. The LTH assumes a low-pin-count (LPC) bus,
resulting in a 15MBps bandwidth limit. A maximum of 3MBps of
random number generation can be achieved in a TPM [79], which
is enough for its original use case, but not for our scheme. We
assume an additional low-cost hardware AES engine [17] achieving
a throughput of 14 GBps, making the LTH’s pseudo-random number
generation time negligible compared to data transmission time.
Other details of the hardware can be seen in §5.4. For the LTH-SoC,
we assume the same Cortex-M3 processor running at 1GHz and the
128-bit on-chip network (16GBps). The performance is estimated
by scaling the execution time of the discrete LTH. We additionally
provide a memory usage analysis of LTH in Appendix E, showing
that Stamp can handle most models with our current LTH setting,
and can be modified to handle even larger models with increased
LTH local communication cost.

Neural networks and dataset. We use 8 neural networks:
a small 3-layer fully-connected network with ReLU activations
(Network-A, as in SecureML [59]), a small convolutional network
with ReLU activation (Network-B, as in [69]), a small convolutional
network with ReLU activation and maxpooling (Network-C, as
in [49]), AlexNet [44], VGG16 [74], ResNet18 [29], a small Trans-
former [86] and a small Word2Vec [54]. We use a small Transformer
and reduce the size of the last layer in Word2Vec to manage the
computational expense of Softmax in pure MPC, especially in a
WAN setting. The datasets used are MNIST [16] for the first four
networks, CIFAR-10 [43] for AlexNet and VGG16, ImageNet [70] for
ResNet18, and Wikitext-2 [53] for the Transformer and Word2Vec.

Parameter choice. As mentioned in §4.4, we choose 𝐿 = 232
and fp = 13 in our implementation. We pick the group size to be
2048 bits in Diffie–Hellman key exchange and use AES-128 for the
pseudo-random number generation.

5.2 Performance

Table 1 and Table 2 show the end-to-end latency (in seconds) of the
inference on inputs of batch size 128 in semi-honest and malicious
settings, respectively. Table 3 and Table 4 report the amount of
data transmitted compared to baselines with traffic analysis tools
or the data reported in the papers. ‘-’ in the cells indicates that
the implementation is missing or the network is too large for CPU
evaluation. The brackets in the tables indicate an altered batch size
for the cases when a large batch size did not fit into our machine.
Only Falcon implemented its work in a malicious setting.

In the tables, we compare Stamp with Falcon [89], AriaNN [71],
and CryptGPU [81], three of the state-of-the-art MPC frameworks
implementing different optimizations for non-linear layer infer-
ence. AriaNN does not implement the execution of different parties
on separate machines, but instead uses the local simulation of the
network for performance evaluation. AriaNN does not support
Transformer and Word2Vec because it does not support Softmax,
and we could not use the open-sourced CryptGPU to run Trans-
former, because the provided version raised error when generating
the secret sharing model due to compatibility issues. Depending
on the structure of the machine learning network, Stamp with
LTH-chip is 4× to 63× or 6× to 59× faster than the state-of-the-art
MPC results with semi-honest or malicious settings in WAN / GPU
environments. The advantage that we obtain under a LAN or CPU
environment is smaller compared to a WAN/GPU environment. In
the LAN, communication overhead is significantly reduced. With a
CPU, the computation accounts for a larger portion of the execution
time. These factors reduce the speedup, which is mainly accom-
plished by reducing the communication overhead of non-linear
functions. Stamp with LTH-SoC achieves even higher speedup be-
cause LTH-SoC has higher performance compared to LTH-chip due
to its higher clock frequency and the data movement between an
LTH and a CPU/GPU is also faster on an SoC. The performance
gap between LTH-SoC and LTH-chip is the largest in LAN / GPU
environments where the local communication overhead is large.
Also, for smaller networks, a GPU can be slower than a CPU. For
a small amount of data and a small model, initialization and data
movement may take more time than operating directly on a CPU.

We also compare Stamp with other schemes that rely on a high-
performance TEE (Intel SGX): the full SGX solution and Goten
[61]. The full SGX solution assumes that semi-honest parties can
securely share their data with one party’s SGX for evaluation. The
experiments are run on SGX V1 with 16GB enclave memory on
Azure Standard DC4s v3. For smaller networks such as Network-B,
the full SGX solution is slightly slower (0.46 seconds) compared to
Stamp (0.12), mainly due to initialization overhead. However, for
larger networks such as ResNet18, the full SGX solution only takes
8.15 seconds, while Stamp (LTH-SoC) takes 148 seconds. This re-
sult is expected as the performance overhead of MPC-based secure
computation is known to be substantially higher compared to the

335

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

Table 1: Inference time (s) of the entire batch of size 128 in a semi-honest setting. AriaNN has a reduced batch size of 64 and 8 for

VGG16 and ResNet18 due to memory consumption, which also applies to other tables. Brackets indicate an altered batch size.

Network-A Network-B Network-C
LAN LAN WAN WAN LAN LAN WAN WAN LAN LAN WAN WAN

Framework GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
Falcon+ 0.082 0.112 1.478 1.393 0.203 0.2618 1.464 1.292 1.866 2.191 7.321 7.288
AriaNN 0.256 0.512 - 5.504 - - - - 3.072 5.248 - 17.02

CryptGPU 0.449 - 13.49 - 0.333 - 9.592 - 0.752 - 19.45 -
Stamp-chip 0.073 0.077 0.251 0.294 0.117 0.114 0.278 0.293 0.680 1.298 1.024 1.494

speed-up 1.11× 1.43× 5.87× 4.72× 1.73× 2.29× 5.25× 4.39× 1.10× 1.68× 7.14× 4.87×
Stamp-SoC 0.0432 0.0472 0.2211 0.2641 0.0643 0.0613 0.1994 0.2408 0.1990 0.8163 0.5424 1.012
speed-up 1.91× 2.37× 6.69× 5.28× 3.17× 4.28× 7.34× 5.37× 3.78× 3.10× 13.5× 7.20×
Goten 0.261 - 3.304 - 0.376 - 4.097 - 0.602 - 5.589 -

Full SGX 0.462 0.461 0.461
LeNet AlexNet Transformer

LAN LAN WAN WAN LAN LAN WAN WAN LAN LAN WAN WAN
Framework GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
Falcon+ 2.592 4.603 8.867 9.563 4.276 11.78 38.56 43.06 4.026 16.20 321.0 334.7
AriaNN 4.480 7.040 - 18.30 9.984 19.20 - 43.52 - - - -

CryptGPU 1.337 - 19.12 - 1.918 - 35.90 - - - - -
Stamp-chip 0.969 3.075 1.315 3.255 1.564 9.263 2.463 9.449 0.5130 12.18 5.024 16.66

speed-up 1.38× 1.49× 6.74× 2.93× 1.22× 1.27× 14.6× 4.55× 7.84× 1.32× 63.8× 20.08×
Stamp-SoC 0.2869 2.392 0.6328 2.573 0.305 8.029 1.229 8.215 0.3618 12.03 4.873 16.51
speed-up 4.66× 2.02× 6.27× 3.72× 14.0× 1.52× 29.2× 5.24× 11.1× 1.34× 65.8× 20.26×
Goten 0.944 - 6.233 - 0.778 - 9.127 - - - - -

Full SGX 0.507 5.031 0.563
VGG16 ResNet18 Word2Vec

LAN LAN WAN WAN LAN LAN WAN WAN LAN LAN WAN WAN
Framework GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
Falcon+ 49.36 - 122.1 - 545.9 - 1439 1.631 8.687 81.93 90.82
AriaNN 198.4 - - - 1779(8) - - - - - - -

CryptGPU 11.31(32) - 55.43(32) - 45.20(8) - 600.3(8) - 1.469 - 47.19 -
Stamp-chip 26.55 - 30.05 - 309.7 - 350.7 - 0.628 7.556 1.727 8.869

speed-up 1.85× - 4.06× - 1.76× - 4.10× - 2.33× 1.14× 47.4× 10.2×
Stamp-SoC 13.06 - 16.56 - 106.9 - 148.0 - 0.593 7.521 1.692 8.835
speed-up 3.78× - 7.37× - 5.10× - 9.72× - 2.74× 1.15× 27.32× 10.2×
Goten 6.208 - 25.71 - - - - - - - - -

Full SGX 32.422 8.156 2.23

45.0%
1.10s

36.4%
0.90s18.6%

0.45s

Linear Layers
Non-linear Layers
LTEE Comm. & Comp.

5.1%
1.97s94.9%

36.6s

Figure 4: The breakdown of local machine execution time:

linear layers, non-linear layers, and LTH-Chip bus communi-

cation & computation time. Stamp (left) and Falcon+ (right)

on semi-honest inference over AlexNet under WAN/GPU.

performance overhead of a TEE. On the other hand, MPC is gener-
ally considered to be more secure compared to a high-performance
TEE such as Intel SGX. As discussed in §3.3, we believe that LTH is
easier to protect and deploy compared to high-performance TEEs.

When compared to Goten, which also relies on MPC for secure
outsourcing of linear layers, the experimental results suggest that
Stamp is faster in most cases even though LTH has much lower per-
formance compared to Intel SGX. Goten is relatively slow for small
networks, again partialy due to the SGX initialization overhead.
For VGG16, Goten outperforms Stamp with a discrete security chip
(LTH-chip), mainly due to the large performance gap between the

low-end LTH and a high-performance TEE (SGX) used by Goten.
However, Stamp outperforms Goten in theWAN/GPU setting when
running on a more powerful LTH (LTH-SoC), which has high local
communication bandwidth and runs at a higher clock frequency.1
These results confirm the main intuition behind the Stamp design,
that small high-security hardware can be sufficient when primarily
used to perform non-linear operations.

In Figure 4, we show the time breakdown of semi-honest infer-
ence over AlexNet in the WAN / GPU setting. In both Stamp and
Falcon+, linear layers take a similar amount of time. However, they
contribute only 5.1% of the execution time in Falcon+, and over 36%
in Stamp, because the non-linear layers’ runtime is significantly
reduced from about 94.9% to 18.6% (63.6% if we roughly consider all
operations on LTH are related to non-linear layers. There is some
overhead, such as the local transmission in step 4 of Protocol 4,
which cannot be assigned to be only linear or non-linear opera-
tions). Table 5 shows another breakdown of the execution time in
the WAN/GPU setting: CPU/GPU, communication, and LTH. Note

1We believe Stamp outperforms in this case because Goten requires more communica-
tion for its secure multiplication. As the communication cost analysis for Goten is not
available, we estimate the costs using analytical results in their paper (Table 1); and as
an example, Goten’s communication for VGG16 is estimated to be 273MB compared
to Stamp’s 188 MB.

336

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

Table 2: Latency (s) of running the entire batch of size 128 in a malicious setting.

Network-A Network-B Network-C
LAN LAN WAN WAN LAN LAN WAN WAN LAN LAN WAN WAN

Framework GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
Falcon+ 0.1921 0.3293 3.359 3.3701 0.6279 0.6416 3.504 3.0743 5.639 6.758 23.26 20.8988

Stamp-chip 0.0913 0.2567 0.5150 0.7307 0.1594 0.2860 0.5803 0.7246 1.157 3.661 2.196 4.258

speed-up 2.10× 1.51× 6.52× 4.61× 3.94× 2.82× 6.04× 4.24× 4.87× 2.12× 10.6× 4.91×
Stamp-SoC 0.0200 0.1854 0.4437 0.6594 0.0357 0.1623 0.4566 0.6010 0.0325 2.536 1.071 3.134
speed-up 9.59× 2.09× 7.57× 5.11× 17.5× 4.98× 7.67× 5.12× 173× 3.06× 21.7× 6.67×

LeNet AlexNet Transformer
LAN LAN WAN WAN LAN LAN WAN WAN LAN LAN WAN WAN

Framework GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
Falcon+ 7.492 15.38 28.82 32.57 13.89 41.88 100.9 123.2 10.99 56.10 777.9 821.3

Stamp-chip 2.106 10.64 2.929 10.80 3.653 36.80 5.538 36.10 2.073 47.37 13.03 59.30

speed-up 3.56× 1.55× 9.84× 3.01× 3.80× 1.27× 18.2× 3.41× 5.30× - 59.6× -
Stamp-SoC 0.5136 9.052 1.337 9.213 0.7738 33.92 2.659 33.22 1.720 47.02 12.68 58.95
speed-up 14.5× 1.82× 21.5× 3.54× 17.9× 1.37× 37.9× 3.71× 6.39× 1.19× 61.3× 13.9×

VGG16 ResNet18 Word2Vec
LAN LAN WAN WAN LAN LAN WAN WAN LAN LAN WAN WAN

Framework GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
Falcon+ 136.9 - 407.8 - 1550 - 4993 - 3.985 32.80 202.5 231.2

Stamp-chip 51.54 - 68.09 - 639.3 - 772.2 - 1.327 30.44 2.209 31.44

speed-up 2.66× - 5.99× - 2.43× - 6.47× - 3.00× 1.08× 91.6× 7.35×
Stamp-SoC 20.06 - 36.62 - 166.2 - 299.1 - 1.258 30.37 2.140 31.37
speed-up 6.82× - 11.1× - 9.33× - 16.6× - 3.17× 1.08× 94.6× 7.37×

Table 3: Communication (MB) for the entire batch of size 128 in a semi-honest setting. Brackets indicate an altered batch size.

Framework Network-A Network-B Network-C LeNet AlexNet Transformer VGG16 ResNet18 Word2Vec
Falcon+ Inter-party 1.536 6.272 64.87 95.33 173.5 72.21 1730 22933 12.61
AriaNN Inter-party 2.816 - 38.54 55.04 121.6 - 1161 18944 -

CryptGPU Inter-party 3.012 9.911 33.35 122.7 99.05 - 1714(32) 2729(8) 95.46

Stamp Inter-party 0.2058 0.8371 5.328 7.931 12.31 19.21 187.7 2106 0.4624
LTH-CPU 0.4585 0.7958 7.235 10.24 18.53 2.270 202.5 3044 0.412

Table 4: Inference communication (MB) of the entire batch of size 128 in a malicious setting.

Framework Network-A Network-B Network-C LeNet AlexNet Transformer VGG16 ResNet18 Word2Vec
Falcon+ Inter-party 10.51 41.33 423.4 620.1 1135 340.0 11543 139287 99.49

Stamp Inter-party 0.8443 2.0704 21.02 28.80 48.68 131.2 838.6 7500 25.08
LTH-CPU 1.070 1.856 16.88 23.90 43.23 5.296 472.5 7103 0.826

Table 5: Inference time (s) breakdown of a batch of size 128 in a semi-honest WAN/GPU setting, comparing with Falcon+.

Framework Component Network-A Network-B Network-C LeNet AlexNet Transformer VGG16 ResNet18 Word2Vec
Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio

Stamp
CPU/GPU 0.04 17% 0.06 23% 0.19 19% 0.28 21% 0.29 12% 0.30 6% 12.8 43% 98.0 28% 0.47 27%
Comm. 0.18 70% 0.16 58% 0.35 34% 0.35 27% 0.94 38% 4.56 91% 3.34 11% 44.0 13% 1.22 71%
LTH 0.03 13% 0.05 19% 0.48 47% 0.68 52% 1.24 50% 0.16 3% 13.8 46% 207 59% 0.03 2%

Falcon+ CPU/GPU 0.08 6% 0.20 14% 1.80 25% 2.50 28% 4.09 11% 3.95 1% 47.6 39% 523 36% 1.55 2%
Comm. 1.40 94% 1.27 86% 5.52 75% 6.37 72% 34.4 89% 317 99% 74.4 61% 916 64% 89.3 99%

that the CPU/GPU execution time is also reduced because major
parts of most non-linear computations are moved to LTH.

Discussion. The acceleration achieved by Stamp varies signifi-
cantly with the architectural design of the model. Convolutional
neural networks (CNNs), such as AlexNet and VGG16, exhibit less
pronounced speed improvements compared to language models
like the Transformer and Word2Vec. This discrepancy aligns with
the observation that language models employ computationally in-
tensive non-linear operations more frequently, notably Softmax

in our case. For instance, the Transformer model applies Softmax

within each of its multiple attention heads. Word2Vec, despite its

simplicity and consisting of only two linear layers, incurs a high
computation cost for non-linear operations due to the inclusion of
Softmax (we also keep the Softmax in the final layer of Word2Vec to
demonstrate its impact). Consequently, Stamp tends to offer greater
benefits for models that extensively leverage more complex non-
linear operations. In contrast, models such as ResNet18 or VGG16,
which are computationally heavy for linear operations but relying
on simpler non-linear activation functions like ReLU, do not ex-
hibit as significant speed-ups. This observation explains the higher
speed-up numbers in the language models compared to the CNNs.

337

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

101 102 103

2

4

6

8

10

12

Chip bus bandwidth (MB)

St
am

p
sp
ee
du

p
vs
.F
al
co
n+

(s
)

Transformer
VGG16
ResNet

Figure 5: The speedup with different bus bandwidth in the

semi-honest setting under LAN/GPU.

Stamp trades off the inter-party communication with the local
communication between LTH and the untrusted CPU/GPU. How-
ever, as shown in Table 3 and Table 4, for LTH-chip, the low (15
MBps) bus bandwidth becomes a bottleneck of our performance
with large networks, especially in the LAN setting. In Table 3, al-
most 3GB of data is transmitted through the LTH-CPU bus for the
ResNet18 reference, causing more than 200 seconds of communi-
cation time, which is about 60% of the total execution time of our
scheme. LTH-SoC provides a much higher LTH-CPU bandwidth
and significantly alleviates this bottleneck.

Figure 5 shows how the speedup over Falcon+ can change if we
use a higher-bandwidth interconnect for the LTH. In this figure, we
choose two computation-heavy networks, VGG16 and ResNet18,
and a communication-heavy Transformer network (due to fre-
quently used Softmax) as examples. We can observe a considerable
boost in performance with a higher LTH bandwidth.

5.3 Accuracy

The precision of the inference using the plaintext computation and
model weights is shown in Table 6, where the model weights are
from the plaintext training. For Network-A, B, C and LeNet, which
are measured by Falcon [89], Stamp has the same accuracy that
Falcon achieved. Stamp optimizes overhead, but does not change
computation precision with the same 𝐿 and fp. In most schemes,
for each batch of 128 elements, only one more sample would be
classified incorrectly compared with the plaintext results, mainly
due to the quantization when converting data from floating-point
precision to fixed-point precision. However if some weights and
activations are outside of the fix-point representation range, the
accuracy may degrade more significantly. Carefully capping the
values during training can potentially help avoid this issue.

5.4 Hardware Overhead of LTH

The LTH in Stamp consists of two parts:
(1) The core microcontroller with the same capability as the

entire TPM. We refer to the design of ST33TPM12SPI [78] as a
baseline with 0.40𝑚𝑚2 area for the ARM SecurCore SC300. The
microcontroller has a peak power consumption of 12𝑚𝑊 .

Table 6: Accuracy on different networks. The weights of

ResNet18 are from Torchvision [52].

Network Plaintext Accuracy Stamp Accuracy
Network-A 98.18% 97.42%
Network-B 98.93% 97.81%
Network-C 99.16% 98.64%

LeNet 99.76% 99.15%
ResNet18@1 84.76% 84.37%
ResNet18@5 95.80% 95.50%

(2) An AES engine performing pseudo-random number genera-
tion. A previous study [17] reports a cost of 0.13𝑚𝑚2 and 56𝑚𝑊 in
area and peak power consumption. The AES engine serves as the
PRF 𝐹 in Π

LTH.GenMask
and Π

LTH.GenMaskShare
.

The combined overhead of 0.53𝑚𝑚2 and 68𝑚𝑊 is quite small,
suggesting that LTH is cheaper and easier to deploy compared to
adding a TEE to a high-performance processor. LTH may even be
implemented as a simple extension of the existing TPM hardware or
the on-chip SoC security subsystem. Furthermore, our protocol can
be deployed with existing or future hardware platforms without
integrating new TEE features directly into them. Note that the LTH
overhead here does not represent the full power consumption of
Stamp, which also runs anMPC protocol on an untrusted CPU/GPU.

5.5 Trusted Computing Base (TCB)

As the security of a system is difficult to quantify, the TCB size
is often used as a proxy when comparing system designs. Our
estimates suggest that LTH has a much smaller TCB compared
to a high-performance TEE. For the hardware TCB, open-source
microcontrollers whose complexity is comparable to LTH that we
use have <20k Lines-of-Code (LoC) (OpenRISC: 16k LoC + AES: 1k
LoC). While the LoC for commercial TEE hardware is not publicly
available, the area of high-performance processors (Intel Skylake:
322𝑚𝑚2 ∼ 698𝑚𝑚2, Intel Sapphire Rapids: ∼ 400𝑚𝑚2) is much
larger than the size of LTH (0.53𝑚𝑚2).

For the software TCB, our LTH software implementation has
∼13k LoC. On the other hand, the software TCB for the Intel SGX
experiment includes Gramine (∼50k LoC) and PyTorch (∼166k LoC)
inside a TEE. For, virtual machine (VM) based TEEs such as In-
tel TDX and AMD SEV the software TCB can be much larger as
the entire operating system (OS), drivers, and ML software stack
(PyTorch) all need to run inside a TEE (millions of LoC for Linux).

6 RELATEDWORK

Encrypted computation (MPC/HE) formachine learning.Cryp-
tographic techniques such as garbled circuits [10, 68], secret sharing
[58, 71, 88], homomorphic encryption [59, 98] have been applied for
privacy-preserving inference. Gazelle and Delphi [37, 55] combine
homomorphic encryption and garbled circuits for their advantages
in linear and non-linear operations, respectively. Falcon [89] imple-
ments a 3-party malicious secure protocol, combining techniques
from SecureNN [88] and ABY3 [58]. Blaze [63] achieves not only
3-party malicious security but also fairness in an honest majority
setting. AriaNN [71] leverages function secret sharing to reduce
communication rounds for specific functions, but at the cost of
increasing the total amount of communication data in some cases.
CrypTen [42] provides a general software framework that makes
secure MPC primitives more easily used by integrating them into

338

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

a popular ML framework, PyTorch. GForce [60] proposed fusing
layers in MPC, and more specifically combined dequantization and
quantization layers into a truncation before and after ReLU and
MaxPooling. Our protocol also applies layer fusing when applicable,
but in the context of reducing overhead for non-linear operations
in LTH. Our work leverages the recent developments in MPC for
PPML, but shows that a simple security processor can significantly
reduce the high overhead of today’s MPC-based PPML methods.
Combination of trusted hardware and crypto-based secure

computation. Recent studies explored multiple approaches to im-
prove MPC/HE for machine learning using trusted hardware. How-
ever, the previous work typically assumes a high-performance TEE
such as Intel SGX and relies on the TEE to perform a significant
amount of computation, which will be too slow on a small security
processor. To the best of our knowledge, our work is the first to
show that even a small low-performance security processor can
significantly improve the performance of MPC if the protocol can
be carefully designed for lightweight trusted hardware.

For performance improvements, the previous studied proposed
using a TEE (Intel SGX) to accelerate bootstrapping [40, 51], per-
form faster functional encryption [21], and simplify certain proto-
cols [12, 20, 40]. The previous work also investigated splitting the
work between a TEE (Intel SGX) and MPC. For example, Gupta et al.
[25] propose splitting secure computation between garbled circuits
and Intel SGX. Zhou et al. [99] introduce a two-party TEE-aided
MPC scheme that focuses on improving multiplication overhead by
moving part of the linear operations to a TEE. HYBRTC [93] decides
where the computation should be run based on whether or not the
parties trust a TEE; a hybrid protocol moves the computation to
the TEE or just performs an MPC protocol. While the high-level
approach of offloading computation from MPC to trusted hardware
is similar, the previous work offloaded heavy computation to a
high-performance TEE while our work studies how to leverage a
low-performance security processor.

Slalom [82] and Darknight [28] propose to run a private machine
learning computation on an untrusted GPU by securely outsourc-
ing linear operations from the CPU TEE (SGX) to the GPU using
secret sharing, and later Goten [61] proposed an improved scheme
compared with Slalom by introducing “dynamic quantization" for
training. While the use of pseudorandom masks is similar to our
protocol in Slalom, Slalom uses masking only for outsourcing lin-
ear operations, as the other two papers. As a result, non-linear
operations cannot be offloaded, and the CPU TEE still needs to per-
form as many linear operations as a GPU in an offline phase. These
approaches require a high-performance TEE, and the TEE perfor-
mance limits the overall secure computation performance. Stamp,
on the other hand, only requires small low-performance trusted
hardware for non-linear operations by performing linear opera-
tions on untrusted CPUs/GPUs using MPC. Also, Slalom utilizes its
pseudorandom masks with the pure additive linear homomorphism
of functions. Our approach of computing Softmax has a similar idea
but involves multiplicative homomorphism as shown in §4.4.

Trusted hardware can also be used to improve the security of an
MPC protocol. For example, CryptFlow [45] runs MPC protocols
on Intel SGX and leverages SGX’s integrity protection to achieve
malicious security. Another work [5] uses Intel SGX to protect the
data of parties in MPC even if they are remotely compromised.

Trusted hardware-based privacy-preserving machine learn-

ing. The previous work investigated performing and optimizingma-
chine learning computation inside a CPU TEE (Intel SGX) [41], and
providing stronger side-channel protection through data-oblivious
computation [62]. The performance of a TEE can be further im-
proved by introducing the TEE capabilities to GPUs [36, 87] and
domain-specific accelerators [30].While TEE on a high-performance
CPU/GPU/accelerator is capable of providing much higher perfor-
mance compared to MPC-based machine learning computation,
the approach comes with the challenges in securing complex high-
performance hardware as well as the cost of developing and deploy-
ing new hardware and software. Stamp is the first to combine a
small security processor with MPC for privacy-preserving machine
learning, introducing a new security and performance trade-off.

7 CONCLUSION AND FUTUREWORK

This paper introduces a new PPML system which significantly re-
duces the overhead of MPC with the assistance of an LTH. Stamp
can guarantee security against malicious parties in an honest-
majority 3-party setting. Theoretical analysis and experimental
results show that Stamp achieves significantly higher performance
over state-of-the-art MPC protocols in various environments, even
with an LTH whose performance is comparable to a TPM.

While Stamp provides significant speed-ups, we believe that this
work represents the first step in exploring a broad design space of
combining cryptographic protection and small high-security hard-
ware to unlock a better security-efficiency trade-off, opening up
interesting future directions. From the system’s point of view, while
today’s SoC security subsystems such as Apple Secure Enclave is
closed and its software is tightly controlled by the SoC vendors, it
will be valuable if we can integrate Stamp into today’s SoCs to more
fully understand the performance, security, and functionality of
today’s LTH. It will also be interesting to broaden the applicability
Stamp to a wider array of modern ML models in practice, including
Large Language Models (LLMs) and diffusion models. In particular,
previous MPC studies found that the polynomial approximation
of softmax can cause serious accuracy challenges in large Trans-
formers. We leave a study on practical MPC-based private LLM
inference with sufficient performance and accuracy for future work.
The experiments in this paper, while showing promising speed-ups,
also show the challenges from the limited performance of LTH.
In that sense, further optimizations of the protocol to reduce the
overhead, extending the protocols to other types of MPC protocols,
and the use of LTH is other types of operations beyond non-linear
layers will be all promising future directions.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. National
Science Foundation under award No. CCF-2118709. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. Thang Hoang was
supported by an unrestricted gift from Robert Bosch, 4-VA, and the
Commonwealth Cyber Initiative (CCI), an investment in the ad-
vancement of cyber R&D, innovation, and workforce development.
For more information about CCI, visit www.cyberinitiative.org.

339

www.cyberinitiative.org

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-
Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. 2017. Secure multiparty
computation from SGX. In International Conference on Financial Cryptography
and Data Security. Springer, 477–497.

[3] Alexander Sprogø Banks, Marek Kisiel, and Philip Korsholm. 2021. Remote
attestation: a literature review. arXiv preprint arXiv:2105.02466 (2021).

[4] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:SGX cache
attacks are practical. In 11th USENIX Workshop on Offensive Technologies (WOOT
17).

[5] Brandon Broadnax, Alexander Koch, JeremiasMechler, TobiasMüller, JörnMüller-
Quade, and Matthias Nagel. 2021. Fortified Multi-Party Computation: Taking
Advantage of Simple Secure HardwareModules. Proceedings on Privacy Enhancing
Technologies 2021, 4 (2021), 312–338.

[6] John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. 2013. Bios
chronomancy: Fixing the core root of trust for measurement. In Proceedings of the
2013 ACM SIGSAC conference on Computer & Communications Security. 25–36.

[7] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY 13, 1 (2000), 143–202.

[8] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[9] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,
Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. 2023. Extracting
training data from diffusion models. In 32nd USENIX Security Symposium (USENIX
Security 23). 5253–5270.

[10] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2017. EzPC: programmable, efficient, and scalable secure two-party
computation for machine learning. Cryptology ePrint Archive (2017).

[11] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. As-
tra: High throughput 3pc over rings with application to secure prediction. In
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop. 81–92.

[12] Joseph I Choi, Dave Tian, Grant Hernandez, Christopher Patton, Benjamin Mood,
Thomas Shrimpton, Kevin RB Butler, and Patrick Traynor. 2019. A hybrid ap-
proach to secure function evaluation using SGX. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security. 100–113.

[13] Microsoft Corporation. 2023. Azure Machine Learning Studio. https://azure.
microsoft.com/en-us/services/machine-learning/.

[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

[15] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.

[16] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[17] Pham-Khoi Dong, Hung K Nguyen, and Xuan-Tu Tran. 2019. A 45nm high-
throughput and low latency aes encryption for real-time applications. In 2019
19th International Symposium on Communications and Information Technologies
(ISCIT). IEEE, 196–200.

[18] Joan G Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert Van Doorn,
and Sean W Smith. 2001. Building the IBM 4758 secure coprocessor. Computer
34, 10 (2001), 57–66.

[19] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. 2021. Security vulnera-
bilities of SGX and countermeasures: A survey. ACM Computing Surveys (CSUR)
54, 6 (2021), 1–36.

[20] Susanne Felsen, Ágnes Kiss, Thomas Schneider, and Christian Weinert. 2019.
Secure and private function evaluation with Intel SGX. In Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security Workshop. 165–181.

[21] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. 2017.
Iron: functional encryption using Intel SGX. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 765–782.

[22] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-
throughput secure three-party computation for malicious adversaries and an
honest majority. In Annual international conference on the theory and applications
of cryptographic techniques. Springer, 225–255.

[23] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental
game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. 307–328.

[24] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. 1–6.

[25] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and Patrick
Traynor. 2016. Using intel software guard extensions for efficient two-party
secure function evaluation. In International Conference on Financial Cryptography
and Data Security. Springer, 302–318.

[26] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Off-limits:
Abusing legacy x86 memory segmentation to spy on enclaved execution. In
International Symposium on Engineering Secure Software and Systems. Springer,
44–60.

[27] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim. 2018. A
bad dream: Subverting trusted platform module while you are sleeping. In 27th
USENIX Security Symposium (USENIX Security 18). 1229–1246.

[28] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2020. Darknight: A
data privacy scheme for training and inference of deep neural networks. arXiv
preprint arXiv:2006.01300 (2020).

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[30] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh. 2020. Guardnn:
Secure dnn accelerator for privacy-preserving deep learning. arXiv preprint
arXiv:2008.11632 (2020).

[31] Apple Inc. 2022. Apple Platform Security. https://help.apple.com/pdf/security/
en_GB/apple-platform-security-guide-b.pdf

[32] Apple Inc. 2023. Apple Secure Enclave. https://support.apple.com/guide/security/
secure-enclave-sec59b0b31ff/web

[33] Google Inc. 2023. Google Titan Key. https://cloud.google.com/titan-security-key/
[34] Qualcomm Incorporated. 2019. Qualcomm Secure Processing Unit.

https://www.qualcomm.com/news/releases/2019/06/qualcomm-snapdragon-
855-becomes-first-mobile-soc-receive-smart-card

[35] Rambus Incorporated. 2023. RT-630 Programmable Root of Trust. https://www.
rambus.com/security/root-of-trust/rt-630/

[36] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.
2019. Heterogeneous isolated execution for commodity gpus. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. 455–468.

[37] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A low latency framework for secure neural network inference. In
27th USENIX Security Symposium (USENIX Security 18). 1651–1669.

[38] William Kahan. 1996. IEEE standard 754 for binary floating-point arithmetic.
Lecture Notes on the Status of IEEE 754, 94720-1776 (1996), 11.

[39] Georgios Kaissis, Alexander Ziller, Jonathan Passerat-Palmbach, Théo Ryffel,
Dmitrii Usynin, Andrew Trask, Ionésio Lima, Jason Mancuso, Friederike Jung-
mann, Marc-Matthias Steinborn, et al. 2021. End-to-end privacy preserving deep
learning on multi-institutional medical imaging. Nature Machine Intelligence 3, 6
(2021), 473–484.

[40] Jonathan Katz. 2007. Universally composable multi-party computation using
tamper-proof hardware. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 115–128.

[41] Kyungtae Kim, Chung Hwan Kim, Junghwan" John" Rhee, Xiao Yu, Haifeng
Chen, Dave Tian, and Byoungyoung Lee. 2020. Vessels: Efficient and scalable
deep learning prediction on trusted processors. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 462–476.

[42] B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P.
van der Maaten. 2021. CrypTen: Secure Multi-Party Computation Meets Machine
Learning. In arXiv 2109.00984.

[43] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.
online: http://www.cs.toronto.edu/kriz/cifar.html 55, 5 (2014).

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[45] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 336–353.

[46] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[47] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim,Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking in
darkness: Return-oriented programming against secure enclaves. In 26th USENIX
Security Symposium (USENIX Security 17). 523–539.

[48] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium (USENIX Security 17).
557–574.

[49] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security. 619–631.

[50] Google LLC. 2023. Google Cloud AI. https://cloud.google.com/products/.

340

https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://help.apple.com/pdf/security/en_GB/apple-platform-security-guide-b.pdf
https://help.apple.com/pdf/security/en_GB/apple-platform-security-guide-b.pdf
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://cloud.google.com/titan-security-key/
https://www.qualcomm.com/news/releases/2019/06/qualcomm-snapdragon-855-becomes-first-mobile-soc-receive-smart-card
https://www.qualcomm.com/news/releases/2019/06/qualcomm-snapdragon-855-becomes-first-mobile-soc-receive-smart-card
https://www.rambus.com/security/root-of-trust/rt-630/
https://www.rambus.com/security/root-of-trust/rt-630/
https://cloud.google.com/products/

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

[51] Yibiao Lu, Bingsheng Zhang, Hong-Sheng Zhou, Weiran Liu, Lei Zhang, and
Kui Ren. 2021. Correlated Randomness Teleportation via Semi-trusted Hard-
ware—Enabling Silent Multi-party Computation. In European Symposium on
Research in Computer Security. Springer, 699–720.

[52] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the machine-vision
package of torch. In Proceedings of the 18th ACM international conference on
Multimedia. 1485–1488.

[53] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843 (2016).

[54] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[55] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A cryptographic inference service for neural
networks. In 29th USENIX Security Symposium (USENIX Security 20). 2505–2522.

[56] Samer Moein, T Aaron Gulliver, Fayez Gebali, and Abdulrahman Alkandari.
2017. Hardware attack mitigation techniques analysis. International Journal on
Cryptography and Information Security (IJCIS) 7, 1 (2017), 9–28.

[57] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. 2020.
TPM-FAIL : TPM meets Timing and Lattice Attacks. In 29th USENIX Security
Symposium (USENIX Security 20). 2057–2073.

[58] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework for
machine learning. In Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. 35–52.

[59] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19–38.

[60] Lucien KL Ng and Sherman SMChow. 2021. GForce : GPU-Friendly Oblivious and
Rapid Neural Network Inference. In 30th USENIX Security Symposium (USENIX
Security 21). 2147–2164.

[61] Lucien KL Ng, Sherman SM Chow, Anna PYWoo, Donald PHWong, and Yongjun
Zhao. 2021. Goten: Gpu-outsourcing trusted execution of neural network training.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 14876–
14883.

[62] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-Party Machine
Learning on Trusted Processors. In 25th USENIX Security Symposium (USENIX
Security 16). 619–636.

[63] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. arXiv preprint arXiv:2005.09042 (2020).

[64] Siani Pearson and Boris Balacheff. 2003. Trusted computing platforms: TCPA
technology in context. Prentice Hall Professional.

[65] Shahed E Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina Shah-
bazmohamadi, Lei Wang, John Chandy, and Mark Tehranipoor. 2016. A survey
on chip to system reverse engineering. ACM journal on emerging technologies in
computing systems (JETC) 13, 1 (2016), 1–34.

[66] Prashanthi Ramachandran, Shivam Agarwal, Arup Mondal, Aastha Shah, and
Debayan Gupta. 2021. S++: A fast and deployable secure-computation framework
for privacy-preserving neural network training. arXiv preprint arXiv:2101.12078
(2021).

[67] Wolfgang Rankl and Wolfgang Effing. 2004. Smart card handbook. John Wiley &
Sons.

[68] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. 2019. XONN:XNOR-based Oblivious Deep Neural Network
Inference. In 28th USENIX Security Symposium (USENIX Security 19). 1501–1518.

[69] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
2018 on Asia conference on computer and communications security. 707–721.

[70] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[71] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2020. Ariann:
Low-interaction privacy-preserving deep learning via function secret sharing.
Proceedings on Privacy Enhancing Technologies 2022, 1 (2020), 291–316.

[72] AMD SEV-SNP. 2020. Strengthening VM isolation with integrity protection and
more. White Paper, January (2020).

[73] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2015. Preventing your faults from telling your secrets: Defenses against pigeon-
hole attacks. arXiv preprint arXiv:1506.04832 (2015).

[74] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[75] Sergei Skorobogatov. 2017. How microprobing can attack encrypted memory. In
2017 Euromicro Conference on Digital System Design (DSD). IEEE, 244–251.

[76] Sergei P Skorobogatov and Ross J Anderson. 2003. Optical fault induction attacks.
In Cryptographic Hardware and Embedded Systems-CHES 2002: 4th International

Workshop Redwood Shores, CA, USA, August 13–15, 2002 Revised Papers 4. Springer,
2–12.

[77] Evan R Sparks and Evan R Sparks. 2007. A security assessment of trusted
platform modules computer science technical report TR2007-597. Dept. Comput.
Sci., Dartmouth College, Hanover, NH, USA, Tech. Rep., TR2007-597 (2007).

[78] STMicroelectronics. 2013. Trusted Platform Module with SPI based on
32-bit ARM® SecurCore® SC300™ CPU. https://datasheet.octopart.com/
ST33TPM12SPI-STMicroelectronics-datasheet-62334860.pdf.

[79] Alin Suciu and Tudor Carean. 2010. Benchmarking the true random number
generator of TPM chips. arXiv preprint arXiv:1008.2223 (2010).

[80] Inc. Synopsys. 2023. Synopsys tRoot Hardware Secure Modules. https://www.
synopsys.com/designware-ip/security-ip/root-of-trust.html

[81] Sijun Tan, Brian Knott, Yuan Tian, and David JWu. 2021. CryptGPU: Fast privacy-
preserving machine learning on the GPU. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1021–1038.

[82] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

[83] Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski,
Sanghyun Hong, and Nicholas Carlini. 2022. Truth serum: Poisoning machine
learning models to reveal their secrets. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 2779–2792.

[84] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). 991–1008.

[85] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A practical
attack framework for precise enclave execution control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution. 1–6.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[87] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 681–696.

[88] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019, 3 (2019), 26–49.

[89] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-
tal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework
for private deep learning. arXiv preprint arXiv:2004.02229 (2020).

[90] Jinwen Wang, Yueqiang Cheng, Qi Li, and Yong Jiang. 2018. Interface-based side
channel attack against intel SGX. arXiv preprint arXiv:1811.05378 (2018).

[91] Yongqin Wang, Edward Suh, Wenjie Xiong, Brian Knott, Benjamin Lefaudeux,
Murali Annavaram, and Hsien-Hsin Lee. 2021. Characterizing and Improving
MPC-based Private Inference for Transformer-based Models. In NeurIPS 2021
Workshop Privacy in Machine Learning.

[92] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

[93] Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing Wang, and Ee-Chien Chang.
2022. Hybrid trust multi-party computation with trusted execution environment.
In The Network and Distributed System Security (NDSS) Symposium.

[94] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

[95] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. 2021. Generalized
out-of-distribution detection: A survey. arXiv preprint arXiv:2110.11334 (2021).

[96] Andrew C Yao. 1982. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 160–164.

[97] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

[98] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. 2019. Helen:
Maliciously secure coopetitive learning for linear models. In 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 724–738.

[99] Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao. 2022. PPMLAC: high per-
formance chipset architecture for secure multi-party computation. In Proceedings
of the 49th Annual International Symposium on Computer Architecture. 87–101.

341

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://datasheet.octopart.com/ST33TPM12SPI-STMicroelectronics-datasheet-62334860.pdf
https://datasheet.octopart.com/ST33TPM12SPI-STMicroelectronics-datasheet-62334860.pdf
https://www.synopsys.com/designware-ip/security-ip/root-of-trust.html
https://www.synopsys.com/designware-ip/security-ip/root-of-trust.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

A BASIC MPC PROTOCOLS

Correlated Randomness. A large number of random shares have
to be obtained by the parties during the offline phase to reduce
the communication cost during the offline phase. The 3-out-of-
3 randomness is defined as each 𝑃𝑖 holding a share of 0: 𝛼 =

J𝛼K𝐿1 + J𝛼K𝐿2 + J𝛼K𝐿3 where 𝛼 = 0 and 𝑃𝑖 holds J𝛼K𝐿
𝑖
. They can

be efficiently generated locally by a pseudo-random function (PRF).
The security of the PRF function indicates that the output of a PRF
is computationally indistinguishable (indistinguishable by a com-
putationally bounded adversary) from the output of a truly random
function. Given 𝑘𝑖 as the key that 𝑃𝑖 and 𝑃𝑖+1 share through a key
exchange protocol for each 𝑖 and 𝐹 as the PRF that is public to all par-
ties, each 𝑃𝑖 can generate shares J𝛼K𝐿

𝑖
as J𝛼K𝐿

𝑖
= 𝐹𝑘𝑖 (ctr) − 𝐹𝑘𝑖 (ctr)

with increments of ctr each time this process is invoked.
Input Phase. To construct J𝑥K𝐿 from the generated 3-out-of-3

randomness and 𝑥 which is provided by 𝑃𝑖 , 𝑃𝑖 compute J𝑥K𝐿
𝑖

=

𝑥 + J𝛼K𝐿
𝑖
and share it with 𝑃𝑖−1. 𝑃𝑖−1 will send J𝛼K𝐿

𝑖−1 to 𝑃𝑖+1 and
𝑃𝑖+1 will send J𝛼K𝐿

𝑖+1 to 𝑃𝑖 . In an honest majority malicious setting,
additionally 𝑃𝑖+1 should compute J𝛼K𝐿

𝑖+1 + J𝛼K𝐿
𝑖−1 and send to 𝑃𝑖 ,

then 𝑃𝑖 confirm J𝛼K𝐿
𝑖+1 + J𝛼K𝐿

𝑖−1 = −J𝛼K𝐿
𝑖
, therefore 𝑃𝑖1 behaves

honestly; 𝑃𝑖 should compute J𝛼K𝐿
𝑖+1 + J𝛼K𝐿

𝑖
and send to 𝑃𝑖−1, then

𝑃𝑖−1 confirm by J𝛼K𝐿
𝑖+1 + J𝛼K𝐿

𝑖
= −J𝛼K𝐿

𝑖−1, therefore 𝑃𝑖+1 behaves
honestly. Since 𝑃𝑖 is allowed to send an arbitrary input 𝑥 , we do
not need to check the share it sends.

Linear Operations. For RSS shared secrets, most linear opera-
tions can be performed locally. For shares J𝑥K𝐿 , J𝑦K𝐿 , and the public
scalar 𝑐 , we have the following:

• J𝑥K𝐿 + 𝑐 = (J𝑥K𝐿1 + 𝑐, J𝑥K𝐿2 , J𝑥K𝐿3)
• 𝑐 · J𝑥K𝐿 = (𝑐 · J𝑥K𝐿1 , 𝑐 · J𝑥K𝐿2 , 𝑐 · J𝑥K𝐿3)
• J𝑥K𝐿 + J𝑦K𝐿 = (J𝑥K𝐿1 + J𝑦K𝐿1 , J𝑥K𝐿2 + J𝑦K𝐿2 , J𝑥K𝐿3 + J𝑦K𝐿3)

That can be done without any communication. However, multipli-
cation between shared secrets cannot be done locally.

Reconstruction. 𝑥 ← ΠReconst (J𝑥K𝐿): To reconstruct the plain-
text 𝑥 from the shares J𝑥K𝐿 , each party 𝑃𝑖 will send J𝑥K𝐿

𝑖
to 𝑃𝑖+1

in the semi-honest setting. After completion, all parties have all
3 shares to reconstruct 𝑥 . In a malicious setting, 𝑃𝑖 will also send
J𝑥K𝐿

𝑖+1 to 𝑃𝑖−1. Then, under the honest majority assumption, at most
one of the two copies of the share they receive is altered. A party
can compare the values received from the other two and abort if
an inconsistency occurs.

B DETAILED STAMP PROTOCOLS FOR RELU

In this section, we introduce ΠReLU, the protocol to offload ReLU

operations under MPC to trusted hardware. The steps we take
are as follows: First, 𝑃𝑖 invokes ΠLTH.GenMask

to get the pseudo-
random masks, and sends J𝑥K𝑖 to 𝑃𝑖+1 after adding them with the
masks; Second, 𝑃𝑖+1 adds the received value with the two shares it
holds, then sends the results to the LTH; Third, 𝐻𝑖+1 recovers the
plaintext value by invoking Π

LTH.GenMask
using the same key and

the counter with the same recorded number, and computes ReLU
in plaintext, re-masks the result with Π

LTH.GenMaskShare
, and sends

them back to 𝑃𝑖+1. The other two parties will also generate their
common share in the meantime; Fourth, 𝑃𝑖+1 re-shares the received
values to complete the construction of the RSS of the outputs.

After the protocol, {ctr𝑖1,2, ctr
𝑖
2,3, ctr

𝑖
3,1, ctr

𝑖
𝑠 } for 𝑖 = 1, 2, 3 all

increase by𝑛, and { ˆctr𝑖1,2, ˆctr𝑖2,3, ˆctr𝑖3,1,
ˆ

ctr
𝑖
𝑠 } for 𝑖 = 1, 2, 3 all increase

by 𝑛 too in a malicious setting. The synchronization of the counters
together with shared keys guarantees the correlated randomness
among the LTHs.

C SECURITY ANALYSIS

We claim the following three theorems hold:
Theorem 1. Under the assumption of secure PRF and LTH, ΠReLU (in
Protocol 6) securely realizes the ideal functionality FReLU (in Figure 6)
against any non-uniform PPT malicious adversary that can corrupt
up to 1 out of 3 parties with static corruption.
Theorem2. Under the assumption of secure PRF and LTH,ΠMatMalReLU
(in Protocol 4) securely realizes the ideal functionality FMatMulReLU
against any non-uniform PPT malicious adversary that can corrupt
up to 1 out of 3 parties with static corruption.
Theorem 3. Under the assumption of secure PRF and LTH, ΠSoftmax
(in Protocol 5) securely realizes the ideal functionality FSoftmax against
any non-uniform PPT malicious adversary that can corrupt up to 1
out of 3 parties with static corruption.

In this section, we analyze the security of our proposed tech-
niques. The extra or different steps done for a malicious setting
than in a semi-honest setting are marked in blue.

FReLU

(1) Upon receiving inputs (x3,1, x1,1), (x1,2, x2,2), (x2,3, x3,3)
from 𝑃1, 𝑃2, 𝑃3 respectively, check if x𝑗, 𝑗 = x𝑗, 𝑗+1 for 𝑗 =

1, 2, 3. If not, notify abort. Otherwise, compute x = x1,1+x2,2+
x3,3, z = x > 0. Then, send a signal (ReLU, x𝑖−1,𝑖 , x𝑖,𝑖 , 𝑛, 𝐿, 𝑖)
to SStamp that includes the inputs of 𝑃𝑖 , the size of inputs of
𝑃𝑖+1 and 𝑃𝑖−1, and the index 𝑖 of the corrupted party.

(2) Upon receiving (ReLUend, 𝑖, z𝑖−1, z𝑖) from SStamp, let z𝑖+1 =
z − z𝑖−1 − z𝑖 . Return (z𝑖 , z𝑖+1) to the 𝑃𝑖 for 𝑖 = 1, 2, 3.

Figure 6: Ideal functionality for ΠReLU.

FReLULTH

Upon receiving signal with inputs x′, masks m and party index 𝑖 ,
compute the following:

(1) x = x′ −m, a = x > 0.
(2) Generate random z1, z2, z3 such that z1 + z2 + z3 = z. Returns
(z𝑖 , z𝑖+1) to 𝑃𝑖 (as mentioned in notation, for party index 𝑖 +1
means the next party).

Figure 7: Ideal functionality for the LTH part of ΠReLU .

342

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

Protocol 6 JReLU(x)K𝐿 ← ΠReLU (JxK𝐿) Do ReLU on shares of vector x
Input. Each {𝑃𝑖 } owns JxK𝐿 .
Output. Each {𝑃𝑖 } gets JzK𝐿 = JReLU(x)K𝐿 .

(1) 𝑃𝑖 calls 𝐻𝑖 to execute Π
LTH.GenMask

(𝑛, 𝐿, 𝑖 − 1) to obtain the masks m𝑖−1 ∈ Z𝑛𝐿 then compute x′
𝑖−1 = JxK𝐿

𝑖−1 +m𝑖−1.
Malicious: 𝑃𝑖−1 generates m𝑖−1 = Π

LTH.GenMask
(𝑛, 𝐿, 𝑖 − 1) and x′

𝑖−1 = JxK𝐿
𝑖−1 +m𝑖−1, and 𝑃𝑖−1, 𝑃𝑖+1 also generates m𝑖+1 = Π

LTH.GenMask
(𝑛, 𝐿, 𝑖 + 1) ,

x′
𝑖+1 = JxK𝐿

𝑖+1 +m𝑖+1.
(2) 𝑃𝑖 send x′

𝑖−1 to 𝑃𝑖+1.
Malicious: 𝑃𝑖−1 send x′

𝑖−1 to 𝑃𝑖+1; 𝑃𝑖−1 and 𝑃𝑖+1 send x′
𝑖+1 to 𝑃𝑖 .

(3) 𝑃𝑖+1, after receiving x′
𝑖−1 add it to JxK𝐿

𝑖
, JxK𝐿

𝑖+1 and pass it to 𝐻𝑖+1.
Malicious: 𝑃𝑖 , 𝑃𝑖+1 check the two copies received and abort if any inconsistency is found. 𝑃𝑖 execute as above with index 𝑖 − 1 replacing index 𝑖 .

(4) LTH Only : 𝐻𝑖+1 recovers the plaintext x = (x′
𝑖−1 + JxK𝐿

𝑖
+ JxK𝐿

𝑖+1) −m𝑖−1 where m𝑖−1 is generated with Π
LTH.GenMask

(𝑛, 𝐿, 𝑖 − 1) . Set b = (x > 0) .
Then 𝐻𝑖+1 invokes ΠLTH.GenMaskShare

(𝑛, 𝐿) to get Jz∗K𝐿
𝑖
, Jz∗K𝐿

𝑖+1 ∈ Z𝑛𝐿 , and compute: (J𝑧 𝑗 K𝐿𝑖 , J𝑧 𝑗 K𝐿𝑖+1) = ((𝑏 𝑗 ?𝑥 𝑗 : 0) + J𝑧∗
𝑗
K𝐿
𝑖
, J𝑧∗

𝑗
K𝐿
𝑖+1) . Return their

values to 𝑃𝑖+1.
𝐻𝑖 and 𝐻𝑖−1 invokes ΠLTH.GenMaskShare

(𝑛, 𝐿) to get JzK𝐿
𝑖−1 ∈ Z𝑛𝐿 , and invokes Π

LTH.GenMaskShare
(𝑛, 2) to get JbK𝐿

𝑖−1 ∈ Z𝑛2 . Return them respectively to
𝑃𝑖 and 𝑃𝑖−1.
Malicious: 𝐻𝑖 perform the same step as above with index 𝑖 − 1 replacing index 𝑖 , replacing Π

LTH.GenMaskShare
with Π′

LTH.GenMaskShare
, while also

masking the results with the masks of index 𝑖 (i.e., (J𝑧 𝑗 K𝐿𝑖−1, J𝑧 𝑗 K𝐿𝑖) = (J𝑧∗𝑗 K𝐿𝑖−1, (𝑏 𝑗 ?𝑥 𝑗 : 0) + J𝑧∗
𝑗
K𝐿
𝑖
)). 𝐻𝑖−1 and 𝐻𝑖+1 generate the remaining share

J𝑧 𝑗 K𝐿𝑖+1 for 𝑃𝑖−1 and 𝑃𝑖+1 respectively.
(5) 𝑃𝑖+1 send JzK𝐿

𝑖
to 𝑃𝑖 , send JzK𝐿

𝑖+1 to 𝑃𝑖−1. Now JzK𝐿 and JbK𝐿 are calculated and shared to each party.
Malicious: 𝑃𝑖 shares to 𝑃𝑖−1 and 𝑃𝑖+1 respectively. Each party checks the copies they receive and aborts if an inconsistency is found.

Proof for Theorem 1. We first prove Theorem 1 of ΠReLU by
constructing a simulator SStamp such that no non-uniform PPT
environment E can distinguish between: (i) the execution of the
real protocol execΠReLU,A,E where parties 𝑃1, 𝑃2, 𝑃3 run ΠReLU and
the corrupted parties are controlled by a dummy adversaryA who
simply forward messages from/to E, and (ii) the ideal execution
execFReLU,SStamp,E where parties interact with FReLU, while the sim-
ulator SStamp has the control over the corrupted party. Compared
to the semi-honest scheme, the changed actions are written in blue.

TheEnvironment E.The environment E provides inputs (x3,1, x1,1)
to 𝑃1, (x1,2, x2,2) to 𝑃2, (x2,3, x3,3) to 𝑃3, which are forwarded to
the ideal functionality FReLU in Figure 6. The environment E also
indicates which party is corrupted to the ideal functionality.

Case 1: 𝑃1 is corrupted (𝑖 = 1) and 𝑃2, 𝑃3 are honest.

The Simulator. SStamp simulates the following interactions on
receiving the signal from FReLU:

• Upon receiving (ReLU, 1, x3,1, x1,1, 𝑛, 𝐿) from FReLU, SStamp
generates a random x̂2, and use (x1,1, x̂2) and (x̂2, x3,1) as
dummy inputs for 𝑃2 and 𝑃3, respectively.
• SStamp acts as FGenMask

to generate random masks m3 for
𝑃1 and 𝑃3, then computes x′3 = x3,1 +m3 and sends (m3, x′3)
to 𝑃1, computes x′′3 = x3,1 + m3 and sends (m3, x′′3) to 𝑃3
then also sends x̃′3 (as adversary input for 𝑃1) and x′′3 to 𝑃2
on behalf of 𝑃1 and 𝑃3, respectively.
SStamp also acts as F

GenMask
to generate random masks m2

for 𝑃3 and 𝑃2, then computes x′2 = x̂2+m2 and sends (m2, x′2)
to 𝑃3, computes x′′2 = x̂2 + m2 and sends (m2, x′′2) to 𝑃2
then also sends x′2 and x′′2 to 𝑃1 on behalf of 𝑃3 and 𝑃2,
respectively.
• SStamp check x′′3 = x̃′3, x

′′
2 = x′2 on behalf of 𝑃2 and 𝑃1

respectively, signal abort to FReLUif inconsistency found.
• SStamp acts as FLTHReLU with 𝑃2’s input x̂ = x′3 + x̂2 + x1,1 to
(re)generate m3, randoms z∗1, z

∗
2, z3 such that z∗1 + z

∗
2 + z3 =

0, and then compute (z1, z2) = (ReLU(x̂ − m3) + z∗1, z
∗
2).

SStamp sends (z1, z2) to 𝑃2. SStamp sends z̃1 to 𝑃1 and sends
z2 to 𝑃3 (on behalf 𝑃2).
SStamp acts as FLTHReLU with 𝑃1’s input x̂′ = x′2 + x3,1 + x1,1
to (re)generatem2, randoms z∗1, z

∗
2, z3 such that z∗1 + z

∗
2 + z3 =

0, and then compute (z3, z′1) = (z3,ReLU(x̂
′ − m3) + z∗1).

SStamp sends (z3, z′1) to 𝑃1. SStamp sends z̃3 to 𝑃3 and sends
z̃′1 to 𝑃2 (as adversary inputs on behalf 𝑃1).
• SStamp acts as FGenMaskShr

for 𝑃1 to (re)generate random z3
and sends it to 𝑃1. Similarly, SStamp acts as FGenMaskShr

for
𝑃3 to (re)generate random as z3 and sends it to 𝑃3.SStamp also
generate z∗2 for 𝑃2 and 𝑃3.
• SStamp checks if z′1 = z1 received by 𝑃1, also 𝑃2; if same z∗2
received by 𝑃2, also 𝑃3; if same z3 received by 𝑃3, also 𝑃1.
Signal abort to FReLUif an inconsistency is found. If no abort
is signaled, SStamp signals (ReLUend, 1, z3, z1) to FReLU.

Indistinguishability. We prove the indistinguishability argument
by constructing a sequence of hybrid games as follows.
HybridH0: This is the real protocol execution.
Hybrid H1: H1 is the same as H0, except that ΠLTH.GenMask

is
replaced with simulated F

GenMask
that outputs random m̂3, m̂2 for

both step 1) and 4).
We claim thatH0 andH1 are computationally indistinguishable.

This is because Π
LTH.GenMask

generates pseudo-random m3,m2
to 𝑃1 using LTH. Due to the secure hardware assumption, there
exists a simulator that is indistinguishable from the real hardware
protocol execution. Moreover, due to the security of PRF used in
LTH, the random m3,m2 produced by LTH is computationally in-
distinguishable from the random m̂3, m̂2 generated by the simulator.
Therefore,H0 andH1 are computationally indistinguishable.
HybridH2:H2 is the same asH1, except that we replace step 4)
with the simulated FLTHReLU.

We claim that H1 and H2 are computationally indistinguish-
able using the same argument on the trusted hardware and PRF
security as in H1. Specifically, the random vectors generated by
Π
LTH.GenMaskShare

in the LTH are based on PRF and therefore, they
343

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

are computationally indistinguishable from the random vectors gen-
erated by the simulator. Therefore,H1 andH2 are computationally
indistinguishable.
HybridH3:H3 is the same asH2, except that 𝑃2, 𝑃3 use dummy
inputs for interaction, instead of the ones provided by the environ-
ment. In this hybrid, we introduce an ideal functionality FReLU that
takes the environments’ actual inputs and returns the correspond-
ing outputs.

We claim thatH2 andH3 are indistinguishable. Since the cor-
rupted party is 𝑃1, SStamp knows x3,1 = x3,3, x1,1 = x1,2. The
dummy inputs would be x2,2 = x2,3 (represented by x̂2 in SStamp).
The distribution of the computation result, x̂ = x′3 + x̂2 + x1,1 =

(x3,1+m3) + x̂2+x1,1 and x̂′ = x′2+x3,1+x1,1 = (x̂2+m2) +x3,1+x1,1
are uniformly random sincem3,m2 are random. Therefore,H2 and
H3 are indistinguishable.

The adversary’s view ofH3 is identical to EXEC𝐹,SStamp,E . There-
fore, in Case 1 the view of A and Eare indistinguishable in the
real and the simulated world.

Putting it all together, we have that H0 ≈ H1 ≈ H2 ≈ H3 =

SStamp.
Case 2: 𝑃2 is corrupted (𝑖 = 2) and 𝑃1, 𝑃3 are honest.

The Simulator. SStamp simulates the following interactions on
receiving the signal from FReLU:

• Upon receiving (ReLU, 2, x1,2, x2,2, 𝑛, 𝐿) from FReLU, SStamp
generates a random x̂3, and use (x2,2, x̂3) and (x̂3, x1,2) as
dummy inputs for 𝑃3 and 𝑃1, respectively.
• SStamp acts as FGenMask

to generate random masks m3 for
𝑃1 and 𝑃3, then computes x′3 = x̂3 +m3 and sends (m3, x′3) to
𝑃1, computes x′′3 = x̂3+m3 and sends (m3, x′′3) to 𝑃3 then also
sends x′3 and x′′3 to 𝑃2 on behalf of 𝑃1 and 𝑃3, respectively.
SStamp also acts as F

GenMask
to generate random masks m2

for 𝑃3 and 𝑃2, then computes x′2 = x2,2 + m2 and sends
(m2, x′2) to 𝑃3, computes x′′2 = x2,2 +m2 and sends (m2, x′′2)
to 𝑃2 then also sends x′2 and x̃′′2 (as adversary input for 𝑃3)
to 𝑃1 on behalf of 𝑃3 and 𝑃2, respectively.
• SStamp check x′′3 = x′3, x̃

′′
2 = x′2 on behalf of 𝑃2 and 𝑃1

respectively, signal abort to FReLUif inconsistency found.
• SStamp acts as FLTHReLU with 𝑃2’s input x̂ = x′3 + x2,2 + x1,2
to (re)generatem3, randoms z∗1, z2, z

∗
3 such that z∗1 + z2 + z

∗
3 =

0, and then compute (z1, z2) = (ReLU(x̂ − m3) + z∗1, z2).
SStamp sends (z1, z2) to 𝑃2. SStamp sends z̃1 to 𝑃1 and sends
z̃2 to 𝑃3 (as adversary inputs for 𝑃2) .
SStamp acts as FLTHReLU with 𝑃1’s input x̂′ = x′2 + x̂3 + x1,2,
(re)generatem2, generate randoms z∗1, z2, z

∗
3 such that z

∗
1+z2+

z∗3 = 0, and then compute (z3, z′1) = (z
∗
3,ReLU(x̂

′−m3) +z∗1).
SStamp sends (z3, z′1) to 𝑃1. SStamp sends z3 to 𝑃3 and sends
z′1 to 𝑃2 (on behalf of 𝑃1).
• SStamp acts as FGenMaskShr

for 𝑃1 to (re)generate random z∗3
and sends it to 𝑃1. Similarly, SStamp acts as FGenMaskShr

for
𝑃3 to (re)generate random z∗3 and sends it to 𝑃3. SStamp also
generate z2 for 𝑃2 and 𝑃3.
• SStamp checks if z′1 = z̃1 received by 𝑃1, also 𝑃2; if same z2
received by 𝑃2, also 𝑃3; if same z∗3 received by 𝑃3, also 𝑃1.
Signal abort to FReLUif an inconsistency is found. If no abort
is signaled, SStamp signals (ReLUend, 2, z1, z2) to FReLU.

Indistinguishability. We prove the indistinguishability argument
by constructing a sequence of hybrid games as follows. Notice that
the first 3 games, Hybrid H0, Hybrid H1 and Hybrid H2 are
identical as Case 1’s. The proofs between HybridH0 and Hybrid

H1, HybridH1 and HybridH2 are exactly the same.
HybridH3:H3 is the same asH2, except that 𝑃1, 𝑃3 use dummy
inputs for interaction, instead of the ones provided by the environ-
ment. In this hybrid, we introduce an ideal functionality FReLU that
takes the environments’ actual inputs and returns the correspond-
ing outputs.

We claim thatH2 andH3 are indistinguishable. Since the cor-
rupted party is 𝑃2, SStamp knows x2,2 = x2,3, x1,2 = x1,1. The
dummy inputs would be x3,3 = x1,3 (represented by x̂3 in SStamp).
The distribution of the computation result, x̂ = x′3 + x2,2 + x1,2 =

(x̂3 +m3) +x2,2 +x1,2 and x̂′ = x′2 + x̂3 +x1,2 = (x̂2,2 +m3) + x̂3 +x1,2
are uniformly random sincem3,m2 are random. Therefore,H2 and
H3 are indistinguishable.

The adversary’s view ofH3 is identical to EXEC𝐹,SStamp,E . There-
fore, in Case 2 the view of A and Eare indistinguishable in the
real and the simulated world.

Putting it all together, we have that H0 ≈ H1 ≈ H2 ≈ H3 =

SStamp.
Case 3: 𝑃3 is corrupted (𝑖 = 3) and 𝑃1, 𝑃2 are honest.

The Simulator. SStamp simulates the following interactions on
receiving the signal from FReLU:

• Upon receiving (ReLU, 3, x2,3, x3,3, 𝑛, 𝐿) from FReLU, SStamp
generates a random x̂1, and use (x3,3, x̂1) and (x̂1, x2,3) as
dummy inputs for 𝑃1 and 𝑃2, respectively.
• SStamp acts as FGenMask

to generate random masks m3 for
𝑃1 and 𝑃3, then computes x′3 = x3,3 +m3 and sends (m3, x′3)
to 𝑃1, computes x′′3 = x3,3 +m3 and sends (m3, x′′3) to 𝑃3 then
also sends x′3 and arbitrary x̃′′3 to 𝑃2 on behalf of 𝑃1 and 𝑃3,
respectively.
SStamp also acts as F

GenMask
to generate random masks m2

for 𝑃3 and 𝑃2, then computes x′2 = x2,3 + m2 and sends
(m2, x′2) to 𝑃3, computes x′′2 = x2,3 +m2 and sends (m2, x′′2)
to 𝑃2 then also sends x̃′2 (as adversary input for 𝑃3) and x′′2
to 𝑃1 on behalf of 𝑃3 and 𝑃2, respectively.
• SStamp check x̃′′3 = x′3, x

′′
2 = x̃′2 on behalf of 𝑃2 and 𝑃1

respectively, signal abort to FReLUif inconsistency found.
• SStamp acts as FLTHReLU with 𝑃2’s input x̂ = x′3 + x2,3 + x̂1 to
(re)generate m3, randoms z∗1, z2, z3 such that z∗1 + z2 + z3 =
0, and then compute (z∗∗1 , z2) = (ReLU(x̂ − m3) + z∗1, z2).
SStamp sends (z∗∗1 , z2) to 𝑃2.SStamp sends z∗∗1 to 𝑃1 and sends
z2 to 𝑃3 (on behalf 𝑃2).
SStamp acts as FLTHReLU with 𝑃1’s input x̂′ = x′2 + x̂1 + x3,3,
(re)generatem2, generate randoms z∗1, z2, z3 such that z

∗
1+z
∗
2+

z3 = 0, and then compute (z3, z′1) = (z3,ReLU(x̂
′−m3) +z∗1).

SStamp sends (z3, z′1) to 𝑃1. SStamp sends z3 to 𝑃3 and sends
z′1 to 𝑃2 (on behalf 𝑃1).
• SStamp acts as FGenMaskShr

for 𝑃1 to (re)generate random z3
and sends it to 𝑃1. Similarly, SStamp acts as FGenMaskShr

for
𝑃3 to (re)generate random z3 and sends it to 𝑃3. SStamp also
generate z2 for 𝑃2 and 𝑃3.

344

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

• SStamp checks if z′1 = z∗∗1 received by 𝑃1, also 𝑃2; if same z2
received by 𝑃2, also 𝑃3; if same z3 received by 𝑃3, also 𝑃1.
Signal abort to FReLUif an inconsistency is found. If no abort
is signaled, SStamp signals (ReLUend, 3, z2, z3) to FReLU.

Indistinguishability. We prove the indistinguishability argument
by constructing a sequence of hybrid games as follows. Notice that
the first 3 games, Hybrid H0, Hybrid H1 and Hybrid H2 are
identical as Case 1’s. The proofs between HybridH0 and Hybrid

H1, HybridH1 and HybridH2 are exactly the same.
HybridH3:H3 is the same asH2, except that 𝑃1, 𝑃3 use dummy
inputs for interaction, instead of the ones provided by the environ-
ment. In this hybrid, we introduce an ideal functionality FReLU that
takes the environments’ actual inputs and returns the correspond-
ing outputs.

We claim thatH2 andH3 are indistinguishable. Since the cor-
rupted party is 𝑃2, SStamp knows x2,3 = x2,2, x3,3 = x3,1. The
dummy inputs would be x1,1 = x1,2 (represented by x̂1 in SStamp).
The distribution of the computation result, x̂ = x′3 + x2,3 + x̂1 =

(x3,3 +m3) +x2,3 + x̂1 and x̂′ = x′2 + x̂1 +x3,3 = (x̂2,3 +m3) + x̂1 +x3,3
are uniformly random sincem3,m2 are random. Therefore,H2 and
H3 are indistinguishable.

The adversary’s view ofH3 is identical to EXEC𝐹,SStamp,E . There-
fore, in Case 1 the view of A and Eare indistinguishable in the
real and the simulated world.

Putting it all together, we have that H0 ≈ H1 ≈ H2 ≈ H3 =

SStamp and this completes the proof. □

Notice that as discussed in §4.3, the above proof works iden-
tically for MaxPooling and BatchNorm since only the plaintext
computations after subtracting the masks are different.

Next, we will prove the Theorem 2. We provide the complete
proof for case 1 (where 𝑃1 is corrupted) due to the space limit, and
the proof of the other two cases are similar as provided in the proof
for ΠReLU.

F
MatMulReLU

(1) Upon receiving inputs (A3,1,A1,1,B3,1,B1,1),
(A1,2,A2,2,B1,2,B2,2), (A2,3,A3,3,B2,3,B3,3) from 𝑃1,
𝑃2, 𝑃3 respectively, check if A𝑗, 𝑗 = A𝑗, 𝑗+1,B𝑗, 𝑗 = B𝑗, 𝑗+1
for 𝑗 = 1, 2, 3. If not, notify abort. Otherwise, com-
pute C′ = (A1,1 + A2,2 + B3,3) × (B1,1 + B2,2 +
B3,3) ≫ fp, C = C′ > 0. Then, send a signal
(MatMalReLU, 𝑖,A𝑖−1,𝑖 ,A𝑖,𝑖 ,B𝑖−1,𝑖 ,B𝑖,𝑖 , 𝑎, 𝑏, 𝑐, 𝐿) to SStamp
that includes the inputs of 𝑃𝑖 , the size of inputs of 𝑃𝑖+1 and
𝑃𝑖−1, and the index 𝑖 of the corrupted party.

(2) Upon receiving (MatMalReLUend, 𝑖,C𝑖−1,C𝑖) from SStamp,
let C𝑖+1 = z − C𝑖−1 − C𝑖 . Return (C𝑖 ,C𝑖+1) to the 𝑃𝑖 for
𝑖 = 1, 2, 3.

Figure 8: Ideal functionality for ΠMatMulReLU.

F
MatMulReLULTH

Upon receiving signal with inputs Ĉ′, masksM and party index 𝑖 ,
compute the following:

(1) D = Ĉ′ −M, E = D > 0.
(2) Generate random C1,C2,C3 such that C1 + C2 + C3 = C.

Returns (C𝑖 ,C𝑖+1) to 𝑃𝑖 (as mentioned in notation, for party
index 𝑖 + 1 means the next party).

Figure 9: Ideal functionality for the LTH part of ΠReLU .

Proof for Theorem 2. We prove Theorem 2 by constructing
a simulator and a series of hybrid games similar to the Proof of
Theorem 1, with E providing inputs to parties.
Case 1: 𝑃1 is corrupted (𝑖 = 1) and 𝑃2, 𝑃3 are honest.

The Simulator. SStamp simulates the following interactions on
receiving the signal from F

MatMalReLU
:

• Upon receiving (MatMalReLU, 1,A3,1,A1,1,B3,1,B1,1, 𝑎, 𝑏, 𝑐, 𝐿)
from F

MatMalReLU
, SStamp generates random Â2, B̂2, and use

(A1,1, Â2,B1,1, B̂2) and (Â2,A3,1, B̂2,B3,1) as dummy inputs
for 𝑃2 and 𝑃3, respectively.
• SStamp invokes the simulator of the secure multiplication
protocol Π

mal-arith-mult
of [58] without the truncation. In the

end, (Ĉ3,1, Ĉ1, 1), (Ĉ1,2, Ĉ2, 2), (Ĉ2,3, Ĉ3, 3) are distributed ac-
cordingly and SStamp will signal abort to FMatMulReLU

if in-
consistency was found in the distributed shares.
• SStamp acts as FGenMask

to generate random masksM2 for
𝑃2 and 𝑃3,M3 for 𝑃3 and 𝑃1 so thatM1 +M2 +M3 = 0. Then
SStamp computes Ĉ′2,2 = Ĉ2,2+M2 as 𝑃2 and Ĉ′2,3 = Ĉ2,3+M2

as 𝑃3; Ĉ′3,3 = Ĉ3,3 + M3 as 𝑃3 and Ĉ′3,1 = Ĉ3,1 + M3 as 𝑃1.
SStamp sends Ĉ′2,2, Ĉ

′
2,3 to 𝑃1 as 𝑃2 and 𝑃3, sends Ĉ

′
3,3, Ĉ

′
3,1 to

𝑃2 as 𝑃3 and 𝑃1. SStamp aborts if any inconsistency is found
on the pairs..
• SStamp computes Ĉ′1 = Ĉ′2,2 + Ĉ

𝐿
3,1 + Ĉ

𝐿
1,1 as 𝑃1, Ĉ

′
2 = Ĉ′3,3 +

Ĉ𝐿
1,2 + Ĉ

𝐿
2,2 as 𝑃2.

• SStamp acts asFLTHReLU (𝐻1) with 𝑃1’s input Ĉ′1 to (re)generate
M2, computes Ĉ = (Ĉ′1 − M2) ≫ fp. SStamp computes
D = Ĉ > 0, generates Z′1 + Z

′
2 + Z

′
3 = 0 (as F

GenMaskShr
),

then obtain (Z′3,Z
′
1 + D) as (Z3,1,Z1,1) for 𝑃1. SStamp acts

as FLTHReLU (𝐻2) with 𝑃2’s input Ĉ′2 to (re)generateM3, com-
putes Ĉ = (Ĉ′2 − M3) ≫ fp. SStamp computes D = Ĉ > 0
(as F

GenMaskShr
), generates Z′1 + Z

′
2 + Z

′
3 = 0, then obtain

(Z′1 + D,Z
′
2) as (Z1,2,Z2,2) for 𝑃1.

• SStamp acts asFGenMaskShr
for 𝑃3 to (re)generate (Z2,3,Z3,3) =

(Z′2,Z
′
3) and sends it to 𝑃3. SStamp compare Z1,1 = Z1,2 as

𝑃1 and 𝑃2; Z2,2 = Z2,3, Z3,3 = Z3,1 as 𝑃3. Signal abort to
F
MatMulReLU

if inconsistency was found.

Indistinguishability. We prove the indistinguishability argument
by constructing a sequence of hybrid games as follows.
HybridH0: This is the real protocol execution.

345

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

Hybrid H1: H1 is the same as H0, except that ΠLTH.GenMask
is

replaced with simulated F
GenMask

that outputs random M2,M3 for
both step 2) and 5).
HybridH2:H2 is the same asH1, except that we replace step 5)
with the simulated F

LTHMatMulReLU
.

Proofs ofH0 andH1,H1 andH2 being computationally indis-
tinguishable are similar to the proof of Theorem 1, with the actual
random masks repalced by M2,M3.
HybridH3:H3 is the same asH2, except that 𝑃2, 𝑃3 use dummy
inputs for interaction, instead of the ones provided by the environ-
ment. Also Π

mal-arith-mult
of [58] is replaced by its corresponding

simulator. In this hybrid, we introduce an ideal functionality FReLU
that takes the environments’ actual inputs and returns the corre-
sponding outputs.

We claim thatH2 andH3 are indistinguishable.H2 andH3 are
only different in inputs and step 1), and their indistinguishability
directly comes from the security of the simulator of Π

mal-arith-mult
.

Again we refer the reader to [58] for more details. Since the view
of 𝑃1 does not change after step 1), it remains the same for the
whole protocol since later steps remain the same in both hybrids.
Therefore,H2 andH3 are indistinguishable.

The adversary’s view ofH3 is identical to EXEC𝐹,SStamp,E . There-
fore, in Case 1 the view of A and Eare indistinguishable in the
real and the simulated world.

Putting it all together, we have that H0 ≈ H1 ≈ H2 ≈ H3 =

SStamp.
□

Notice that as discussed in §4.3, the above proof works identically
forMatMulBatchNormReLU andMatMulMaxPoolReLU since only
the plaintext computations after subtracting the masks are different.

Next, we will prove the Theorem 3. We provide the complete
proof for case 1 (where 𝑃1 is corrupted) due to the space limit, and
the proof of the other two cases is similar to what we did previously.

F
Softmax

(1) Upon receiving inputs (x3,1, x1,1), (x1,2, x2,2), (x2,3, x3,3)
from 𝑃1, 𝑃2, 𝑃3 respectively, check if x𝑗, 𝑗 = x𝑗, 𝑗+1 for
𝑗 = 1, 2, 3. If not, notify abort. Otherwise, compute x =

x1,1 + x2,2 + x3,3, z = ⌊exp(x ≫ fp) ≪ fp⌋. Then, send a sig-
nal (Softmax, x𝑖−1,𝑖 , x𝑖,𝑖 , 𝑛, 𝐿, 𝑖) to SStamp that includes the
inputs of 𝑃𝑖 , the size of inputs of 𝑃𝑖+1 and 𝑃𝑖−1, and the index
𝑖 of the corrupted party.

(2) Upon receiving (Softmaxend, 𝑖, z𝑖−1, z𝑖) from SStamp, let
z𝑖+1 = z − z𝑖−1 − z𝑖 . Return (z𝑖 , z𝑖+1) to the 𝑃𝑖 for 𝑖 = 1, 2, 3.

Figure 10: Ideal functionality for ΠSoftmax.

Proof for Theorem 3. We prove Theorem 3 by constructing
a simulator and a series of hybrid games similar to the Proof of
Theorem 1, with E providing inputs to parties.
Case 1: 𝑃1 is corrupted (𝑖 = 1) and 𝑃2, 𝑃3 are honest.

F
SoftmaxLTH

Upon receiving signal with inputs x′, masks m and party index 𝑖 ,
compute the following:

(1) x = x′ −m, a = ⌊exp(x ≫ fp) ≪ fp⌋.
(2) Generate random z1, z2, z3 such that z1 + z2 + z3 = z. Returns
(z𝑖 , z𝑖+1) to 𝑃𝑖 (as mentioned in notation, for party index 𝑖 +1
means the next party).

Figure 11: Ideal functionality for the LTH part of ΠSoftmax .

The Simulator. SStamp simulates the following interactions on
receiving the signal from FReLU:

• Upon receiving (Softmax, 1, x3,1, x1,1, 𝑛, 𝐿) from FSoftmax
,

SStamp generates a random x̂2, and use (x1,1, x̂2) and (x̂2, x3,1)
as dummy inputs for 𝑃2 and 𝑃3, respectively.
• SStamp acts asFGenMask

to generate randommasks𝛼 𝑗 ∈ Z252
and 𝛽 𝑗 ∈ Z232 for 𝑗 = 1, ..., 𝑛 for 𝑃1, then computes 𝑟 =

exp((x3,1) 𝑗 ≫ fp) for 𝑗 = 1, ..., 𝑛. Let 𝑟 = exp((x3,1) 𝑗 ≫ fp) =
2𝑞 𝑗 · (𝑚 𝑗 ≫ 52) as noted. SStamp computes {𝑚∗

𝑗
= (𝑚 𝑗 +

𝛼 𝑗)252 , 𝑞∗𝑗 = (𝑞 𝑗 + 𝛽 𝑗)232 } for 𝑖 = 1, ..., 𝑛 as 𝑃1 sending to 𝑃2.
SStamp repeat above for 𝑃3, replacing x3,1 with x3,3; SStamp
again repeat above as 𝑃2 and 𝑃3, each replacing x3,1 with x2,2
and x2,3, with Π′

LTH.
generating (𝜶 ′, 𝜷 ′), and get {′𝑚∗

𝑗
,′ 𝑞∗

𝑗
}

respectively. {𝑚∗
𝑗
, 𝑞∗

𝑗
} are for 𝑃2 provided by 𝑃1 and 𝑃2, and

{′𝑚∗
𝑗
,′ 𝑞∗

𝑗
} are for 𝑃1 provided by 𝑃2 and 𝑃3

• SStamp compare the received copies as 𝑃2 and 𝑃1, and signal
abort to F

Softmax
if an inconsistency is found. SStamp com-

putes as 𝑃2: 2 (̂𝑞2) 𝑗 · (̂𝑚2) 𝑗 := exp(((x2,2) 𝑗 + (x1,2) 𝑗) ≫ fp)
for 𝑗 = 1, ..., 𝑛. SStamp computes as 𝑃1: 2 (̂𝑞1) 𝑗 · (̂𝑚1) 𝑗 :=
exp(((x1,1) 𝑗 + (x3,1) 𝑗) ≫ fp) for 𝑗 = 1, ..., 𝑛.
• SStamp acts as FLTHSoftmax

with 𝑃2’s input {q∗ + q̂2,m∗, m̂2}
to 𝐻1, to (re)generate (𝜶 , 𝜷), then locally compute y as in
step 4) SStamp then generate m1 +m2 +m3 = 0 and (m1 +
y,m2) as (y1,2, y1,2) for 𝑃2. SStamp acts as FLTHSoftmax

with
𝑃1’s input {′q∗ + q̂1,′m∗, m̂1} to 𝐻1, to (re)generate (𝜶 ′, 𝜷 ′),
then locally compute y as in step 4). SStamp then generate
m1 + m2 + m3 = 0 and (m3, y + m1) as (y3,1, y1,1) for 𝑃1.
SStamp send
• SStamp checks SStamp compare y1,1 = y1,2 as 𝑃1 and 𝑃2;
y2,2 = y2,3, y3,3 = y3,1 as 𝑃3. Signal abort to FSoftmax

if an
inconsistency is found. If no abort is signaled, SStamp signals
(Softmaxend, 1, y3,1, y1,1) to FSoftmax

.

Indistinguishability. We prove the indistinguishability argument
by constructing a sequence of hybrid games as follows.
HybridH0: This is the real protocol execution.
Hybrid H1: H1 is the same as H0, except thatΠLTH.GenMask

is
replaced with simulated F

GenMask
that outputs random (𝜶 , 𝜷) and

(𝜶 ′, 𝜷 ′) for both step 1) and 3).
HybridH2:H2 is the same asH1, except that we replace step 4)
with the simulated F

LTHSoftmax
.

346

Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware Proceedings on Privacy Enhancing Technologies 2024(4)

Table 7: Analytical cost analysis of the network communication rounds and amount (in Bytes) under the semi-honest setting,

and the local bus communication with the LEE. Here, 𝑛 =𝑚 ×𝑚 is the input size, 𝑠 is the stride,𝑤 ×𝑤 is the filter size, and 𝑒 is

the precision parameter for the exponent (exp(𝑥) ≈ (1 + 𝑥
2𝑒)

𝑥
2𝑒). We did not include CryptGPU and Goten because they did not

focus on optimization of their non-linear layer protocols and provide no analytical cost analysis.

Communication Type Framework ReLU MaxPool BatchNorm Softmax

Network comm. rounds
Falcon+ 10 12(𝑤2 − 1) 335 12𝑛 + 𝑝 + 317
AriaNN 2 3 9 -
Stamp 2 2 2 2

Network comm. data
Falcon+ 16𝑛 (20 +𝑤2) (𝑚𝑠 − 1)

2 224𝑛 (𝑚𝑠 − 1)
2 (𝑛 + 20) + (110 + 𝑒)𝑛

AriaNN 12𝑛 (𝑚𝑠 + 1)
2 (𝑤4 + 1) 72𝑛 - -

Stamp 5𝑛 2
3 (2𝑛 + 2𝑤

2 + 5(𝑚𝑠 + 1)
2) 4𝑛 20

3 𝑛
LTH comm. Stamp 25

3 𝑛
1
3 (8𝑚

2 + 8𝑤2 + 15(𝑚𝑠 + 1)
2) 16

3 𝑛
44
3 𝑛

Proofs ofH0 andH1,H1 andH2 being computationally indis-
tinguishable are similar to the proof of Theorem 1, with the actual
random masks repalced by (𝜶 , 𝜷) and (𝜶 ′, 𝜷 ′).
HybridH3:H3 is the same asH2, except that 𝑃2, 𝑃3 use dummy
inputs for interaction, instead of the ones provided by the environ-
ment. In this hybrid, we introduce an ideal functionality F

Softmax

that takes the environments’ actual inputs and returns the corre-
sponding outputs.

We claim thatH2 andH3 are indistinguishable. Since the cor-
rupted party is 𝑃1,SStamp knows x3,1 = x3,3, x1,1 = x1,2. The dummy
inputs would be x2,2 = x2,3 (represented by x̂2 in SStamp). The com-
putation result sent to 𝑃1 by 𝑃3 in step 1) used the dummy inputs,
and {′𝑚∗

𝑗
= (′𝑚 𝑗 + 𝛼 ′𝑗)252 ,

′ 𝑞∗
𝑗
= (′𝑞 𝑗 + 𝛽 ′𝑗)232 } for 𝑖 = 1, ..., 𝑛 are

uniformly random since (𝜶 ′, 𝜷 ′) are random. Therefore the views
of adversary in step 1) are not distinguishable in both hybrids, and
its views of step 3) and 4) are also not distinguishable in both hy-
brids due the uniformly masked output. Therefore,H2 andH3 are
indistinguishable.

The adversary’s view ofH3 is identical to EXEC𝐹,SStamp,E . There-
fore, in Case 1 the view of A and Eare indistinguishable in the
real and the simulated world.

Putting it all together, we have that H0 ≈ H1 ≈ H2 ≈ H3 =

SStamp.
□

D ANALYTICAL COST ANALYSIS

The cost analysis of our protocol is shown in Table 7, compared
with baselines with analytical results provided in their work. The
byte size of the finite field is chosen to be 4 and we count the
exponent and the mantissa part in Protocol 5 as 4 and 8 bytes.
We see significant improvements in inter-party communication
rounds compared to Falcon, and significant theoretical reduction in
the amount of communication data compared to both Falcon and
AriaNN.

The actual speedup of a particular neural network depends on
its structure including the ratio between linear and non-linear op-
erations, the order of linear/non-linear operations/layers (which
determines if protocols like Protocol 4 can be applied), the input
dimensions, etc. The communication setting and the computational
power also matter. We discuss the performance in §5.

E MEMORY USAGE ANALYSIS

As LTH typically does not support off-chip DRAM, Stamp needs
to be able to run using a small on-chip SRAM. Here, we analyze
the LTH memory usage of Stamp and show that the small on-chip
SRAM is sufficient even for large ML models. For our experiments,
our implementation runs on a Arduino Due microcontroller, as
discussed in §5.1. In this prototype, the code occupies 23 KB of
flash memory, which is less than 4% of the total capacity (512 KB)
of Arduino Due’s flash memory. The LTH code uses up to 43 KB
of on-chip SRAM during the execution, including the buffers for
variables, space used by Arduino’s libraries and middleware (e.g.,
SerialUSB functions), and other usage like the function call stack.

In order to more fully understand the LTH memory require-
ment for larger models that were not run in our experiments, we
provide analytical memory usage numbers of different non-linear
operations. We list all the SRAM memory usage of the non-linear
operations in Table 8. Note that the memory usage is constant for
ReLU and BatchNorm. This is because they are scalar-wise opera-
tions during the inference phase. Therefore, each individual scalar
of an input vector can be processed independently. TheMaxPool

operation has a dependency on the window size, which is rather
small in all the models used in practice. All of the above three oper-
ations need no more than 0.5 KB of SRAM and, therefore, will not
pose any memory usage issue even for larger models. As a reference
point, our prototype has 96 KB SRAM for LTH.

Table 8: Analytical analysis of the minimum SRAM usage

for each operations. Here, 𝑛 is the plaintext input vector size,

𝑤 ×ℎ is themaxpool window size, and 𝑙 is the normal variable

size (in our case 4 bytes). Dynamic buffer reuse is considered.

Operations Parameters LTH Least SRAM Usage

ReLU - 2𝑙
MaxPool {𝑤,ℎ} 2𝑤ℎ𝑙

BatchNorm - 2𝑙
LayerNorm 𝑛 (2𝑛 + 1)𝑙
Softmax 𝑛 6𝑛𝑙

However, the minimum memory usage of the Softmax and Lay-

erNorm operation depends on the input vector length, which can
be large in some model structure. In our prototype, LTH cannot
host all the variables needed within its SRAM with 𝑛 greater than
3925. For the models in our experiments, the largest vector size is
200. Even modern Transformer models such as GPT-3 2.7B have

347

Proceedings on Privacy Enhancing Technologies 2024(4) Huang et al.

the maximum 𝑛 not larger than 2560 in its model structure. In that
sense, LTH will be able to support many modern ML models even
with a relatively small SRAM capacity without protocol changes.

In a case when an input vector size is too large to fit into the LTH
SRAM, the Stamp protocol can be slightly modified to break down
the input vector into multiple smaller chunks, and perform non-
linear operations in multiple rounds. Here, we show this approach
using Softmax. The party first cuts the input of step (2) of Protocol 5
into chunks in the host CPU, and sends them to the LTH; The LTH
recovers and computes the exponent of each input chunk as in step
(3) of Protocol 5 until the •, accumulates the exponents locally and
then sends the exponent results back to the host CPUwith temporal
generated masks calling Protocol 2; After all chunks are summed,
the party sends again the masked exponent results and LTH will
continue step (3) of Protocol 5. If such a multi-round Softmax is
used, the communication cost of LTH will increase from 20

3 𝑛 to 68
3 𝑛.

Similar steps can be taken for LayerNorm.
In summary, Stamp should be able to handle most models with

our current LTH setting, and can be modified to handle even larger
models with some increase in the LTH local communication cost.

348

	Abstract
	1 Introduction
	2 Model
	3 Background
	3.1 Notation
	3.2 Multiparty Computation
	3.3 Trusted/Secure Hardware

	4 The Stamp Protocol
	4.1 Initialization phase
	4.2 Optimized ReLU with Matrix Multiplication
	4.3 Extensions to Other Operations
	4.4 Softmax
	4.5 Integrating Stamp into Real Systems

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance
	5.3 Accuracy
	5.4 Hardware Overhead of LTH
	5.5 Trusted Computing Base (TCB)

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Basic MPC Protocols
	B Detailed STAMP Protocols for ReLU
	C Security Analysis
	D Analytical cost Analysis
	E Memory Usage Analysis

