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Novel Design and Evaluation of Redirection Controllers using
Optimized Alignment and Artificial Potential Field

Xue-Liang Wu, Huan-Chang Hung , Sabarish V. Babu , and Jung-Hong Chuang

Fig. 1: The novel proposed RDW controllers: Alignment-Optimized controller (left), APF-Optimized controller (middle), and
Alignment+APF-Optimized controller (right). Alignment-Optimized controller: For the user’s position in VE and PE,Cvirt (in pale
pink) and Cphys (in light blue) are the virtual cell and the corresponding physical cell, respectively, representing the walkable areas
in front of the user in both environments. We superimpose Cvirt onto Cphys, and the area in purple is the overlapped area of the
two cells. Let Cphys(θ) be the physical cell with its bisecting vector deviated from the user’s heading by an angle θ . The objective
function for the Alignment-Optimized controller considers the relative area of the overlapped area Area(Cvirt(θ)∩Cphys(θ)) over
the area of the virtual cell Area(Cvirt(θ)). The optimized θ∗ is then used to finely set the RDW gains. APF-Optimized controller:
VAPF is a vector originating from the user’s position pphys, and pAPF is a point lying on VAPF , located 0.50m away from pphys.
The objective function for the APF-Optimized controller considers the finite difference of the directional derivative of APF along
VAPF (θ), where θ is the angle betweenVAPF (θ) and the user’s heading. The optimized θ∗ represents the direction for the maximum
decrease of APF within an angle domain constrained by the minimum and maximum curvature gains, and is used to finely set the
RDW gains. Alignment+APF-Optimized controller: By minimizing both objective functions simultaneously, we use the optimized
θ∗ to finely set the RDW gains.

Abstract— Redirected walking allows users to naturally locomote within virtual environments that are larger than or different in layout
from the physically tracked space. In this paper, we proposed novel optimization-driven alignment-based and Artificial Potential Field
(APF) redirected walking controllers, as well as an integrated version of the two. The first two controllers employ objective functions of
one variable, which is the included angle between the user’s heading vector and the target vector originating from the user’s physical
position. The optimized angle represents the physical cell that is best aligned with the virtual cell or the target vector on which the
designated point has the minimum APF value. The derived optimized angle is used to finely set RDW gains. The two objective functions
can be optimized simultaneously, leading to an integrated controller that is potentially able to take advantage of the alignment-based
controller and APF-based controller. Through extensive simulation-based studies, we found that the proposed alignment-based
and integrated controllers significantly outperform the state-of-the-art controllers and the proposed APF based controller in terms of
the number of resets. Furthermore, the proposed alignment controller and integrated controller provide a more uniform likelihood
distribution across distance between resets, as compared to the other controllers.

Index Terms—Alignment, Artificial Potential Field, Redirected Walking, Virtual Reality

1 INTRODUCTION

Navigating virtual environments (VEs) larger than the available phys-
ical environments (PEs) requires many locomotion techniques, such
as flying, steering, walking in place, teleportation, and natural walk-
ing [49]. Natural walking has been shown to improve the user’s sense
of presence [49], efficient navigation [37,45], and spatial knowledge
acquisition in VEs [38,57]. Redirected walking (RDW) is a locomotion
technique that supports natural walking by imperceptibly steering the
user along a physical path that differs from their virtual path and en-
counters a minimum number of collisions with physical obstacles [36].
The amount of redirection applied to steer the user is controlled by
gains. For the user to remain imperceptible during steering, the gains
applied need to be within the perceptual thresholds [42]. The redirec-
tion controller determines the gains to steer the user to avoid collision
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with obstacles. If an incoming collision is detected, the redirection
controller issues a reset to reorient the user away from the obstacles.
This reorientation will interrupt the immersive experience, so reducing
the number of resets is an ultimate goal for redirected walking research.

Many redirection controllers have been proposed in the last two
decades. These controllers can be reactive or predictive [21, 31]. Re-
active controllers steer the user based only on the current user state,
i.e., the user’s position and heading at the current step. In contrast,
predictive controllers steer the user based on predictions of the user’s
future movement in a VE. Predictive controller can usually outperform
reactive controllers since predicted paths in VE are also used to decide
gains. However, predictive controllers rely on accurate predictions of
the user’s future trajectory, which is not always available. Recently, the
well-known technique of Artificial Potential Field (APF) in robotics
for path planning and collision avoidance [17, 18] has been used to
design a reactive APF controller that takes into account the layout
of PE and utilizes the APF of PE to set appropriate gains to avoid
obstacles [5, 28,48]. For example, the APF controller based on Steer-
to-Gradient (APF-S2G), presented in Thomas et al. [48], steers the user
according to the negative gradient of the APF and was shown to sig-
nificantly outperform the classic Steer-to-Center (S2C) controller [35].
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More recently, new redirection controllers based on the concept of
aligning walkable areas in front of the user in physical and virtual
environments (PE and VE) have been proposed [52, 53], based on
the observation that if the user’s walkable areas in PE and VE are
perfectly aligned, they will not encounter a collision with PE while
moving inside the walkable area in VE. These are reactive controllers
but they utilize information from both PE and VE to steer the user into
the aligned walkable area in PE. ARC presented in [52] was the first
alignment-based controller reported to significantly outperform APF-
S2G and S2C [48]. The visibility-polygon-based (Vis.-Poly.) alignment
controller proposed in [53] measures the alignment of walkable areas
based on the decomposition of visibility polygons for the user in PE
and VE, and was claimed to significantly outperform ARC, APF-S2G,
and S2C. Alignment-based redirected walking, especially visibility
polygon-based (Vis.-Poly.) alignment, is very promising since it uti-
lizes information from both the PE and VE. However, it has been stated
that the visibility polygon-based alignment can be further improved by
using visibility polygons to their full potential [53]. The performance
of the Vis.-Poly. controller strongly depends on the triangulation of the
visibility polygon, but the triangulation can be affected by the layout of
obstacles, in which small and distant obstacles can greatly change the
triangulation, even though they are unlikely to collide with the user. The
APF or Vis.-Poly. controllers search for an appropriate target direction
for setting the curvature gain; thus, they are, in nature, an optimization
problem. However, instead of optimization computation, the APF-S2G
controller uses the negative gradient of APF as the optimal steering
direction, and Vis.-Poly. searches for the optimal steering direction
among the decomposed slices of the visibility polygon.

Major Contributions: We consider searching for the optimal steer-
ing direction in the alignment controller to be an optimization problem
and have designed a framework with which not only more accurate
alignment measures can be easily derived, but also represented as
objective functions, leading to an optimization-driven framework for
redirected walking. The objective function involves one variable, which
is the included angle between the user’s heading and the target direc-
tion, both originating from the user’s physical position. The optimized
angle found represents the best-matched walkable physical area for the
given virtual walkable area, and is then used to finely set RDW gains.
With the purpose of considering APF while optimizing the alignment
measure, we have designed an objective function that represents the
local APF value in front of the user’s physical position. The optimized
angle represents the direction of the local maximum decrease of APF
in front of the user. The two proposed objective functions can be opti-
mized simultaneously, leading to a third controller that is potentially
able to take advantage of both the alignment-based controller and the
APF-based controller. Finally, we present an evaluation showing that
the proposed alignment controller and integrated controller outperform
Vis.-Poly., ARC, APF-S2G, and APF-RDW [28], and the proposed
integrated controller and alignment-based controller significantly out-
perform the proposed APF-based controller. Moreover, the proposed
alignment controller and integrated controller provide a more uniform
and consistent likelihood distribution across distance between resets,
as compared to the other controllers.

The main contributions of our work include: (a) An optimization-
driven framework for RDW controllers. (b) Three novel redirected
walking controllers based on the proposed optimization framework
namely, an Alighment controller based on a new alignment definition,
an APF controller that uses the search for local optimal, and controller
that integrates the proposed alighment and APF controllers. (c) Finally,
we compare and contrast the proposed controllers to the best existing
state-of-the-art controllers with regards to number of resets and the
likelihood distribution of the reset distances.

2 RELATED WORK

One way to support the exploration of VEs with natural walking within
a smaller physical space is to visualize virtual counterparts of physical
obstacles to encourage natural collision avoidance in PE, leading to the
concept of Substitutional Reality (SR) [39]. The concept of SR has
been adopted to create virtual spaces [15, 23, 24, 40, 41, 50]. Further

research has been conducted to offer different ways of generating virtual
counterparts of physical obstacles [7, 26]. However, the distance one
can travel with SR in VE is constrained by the physical space. Kwon
et al. [19] addressed this issue by combining SR with the resetting
technique. Alternatively, Redirected Walking (RDW) proposed by
Razzaque et al. [36] enables users to explore VEs with natural walking
within a limited physical space by slowly rotating or translating the
VE around the user while they walk. The magnitude of the rotation
or translation of the VE is controlled by "gains". Three main gains
defined by Steinicke et al. [43] are translation, rotation, and curvature
gains. Translation gains scale the user’s forward steps by translating
the VE forward or backward as the user walks in a straight line in the
VE. Rotation gains are similar to translation gains, but the scaling is
applied to the user’s orientation. Curvature gains rotate the VE around
the user while they are walking in a straight virtual line, steering the
user on a curved physical path. The result of applying redirection gains
should be imperceptible to the user. Steinicke et al. [42] reported that
the thresholds of translation gain are from 0.86 to 1.26, the thresholds
of rotation gain are from 0.67 to 1.24, and curvature gains need to be
greater than a 22.03 meter radius. However, the maximum curvature
gain with 7.5 meter radius reported in [13] is commonly used in recent
literature [47, 48, 52, 53].

The steering of the user’s movement in physical space is governed
by the redirection controller, which consists of a steering component
and a resetting component, with the aim of minimizing the number of
collisions the user has with obstacles. The steering component applies
redirection gains to guide the user along a physical path, while the
resetting component is responsible for detecting incoming collisions
and reorienting the user away from the obstacles. Existing resetting
techniques are either in-place [5, 8, 48, 51, 55], where the user is re-
oriented but not repositioned, or out-of-place [51,58], where the user
is guided to move to a safe location. While the resetting is normally
triggered when the user is about to collide with physical obstacles, Xu
et al. [56] proposed manipulating the resetting position with no increase
in reset number, while avoiding interference to the user.

Redirection controllers can be classified as reactive, predictive, or
scripted [21, 31]. Reactive controllers steer the user’s movement
based on the information available at the current frame, including
the user’s position and heading in the physical and virtual environ-
ments. Most existing controllers are reactive, including classic Steer-to-
Center (S2C) [35], Steer-to-Orbit (S2O) [35], and Steer-to-Multiple Tar-
gets [35], as well as controllers based on reinforcement learning [20,44]
and artificial potential fields (APF) [5, 48]. These controllers do not
require information on the VE, making them more flexible but less
optimized in performance. More recently, alignment-based controllers
have utilized information on both PE and VE, aiming to steer the user
to an area that is compatible with the walkable area on VE [52,53]. In
addition to the information available on the current frame, predictive
controllers also utilize the information of the user’s predicted virtual
path [30, 59]. The performance of predictive controllers is highly de-
pendent on the accuracy of the predicted future paths in VEs. It is,
however, difficult and computationally expensive to precisely extract
the user’s future path. Scripted controllers steer the user as they travel
along virtual paths pre-determined by the developers [36]. Since the
virtual paths and the redirection technique to be used are predefined
by the developers, scripted controllers are effective at incurring fewer
collisions but cannot be easily applied to other VEs. While many redi-
rection controllers have been proposed, there have been open-source
frameworks proposed, such as The Redirected Walking Toolkit [1] and
OpenRDW [22].

After 2018, several reactive controllers based on Artificial Potential
Field (APF) [17, 18] were proposed. All of them utilized the "repulsive
force" to "push" the user away from the obstacles. Bachmann et al. [5]
proposed an APF-based controller, referred to as APF-RDW, to handle
scenarios involving multiple users. APF-RDW sums up the repulsive
force exerted from each obstacle’s or user’s boundary to a point and
uses the resulting vector at the point to steer the user. Simulation-based
and live studies have shown that APF-RDW can outperform S2C in
a rectangular empty physical space. Messinger et al. [28] proposed a
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refined APF-RDW, called APF-SC, to account for irregular physical
space. A simulation study revealed that APF-SC outperformed S2C
in terms of the number of resets and the space utilization for empty
space with irregular boundaries. Dong et al. [8] added "attractive
force" into APF-SC to "pull" the user to a target position which is the
farthest position from the other users. Dong et al. [9] proposed the
concept of dynamic density-based redirected walking that considers
the density of users and boundary to steer the users. Thomas et al.
proposed Push/Pull Reactive (P2R) algorithm that uses repulsive force
to push the user away from obstacles and attractive force to pull the
user towards desire goal [48], with aim to support non-convex physical
spaces with interior obstacles. For multi-user RDW, space subdivision
methods subdivide a shared PE and allocate a sub-space to each user.
Jeon et al. [14] proposed a dynamic space partitioning method utilizing
deep reinforcement learning to obtain the optimal partition strategy.

The recently proposed alignment-based controllers are reactive, but
they also utilize information from VEs [52, 53]. Different from con-
trollers such as S2C and APF-S2G, which steered the user away from
physical obstacles, alignment-based controllers steer the user into a
physical walkable area that best matches or aligns with the virtual
walkable area. The rationale behind this is that if the user’s walkable
areas in the PE and VE are perfectly aligned, they will not encounter
a collision with the PE while moving inside the walkable area in the
VE. The walkable area is constrained inside the visibility polygon of
the user, which is the space that is visible to them from their position.
The alignment-based controllers measure the similarity of physical and
virtual walkable areas based on features such as shape or size, and
search for a physical walkable area that most closely matches or is
aligned with the virtual walkable area as the steering direction. The
ARC presented in [52] steers the user such that their distances to obsta-
cles in the user’s heading, left, and right directions in PE and VE match
as closely as possible. ARC was reported to outperform the classic S2C
and APF-S2G controllers [48]. The visibility-polygon based controller
proposed in [53] steers the user to regions of the visibility polygon in
the physical environment that match, as closely as possible, the region
the user is heading to in the visibility polygon of the VE. The visibility-
polygon based controller was reported to outperform ARC, APF-S2G,
and S2C controllers [53]. Visibility-polygon-based controllers are cur-
rently the best RDW controllers. However, as noted by Williams et
al. [53], they can be further improved by utilizing visibility polygons
to their full potential. Potential issues include how to decompose the
visibility polygon, how to decide on virtual slices, and how to measure
the shape similarity between slices of the physical and virtual visibility
polygons. In the relation to alignment, the ENI metric proposed by
Williams et al. [54] aims to measure the similarity between PE and VE
for natural walking in VR.

3 REDIRECTED WALKING USING OPTIMIZED ALIGNMENT AND
ARTIFICIAL POTENTIAL FIELD

3.1 Objective Functions for Alignment Controller
Our goal in this paper is to design a framework with which more
accurate alignment measures can be easily derived and represented
as objective functions, leading to an optimization-driven framework
for RDW controllers. For a user’s location and heading in a VE, we
define a virtual cell that is a 2D view volume-like polygon bounded
by the visibility polygon and two rays originating from the user’s
location, symmetric to the user’s heading and forming an included
angle of a prescribed degree. We also define a physical cell in a PE in
a similar manner. We then superimpose the virtual cell onto the PE
such that it is coincident with the physical cell at the endpoint and the
two edges adjacent to the endpoint. The superposition and coincidence
of physical and virtual cells makes it easier to measure their shape
similarity based on area and, more importantly, makes new definitions
of alignment possible.

Visibility Polygons Given a position p and heading V in an
environment E, the visibility polygon for p with the environment E
is the unbounded polygonal region of all points visible from p. We
compute the visibility polygon using the algorithm proposed by Suri

(a) (b)

Fig. 2: (a) Cast two rays that are symmetric with respect to the user’s
heading with an included angle. (b) Check which vertices of VPvirt (in
pale pink) fall within the area bounded by the two rays.

et al. [46]. The visibility polygon VP is defined by p and a set of n
vertices {v0,v1, ...,vn−1}. Each pair of consecutive vertices vi and
vi+1 form an edge of VP. Assume that the user is located in the VE at
pvirt and with a heading of Vvirt , and is positioned in the PE at pphys
and with a heading of Vphys. We first compute the visibility polygons
VPphys and VPvirt for the user’s poses at PE and VE and then derive
their virtual cell and physical cell.

Virtual Cell and Physical Cell The virtual cell Cvirt for the
user’s position pvirt and heading Vvirt is defined as a 2D view-volume-
like polygon originating from pvirt with Vvirt as the viewing direction
and a prescribed included angle, bounded by VPvirt . The included angle
is set to 104◦, which is the common field of view (FOV) of the current
head mounted display (HMD), such as Oculus Quest2. To derive Cvirt ,
we cast two rays that are symmetric with respect to the user’s heading
with the included angle and compute their intersection points with the
visibility polygon VPvirt ; see Fig. 2a. Denote the intersection points as
pl and pr. For each vertex v of VPvirt , we check if v falls inside the area
bounded by the two rays. Let us denote the set of resulting vertices as
S. The virtual cell Cvirt will be formed by pvirt , pl , vertices in S, and
pr, as seen in Fig. 2b. The physical cell for the user’s position pphys
and heading Vphys in PE can be derived similarly.

Optimization-Driven Alignment Once the virtual cell Cvirt
and the physical cell Cphys are ready, we superimpose Cvirt onto PE
such thatCvirt is coincident withCphys at the user’s position and its two
adjacent edges. With this superposition, we can define an area-based
measure for shape similarity between the physical cell and virtual cell
as in [53] by

∣∣Area(Cphys)−Area(Cvirt)
∣∣. Let Cphys(θ) denote the

physical cell with the same included angle as Cvirt , and its bisection
direction deviating from the user’s heading Vphys by an angle θ . We
can define the shape similarity measure betweenCphys(θ) andCvirt as
the following objective function

AlignmentSS(θ) =
∣∣Area(Cphys(θ))−Area(Cvirt)

∣∣ . (1)

The physical cell that best matches the virtual cell Cvirt is Cphys(θ∗),
where θ∗ minimizes AlignmentSS(θ) over a domain bounded by the
minimum and maximum thresholds of the curvature gain. Note that
representing the alignment measure as a function of θ allows us to find
the optimal alignment by using optimization.

The area-based shape similarity measure AlignmentSS(θ) cannot,
however, distinguish between a favorable case and an unfavorable case
when the area differences between physical and virtual cells are the
same. For example, in Fig. 4a, the left case shows that the physical cell
contains the virtual cell, and the right case shows that the virtual cell
contains the physical cell, but their differences in area are the same.
We know that the first case is more favorable than the second case, but
AlignmentSS(θ) fails to distinguish these two cases. It may also result
in some undesired cases, as shown in Fig. 4b, where the similarity
measure is high (i.e., the physical cell and virtual cell have similar
areas), but the obstacles are close to the user.

We take a different approach to finding a physical cell Cphys(θ)
that is the best match for the virtual cell Cvirt , based on how much
area the physical space can offer to allow for safe walking within the
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(a) Virtual cell. (b) Physical cell.

(c) Superimposition. (d) Overlapped area.

Fig. 3: Process of the alignment measuring.

(a) Left: A favorable case. Right: An
unfavorable case.

(b) A problematic
case.

Fig. 4: Cases of area-based shape similarity measure.

virtual cell Cvirt . To this end, like Cphys(θ), we denote Cvirt(θ) to be
the result of rotatingCvirt by an angle θ from the user’s heading Vphys
in PE. Moreover, we define an alignment measure as the ratio of the
overlapped area of Cvirt(θ) and Cphys(θ) to the area of the virtual cell
Cvirt , representing the relative area of the virtual cell that is overlapped
with the physical cell. The higher the ratio, the higher the alignment.
Formally, we define Alignment(θ) as follows:

Alignment(θ) = 1−
Area(Cvirt(θ)∩Cphys(θ))

Area(Cvirt)
, (2)

where Area(Cvirt(θ)∩Cphys(θ)) represents the area that the physi-
cal environment can provide to enable safe walking within the vir-
tual cell Cvirt . With the formulation of Alignment(θ), maximizing
the ratio is equivalent to minimizing Alignment(θ). Note that for
Area(Cvirt(θ)∩Cphys(θ)), we do not need to derive Cphys(θ) and then
compute Area(Cvirt(θ)∩Cphys(θ)). Instead, Area(Cvirt(θ)∩Cphys(θ))
can be replaced by Area(Cvirt(θ)∩VPphys).

3.2 Objective Function for APF Controller
While the visibility polygon-based alignment controller performs better
than APF-S2G, nevertheless, APF is still a useful source of information
for redirected walking. Thus, it is our plan to take the scalar APF
function as that of [48] into account when optimizing the proposed
objective function Alignment(θ). To this end, we have designed an
objective function for the APF controller, which is also a function
of θ . With finite difference, we consider a point pAPF lying on the
vector VAPF (θ) originating from pphys with an included angle θ from
the user’s heading Vphys. pAPF is 0.50m away from the user’s position
pphys. The APF difference between pAPF and pphys divided by the
distance between the two points is a finite difference representing the
directional derivative of APF along the direction VAPF (θ). We want
to find an optimal steering direction θ∗ that is the direction with the
maximum decrease in directional derivative of APF within the domain
D= [− 1

7.5 ,
1
7.5 ], where 7.5 m is the maximum radius for the curvature

Fig. 5: Define APF(θ) as the APF value at a point on VAPF (θ).

gain [13]. To simplify the finite difference computation, we define the
objection function APF(θ) as the APF value at pAPF as follows (See
Fig. 5)

APF(θ) = APF value at the endpoint pAPF of VAPF (θ). (3)

3.3 Optimization-driven Redirected Walking
Suppose that the current configuration is that the user is positioned at
pphys with heading Vphys in PE, and positioned at pvirt with heading
Vvirt in VE. The RDW controller will derive curvature gain, rotation
gain, and translation gain and steer the user’s movement. In our pro-
posed controllers, the derivation of curvature gain and rotation gain
is based on the optimal θ obtained by optimizing Alignment(θ) or
APF(θ) constrained in the domain D= [− 1

7.5 ,
1
7.5 ], where 7.5 m is the

maximal radius for curvature gain [13], so 1
7.5 is in radian units.

Based on the proposed objective functions, Alignment(θ) and
APF(θ), we proposed the following three RDW controllers.

• Alignment-Optimized controller:

θ∗ = argmin
θ∈D

Alignment(θ). (4)

• APF-Optimized controller:

θ∗ = argmin
θ∈D

APF(θ). (5)

• Alignment+APF-Optimized controller:

θ∗ = argmin
θ∈D

(Alignment(θ), APF(θ)). (6)

With Alignment+APF-Optimized controller, we simultaneously
optimize Alignment(θ) and APF(θ).

Once θ∗ is obtained, we compute the curvature gain and rotation
gain. Since the search space for the optimization is constrained in D=
[− 1

7.5 ,
1
7.5 ], where 7.5 is the maximum radius for curvature gain [13],

we set the curvature gain as

gc = θ∗. (7)

Note that the curvature gain is represented in angle per walked meter.
Let r be the signed angle for the user’s rotation at pvirt . Note that

θ∗ is also a signed angle. If θ∗ and r have the same sign, we apply
a maximum rotation gain of 1.24 [42]. A minimum rotation gain of
0.67 [42] is applied when θ∗ and r have opposite signs. Specifically,
we set the rotation gain gr as follows:

gr =




1.24, if θ∗ and r have the same sign

0.67, if θ∗ and r have opposite signs.
(8)

As depicted in Fig. 6, to compute the translation gain, we first cast a
ray originating from pphys with direction θ∗ in PE and compute its
intersection with the visibility polygonVPphys. Let dphys be the distance
from pphys to the intersection point. We also cast a ray originating
from pvirt with the user’s heading direction in VE and compute its
intersection with the visibility polygon VPvirt . Let dvirt be the distance
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Fig. 6: Cast rays to derive dphys and dvirt in PE and VE, respectively.

from pvirt to the intersection point. The translation gain gt is set to be
the ratio of dphys and dvirt , bounded by thresholds for translation gains.

gt = clamp

(
dphys
dvirt

,0.86,1.26
)
, (9)

where 0.86 and 1.26 are the minimum and maximum translation
gain [42].

3.3.1 Optimization Solvers
The optimization of Alignment(θ) or APF(θ ) is a constrained optimiza-
tion with non-differentiable objective functions. We adopted particle
swarm optimization (PSO) [16] due to its simplicity of implementation
and its capability of finding a global optimum. We carefully set the
values for the configurable coefficients in the particle’s velocity equa-
tion for each iteration step to balance the speed of convergence and
accuracy of the solution. We implemented PSO based on the algorithm
presented in [25].

In the Alignment+APF-Optimized controller, we aim to optimize
both Alignment(θ ) and APF(θ ) simultaneously. One simple way to
do this is to linearly combine the two objective functions into one.
However, before optimizing the resulting objective function, we need
to properly normalize both functions, which is not a trivial task for
Alignment(θ) and APF(θ). To avoid the difficulties of normalizing
Alignment(θ) and APF(θ), we instead used the ε-constraint method,
which is a widely used and more robust method for multi-objective
optimization [11]. We implemented the ε-constraint method based on
the algorithm presented in [11,27]. With the ε-constraint method, we
first rank the Alignment(θ) and APF(θ) based on importance. It has
been shown that alignment-based methods, such as ARC and visibility-
polygon based methods, significantly outperform the APF-S2G con-
troller [47,48], so it is reasonable to rank Alignment(θ) as more impor-
tant than APF(θ). In this case, an APF-based controller could support
the alignment-based controller to prevent the user from getting too
close to the obstacles. Using the ε-constraint method, we first optimize
Alignment(θ) constrained in D and obtain the optimal θ∗

Alignment :

θ∗
Alignment = argmin

θ∈D
Alignment(θ). (10)

Then we optimize APF(θ) as follows:

min
θ∈D

APF(θ)

s.t. Alignment(θ)≤ (1+ ε) Alignment(θ∗
Alignment),

(11)

where ε represents the amount of tolerance for the optimality of
θ∗
Alignment .

3.4 Reset Strategies
Any RDW controller needs resetting strategies to detect when they are
about to collide with an obstacle in PE and to reorient the user once it
happens. For the trigger condition, we follow the approach proposed in
Williams et al. [52]. Once θ∗ is computed, two conditions are checked.
The first condition is to check if the next position along θ∗ is inside a
physical obstacle. If so, the reset is triggered; otherwise, the second
condition is checked. If the next position is close enough to an obstacle
and the angle between the user’s heading and the obstacle’s normal is
greater than 90 degrees, the reset is triggered.

Fig. 7: The layouts of the environment pairs used in our experiments.

Once a reset is triggered, the optimal reorientation angle for the reset
will be obtained by optimizing the objective function with θ being the
angle between the target direction and the normal n and the constrained
domain [n−85◦,n+85◦], where n is the normal of the closest face of
the obstacle that triggered the reset. After the optimal reorientation
angle is derived, the reorientation process is performed in a way similar
to face-center [51] and 2:1-turn [34], with the difference being that the
user will end up physically facing the derived optimal direction.

4 EVALUATION DESIGN

We conducted simulation-based experiments to evaluate the perfor-
mance of the proposed controllers using four pairs of physical and
virtual environments. For the experiments, we compared our three
controllers against state-of-the-art controllers: APF-RDW presented
by Messinger et al. [28], APF-S2G presented by Thomas et al. [48],
ARC presented by Williams et al. [52], and Vis.-Poly., the visibility-
polygon based alignment controller by Williams et al. [53]. We did
not compare our controllers with S2C because it had been used as a
baseline for the comparative study in [28,48,52,53]. APF-RDW and
APF-S2G were the best redirection controllers when presented in 2019,
and are considered to serve as a baseline for this evaluation. ARC is
the first alignment-based reactive controller, while Vis.-Poly. controller
is currently the best reactive controller.

For each experiment, we simulated the use of redirection controllers
for 100 randomly generated paths with a random starting position and
orientation, and compared the controllers’ performance in terms of the
number of resets incurred over the whole simulation and the distance
between resets. Both are standard performance metrics for comparative
study in redirection walking research. The distance between resets may
be redundant since it depends on the number of resets; however, in
addition to comparing the average distance between resets, we also
wanted to compare their likelihood distributions for different controllers.
Before the simulation-based study, we formulated the following hy-
potheses:

H1 Our Alignment+APF-Optimized controller will perform better than
Visibility-Polygon controller [53], ARC [52], APF-RDW [28], and
APF-S2G [48] in terms of the number of resets.

H2 Our Alignment-Optimized controller will perform better than
Visibility-Polygon controller [53], ARC [52], APF-RDW [28], and
APF-S2G [48] in terms of the number of resets.

H3 Our APF-Optimized controller will perform better than APF-
RDW [28] and APF-S2G [48] in terms of the number of resets.

H4 Our Alignment+APF-Optimized controller will perform better than
the Alignment-Optimized controller in terms of the number of resets.

H5 Our Alignment+APF-Optimized and Alignment-Optimized con-
troller will perform better than the APF-Optimized controller in terms
of the number of resets.

H6 Our Alignment+APF-Optimized and Alignment-Optimized con-
trollers will provide a more uniform likelihood distribution across dis-
tance between resets as compared to the other redirection controllers.
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4.1 Environment Layouts

In designing the test environments, we are aware that the layout or struc-
ture of the physical and virtual environments affects the performance of
a redirection controller [2, 28]. Moreover, for comparison, we may use
the environment pairs that possess sufficient structure complexity and
different levels of local similarity and structure complexity, as shown
in Fig. 7.

Environment 1 is composed of a 10m×10m empty PE and a 20m×
20m VE, with two 2m×2m obstacles placed inside the VE. Note that
Environments 2 and 3 come from Williams et al. [53]. Environment
2 has a 12m× 12m PE and a 17m× 12m VE. Both PE and VE have
narrow corridors and appear to have a high level of local similarity.
Environment 3 consists of a 12m× 12m PE and a 20m× 20m VE,
which shares the same PE as Environment 2. The VE has many convex
and concave obstacles. We notice that PE and VE have obstacles
with different shapes and sizes, thus Environment 3 has lower local
similarity than Environment 2. In Environment 4, we used 3D models
obtained from the Unity Asset Store and converted them into 2D layout
maps. The PE is a 15m×12.5m living room consisting of sofas, chairs,
tables, and cabinets. The VE is a 55m×50m cityscape map consisting
of buildings, which is about 15 times larger than the PE. The local
similarity of Environment 4 is considered to be a little lower than
Environment 2 because the layouts of PE and VE in Environment 2
are regular and very similar, whereas the layouts of PE and VE in
Environment 4 are irregular and different.

4.2 Simulation Design and Settings

Our implementation of APF-S2G is based on the method presented in
Thomas et al. [48], APF-RDW is based on [28], ARC is based on [52],
and Vis.-Poly. controller is based on [53]. The parameters involved in
the simulation were the same as those in [53]. The user was represented
as a circle with a radius of 0.5m, walking with a velocity of 1m/s, and
turning with an angular velocity of 90◦/s. The simulation timestep was
0.05s. All these four controllers and our controllers share the same
condition for detecting the reset, but each controller employs its own
method for reorientation. In the implementation of APF-S2G, we used
SFR2G for the reorientation in reset. SFR2G takes 10 steps, each in
the direction of the negative gradient, and uses the resulting position as
the target to reorient the user [48].

For each environment pair, we randomly generated 100 paths. The
path lengths were 340 ∼ 400m for Environment 1, 2 and 3, and
750∼ 800m for Environment 4. The paths used in the simulation stud-
ies of [48, 52, 53] consist of a set of waypoints connected by straight
lines, and have rotation-in-place at each waypoint. We followed a
similar procedure, but used cubic Bézier curves between waypoints.
The parameters for generating waypoints were the same as in [2]. To
ensure a smooth transition at a waypoint, two adjacent Bézier segments
shared the same tangent at the waypoint, which was perpendicular to
the bisector of the vectors to the previous and next waypoints. The
distance between the waypoint and its adjacent control point was set
to be a proportion of the distance between the waypoint and its corre-
sponding neighboring waypoint. The generated piecewise cubic Bézier
curve is expected to approximate the global shape of the real user path
more closely than the piecewise linear curve, since each Bézier segment
is more realistic than a line segment compared to a human locomotion
trajectory. However, Bézier segments are smooth while human locomo-
tion trajectories may be more zigzagging. In this case, we can reduce
the distance between waypoints. We can also support rotation-in-place
at a waypoint by setting different tangent directions for the segments
adjacent to the waypoint. We simulated the locomotion on each path
for each of the redirection controllers under evaluation. For each path,
the user’s starting location in the physical and virtual environments and
their headings were randomly generated. Note that for each path, all
the controllers under evaluation used the same starting locations and
headings.

5 RESULTS

5.1 Number of Resets
The Shapiro-Wilk’s test showed that some of the data violated the nor-
mality assumption, so non-parametric tests were used to analyze the
data. Wilcoxon’s signed-rank tests were applied for post-hoc compar-
isons, with p Bonferroni correction, resulting in a significance level of
p< 0.007 (0.05/7). The results of the post-hoc pairwise comparisons
are shown in the graphs 8.

5.1.1 Environment 1
The Friedman test revealed a significant difference in the number
of resets in the redirection controllers, χ2(6) = 493.761, p < 0.001.
The box plot for the number of resets and the results of post hoc
Wilcoxon’s tests are shown in Fig. 8a. The mean number of resets was
23.41 for Alignment+APF-Optimized (MED= 24, SD= 2.81), 23.02
for Alignment-Optimized (MED = 23, SD = 2.96), 26.51 for APF-
Optimized (MED= 27, SD= 3.17), 36.08 for Vis.-Poly. (MED= 36,
SD= 3.48), 44.80 for ARC (MED= 45, SD= 3.85), 31.41 for APF-
RDW (MED= 32, SD= 3.26), and 26.83 for APF-S2G (MED= 27,
SD= 3.04).

5.1.2 Environment 2
The Friedman test revealed a significant difference in the number of
resets among redirection controllers, χ2(6) = 571.724, p< 0.001. The
box plot for the number of resets along with the results of post hoc
Wilcoxon’s tests are depicted in Fig. 8b. The mean number of resets
was 84.83 for Alignment+APF-Optimized (MED = 85, SD = 8.84),
89.52 for Alignment-Optimized (MED = 89.5, SD = 10.22), 154.04
for APF-Optimized (MED= 153.5, SD= 15.61), 126.55 for Vis.-Poly.
(MED= 126, SD= 9.28), 146.12 for ARC (MED= 148, SD= 9.70),
412.10 for APF-RDW (MED = 419, SD = 53.88), and 477.39 for
APF-S2G (MED= 479, SD= 17.77).

5.1.3 Environment 3
The Friedman test showed a significant difference in the number of
resets between redirection controllers, χ2(6) = 567.643, p < 0.001.
The box plot for the number of resets along with the results of post-hoc
Wilcoxon’s tests are shown in Fig. 8c. The mean number of resets was
117.31 for Alignment+APF-Optimized (MED = 116.5, SD = 7.94),
121.36 for Alignment-Optimized (MED= 121, SD= 10.02), 171.02
for APF-Optimized (MED = 172, SD = 14.99), 154.65 for Vis.-
Poly. (MED = 155, SD = 11.50), 172.64 for ARC (MED = 173,
SD= 11.09), 282.92 for APF-RDW (MED= 281, SD= 26.62), and
364.25 for APF-S2G (MED= 362, SD= 24.45).

5.1.4 Environment 4
The Friedman test found a significant difference in the number of
resets among redirection controllers, χ2(6) = 534.605, p < 0.001.
The box plot for the number of resets and the results of post-hoc
Wilcoxon’s tests are shown in Fig. 8d. The mean number of resets
was 108.71 for Alignment+APF-Optimized (MED= 107, SD= 6.67),
109.11 for Alignment-Optimized (MED = 108, SD = 7.85), 194.19
for APF-Optimized (MED = 193.5, SD = 23.17), 145.49 for Vis.-
Poly. (MED = 145, SD = 12.69), 166.12 for ARC (MED = 164,
SD = 13.00), 175.21 for APF-RDW (MED = 173.5, SD = 28.80),
and 773.79 for APF-S2G (MED= 764.5, SD= 209.68).

5.2 Likelihood of Reset Distance Distribution
We computed the likelihood of the redirection controllers to generate
resets in discrete categories of 0.5 meter distances. We computed 41 cat-
egories that ranged in reset distances from 0 to 0.5m (category 1), 0.5m
to 1m (category 2), 1.0m to 1.5m (category 3) and so on until greater
than 20m (category 41). We simulated 100 trials of each controller in
each of the test environments, and then computed the distribution of the
likelihood of redirection reset distances generated by each controller in
that environment. We then computed a multiple regression analysis to
evaluate to what extent the redirection controllers and the categories of
reset distances predicted the likelihood of generating that reset distance.
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(a) Environment 1. (b) Environment 2. (c) Environment 3. (d) Environment 4.

Fig. 8: The box plots of the number of resets for each redirection controller. The colored lines with asterisks (***) indicate the highly significant
post-hoc pairwise differences with p< 0.001.

Such multiple regression analysis have been employed in VR [4,10,29]
and similarly in real world studies [6, 32, 33].

The regression analysis contribution will also enable researchers
to predict the likelihood of generating a reset distance, given a test
environment, redirection controller and reset distance. The curves of the
regression profiles also tell us how uniform or lopsided the likelihoods
of the resets over reset distance categories are distributed. For instance,
if the slope is steep on one end then that informs researchers that the
algorithm’s frequency of resets in a narrow range of reset distance
category, which is mostly in the short distance category, is very high.
Thus this is an undesirable characteristic and vice-versa is true - a
shallow slope and a uniform curve is more desirable.

We first conducted a multiple regression analysis on the natural
log transform of the likelihood distribution across the reset distance
categories for each controller, which resulted in a linear relationship
between category and likelihoods in each of the 7 controllers. Once
we determined through multiple regression that redirection controller
type was a significant predictor or affected the log likelihood dis-
tribution across reset distances, then we modeled and provided the
regression profiles of the likelihood distribution of reset distances
for each of the redirection controller in each of the test environ-
ments. Redirection controller type was coded in the model as fol-
lows: (1) Alignment+APF-Optimized, (2) Alignment-Optimized, (3)
APF-Optimized, (4) Visibility-Polygon (Vis.-Poly.), (5) ARC, (6) APF-
RDW, (7) APF-S2G. Prior to conducting multiple regression analysis
on the log likelihood data, we insured that the histogram of standard-
ized residuals were normally distributed, and the normal P-P plot of the
standardized residuals were linear indicating that the data were suitable
for linear multiple regression analysis.

5.2.1 Environment 1

In test Environment 1, the multiple regression model on log likeli-
hood of reset distribution data was found to be significant, F(2, 283)
= 8.90, p < 0.001, with an R2 = 0.10. The log likelihood of reset
distances was equal to −5.21+0.052×RedirectionControllerType+
0.024×ResetDistanceCategory; log likelihood of reset distance in-
creased by 0.024 for every 0.5m increase in the reset distance category,
and a difference of 0.052 was calculated on average between two sub-
sequent redirection types. Both independent variables, Redirection
Controller Type, p= 0.045, and Reset Distance Category, p< 0.001,
were significant predictors of log likelihood of the reset distances. The
non-linear regression profiles of how the different redirection con-
trollers affected the distribution of the likelihood of reset distances
is shown in Fig. 9a. The cubic regression profile was found to be
the best fit for modeling the redirection controller data in the rela-
tionship between reset distance category and the likelihood of the
reset distance. The cubic regression profiles for the redirection con-
trollers were as follows; Alignment+APF-Optimized: likelihood =
−0.0086+0.0015×Category+0.000089×Category2−0.0000032×
Category3 [R2 = 0.39], Alignment-Optimized: likelihood =
−0.007+ 0.001×Category+ 0.00012×Category2 − 0.0000037×

Category3 [R2 = 0.41], APF-Optimized: likelihood = −0.02 +
0.0044×Category− 0.00005×Category2− 0.0000014×Category3
[R2 = 0.30], APF-S2G: likelihood = −0.02+ 0.0049×Category−
0.000084×Category2−0.00000082×Category3 [R2 = 0.34], ARC:
likelihood = 0.0017+ 0.0057×Category− 0.00024×Category2 +
0.0000023 × Category3 [R2 = 0.54], Vis.-Poly.: likelihood =
−0.0017+ 0.005×Category− 0.00018×Category2 + 0.0000015×
Category3 [R2 = 0.51, APF-RDW: likelihood = −0.02+ 0.0055×
Category− 0.00012×Category2 − 0.00000042×Category3 [R2 =
0.33].

5.2.2 Environment 2

In test Environment 2, the multiple regression model on log likeli-
hood of reset distribution data was found to be significant, F(2, 234)
= 328.70, p< 0.001, with and R2 = 0.74. The log likelihood of reset
distances was equal to 0.20− 0.80× RedirectionControllerType−
0.17× ResetDistanceCategory; log likelihood of reset distance de-
creased by -0.17 for every 0.5m increase in the reset distance cate-
gory, and a difference of -0.80 was calculated on average between
two subsequent redirection types. Both independent variables, Redi-
rection C+ontroller Type, p < 0.001, and Reset Distance Category,
p < 0.001, were highly significant predictors of log likelihood of
the reset distances. The non-linear regression profiles of how the
different redirection controllers affected the distribution of the like-
lihood of reset distances is shown in Fig. 9b. The quadratic re-
gression profiles for redirection controllers in the relationship be-
tween reset distance category and the likelihood of the reset distance
were as follows; Alignment+APF-Optimized: likelihood = 0.1−
0.0063×Category+ 0.0009×Category2 [R2 = 0.81], Alignment-
Optimized: likelihood = 0.1 − 0.0068 × Category + 0.00011 ×
Category2 [R2 = 0.83], APF-Optimized: likelihood = 0.15− 0.01×
Category+0.00022×Category2 [R2 = 0.40], APF-S2G: likelihood =
0.2 − 0.02 ×Category + 0.00034 ×Category2 [R2 = 0.14], ARC:
likelihood = 0.14− 0.01×Category+ 0.00019×Category2 [R2 =
0.64], Vis.-Poly.: likelihood = 0.13−0.0094×Category+0.00016×
Category2 [R2 = 0.68], APF-RDW: likelihood = 0.19 − 0.02 ×
Category+0.00033×Category2 [R2 = 0.16], .

5.2.3 Environment 3

In test Environment 3, the multiple regression model on log likeli-
hood of reset distribution data was found to be significant, F(2, 209)
= 656.46, p< 0.001, with and R2 = 0.87. The log likelihood of reset
distances was equal to −0.13−0.45×RedirectionControllerType−
0.25× ResetDistanceCategory; log likelihood of reset distance de-
creased by -0.25 for every 0.5m increase in the reset distance cate-
gory, and a difference of -0.45 was calculated on average between two
subsequent redirection types. Both independent variables, Redirection
Controller Type, p< 0.001, and Reset Distance Category, p< 0.001,
were highly significant predictors of log likelihood of the reset distances.
The non-linear regression profiles of how the different redirection con-
trollers affected the distribution of the likelihood of reset distances is
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shown in Fig. 9c. The quadratic regression profiles for redirection con-
trollers in the relationship between reset distance category and the likeli-
hood of the reset distance were as follows; Alignment+APF-Optimized:
likelihood = 0.13−0.0092×Category+0.00016×Category2 [R2 =
0.74], Alignment-Optimized: likelihood= 0.13−0.0095×Category+
0.00016×Category2 [R2 = 0.76], APF-Optimized: likelihood =
0.16− 0.01×Category+ 0.00024×Category2 [R2 = 0.40], APF-
S2G: likelihood = 0.19− 0.02×Category+ 0.00033×Category2
[R2 = 0.17], ARC: likelihood = 0.15−0.01×Category+0.00022×
Category2 [R2 = 0.60], Vis.-Poly.: likelihood = 0.14 − 0.01 ×
Category+0.00020×Category2 [R2 = 0.67, APF-RDW: likelihood=
0.18−0.02×Category+0.00030×Category2 [R2 = 0.24].

5.2.4 Environment 4
In test Environment 4, the multiple regression model on log likeli-
hood of reset distribution data was found to be significant, F(2, 283)
= 392, p < 0.001, with an R2 = 0.74. The log likelihood of reset
distances was equal to −0.68−0.39×RedirectionControllerType−
0.14× ResetDistanceCategory; log likelihood of reset distance de-
creased by -0.14 for every 0.5m increase in the reset distance cate-
gory, and a difference of -0.39 was calculated on average between two
subsequent redirection types. Both independent variables, Redirection
Controller Type, p< 0.001, and Reset Distance Category, p< 0.001,
were highly significant predictors of log likelihood of the reset dis-
tances. The non-linear regression profiles of how the different redi-
rection controllers affected the distribution of the likelihood of reset
distances is shown in Fig. 9d. The cubic regression profile was found
to be the best fit for modeling the redirection controller data in the
relationship between reset distance category and the likelihood of the
reset distance. The cubic regression profiles for the redirection con-
trollers were as follows; Alignment+APF-Optimized: likelihood =
0.02 + 0.0057 × Category − 0.00035 × Category2 + 0.0000048 ×
Category3 [R2 = 0.79], Alignment-Optimized: likelihood = 0.02+
0.005 × Category − 0.0003 × Category2 + 0.000004 × Category3
[R2 = 0.73], APF-Optimized: likelihood = 0.12−0.01×Category+
0.00031 × Category2 − 0.000003 × Category3 [R2 = 0.47], APF-
S2G: likelihood = 0.3 − 0.05 × Category + 0.002 × Category2 −
0.00003 × Category3 [R2 = 0.24], ARC: likelihood = 0.07 −
0.0004×Category− 0.00017×Category2+ 0.0000036×Category3
[R2 = 0.86], Vis.-Poly.: likelihood = 0.06+ 0.0004×Category−
0.00018 × Category2 + 0.0000033 × Category3 [R2 = 0.87, APF-
RDW: likelihood = 0.1−0.007×Category+0.00018×Category2−
0.0000016×Category3 [R2 = 0.55].

5.3 Hypotheses Verification
In terms of the number of resets across all environments, we have the
following findings. The Alignment+APF-Optimized and Alignment-
Optimized performed significantly better than Vis.-Poly., ARC, APF-
RDW, and APF-S2G. Additionally, the Alignment+APF-Optimized
and Alignment-Optimized performed significantly better than APF-
Optimized. These findings supported H1, H2, and H5. However,
the results can only partially support H3 since the performance of
APF-Optimized was not significantly different from APF-S2G in Envi-
ronment 1, and APF-Optimized performed worse than APF-RDW in
Environment 4. The hypothesis H4 is partially supported since there
is no significant difference between Alignment+APF-Optimized and
Alignment-Optimized in Environment 1 and Environment 4.

The multiple regression analysis revealed a significant effect of the
controllers on the likelihood distribution across different distances be-
tween resets. Specifically, the analysis showed that in all environments,
the likelihood distributions of the distance between resets were more
uniformly distributed across the different categories in the Alignment-
APF-Optimized and Alignment-Optimized controllers, whereas for
the Vis.-Poly., ARC, APF-RDW and APF-S2G controllers, the likeli-
hood distribution of reset distances across the different categories was
found to be uneven. Furthermore, the slopes of the Vis.-Poly., ARC,
APF-RDW and APF-S2G controller likelihood distributions revealed
a highly non-uniform distribution, such that there was a significantly
higher likelihood and frequency of smaller reset distances, and little or

no likelihood and frequency of the larger reset distances. Hence, H6 is
supported.

6 DISCUSSION

The statistical results show that both Alignment+APF-Optimized and
Alignment-Optimized controller outperformed the Vis.-Poly. controller
in terms of number of resets, as proved by the verification of H1 and
H2. This highlights the effectiveness of our proposed alignment defi-
nition and optimization-driven framework, which incorporates a more
accurate shape similarity measure that considers the overlapping area
of the virtual cell and physical cell, along with the fine-grained setting
of gains. This improvement leads to better controller performance,
demonstrating that the proposed alignment definition and optimization-
driven framework with a finer alignment measure and a more precise
strategy for setting redirection gains are key factors for improving
alignment-based controllers.

The design of the APF-Optimized controller was initially intended
to offer a way to incorporate APF information into the optimization
process of Alignment-Optimized controller. The study results showed
that the APF-Optimized controller performed significantly better than
the APF-S2G in Environment 2, 3 and 4. The difference between
the two controllers is that APF-S2G takes the negative gradient as
the steering direction, while APF-Optimized uses the local minimum
directional derivative. We observed that in a narrow long aisle, the
negative gradients at points inside the aisle always point to the opposite
wall, so in the process of APF-S2G steering, the user is gradually
steered towards the wall and may easily end up in a collision. As for the
APF-Optimized controller, the optimized direction obtained for steering
at points inside the aisle is always within the bounds constrained by
the gain thresholds, so the user can be gradually steered towards the
center line of the aisle and thus potentially avoid a collision. Moreover,
with the optimized direction, we can finely set the gains for RDW.
Another possible reason is that the reorientation strategy in the resetting
of APF-S2G usually sets the direction pointing to the opposite wall as
the steering direction, which can easily result in a collision. However,
the results showed that the performance of APF-Optimized controller
was not significantly different from APF-S2G in Environment 1. In
this environment pair, the steering directions obtained by the APF-
Optimized controller were not too dissimilar from those of the APF-
S2G, resulting in similar performance. In Environment 4, APF-RDW
performed better than the APF-Optimized controller and APF-S2G,
because it was often observed that APF-RDW could steer the user to
an open space.

Supported by the verification of H4 in Environments 2 and 3, the
incorporation of APF information and alignment measure proved to
improve the controller’s performance. This demonstrates the potential
for achieving fewer resets by considering multiple redirection strategies
simultaneously. However, balancing between different strategies is
not straightforward, as previously mentioned. The statistical results
revealed that our Alignment+APF-Optimized controller achieved vary-
ing degrees of improvement compared to the Alignment-Optimized
and APF-Optimized controllers in different environment pairs. This
highlights that the performance improvement can be affected by the
layouts of PE and VE, especially for controllers with hybrid strategies.
Consistent with the findings from previous works, alignment-based
controllers are superior in performance to APF-based controllers in
terms of the number of resets, as proved by the verification of H5.

As one of the key improvements we proposed compared to the
previous approaches, we expected that the alignment measure which
considers the overlapping area of the virtual cell and the physical
cell could distinguish between the favorable case, the unfavorable
case, and the problematic case, as illustrated in Figures 4a and 4b.
Successfully distinguishing between such cases would lead to more
uniformly distributed likelihood distributions of reset distances, as the
physical cell that offers the most space to allow walking within the
virtual cell would be chosen as the steering target to steer the user,
which would effectively reduce the number of short-distance resets. As
shown by the verification of H6, our Alignment+APF-Optimized and
Alignment-Optimized controllers did provide more uniform likelihood
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(a) Environment 1. (b) Environment 2. (c) Environment 3. (d) Environment 4.

Fig. 9: Cubic regression profiles of the redirection controller’s likelihood of reset distance distribution.

distributions across reset distances than other controllers, highlighting
the effectiveness of our proposed approach.

The four environment pairs used for the simulation differ in geo-
metric layout and degree of local similarity, which lead to different
performance characteristics of each controller across each environment
pair. In Environment 1, PE has a square space with no obstacles inside,
which is an ideal layout for APF-based controllers [28, 48]. This could
be the reason why alignment-based controllers could not perform better
than APF-based controllers. In Environment 2, the physical and virtual
environment are similar, which is a favorable case for alignment-based
controllers due to the relatively low difficulty to achieve collision-free
navigation [53]. The results showed that our Alignment-Optimized
and Alignment+APF-Optimized controllers could perform significantly
better than APF-Optimized, Vis.-Poly., ARC, APF-RDW and APF-
S2G. In Environment 3, the similarity between the physical and virtual
environment is much lower, making alignment-based RDW more chal-
lenging [53]. This could be the reason why APF-Optimized controller
performed as well as ARC, since ARC has the most rough alignment
measure compared to Vis.-Poly. and Alignment-Optimized controllers.
While most controllers had a worse performance in Environment 3 than
in Environment 2, APF-RDW and APF-S2G actually performed better
in Environment 3. The VE of Environment 3 has more empty space
than that of Environment 2, resulting in more turns in the virtual paths
and thus reducing the chance of walking straight towards obstacles after
reset.

In Environment 4, there is a relatively large empty space in the
PE while there are also large empty spaces in the VE, which is a
key performance factor for alignment-based controllers and could
be the reason why there was no significant performance difference
between Alignment+APF-Optimized and Alignment-Optimized, since
alignment measure was more dominant on performance than APF.
Furthermore, as discussed previously, narrow areas have a huge
impact on the performance of APF-S2G in terms of the number of
resets, with this phenomenon more pronounced in Environment 4
due to the higher number of "dead ends" in the PE, which makes it
difficult to "escape" from such a cramped space once the user entered it.

Limitations The area of the overlapping area between the
physical and the virtual cells is used to measure Alignment(θ);
however, considering area alone fails to distinguish cases that have
the same size of overlapping area but with varying shapes that
influence the RDW performance differently. In the experiment, the
controllers were evaluated based on simulations with random paths
in the form of piecewise Bézier curves. Simulation-based evaluation
can be effective for quickly collecting data and understanding the
controllers’ strengths and weaknesses, but it usually does not take into
account the user’s perception and behavior evoked by the redirected
steering, resulting in a loss of reality to a certain extent [12]. Since
the piecewise Bézier segments can form a virtual path that visually
resembles the global shape of the real user path, and the number of
resets that Alignment-Optimized and Alignment+APF-Optimized
achieved is significantly lower compared to the existing controllers,

the performance trends revealed in the simulation-based evaluation
are likely to be preserved for a live user study, as found in [3].
Nevertheless, a live user study should be conducted in the future to
evaluate the performance and understand the problems of controllers
when applied in real applications. Another limitation is that, based
on the proposed controllers, they all rely on the layout geometry of
physical environment. When applied in a physical space with no
layout information available, we need to do scene reconstruction
beforehand or in real time. However, reconstructing the layout
geometry of a physical environment in real time is still challenging and
computationally expensive.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an optimization-driven framework for
RDW controllers and, based on that, developed three novel RDW con-
trollers: Alignment-Optimized, APF-Optimized, and Alignment+APF-
Optimized. The optimization-driven framework allows us to measure
the shape similarity between the physical and virtual walkable areas
and to define new types of alignment definitions. Extensive simula-
tions demonstrated that the Alignment-Optimized and Alignment+APF-
Optimized controllers outperformed existing state-of-the-art controllers
in terms of the number of resets. Among the three proposed controllers,
the Alignment+APF-Optimized and Alignment-Optimized controllers
exhibited superior performance compared to the APF-Optimized con-
troller. However, the hypothesis that the Alignment+APF-Optimized
controller outperforms the Alignment-Optimized controller is par-
tially supported. The results also revealed that the Alignment+APF-
Optimized and Alignment-Optimized controllers provide a more uni-
form likelihood distribution across distances between resets, as com-
pared to the other redirection controllers. This study confirmed that
alignment-based strategies for RDW is promising, deserving further
studies for even more effective redirection controllers.

Artificial potential field provides useful information about obsta-
cles in the physical environment. Although our study only partially
supports the hypothesis that the Alignment+APF-Optimized controller
outperforms the Alignment-Optimized controller, incorporating APF
information into the optimization-driven alignment strategy is still wor-
thy of further study. Current alignment-based strategies, including ours,
utilize only information about the workable areas visible to the user
in both physical and virtual environments. To further enhance their
performance, incorporating information beyond the walkable areas in
order to steer the user towards future safer areas in an optimization-
driven framework could be a topic for future work. Moreover, currently
existing alignment definition mainly depend on shape similarity be-
tween physical and virtual walkable areas. Alignment definitions that
are other than shape similarity are desirable and expected to possess
different advantageous features.
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