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A DECOUPLING INTERPRETATION OF AN OLD ARGUMENT FOR

VINOGRADOV’S MEAN VALUE THEOREM

BRIAN COOK, KEVIN HUGHES, ZANE KUN LI, AKSHAT MUDGAL, OLIVIER ROBERT,
AND PO-LAM YUNG

Abstract. We interpret into decoupling language a refinement of a 1973 argument due to Karat-
suba on Vinogradov’s mean value theorem. The main goal of our argument is to answer what
precisely solution counting in older partial progress on Vinogradov’s mean value theorem corre-
sponds to in Fourier decoupling theory.

1. Introduction

1.1. Motivation. Let s ě 1 and k ě 2 be integers. For X ě 1, let Js,kpXq be the number of
solutions to the degree k Vinogradov system in 2s variables:

x
j
1 ` x

j
2 ` ¨ ¨ ¨ ` xjs “ y

j
1 ` y

j
2 ` ¨ ¨ ¨ ` yjs, 1 ď j ď k (1.1)

where all variables x1, . . . , xs, y1, . . . , ys P r1,Xs X N. Nontrivial upper bounds for Js,kpXq were
first studied by Vinogradov in 1935 [32] and such results are collectively referred to as Vinogradov’s
Mean Value Theorem (VMVT) in the literature. The main conjecture in VMVT, now a theorem
as of 2015, was that for every ε ą 0 and s, k P N, one has

Js,kpXq Às,k,ε X
εpXs ` X2s´ kpk`1q

2 q (1.2)

for all X ě 1. It is not hard to see that Js,kpXq Ás,k Xs ` X2s´kpk`1q{2 and applying Hölder’s
inequality, we may deduce (1.2) for all s P N from the s “ kpk ` 1q{2 case. VMVT plays an
important role in understanding Waring’s problem and the Riemann zeta function, see for example
[11, 12, 19, 34]. When k “ 2, the main conjecture in VMVT is classical. In 2014, Wooley [35]
proved the k “ 3 case of VMVT using the method of efficient congruencing (see also [20] for a
shorter proof due to Heath-Brown). In 2015, the k ě 2 case was proven by Bourgain, Demeter, and
Guth in [3] using Fourier decoupling for the degree k moment curve from which VMVT followed
as a corollary. Finally, in 2017, Wooley [36], gave an alternative proof of (1.2) for all k ě 2 using
nested efficient congruencing.

After the proofs of VMVT using the Fourier method of decoupling [3] and the number theoretic
method of efficient congruencing [36], it has been an interesting question to determine how these
two methods are related and whether a “dictionary” between the two methods could be obtained.
The study of this dictionary has led to new proofs of Fourier decoupling for the parabola [23],
cubic moment curve [15], and the degree k moment curve [16]; these having been inspired from
the efficient congruencing arguments in [26, Section 4], [20], and [36], respectively. Additionally, a
decoupling interpretation of the study of VMVT over ellipspephic sets [1] led to a proof of Fourier
decoupling for fractal sets on the parabola [5].

In this article, we revisit a particular classical VMVT which states that

Js,kpXq Às,k X2s´ kpk`1q
2

` 1
2
k2p1´ 1

k
qs{k

(1.3)

for all X ě 1 and s “ kl with l P N. This result should be compared to the supercritical s ě
kpk`1q{2 case in (1.2). For s very large compared to k, we have an extra term 1

2
k2p1´ 1

k
qs{k in the

exponent, which decays exponentially in s for every fixed value of k, instead of an ε. The estimate
1
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(1.3) appears (for example) in Vaughan’s book [31, Chapter 5] and is a refinement of an argument

of Karatsuba [22] from 1973 (see also Stechkin [27] from 1975). The loss of the X
1
2
k2p1´ 1

k
qs{k

comes
from combining the subcritical estimate Jk,kpXq Àk Xk, which follows from the Newton-Girard
identities, along with an iterative argument to derive estimates for Js,kpXq when s is supercritical.

The main purpose of this paper is to illustrate how this refined argument of Karatsuba can be
adapted to give a proof of a non-sharp Fourier decoupling inequality for the degree k moment curve
in the supercritical regime. The key difficulty that prevents the direct use of ideas from [15, 16, 23]
is the heavy reliance on solution counting in (1.3). One of the main points of this article is to clarify
the role of such solution counting arguments in the study of Fourier decoupling. The mechanism
driving the solution counting arguments will allow us to prove the key Lemma 4.4 below, which
concerns the geometry of Fourier supports of the functions appearing in our main Theorem 1.1.

Since our goal is to clarify the role of solution counting in Fourier decoupling and Bourgain,
Demeter, and Guth have already given the sharpest possible moment curve decoupling theorem
in [3], we will work over Qq rather than over R. This will allow us to present the argument in
the cleanest possible manner, free of technical difficulties arising from the inconvenience of the
uncertainty principle in Rk. See also [14] for another decoupling paper that works over Qq rather
than R, there however, the authors use the observation that decoupling over Qq is quantitatively
more efficient than decoupling over R in terms of exponential sum estimates.

Notation. As k will be fixed, we will allow all constants to depend on k. Given two positive
expressions X and Y , we write X À Y if X ď CY for some constant C that is allowed to depend
on k. If C depends on some additional parameter A, then we write X ÀA Y . We write X „ Y if
X À Y and Y À X. By writing fpxq “ Opgpxqq, we mean |fpxq| À gpxq. We say that f has Fourier

support in a set Ω if its Fourier transform pf is supported in Ω.
To prepare the reader for the myriad of intervals that will occur later in Sections 4 and 5,

there will be three types of interval lengths: intervals named with a “K” will be associated to the
smallest scale δ, intervals named with a “J” will be associated to the intermediate scale ν « δ1{k,
and intervals named with an “I” will be associated to the largest scale κ « δε (though on a first
reading, it might be easier to set κ “ 1{q). Finally, in the context of the decoupling constant Dppδq,
defined in (1.5) below, we call p subcritical if p ă kpk`1q and p supercritical if p ě kpk`1q (rather
than the more accurate but slightly more clumsy “not subcritical”).

1.2. Analysis over Qq and decoupling. Fix a degree k ě 2 and a prime number q with q ą k.
We reserve the letter p for the Lebesgue exponent in the main Theorem 1.1. We very briefly review
the harmonic analysis over Qq needed to set up the statement of decoupling. See also Section 2
and [14, Section 2] for further discussion surrounding the harmonic analysis and basic geometric
facts over Qq that are useful in decoupling. Additionally see Chapters 1 and 2 of [28] and Chapter
1 (in particular Sections 1 and 4) of [33] for a more complete discussion of analysis on Qq.

The field Qq is the completion of Q under the q-adic norm, defined by |0| “ 0 and |qab{c| “ q´a if
a P Z, b, c P Zzt0u and q is relatively prime to both b and c. Then Qq can be identified (bijectively)
with the set of all formal series

Qq “
! 8ÿ

j“k

ajq
j : k P Z, aj P t0, 1, . . . , q ´ 1u for every j ě k

)
,

and the q-adic norm on Qq satisfies |
ř8

j“k ajq
j | “ q´k if ak ‰ 0. Strictly speaking we should be

writing | ¨ |q instead of | ¨ |, but we omit this dependence as q is fixed. The q-adic norm on Qq induces

a norm on Qk
q , which we denote also by | ¨ | by abuse of notation, via |pξ1, . . . , ξkq| :“ max1ďiďk |ξi|.

Of particular importance is the ultrametric inequality: |ξ ` η| ď maxt|ξ|, |η|u with equality if
|ξ| ‰ |η|. An interval in Qq is then a set of the form tξ P Qq : |ξ ´ a| ď ru, where a P Qq and
r ě 0; r will then be called the length of the interval. We also will use |I| to denote the length of
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an interval I. The ring of integers Zq coincides with the unit interval tξ P Qq : |ξ| ď 1u. A cube in

Qk
q of side length r is then a product of k intervals in Qq of lengths r. We will work with Schwartz

functions defined on Qk
q (i.e. finite linear combinations of characteristic functions of cubes in Qk

q).
The Fourier transform of such a function f will be given by

pfpξq :“

ż

Qk
q

fpxqχp´x ¨ ξqdx

where χ is a fixed element in the Pontryagin dual xQq of Qq that restricts to the principal character
on the additive subgroup Zq and restricts to a non-principal character on the additive subgroup

q´1Zq, x ¨ ξ “
řk

i“1 xiξi if x “ px1, . . . , xkq and ξ “ pξ1, . . . , ξkq, and dx is the Haar measure on the

additive group Qk
q normalized so that

ş
Zk
q
dx “ 1. One key property of the Fourier transform that

we will use is that x1Zq “ 1Zq , that is, the Fourier transform of the unit ball is the unit ball, see [33,
p.42] for a proof.

We are interested in the unit moment curve

γptq :“ pt, t2, . . . , tkq, |t| ď 1.

For δ P q´N and any interval I Ă Qq with length ě δ, let PδpIq be a partition of I into intervals of
length δ. Write Pδ for PδpZqq. To each interval I Ă Zq, one associates a parallelepiped

θI :“
!
γpaq `

kÿ

j“1

tjγ
pjqpaq P Qk

q : |tj | ď |I|j for all 1 ď j ď k
)

of dimensions |I| ˆ |I|2 ˆ ¨ ¨ ¨ ˆ |I|k where a P I; this parallelepiped is independent of the choice of
a P I. Note that

Ť
KPPδ

θK is a covering of a δk neighborhood of the unit moment curve (in fact

it covers a suitable anisotropic neighborhood of that curve). One also associates to each K P Pδ a
cube

τK :“ tpξ1, . . . , ξkq P Qk
q : |ξj ´ aj| ď δ for all 1 ď j ď ku (1.4)

of side length δ, where a P K; again this is independent of the choice of a P K. Note that for each
K Ă Pδ, the ultrametric inequality gives that θK Ă τK .

For an interval I Ă Zq, let fI be defined such that pfI :“ pf ¨ 1
IˆQ

k´1
q

. For p ě 2 and δ P q´N, let

Dppδq be the smallest constant such that the inequality

}f}LppQk
q q ď Dppδqp

ÿ

KPPδ

}fK}2
LppQk

q qq
1{2 (1.5)

holds for every Schwartz function f on Qk
q with its Fourier transform pf supported on

Ť
KPPδ

θK .

Note that f “
ř

KPPδ
fK. Bourgain, Demeter, and Guth [3] showed that

Dppδq Àε,p,q δ
´εp1 ` δ

´p 1
2

´ kpk`1q
2p

qq, (1.6)

and this estimate is sharp. Strictly speaking [3] proves a decoupling theorem over R rather than
over Qq, but the same proof can be used to derive (1.6). Choosing f to be a sum of Dirac deltas
immediately implies (1.2).

1.3. The main result. By interpreting the refinement of Karatsuba’s argument for (1.3) into
decoupling language, our main result is then the following Fourier decoupling analogue of (1.3). In
the same way (1.3) is a weaker partial result towards (1.2), Theorem 1.1 and Corollary 1.2 should
be viewed as the analogous weaker counterpart of the sharp bound (1.6).
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Theorem 1.1. Let p0 P 2N be an even integer and let cpp0q ě 0 be such that

Dp0pδq ď C1δ
´p 1

2
´

kpk`1q
2p0

q´
cpp0q
p0

p1´ 1
k

qp0{p2kq

for all δ P q´N (1.7)

where C1 is independent of δ. If p P p0 ` 2kN and 0 ă ε ă 1, then

Dppδq Àp,ε,C1
qapp,p0q{pδ

´p 1
2

´ kpk`1q
2p

q´
cpp0q

p
p1´ 1

k
qp{p2kq´ε

for all δ P q´N (1.8)

where

app, p0q :“ p
p ´ p0

2k
qp
p0

2
`

k2 ` 7k ´ 4

2
q `

k

2
p
p ´ p0

2k
qp
p ´ p0

2k
` 1q. (1.9)

Since Dppδq ě 1 for all p, (1.7) implies that cpp0q, k, and p0 are such that

1

2
´

kpk ` 1q

2p0
`

cpp0q

p0
p1 ´

1

k
q
p0
2k ě 0. (1.10)

It is also known that D2kpδq Àε δ´ε for any ε ą 0, see for example [8, Exercise 11.19] for the
Euclidean case; we provide a proof for the case over Qq in the appendix for the convenience of
the reader. We also remark that [21] proved, in the case of local fields, a related square function
estimate with a bound independent of δ if the fK ’s are Fourier supported in a δk neighborhood of
γpKq; see also [13] and [2] for similar estimates. Choosing p0 “ 2k and cpp0q “ k2{2 ` ε for any
ε ą 0 in applying Theorem 1.1 we obtain:

Corollary 1.2. Let p P 2kN and 0 ă ε ă 1. Then

Dppδq Àp,ε q
Opk`p{kqδ

´p 1
2

´ kpk`1q
2p

q´ k2

2p
p1´ 1

k
qp{p2kq´ε

for all δ P q´N

where the implied constant in the exponent of q is absolute (and independent of k).

The exponent of q in Corollary 1.2 is more precisely app,2kq
p

“ p 1
2k

´ 1
p

qk
2`9k´4

2
` 1

4
p p
2k

´ 1q, but

we opt to write it as above since it more clearly illustrates what the main terms are. Note that the
hypothesis in Theorem 1.1 is always satisfied if p0 is any fixed exponent ě 2 and cpp0q is chosen
large enough. One can view Theorem 1.1 as a way of upgrading trivial l2Lp0 decoupling at say
some subcritical p to l2Lp decoupling for all large p with only a loss that decreases exponentially
as p Ñ `8. Of course, if one already knew the sharp estimate in the critical p0 “ kpk ` 1q case,
then Theorem 1.1 implies that we know the sharp decoupling estimate for all p P kpk ` 1q ` 2kN.
However this already follows from interpolating the critical estimate with the trivial l2L8 decoupling
estimate.

Though Corollary 1.2 implies (1.3) with an extra Xε that comes from the δ´ε factor in Corollary
1.2, Corollary 1.2 is more general and this extra δ´ε term comes from needing some additional
uniformity in the case of the general f Fourier supported in

Ť
KPPδ

θK and an application of the

broad-narrow argument to get around the use of the Prime Number Theorem in the proof of (1.3)
(see Section 4.1.1). See Sections 3.5 and 5.1 for some more discussion comparing the VMVT case
and the general f decoupling case.

We end with some discussion about how the proof of Corollary 1.2 (and Theorem 1.1) contrasts
with modern decoupling proofs of degree k moment curve decoupling [3, 16] which prove (1.6).
Unlike the argument in [3, 16], we are missing any lower dimensional decoupling input and while
we do use induction on scales, the iteration itself is unique in that it iterates on the p in l2Lp

decoupling. Schematically, the iteration to prove Theorem 1.1 controls l2Lp decoupling by l2Lp´2k

decoupling at a larger scale. After Opp{kq steps, we are reduced to l2L2k decoupling for the degree
k moment curve which follows (essentially) from the Newton-Girard identities. The iteration is
surprisingly efficient when it controls l2Lp decoupling by l2Lp´2k decoupling as long as both p and

p ´ 2k are supercritical. However after about 1
2k

pp ´ kpk`1q
2

q steps, we enter the subcritical regime



A DECOUPLING INTERPRETATION OF AN OLD ARGUMENT FOR VMVT 5

for which the iteration becomes inefficient and this is why we accrue an additional δ
´ k2

2p
p1´ 1

k
qp{p2kq

term. When k “ 2, the argument for Corollary 1.2 uses Oppq steps to prove a weak non-sharp l2Lp

decoupling estimate. This is to be compared to the modern proof of decoupling for the parabola
where to prove the sharp critical l2L6 decoupling, one uses Opε´1q many steps (see for example the
proof of [23, Lemma 2.12]). In the harmonic analysis literature, iterating on p is not a new idea as
such an argument was already used by Drury [9] to prove cubic moment curve restriction, though
we believe this is the first time such an argument has appeared in the decoupling literature. See
also [25] by the fourth author for a similar idea in the additive combinatorics literature which was
recently used to obtain diameter free estimates for the quadratic VMVT.

Additionally, at each iterative step, three scales are key: the smallest scale δ, the intermediate
scale δ1{k, and the largest scale 1 (though strictly speaking in our proof the largest scale is actually
δε rather than 1 for technical reasons). This can be compared to [3, 16] which uses scales δ, δε and
1.

This paper is organized as follows: In Section 2, we review some basic geometric and harmonic
analysis facts in Qq that will be used throughout this paper. In Section 3, we review the refinement
of the 1973 argument of Karatsuba at a high level. In Section 4, we prove Lemma 4.2 which
is the main lemma that is used to prove Theorem 1.1. This is accomplished via combining a
standard broad-narrow argument in Section 4.1.1 and some geometric properties of the moment
curve that use the Newton-Girard identites, see Lemma 4.4. In Section 5, we dyadically pigeonhole
to obtain some uniformity in our estimates and prove Theorem 1.1 and Corollary 1.2. Finally, in
the appendix, we include a proof of D2kpδq Àε δ

´ε for completeness.
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Guo when the third author was visiting the Department of Mathematics at the Chinese University
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2. Wavepacket decomposition and some basic geometric facts

Throughout this paper, we will make use of wavepacket decomposition which allows us to de-
compose a function f , which is Fourier supported in some θK , into linear combinations of indicator
functions of translates of the parallelpiped “dual” to θK . That the q-adic character χ is trivial on
Zq gives a much cleaner wavepacket decomposition when working over Qq than over R. See [30,
Section 3] or [17, Section 2.4] for some discussion about wavepacket decomposition over R in the
context of the paraboloid (though the same ideas apply for the degree k moment curve).

Fix δ P q´N. It will be convenient to introduce the shorthand

θδ :“ δZq ˆ δ2Zq ˆ ¨ ¨ ¨ ˆ δkZq

and

Tδ :“ δ´1Zq ˆ δ´2Zq ˆ ¨ ¨ ¨ ˆ δ´kZq.
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They are dual to each other in the sense that

Tδ “ tx P Qk
q : |x ¨ ξ| ď 1 for all ξ P θδu.

Since for any 1 ď j ď k, any interval in Qq of length δj is the disjoint union of δ´pk´jq many

intervals of length δk, it follows that θδ is the disjoint union of δ´ kpk´1q
2 many cubes of side lengths

δk in Qk
q . Similarly, any cube in Qk

q of side length δ´k is a disjoint union of δ´ kpk´1q
2 many translates

of Tδ.
Now for a P Zq, let Ma be the k ˆ k lower-triangular matrix given by

Ma “ pγ1paq γ2paq ¨ ¨ ¨ γpkqpaqq

where we view γpjqpaq as a column vector. Then for any K P Pδ, we have

θK “ γpaq ` Maθδ (2.1)

for any a P K. In fact, the right hand side is independent of a P K since if b P K, then

γpbq “ γpaq `
kÿ

j“1

pj!q´1γpjqpaqpb ´ aqj P γpaq ` Maθδ,

and

Ma “ Mb

¨
˚̊
˚̊
˚̋

1 0 . . . 0
p1!q´1pb ´ aq 1 . . . 0
p2!q´1pb ´ aq2 p1!q´1pb ´ aq . . . 0

...
. . .

ppk ´ 1q!q´1pb ´ aqk´1 ppk ´ 2q!q´1pb ´ aqk´2 . . . 1

˛
‹‹‹‹‹‚

(2.2)

where the second matrix on the right hand side preserves θδ “ δZq ˆ δ2Zq ˆ ¨ ¨ ¨ ˆ δkZq (here we
have used the fact that |k!| “ 1 in Qq since q ą k).

For K P Pδ and any a P K, let T0,K be the dual parallelepiped to θK centered at the origin given
by

T0,K “ tx P Qk
q : |x ¨ pξ ´ γpaqq| ď 1 for all ξ P θKu.

Using (2.1), it is not hard to see that

T0,K “ tx P Qk
q : |x ¨ γpjqpaq| ď δ´j for all 1 ď j ď ku

“ tx P Qk
q : M

T
a x P Tδu “ M´T

a Tδ

for any a P K. This parallelepiped depends only on K but not on the choice of a P K, since (2.2)
shows that

M´T
a “ M´T

b

¨
˚̊
˚̊
˚̋

1 Opδq Opδ2q . . . Opδk´1q
0 1 Opδq . . . Opδk´2q
0 0 1 . . . Opδk´3q
...

. . .

0 0 0 . . . 1

˛
‹‹‹‹‹‚
,

where Opδjq is some number in Qq with norm ď δj , and the second matrix on the right hand side
is a bijection that preserves Tδ by the ultrametric inequality.

Lemma 2.1. Let δ P q´N and fix K P Pδ. Then

(i) θK ´ θK is the disjoint union of δ´ kpk´1q
2 cubes of side lengths δk, and

(ii) every cube of side length δ´k in Qk
q is the disjoint union of δ´ kpk´1q

2 many translates of T0,K .
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Proof. (i) Recall that θδ is the disjoint union of δ´ kpk´1q
2 cubes of side lengths δk. Since Ma is

a bijection that maps cubes of side length δk to cubes of side length δk for any a P K, and
θK ´ θK “ Maθδ for any a P K, the assertion follows. Note that θK ´ θK is just a translation
of θK to the origin.

(ii) Recall that any cube in Qk
q of side length δ´k is a disjoint union of δ´ kpk´1q

2 many translates

of Tδ. Since M´T
a is a bijection that maps cubes of side length δ´k to cubes of side length

δ´k for any a P K, and T0,K “ M´T
a Tδ for any a P K, the assertion follows.

�

From Lemma 2.1(ii), we may deduce that translates of T0,K tile Qk
q ; we denote the collection of

such translates by TpKq. We are now ready to state the version of wavepacket decomposition that
we will use.

Lemma 2.2 (Wavepacket decomposition). Let δ P q´N and fix K P Pδ. Let g be a Schwartz
function with Fourier transform supported in θK . Then |g| is constant on every T P TpKq, and
yg1T is supported on θK for every T P TpKq. Hence it is natural to write

g “
ÿ

TPTpKq

g1T , (2.3)

where each term g1T (which we will call a “wavepacket”) is Fourier supported on θK and has
constant modulus on every T P TpKq. It also follows that if T is any subset of TpKq, then

ř
TPT g1T

is Fourier supported in θK .

Proof. First, to prove that |g| is constant on any translates of T0,K , one only needs to prove the
case when δ “ 1, K “ Zq, and then apply a change of variables, but we opt for a more explicit

proof. We will show that |gpxq| is constant for all x P A`T0,K for any A P Qk
q . By Fourier inversion

we have that

|gpxq| “ |

ż

θK

pgpξqχpξ ¨ xq dξ|

“ |

ż

|t1|ďδ,...,|tk|ďδk
pgpγpaq `

kÿ

j“1

tjγ
pjqpaqqχprγpaq `

kÿ

j“1

tjγ
pjqpaqs ¨ xq dt|

“ |

ż

|t1|ďδ,...,|tk|ďδk
pgpγpaq ` MatqχpMT

a x ¨ tq dt|.

For x P A ` T0,K , we write x “ A ` M´T
a y1 where |y1

j| ď δ´j for j “ 1, 2, . . . , k. Therefore

|gpxq| “ |

ż

|t1|ďδ,...,|tk|ďδk
pgpγpaq ` MatqχpMT

a A ¨ tqχpy1 ¨ tq dt|

“ |

ż

|t1|ďδ,...,|tk|ďδk
pgpγpaq ` MatqχpMT

a A ¨ tq dt|

where we have used that y1 ¨ t P Zq, and so χpy1 ¨ tq “ 1. The right hand side is then independent
of y1 and so the above equality is true for all x P A ` T0,K . In particular this shows that |g| is a
constant on A ` T0,K . This constant depends on K, g and A, but is a constant nonetheless.

Next, to prove that yg1T is supported on θK , it suffices to observe that yg1T “ pg ˚ x1T , and that
x1T is supported on θK ´ θK for every T P TpKq: in fact, for every T P TpKq, x1T is a modulation
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of z1T0,K
, and if a is any point in K, then T0,K “ M´T

a Tδ. It follows that

z1T0,K
pξq “

ż

M´T
a Tδ

χp´x ¨ ξqdx

“ detpMaq´1

ż

Tδ

χp´M´T
a y ¨ ξqdy “ detpMaq´1δ´kpk`1q{21θδpM´1

a ξq

is supported on Maθδ “ θK ´ θK . Finally, the decomposition (2.3) follows since parallelepipeds in
TpKq tile Qk

q . This completes the proof of the lemma. �

3. Sketch of the Karatsuba argument

Before we dive into the proof of Theorem 1.1, we review the proof of (1.3) with an eye towards
interpreting each step into decoupling language. See also, for example, [31, Section 5.1] or [29,
Theorem 13 - Lemma 21] for more details of the number theoretic argument. Just for this section,
we revert back to calling p a prime so as to best match these references.

3.1. Step 1: Introducing some p-adic separation. Given X ě 1, one finds, using the Prime
Number Theorem, a prime p „ X1{k such that Js,kpXq is controlled by Js,kpX, pq, where Js,kpX, pq
is defined to be the number of solutions px1, . . . , xs, y1, . . . , ysq P pr1,Xs X Nq2s to (1.1) with the
additional condition that x1, . . . , xk are pairwise distinct mod p and y1, . . . , yk are pairwise distinct
mod p. Since p is rather large, this is a rather mild condition and so we heuristically should still
expect Js,kpXq « Js,kpX, pq. The benefit of this extra p-adic separation (transversality) in these
2k variables is that we will get to apply Linnik’s Lemma (in Step 3, (3.3) below) which will up to
permutation uniquely determine these variables.

3.2. Step 2: Applying the union bound/Hölder. We now write Js,kpX, pq as

ż

r0,1s2s
|

ÿ

a1,...,ak pmod pq
ai pairwise distinct

kź

j“1

ÿ

nj”aj pmod pq
1ďnjďX

epnjα1 ` ¨ ¨ ¨ ` nk
jαkq|2|

ÿ

1ďnďX

epnα1 ` ¨ ¨ ¨ ` nkαkq|2s´2k dα.

Write |
ř

1ďnďX |2s´2k “ |
ř

a pmod pq

ř
n”a pmod pq |2s´2k and apply Hölder’s inequality to control

the above by

p2s´2k max
a pmod pq

ż

r0,1s2s
|

ÿ

a1,...,ak pmod pq
ai pairwise distinct

kź

j“1

ÿ

nj”aj pmod pq
1ďnjďX

epnjα1 ` ¨ ¨ ¨ ` nk
jαkq|2ˆ

|
ÿ

n”a pmod pq
1ďnďX

epnα1 ` ¨ ¨ ¨ ` nkαkq|2s´2k dα.

(3.1)

Denote the integral above to be Js,kpX, p, aq. This expression counts the number of solutions
px1, . . . , xs, y1, . . . , ysq P pr1,Xs X Nq2s to (1.1) with x1, . . . , xk pairwise distinct mod p, y1, . . . , yk
pairwise distinct mod p, and xk`1 ” ¨ ¨ ¨ ” xs ” yk`1 ” ¨ ¨ ¨ ” ys ” a pmod pq.

3.3. Step 3: Solution counting. Translation invariance of the Vinogradov system implies that
we may bound Js,kpX, p, aq by Js,kpX, p, 0q. Rearrange the Vinogradov system (1.1) as

x
j
k`1 ` ¨ ¨ ¨ ` xjs ´ y

j
k`1 ´ ¨ ¨ ¨ ´ yjs “ y

j
1 ` ¨ ¨ ¨ ` y

j
k ´ x

j
1 ´ ¨ ¨ ¨ ´ x

j
k, 1 ď j ď k (3.2)

where x1, . . . , xk are distinct mod p and y1, . . . , yk are distinct mod p and since we are considering
Js,kpX, p, 0q, we have that xk`1, . . . , xs, yk`1, . . . , ys ” 0 pmod pq. Each choice of x1, . . . , xk, y1, . . . , yk
gives ď Js´k,kpX{pq many solutions to pxk`1, . . . , xs, yk`1, . . . , ysq. To see this, write the count for
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(3.2) as an integral and use the triangle inequality; the basic idea being that shifts of the Vinogradov
system can only give fewer solutions.

Next, fixing one of the at most Js´k,kpX{pq many tuples pxk`1, . . . , xs, yk`1, . . . , ysq, how many
valid x1, . . . , xk, y1, . . . , yk are there? Since requiring y1, . . . , yk to be distinct mod p is a rather mild
condition, there are ď Xk such py1, . . . , ykq. Any valid px1, . . . , xkq P pr1,Xs X Nqk must satisfy

x
j
1 ` ¨ ¨ ¨ ` x

j
k ” Hj pmod pjq, 1 ď j ď k

where the xi are pairwise disjoint mod p for some Hj that depends on py1, . . . , ykq (of which there

are ď Xk many possibilities) and pxk`1, . . . , xs, yk`1, . . . , ysq (of which there are ď Js´k,kpX{pq

many possibilities). Since pk „ X, instead of counting integers between 1 and X, we can count the
xi mod pk. Thus it remains to count the number of residue classes px1 pmod pkq, . . . , xk pmod pkqq
such that

x
j
1 ` ¨ ¨ ¨ ` x

j
k ” Hj pmod pjq, 1 ď j ď k (3.3)

and xi pmod pkq are pairwise distinct mod p. Linnik’s Lemma [24] then says that there are at most

k!pkpk´1q{2 many such k-tuples of residue classes and the proof follows from first upgrading all residue
classes mod pj in (3.3) to mod pk (by paying a cost of pkpk´1q{2) and then using the Newton-Girard
identities which essentially uniquely determine the x1, . . . , xk (up to permutation). This bound is

efficient since probabilistic heuristics suggest that we should expect « ppkqk{pkpk`1q{2 “ pkpk´1q{2

many solutions. Thus we have that

Js,kpX, p, 0q Àk Js´k,kpX{pqXkpkpk´1q{2. (3.4)

3.4. Step 4: Iteration. Putting Steps 1 to 3 together we obtain the iteration that

Js,kpXq Àk p2s´2kJs´k,kpX{pqXkpkpk´1q{2. (3.5)

Running this iteration about Ops{kq many steps reduces to an estimate on Jk,kpXq from which

one can easily compute there are OpXkq many solutions by the Newton-Girard identities. The
iteration (3.5) is sharp if both s and s ´ k are supercritical. If they are, then heuristically, we

expect Js,kpXq « X2s´kpk`1q{2 and Js´k,kpX{pq « pX{pq2ps´kq´kpk`1q{2. Then the right hand side

of (3.5) becomes X2sX´3k{2´k2{2pk
2

which is equal to X2s´kpk`1q{2 since p „ X1{k. However, both

sides are not the same if one of s or s´k is subcritical. This is where the inefficiency of X
k2

2
p1´ 1

k
qs{k

comes from.

3.5. Interpreting Steps 1-4 into decoupling. Having briefly summarized the number theoretic
argument into four steps, we now briefly sketch the main points to interpret into decoupling. First
we discuss the scales needed in the proof. From Steps 1 and 3, there are three scales: the largest
scale X, the intermediate scale p „ X1{k, and the smallest scale 1. Correspondingly in our proof,

we use three scales: the smallest scale δ, the intermediate scale ν :“ qtlogq δ
1{ku „ δ1{k, and the

largest scale 1. For some technical reasons surrounding the broad-narrow reduction, in lieu of the
scale 1, we will actually use the scale κ :“ qtlogq δ

εu where ε is as in (1.8).
Next, we discuss the reduction to the decoupling analogue of (3.1). In Step 1, two residue

classes being distinct mod p means they are p-adically separated by a distance 1 and so this should
correspond to two intervals which are 1-separated. To get around the use of the Prime Number
Theorem, we make use instead of broad-narrow reduction due to Bourgain and Guth in [4] which
will allow us to reduce to controlling a multilinear decoupling expression.
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Third, the loss of p2s´2k in Step 2 above deserves some mention. This loss comes from essentially
having applied the union bound

|
ÿ

1ďnďX

epnα1 ` ¨ ¨ ¨ ` nkαkq| “ |
ÿ

a pmod pq

ÿ

n”a pmod pq
1ďnďX

epnα1 ` ¨ ¨ ¨ ` nkαkq|

ď p max
a pmod pq

|
ÿ

n”a pmod pq
1ďnďX

epnα1 ` ¨ ¨ ¨ ` nkαkq|.

Heuristically we expect this inequality to be efficient since each
ř

n”a pmod pq contributes equally

to the entire sum as the exponential sum should not bias one residue class mod p over another.
This however is not necessarily true in the decoupling case and will require us to obtain some extra
uniformity via dyadic pigeonholing, see Section 5.1, later.

Finally, to interpret the solution counting Step 3, we make use of the simple identityż

Qk
q

fpxq dx “ pfp0q

which converts the integral of f into a question of whether 0 is contained in the support of pf . This
is done in Lemma 4.4 below and the proof relies on the Newton-Girard identities, much like in the
proof of Linnik’s Lemma. This part of the argument requires that p is even and is reminiscent of
a Córdoba-Fefferman argument (see for example [8, Section 3.2] or [6, 7, 10]).

4. The main lemma

One standard property about the moment curve decoupling constant that we use is affine rescal-
ing. This property plays the analogue of translation-dilation invariance of the Vinogradov system
(1.1).

Lemma 4.1 (Affine rescaling). Let g be a Schwartz function on Qk
q Fourier supported in

Ť
KPPδ

θK .
Then for any interval I Ă Zq of length κ ě δ, we have

}gI}LppQk
q q ď Dpp

δ

κ
qp

ÿ

KPPδpIq

}gK}2
LppQk

q qq
1{2.

Proof. This proof is standard and follows from a change of variables which can be found for example
in [8, Section 11.2]. �

Our main lemma in proving Theorem 1.1 is the following:

Lemma 4.2. Let p P 2k ` 2N, δ P q´N and κ P q´N X rδ, 1q. Let ν “ qtlogq δ
1{ku P q´N so that

ν ď δ1{k. If g is a Schwartz function with Fourier support in
Ť

KPPδ
θK , then we have

ż

Qk
q

|g|p ď CDpp
δ

κ
qpp

ÿ

KPPδ

}gK}2LppQk
q qq

p{2 ` Cq´kpk´1qκ´pk2`4k´2qν´kpk´1q{2Np´2kˆ

Dp´2kp
δ

ν
qp´2k max

KPPδ

}gK}k
L8pQk

q qp
ÿ

K̄PPδ

}gK̄}L8pQk
q qq

k max
JPPν

p
ÿ

K 1PPδpJq

}gK 1}2
Lp´2kpQk

q qq
pp´2kq{2

where N is the number of J P Pν for which gJ ‰ 0 and C depends only on k and p.

Here κ is a somewhat technical parameter that is chosen to be roughly δε later in Section 5.
However, on a first reading, it might be more convenient for the reader to take κ “ 1{q to better
grasp the moving parts of the argument. The somewhat non-standard decoupling right hand side in
Lemma 4.2 is reminiscent of the right hand side used in Theorem 1.2 of [18]. To give more context
to the above lemma, the following estimate is true:
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Lemma 4.3. For any p ą 2k, we have

p
ÿ

KPPδ

}gK}2
LppQk

q qq
p{2

ď N pp´2kq{2 max
KPPδ

}gK}k
L8pQk

q qp
ÿ

K̄PPδ

}gK̄}L8pQk
q qq

k max
JPPκ

p
ÿ

KPPδpJq

}gK}2
Lp´2kpQk

q qq
pp´2kq{2

where N is as defined in Lemma 4.2.

Proof. Hölder’s inequality gives us

}gK}LppQk
q q ď }gK}

2k
p

L8pQk
q q

}gK}
1´ 2k

p

Lp´2kpQk
q q
,

and so, applying
´ ÿ

K

a
2k
p

K b
2k
p

K c
2p1´ 2k

p
q

K

¯ p
2

ď pmax
K

aKqkp
ÿ

K

bKqkp
ÿ

K

c2Kq
p´2k

2

with aK “ bK “ }gK}L8pQk
q q and cK “ }gK}Lp´2kpQk

q q, we get

p
ÿ

KPPδ

}gK}2
LppQk

q qq
p{2 ď max

KPPδ

}gK}k
L8pQk

q qp
ÿ

K̄PPδ

}gK̄}L8pQk
q qq

kp
ÿ

KPPδ

}gK}2
Lp´2kpQk

q qq
pp´2kq{2.

It remains to observe that

p
ÿ

KPPδ

}gK}2Lp´2kpQk
q qq

pp´2kq{2 ď N pp´2kq{2max
JPPκ

p
ÿ

KPPδpJq

}gK}2Lp´2kpQk
q qq

pp´2kq{2.

�

Suppose for a moment that in Lemma 4.3, we had an equality instead of an inequality. This

is indeed the case when gpxq is the exponential sum X´100k21|x|ďX100k

řX
j“1 epγpjq ¨ xq that arises

in using decoupling to estimate the number of solutions in (1.3). As N ď ν´1 (and taking, for
convenience, κ “ 1{q), Lemma 4.2 would give us

Dppδqp ď CDppqδqp ` Cq5k´2ν´ p
2

`k´ kpk´1q
2 Dp´2kp

δ

ν
qp´2k (4.1)

Heuristically, we expect this iteration to be efficient as long as p´2k (and so also p) is supercritical.

To see this, if r is supercritical, then we heuristically expect that Drpδqr « δ´ r
2

` kpk`1q
2 for all δ.

Thus the iteration should be efficient if with this assumption on the size of Drpδqr , both sides of
(4.1) are the same. The right hand side of (4.1) is then

„q pδ´ 1
k q

p
2

`k´ kpk´1q
2 pδ´1` 1

k q
p´2k

2
´ kpk`1q

2 “ δ´pp
2

´ kpk`1q
2

q

which is comparable to the left hand side of (4.1). A similar calculation shows that this iteration
is not efficient if at least one of p or p ´ 2k is subcritical.

Unfortunately the reverse inequality in Lemma 4.3 fails to hold for general g. This is because
we lack the uniformity in the exponential sum that one considers when one counts solutions to the
Vinogradov system. This uniformity can be restored by pigeonholing, which only produces δ´ε

losses. This pigeonholing must be done before one applies induction on scales and iterates on the
Lebesgue exponent p. The full argument is carried out in detail in Section 5.

4.1. Proof of Lemma 4.2. The proof of Lemma 4.2 uses a broad/narrow dichotomy, due to
Bourgain and Guth [4] combined with some basic geometric geometric properties of the moment
curve. See also for example [8, Chapter 7].
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4.1.1. The broad-narrow argument. First, we have the pointwise bound |gpxq| ď
ř

IPPκ
|gIpxq|. At

every point x P Qk
q , let Ix be the set of all intervals I 1 P Pκ such that |gI 1 pxq| ě κmaxIPPκ |gIpxq|.

Suppose first Ix contains at least k (disjoint) intervals, say I 1
1, . . . , I

1
k (all dependent on x) of length

κ and |gI 1
1
pxq| “ maxIPPκ |gIpxq|: in this case we have

|gpxq| ď κ´1 max
IPPκ

|gIpxq| ď κ´1κ´pk´1q{k|gI 1
1
pxq . . . gI 1

k
pxq|1{k

ď κ´2`1{k max
I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

|gI1pxq . . . gIkpxq|1{k.

Here we used that in Qk
q , two distinct intervals of the same length are separated by at least that

length. Alternatively, Ix contains at most k ´ 1 intervals, in which case

|gpxq| ď
ÿ

IPIx

|gIpxq| `
ÿ

IPPκzIx

|gIpxq| ă pk ´ 1qmax
IPPκ

|gIpxq| `
ÿ

IPPκzIx

κmax
IPPκ

|gIpxq| ă kmax
IPPκ

|gIpxq|.

As a result, we obtain the pointwise bound that for each x P Qk
q , we have

|gpxq| ď kmax
IPPκ

|gIpxq| ` κ´2`1{k max
I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

|gI1pxq . . . gIkpxq|1{k

which, upon raising both sides to power 2k and applying pA ` Bq2k ď 22k´1pA2k ` B2kq (a conse-
quence of the convexity of x ÞÑ x2k), yields

|gpxq|2k ď 22k´1k2k max
IPPκ

|gIpxq|2k ` 22k´1κ´p4k´2q max
I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

|gI1pxq . . . gIkpxq|2. (4.2)

Using this pointwise bound while integrating we find that
ż

Qk
q

|g|p “

ż

Qk
q

|g|2k|g|p´2k

ď C

ż

Qk
q

pmax
IPPκ

|gI |2qk|g|p´2k ` Cκ´p4k´2q

ż

Qk
q

max
I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

|gI1 . . . gIk |2|g|p´2k

ď C

ż

Qk
q

p
ÿ

IPPκ

|gI |2qk|g|p´2k ` Cκ´p4k´2q
ÿ

I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

ż

Qk
q

|gI1 . . . gIk |2|g|p´2k

ď C

ż

Qk
q

p
ÿ

IPPκ

|gI |2qk|g|p´2k ` Cκ´p4k´2qκ´k max
I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

ż

Qk
q

|gI1 . . . gIk |2|g|p´2k

for some C depending on k. Hölder’s inequality followed by Minkowski’s inequality implies that
the first term satisfies

C

ż

Qk
q

p
ÿ

IPPκ

|gI |2qk|g|p´2k ď C
´ ż

Qk
q

p
ÿ

IPPκ

|gI |2qp{2
¯2k{p´ ż

Qk
q

|g|p
¯pp´2kq{p

ď C
´ ÿ

IPPκ

}gI}2LppQk
q q

¯k´ ż

Qk
q

|g|p
¯pp´2kq{p

ď
1

2

ż

Qk
q

|g|p ` C 1
´ ÿ

IPPκ

}gI}2LppQk
q q

¯p{2
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for some C 1 that depends on k and p. The last inequality uses Young’s inequality and the fact that
p ě 2k. Therefore,

ż

Qk
q

|g|p Àp

´ ÿ

IPPκ

}gI}2LppQk
q q

¯p{2
` κ´p5k´2q max

I1,...,IkPPκ

dpIi,Ijqąκ@i‰j

ż

Qk
q

|gI1 . . . gIk |2|g|p´2k.

Using affine rescaling (Lemma 4.1) and applying the definition (1.5) of our decoupling constant, we
deduce that

´ ÿ

IPPκ

}gI}2LppQk
q q

¯p{2
ď Dpp

δ

κ
qp

´ ÿ

KPPδ

}gK}2LppQk
q q

¯p{2
.

Plugging this into the above yields

ż

Qk
q

|g|p Àp Dpp
δ

κ
qp

´ ÿ

KPPδ

}gK}2LppQk
q q

¯p{2
` κ´p5k´2q max

I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

ż

Qk
q

|gI1 . . . gIk |2|g|p´2k. (4.3)

This inequality (4.3) is the analogue of Step 1 in Section 3.1. The requirement that we analyze
solutions to the Vinogradov system with x1, . . . , xs and y1, . . . , ys being distinct mod p corresponds
to the requirement that we analyze

ş
Qk

q
|gI1 . . . gIk |2|g|p´2k with dpIi, Ijq ą κ for all 1 ď i ‰ j ď k

with κ “ 1{q.
Next, we mimic Step 2 in Section 3.2. Recalling our definition of N in the statement of Lemma

4.2, Hölder’s inequality gives

|g|p´2k ď Np´2k´1
ÿ

JPPν

|gJ |p´2k.

Applying this in the second term in (4.3), we get

ż

Qk
q

|g|p

Àp Dpp
δ

κ
qp

´ ÿ

KPPδ

}gK}2LppQk
q q

¯p{2
` κ´p5k´2qNp´2k´1 max

I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

ÿ

JPPν

ż

Qk
q

|gI1 . . . gIk |2|gJ |p´2k

Àp Dpp
δ

κ
qp

´ ÿ

KPPδ

}gK}2
LppQk

q q

¯p{2
` κ´p5k´2qNp´2k max

I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

max
JPPν

ż

Qk
q

|gI1 . . . gIk |2|gJ |p´2k (4.4)

which is the analogue of Step 2 in Section 3.2.
To analyze the second term in (4.4), we fix I1, . . . , Ik P Pκ with dpIi, Ijq ą κ for all i ‰ j, and

fix J P Pν with gJ ‰ 0. To estimate the integral
ş
Qk

q
|gI1 . . . gIk |2|gJ |p´2k, first note that the Fourier

transform of |gJ |2 “ gJgJ is supported in the parallelepiped θJ ´ θJ , of dimension ν ˆ ν2 ˆ ¨ ¨ ¨ ˆ νk.
Since our hypothesis guarantees that p ´ 2k is an even positive integer, the same is true for the
Fourier transform of |gJ |p´2k. Lemma 2.1(i) applied to J P Pν instead of K P Pδ shows that the

Fourier support of |gJ |p´2k is the disjoint union of ν´kpk´1q{2 many cubes of side lengths νk, and
we denote this collection of cubes by tlu. This corresponds to the fact that we have a k-tuple

of residue classes pH1 pmod pq,H2 pmod p2q, . . . ,Hk pmod pkqq which we can upgrade to pkpk´1q{2

many k-tuples of the form pH 1
1 pmod pkq,H 1

2 pmod pkq, . . . ,H 1
k pmod pkqq. Note that the side length

νk of the cubes l is ď δ.
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We now apply Fourier inversion and turn products into convolutions. We have

ż

Qk
q

|gI1 . . . gIk |2|gJ |p´2k “
ÿ

KiPPδpIiq
i“1,...,k

ÿ

K̄jPPδpIjq
j“1,...,k

ż

Qk
q

gK1
. . . gKk

gK̄1
. . . gK̄k

|gJ |p´2k

“
ÿ

l

ÿ

KiPPδpIiq
i“1,...,k

ÿ

K̄jPPδpIjq
j“1,...,k

ygK1
˚ ¨ ¨ ¨ ˚ ygKk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

˚ p {|gJ |p´2k1lqp0q.

For each fixed l and K̄1 P PδpI1q, . . . , K̄k P PδpIkq, let SpK̄1, . . . , K̄k,lq be the set of all
pK1, . . . ,Kkq with Ki P PδpIiq such that

0 P supppygK1
˚ ¨ ¨ ¨ ˚ ygKk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

˚ p {|gJ |p´2k1lqq. (4.5)

We will prove in Lemma 4.4 below that #SpK̄1, . . . , K̄k,lq ď pqκq´kpk´1q. If we think of the model
case when κ “ 1{q, this would say that the K̄i and l uniquely determine the Ki in (4.5). This
analogous to the situation in Linnik’s lemma where once we upgrade (3.3) to residue classes mod
pk, the remaining variables are essentially uniquely determined.

We now write
ż

Qk
q

|gI1 . . . gIk |2|gJ |p´2k

“
ˇ̌
ˇ
ÿ

l

ÿ

K̄jPPδpIjq
j“1,...,k

ÿ

pK1,...,KkqP
SpK̄1,...,K̄k,lq

ygK1
˚ ¨ ¨ ¨ ˚ ygKk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

˚ p {|gJ |p´2k1lqp0q
ˇ̌
ˇ

ď
ÿ

l

ÿ

K̄jPPδpIjq
j“1,...,k

ÿ

pK1,...,KkqP
SpK̄1,...,K̄k,lq

ż

Qk
q

|gK1
. . . gKk

gK̄1
. . . gK̄k

||gJ |p´2k ˚ |1l

Ź

|

ď
ÿ

l

p
ÿ

K̄PPδ

}gK̄}L8pQk
q qq

kpqκq´kpk´1q max
KPPδ

}gK}k
L8pQk

q q

ż

Qk
q

|gJ |p´2k ˚ |1l

Ź

|.

Since
ş
Qk

q
|1l

Ź

| “ 1 and the number of l is ν´kpk´1q{2, this gives

ż

Qk
q

|gI1 . . . gIk |2|gJ |p´2k ď ν´ kpk´1q
2 pqκq´kpk´1q max

KPPδ

}gK}k
L8pQk

q qp
ÿ

K̄PPδ

}gK̄}L8pQk
q qq

k

ż

Qk
q

|gJ |p´2k.

Applying affine rescaling shows that this is

ď ν´ kpk´1q
2 pqκq´kpk´1q max

KPPδ

}gK}k
L8pQk

q qˆ

p
ÿ

K̄PPδ

}gK̄}L8pQk
q qq

k
Dp´2kp

δ

ν
qp´2k

´ ÿ

K 1PPδpJq

}gK 1}2Lp´2kpQk
q q

¯ p´2k
2

.
(4.6)

One can think of (4.6) as the analogue of (3.4) in Section 3.3 in the following way: the term

ν´kpk´1q{2pqκq´kpk´1q maxKPPδ
}gK}k8 plays the role of pkpk´1q{2 from Linnik’s lemma, the term

p
ř

K̄PPδ
}gK̄}8qk plays the role of Xk, and finally the term Dp´2kp δ

ν
qp´2kp

ř
K 1PPδpJq }gK 1}2p´2kq

p´2k
2

plays the role of the Js´k,kpX{pq.
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Plugging (4.6) back to (4.4), we then obtain
ż

Qk
q

|g|p ÀpDpp
δ

κ
qp

´ ÿ

KPPδ

}gK}2LppQk
q q

¯p{2
` q´kpk´1qκ´pk2`4k´2qν´ kpk´1q

2 Np´2kˆ

Dp´2kp
δ

ν
qp´2k max

KPPδ

}gK}kL8pQk
q qp

ÿ

K̄PPδ

}gK̄}L8pQk
q qq

k
´ ÿ

K 1PPδpJq

}gK 1}2Lp´2kpQk
q q

¯ p´2k
2

.

4.1.2. Geometry of the moment curve. The proof of Lemma 4.2 is now complete modulo the
proof of the following lemma, which provides the key geometric input that enables one to count
#SpK̄1, . . . , K̄k,lq. This is the analogue of Linnik’s Lemma ([29, Corollary 17] and the estimate
for Bpgq in the proof of [31, Lemma 5.1]); see also [13, Proposition 1.3] and [2, Proposition 3.1].
Both proofs use the Newton-Girard identities in essentially the same way. The hypothesis that
q ą k, where q is the characteristic of our base field Qq and k is the degree of the moment curve,
plays a role in the following lemma.

Lemma 4.4. Let p P 2k ` 2N, δ P q´N, κ P q´N X rδ, 1q, and ν “ qtlogq δ
1{ku P q´N so that

ν ď δ1{k. Suppose that I1, . . . , Ik P Pκ with dpIi, Ijq ą κ for all i ‰ j. Let l be a cube of side length

νk and K̄1 P PδpI1q, . . . , K̄k P PδpIkq. Define SpK̄1, . . . , K̄k,lq be the set of all ordered k-tuples
pK1, . . . ,Kkq with Ki P PδpIiq such that

0 P supppygK1
˚ ¨ ¨ ¨ ˚ ygKk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

˚ p {|gJ |p´2k1lqq.

Then

#SpK̄1, . . . , K̄k,lq ď pqκq´kpk´1q.

Proof. Assume for the sake of contradiction that #SpK̄1, . . . , K̄k,lq ą pqκq´kpk´1q ě 1. We can
find two k-tuples of intervals pA1, . . . , Akq and pB1, . . . , Bkq with each Ai, Bi P PδpIiq such that

0 P supppygA1
˚ ¨ ¨ ¨ ˚ ygAk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

˚ p {|gJ |p´2k1lqq, (4.7)

0 P supppygB1
˚ ¨ ¨ ¨ ˚ ygBk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

˚ p {|gJ |p´2k1lqq, (4.8)

and such that there exists an i0 with dpAi0 , Bi0q ą pqκq´pk´1qδ. Indeed, if not, picking an ar-
bitrary pC1, . . . , Ckq P SpK̄1, . . . , K̄k,lq, shows that any other pD1, . . . ,Dkq P SpK̄1, . . . , K̄k,lq
must satisfy dpCi,Diq ď pqκq´pk´1qδ. This gives at most pqκq´kpk´1q many k-tuples which violates

our initial assumption that #SpK̄1, . . . , K̄k,lq ą pqκq´kpk´1q. Without loss of generality, we may
assume that i0 “ 1.

Since for each i “ 1, 2, . . . , k, we have Ai, Bi Ă Ii and dpIi, Ijq ą κ for all i ‰ j, this implies

dpAi, Ajq ě qκ, dpBi, Bjq ě qκ, dpAi, Bjq ě qκ whenever j ‰ i (4.9)

(thus the only distances we do not have any control over are the ones of the form dpAi, Biq, i ‰ 1).
By (4.7) and (4.8), we have that

0 P p
kÿ

i“1

τAi
´

kÿ

i“1

τK̄i
` lq X p

kÿ

i“1

τBi
´

kÿ

i“1

τK̄i
` lq

where here we recall the definition of τK in (1.4). Each τAi
, τBi

, and τK̄i
are cubes in Qk

q of

side length δ and l is a cube in Qk
q of side length νk ď δ. Thus by the ultrametric inequality,

both
řk

i“1 τAi
´

řk
i“1 τK̄i

` l and
řk

i“1 τBi
´

řk
i“1 τK̄i

` l are cubes in Qk
q of side length δ.

Furthermore, by the ultrametric inequality, since two cubes of side length δ are either completely
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disjoint or exactly the same, we must have

kÿ

i“1

τAi
´

kÿ

i“1

τK̄i
` l “

kÿ

i“1

τBi
´

kÿ

i“1

τK̄i
` l

and hence
kÿ

i“1

τAi
´

kÿ

i“1

τBi
“ Bp0, δq.

Therefore (after another application of the ultrametric inequality) there exists ξAi
P Ai and ξBi

P Bi

such that

|
kÿ

i“1

ξ
j
Ai

´
kÿ

i“1

ξ
j
Bi

| ď δ (4.10)

for j “ 1, 2, . . . , k.
We now use the Newton-Girard identities to derive a contradiction. For j “ 1, 2, . . . , k, define the

power sums pjpx1, . . . , xkq :“ x
j
1`¨ ¨ ¨`x

j
k. Next for j “ 1, 2, . . . , k, define the elementary symmetric

polynomials ejpx1, . . . , xkq :“
ř

1ďi1ă¨¨¨ăijďk xi1 ¨ ¨ ¨ xij . Additionally, let e0px1, . . . , xkq :“ 1. Then

we have the two identities:

pX ´ x1qpX ´ x2q ¨ ¨ ¨ pX ´ xkq “
kÿ

j“0

p´1qjejpx1, . . . , xkqXk´j (4.11)

and for j “ 1, 2, . . . , k, we have

jejpx1, . . . , xkq “
j´1ÿ

i“0

p´1qiej´i´1px1, . . . , xkqpi`1px1, . . . , xkq. (4.12)

See, for example, [29, Lemma 15] for a proof.
Let ejpAq :“ ejpξA1

, . . . , ξAk
q and pjpAq :“ pjpξA1

, . . . , ξAk
q. Similarly define ejpBq and pjpBq.

By (4.11), we then have

pξA1
´ ξB1

q ¨ ¨ ¨ pξA1
´ ξBk

q “
kÿ

j“0

p´1qjejpBqξk´j
A1

(4.13)

and

0 “ pξA1
´ ξA1

q ¨ ¨ ¨ pξA1
´ ξAk

q “
kÿ

j“0

p´1qjejpAqξk´j
A1

. (4.14)

Subtracting (4.14) from (4.13) and using that |ξA1
´ ξBj

| ě qκ for any j ‰ 1 (which follows from
(4.9)) shows that

pqκqk´1|ξA1
´ ξB1

| ď |
kÿ

j“0

p´1qjpejpBq ´ ejpAqqξk´j
A1

| ď max
j

|ejpBq ´ ejpAq|. (4.15)

Next we claim that |ejpBq ´ ejpAq| ď δ for all j “ 1, 2, . . . , k. We prove this by induction. Since
e1 “ p1, |e1pBq´e1pAq| ď δ by the j “ 1 case of (4.10). Now assume that for some J “ 1, 2, . . . , k´1
we had |ejpBq ´ ejpAq| ď δ for all j “ 1, 2, . . . , J . Then by (4.12),

|pJ ` 1qeJ`1pBq ´ pJ ` 1qeJ`1pAq| “ |
Jÿ

i“0

p´1qipeJ´ipBqpi`1pBq ´ eJ´ipAqpi`1pAqq|

ď max
0ďiďJ

|eJ´ipBqpi`1pBq ´ eJ´ipAqpi`1pAq|.
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Observe that

|eJ´ipBqpi`1pBq ´ eJ´ipAqpi`1pAq| “ |eJ´ipBqppi`1pBq ´ pi`1pAqq ` pi`1pAqpeJ´ipBq ´ eJ´ipAqq|

ď maxp|pi`1pBq ´ pi`1pAq|, |eJ´ipBq ´ eJ´ipAq|q ď δ

by the inductive hypothesis and (4.10). Since q is a prime ą k, it follows that |eJ`1pBq´eJ`1pAq| ď
δ.

Applying this conclusion to (4.15) then yields that pqκqk´1|ξA1
´ ξB1

| ď δ. But this contradicts

the fact that dpA1, B1q ą pqκq´pk´1qδ. Therefore we must have #SpK̄1, . . . , K̄k,lq ď pqκq´kpk´1q

which completes the proof of the lemma. �

5. Proof of Theorem 1.1 and Corollary 1.2

5.1. Dyadic pigeonholing. It is more convenient to bound

Dppδq :“ sup
δ0Pq´NXrδ,1s

Dppδ0q (5.1)

instead of Dppδq as Dppδq is defined for all real δ P p0, 1s (rather than just for δ P q´N) and is
monotonic, that is, DppδLq ď DppδSq if δL ě δS .

Proposition 5.1. For even integers p ą 2k, there exists a constant C ą 0, depending only on k

and p, such that for every 0 ă ε ă 1, we have

Dppδqp ď Cplog δ´1q3p
„
Dppδ1´εqp ` q

p
2

` k2`7k´4
2 δ´pk2`4k´2qεδ´ 1

k
pp
2

`
kpk´3q

2
qDp´2kpδ1´ 1

k qp´2k


(5.2)

for all 0 ă δ ă 1.

Proof. To bound Dppδqp, suppose 0 ă δ ă 1 and δ0 P qZ with δ0 P rδ, 1s. We need to bound Dppδ0qp

by decoupling down to frequency scale δ0.
Let f be a Schwartz function on Qk

q with Fourier support in
Ť

KPPδ0
θK . Then f “

ř
KPPδ0

fK

where xfK :“ pf1
KˆQ

k´1
q

. We want to prove the existence of C ą 0 so that for any 0 ă ε ă 1,
ż

Qk
q

|f |p ď Cplog δ´1q3pˆ

„
Dppδ1´εqp ` q

p
2

` k2`7k´4
2 δ´pk2`4k´2qεδ´ 1

k
pp
2

` kpk´3q
2

qDp´2kpδ1´ 1
k qp´2k

 ´ ÿ

KPPδ0

}fK}2LppQk
q q

¯p{2
.

(5.3)

In fact, we will prove that for any translate Q of B
δ´k
0

:“ tx P Qk
q : |x| ď δ´k

0 u, we have
ż

Q

|f |p ď Cplog δ´1q3pˆ

„
Dppδ1´εqp ` q

p
2

` k2`7k´4
2 δ´pk2`4k´2qεδ´ 1

k
pp
2

` kpk´3q
2

qDp´2kpδ1´ 1
k qp´2k

 ´ ÿ

KPPδ0

}fK}2LppQq

¯p{2
.

(5.4)

The estimate (5.3) then follows by summing over all such Q’s that tile Qk
q , and applying Minkowski’s

inequality to bring an ℓp{2 norm over Q on the right hand side into the sum over K P Pδ0 .

Thus we now turn to the proof of (5.4). Note that for any translate Q of B
δ´k
0

, we have that p1Q
is supported in Bδk0

. Therefore f1Q is still Fourier supported in
Ť

KPPδ0
θK since θK ` Bδk0

“ θK

for all K P Pδ0 . Next, we have pf1QqK “ fK1Q; indeed

{pf1QqK “ yf1Q1KˆQ
k´1
q

“ p pf ˚ x1Qq1
KˆQ

k´1
q

“ p pf1
KˆQ

k´1
q

q ˚ x1Q “ xfK ˚ x1Q.
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As a result, to prove (5.4), it suffices to prove (5.3) under the additional assumption that f is
supported on Q. Since f is an arbitrary Schwartz function with Fourier support in

Ť
KPPδ0

θK ,

we may assume Q “ B
δ´k
0

. Thus from now on, we assume additionally that f and all the fK are

supported on B
δ´k
0

and prove (5.3).

We first dyadically pigeonhole f by wavepacket height. Write H˚ “ maxKPPδ0
}fK}L8pQk

q q. For

K P Pδ0 and H P 2ZH˚ X pδ
1` kpk´1q

2p

0 H˚,H˚s, let

f
pHq
K “ fK1H{2ă|fK |ďH

where here fK : Qk
q Ñ C, |fK | is the absolute value of fK, and the last characteristic function is

meant to be the indicator function of the set tx P Qk
q : H{2 ă |fKpxq| ď Hu. Since fK is supported

on B
δ´k
0

, so is f
pHq
K . By Lemma 2.2, since fK is Fourier supported in θK , we then have

f
pHq
K “ p

ÿ

TPTpKq

fK1T q1H{2ă|fK |ďH “
ÿ

TPTpKq

pfK1T q1H{2ă|fK1T |ďH (5.5)

where the last equality is because |fK1T | constant on every T P TpKq. Again by Lemma 2.2, note

that f
pHq
K is Fourier supported in θK . Using the terminology of Lemma 2.2, the nonzero wavepackets

that make up f
pHq
K are all of height „ H. Then

}f ´
ÿ

KPPδ0

ÿ

HP2ZH˚Xpδ
1`

kpk´1q
2p

0 H˚,H˚s

f
pHq
K }L8pQk

q q ď
ÿ

KPPδ0

}fK1
|fK |ďδ

1`
kpk´1q

2p
0 H˚

}L8pQk
q q

ď δ´1
0 pδ

1` kpk´1q
2p

0 H˚q “ δ
kpk´1q

2p

0 H˚

so since f and f
pHq
K are supported on B

δ´k
0

,

}f ´
ÿ

KPPδ0

ÿ

HP2ZH˚Xpδ
1`

kpk´1q
2p

0 H˚,H˚s

f
pHq
K }LppQk

q q ď pδ
kpk´1q

2p

0 H˚q|B
δ´k
0

|
1
p “ H˚δ

´ kpk`1q
2p

0

ď max
KPPδ0

}fK}LppQk
q q ď p

ÿ

KPPδ0

}fK}2LppQk
q qq

1{2

where the second inequality follows from writing fK “ fK ˚ 1

Ź

θK and applying Young’s inequality

}fK}L8pQk
q q ď }fK}LppQk

q q}1

Ź

θK }Lp1 pQk
q q. This shows

}f}LppQk
q q ď

ÿ

HP2ZH˚Xpδ
1`

kpk´1q
2p

0 H˚,H˚s

}
ÿ

KPPδ0

f
pHq
K }LppQk

q q ` p
ÿ

KPPδ0

}fK}2
LppQk

q qq
1{2.

Next we dyadically pigeonhole so that each relevant f
pHq
K is made up of about the same number

of wavepackets. Let now ν “ qtlogq δ
1{k
0 u ď δ

1{k
0 . From (5.5), f

pHq
K is Fourier supported in θK and

supported in B
δ´k
0

. Since a T P TpKq is either completely contained in or completely disjoint from

B
δ´k
0

, we then can write

f
pHq
K “

ÿ

TPTpKq,TĂB
δ

´k
0

pfK1T q1H{2ă|fK1T |ďH . (5.6)
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Furthermore, the T P TpKq which are contained in B
δ´k
0

perfectly partition B
δ´k
0

into δ
´kpk´1q{2
0

many translates of T0,k. Thus (5.6) has at most δ
´kpk´1q{2
0 many nonzero terms. Therefore for

α P 2N X r1, δ
´kpk´1q{2
0 s, let

f
pH,αq
K :“ f

pHq
K

if the number of nonzero terms in (5.6) (that is, the number of nonzero wavepackets in f
pHq
K ) is in

pα{2, αs, and 0 otherwise. Thus now we have that

f
pHq
K “

ÿ

αP2NXr1,δ
´kpk´1q{2
0 s

f
pH,αq
K (5.7)

and each f
pH,αq
K is a function which is supported in B

δ´k
0

and Fourier supported in θK which has

„ α many nonzero wavepackets of height „ H.
Finally, we dyadically pigeonhole so that given a K, the parent interval J of length ν has about

the same number of children K 1 of length δ0 such that f
pH,αq
K 1 ‰ 0. To be more precise, fix a K and

let J be the unique parent interval of length ν containing K. This parent J contains ν{δ0 many

intervals K 1 of length δ0 and hence J has at most ν{δ0 many children K 1 such that f
pH,αq
K 1 ‰ 0. For

K Ă J and β P 2N X r1, ν{δ0s, let

f
pH,α,βq
K :“ f

pH,αq
K

if the number of children K2 of J with f
pH,αq
K2 ‰ 0 is in pβ{2, βs, that is, if #tK2 P Pδ0pJq : f

pH,αq
K2 ‰

0u P pβ{2, βs, and 0 otherwise. Thus we now have

f
pH,αq
K “

ÿ

βP2NXr1,ν{δ0s

f
pH,α,βq
K (5.8)

and each f
pH,α,βq
K is a function which is supported in B

δ´k
0

, Fourier supported in θK , has „ α many

nonzero wavepackets of height „ H, and K’s parent J has „ β children each of which also are
supported in B

δ´k
0

, Fourier supported in θK , and have „ α many nonzero wavepackets of height

„ H.
Thus combining (5.7) and (5.8) gives

f
pHq
K “

ÿ

αP2NXr1,δ
´kpk´1q{2
0 s

ÿ

βP2NXr1,ν{δ0s

f
pH,α,βq
K

which implies

}f}LppQk
q q ď

ÿ

HP2ZH˚Xpδ
1`

kpk´1q
2p

0 H˚,H˚s

ÿ

αP2NXr1,δ
´kpk´1q{2
0 s

ÿ

βP2NXr1,ν{δ0s

}
ÿ

KPPδ0

f
pH,α,βq
K }LppQk

q q

` p
ÿ

KPPδ0

}fK}2LppQk
q qq

1{2.

Fix now ε ą 0. For each of the À plog δ´1
0 q3 choices of pH,α, βq, we apply Lemma 4.2 with δ

replaced by δ0, to

g :“
ÿ

KPPδ0

f
pH,α,βq
K “

ÿ

JPP
pH,α,βq
ν

ÿ

KPPδ0
pJq

f
pH,αq
K (5.9)

where

P pH,α,βq
ν “ tJ P Pν : #tK2 P Pδ0pJq : f

pH,αq
K2 ‰ 0u P pβ{2, βsu
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and κ :“ qtlogq δ
ε
0u ď δε0. Note that this implies

gJ “ 1
P

pH,α,βq
ν

pJq
ÿ

KPPδ0
pJq

f
pH,αq
K (5.10)

and gK “ f
pH,αq
K if K’s parent J is contained in P

pH,α,βq
ν and 0 otherwise. Write N for the number

of J P Pν for which gJ ‰ 0 as in Lemma 4.2, and so N “ #P
pH,α,βq
ν . Note that by assumption the

number of nonzero terms in the
ř

K in (5.10) is „ β.
With this, we then first compute

max
KPPδ0

}gK}kL8pQk
q q „ Hk (5.11)

since gK “ f
pH,α,βq
K which has height „ H. Next, we have

p
ÿ

K̄PPδ0

}gK̄}L8pQk
q qq

k “ p
ÿ

JPPν

ÿ

K̄PPδ0
pJq

}gK̄}L8pQk
q qq

k

“ p
ÿ

JPP
pH,α,βq
ν

ÿ

K̄PPδ0
pJq

}gK̄}L8pQk
q qq

k „ pNβHqk
(5.12)

since there are N such J for which gJ ‰ 0 and by how g is defined, each of these J ’s that contribute

has „ β children K̄ such that gK̄ “ f
pH,αq

K̄
‰ 0. We can finish this estimate once again by using

that gK̄ has height „ H. Third,

max
JPPν

p
ÿ

KPPδ0
pJq

}gK}2
Lp´2kpQk

q qq
pp´2kq{2 “ max

JPPν

p
ÿ

KPPδ0
pJq

}gK}2
Lp´2kpB

δ
´k
0

qq
pp´2kq{2

„p,k βpp´2kq{2Hp´2kαδ
´kpk`1q{2
0 (5.13)

since by how g is defined, the
ř

KPPδ0
pJq has „ β terms and each term is made up of „ α wavepackets

of height „ H. Note here we made use that each T P TpKq has volume δ
´kpk`1q{2
0 and gK is

supported on B
δ´k
0

. Finally, a similar computation gives that

p
ÿ

KPPδ0

}gK}2
LppQk

q qq
p{2 “ p

ÿ

JPPν

ÿ

KPPδ0
pJq

}gK}2LppB
δ

´k
0

qq
p{2 „p,k pNβqp{2Hpαδ

´kpk`1q{2
0 . (5.14)

Combining (5.11)-(5.14) gives that

max
KPPδ0

}gK}kL8pQk
q qp

ÿ

K̄PPδ0

}gK̄}L8pQk
q qq

k max
JPPν

p
ÿ

KPPδ0
pJq

}gK}2Lp´2kpQk
q qq

pp´2kq{2

„p,k N´pp´2kq{2p
ÿ

KPPδ0

}gK}2
LppQk

q qq
p{2.

Using this with Lemma 4.2 where g is as given in (5.9), then shows that
ż

Qk
q

|g|p ď CDpp
δ0

κ
qp

´ ÿ

KPPδ0

}gK}2
LppQk

q q

¯p{2

` Cq´kpk´1qκ´pk2`4k´2qν´ kpk´1q
2 N

p´2k
2 Dp´2kp

δ0

ν
qp´2k

´ ÿ

KPPδ0

}gK}2
LppQk

q q

¯p{2
.

Note δ0
κ

ě δ0
δε0

“ δ1´ε
0 ě δ1´ε, so Dpp δ0

κ
q ď Dpp δ0

κ
q ď Dppδ1´εq where in the second inequality we

have used monotonicity. Similarly, δ0
ν

ě δ0

δ
1{k
0

“ δ
1´ 1

k

0 ě δ1´ 1
k , so Dp´2kp δ0

ν
q ď Dp´2kpδ1´ 1

k q. As a
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result,
ż

Qk
q

|g|p ď CDppδ1´εqp
´ ÿ

KPPδ0

}gK}2
LppQk

q q

¯p{2

` Cq´kpk´1qκ´pk2`4k´2qν´ kpk´1q
2 N

p´2k
2 Dp´2kpδ1´ 1

k qp´2k
´ ÿ

KPPδ0

}gK}2LppQk
q q

¯p{2
.

Now use N ď ν´1 and }gK}LppQk
q q “ }f

pH,α,βq
K }LppQk

q q ď }fK}LppQk
q q. Thus

ż

Qk
q

|f |p ď Cplog δ´1q3pˆ

”
Dppδ1´εqp ` q´kpk´1qκ´pk2`4k´2qν´pp

2
` kpk´3q

2
qDp´2kpδ1´ 1

k qp´2k
ı ´ ÿ

KPPδ0

}fK}2LppQk
q q

¯p{2
.

But ν´1 ď qδ
´1{k
0 ď qδ´1{k and κ´1 ď qδ´ε

0 ď qδ´ε. This completes the proof of (5.2). �

5.2. Proof of Theorem 1.1. We now finish the proof of Theorem 1.1. It suffices to iterate (5.2)
by using an induction on p and induction on δ. Applying the definition of Dppδq from (5.1) and
the hypothesis of Theorem 1.1 gives that

Dp0pδqp0 ď C1δ
´p

p0
2

´ kpk`1q
2

q´cpp0qp1´ 1
k

qp0{p2kq

for all δ P p0, 1q and some cpp0q ě 0 such that the power of δ´1 is nonnegative. Note that from

(1.9), app, p0q “ app ´ 2k, p0q ` p
2

` k2`7k´4
2

and app0, p0q “ 0. Additionally, (1.10) gives bpp0q ě 0
where

bppq :“ pp ´ kpk ` 1qqp1 ´
1

k
q´ p

2k ` 2cpp0q,

and bppq is an increasing function of p on r2,8q: indeed, for p ě 2, we have

b1ppq “ p1 ´
1

k
q´ p

2k r1 `
p ´ kpk ` 1q

2k
logp1 ´

1

k
q´1s

“ p1 ´
1

k
q´ p

2k r1 `
p ´ kpk ` 1q

2k
plog k ´ logpk ´ 1qqs

ě p1 ´
1

k
q´ p

2k r1 `
2 ´ kpk ` 1q

2k
plog k ´ logpk ´ 1qqs

ě p1 ´
1

k
q´ p

2k r1 `
2 ´ kpk ` 1q

2k

1

k ´ 1
s,

where we used p ě 2 in the first inequality, and used log k ´ logpk ´ 1q ď 1
k´1

with 2´ kpk ` 1q ď 0
in the second inequality. This gives

b1ppq ě p1 ´
1

k
q´ p

2k r1 `
2 ´ k ´ k2

2kpk ´ 1q
s “ p1 ´

1

k
q´ p

2k r1 ´
k ` 2

2k
s ě 0

since k ě 2, proving that bppq is an increasing function of p on r2,8q. As a result, from bpp0q ě 0,
we see that bppq ě 0 for all p ě p0, and hence

p

2
´

kpk ` 1q

2
` cpp0qp1 ´

1

k
q

p
2k ě 0 (5.15)

for all p ě p0.
Assume for every 0 ă ε ă 1 and all δ P p0, 1q we know

Dp´2kpδqp´2k ď Cp´2k,εq
app´2k,p0qδ´pp´2k

2
´ kpk`1q

2
q´cpp0qp1´ 1

k
q
p´2k
2k ´ε
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for some p P p0 ` 2kN (this is true for p “ p0 ` 2k) and Cp´2k,ε is allowed to depend on C1. Then
(5.2) gives

Dppδqp ď Cplog δ´1q3p
”
Dppδ1´εqp

` Cp´2k,εq
app,p0qδ´pk2`4k´2qεδ´ 1

k
pp
2

` kpk´3q
2

qδ´p1´ 1
k

qpp´2k
2

´ kpk`1q
2

q´cpp0qp1´ 1
k

q
p´2k
2k

`1´ε
ı

“ Cplog δ´1q3pDppδ1´εqp ` CCp´2k,εq
app,p0qδ´pp

2
´ kpk`1q

2
q´cpp0qp1´ 1

k
q

p
2k ´pk2`4kqε

for all δ, ε P p0, 1q where C here depends only on k and p. Iterating this inequality M times with
M to be chosen later gives that

Dppδqp ď CMplog δ´1q3MpDppδp1´εqM qp

` CCp´2k,εq
app,p0qδ´pk2`4kqε

M´1ÿ

j“0

Cjplog δ´1q3pjδ´p1´εqj rpp
2

´ kpk`1q
2

q`cpp0qp1´ 1
k

q
p
2k s.

Trivially, we have Dppδp1´εqM q ď δ´p1´εqM {2. Thus

Dppδqp ď CM plog δ´1q3Mpδ´p1´εqM p{2

` CCp´2k,εq
app,p0qδ´pk2`4kqε

M´1ÿ

j“0

Cjplog δ´1q3pjδ´p1´εqj rpp
2

´ kpk`1q
2

q`cpp0qp1´ 1
k

q
p
2k s.

(5.16)

By (5.15), the power of δ´1 in (5.16) is positive and so using that p1 ´ εqj ď 1, the sum can be
controlled by

MCMplog δ´1q3Mpδ´pp
2

´ kpk`1q
2

q´cpp0qp1´ 1
k

q
p
2k
.

Inserting this into (5.16) and choosing M be the least integer such that p1 ´ εqM ď ε (and so

M “ r log ε´1

logp1´εq´1 s) then shows that

Dppδq Àp,ε,C1
qapp,p0q{pplog δ´1q3Mδ

´p 1
2

´ kpk`1q
2p

q´
cpp0q

p
p1´ 1

k
q

p
2k ´ pk2`4kqε

p

for all δ, ε P p0, 1q. Since plog δ´1q3M Àε δ
´ε, by redefining ε we have

Dppδq Àp,ε,C1
qapp,p0q{pδ

´p 1
2

´
kpk`1q

2p
q´

cpp0q

p
p1´ 1

k
q

p
2k ´ε

.

Appendix A. Proof of D2kpδq Àε δ
´ε

Fix k P N and a prime q ą k. For δ P q´N, let Spδq be the smallest constant such that the reverse
square function estimate ż

Qk
q

|g|2k ď Spδq2k
ż

Qk
q

p
ÿ

KPPδ

|gK |2qk

holds for every Schwartz function g on Qk
q with Fourier transform supported in

Ť
KPPδ

θK . We will
prove that

Spδq Àε δ
´ε

for every ε ą 0, which by Minkowski’s inequality is stronger than the assertion D2kpδq Àε δ
´ε.

Let δ P q´N, g be as above, and κ P q´N X rδ, 1s. The broad/narrow dichotomy given by the
pointwise estimate (4.2) implies

ż

Qk
q

|g|2k ď 22k´1k2k
ÿ

IPPκ

ż

Qk
q

|gI |2k ` 22k´1κ´p4k´2q
ÿ

I1,...,IkPPκ

dpIi,Ijqąκ @i‰j

ż

Qk
q

|gI1 . . . gIk |2 (A.1)
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Furthermore, by a rescaling argument similar to that in Lemma 4.1, we have

ÿ

IPPκ

ż

Qk
q

|gI |2k ď Sp
δ

κ
q2k

ÿ

IPPκ

ż

Qk
q

p
ÿ

KPPδpIq

|gK |2qk ď Sp
δ

κ
q2k

ż

Qk
q

p
ÿ

KPPδ

|gK |2qk (A.2)

where we used the pointwise inequality
ř

IPPκ
p
ř

KPPδpIq |gK |2qk ď p
ř

KPPδ
|gK |2qk in the last in-

equality. To proceed further, fix now I1, . . . , Ik P Pκ with dpIi, Ijq ą κ for all i ‰ j. We expand
ż

Qk
q

|gI1 . . . gIk |2 “
ÿ

KiPPδpIiq
i“1,...,k

ÿ

K̄jPPδpIjq
j“1,...,k

ż

Qk
q

gK1
. . . gKk

gK̄1
. . . gK̄k

and write ż

Qk
q

gK1
. . . gKk

gK̄1
. . . gK̄k

“ rygK1
˚ ¨ ¨ ¨ ˚ ygKk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

sp0q.

For each K̄1 P PδpI1q, . . . , K̄k P PδpIkq, we count the number of ordered k-tuples pK1, . . . ,Kkq with

Ki P PδpIiq for i “ 1, . . . , k and 0 P supppygK1
˚ ¨ ¨ ¨ ˚ ygKk

˚ ygK̄1
˚ ¨ ¨ ¨ ˚ ygK̄k

q. The proof of Lemma 4.4

shows that the number of such ordered k-tuples is ď pqκq´kpk´1q (in fact, here we only need that ygKj

is supported in the cube τKj
rather than the smaller parallelepiped θKj

). So using Cauchy-Schwarz,

ÿ

KiPPδpIiq
i“1,...,k

ÿ

K̄jPPδpIjq
j“1,...,k

ż

Qk
q

gK1
. . . gKk

gK̄1
. . . gK̄k

ď pqκq´kpk´1q
ÿ

KiPPδpIiq
i“1,...,k

ż

Qk
q

|gK1
. . . gKk

|2.

It follows that
ÿ

I1,...,IkPPκ

dpIi,Ijqąκ@i‰j

ż

Qk
q

|gI1 . . . gIk |2 ď pqκq´kpk´1q

ż

Qk
q

´ ÿ

KPPδ

|gK |2
¯k

. (A.3)

Alternatively, multilinear restriction estimate and L2 orthogonality says that for any ball Bδ´1 of
radius δ´1 in Qk

q , one has

ż

B
δ´1

|gI1 . . . gIk |2 Àκ pδk´1qk
kź

j“1

ż

B
δ´1

|gIj |2 “ |Bδ´1 |´pk´1q
kź

j“1

ż

B
δ´1

´ ÿ

KjPPδpIjq

|gKj
|2

¯
,

and since each |gKj
| is constant on B´1

δ , we have

|Bδ´1 |´pk´1q
kź

j“1

ż

B
δ´1

´ ÿ

KjPPδpIjq

|gKj
|2

¯
“

ż

B
δ´1

kź

j“1

´ ÿ

KjPPδpIjq

|gKj
|2

¯
.

Summing over all Bδ´1 Ă Qk
q and all I1, . . . , Ik P Pκ, we have

ÿ

I1,...,IkPPκ

dpIi,Ijqąκ@i‰j

ż

Qk
q

|gI1 . . . gIk |2 Àκ

ż

Qk
q

´ ÿ

KPPδ

|gK |2
¯k

,

which for the purposes below is as good as (A.3). Putting (A.2) and (A.3) back into (A.1), we have

Spδq2k ď 22k´1k2kSp
δ

κ
q2k ` 22k´1κ´p4k´2qpqκq´kpk´1q.

Iterating this gives

Spδq2k ď p22k´1k2kqNSp
δ

κN
q2k ` N22k´1κ´p4k´2qpqκq´kpk´1q
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for all positive integers N for which κN ě δ; in particular, applying this with N “ t log δ
´1

log κ´1 u, and

noting that Spδ{κN q ď pδ{κN q´1{2 ď κ´1{2, we have

Spδq2k ď δ
´ logp22k´1k2kq

log κ´1 κ´k `
log δ´1

log κ´1
22k´1κ´p4k´2qpqκq´kpk´1q.

By choosing κ “ κpεq sufficiently small so that logp22k´1k2kq
log κ´1 ď 2kε, one obtains Spδq Àε δ´ε, as

desired.
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