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A DECOUPLING INTERPRETATION OF AN OLD ARGUMENT FOR
VINOGRADOV’S MEAN VALUE THEOREM
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ABSTRACT. We interpret into decoupling language a refinement of a 1973 argument due to Karat-
suba on Vinogradov’s mean value theorem. The main goal of our argument is to answer what
precisely solution counting in older partial progress on Vinogradov’s mean value theorem corre-
sponds to in Fourier decoupling theory.

1. INTRODUCTION

1.1. Motivation. Let s > 1 and k£ > 2 be integers. For X > 1, let J,;;(X) be the number of
solutions to the degree k Vinogradov system in 2s variables:

a;{—l—a;%—k---—i—xg:y{+yg+---+yg, I1<j<k (1.1)

where all variables x1,...,%,91,...,ys € [1,X] n N. Nontrivial upper bounds for J ;(X) were
first studied by Vinogradov in 1935 [32] and such results are collectively referred to as Vinogradov’s
Mean Value Theorem (VMVT) in the literature. The main conjecture in VMVT, now a theorem
as of 2015, was that for every € > 0 and s,k € N, one has

k(k+1)
T 1 (X) Ss e XT(X5+ X272 ) (1.2)
for all X > 1. It is not hard to see that Js,(X) Zsr X° + X2s—k(k+1)/2 and applying Holder’s
inequality, we may deduce (1.2) for all s € N from the s = k(k + 1)/2 case. VMVT plays an
important role in understanding Waring’s problem and the Riemann zeta function, see for example
[11, 12, 19, 34]. When k = 2, the main conjecture in VMVT is classical. In 2014, Wooley [35]
proved the k = 3 case of VMVT using the method of efficient congruencing (see also [20] for a
shorter proof due to Heath-Brown). In 2015, the k£ > 2 case was proven by Bourgain, Demeter, and
Guth in [3] using Fourier decoupling for the degree k moment curve from which VMVT followed
as a corollary. Finally, in 2017, Wooley [36], gave an alternative proof of (1.2) for all k > 2 using
nested efficient congruencing.

After the proofs of VMVT using the Fourier method of decoupling [3] and the number theoretic
method of efficient congruencing [36], it has been an interesting question to determine how these
two methods are related and whether a “dictionary” between the two methods could be obtained.
The study of this dictionary has led to new proofs of Fourier decoupling for the parabola [23],
cubic moment curve [15], and the degree k& moment curve [16]; these having been inspired from
the efficient congruencing arguments in [26, Section 4], [20], and [36], respectively. Additionally, a
decoupling interpretation of the study of VMVT over ellipspephic sets [1] led to a proof of Fourier
decoupling for fractal sets on the parabola [5].

In this article, we revisit a particular classical VMVT which states that

k(k+1) | 1 1\s/k
S ks Ll (e Sl

Jsp(X) S X257 (1.3)

for all X > 1 and s = kl with [ € N. This result should be compared to the supercritical s >

k(k+1)/2 case in (1.2). For s very large compared to k, we have an extra term 1k2(1— %)S/k in the

exponent, which decays exponentially in s for every fixed value of k, instead of an €. The estimate
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(1.3) appears (for example) in Vaughan’s book [31, Chapter 5] and is a refinement of an argument
of Karatsuba [22] from 1973 (see also Stechkin [27] from 1975). The loss of the X 2= comes
from combining the subcritical estimate Jj (X) <p X k which follows from the Newton-Girard
identities, along with an iterative argument to derive estimates for Js ;,(X) when s is supercritical.

The main purpose of this paper is to illustrate how this refined argument of Karatsuba can be
adapted to give a proof of a non-sharp Fourier decoupling inequality for the degree k moment curve
in the supercritical regime. The key difficulty that prevents the direct use of ideas from [15, 16, 23]
is the heavy reliance on solution counting in (1.3). One of the main points of this article is to clarify
the role of such solution counting arguments in the study of Fourier decoupling. The mechanism
driving the solution counting arguments will allow us to prove the key Lemma 4.4 below, which
concerns the geometry of Fourier supports of the functions appearing in our main Theorem 1.1.

Since our goal is to clarify the role of solution counting in Fourier decoupling and Bourgain,
Demeter, and Guth have already given the sharpest possible moment curve decoupling theorem
in [3], we will work over Q, rather than over R. This will allow us to present the argument in
the cleanest possible manner, free of technical difficulties arising from the inconvenience of the
uncertainty principle in R¥. See also [14] for another decoupling paper that works over Q, rather
than R, there however, the authors use the observation that decoupling over QQ, is quantitatively
more efficient than decoupling over R in terms of exponential sum estimates.

Notation. As k will be fixed, we will allow all constants to depend on k. Given two positive
expressions X and Y, we write X <Y if X < CY for some constant C that is allowed to depend
on k. If C' depends on some additional parameter A, then we write X <4 Y. We write X ~ Y if
X <Y and Y < X. By writing f(z) = O(g(x)), we mean |f(x)| < g(z). We say that f has Fourier
support in a set Q if its Fourier transform f is supported in 2.

To prepare the reader for the myriad of intervals that will occur later in Sections 4 and 5,
there will be three types of interval lengths: intervals named with a “K” will be associated to the
smallest scale d, intervals named with a “J” will be associated to the intermediate scale v ~ §/¥,
and intervals named with an “I” will be associated to the largest scale k ~ §° (though on a first
reading, it might be easier to set k = 1/q). Finally, in the context of the decoupling constant D,(),
defined in (1.5) below, we call p subcritical if p < k(k+ 1) and p supercritical if p > k(k+1) (rather
than the more accurate but slightly more clumsy “not subcritical”).

1.2. Analysis over Q;, and decoupling. Fix a degree k > 2 and a prime number ¢ with ¢ > &.
We reserve the letter p for the Lebesgue exponent in the main Theorem 1.1. We very briefly review
the harmonic analysis over Q, needed to set up the statement of decoupling. See also Section 2
and [14, Section 2] for further discussion surrounding the harmonic analysis and basic geometric
facts over Q, that are useful in decoupling. Additionally see Chapters 1 and 2 of [28] and Chapter
1 (in particular Sections 1 and 4) of [33] for a more complete discussion of analysis on Q.

The field Q, is the completion of Q under the g-adic norm, defined by [0] = 0 and |¢®b/c| = ¢~ if
a€Z,b,ce Z\{0} and q is relatively prime to both b and c¢. Then Q, can be identified (bijectively)
with the set of all formal series

e ¢]
Qq:{Zajqj3]‘5627653'6{071,--.,(1—1} foreveryj;k},
j=k

and the g-adic norm on Q, satisfies |Z;O:k a;¢’| = g% if a;, # 0. Strictly speaking we should be
writing ||, instead of |- |, but we omit this dependence as ¢ is fixed. The g-adic norm on Q, induces
a norm on Q’;, which we denote also by |- | by abuse of notation, via |(£1,...,&k)| ;== maxi<;<k [&]-
Of particular importance is the ultrametric inequality: |£ + n| < max{|{],|n|} with equality if
|€| # |n|. An interval in Q is then a set of the form {£ € Qq: [{ — a|] < r}, where a € Q and
r = 0; r will then be called the length of the interval. We also will use |I| to denote the length of
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an interval I. The ring of integers Z, coincides with the unit interval { € Q,: |£] < 1}. A cube in
Ql; of side length r is then a product of £ intervals in Q, of lengths r. We will work with Schwartz
functions defined on Q’; (i.e. finite linear combinations of characteristic functions of cubes in Q’;).
The Fourier transform of such a function f will be given by

f) = (@)x (= - §)dx

f
Q5

where y is a fixed element in the Pontryagin dual (@] of Qg that restricts to the principal character
on the additive subgroup Z, and restricts to a non-principal character on the additive subgroup
G 2y, w- € = Zle x& ifx = (x1,...,2%) and £ = (&1,...,&), and dx is the Haar measure on the
additive group Q’; normalized so that SZ,; dx = 1. One key property of the Fourier transform that

we will use is that 1/Z\q = 1z,, that is, the Fourier transform of the unit ball is the unit ball, see [33,
p.42] for a proof.
We are interested in the unit moment curve

y(t) = (8,82, tF), |t < 1.

For § € ¢~ and any interval I < Q, with length > 6, let P5(I) be a partition of I into intervals of

length 6. Write Ps for Ps(Z,). To each interval I < Z,, one associates a parallelepiped
k . .
O := {’y(a) + Z tiv9)(a) e @’;: |t;| <|IJ forall1 <j < k}
j=1

of dimensions |I| x |I|? x --- x |I|F where a € I; this parallelepiped is independent of the choice of
a € I. Note that |, P O is a covering of a 6* neighborhood of the unit moment curve (in fact
it covers a suitable anisotropic neighborhood of that curve). One also associates to each K € Ps a
cube

i i= (€16 € Qs 16 — 0l < G forall 1< < k) 14

of side length §, where a € K; again this is independent of the choice of a € K. Note that for each
K < Py, the ultrametric inequality gives that 0 < 7. R
For an interval I < Zg, let f; be defined such that f; := f - L et For p>2and § € ¢V, let
q

D, (6) be the smallest constant such that the inequality

1£1o ) < Dp(O) D5 1k T0 ()" (1.5)
q ( q)
K€P5

holds for every Schwartz function f on Q'; with its Fourier transform f supported on Jz p; Ok
Note that f = >, p, /K- Bourgain, Demeter, and Guth [3] showed that

k(k+1)

920(5) Sepq (1 + 5_(%_ p ))7 (1.6)

and this estimate is sharp. Strictly speaking [3] proves a decoupling theorem over R rather than
over QQ,, but the same proof can be used to derive (1.6). Choosing f to be a sum of Dirac deltas
immediately implies (1.2).

1.3. The main result. By interpreting the refinement of Karatsuba’s argument for (1.3) into
decoupling language, our main result is then the following Fourier decoupling analogue of (1.3). In
the same way (1.3) is a weaker partial result towards (1.2), Theorem 1.1 and Corollary 1.2 should
be viewed as the analogous weaker counterpart of the sharp bound (1.6).
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Theorem 1.1. Let py € 2N be an even integer and let c(pg) = 0 be such that

,M),M(lfé)po/(%)
Po

1
D,,(5) < C16 27 2o for alls e g™ (1.7)
where C is independent of 5. If p € pg + 2kN and 0 < e < 1, then

_ sty (o) (g
P

Dp(8) Spe,cn q“(p’po)/péf(% % )P/(2k) —¢

bl

for all 5 e g™ (1.8)

where

p—poy P k2+7k—4) §<p—po)<p—po
2k 2 2 2" 2k 2k
Since ©,(0) = 1 for all p, (1.7) implies that ¢(po), k, and py are such that

2 2po Po k
It is also known that Dok (d) <o 67¢ for any € > 0, see for example [8, Exercise 11.19] for the
Euclidean case; we provide a proof for the case over Q, in the appendix for the convenience of
the reader. We also remark that [21] proved, in the case of local fields, a related square function
estimate with a bound independent of § if the fx’s are Fourier supported in a §* neighborhood of
v(K); see also [13] and [2] for similar estimates. Choosing py = 2k and c(pg) = k?/2 + ¢ for any
€ > 0 in applying Theorem 1.1 we obtain:

a(p,po) == ( +1). (1.9)

% > 0. (1.10)

Corollary 1.2. Let pe 2kN and 0 < e < 1. Then

D,(8) Spe OEPM5 GG e e g

where the implied constant in the exponent of q is absolute (and independent of k).

The exponent of ¢ in Corollary 1.2 is more precisely @ = (5 — %)W + (& — 1), but
we opt to write it as above since it more clearly illustrates what the main terms are. Note that the
hypothesis in Theorem 1.1 is always satisfied if py is any fixed exponent > 2 and ¢(pg) is chosen
large enough. One can view Theorem 1.1 as a way of upgrading trivial [2LP° decoupling at say
some subcritical p to [?LP decoupling for all large p with only a loss that decreases exponentially
as p — +00. Of course, if one already knew the sharp estimate in the critical pg = k(k + 1) case,
then Theorem 1.1 implies that we know the sharp decoupling estimate for all p € k(k + 1) + 2kN.
However this already follows from interpolating the critical estimate with the trivial L% decoupling
estimate.

Though Corollary 1.2 implies (1.3) with an extra X¢ that comes from the 6~¢ factor in Corollary
1.2, Corollary 1.2 is more general and this extra §—¢ term comes from needing some additional
uniformity in the case of the general f Fourier supported in |z Ps O and an application of the
broad-narrow argument to get around the use of the Prime Number Theorem in the proof of (1.3)
(see Section 4.1.1). See Sections 3.5 and 5.1 for some more discussion comparing the VMVT case
and the general f decoupling case.

We end with some discussion about how the proof of Corollary 1.2 (and Theorem 1.1) contrasts
with modern decoupling proofs of degree k moment curve decoupling [3, 16] which prove (1.6).
Unlike the argument in [3, 16], we are missing any lower dimensional decoupling input and while
we do use induction on scales, the iteration itself is unique in that it iterates on the p in [?LP
decoupling. Schematically, the iteration to prove Theorem 1.1 controls [2LP decoupling by [?LP~2F
decoupling at a larger scale. After O(p/k) steps, we are reduced to I2L?* decoupling for the degree
kE moment curve which follows (essentially) from the Newton-Girard identities. The iteration is
surprisingly efficient when it controls {?LP decoupling by 12LP~2* decoupling as long as both p and

p — 2k are supercritical. However after about ﬁ(p — @) steps, we enter the subcritical regime
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‘ . . . . . .. .. &2 (1 1)p/(2k)
or which the iteration becomes inefficient and this is why we accrue an additional § 22 %
term. When k = 2, the argument for Corollary 1.2 uses O(p) steps to prove a weak non-sharp [2LP
decoupling estimate. This is to be compared to the modern proof of decoupling for the parabola
where to prove the sharp critical [2L® decoupling, one uses O(¢~!) many steps (see for example the
proof of [23, Lemma 2.12]). In the harmonic analysis literature, iterating on p is not a new idea as
such an argument was already used by Drury [9] to prove cubic moment curve restriction, though
we believe this is the first time such an argument has appeared in the decoupling literature. See
also [25] by the fourth author for a similar idea in the additive combinatorics literature which was
recently used to obtain diameter free estimates for the quadratic VMVT.

Additionally, at each iterative step, three scales are key: the smallest scale 4, the intermediate
scale 6% and the largest scale 1 (though strictly speaking in our proof the largest scale is actually
¢ rather than 1 for technical reasons). This can be compared to [3, 16] which uses scales §, §° and
1.

This paper is organized as follows: In Section 2, we review some basic geometric and harmonic
analysis facts in Q, that will be used throughout this paper. In Section 3, we review the refinement
of the 1973 argument of Karatsuba at a high level. In Section 4, we prove Lemma 4.2 which
is the main lemma that is used to prove Theorem 1.1. This is accomplished via combining a
standard broad-narrow argument in Section 4.1.1 and some geometric properties of the moment
curve that use the Newton-Girard identites, see Lemma 4.4. In Section 5, we dyadically pigeonhole
to obtain some uniformity in our estimates and prove Theorem 1.1 and Corollary 1.2. Finally, in
the appendix, we include a proof of Do (d) <. 6~ ¢ for completeness.
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2. WAVEPACKET DECOMPOSITION AND SOME BASIC GEOMETRIC FACTS

Throughout this paper, we will make use of wavepacket decomposition which allows us to de-
compose a function f, which is Fourier supported in some 0, into linear combinations of indicator
functions of translates of the parallelpiped “dual” to 0. That the g-adic character y is trivial on
Zq gives a much cleaner wavepacket decomposition when working over Q, than over R. See [30,
Section 3] or [17, Section 2.4] for some discussion about wavepacket decomposition over R in the
context of the paraboloid (though the same ideas apply for the degree k moment curve).

Fix 6 € ¢~N. It will be convenient to introduce the shorthand

05 = 0%y x 6°Zy x --- x 67,

and
Ts =62y x 6 2Ly x - x 5 ¥,
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They are dual to each other in the sense that
Ts = {:EEQkZ |z - €] <1 for all € € 65}
Since for any 1 < j < k, any interval in Q, of length 47 is the dlSJOlHt union of §~*~7) many

)
intervals of length 5'“, it follows that 65 is the disjoint union of §~ e many cubes of side lengths

k(k—1)
§F in Q';. Similarly, any cube in Ql; of side length 6" is a disjoint union of 6~ 2  many translates
of Tys.
Now for a € Zy, let M, be the k x k lower-triangular matrix given by

M, = (7'(a) ¥"(a) --- v(a))
where we view 79 (a) as a column vector. Then for any K € Pj, we have
Ok = v(a) + My0s (2.1)
for any a € K. In fact, the right hand side is independent of a € K since if b € K, then

k
)+ Z 150 (@) (b —a) € y(a) + M,bs,

7j=1
and
1 0 0
(- 1(b a) 1 0
M, = M, (2)~ (b a)? (1)~ —a) 0 (2.2)
((k - 1)!)_1(1’ —a)f 7t (R =2))7 (b —a)F? 1

where the second matrix on the right hand side preserves 5 = §Z, x 62Z, x -+ x 6*Z, (here we
have used the fact that |k!| = 1 in Qg since ¢ > k).

For K € P5 and any a € K, let Ty i be the dual parallelepiped to f centered at the origin given
by

Tox ={zeQF: |z (£ —7(a))| <1forall £e bk}
Using (2.1), it is not hard to see that
Tox = {z e Qk' |z -9 (a)] <677 for all 1 < j < k}
={zeQf: MIveTs} = M T,

for any a € K. This parallelepiped depends only on K but not on the choice of a € K, since (2.2)
shows that

1 05 O(8?) ... O@*h
0 1 0) ... 0?2

M;T = Ml:T 0 0 1 oo 083
(:) 0 0 1

where O(87) is some number in Q, with norm < ¢/, and the second matrix on the right hand side
is a bijection that preserves Ty by the ultrametric inequality.

Lemma 2.1. Let € ¢ and fir K € P5 Then
(i) Ok — Ok is the disjoint union of §~ R cubes of side lengths 5k nd

1)
(ii) every cube of side length 67 in ng 18 the disjoint union of 6~ 4 many translates of Tp k.
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Proof. (i) Recall that 65 is the disjoint union of §~ R cubes of side lengths 6*. Since M, is
a bijection that maps cubes of side length §* to cubes of side length 6% for any a € K, and
O — 0 = M,0s for any a € K, the assertion follows. Note that 6 — 0k is just a translation
of Ok to the origin.

(ii) Recall that any cube in Ql; of side length 6% is a disjoint union of 57@ many translates
of Ts. Since M, T is a bijection that maps cubes of side length 5% to cubes of side length
0~ F for any a € K, and Tox = M;TTs for any a € K, the assertion follows.

O

From Lemma 2.1(ii), we may deduce that translates of Tp k tile Q we denote the collection of
such translates by T(K). We are now ready to state the version of Wavepacket decomposition that
we will use.

Lemma 2.2 (Wavepacket decomposition). Let § € ¢~ and fixt K € Ps. Let g be a Schwartz
function with Fourier transform supported in 0. Then |g| is constant on every T € T(K), and

glr is supported on Ok for every T € T(K). Hence it is natural to write

>, glr, (2.3)

TeT(K)

where each term glp (which we will call a “wavepacket”) is Fourier supported on Ok and has
constant modulus on every T € T(K). It also follows that if T is any subset of T(K), then Y per glT
18 Fourier supported in O .

Proof. First, to prove that |g| is constant on any translates of Tj x, one only needs to prove the
case when 0 = 1, K = Z,, and then apply a change of variables, but we opt for a more explicit
proof. We will show that |g(z)| is constant for all z € A+ T} i for any A € Qg. By Fourier inversion
we have that

l9(z)] = | , 9(E)x(& - =) d¢|

k
= | f 9(v(@) + Xty (@) x([v(a) + Z t;7Y(a)] - @) dt|
[t1]<0,..., |t |<SF

\f G(v(a) + Myt)x(MTz - t) dt).
t1|<6, 7|tk‘<(5k

For x € A + Ty i, we write 7 = A + M, Ty where |y;| <077 for j =1,2,..., k. Therefore

o) = |f 3(1(a) + Mat)x(MTA - O)x(y/ - t) dt]
[t1]<6,..., | tx | <R
|f 3(7(a) + Mat)x(MTA - t) d]
[t1]<6,..., | tx | <R

where we have used that y' -t € Z,, and so x(y' - t) = 1. The right hand side is then independent
of 3 and so the above equality is true for all x € A + T k. In particular this shows that |g| is a
constant on A + T x. This constant depends on K, g and A, but is a constant nonetheless.

Next, to prove that ng is supported on O, it suffices to observe that ng = g * 1T, and that
17 is supported on g — 0 for every T € T(K): in fact, for every T € T(K), 17 is a modulation
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of GO;, and if a is any point in K, then Ty x = M;TTs. Tt follows that

—

T©= | |, x(a-gds
= det(Ma)lj X(=M; Ty - €)dy = det(M,) L6 FE+D21, (M Le)
Ts

is supported on M,0s5 = Ok — Ok . Finally, the decomposition (2.3) follows since parallelepipeds in
T(K) tile Q’; . This completes the proof of the lemma. O

3. SKETCH OF THE KARATSUBA ARGUMENT

Before we dive into the proof of Theorem 1.1, we review the proof of (1.3) with an eye towards
interpreting each step into decoupling language. See also, for example, [31, Section 5.1] or [29,
Theorem 13 - Lemma 21| for more details of the number theoretic argument. Just for this section,
we revert back to calling p a prime so as to best match these references.

3.1. Step 1: Introducing some p-adic separation. Given X > 1, one finds, using the Prime
Number Theorem, a prime p ~ X ¥ such that Js.1(X) is controlled by Js (X, p), where Jg (X, p)
is defined to be the number of solutions (z1,...,7s,y1,...,¥s) € ([1,X] n N)? to (1.1) with the
additional condition that x1,...,x; are pairwise distinct mod p and v, ..., y; are pairwise distinct
mod p. Since p is rather large, this is a rather mild condition and so we heuristically should still
expect Js ,(X) ~ Js (X, p). The benefit of this extra p-adic separation (transversality) in these
2k variables is that we will get to apply Linnik’s Lemma (in Step 3, (3.3) below) which will up to
permutation uniquely determine these variables.

3.2. Step 2: Applying the union bound/Hélder. We now write J; (X, p) as

J[o 1]2s | Z H Z e(njar +--- + nfak)\2| Z e(nag + -+ + nkak)\%*?k dov.

ai,...,ar (mod p) j=lnj=a; (mod p) Isn<X
a; pairwise distinct 1<n;<X

Write | > ,<x P52k = | % (mod p) 2an=a (mod p) 272k and apply Holder’s inequality to control
the above by

k
p2s—2k max f[ - | Z 1_[ Z e(njal 4+t n?ak)PX
0,1]25

d ;
@ (mod p) a1,...ar (mod p) j=lnj=a; (mod p)
a; pairwise distinct 1<n;<X (31)
| Z e(nag + -+ nFay) 7% da.
n=a (mod p)
1<n<X

Denote the integral above to be J,;(X,p,a). This expression counts the number of solutions
(z1,...,26,y1,...,ys) € ([1,X] " N)?* to (1.1) with z1, ..., x; pairwise distinct mod p, y1,. ..,y
pairwise distinct mod p, and 21 = =5 =ypr1 = -+ = ys = a (mod p).

3.3. Step 3: Solution counting. Translation invariance of the Vinogradov system implies that
we may bound J; ;(X, p,a) by Js (X, p,0). Rearrange the Vinogradov system (1.1) as

v+t -y =Yl =yl Yyl — g, 1<j<k (3.2)

where z1,. ..,z are distinct mod p and yq, ...,y are distinct mod p and since we are considering
Js (X, p,0), we have that x511,...,%s, Yk+1,--.,Ys = 0 (mod p). Each choice of z1,..., 2k, y1,..., Yk
gives < Js_j (X /p) many solutions to (41,...,%s, Ykt1,---,Ys). L0 see this, write the count for
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(3.2) as an integral and use the triangle inequality; the basic idea being that shifts of the Vinogradov
system can only give fewer solutions.

Next, fixing one of the at most Js_, (X /p) many tuples (zx41,...,%s, Yt1,---,Ys), how many
valid x1, ..., 2k, Y1, ..., Yr are there? Since requiring y1, ..., yx to be distinct mod p is a rather mild
condition, there are < X* such (yy,...,yx). Any valid (z1,...,2%) € ([1, X] n N)* must satisfy

x{+...+xiEHj(modpj), 1<j<k

where the z; are pairwise disjoint mod p for some H; that depends on (y1,...,y) (of which there
are < X* many possibilities) and (Tg41,...,%s, Yps1,---,Ys) (of which there are < Js—1.16(X /D)
many possibilities). Since p* ~ X, instead of counting integers between 1 and X, we can count the
x; mod p¥. Thus it remains to count the number of residue classes (x1 (mod p¥), ...,z (mod p*))
such that

w4+ +al =Hj (mod pP), 1<j<k (3-3)

and z; (mod p*) are pairwise distinct mod p. Linnik’s Lemma [24] then says that there are at most
Eklpk,=1)/2 many such k-tuples of residue classes and the proof follows from first upgrading all residue
classes mod p7 in (3.3) to mod p* (by paying a cost of p*(*~1)/2) and then using the Newton-Girard
identities which essentially uniquely determine the x1,...,z; (up to permutation). This bound is
efficient since probabilistic heuristics suggest that we should expect ~ (p*)* /pk(k“)/ 2 = ph(k—1)/2
many solutions. Thus we have that

Jo (X, 0,0) Sp Jo g (X /p) X FpFh=D/2, (3.4)

3.4. Step 4: Iteration. Putting Steps 1 to 3 together we obtain the iteration that
T (X) Sk 9™ Top (X /p) X FpHE D2, (3.5)

Running this iteration about O(s/k) many steps reduces to an estimate on Jj (X) from which
one can easily compute there are O(X*) many solutions by the Newton-Girard identities. The
iteration (3.5) is sharp if both s and s — k are supercritical. If they are, then heuristically, we
expect J, i (X) ~ X2s—k(k+1)/2 gnd Js—1(X/p) ~ (X /p)2(s=k)=k(E+1)/2 " Then the right hand side
of (3.5) becomes XQSX_3’“/2_’“2/210’“2 which is equal to X2~ k(++1)/2 gince p ~ X/*. However, both

k2 1ys
sides are not the same if one of s or s — k is subcritical. This is where the inefficiency of X z (17%) a

comes from.

3.5. Interpreting Steps 1-4 into decoupling. Having briefly summarized the number theoretic
argument into four steps, we now briefly sketch the main points to interpret into decoupling. First
we discuss the scales needed in the proof. From Steps 1 and 3, there are three scales: the largest
scale X, the intermediate scale p ~ X¥* and the smallest scale 1. Correspondingly in our proof,

we use three scales: the smallest scale §, the intermediate scale v := qUqu SMEL L 51 k and the
largest scale 1. For some technical reasons surrounding the broad-narrow reduction, in lieu of the
scale 1, we will actually use the scale  := ¢l'°89°] where ¢ is as in (1.8).

Next, we discuss the reduction to the decoupling analogue of (3.1). In Step 1, two residue
classes being distinct mod p means they are p-adically separated by a distance 1 and so this should
correspond to two intervals which are 1-separated. To get around the use of the Prime Number
Theorem, we make use instead of broad-narrow reduction due to Bourgain and Guth in [4] which
will allow us to reduce to controlling a multilinear decoupling expression.
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Third, the loss of p>*~2* in Step 2 above deserves some mention. This loss comes from essentially
having applied the union bound

| Z e(nag + --- +nfay)| = | Z Z e(nag + - -+ nfay)|

1<n<X a (mod p)n=a (mod p)
1<n<X
<p max | Z e(nay + - +nfay)).
a (mod p) n=a (mod p)
1<n<X

Heuristically we expect this inequality to be efficient since each ), _, (mod p) contributes equally
to the entire sum as the exponential sum should not bias one residue class mod p over another.
This however is not necessarily true in the decoupling case and will require us to obtain some extra
uniformity via dyadic pigeonholing, see Section 5.1, later.

Finally, to interpret the solution counting Step 3, we make use of the simple identity

~

f(z) dx = £(0)
Q5

which converts the integral of f into a question of whether 0 is contained in the support of f . This
is done in Lemma 4.4 below and the proof relies on the Newton-Girard identities, much like in the
proof of Linnik’s Lemma. This part of the argument requires that p is even and is reminiscent of
a Cérdoba-Fefferman argument (see for example [8, Section 3.2] or [6, 7, 10]).

4. THE MAIN LEMMA

One standard property about the moment curve decoupling constant that we use is affine rescal-
ing. This property plays the analogue of translation-dilation invariance of the Vinogradov system
(1.1).

Lemma 4.1 (Affine rescaling). Let g be a Schwartz function on ng Fourier supported in |, Py Ok .
Then for any interval I < Zg of length k = 6, we have
1)
lorlirat) < D) D lorlEnge) >
KePs(I)

Proof. This proof is standard and follows from a change of variables which can be found for example
in [8, Section 11.2]. O

Our main lemma in proving Theorem 1.1 is the following:

Lemma 4.2. Let pe 2k + 2N, § € ¢ N and k € ¢ N~ [6,1). Let v = g% A= ¢ N so that
v < 8YE. If g is a Schwartz function with Fourier support in UKeP(S Ox, then we have

0 Ch(k—1) — o) k(k— _
J lg]P < CD,(=)P( Z ||9K||ip(Qk))p/2+C’q k(k—1) .= (k?+4k=2) —k(k—1)/2 Nrp—2k |
Qk K KeP q
q )
0\, _
Dpok(=)P *F max ||9K||]Zoo(<@g;)(2 ||91’<\\Loo(<@§))kmax( Z ||9K'H%p72k(<@§))(p 2R)/2

14 KeP;s iy JeP,
KEP(S K’EP(;(J)

where N is the number of J € P, for which g5 # 0 and C depends only on k and p.

Here k is a somewhat technical parameter that is chosen to be roughly §° later in Section 5.
However, on a first reading, it might be more convenient for the reader to take k = 1/q to better
grasp the moving parts of the argument. The somewhat non-standard decoupling right hand side in
Lemma 4.2 is reminiscent of the right hand side used in Theorem 1.2 of [18]. To give more context
to the above lemma, the following estimate is true:
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Lemma 4.3. For any p > 2k, we have

(2 lorclZoqe)?”

K€P5
2k 2 —2k)/2
< N2/ max HQKHLoo @) Z l9g L (QF) ) I}légj( Z HgKHLp—%(QI;))(p )/
K€P5 KGP(;(J)
where N is as defined in Lemma 4.2.
Proof. Holder’s inequality gives us
2k 2k

== 1
ol o) < 195l e gty 195 -y

and so, applying

% %k 2(1727]“) % k k 9 P2k
(ZCLK bg ck ) < (mI?XGK) (ZbK) (ZCK) 2
K K

K
with ag = by = ”gK”Lw(Qk) and cxg = HgKHLp—Qk(Qk), we get

k —2k
(25 Ngrc oy < masc lgnc | gqp)( 2 I9klzmo5)"( 25 NgrlToar ) P~
Keps KePy KePy

It remains to observe that

(2 lgrlEoagr)® 2 < NO722max( 37 gl goangr) P2
KePs " KePs(J)

O

Suppose for a moment that in Lemma 4.3, we had an equality instead of an inequality. This
is indeed the case when g(z) is the exponential sum X*100k21|x|<x100k Zjil e(v(j) - ) that arises
in using decoupling to estimate the number of solutions in (1.3). As N < v~! (and taking, for
convenience, k = 1/q), Lemma 4.2 would give us

_ 5
D,(0)P < CD,(qd) + Cg*F 2y~ 5+h="5 Dp-an (S (4.1)

Heuristically, we expect this iteration to be efficient as long as p—2k (and so also p) is supercritical.

To see this, if r is supercritical, then we heuristically expect that ©,(4)" ~ 6zt HG for all ¢.
Thus the iteration should be efficient if with this assumption on the size of ©,(0)", both sides of
(4.1) are the same. The right hand side of (4.1) is then

N (57_) By k1)
q

which is comparable to the left hand side of (4.1). A similar calculation shows that this iteration
is not efficient if at least one of p or p — 2k is subcritical.

Unfortunately the reverse inequality in Lemma 4.3 fails to hold for general g. This is because
we lack the uniformity in the exponential sum that one considers when one counts solutions to the
Vinogradov system. This uniformity can be restored by pigeonholing, which only produces ¢
losses. This pigeonholing must be done before one applies induction on scales and iterates on the
Lebesgue exponent p. The full argument is carried out in detail in Section 5.

1 p—2k  k(k+1) (pfk(kﬂ))
2

(51+) 5 =463

4.1. Proof of Lemma 4.2. The proof of Lemma 4.2 uses a broad/narrow dichotomy, due to
Bourgain and Guth [4] combined with some basic geometric geometric properties of the moment
curve. See also for example [8, Chapter 7).
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4.1.1. The broad-narrow argument. First, we have the pointwise bound |g(z)| < Xcp. lgr(z)]. At
every point z € Q’;, let Z, be the set of all intervals I’ € P, such that |gp(x)| = kmaxep, |g7(2)]|.
Suppose first Z, contains at least &k (disjoint) intervals, say I{,...,I; (all dependent on x) of length
t and |gp (z)| = maxrep, |gr(z)[: in this case we have

(@) < ™" max|gr ()] < &7 R E g (2) gy (2)] Y
IeP; k
< ko 2HU/k 1k
K omax - gn (@) gr (@)
d(Ii7Ij)>liV’i#j

Here we used that in QZ , two distinct intervals of the same length are separated by at least that
length. Alternatively, Z, contains at most k — 1 intervals, in which case

@l < X5 lor@l+ X lgr@)] < (k= Dmax|gr(@)] + >, wmax|gr(z)] < kmax|gi(2)].
IeZ, IeP\Ix IeP N\

As a result, we obtain the pointwise bound that for each x € ng , we have

—2+1/k 1/k
[ e 91, (%) - . g1, ()]

d(1;,1;)>k Vitj

l9(2)| < kmax [gr(z)] + &
IePy

which, upon raising both sides to power 2k and applying (A + B)* < 22k=1( A%k 4 B?¥) (a conse-

quence of the convexity of 2 — x2¥), yields
lg(@)[?* < 2251k max |gr (2)[* + 22102 max gy, (2) g, (@) (4.2)
P, I, ILEPs

A(L3,1;)>k Vit

Using this pointwise bound while integrating we find that

f 9P = f g/ gP~2*
Q% Q%

< Cf (max \91\2)k|g\p_2k + Ox~#=2) f max lgr, - - - gIk\Q\g|p_2k
QF IeP, QF I,...,IxePy
1 T d(I1;,1;)>rK Vit]

<O (X Pl o5 gy Pl

q IeP, I, IeP. “Qq
d(Ii,Ij)>f€ Yi#£j

< Cf (25 lgr ) g2+ CR B max f on g, Pl
Qi rep, A0 Ty vig 2

for some C' depending on k. Holder’s inequality followed by Minkowski’s inequality implies that

the first term satisfies
2k/p (p—2k)/p
| X taPr) ([ o)
Qf 1ep, Qf

k —2k
c ka<2 lg11%)¥ gl
(p—2k)/
< C( )y gfllip(@’w)k(j " |g|p> o
IePy 2

q IePy
<1 Py 9 p/2
<5, 10 (X lorlos)
q IePy

N
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for some C’ that depends on k and p. The last inequality uses Young’s inequality and the fact that
p = 2k. Therefore,

p/2
P < 2 > —(5k—2) 2|, |p—2k
j@g 9" <p ( > lgrliesy)  +# pomax | dgngnlll

IePy AL, 1) >k Vizj

Using affine rescaling (Lemma 4.1) and applying the definition (1.5) of our decoupling constant, we
deduce that

/ /
(S orBogp)” <D ( 3 lonliny)

IeP. KePs

Plugging this into the above yields

] p/2
P )P 2 —(bk—2) 2| _1p—2k
107 5020 (3 owliy)” + 0 | o an Pl 4

a KePs d(1;,1;)>k Vizj 1

This inequality (4.3) is the analogue of Step 1 in Section 3.1. The requirement that we analyze
solutions to the Vinogradov system with x1,...,zs and vy, ..., ys being distinct mod p corresponds
to the requirement that we analyze SQ{; lgr, - - - g1, [2|g|P~%F with d(I;, ;) > k forall 1 <i# j <k
with k = 1/q.

Next, we mimic Step 2 in Section 3.2. Recalling our definition of N in the statement of Lemma
4.2, Holder’s inequality gives

‘g|p72k < pr2k71 Z ‘gJ|p72k.
JeP,

Applying this in the second term in (4.3), we get

f 9P
Qk

q

5 2 p/2 —(bk—2 —2k—1 ) N
<p ”Dp(;)?’( >, HQKHLP(@I;)) 4 B2 DY kamglk' o
KePs (L, 1)) >r Vigtj TEPw Qk

g 2 P2 (5k—2) nrp—2k 2 \p—2k
<p CDP(E)p< Z HQKHLP(Q’;)) + o~ (k=2) nrp | max 5112}3}({ lgr, - g1, )%1gs " (4.4)
1y dk€L K € Jk
KeP; d(I;,1;) >k Viztj a

which is the analogue of Step 2 in Section 3.2.
To analyze the second term in (4.4), we fix Iy,...,I; € P, with d(I;,I;) >  for all i # j, and
fix J € P, with g; # 0. To estimate the integral SQk lgr, - g1, 2|g.7[P~2*, first note that the Fourier
q

transform of |g;|2 = ¢;g7 is supported in the parallelepiped 67 — 67, of dimension v x 1% x - - x V¥,

Since our hypothesis guarantees that p — 2k is an even positive integer, the same is true for the
Fourier transform of |g;[P~%*. Lemma 2.1(i) applied to J € P, instead of K € Ps shows that the
Fourier support of |gs[P~2* is the disjoint union of v FE=1/2 many cubes of side lengths v*, and
we denote this collection of cubes by {[1}. This corresponds to the fact that we have a k-tuple
of residue classes (H; (mod p), Hy (mod p?),..., H; (mod p*)) which we can upgrade to pF(*—1)/2
many k-tuples of the form (H| (mod p*), H) (mod p¥),..., H] (mod p*)). Note that the side length
V¥ of the cubes [Jis < 6.
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We now apply Fourier inversion and turn products into convolutions. We have

—2k — —2k
Jk\gfl---91k|2|9J|p = Z Z kgKl---gKkgkl-ugf{k|gJ\p ?
Qg K;ePs5(1;) K;ePs(I;)
i=1,..k =1,k
=3 Gmee TR * T o+ T+ (9P 109)(0).

O KZEP(;(IZ)K EP(S(IJ')
1= 17 7k ] 1, ,k)

For each fixed [J and K; € Ps(Iy), ..., Ky € Ps(I), let S(K1,...,Ky,[J) be the set of all
(K1,...,Ky) with K; € Ps(I;) such that

0 € supp(gr, * -~ * Gy * Tig, * - * T, * (1P~ 2*10)). (4.5)

We will prove in Lemma 4.4 below that #S(K7, ..., K, []) < (qn)*k(k*”. If we think of the model
case when x = 1/q, this would say that the K; and [ uniquely determine the K; in (4.5). This
analogous to the situation in Linnik’s lemma where once we upgrade (3.3) to residue classes mod
p¥, the remaining variables are essentially uniquely determined.

We now write

f \gr, - - - g1, |9 P2
Qk

-2 ¥ Do TKrEOK TR, ko x Tk, * (9P 10)(0)
U KjePs(Ij) (Ki,...Kg)e
.] 17 7k S(K17 7Kk7|:|)

Z > > f|9K1- IKLIR, - IR, 19172+ 1]

U Kjep (I) (K1,...Ki)e
j=1,k S(Ku,...Kp,0)

< Z( “QI_{“LOO(Q’(;))k(qH)_k(k 2 max HQKHLOO(Qk) J . ‘gJ‘p_zk * 15|,
O I_{EP(; Qq

Since SQk IT5] = 1 and the number of [7is v~**~1/2 this gives
q

2 —2k —k=1) —k(k—1 _ k —2k
| Jon e anPlasl = < v 5 a0 e e e gy 3 T limcas) j@gw .

Qq I_{EP(;

Applying affine rescaling shows that this is

_ k(k—1)
<v "z (gk

)7k(k b ax HQKHLOO(Qk

p=2k (4.6)

0y
(X lorlio@y) Pp-2e (N ol dagy)
KEP(; K’GP(;(J)

One can think of (4.6) as the analogue of (3.4) in Section 3.3 in the following way: the term

v D2 () D) max ke p, |gx |5 plays the role of p**~1/2 from Linnik’s lemma, the tern}il
p=2k

(Xrep |9z llso)* plays the role of X*, and finally the term ©,,_ gk( )P~ 2k(ZK,€P6(J lgr: ||p o) 2
plays the role of the Js_j (X /p).
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Plugging (4.6) back to (4.4), we then obtain

) p/2 Y TP T )
j |g|? Spf‘Dp(—)p< Z ||gKH%p(Qk)) +q k(k—=1) . —(k?+4k—2),,—=5= np—2k
Qf R N Keps a

5 p—2k

p—2k k _ k 2 2
Qp—zk(;) ?53; HQKHLOO(@{;)(_Z HQK”LOO(Q’;)) < Z HgK'“Lmec(QI;))
KeP;s K'’ePs(J)

4.1.2. Geometry of the moment curve. The proof of Lemma 4.2 is now complete modulo the
proof of the following lemma, which provides the key geometric input that enables one to count
#S(K7, ..., Kg,[). This is the analogue of Linnik’s Lemma ([29, Corollary 17] and the estimate
for B(g) in the proof of [31, Lemma 5.1]); see also [13, Proposition 1.3] and [2, Proposition 3.1].
Both proofs use the Newton-Girard identities in essentially the same way. The hypothesis that
q > k, where ¢ is the characteristic of our base field Q, and k£ is the degree of the moment curve,
plays a role in the following lemma.

Lemma 4.4. Let p € 2k + 2N, 6 € ¢ N, k e ¢ N~ [5,1), and v = qUngI‘gl/kJ e ¢ N so that
v < 6Yk. Suppose that I, ..., I, € P, with d(I;,I;) > K for alli # j. Let ] be a cube of side length
vk and Ky € Ps(I),..., Ky, € Ps(I). Define S(K1,..., Kg,[0) be the set of all ordered k-tuples
(K1,...,Ky) with K; € Ps(I;) such that

—_
—

0 € supp(gr, * - * Gr, * Tr, *+* * T, * (19717 2F10).
Then
#S(Kb' .- 7Kk7|:|) < (qﬁ)_k(k_l)‘

Proof. Assume for the sake of contradiction that #S(Kj,..., Kg,[J) > (qm)*k(kfl) > 1. We can
find two k-tuples of intervals (Aq,..., Ag) and (B, ..., By) with each A;, B; € Ps(I;) such that

0 € supp(ga, * -+ ga, * Ix, * - * Ix, * (l97P~**1p)), (4.7)
0 €supp(gp, * - * gB, * Ik, * - * Ik, * (l91P~**10)), (4.8)

and such that there exists an ig with d(A;,, B;,) > (gr)~*~16§. Indeed, if not, picking an ar-
bitrary (C1,...,C%) € S(K1,...,Ky,[]), shows that any other (D1,...,Dy) € S(K1,...,K,[])
must satisfy d(C;, D;) < (qr)~ =14, This gives at most (gx) **~1) many k-tuples which violates
our initial assumption that #S(K7,..., Ky,[0) > (¢gx)~**=1_ Without loss of generality, we may
assume that ig = 1.

Since for each ¢ = 1,2,...,k, we have A;, B; c I; and d(I;,I;) > k for all ¢ # j, this implies

d(A;, Aj) = qk, d(Bj;,Bj) > qk, d(A;,Bj) > qx whenever j # i (4.9)

(thus the only distances we do not have any control over are the ones of the form d(A;, B;), i # 1).
By (4.7) and (4.8), we have that

k k k k
0e (ZTAi —ZTKZ_ +0) N (ZTBi —ZTI‘Q + )
i=1 i=1 i=1 i=1

where here we recall the definition of 7% in (1.4). Each 74,, 75,, and 7, are cubes in Q% of
side length § and [] is a cube in Q’; of side length v* < §. Thus by the ultrametric inequality,

both Zle TA; — Zle T, + [ and Zle B, — Zle Tg, + [0 are cubes in QZ of side length 4.
Furthermore, by the ultrametric inequality, since two cubes of side length ¢ are either completely
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disjoint or exactly the same, we must have
k

k k k
ZTAi —ZTI‘{Z_ +[= ZTBi _ZTI_Q +0
i=1 i=1 i=1

i=1
and hence

k k
ZTAZ. - ZTBZ. = B(0,0)
i=1 =1

Therefore (after another application of the ultrametric inequality) there exists €4, € A; and {p, € B;
such that

k k
PRTEDNARE (4.10)
i=1 i=1
for j=1,2,...,k.

We now use the Newton-Girard identities to derive a contradiction. For j = 1,2,...,k, define the
power sums p;(z1,...,2) 1= ZE{—I-' . 4—x§g Next for j = 1,2,...,k, define the elementary symmetric
polynomials e;(z1,...,xy) := 21<i1<---<z‘j<k Ty -+ x;;. Additionally, let eg(x1,...,2x) := 1. Then
we have the two identities:

k
(X —21)(X — o)+ (X —ap) = Y (—1) 5 (e, ..., mp) XF (4.11)
j=0
and for j =1,2,...,k, we have
j—1
jej(@r, .y mk) = Do (=Diej i1 (@1, wR)pisa (1, T). (4.12)
i=0

See, for example, [29, Lemma 15] for a proof.

Let e;(A) := €j(€ay,---,€a,) and p;(A) := p;j(€a,,-..,&a,). Similarly define e;(B) and p;(B).
By (4.11), we then have

k

(€ay —€m) - (6a, —E€B) = D (= i (4.13)
7=0
and
: k
0= (5/41 - £A1) £A1 £Ak Z ]. (4.14)
7=0
Subtracting (4.14) from (4.13) and using that |4, — &p,| = g for any j # 1 (which follows from
(4.9)) shows that
k
(g5)" M €ay — €l < | D (=1 (e5(B) — e5(A)EL| < < max|ej(B) —¢;(A)]. (4.15)
j=0

Next we claim that |e;(B) —e;(A)| < ¢ for all j = 1,2,...,k. We prove this by induction. Since
e1 = p1, le1(B)—e1(A)| < 6 by the j = 1 case of (4.10). Now assume that for some J = 1,2,... k—1
we had |ej(B) —e;(A)| < forall j =1,2,...,J. Then by (4.12),
J
|(J + Dessa(B) = (] + Degar(A)] = | 25 (=1) (es—i(B)pir1(B) = es—i(A)pis1(A))|
i=0
< max [ej—i(B)pi+1(B) — ej—i(A)pi+1(A)].

o<i<<J
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Observe that
les-i(B)pit1(B) — es-i(A)pis1(A)| = es-i(B)(pi+1(B) — pir1(A4)) + pir1(4)(es- Z(B) —es-i(A))]
< max(|pi+1(B) — pir1(A)];[es-i(B) — es-i(A)]) <
by the inductive hypothesis and (4.10). Since ¢ is a prime > k, it follows that |ej41(B) —eJ+1(A)\ <
J.
Applying this conclusion to (4.15) then yields that (gx)*~1|€4, — &p,| < 6. But this contradicts

the fact that d(A;, By) > (gr)~*~1§. Therefore we must have #S(K1, ..., K, [) < (gx)F¢*-1
which completes the proof of the lemma. O

5. PROOF OF THEOREM 1.1 AND COROLLARY 1.2

5.1. Dyadic pigeonholing. It is more convenient to bound

Dy(8) :==  sup  D,(dp) (5.1)
d0€qNn[6,1]

instead of D,(8) as D,(d) is defined for all real § € (0,1] (rather than just for § € ¢~N) and is
monotonic, that is, D,(01,) < Dp(ds) if 67, = dg.

Proposition 5.1. For even integers p > 2k, there exists a constant C > 0, depending only on k
and p, such that for every 0 < e < 1, we have
4 h(k=3)

D0 < Clloga™) | D@2 4 g+ =g 002 LD,y by (52)

for all 0 < < 1.

Proof. To bound D,(8)P, suppose 0 < § < 1 and & € ¢Z with & € [4,1]. We need to bound D,(5)?
by decoupling down to frequency scale dg.
Let f be a Schwartz function on Q'; with Fourier support in . Py, Ok. Then f =D, Py, fr

where f/.]\{ = fl k—1. We want to prove the existence of C' > 0 so that for any 0 < e < 1,

K xQq

J 1ot < Cliogatyx

k24 7k—4 _ _lp  k(k=3) —2\p— o
[Dp(51 P4 S D G g1ty 2’“]( > Wlinay) -
KEP(SO

(5.3)

In fact, we will prove that for any translate Q of By := {z € Q’;: x| < 50_]“}, we have
0
| 1717 < Clog sy
Q

{Dpwl 4 b (ke g (Y 3>>Dp2k<al—i>P‘2"] (2 Ul
K eP50
(5.4)
The estimate (5.3) then follows by summing over all such @’s that tile Q'g, and applying Minkowski’s
inequality to bring an ¢?/2 norm over @ on the right hand side into the sum over K € Ps,.
Thus we now turn to the proof of (5.4). Note that for any translate @ of B sghs we have that IQ

is supported in B5§. Therefore f1g is still Fourier supported in |z Ps, Ok since Ok + Béla: =0k
for all K € Ps,. Next, we have (flg)x = fx1g; indeed

(le)K = leleQ’(;*l = (f * 1Q)1K><Q§71 = (fleQg’l) * 1Q = fK * 1Q.
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As a result, to prove (5.4), it suffices to prove (5.3) under the additional assumption that f is
supported on . Since f is an arbitrary Schwartz function with Fourier support in |Jx. P Ok,
0

we may assume () = B;_r. Thus from now on, we assume additionally that f and all the fx are
supported on B,—x and prove (5.3).
0
We first dyadically pigeonhole f by wavepacket height. Write H* = maxgep;, | fx|l Le(qk)- For

k(k—1)

1
I e g, let

K € Ps, and H € 22H* (4,

f;({H) = fxlmp<|fx|<H

where here fg : QZ — C, |fk]| is the absolute value of fg, and the last characteristic function is
meant to be the indicator function of the set {z € Q¥ : H/2 < |fx(z)| < H}. Since fr is supported

on Bk, sois f [(<H). By Lemma 2.2, since fx is Fourier supported in 65, we then have
0

f[((H):( Z leT)lH/2<\fK|<H: Z (leT)lH/2<\fK1T|<H (5.5)
TeT(K) TeT(K)

where the last equality is because | fx 17| constant on every T € T(K). Again by Lemma 2.2, note
that f I((H) is Fourier supported in fg. Using the terminology of Lemma 2.2, the nonzero wavepackets
that make up f [({H) are all of height ~ H. Then

(H)
1= > > i lpe@n < ), Ifx1 Hﬂ’;;_l)H*HLOO(Q’;)

KePs, 14 Bl—1) KePs, |frc[<6
HeZH*n (5, 2P H* H*]
14 B(E=1) k(k—1)
<66 O H*) =6, H*

so since f and f [({H) are supported on B 5ok

k(k—1) k(k+1)

H —— 1 _
Hf_ Z Z f[({ )HLP(QI;) < ((50 2p H*)|B65k‘p = H*60 2p
KeP50 14 EG—1)
He2ZH* (5, [ ¥

< max |flioon < () 1Fxnige)™?
KEP(;O KEP(;O q

where the second inequality follows from writing fx = fx * T@K and applying Young’s inequality
|5l oy < 17l io(ai o | s This shows

1 £ e iy < Z H Z ff(cH)”Lp(QI;) + ( Z ”fKH%P(Q’;))l/2‘

k(k—1) KGP(;O KEP(SO
HeZH*n (5, 2P H* H*]

Next we dyadically pigeonhole so that each relevant f I(<H) is made up of about the same number
1/k
of wavepackets. Let now v = ¢l!8% " | < (53/ ¥ From (5.5), f[((H) is Fourier supported in 0 and

supported in By—x. Since a T'€ T(K) is either completely contained in or completely disjoint from
0
Bk, we then can write
0

£ = > (fEIT) H /o<1 |<H- (5.6)
TET(K).T<B,
0
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. L o . —k(k—1)/2
Furthermore, the T' € T(K) which are contained in By perfectly partition By into d;
0 0

many translates of Tj . Thus (5.6) has at most 50*’*3(16*1)/2

ae2N 1, 507]6(1671)/2], let

many nonzero terms. Therefore for

f[({H,a) — f[({H)

if the number of nonzero terms in (5.6) (that is, the number of nonzero wavepackets in f [(<H)) is in
(a/2, ], and 0 otherwise. Thus now we have that

H H,a
K= X K (5.7)
ae2Nm[1,507k(k71)/2]

and each f I((H’a) is a function which is supported in B, and Fourier supported in 65 which has
0

~ « many nonzero wavepackets of height ~ H.
Finally, we dyadically pigeonhole so that given a K, the parent interval J of length v has about

the same number of children K’ of length dy such that f % ) £ 0. To be more precise, fix a K and
let J be the unique parent interval of length v containing K. This parent J contains v/dy many

intervals K’ of length dyp and hence J has at most v/dy many children K’ such that f [(g,a) # 0. For
K c Jand e 2N n[1,v/d)], let
(Hvavﬁ) fy— (H,Oé)
fi = [

if the number of children K” of J with f(Ha # 01isin (8/2, 5], that is, if #{K" € Ps,(J) : f(Ha
0} € (8/2, 8], and 0 otherwise. Thus we now have

H,«a H,a,
0= e (5.8)
Be2NA[1,v/80]

and each f 1:08) is a function which is supported in By, Fourier supported in 6k, has ~ o many

nonzero wavepackets of height ~ H, and K’s parent J has ~ ( children each of which also are
supported in B,_x, Fourier supported in fk, and have ~ o many nonzero wavepackets of height
0

~ H.
Thus combining (5.7) and (5.8) gives

(H) (H,a,8)
K = Z Z K
ae2N (1,55 FE=1/2] Be2n[1,v/d0]

which implies

£ loaey < > > DI DI/ S PAACS

k(k—1) N —k(k=1)/21 Be2Nn[1,v/60] KePs
55 2 1,9 ,V/00
HE2ZH*F\(5O P H*,H*] aE ﬂ[ »“0 ] 0
2 1/2
+ ( Z HfKHLp(Q{;)) 2.
KEP(;O

Fix now ¢ > 0. For each of the < (log 50_1)3 choices of (H,a, ), we apply Lemma 4.2 with §

replaced by dg, to
Z (H a,ﬁ) Z Z f(Ha (59)
KePs, Jep{Ha8) KePs (J)

where

P{ed) = (Je P, - #{K" € Ps,(J) : fioy® # 0} € (8/2, 5]}
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and r 1= gl8 %] < 0. Note that this implies
97 = 1paan(J) Z f(Ha (5.10)
KEP(SO (J)

and g = f K )if K7s parent J is contained in P(H @5 and 0 otherwise. Write N for the number

of J € P, for which g # 0 as in Lemma 4.2, and so N = #P,SH’O"B). Note that by assumption the
number of nonzero terms in the ), in (5.10) is ~ 5.
With this, we then first compute

k k
11{22}3?;2 HQKHLOO(QIS) ~H (5'11)

since gx = féH’a’B ) which has height ~ H. Next, we have

( Z HQRHLOO(@g))k :(Z Z ||9K||Lw(<@{;))k

REP‘SO Jep, I_{EP(;O(J)

=( )] > |9 L=(gt))" ~ (NBH)®

JepSHeP) KePsy(J)

(5.12)

since there are N such J for which gy # 0 and by how g is defined, each of these J’s that contribute

has ~ 3 children K such that gz = fl(?H’a) # 0. We can finish this estimate once again by using
that gz has height ~ H. Third,

2 —2k)/2 __ 2 —2k)/2
max( Y, gl fpangp) " =max( Y Noxlge s )
KePsy(J) KePs,(J) 0
~pk B(p_2k)/2Hp_2ka(50_k(k+l)/2 (513)

since by how g is defined, the ) ;.. Psy () has ~ (8 terms and each term is made up of ~ o wavepackets
k(k+1)/2

of height ~ H. Note here we made use that each T € T(K) has volume §, and gx is
supported on B 5t Finally, a similar computation gives that
k+1

(2 glio@)?? = (X 2 laxliom, )" ~pn (NBPPHPas, "2 (5.14)

KePs, JeP, KePs, (J) 0
Combining (5.11)-(5.14) gives that

k _ k 2 (p—2k)/2
b loxcl oy 25 I9rlzoqop) max( 3 NgrlTosegp)”
KePs, KeP(;O(J)
~pk N—(=28)/2( Z HQKHip(Qg;))p/z-

KEP(;O
Using this with Lemma 4.2 where g is as given in (5.9), then shows that

50 2 p/2
J., 1ot < 02,2 (3] lowla)

q KEP(;O

(1) (R2adf_9) k(=D p-—2k do p/2
+ O Pk = (B 44k=2) == N3 Dy 2k( i 2k< Z H9K||2LP(Q§)> .
KEP(SO

< D,(617%) where in the second inequality we
1
%

K
have used monotonicity. Similarly, 570 > 3 =6, " = 517%, SO C‘Dp_zk(%o) < Dp_gk(élfé). As a
0
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result,
o < €D ( 3 lowloy)
Qk = g KeP; o Ha
0
1Y (12 adb_ oy k(k=1) _p—2k -z o
e T B Vs N DMIPHC e e (D 7 T
KGP(;O

B (H

Now use N < v~ ! and HQKHLP(Qk Hf e HL”(Q'S) < HfKHLp(QIf?)’ Thus

J. 17 < Clogs

B o B ) 1, P/2
[Dp(él P 4 g RO (2 4k2) (B )D,_op (5175 )P 2k]< > HfKH%P(Q’;)) :
KEP(;O

—1/k

But v < ¢d, " < q6 V% and k71 < q6y © < ¢d¢. This completes the proof of (5.2). O

5.2. Proof of Theorem 1.1. We now finish the proof of Theorem 1.1. It suffices to iterate (5.2)
by using an induction on p and induction on §. Applying the definition of D,(é) from (5.1) and
the hypothesis of Theorem 1.1 gives that

( 0157(%7M)*0(p0)(17%)Po/(%)

)7
for all § € (0,1) and some c(po) > 0 such that the power of 6! is nonnegative. Note that from

(1.9), a(p,po) = a(p — 2k, py) + + w and a(po, po) = 0. Additionally, (1.10) gives b(py) = 0
where

b(p) = (p— k(k + 1)1 1)~ + 2c(po),

and b(p) is an increasing function of p on [2,00): indeed, for p = 2, we have

¥p) = (- by E s 20 o
- F s P o g - 1))
> (- F e 2D ok o — 1))
> (- prdp s 22,

where we used p > 2 in the first inequality, and used log k —log(k — 1) < 5 with 2—k(k+1) <0
in the second inequality. This gives

1._»
Z) (1
SR
since k = 2, proving that b(p) is an increasing function of p on [2,00). As a result, from b(py) = 0,
we see that b(p) = 0 for all p > pp, and hence
p  k(k+1) 1
2 5 +elpo)( k:)

2—k— k2 1 k+2

b'(p) = (1 - m]:(l—k)_%[l—w]/o

sk

>0 (5.15)

for all p = pg.
Assume for every 0 < e < 1 and all 6 € (0,1) we know

—ok  k(k+1) p_2k
Dp72k<5)p72k < Cp,gkﬁq“(”*zk’m)5*(%77)70(5”0)(17%) 2k —e
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for some p € py + 2kN (this is true for p = pg + 2k) and Cj,_oj ¢ is allowed to depend on Cy. Then
(5.2) gives

D,(9)" < Cllogd™) [ D8~y

+ g oqOPP0) §= (2 +4k=2)2 5= (§+ £ 3)>5—<1—%><%——“’“§”)—c<po><1—%>”—5£—k+1—~€]

= C(log 6P Dy(5' ) + CCpapo g0 5= (5 =5 =clpo) 1= ) 3 —(k2 )

for all d,e € (0,1) where C' here depends only on k and p. Iterating this inequality M times with
M to be chosen later gives that
D,(8)P < CM(log 6~ 1)3MP D, (50" yp
M-
+ CCy_gp oq" 0 5= (K +4k)e Z i(log 6" 3pj5—(1—6)jK%‘%HC(!)O)U—%)

e

I

Trivially, we have Dp(5(1_€)M) <6 (1=a"/2 Thys

Dy(8)P < CM(log §1)3Mpg—(1=2)"p/2
M—-1
T CCy o oq @205~ S i 10 51y 5= (1= (=25 elpo) (1- 1)
§=0

(5.16)

P

I,

By (5.15), the power of §~! in (5.16) is positive and so using that (1 —¢)? < 1, the sum can be
controlled by

MC’M(log 5*1)31\/[;!)5*(%7@)—0(1)0)(17%)gpk-. ‘

Insertlng this into (5.16) and choosing M be the least integer such that (1 — &)™ < e (and so

= [10;()%65 r]) then shows that

k(k+1)) c(po)(l 1)% (k2+4k)s

Dp(8) <pe,cn qa(p’po)/p(log5*1)3M5*(%*T — 20l (1— )2k -

for all 6,¢ € (0,1). Since (logd~1)3M <. 67¢, by redefining ¢ we have
1 M)_M(l_l)ﬁf

Dp(é) pe,Ci qa(p,po)/pé—(2_ 2p » R)2F—e

APPENDIX A. PROOF OF Do (d) < 6°¢

Fix k € N and a prime ¢ > k. For § € ¢V, let S(6) be the smallest constant such that the reverse

square function estimate
| o< j S lgxl?)*
QI; q KePs

holds for every Schwartz function g on Q’; with Fourier transform supported in |y p; 0. We will
prove that
S(0) < 6°°
for every £ > 0, which by Minkowski’s inequality is stronger than the assertion Doy (d) <. 07 °.
Let 0 € ¢, g be as above, and x € ¢~ 1 [§,1]. The broad/narrow dichotomy given by the
pointwise estimate (4.2) implies

J,, o <2t 3 f P S g (A

a IeP, Ii,..lyeP., “Qq
d(I;,1;)>k Yitj
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Furthermore, by a rescaling argument similar to that in Lemma 4.1, we have

3 f g1 < Sy Zj l9x2)* < f (3 ok (A2)

IePy IePy q KePs(I) q KeP;s

where we used the pointwise inequality >;cp (X xepy(r) 9 )F < (Zkep, l9x[*)F in the last in-
equality. To proceed further, fix now I,..., I € P, with d(I;,1;) > & for all i # j. We expand

f@klgh---ng— > 2 fkgKl...gKkﬁ...m
q

KePs(L) K;ePs(1;) Qq
1= 17 7k ] 1, ,k

and write

JkgKl...gKkﬁ...%:[ﬁ*--.*@*ﬁ*..-*ﬁ](o).

q

For each K7 € Ps(I1),..., Ky € Ps(I}), we count the number of ordered k-tuples (K7, ..., K;) with

—

K; e Ps(I;) fori =1,...,k and 0 € supp(gx, *- - * gk, *g—f(l**ﬁ) The proof of Lemma 4.4
shows that the number of such ordered k-tuples is < (gx)**~1 (in fact, here we only need that 9K;
is supported in the cube 7y, rather than the smaller parallelepiped fk ;). So using Cauchy-Schwarz,

o) f 9K, - 95, TR, - Ok, < (qr) PETD Y f 956, - - 95,

Kzepé(Iz K i€Ps( I K EP(;
i= 17 7k ] 17 7 -

It follows that

5 f 912 - g1, |? < (gre) D f (3 toxci?)" (A.3)

In,....IxePx Qf KeP;
d(I;,I;)>kVi#j

Alternatively, multilinear restriction estimate and L? orthogonality says that for any ball Bs—1 of
radius 67! in Q’;, one has

| o <. 6’“’fo 91,12 = |Bs-a |~ ““Hj N o).
6

1 K EP(S )
and since each |g;| is constant on B;', we have

| By |~ Hfé |9KJ f H D lox| )

s—1

1 KePg(IJ Bs-1 j=1 K;ePs(I;)
Summing over all Bs-1 < Qk and all I1,..., Iy € P, we have
> f 91, - gr,* <k f ( > lox] )
WIR€Ps q KeP;s

d(IZ,IJ)>an;é]
which for the purposes below is as good as (A.3). Putting (A.2) and (A.3) back into (A.1), we have

5(5)2k < 22k—1k2k5(%)2k + 22]6—1/{—(4]6—2) (q/{)—k(k—l)‘

Iterating this gives

S(5)2k < (22k—1k2k)NS(HiN)2k + N22k_1/€_(4k_2) (q;g)_k(k_l)
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for all positive integers N for which ¥ > ¢; in particular, applying this with N = Hggi:llj, and
noting that S(6/x™) < (6/kV)™1? < k=12, we have

on(22k—1 42k —1
Sﬁn2k$;5—L§%£;t¥‘lﬁ—k_%10g5 g2k —(4k=2) (g o) k(1)

log k—1
. . log(22k—1k2k) . _
By choosing k = k(e) sufficiently small so that gt S 2ke, one obtains S(0) <. 07F, as
desired.
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