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ABSTRACT

Let G/P be a complex cominuscule flag manifold. We prove a type independent for-
mula for the torus equivariant Mather class of a Schubert variety in G/P, and for a
Schubert variety pulled back via the natural projection G/Q — G/P. We apply this
to find formulae for the local Euler obstructions of Schubert varieties, and for the
torus equivariant localizations of the conormal spaces of these Schubert varieties. We
conjecture positivity properties for the local Euler obstructions and for the Schubert
expansion of Mather classes, and we prove this conjecture in Lie types A B, and D.
We also conjecture that certain ‘Mather polynomials’ are unimodal in general Lie type,
and log concave in type A.

1. Introduction

Let X be a complex, projective manifold and let ¥ C X be a closed irreducible subvariety.
The Mather class cpa(Y) is a non-homogeneous element in the (Chow) homology A.(X). Its
original definition uses the Nash blowup of X along Y, but in this paper we work with the
following equivalent definition, going back to Sabbah [Sab85]; see also [Gin86, AMSS22b|. Let
T*(X) be the cotangent bundle of X, and let ¢ : X — T*(X) be the zero section embedding.
The multiplicative group C* acts on T*(X) by fibrewise dilation with character A~!. To the
subvariety Y one associates the conormal space Ty (X) C T%(X); this is an irreducible conic
Lagrangian cycle in the cotangent bundle. The Mather class ¢y (Y) is the dehomogenization of
the C*-equivariant class of the conormal space:

ema(Y) = (1) (P (X)]e ) € Au(X).

For example, it follows from definition that if Y is smooth, then ¢y, (Y) is the push-forward of
the homology class ¢(Ty ) N[Y] inside A.(X). If Y = X, the degree 0 term equals the topological
Euler characteristic, by the well known index formula:

N(X) = (—1)dm /X [T (X)),

Equivariant Mather classes were defined by Ohmoto [OhmO06], see Section 3.

2020 Mathematics Subject Classification Primary 14C17, 14M15; Secondary 32560
Keywords: Chern-Mather class, Euler obstruction, conormal space, Schubert variety, positivity, log concavity.

L. C. Mihalcea was supported in part by the Simons Collaboration Grant 581675 and the NSF grant DMS-
2152294.


http://www.ams.org/msc/

LEONARDO C. MIHALCEA AND RAHUL SINGH

Let G be a complex, semisimple Lie group, and fix 7' C B C P C G a parabolic subgroup
P containing a standard Borel subgroup B with a maximal torus T; let X = G/P be the
associated flag manifold. The goal of this paper is to study the T-equivariant Mather class
A, (Y) € AT*C7(X) for a Schubert variety Y in a cominuscule space G /P, or when Y is the pull-
back of a Schubert variety along the natural projection G/Q — G/P. For details on cominuscule
spaces, see Section 4.

Let W denote the Weyl group and let W be the subset of minimal length representatives.
For w € WP, let X = BwP/P be the Schubert cell, with closure X', the Schubert variety
in G/P; set XP := BwB/B, the Schubert variety in G/B.

The Mather class of a Schubert variety is related to Chern-Schwartz-MacPherson (CSM)
classes of its Schubert cells via the local Euler obstruction coefficients ey, ,:

Ma(Xi) = D ewwcsm (X)), (1)
v
These coefficients were defined by MacPherson [Mac74] and provide a subtle measure of the
singularity of X! at v. For instance, consider the parabolic Kazhdan-Lusztig (KL) polynomial
Py »(q); cf. [Deo87]. Then the equalities

ews = Puo(l), Yve WP, (2)

hold if and only if the characteristic cycle of the intersection homology (IH) sheaf of the Schubert
variety X is irreducible; see §8.1. In general, the problem of finding the decomposition of
the characteristic cycle of the IH sheaves into irreducible components is open, although some
particular cases are known; see e.g. [KL80, KT84, BFL90, BF97, EM99, Bra02, Will5], and
also Section 8 below for more details. We note that since CSM classes of Schubert cells can
be explicitly calculated [AMO09, AM16, RV18], equation (1) shows that giving an algorithm to
calculate Mather classes is equivalent to one for the local Euler obstructions.

To state our results, we need to introduce more notation. For w € W let I(w) denote the
inversion set of w, i.e., the set of positive roots «a satisfying w(a) < 0. For a root a we denote
by ga the root subspace of Lie(G) determined by « and by C, the one-dimensional B-module
of weight a. It follows from [Sin21] (see also [RSW20]) that if G/P is cominuscule and w € W7
then the vector space T}, := Dacl(w)d-a has a structure of a B-module. Therefore T, := G xB T,
is a vector bundle over the complete flag variety G/B. Let ¢(T,,) denote its total Chern class.
The following is the main result of our paper; see Theorem 5.1 and equation (7) below.

THEOREM 1.1. Let G/P be a cominuscule space, let 7 : G/B — G/P be the projection, and let
w € WP, Then the following hold:

(a) The Mather class of XL is given by
eMa(Xy) = m(e(To) N[XZ) = m( [ e(G <P Ca) n[X].
acl(w)

(b) Let @Q C P be any parabolic subgroup, with ng : G/Q — G/P the natural projection. The
Mather class of the pull-back Schubert variety Trél(XUI? ) is

ema(mg! (X)) = e(Tng) N o (ena( X)),
where Ty, is the relative tangent bundle of the projection mq,.
(c) The formulae in (a) and (b) hold in the T-equivariant setting.
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We encourage the reader to jump directly to Section 5.2 for examples illustrating the formula
in part (a) and its equivariant version.

The proof of part (a) exploits the observation that the C*-equivariant pull-back t*[T%»(G/P)]
is essentially given by the Segre class of the conormal space T% »(G/P); see Section 2 below. To
calculate this Segre class, we utilize a desingularization of the conormal space found by Singh
[Sin21], together with the birationality of Segre classes.

A different proof of the part (a) of Theorem 1.1 may be obtained using the identification by
Richmond, Slofstra and Woo [RSW20, Thm. 2.1] of the Nash blowup of the Schubert varieties
in cominuscule spaces. In fact, after this paper was completed, we learned from D. Anderson,
L. Escobar, E. Richmond and A. Woo that in ongoing work they also recovered the formula
in Theorem 1.1(a). In this paper we emphasize the equivalence between Mather classes and the
Segre classes of the conormal spaces, a point of view which we believe it will have further benefits.

Part (b) follows from the Verdier-Riemann-Roch formula proved by Yokura [Yok99], and from
the invariance of Euler obstructions under smooth pull-back; cf. Proposition 3.3. All constructions
are T-equivariant, and part (c) follows.

We give two applications of Theorem 1.1: an explicit localization formula for the conormal
spaces T p(G/P) of Schubert varieties in cominuscule spaces - see Theorem 7.3; and a formula
for the local Euler obstructions of Schubert varieties. The proof uses equation (1) and the iden-
tification of the Poincaré duals of CSM classes obtained in [AMSS22b]. The resulting formula is
given in Theorem 6.1. We propose the following conjecture; see Conjectures 8.1 and 8.4 below.

CONJECTURE 1.2 Positivity Conjecture. Let X = G/P be a cominuscule space.

(a) Consider the Schubert expansion cya(XE) = 3 awo[XF]. Then ay, > 0. A positivity
property also holds for the equivariant Mather classes.

(b) The local Euler obstruction coefficients are non-negative, i.e. €y, > 0.

Using equation (1), and the positivity of the non-equivariant CSM classes of Schubert cells
[Huh16, AMSS22b], we see that the non-equivariant positivity of part (a) follows from part (b).

THEOREM 1.3. Conjecture 1.2 holds if X is a cominuscule space of classical Lie type (i.e. a
Grassmannian, a maximal Orthogonal Grassmannian, a Lagrangian Grassmannian, or a quadric).

In types A, B, D, the theorem follows from results by Bressler, Finkelberg, and Lunts [BFL90],
and by Boe and Fu [BF97], on the IH characteristic cycles of Schubert varieties. After a version of
this note appeared on aryiv, LeVan and Raicu [LR22] utilized the results of Boe and Fu to prove
non-negativity of the Euler obstructions for Lagrangian Grassmannians (type C). See §8 below.
(Added in proof: using the formulae obtained in this paper, we wrote a SAGE program checking
that the IH characteristic cycles of Schubert varieties in a cominuscule Grassmannian of Lie type
Eg and E7 are irreducible. This implies that the non-equivariant statements in Conjecture 1.2
hold in all the remaining cases; details will be given in the upcoming paper [MS22].)

We also conjecture a unimodality property for the Mather polynomial of Schubert varieties
XP. The Mather polynomial is obtained from the Schubert expansion of the Mather class by
replacing each Schubert class [X[] by '™ We conjecture that the resulting polynomial is
unimodal in general, and, for the ordinary Grassmannians, it is also log concave. See Section 8.3
for details and examples.

Formulas for the Mather classes and for the local Euler obstructions have been found by
B. Jones [Jonl0] in the case of Grassmannians, and in [Rail6, Zhal8, PR22, Tim]| for certain
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degeneracy loci. Jones’ proof is based on the fact that if ' : Z,, — ij is a small resolution
of X' (in the sense of intersection homology) and if the characteristic cycle of the IH sheaf
of XI is irreducible, then the Mather class satisfies cya(XE) = 7 (c(T(Zy)) N [Zy]). Small
resolutions for Grassmannian Schubert varieties were constructed by Zelevinsky [Zel83]; Bressler,
Finkelberg and Lunts [BFL90] proved that the characteristic cycles of the IH sheaves of Schubert
varieties are irreducible. Outside the type A Grassmannian, Schubert varieties may not admit
small resolutions; see [SV94] and also [Per07, Example 7.15].

Boe and Fu [BF97] used delicate techniques from geometric analysis to find formulae for the
local Euler obstructions e, , of cominuscule Schubert varieties in classical types. Using recursive
formulae for the KL polynomials, they showed that the identities (2) hold in Lie types A and
D, and fail in general for types B, C. We included Examples 6.3 and 8.8, recovering instances of
reducible TH sheaves from [BF97] and [KT84], and obtained with the formulae from this paper.
In future work, we plan to compare our formula from Theorem 6.1 to the formulae in [BF97].

We work over C. Throughout, we utilize Chow (co)homology theory [Ful84], and its equiv-
ariant version from [EG98]. This is related to the ordinary (equivariant) (co)homology via the
cycle map - see [Ful84, Ch. 19] and [EG98, §2.8]; for flag manifolds this map is an isomorphism
[Ful84, Ex. 19.1.11].
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2. Segre classes of cones

The treatment in this section follows [Ful84, §4], see also [BBMS87].

2.1 Segre classes of cones

Let C' = Spec(S®) be a cone over a scheme X, where S® is a sheaf of graded Ox-algebras,
Ox — S9 is injective, S* is coherent, and S® is generated by S'. The projective completion
P(C & 1) := Proj(S°®|[z]) is equipped with the projection ¢ : P(C & 1) — X and a line bundle
Oc(—1). There are well defined notions of a subcone, and a pull back of a cone. The Segre class
of Cis

,7 PCoI)Y _ i
s(C) == ¢ <c((’)(;(—1))> = g« (; a(Oc())'NP(C® ]1)}) € A (X). (3)
If C = E is a vector bundle over X then its Segre class is s(E) = ¢(E)~! N [X]. One of the

fundamental properties of the Segre classes is their birational invariance:

LEMMA 2.1. Let f : X’ — X be a proper morphism of varieties, and C,C" irreducible cones
over X respectively X', such that C' is a subcone of f*C. Assume that there is a commutative
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diagram

o 25 C

L]

x I x

where g : C' — C' is proper and birational. Then f,(s(C")) = s(C) € A.(X).

Similar statements may be found in [BBM87] (without proof), and in [Ful84, Proposition 4.2]
(for the normal cone of a subvariety). For completeness, we include a proof.

Proof. The morphism f induces a morphism between the projective completions, P(f*(C)®1) —
P(C e 1). Let G:P(C'® 1) — P(C & 1) be the restriction, giving the commutative diagram

P(C’'® 1) -5 P(Ca 1)

lq/ lq
x—71 4 x

The hypothesis on ¢ implies that G is birational, and the subcone hypothesis implies that
G*(Oc(—1)) = O¢r(—1). From the definition of the Segre class (equation (3)):

16O = £t (L) = 06 (gt

(Ocr(-1)) G*c(Oc(-1))
__(PCa1)]
- q*(c((’)c(—l))) = s(C).
The third equality uses the projection formula and that G is birational. O

Suppose now that C' is an irreducible subcone of a vector bundle E, with dim C' = rank(F).
(Later, C' will be the conormal space of a subvariety.) In this case, the Segre class of C' is related
to the dehomogenization of the C*-equivariant pull back +*[C]c+ via the zero section ¢ : X — F.
We recall the relevant facts next.

There is a C*-action on F by dilation by a character y, which extends to an action on £ & 1
by letting C* act trivially on the second component. This induces a C*-action on the projective
completion P(FE @ 1). Both C and its closure are C*-stable subschemes, and C* acts trivially on
the base X. The character x determines a class in the equivariant Chow group Ap. (pt) of degree
1, denoted in the same way. Since C* acts trivially on X, a class a € Ag*(X ) is equivalent to
a non-homogeneous class ag + a1 + ... € A, (X) (a; € A;(X)) obtained by dehomogenizing a.
Conversely, if a = ag + a1 + ... is a non-homogeneous class, its y-homogenization is the class
aX :=ag +arx + azx® + ... € AF (X). By [AMSS22b, Proposition 2.7 and Eq. (10)],

HClex = (e(B) Ns(O)X € AT (X). (4)

All results extend naturally to the case where X is a variety with an action of a torus 7', C' is a
T x C*-invariant cone, and the map C' — X is T'x C* equivariant (the C* acting trivially on X).
For instance, in equation (4), the class t*[C]pxc+ belongs to AT*C(X), the T x C* equivariant
Chow group.

2.2 Conormal spaces

The cones utilized in this note are the conormal spaces of subvarieties, whose definition we recall
next. Let X be a smooth, irreducible, complex algebraic variety, and let Y C X be a closed
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irreducible subvariety. Let Y"® C Y be any smooth dense subset. The conormal space Ty X is
the closure of the conormal bundle 7y,., X inside the cotangent bundle 7 X. This is a cone, and
also a closed subvariety of dimension dim X, contained in the restriction 7" Xy . In particular, it
is stable under the C*-dilation on the fibres of 7% X, and also under any group G leaving Y and X
invariant. If one regards T X as a symplectic manifold, then the conormal space is an irreducible
conic Lagrangian cycle. In fact, any irreducible, conic Lagrangian cycle is the conormal cone of
some subvariety; see [HTTO08, Thm. E.6] (where it is attributed to Kashiwara) and also [Ken90,

§1].

3. Mather classes and CSM classes

A question with a long and distinguished history is to define analogues of the total Chern class
for singular varieties. The Mather classes and the Chern-Schwartz-MacPherson (CSM) classes
are among these classes. We recall their definition here.

Let X be a smooth complex algebraic variety with the action of a torus T, and let Y C X
be a closed irreducible subvariety.

3.1 Mather classes

The Mather class of Y is a homology class cya(Y) € AL(Y); if YV is smooth then ey (Y) =
c(TY)N[Y]. Its original definition involves the Nash blowup of Y, but here we utilize an alternate
construction, given by Sabbah [Sab85] (see also [Gin86, PP01] and especially [AMSS22b, Cor.
4.5, 3.4]) to define it in terms of the conormal space Ty X. For the purposes of this paper,
we regard classes in A,(Y) as classes in A,(X) via the push-forward induced by the closed

embedding X — Y. We work with the equivariant generalization of the Mather class, denoted
el (Y) € AT(X), see [OhmO6].

THEOREM 3.1 (cf. [AMSS22b]). Suppose Y is T-stable; let h~! denote the character of the
C*-dilation action on T*X. The homogenized Chern-Mather class is:

(V)" = (DT Xrwe € A5 (X). ()

It will be convenient to work with a dehomogenized variant of this equation. Recall that by
equation (4) above, t*[T5(X)]rxcs = (¢I(T*X) N sT (T3 X)) ™", since the C* action is induced
by A~1. By equation (5) this implies that

(=)™ f (V)" = (T X) 0 sT (T (XO))".
After dehomogenizing, i.e. setting i = 1, we obtain the expression
cnia (V) = (T X) 0 5" (T3 (X)), (6)

where c{/[:(Y) = ((=1)4mY el (Y)~")|;—1. In other words, the class C{AZ(Y) is obtained from
c{/la(Y) by changing signs of each homogeneous component according to its cohomological degree.
This is called the dual Chern-Mather class; it appears naturally in relation to characteristic cycles

on the cotangent bundle; cf. [Sab85].

3.2 Chern-Schwartz-MacPherson classes

Let {S;} be a Whitney stratification of X by smooth constructible sets. Such a stratification
always exists, see [Ver76, Thm. 2.2] (algebraic context), and [Whi65, Thm. 19.2] (analytic con-
text).
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Denote by F(X) the group of constructible functions on X. Its elements are finite sums of
the form > a;1yy,, where a; € Z, the W; C X are constructible subsets, and 1y, is the indicator
function. If f : Z — X is a proper morphism, we have a push-forward f, : F(Z) — F(X), given
by f«(w)(z) = x(f~*(z)NW), where x denotes the topological Euler characteristic. Further, for
any morphism f : Z — X, we have a pull-back f* : F(X) — F(Z), given by f*(¢)(z) = o(f(z)).

Proving a conjecture of Grothendieck and Deligne, MacPherson [Mac74] defined a transfor-
mation ¢, : F(X) — H.(X), satisfying c,(1x) = ¢(T'(X)) N [X] for smooth X; and for proper
morphisms f: Z — X, a commutative diagram:

F(Z) -4~ H.(2Z)

s

|r
F(X) - H.(X)

If W C X is a constructible subset, the class cgp(W) := e (llw) € Hi(X) is called the Chern-
Schwartz-MacPherson (CSM) class of W.

MacPherson’s definition of the transformation c, uses Mather classes, and a constructible
function Euyx on X, called the local Euler obstruction. The original definition of the local Euler
obstruction in [Mac74] uses transcendental methods (the analytic topology). Later, Gonzalez-
Sprinberg and Verdier [GS81], found an algebraic definition, thus extending MacPherson’s trans-
formation to one with values in the Chow group A.(X). More recently, Ohmoto [Ohm06] gen-
eralized this to the equivariant context. We recall some properties of Eux, see [BSS09, Thm.
8.1.1].

LEMMA 3.2. (a) The local Euler obstruction Euy is constant along the strata of any Whitney
stratification.
(b) Eux(x) =1 if X is nonsingular at x.
(c) If X = X; x Xy as analytic varieties, then Eux, x x,(z1, z2) = Eux, (1) - Eux, (z2).

We could not find a precise reference for the Proposition below, although we believe it to be
known to experts.

ProOPOSITION 3.3. Let f: Z — X be a smooth morphism of nonsingular complex varieties, and
let Y C X be a closed subvariety. Then for any z € f~1(Y), we have Eus-1(y)(2) = Euy (f(2)),
L.e. as constructible functions f* Euy = Euj-1(y).

Proof. Let z € f~1(Y) and let d := dim Z — dim X. Since f : Z — X is a smooth morphism of
relative dimension d, [Sta, Lemma 29.36.20] implies that there exists an open affine neighborhood
U of z, an open affine neighborhood V of f(z) such that f(U) C V, and a commutative diagram

Z<—UL>A“1/

Jf fu{ /

X +—V

where 7 is étale. From the definition, the local Euler obstruction only depends on the local
behavior in the analytic topology, and this implies that Eug-1(y)(2) = Eug-1yqy)(2). From
the diagram above it follows that n provides a local isomorphism in analytic topology between
YV NY)and (VNY) x A% The claim follows from the product formula in (c), along with
part (b). O
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Following MacPherson’s definition [Mac74], the Mather class and the MacPherson trans-
formation are related by cya(X) = c«(Eux). In terms of CSM classes, this can be expressed
as cMa(X) = >, eicsm(S;). For ¢ a constructible function on X, let s(¢) denote its Segre-
MacPherson (SM) class,

(o)
s(p) = TX)
(Note that this is different from the Segre-Mather class defined in [Yok90].) The following Verdier-
Riemann-Roch (VRR) type theorem was proved by Yokura [Yok99].

THEOREM 3.4. Let f : Z — X be a smooth morphism of complex algebraic varieties. Then for
any constructible function ¢ € F(X), f*s(¢) = s(f*(¢)). Equivalently, if Ty denotes the relative
tangent bundle of f, we have an equality in A*(X),

c(f7(9)) = e(Ty) N [ (ee(0))-

Proposition 3.3 states that if f : Z — X is a smooth morphism, then f*(Euy) = Eug-13y,.
If one takes ¢ = Euy, this implies that in terms of Mather classes

ema(fTH(Y) = e(Ty) N f*(ana(Y)) € Au(2). (7)

The results from this section can be extended to the case when all varieties have a torus T'
action, and all morphisms are T-equivariant. The local Euler obstruction is the same, but one
uses an equivariant Whitney stratification, and Ohmoto’s equivariant version of MacPherson’s
transformation ¢, [OhmO6]; see also [AMSS22b].

4. Preliminaries on flag manifolds and cominuscule spaces

4.1 Preliminaries

References for this section are [Kum02, Bri05]. Let G be a complex semisimple Lie group; fix a
maximal torus 7', and a pair of Borel subgroups, B and B~, satisfying BN B~ =T, in G.

Let R (resp. RT, R~, A) denote the set of (resp. positive, negative, simple) roots. We have a
partial order on R, given by o < 8 if @ # 8 and 8 — « is a non-negative combination of positive
roots. The Weyl group W := Ng(T')/T associated to (G, T) is a Coxeter group generated by the
simple reflections s; := sq,, for a; € A. Denote by ¢ : W — N the length function and by wg the
longest element.

Recall that the parabolic subgroups P O B are in bijection with the subsets S C A. We
denote by Rﬁ the subset of R consisting of roots whose support is contained in S. The Weyl
group Wp of P is generated by the simple reflections s;, for a; € S. Denote by wp the longest
element in Wp, and let W be the set of minimal length representatives for the cosets in W/Whp.
The coset wWp has a unique minimal length representative w? € W¥'; we set £(wWp) := £(w"?).

The space G/P is a projective manifold of dimension £(woWp). For w € W¥ the B-orbit
X = BwP/P, and the B~-orbit (X7)¥° = B~wP/P, are opposite Schubert cells for w, and
there are isomorphisms, X4'° ~ C/®) and (XPywe o~ cdimG/P=tw) The Schubert varieties XL
and (XT)® are the closures of the Schubert cells X4° and (XF)“° respectively.

Every P-representation V' determines a G-equivariant vector bundle, G x* V' — G/P. The
points of Gx 'V are equivalence classes [g, v], for pairs (g,v) € G'xV such that (g,v) ~ (gp~*, pv),
and the G-action on G' <’V is given by left multiplication, ¢.[¢’,v] := [g¢’, v]. The main examples
considered in this note are the following. If P = B is a Borel subgroup, we will take V' := C,,
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the one dimensional B-module of character A. The resulting line bundle is £y := G xZ Cy.! Let
p and g be the Lie algebras of P and G respectively, and let up be the unipotent radical of p.
The spaces p, g, and up are P-stable under the adjoint action. We have T(G/P) = G x¥ g/p,
and T*(G/P) = G x¥ up.

A simple root « is called cominuscule if it appears with coefficient 1 in the highest root of
R. Let a be cominuscule, and let P be the parabolic subgroup corresponding to S = A\{a}.
Then G/P is called a cominuscule space. We present a complete list of cominuscule spaces (see
e.g. [BCMP18)):
— the Grassmannian Gr(k,n) (type A);
— the Lagrangian Grassmannian LG(n,2n) (type C);
— the connected components of the orthogonal Grassmannian OG(n,2n) (type D);
— Quadrics: odd dimensional in type B, and even dimensional in type D;
— the Cayley plane (type Eg), and the Freudenthal variety (type E7).
Further, the orthogonal Grassmannian OG(n — 1,2n — 1) (a cominuscule space of type B) is

isomorphic to a connected component of OG(n,2n), hence can be identified with a cominuscule
space of type D, see [FP98, p. 68] or e.g. [IMN16, §3.4].

4.2 The conormal space of a cominuscule Schubert variety

For s; a simple reflection, let P; denote corresponding the minimal parabolic subgroup. Let X
be a Schubert variety in a cominuscule space G/P, let w = (s;,,--- ,s;,) be a reduced word for
w, and let By, = F;; xB P, xB ... xB P;, /B be the corresponding Bott-Samelson variety, see
[BK05, Ch.2]. Following [Sin21, Lemma 2.1], the subspace 1, = up Nw ™! (up) is B-stable under
the adjoint action, hence we have a vector bundle &, := P;, xB F;, xB .. . xB P, xBu, — By.

The following was proved in [Sin21, Thm. A].

THEOREM 4.1. Consider the vector bundle U, := BwB x8 u, — Xf and the natural map
0 1 Ew — Uy. Let ' : Uy, — T*(G/P) be the composition

BwB xPw, — BwB xPup — G xBup = G xFup =T*(G/P). (8)

The composite map, ©’ o 0;, : £, — T »(G/P), is a resolution of singularities.

5. Mather classes of Schubert varieties

In this section we prove the formula calculating the Mather classes of cominuscule Schubert
varieties, and illustrate the calculation with two examples.

5.1 The formula for Mather classes

Let 7.5 := BwB x? (up/u,,). Following equation (8), we have an exact sequence of homogeneous
vector bundles on X2,

0 U (T (T*(G/P))xp T 0 (9)

'With this definition ¢1(£—.,) = [(X®)%], where w; is the fundamental weight.
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Observe that 7, restricted to the open Schubert cell in X2 is the cotangent bundle of this cell
(explaining the choice of notation). Following Theorem 4.1, the diagram

Uy —"— Tip(G/P)

[

B ™ P
Xw Xw

satisfies the hypotheses in Lemma 2.1 with X’ = X2 and U, a subbundle of ™1 (G/P)xp.
This allows us to calculate the Mather class of X2

Recall from the introduction that I(w) = {a > 0 | w(a) < 0} denotes the inversion set of w.

THEOREM 5.1. Let w € W be a minimal length representative, and let T,, denote the dual of
the bundle 7. Then ¢! (T,) = oerw c’'(£_,), and the equivariant Mather class of X} is

cha(Xu) = (e (Tw) N (X)) (11)

Proof. Tt follows from the T-module decomposition, (up/uy)* = @aer(w)d-a, that the total
Chern class of the homogeneous vector bundle 7, has the same localization at T-fixed points
ey € G/B as the Chern class of the vector bundle €9 L_q, see Section 4.1. The result for

¢’ (Ty) now follows from Whitney’s formula.

acl(w)

Next, observe that Lemma 2.1 applied to the diagram (10) yields
s'(Txp(G/P)) = m(s" (U) N [X,)]) = me(e (Un) ™ N [X]). (12)
It follows from the equation (6) version of Theorem 3.1 that
T, * *
Oria (X)) = <H(TH(G/P)) N s" (T (G/P))
= c(T(G/P)) Nmu(c! (Un) ™ N[XL]) = (e (T3) N [X)),
where the last equality follows from the projection formula. The proof ends by changing the signs

in each homogeneous component; this corresponds to taking the Chern classes of the dual bundle
Tw- O

Another algorithm to calculate Mather classes, in the case of Grassmannians, was found by
B. Jones [Jon10]. He used Zelevinsky’s small resolutions for Schubert varieties [Zel83], and equiv-
ariant localization, to calculate the Kazhdan-Lusztig class of a Schubert variety. As explained in
Section 8 below (see also [AMSS22b, §8.3]) this coincides with the Mather class. Sankaran and
Vanchinathan [SV94] found Schubert varieties in the Lagrangian Grassmannian which do not
admit small resolutions; Perrin [Per(07] characterized the minuscule Schubert varieties with this

property.

5.2 Examples

Recall the equivariant Chevalley formula, cf. [BM15, Thm. 8.1], see also [Kum02, Cor. 11.3.17
and Thm. 11.1.7]. For A be a weight, we have

of (L3) NIXG] = wNXE]+ D (A o)X,

10
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where the sum is over all positive roots a such that ¢(ws,) = ¢(w) — 1. Repeated applications
to equation (11) yields an expression

FT) N XS = Y aualXP),

with @y, € A7(pt). In particular, aww = [Joer) (1 — w(@)). Recall that

rxp) = {X] v ws
0 otherwise.

It follows that the equivariant Mather class of X, equals Y. @y [X]].
v<wyweWr

Ezample 5.2. Let G = SLy4 and the simple roots a; = &; — ;41 (notation as in [Bou02]). The
maximal parabolic P associated to oz gives the Grassmannian G/P = Gr(2,4). One may identify
the elements of W with Young diagrams, see e.g. [BCMP18, § 3]. For instance, in the table below,
the shaded portion corresponds to the Schubert divisor X7 C Gr(2,4), with inversion set

518352
I(s18382) = {ag,e2 — €4,61 — £3}. The Schubert divisor is the smallest example of a singular

Schubert variety in Gr(2,4): it is a 3 dimensional quadric singular at the point 1.P.

61_64

The Chevalley formula in A*(G/B) gives
c(Tw) N [X132] =[X132] + 3[X32] + 4[X31] + 3[X3] + 3[X12] + 8[X2] + 3[X1] + 6[Xiq]-

(To ease notation, we omit the B superscript and the s’s in the reduced words.) Pushing forward
to Gr(2,4), we obtain the Mather class:

eva (P)=HP+3m+3H+80+6 0. (13)

The equivariant calculation is more involved, and we present only the final answer:

(XL er) =1+ a1)(1+ a3)(1 + o1 + az + ag)
+ (1 +a3)(3 + a1 + 202 + 2a3 + 3) O
+ (14 a1)(3+ 20 + 202 + a3+ 3) H
+ (8 4+ 21 + 4ag + 2a3) O+ 6 0.

(14)

Ezample 5.3. We now consider the Lagrangian Grassmannian LG(4,8). The Schubert subvari-
eties are indexed by strict partitions included in the (4,3,2,1) staircase. We refer the reader to
[BCMP18, § 3] for further combinatorial details.

11
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Take A = (4,3,1). The reduced word is w = $482535451525354, and the inversion set consists
of the entries in the shaded boxes of the first diagram. We compute

enta () = HH+ 407+ 715 + 27 P + 25 + 602 + 92H

+ 4500 + 2415 4 1830 4 269MH + 2460+ 1320 + 24 0.

Remark 5.4. The bundle 7, is not globally generated, even when restricted to X.5. Indeed, let
G/P = Gr(2,4), w = s18352 € WF and take u = s3. Then XJ c XZ and ¢(T,,) N [X[] =
[XZ]—[XE], thus its Chern class is not effective. Still, examples suggest that the Mather classes
are effective; cf. Section 8 below.

Remark 5.5. Let @ C P be some parabolic subgroup containing B. Recall the map 7 : G/Q —
G /P, and let w,; be the pull back of the cotangent bundle T*(G/P) — G/P along 7. Consider
the diagram,

T*(G/Q) +*= G/Q x/p T*(G/P) = T*(G/P)
Here p; is defined by pr(x,&) = (z,§ o dn(x)), where dm(z) : To(G/Q) — Tr(z)(G/P) is the

differential of m at x. Since 7 is a smooth morphism, w, is smooth by base change, and p, is a
closed embedding; see e.g. [HTTO08, p.65]. For w € W,

prtor (T (G P)) = Ty o) (G/Q) (15)

is the conormal space of the pull-back Schubert variety 771(X7), see e.g. [KT84, Lemma 3] for a
special case, or [Dim04, Prop. 4.3.3] for more general cases. Using Theorem 3.1 and equation (6),
one can recover equation (7) in the case f = m:

ena (1 (X)) = ¢ (Tr) N (epga(X)- (16)
Ezample 5.6. Let 7 : F1(4) — Gr(2,4). Consider the divisor X', . C Gr(2,4). Then7'XF . =
XEB_ .sps, - Using equations (13) and (16) we obtain:

eMa(X1ha01) = [X12321] + 3[Xas21] + 3[X1231] + 10[Xo31] + 28[X51] + 2[X1232]
+ 8[X232] + 4[X123] + 16[X23] + 28[X3] + 2[X3121} + 4[X321] + 8[X121]
+ 16[X21] + 28[X1] + 4[X312] + 12[X32] + 12[X12] + 32[X2] + 24[Xid]~

In Example 8.8 below we will calculate the Mather class of the pull-back divisor from the
Lagrangian Grassmannian LG(2,4) and its relation to KL classes.

Remark 5.7. Our ‘homological’ indexing conventions for Schubert varieties gives the expected sta-
bility property for Mather classes. If 7 is the embedding of a (Lagrangian, orthogonal) Grassman-
nian into a larger Grassmannian of the same type, then i,y (X)) = epa(Xy) € Ax(Gr(K,n')).

6. A cohomological formula for the local Euler obstruction

The goal of this section is to prove Theorem 6.1, which gives a formula for the local Euler
obstruction function for cominuscule Schubert varieties. Different formulae in the classical Lie
types were also obtained by Boe and Fu [BF97].

The CSM classes csp(Xe™®) (u € WP) form a basis of the Chow group A,(G/P). Consider
the expansion of the Mather class into CSM classes of Schubert cells:

CMa(XfUD) = Z ew,UCSM(Xf’O).
v

12
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The coefficient e, , = Eu X};(ev) is the local Euler obstruction of X,, at the point e,.
Consider the Segre-MacPherson classes of the opposite Schubert cells,
csm((X7)"°)
«(T(G/P))
The Chern class in the quotient is invertible because ¢(T(G/P)) = 1 + k, where & is a nilpotent

element. Following [AMSS22b, Thm. 7.1], the Segre-MacPherson classes are (Poincaré) dual to
the CSM classes, i.e.,

{esm (X)), sm((X7)"°)) 2/ csm (X °) - s (X)) = G (17)
G/P

sm((X7)"°) =

Combined with Theorem 5.1, this duality implies a cohomological formula for the Euler obstruc-
tion coefficients e, ,; we record this next.

Recall that for w € W and CSM class csy((XP)¥°) = 3¢, with ¢; € A;(G/B), the dual
CSM class is defined by c¥y((XB)®°) := 3" (—1)Aw) ¢,

THEOREM 6.1. Let v,w € WP and assume that v < w. Then the local Euler obstruction

coefficient e, ,, is given by

ua =30 [T X (7)),
G/B
where the sum is over u € W;v < u < w such that uWp = vWhp.

Proof. By the duality equation (17), and the projection formula, the Euler obstruction coefficients
are given by

e = / ma(e(Ta) - [XEB]) - sna((XF)P2) = / o(Ta) - [XE] - spi((XT)").
G/P G/B
The Verdier-Riemann-Roch formula implies that

msn((X7)7°) = sa(rH((XT)9) = D sm((XP)™),

where the sum is over all u > v such that uWp = vWp. Next, it is proved in [AMSS22b, Thm. 7.5]
that for any u € W, we have sy((XB)%°) = ¢ ((XP)“°). Since the class ¢y ((XP)"°) is
supported on the Schubert variety X5 it follows that the product [XZ] - [XP%] = 0 unless
u < w. This finishes the proof. O

By utilizing formulae for the CSM classes obtained in [AM16], one may calculate the integrals
from Theorem 6.1 in small examples.

Ezample 6.2. We continue with the example G/P = Gr(2,4) and X[ = XI_ . the Schubert
divisor. Recall from Example 5.2:

o(Tw) N [Xio) = [Xiko] + 3[X5] + 4[X51] + 3[X5] + 3[X{3] + 8[X2"] + 3[X{] + 6[Xj].
We take v = s3s9; then u = v and we obtain the Schubert expansion of cg;(X B352:°)
[XB:32) _ [xB32] L g[xB312) 4 [xB312L] | y[xB232) _ o[y B.23121] _ [y 5232
S[X B2 | g[x D282 g Bi12821] | [ B128121] | g1y B12312)

Since fG/B[X{)BI] [ XB2] = 8, 4, We obtain e sysys55, = —2 + 3 = 1. Of course, this was
expected, as the Schubert divisor is only singular at the base point 1.P.

13
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Ezample 6.3. Consider the Lagrangian Grassmannian LG(2,4). This is isomorphic to a three
dimensional smooth quadric in P*. The set W indexing the Schubert varieties is in bijection
with the strict partitions in the 2 x 2 rectangle: (0), (1), (2) and (2, 1). The only singular Schubert
variety is the divisor X (I;), with singularity at the point Xé) = 1.P. One calculates that

€2),2) = €@2).,0) = 15 €@),0 =0

This verifies examples from [BF97, p. 456]. Using the isomorphism of LG(2, 4) to the 3-dimensional
quadric, it also verifies one instance of [BF97, Eq.(6.3.3)].

7. Localization of conormal spaces

The goal of this section is to use Theorem 5.1 to obtain formulae for the localization of conormal
spaces.

Denote by ¢ : G/P — T*(G/P) the zero section, and recall that C* acts on the cotangent
bundle T*(G/B) with character h~!. By equation (5),

CTp (G/P)rxer = (=) e, (X,)" = () m((e" (Tw) N X)),

This is a class in AT *® (G/P) and one may check that:

(=) U (T) N XD = ey (Ta) N [X5): (18)
The fibre of 7. over the fixed point e, is @ael(w) Go(a) ® C_p, therefore:
(D TNl = [ (~h+ola). (19)
acl(w)

Combining equations (18) and (19), we deduce the following lemma.
LEMMA 7.1. Let v < w. Then the following holds in AdTiXmCCj/B( t):
(=D (T N XIDe = T (=R +v(@) - XD

acl(w)

We note that since C* acts trivially on G/B, the T x C*-localization [XZ]|, is the same as
the T-equivariant localization. A formula for the latter can be found in [Kum02, Thm. 11.1.7];
see also [AJS94, App. D] or [Bil99].

For v € W, let [e,] denote the T-equivariant class of the fixed point e,. We need the following
localization formula, see for example, [AF22, Thm. 5.2.1].

LEMMA 7.2. Consider v € WP and k € H3(G/B). Then, in an appropriate localization of
A% (G/B), we have

e
T (K) luwp = E lewwpluws, UIEZP}“WP Klp-
veW vliv
v=u(modWp)

THEOREM 7.3. Let u,w € W¥ such that u < w, and let C* act on T*(G/P) by character h™!.
Then the T x C*-localization of the conormal space T p(G/P) is:

Z [acrqw) (= +v(a)) X5

(T (G/P) v, = ooy el

v<w
vWp=uWp

14
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Proof. Let k = (—1)®(cT(T,) N [XB])", regarded as a cohomology class in A% (G/B)[h].
By Section 7, the left hand side equals m.(K)|uw,. Since C* acts trivially on G/B, we have
A% o« (G/B) = A%L(G/B)[h], and further, the projection m, is A% c.(pt)-linear. Observe that
leo]lo = [laers v(—) and [euwp]|luwp = Ha€R+\RJ}S u(—a). Applying Lemmas 7.1 and 7.2, we
obtain

[ocru (—h+v(@)) T g s u(—a)

[ )*(5 (G/P)HUWP = vgzw HaeR+ ,U(_a) [X5]|U
vWp=uWp
) Macry(—h+v(@)
B 1;, HaeR;g v(—a) Xl
vWp=uWp

The second equality follows from the observation that since vWp = uWp, we have
{v(—~a) |a € RI\RE} = {u(—a) |« € RP\R}}.
O

Example 7.4. To illustrate our formula, we take u = w. The only v satisfying the requirements
is v = w. Then
[oerw) (=h+v()) - [X 2w

by [Ty p xC* = = - w(a)) - (X)) w
w[ Xw(G/P)]T C HaeR}t U(—Oé) ael;([ﬂ))( h+ ( )) [Xw”

where the last equality follows from standard manipulations of (equivariant) Euler classes. (In
this case T%»(G/P) is smooth at e, and one could have calculated this localization directly.)

In [LS21], Lakshmibai and Singh identified certain conormal spaces as open subsets of affine
Schubert varieties. It would be interesting to obtain localization formulae for the conormal spaces
using localization for affine Schubert varieties.

8. Positivity and unimodality of Mather classes

In this section we investigate positivity properties for the Euler obstruction and for the Mather
class of a Schubert variety. We also present a unimodality and log concavity conjecture for Mather
classes, similar to the one for CSM classes; cf. [AMSS22a, §8.3].

8.1 Kazhdan-Lusztig classes, Mather classes, and Euler obstructions

Unless otherwise specified, in this section P is an arbitrary parabolic subgroup. We refer to
[AMSS22b, §8.3] for more details about the material below.

Let TH(XL) denote the characteristic cycle of the intersection homology of the Schubert
variety XI'. This is an effective, conic, Lagrangian cycle in the cotangent bundle 7*(G/P), and its
irreducible components are conormal spaces of Schubert varieties; see e.g. [HTT08, Thm. E.3.6].
Therefore there is a expansion

[IH<X£)]T><(C* = me,v[T)*(llf (G/P)]TX(C* € Aggcé/p(T*<G/P)) (20)

Define the Kazhdan-Lusztig (KL) class KLY € AT(G/P) to be the h = 1 dehomogenization of

15
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(=)@ Py [TH(XE)]. By equation (5) this is the same as
KLy = (1), {1 (X)) € AT(G/P). (21)

v

From the proof of the Kazhdan-Lusztig conjectures [BK81, BB81] it follows that
KL{Z = Z wa(l)ch(Xf’o), (22)
v

where P, , is the parabolic Kazhdan-Lusztig polynomial; see [AMSS22b, Prop. 8.7]. (Observe
that (22) may be taken as the definition of the KL class). Consider the expansion of the Mather
class into (equivariant) CSM classes of Schubert cells:

Ara(X0) =D e (X0, (23)
v

where ey, = EuX5 (ey) is the local Euler obstruction evaluated at the point e,. Combining
equations (21) to (23), we see that the characteristic cycle TH(X[) is irreducible if and only if
the local Euler obstruction satisfies

Cw,w = Pw,v(l)- (24)
In particular, irreducibility of the characteristic cycle implies that the Euler obstruction is strictly
positive. In general, the Euler obstruction may be negative; for instance if C' is a cone over a
nonsingular plane curve of degree d with vertex O, then Eup(C) = 2d — d?, cf. [Mac74]. Note
that for general spaces the Euler obstruction may be negative. For instance, if C' is a cone over
a nonsingular plane curve of degree d with vertex O, then Eup(C) = 2d — d?, cf. [Mac74]. As
seen in Example 6.3, the Euler obstruction may be equal to 0 even for cominuscule spaces. Based
on computer evidence however, we propose the following conjecture, which is known to hold in
types A, B, and D, see Proposition 8.2.

CONJECTURE 8.1. Suppose G/P is a cominuscule space, and consider v < w € W, Then the
local Euler obstruction Euxr(ey) 2 0.

ProposITION 8.2 (cf. [BFL90, BF97, LR22|). Let X = G/P be a cominuscule space of classical
Lie type. Then e, = 0 for all v,w € WP, More precisely:

— If X = G/P is a cominuscule space of type A or D, then e, > 0 for all v < w.

— If X is the Lagrangian Grassmannian LG(n,2n), or X is an odd-dimensional quadric, then
eww = 0 for all v,w.

Proof. The strict positivity in types A and D follows from (24) because the Schubert varieties
in cominuscule spaces of these types have irreducible characteristic cycles. This is proved by
Bressler, Finkelberg and Lunts [BFLI0] in type A, and by Boe and Fu [BF97] in type D (they
also reprove the statement for type A). For the odd quadrics (type B), Boe and Fu calculated
the Euler obstructions explicitly - see [BF97, §6.3], especially equations (6.3.3) and (6.3.5) -
and found them to be nonnegative. Finally, after a version of this paper appeared on aryiv, the
non-negativity of the Euler obstructions for LG(n,2n) was proved in [LR22]. This finishes the
proof. O

Remark 8.3. In the upcoming work [MS22] the authors will prove Conjecture 8.1 in the remain-
ing Lie types Ejg, E7, see also Remark 8.7 below. It is tempting to conjecture that the Euler
obstructions are non-negative for Schubert varieties in any homogeneous space G/ P. While one
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may reasonably expect that calculations of Euler obstructions of singularities related to comi-
nuscule Schubert varieties - such as those in [GK21, AIJK21], see also [MNS22] - are possible,
the problem of calculating Euler obstructions for arbitrary Schubert varieties seems to be wide
open. We are not aware of any example of a Schubert variety with a negative Euler obstruction.

8.2 Mather Classes and Positivity
In [Jon10, Rmk. 5.7], B. Jones conjectured that all Mather classes for Grassmannians are nonneg-

ative. Based on substantial experimentation for all cominuscule spaces we propose the following
conjecture:

CONJECTURE 8.4 (Strong Positivity conjecture of Mather classes). Let X be a Schubert variety
in a cominuscule space G/P. Consider the Schubert expansion

CMa(X{;) = Z av[Xf]' (25)

Then a, > 0 for any v < w. More generally, consider the Schubert expansion

ha(X) = Y au(t) (X ]r

Then a,(t) = ay(ai,...,a,) € AL(pt) is a polynomial in positive simple roots o, ..., o, with
non-negative coefficients.

We will refer to the situation when a,, > 0 simply as the ‘Positivity conjecture’, and emphasize
‘Strong’ whenever we can claim it. Particular instances of this conjecture are proved in Proposi-
tion 8.6 below. A similar positivity conjecture was given in [AM09, AM16] for the CSM classes
and it was proved in the non-equivariant case in [Huh16] for Grassmannians and [AMSS22b] in
general.

LEMMA 8.5. Let X = G/P, and let v,w € WY such that v < w.

(a) If Conjecture 8.1 holds for X, then the non-equivariant positivity Conjecture 8.4 holds,
i.e. in equation (25), the coefficients a, > 0.

(b) If ey, > 0 for all v € WP such that v < w, then the non-equivariant strong positivity
Conjecture 8.4 holds for X.

(c) Conjecture 8.1 holds if the intersection homology characteristic cycle IH(XL) is irreducible.

Proof. Parts (a) and (b) follow from the equation (23) (for non-equivariant classes), using that
the non-equivariant CSM classes of Schubert cells are nonnegative [Huh16, AMSS22b], and that
the initial term of cgy (X2 °) is [X ). Part (c) follows from equation (24), using that the Kazhdan-
Lusztig polynomials P,,, (v < w) have non-negative integer coefficients, and have constant term

equal to 1. ]

PROPOSITION 8.6. Let X = G/P be a cominuscule space of Lie type A-D, and let m : G/B —
G/P be the natural projection.

(a) Strong positivity (Conjecture 8.4) holds in the non-equivariant case for all Schubert vari-
eties in X of Lie types A and D; weak positivity holds in the non-equivariant case for the
Lagrangian Grassmannian (type C) and for the odd quadrics (type B).

(b) Letw € WF. Then the Mather class cyra (7~ (X)) € A.(G/B) has the same (strong/weak)
positivity property as cyra(X1L) from part (a).
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Proof. Part (a) follows from Lemma 8.5 and Proposition 8.2. Part (b) follows from part (a)
because the Euler obstructions for the pull backs 71 (X)) coincide with those for X' by Propo-
sition 3.3. O

Kazhdan and Lusztig [KL80] conjectured the irreducibility of characteristic cycles of the IH
sheaf in type A. However, Kashiwara and Tanisaki [KT84], then Kashiwara and Saito [KS97]
found counterexamples for the full flag manifolds of Lie type B and type A respectively; see also
[Bra02, Will5]. Boe and Fu [BF97] found the decompositions of the characteristic cycles of the
Schubert varieties in cominuscule spaces of Lie types B, C. Next, we use the methods of this
paper to recover an example of Kashiwara and Tanisaki of a reducible IH characteristic cycle.

Remark 8.7. As noted in the introduction, the authors wrote a SAGE program and checked the
irreducibility for the TH characteristic cycles of Schubert varieties of cominuscule G/ P of Lie type
Eg and E;. Together with Proposition 8.2, this provides a proof of Conjecture 8.1. Furthermore,
these results also imply that the strong positivity from Proposition 8.6(a) holds in Lie types
Es, E7. The details will appear in [MS22].

Ezample 8.8. Consider the Lagrangian Grassmannian LG := LG(2,4) and the Schubert divisor
XfQ C LG(2,4) (s2 corresponds to the long simple root). Let SF := SF(1,2;4) be the complete
flag manifold of type Cy; it parametrizes flags [} C Iy C C* where Fj is isotropic with respect to
a symplectic form. Let 7 : SF — LG be the projection. The preimage 71'71(X1F:2) is the Schubert
divisor X 11?271 C SF. A calculation of the Kazhdan-Lusztig polynomials using e.g. SAGE shows
that Pi21, = 1 for any v < s1s2s1. Thus the non-equivariant KL class of X 1321 is:

K LT = esm(X150) + esm(Xis)) + com(Xai") + esn(X %) + esm(X7) + esm(XF).
Using the local Euler obstructions calculated in Example 6.3, we obtain:

eMa(X1) = csm(X13) + csm (X3 ).

Using equation (16) and the Verdier-Riemann-Roch Theorem 3.4, we have,

eMa(XP 1) = esm(n ' XT3) + csm(m 1 X570
= cam(X150) + esm(XT5) + esn(X37) + esm(X3°).
Using that ey (XP) = CSM(X %)+ CSM(X%O) (as XP ~P'), we deduce:
KL1,271 = CMa(XlEfz,D + ena(XP).

By Theorem 3.1 and the definition of the KL class, this shows that the IH characteristic cycle
IH(XEQJ) C T*(G/B) satisfies

TH(XP, ) = [Tip, (SF)]+ [Tp(SP)),

in accordance to [KT84, p. 194] (after identifying the By and Cs flag manifolds).

8.3 Unimodality and log concavity of Mather polynomials
For w € WF| consider the Schubert expansion cya(X5) = 3 ayo[XF]. The Mather polynomial

associated to w is
aj) = Z aw’vxz(v)
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For instance, the Mather polynomial of the Schubert variety X 43 1) C LG(4,8) from Example 5.3
is

M z1)(x) = 2® + 1127 4 522° + 1522° + 2862 + 4522 + 2462° + 132z + 24.

If we choose an embedding ¢ : Xf; — P in a projective space, then
teena(X ) = D du deg(u(X)))[PC)].

Then one may regard the Mather polynomial M, (z) as the polynomial obtained from c.cya (X E),
normalized by dividing each term by the degree of the corresponding Schubert class in the given
embedding.

Following [Sta89], we say that a polynomial a,z™ + 12"V + ...+ a1z + ag is unimodal if
ag<a) <...<ag = a1 = ... = ay for some index k. It is log concave if a? > a;—1a;41 for all
i (by convention a_; = a,4; = 0 for all i > 1). If one assumes that the polynomial has strictly
positive coefficients, then any log concave polynomial is also unimodal.

Substantial amount of calculations in all Lie types supports the following:

CONJECTURE 8.9. Let X = G/P be a cominuscule space and w € W,

(a) The Mather polynomial M,, has strictly positive coefficients and it is unimodal.
(b) Assume in addition that G/P = Gr(k,n). Then M, is log concave.

Note that the positivity statement follows from the conjectural positivity in Conjecture 8.4.
The log concavity fails outside type A. For instance, the Mather polynomial of the 5 dimensional
quadric OG(1,7) is 2° + 5z* + 1123 + 2622 4 18z + 6. (This Mather class is the same as the total
Chern class of T(OG(1,7)).) Similarly, the Mather classes of LG(5,10) and of OG(4,8) are not
log concave.

The unimodality and log concavity properties of characteristic classes of singular varieties
seem to be new and unexplored phenomena. For instance, in analogy to the Mather polynomial
one may define two flavors of a CSM polynomial: one obtained from the CSM class of a Schubert
cell, and the other from the CSM class of a Schubert variety. This is conjectured to satisfy an
analog of Conjecture 8.9; more details are discussed in [AMSS22a, §8]. Log concavity has also
been conjectured for certain coefficients of motivic Chern classes of Schubert cells [FRW20, § 6.2].
It would be interesting to know whether these phenomena fit into the (Hodge-Riemann and Hard
Lefschetz) framework from [Huh18] or [HMMSD22].
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