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Abstract—CSS-T codes were recently introduced as quantum
error-correcting codes that respect a transversal gate. A CSS-T
code depends on a pair (C1,C>) of binary linear codes C; and
C> that satisfy certain conditions. We prove that C; and C> form
a CSS-T pair if and only if C> C Hull(Cy) N Hull(C}), where
the hull of a code is the intersection of the code with its dual.
We show that if (C1,C>) is a CSS-T pair, and the code C> is
degenerated on {i}, meaning that the i'"-entry is zero for all the
elements in C5, then the pair of punctured codes (Ci|;, C2|;) is
also a CSS-T pair. Finally, we provide Magma code based on our
results and quasi-cyclic codes as a step toward finding quantum
LDPC or LDGM CSS-T codes computationally.

I. INTRODUCTION

Since the 1990s, it has been known that linear codes C; and
C5 with Cy C C; may be used to define a quantum stabilizer
code Q(C1,C5) called a CSS code, based on the work of
Calderbank and Shor [1] and Steane [2]. Stabilizer codes are
important for quantum error correction, protecting quantum
information against errors induced by noise and decoherence,
and fault-tolerant quantum computing. It is desirable that quan-
tum error-correcting codes enable gates to be implemented
transversally, since transversal gates act independently on the
qubits to impede the propagation of errors. Codes with this
property are called CSS-T codes, as introduced in [3]. More
formally, the code Q(C1,C5) is a CSS-T code provided Cs
is an even weight code, meaning all of its codewords have
even weight, and for each codeword ¢ € (5, the shortening of
Ci with respect to the support of c is self-dual. Reed-Muller
codes have been employed to define CSS-T codes [4], and the
mathematical concepts defining binary CSS-T codes have been
considered for larger alphabets [5]. In [6], it was demonstrated
that CSS-T codes form a poset, providing tools to study
maximal CSS-T codes. Even so, CSS-T codes (especially
those satisfying other desirable properties) are elusive and
determining asymptotically good families of CSS-T codes is
an open question.

Another important family of quantum error-correcting codes
is formed by the quantum low-density parity-check (LDPC)
codes [7], [8] which are CSS codes based on sparse parity-
check matrices. In recent work, such codes have been demon-
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strated for constant-overhead fault-tolerant quantum computa-
tion [9] and to rival surface codes [10], which were introduced
in [11]. Additional evidence of the capabilities of quantum
LDPC codes may be found in [12], [13], [14], [15], [16].

In this paper, we consider CSS-T codes defined by sparse
matrices. We demonstrate a step towards finding a source
of such codes by providing an equivalent characterization of
CSS-T codes and considering a construction of LDPC codes
that have efficient encoding [17]. This paper is organized as
follows. Section II reviews the necessary background. Section
IIT includes a useful characterization of binary CSS-T codes
in terms of hulls and relative hulls of codes. In Section V, we
consider the application to sparse matrix codes. Examples are
provided in Section VI. A conclusion is given in Section VII.

II. PRELIMINARIES

In this section, we review the foundation on which our
results will be built and set the notation to be used later.
We use the standard notation from coding theory. All codes
considered in this paper are binary linear codes. The finite
field with two elements is Fo := {0, 1}, and A™*" is the set
of all m x n matrices whose entries are elements of a set A.
Given a matrix A € F;**™, its transpose is AT € F3*™ and
its i row is Row;A. The standard basis vectors for F} are
e; =(0,...,0,1,0,...,0), ¢ € [n] :== {1,...,n}, where the
only nonzero entry is in position 4, and 1 = Zie[n} e; € Fy
denotes the all ones vector. An [n,k,d] code C is a k-
dimensional vector subspace of [y in which any two distinct
codewords (meaning elements of () differ in at least d
positions.

The Schur (also known as the star or pointwise) product of
two vectors = (z1,...,2Zpn),y = (y1,-..,Yyn) € Fo¥ is given
by

Txy = (T1Y1, ., TnYn)-

The Schur (also called the star or pointwise) product of binary
codes C and C' of length n is denoted and defined by

C*xC':=(cxd:ceC,d el CF},

the Fo-span of the Schur products of all codewords of C. We
define the square of the code C' by C? := C  C.



A. Codes defined by sparse matrices

A binary linear code is a low-density parity-check (LDPC)
code if it is the null space of a matrix H € Fy*" with
row weight O(1). LDPC codes have superior performance
when coupled with iterative message passing algorithms that
operate on an associated sparse Tanner graph. A binary linear
code is a low-density generator matrix (LDGM) code if it
has a generator matrix G € FE*" with row weight O(1).
LDGM codes facilitate efficient encoding. One may also
consider moderate-density parity-check (MDPC) or moderate-
density generator matrix (MDGM) codes, which have defining
matrices with row weight O(y/nlogn) or O(y/n). For LDPC
codes, row weights of less than 10 are typically considered
[18].

B. CSS codes

We say that @ is [[n, k,d]] to mean a quantum code that
encodes k logical qudits into n physical qudits and minimum
distance d. Let Cy = [n,k1,d;] and Cy = [n, k2, ds] be two
binary codes such that Co C C. We denote by Q(C1, Cs) the
quantum CSS code defined by C and C5. Recall that a binary
generator matrix for the stabilizer that defines Q(C1, C2) can
be written as

Hy }

0
Gy 0
where H is a parity-check matrix for C; and G5 is a generator

matrix for Cy. The CSS code Q(C1,C5) is a
[[n, k1 + k2 —n, > min{dy, d2}]]

(D

quantum code. Notice that the matrix in Expression (1) will
be sparse if H; is the parity-check matrix of an LDPC code
and G is the generator matrix of an LDGM code.

C. Quasi-cyclic codes

We will use quasi-cyclic codes to define the quantum codes
of interest. Recall that a code C' C F% is quasi-cyclic if and
only if there exists | € [n] such that ¢ = (c1,...,¢,) € C
implies (C¢p—i415---,Cn,C1,-..,Cn—y) € C, where indices are
taken modulo n. Note that the code C is cyclic if it is quasi-
cyclic for [ = 1. Quasi-cyclic codes can be defined by circulant
matrices, meaning those of the form

ay az ... Qp,
an Qi Gnp—1

b
as asg ... aiq

used as blocks A;; in a generator or parity-check matrix of
the form

A A Ain
Ay Ago Aoy,
A Ap Apn

Quasi-cyclic codes can be compactly described, and, as the
next result shows, retain their structure under the Schur
product.

Proposition 1. If C is quasi-cyclic, then C? is quasi-cyclic.

Proof. Suppose C' € F% is quasi-cyclic and w € C?2. Then

/ / /

w = ZC,C/GC Qe,c’'C *xc = ZC,C’GC Qe,c’ (01017 e >c’ﬂcn)

where a.. € Ty Notice that ¢, € C implies
/ / / /

(Cn—141C 111>+ +>CnCpy C1CY, -+ oy CiChy ;) € C

since  (Cn—i4ly--«yCnyClye--yCnri) € C and
/ / / / .

(Ch_ig1s+1CnrChy---5Cry) € C which completes the

proof. O

III. CSS-T CODES AND HULLS

Hulls were first considered by Assmus and Key [19] and
have been considered in the context of linearly complemen-
tary dual (LCD) codes [20] as well as entanglement-assisted
quantum error-correcting codes [17], [21]. In this section, we
consider a characterization of CSS-T codes and link it to the
hull of a code. First, we recall the definition of a CSS-T code
as given in [3]. We say that a code C' is of even weight if and
only if all of its codewords are of even weight.

Definition 2. Given binary codes C and Cs of length n with
Cy C Oy, Q(C4,Cy) is a CSS-T code if and only if Cs is of
even weight and for all codewords ¢ € Cs, the shortening of

Ci- with respect to the coordinates of [n] \ supp(c) contains
a self-dual code.

We use the following result from [6] to determine quantum
codes which are CSS-T.

Theorem 3. Let Cy and Cy be binary codes of length n. The
following are equivalent.

(1) Q(C4,C%) is a CSS-T code.

(2 C; CCiN(CE)*

(3) Ci++C; CCs.

Moreover, if Q(Cy,Cs) is a CSS-T code, then Cs is self-
orthogonal.

We use the following result from [6] to determine the
parameters of a quantum CSS-T code.

Corollary 4. Ler (Cy,C5) be a CSS-T pair. Then
min{wt(Cy), wt(Cy)} = wt(Cy),
and the parameters of the corresponding CSS-T code are
[[n, k1 — ko, > wt(CH)]].

Moreover, if the code is nondegenerate, we have equality in
the minimum distance.

Definition 5. A pair of codes (C1,Cs) satisfying the condi-
tions in Theorem 3 is called a C'SS-T pair.

According to Theorem 3, given a code C, the intersection
C N (C?)* is useful in determining a maximal CSS-T pair
(C1,C5) with C7 = C. To better understand this intersection,
we note its relationship to the hull of a code.

Definition 6. The hull of a code C is Hull(C) := C N C*.
Given codes Cy and Cy of the same length, the relative hull
of Oy with respect to Cy is Hullg, (Cy) := C; N Cy-.



Lemma 7. For a binary code C,
C N (C*H* = Hull(C) N Hull(C?).

Proof. Note that C C C?, since w x w = w for all w € F%.
Note C' N (C?)+ C C? N (C?*H* = Hull(C?). In addition,
(C?)t € O+ and CN(C?)+ C Hull(C). Thus, CN(C?)+ C
Hull(C) N Hull(C2).

As Hull(C) nHull(C?) = CcnC+tno?n(CcHt con
(C?)*, the proof is complete. O

We come to one of the main results of this section. Lemma
7 provides another characterization of CSS-T codes, as stated
in the next result.

Theorem 8. Given binary codes C, and Cy with Cy C (1,
Q(C1,C9) is a CSS-T code if and only if

Cy C Hull(Cy) N Hull(C?)

if and only if
Cy C Hullg:2(Ch).

Proof. This result follows immediately from Theorem 3,
Lemma 7, and Definition 6. O

Notice that Theorem 8 together with Theorem 3 indicates
that to determine a CSS-T pair (Cy, C3), one may restrict the
search to self-orthogonal codes C in the relative hull of Cy
with respect to its square.

IV. PUNCTURING

Let C' C Fy be a code and i € [n]. The puncturing of C

in {i}, denoted by C/;, is the binary code
CY|Z = {(Cl, ..
Z(Cl, ..

for some ¢; € Fo}.

. Cn)
.y Cn) € C,

<5 Ci—1,Ci41y - - -

<3 Ci—1,Ciy Cig 1,y - -

For S C [n], we write C|g for the successive puncturing
of C in the coordinates indexed by the elements in S.
The code C' is degenerated on {i} if ¢; = 0 for every
c=(c1,..yCiy...ycpn) €C.

We come to one of the main results of this section.
The following theorem states that if Q(Cy,Cs3) is a CSS-T
code, then Q(C1];, Cs;) is a CSS-T code whenever the code
Hull(Cy) N Hull(C?) is degenerated on {i}.

Theorem 9. Let Cy C Cy be binary codes. Assume that Co
is degenerated on {i}. If Q(C1,C2) is a CSS-T code, then
Q(Cﬂi, Cz|1) is a CSS-T code.

Proof. Note that for any c € Cy C C1, ¢; =0, so ¢|; € Ca;
and c|; € C1|;.
As Q(C1,C5) is a CSS-T code, then

Cy C Hull(C’l) n Hull(C’f)

by Theorem 8. Thus, ¢ - w = ¢|; - w|; = 0 for every element
w in C%. We obtain

Csl; € Chli N (Chli)*,

from which we get the conclusion by Theorem 8. O
The support of C C F% is denoted and defined by

Supp(C) := {i € [n] : ¢; # 0 for some

c= (1, ,Ciy...,cn) € C}

Corollary 10. Let S be the complement of Supp(C). If
Q(C1,C2) is a CSS-T code, then (Ci|s,C2|s) is a CSS-T
code.

Proof. This is a consequence of Theorem 9. O

V. QUASI-CYCLIC LOW-DENSITY CODES

In this section, we study quantum LDPC and LDGM codes
defined by quasi-cyclic codes.

Definition 11. A CSS code Q(C4,C3) is a quantum LDPC
code if Cy and Cy are LDPC codes, or, equivalently, if
Cy is an LDPC code and Cy is an LDGM code. Similarly,
Q(Cy, Cy) is a quantum LDGM code if Cy and Cy are LDGM
codes, or, equivalently, if C1 is an LDGM code and Cs is an
LDPC code.

Remark 12. Note that a binary generator matrix for the
stabilizer that defines a quantum LDPC code Q(C4,Cs) can

be written as
0 H;
Gy 0 |’

where Hy and G5 are sparse matrices.

Here we use those ideas to consider LDPC codes which
give rise to CSS-T pairs. As proof of concept, we make use of
a code construction found in [22], where the authors sought
codes that have both efficient encoding algorithms and fast
iterative decoding algorithms.

For an integer L > 2, define the matrix

010 - 0
001 - 0
Pi=|: : : - :|eFk
000 - 1
100 0

Take positive integers m and n. Let a;; € Zy U {oco}, for
0<i<m-—1and 0 <j <n—1. Define a code C' by the
parity check matrix

Paoco Ppao1 Pao(n-1)

H= , (@)

P&m-1)0 Pam-1)1 Pem—-1)(n—1)

where P°° denotes a square matrix of zeroes of size L and
P%i is the usual a;; power matrix multiplication of the matrix
P.

Observe that if a € Zj, then P® is a permutation matrix.
Indeed, Row; P® = efﬂ mod - Note that the code C' is a
quasi-cyclic LDPC (QC-LDPC) code. The weight of each row

is < n and the weight of each column is < m. Moreover, by



knowing a, we can recover immediately P“. Thus, we can
store H with a smaller base matrix

aopo ag(n—1)

My = S (ZL U {OO})an.
A(m—1)0 A(m—1)(n—1)

We aim to describe the square of C' in terms of the entries
of My. To that end, for a € (Zy, U {oco})", let R(a) € Fin
be defined as
1 if i =jL+ a; for some j € {0,--- ,n—1}

such that a; # oo
0 otherwise.

[R(a)]i =

Making use of this definition, the following Lemma gives a
natural connection between My and the rows of H.

Lemma 13. Let C be a quasi-cyclic LDPC code with shift L

and assume a € (Zy, U {oco})™ is such that R(a) € C. Extend

the sum over Zy, to Zy, U {oo} by taking x + oo = oo for any

x € Zp U{oc} and take 1 = (1,...,1) € Z}. Then
R(a+j1) € C, Vj € Zy.

Proof. Observe that

. R(a; +j) ifa; # 00
R(a; =
(@i +7) {R(oo) if a; = o0.
In either case, R(a; + j) = R(a;) - P and thus R(a + j1) €
C. O

Consider the operation * : (Zy U {oc})? — Zr U {co}
defined by
ifa=5

a
axb= )
oo otherwise.

The operation extends naturally component-wise to (Z; U
{o0})™. Moreover, there is a relationship between x and x,
as shown in the next result.

Proposition 14. Given a,b € (Zg, U {c0})™,
R(a) « R(b) = R(axb).

Proof. Let a = (ag,...,an-1), b = (boy...,bp—1) and 0 <

i < n — 2. We will focus on the entries of R(a) indexed by

iL+ (i+ 1)L — 1, meaning R(a;). Observe that R(a;) = e,
the aﬁh standard basis vector in IFQL . Thus,

R(a;) * R(b;) = eq, *ep, = {0 if a; 7&, bi

eq; oOtherwise.

Thus,
R(a;) * R(bi) = R(a; * b;).

Since R(a) is the concatenation of R(a;), we have the
conclusion. O

Proposition 15. Given the code C* defined by parity check
matrix H as in Equation (2) and its corresponding matrix
Mg with rows Ay, ..., A, its square (C)? is generated by

a matrix H' € F3L"E such that My € (Zg, U {o0})™*"
has rows A; x (A; + hl) for any 0 < h < L —1.

Proof. We know that C+ is generated by R(A; + j1) with
0 < j < L—1. Thus, by Proposition 14, the square is generated
by

R(Ai, +711) % R(Ai, +j21) = R((Ai, +11) * (A, +521)).

The conclusion will follow if w = (4;, + j11) * (4;, +
jol) = A;, x(A;, +h1)+h'1 for some h,h' € Z1. We claim
that

w= A, * (Aiy + (j2 — j1)1) + 1 1.

Observe that if (A;,), + j1 = (As), + j2 then either
(Ail)l/ = (Aiz)V = oo or (Ail)l/ = (Aiz)lf + (]2 _jl)' In the
first case, w, = oo and in the second case w, = (A;,), + ja-
In any case, we have

wy = (Aiy)y * ((Aiy)v + (2 — J1)) + J1-

On the other hand, if (A;), + j1 # (Ai,). + jo. then
necessarily w, = oo. If (4;,), # oo, then (A;, ), # (4;,)0 +
(J2 —J1) and

Wy = (Ail)u * ((Alg)u =+ (J2 7]1)) +]1

Similarly for (A;,), # oo and then we have the conclusion.
Since R(w) € (C1)*2, by Lemma 13, we have R(w +
h1) € (C+)? for any h and thus, we can store any of them
to build My, from where we have the conclusion by taking
h = —jimod L. O

VI. CODE

In this section, we present Magma [23] code based on
Theorem 9 and quasi-cyclic codes to find quantum LDPC or
LDGM CSS-T codes computationally. We also describe the
algorithms in case one wishes to use a different software,
for instance Macaulay2 [24] along with the coding theory
package [25].

We start by giving the algorithms to compute the Schur
product between two matrices, the square (respect the Schur
product) of a matrix, and the H matrix given in Eq. 2.

1: function POINTWISE(A, B) > Returns the pointwise
matrix between same-size matrices A and B

2 n < |{columns of A}|

3 m <+ |{rows of A}|

4 C + 0pxm

5: for j € [n], i € [m] do

6: Cli, j] « Ali, j] * Bli, j]
7: end for

8: return C

9: end function

We now present the Magma code that can be used to
find LDPC or LDGM quantum CSS-T codes. The following
function returns the Schur product between same-size matrices
A and B.



1: function SQUARE(A) 1> Returns the (Schur) square of A
2 n < |{columns of A}|

3 m < |{rows of A}|

4: C + 0m2xn

5: {+1

6 for i,j € [m] do

7 C[¢] < Pointwise(Row i of A, Row j of A)

8 {+—10+1

9 end for

10: return C

11: end function

function Pointwise (A, B)
return Matrix ([[A[i, J]1*B[1i, 7]
J in [1..Ncols(A)]]
i in [1..Nrows(A)]])

end function;

The following function returns the square of the matrix A
(in terms of the Schur product).

function Square (A)
return Matrix ([Pointwise (RowSubmatrix
(A, i, 1),RowSubmatrix (A, J, 1))
i,J in [1..Nrows(A)11);
end function;

The following function returns the quasi-cyclic low-density
matrix H defined by the integer L and the matrix A (see Eq. 2)
that can be used as generator matrix for a QC-LDGM code or
parity-check matrix for a QC-LDPC code.

function QCLD (L, A)
P:=ZeroMatrix (FiniteField(2),
InsertBlock (~P, IdentityMatrix
(FiniteField(2), L-1), 1, 2);
P[L,1]:=FiniteField(2)!1

L, L);

H:=ZeroMatrix (FiniteField(2),
Nrows (A) xL, Ncols (A)*L);
.Nrows (A)-1] do
for j in [0..Ncols(A)-1] do
InsertBlock (~H,P"A[i+1, j+1],
i*L+1, JxL+1);
end for;
end for;
return H;
end function;

for 1 in [O.

Example 16. We will use the previous functions to generate a
CSS-T code. Specifically, we use the QCLD function to provide
a sparse generator matrix.

L:=4;
A:= Matrix(IntegerRing(),
2’ 4/ [31172711 3131273] );

G:=QCLD (L, A7) ;

Cl:=LinearCode (G);

C2:=Cl meet Dual (LinearCode
(Square (GeneratorMatrix (Cl))));
Cl;

Dual (C2);

Then Cy is a [16,6,4] binary code with generator matrix
Gy =

1 0 00001 00 O0O0OT1O0O0T1TO0
010 0O0O0OO0OT1TT1TO0OTGO0UO0O0O0O0TI1
001 0O0O0O1O0O0DT1O0O0OO0O0OT1T0
00 010O0O0OT1O0DO0OT1TTO0TG0TUG0TGO0OT1
0000101 O0O0O0O0O0OT1O0T1T0
000001 01TO0O0O0OUO0TQO0T1T°O071
Moreover,
Cy = Hull(Cy) N Hull(C?) = C;

and Cy is a [16,10,2] binary code. So, by Corollary 4 and
Theorem 8, the quantum code Q(C1,Cs) is a [[16,0,> 2]]
CSS-T code.

As an additional example of the techniques introduced in
this paper, we provide the following.

Example 17. Let C; and Cy be defined by the generator
matrices

111 1111111111111
1111111 10O0O0O0O0O0O0TO0
1111 00O0O0T1T1T1T1TUO0TO0TO0TO0
11 001 10011001100
101 0101010101010
and
1111111 10O0O0O0O0O0O0TGO0
1111 00O0O0111 10000
11001 1001100110 0’
101 0101010101010

respectively. We can check that (Cy,Cs) is a CSS-T using
Theorem 8 and [23]. As the code C5 is degenerated with
respect to the last column, we can puncture that column
to obtain that ((C1)|1s,(C2)15) is also a CSS-T pair by
Theorem 9. The minimum distance of ((Cq)|;5)* is 3 and
then we get a CSS-T code with parameters [[15, 1, 3]].

VII. CONCLUSION

In this paper, we provided a characterization of CSS-T codes
using the relative hull of a code with respect to its square.
We proved that under certain conditions, we can puncture the
component codes of a CSS-T pair to obtain another CSS-T
pair. We considered the use of quasi-cyclic codes to design
LDPC and LDGM quantum CSS-T codes computationally.
Toy examples were given as a proof of concept, demonstrating
a possible step towards obtaining CSS-T codes using the
characterization.
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