
Toward Quantum CSS-T Codes from Sparse
Matrices

Eduardo Camps-Moreno, Hiram H. López, Gretchen L. Matthews, & Emily McMillon
Department of Mathematics

Virginia Tech
Blacksburg, VA, USA

Email: {e.camps, hhlopez, gmatthews, emcmillon}@vt.edu

Abstract—CSS-T codes were recently introduced as quantum
error-correcting codes that respect a transversal gate. A CSS-T
code depends on a pair (C1, C2) of binary linear codes C1 and
C2 that satisfy certain conditions. We prove that C1 and C2 form
a CSS-T pair if and only if C2 ⊂ Hull(C1) ∩ Hull(C2

1), where
the hull of a code is the intersection of the code with its dual.
We show that if (C1, C2) is a CSS-T pair, and the code C2 is
degenerated on {i}, meaning that the ith-entry is zero for all the
elements in C2, then the pair of punctured codes (C1|i, C2|i) is
also a CSS-T pair. Finally, we provide Magma code based on our
results and quasi-cyclic codes as a step toward finding quantum
LDPC or LDGM CSS-T codes computationally.

I. INTRODUCTION

Since the 1990s, it has been known that linear codes C1 and
C2 with C2 ⊆ C1 may be used to define a quantum stabilizer
code Q(C1, C2) called a CSS code, based on the work of
Calderbank and Shor [1] and Steane [2]. Stabilizer codes are
important for quantum error correction, protecting quantum
information against errors induced by noise and decoherence,
and fault-tolerant quantum computing. It is desirable that quan-
tum error-correcting codes enable gates to be implemented
transversally, since transversal gates act independently on the
qubits to impede the propagation of errors. Codes with this
property are called CSS-T codes, as introduced in [3]. More
formally, the code Q(C1, C2) is a CSS-T code provided C2

is an even weight code, meaning all of its codewords have
even weight, and for each codeword c ∈ C2, the shortening of
C⊥

1 with respect to the support of c is self-dual. Reed-Muller
codes have been employed to define CSS-T codes [4], and the
mathematical concepts defining binary CSS-T codes have been
considered for larger alphabets [5]. In [6], it was demonstrated
that CSS-T codes form a poset, providing tools to study
maximal CSS-T codes. Even so, CSS-T codes (especially
those satisfying other desirable properties) are elusive and
determining asymptotically good families of CSS-T codes is
an open question.

Another important family of quantum error-correcting codes
is formed by the quantum low-density parity-check (LDPC)
codes [7], [8] which are CSS codes based on sparse parity-
check matrices. In recent work, such codes have been demon-

Camps-Moreno and Matthews are partially supported by NSF DMS-
2201075. López is partially supported by NSF DMS-2401558. McMillon is
supported by NSF DMS-2303380. The authors are partially supported by the
Commonwealth Cyber Initiative.

strated for constant-overhead fault-tolerant quantum computa-
tion [9] and to rival surface codes [10], which were introduced
in [11]. Additional evidence of the capabilities of quantum
LDPC codes may be found in [12], [13], [14], [15], [16].

In this paper, we consider CSS-T codes defined by sparse
matrices. We demonstrate a step towards finding a source
of such codes by providing an equivalent characterization of
CSS-T codes and considering a construction of LDPC codes
that have efficient encoding [17]. This paper is organized as
follows. Section II reviews the necessary background. Section
III includes a useful characterization of binary CSS-T codes
in terms of hulls and relative hulls of codes. In Section V, we
consider the application to sparse matrix codes. Examples are
provided in Section VI. A conclusion is given in Section VII.

II. PRELIMINARIES

In this section, we review the foundation on which our
results will be built and set the notation to be used later.
We use the standard notation from coding theory. All codes
considered in this paper are binary linear codes. The finite
field with two elements is F2 := {0, 1}, and Am×n is the set
of all m× n matrices whose entries are elements of a set A.
Given a matrix A ∈ Fm×n

2 , its transpose is AT ∈ Fn×m
2 and

its ith row is RowiA. The standard basis vectors for Fn
2 are

ei = (0, . . . , 0, 1, 0, . . . , 0), i ∈ [n] := {1, . . . , n}, where the
only nonzero entry is in position i, and 1 =

∑
i∈[n] ei ∈ Fn

2

denotes the all ones vector. An [n, k, d] code C is a k-
dimensional vector subspace of Fn

2 in which any two distinct
codewords (meaning elements of C) differ in at least d
positions.

The Schur (also known as the star or pointwise) product of
two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn

2 is given
by

x ⋆ y := (x1y1, . . . , xnyn).

The Schur (also called the star or pointwise) product of binary
codes C and C ′ of length n is denoted and defined by

C ⋆ C ′ := ⟨c ⋆ c′ : c ∈ C, c′ ∈ C ′⟩ ⊆ Fn
2 ,

the F2-span of the Schur products of all codewords of C. We
define the square of the code C by C2 := C ⋆ C.

A. Codes defined by sparse matrices

A binary linear code is a low-density parity-check (LDPC)
code if it is the null space of a matrix H ∈ Fr×n

2 with
row weight O(1). LDPC codes have superior performance
when coupled with iterative message passing algorithms that
operate on an associated sparse Tanner graph. A binary linear
code is a low-density generator matrix (LDGM) code if it
has a generator matrix G ∈ Fk×n

2 with row weight O(1).
LDGM codes facilitate efficient encoding. One may also
consider moderate-density parity-check (MDPC) or moderate-
density generator matrix (MDGM) codes, which have defining
matrices with row weight O(

√
n log n) or O(

√
n). For LDPC

codes, row weights of less than 10 are typically considered
[18].

B. CSS codes

We say that Q is [[n, k, d]] to mean a quantum code that
encodes k logical qudits into n physical qudits and minimum
distance d. Let C1 = [n, k1, d1] and C2 = [n, k2, d2] be two
binary codes such that C2 ⊆ C1. We denote by Q(C1, C2) the
quantum CSS code defined by C1 and C2. Recall that a binary
generator matrix for the stabilizer that defines Q(C1, C2) can
be written as [

0 H1

G2 0

]
, (1)

where H1 is a parity-check matrix for C1 and G2 is a generator
matrix for C2. The CSS code Q(C1, C2) is a

[[n, k1 + k2 − n,≥ min{d1, d2}]]

quantum code. Notice that the matrix in Expression (1) will
be sparse if H1 is the parity-check matrix of an LDPC code
and G2 is the generator matrix of an LDGM code.

C. Quasi-cyclic codes

We will use quasi-cyclic codes to define the quantum codes
of interest. Recall that a code C ⊆ Fn

2 is quasi-cyclic if and
only if there exists l ∈ [n] such that c = (c1, . . . , cn) ∈ C
implies (cn−l+1, . . . , cn, c1, . . . , cn−l) ∈ C, where indices are
taken modulo n. Note that the code C is cyclic if it is quasi-
cyclic for l = 1. Quasi-cyclic codes can be defined by circulant
matrices, meaning those of the form

a1 a2 . . . an
an a1 . . . an−1

...
...

...
a2 a3 . . . a1

 ,

used as blocks Aij in a generator or parity-check matrix of
the form 

A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

...
At1 At2 . . . Atn

 .

Quasi-cyclic codes can be compactly described, and, as the
next result shows, retain their structure under the Schur
product.

Proposition 1. If C is quasi-cyclic, then C2 is quasi-cyclic.

Proof. Suppose C ∈ Fn
2 is quasi-cyclic and w ∈ C2. Then

w =
∑

c,c′∈C ac,c′c ⋆ c′ =
∑

c,c′∈C ac,c′(c1c
′
1, . . . , cnc

′
n)

where ac,c′ ∈ F2. Notice that c, c′ ∈ C implies
(cn−l+1c

′
n−l+1, . . . , cnc

′
n, c1c

′
1, . . . , cn−lc

′
n−l) ∈ C

since (cn−l+1, . . . , cn, c1, . . . , cn−l) ∈ C and
(c′n−l+1, . . . , c

′
n, c

′
1, . . . , c

′
n−l) ∈ C which completes the

proof.

III. CSS-T CODES AND HULLS

Hulls were first considered by Assmus and Key [19] and
have been considered in the context of linearly complemen-
tary dual (LCD) codes [20] as well as entanglement-assisted
quantum error-correcting codes [17], [21]. In this section, we
consider a characterization of CSS-T codes and link it to the
hull of a code. First, we recall the definition of a CSS-T code
as given in [3]. We say that a code C is of even weight if and
only if all of its codewords are of even weight.

Definition 2. Given binary codes C1 and C2 of length n with
C2 ⊆ C1, Q(C1, C2) is a CSS-T code if and only if C2 is of
even weight and for all codewords c ∈ C2, the shortening of
C⊥

1 with respect to the coordinates of [n] \ supp(c) contains
a self-dual code.

We use the following result from [6] to determine quantum
codes which are CSS-T.

Theorem 3. Let C1 and C2 be binary codes of length n. The
following are equivalent.
(1) Q(C1, C2) is a CSS-T code.
(2) C2 ⊆ C1 ∩ (C2

1)
⊥.

(3) C⊥
1 + C2

1 ⊆ C⊥
2 .

Moreover, if Q(C1, C2) is a CSS-T code, then C2 is self-
orthogonal.

We use the following result from [6] to determine the
parameters of a quantum CSS-T code.

Corollary 4. Let (C1, C2) be a CSS-T pair. Then

min{wt(C1),wt(C⊥
2)} = wt(C⊥

2),

and the parameters of the corresponding CSS-T code are

[[n, k1 − k2,≥ wt(C⊥
2)]].

Moreover, if the code is nondegenerate, we have equality in
the minimum distance.

Definition 5. A pair of codes (C1, C2) satisfying the condi-
tions in Theorem 3 is called a CSS-T pair.

According to Theorem 3, given a code C, the intersection
C ∩ (C2)⊥ is useful in determining a maximal CSS-T pair
(C1, C2) with C1 = C. To better understand this intersection,
we note its relationship to the hull of a code.

Definition 6. The hull of a code C is Hull(C) := C ∩ C⊥.
Given codes C1 and C2 of the same length, the relative hull
of C1 with respect to C2 is HullC2(C1) := C1 ∩ C⊥

2 .

Lemma 7. For a binary code C,

C ∩ (C2)⊥ = Hull(C) ∩Hull(C2).

Proof. Note that C ⊆ C2, since w ⋆ w = w for all w ∈ Fn
2 .

Note C ∩ (C2)⊥ ⊆ C2 ∩ (C2)⊥ = Hull(C2). In addition,
(C2)⊥ ⊆ C⊥ and C∩ (C2)⊥ ⊆ Hull(C). Thus, C∩ (C2)⊥ ⊆
Hull(C) ∩Hull(C2).

As Hull(C) ∩ Hull(C2) = C ∩ C⊥ ∩ C2 ∩ (C2)⊥ ⊆ C ∩
(C2)⊥, the proof is complete.

We come to one of the main results of this section. Lemma
7 provides another characterization of CSS-T codes, as stated
in the next result.

Theorem 8. Given binary codes C1 and C2 with C2 ⊆ C1,
Q(C1, C2) is a CSS-T code if and only if

C2 ⊆ Hull(C1) ∩Hull(C2
1)

if and only if
C2 ⊆ HullC2

1
(C1).

Proof. This result follows immediately from Theorem 3,
Lemma 7, and Definition 6.

Notice that Theorem 8 together with Theorem 3 indicates
that to determine a CSS-T pair (C1, C2), one may restrict the
search to self-orthogonal codes C2 in the relative hull of C1

with respect to its square.

IV. PUNCTURING

Let C ⊂ Fn
2 be a code and i ∈ [n]. The puncturing of C

in {i}, denoted by C|i, is the binary code

C|i := {(c1, . . . , ci−1, ci+1, . . . , cn)

:(c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ C,

for some ci ∈ F2}.

For S ⊂ [n], we write C|S for the successive puncturing
of C in the coordinates indexed by the elements in S.
The code C is degenerated on {i} if ci = 0 for every
c = (c1, . . . , ci, . . . , cn) ∈ C.

We come to one of the main results of this section.
The following theorem states that if Q(C1, C2) is a CSS-T
code, then Q(C1|i, C2|i) is a CSS-T code whenever the code
Hull(C1) ∩Hull(C2

1) is degenerated on {i}.

Theorem 9. Let C2 ⊆ C1 be binary codes. Assume that C2

is degenerated on {i}. If Q(C1, C2) is a CSS-T code, then
Q(C1|i, C2|i) is a CSS-T code.

Proof. Note that for any c ∈ C2 ⊆ C1, ci = 0, so c|i ∈ C2|i
and c|i ∈ C1|i.

As Q(C1, C2) is a CSS-T code, then

C2 ⊆ Hull(C1) ∩Hull(C2
1)

by Theorem 8. Thus, c · w = c|i · w|i = 0 for every element
w in C2

1 . We obtain

C2|i ⊆ C1|i ∩ (C1|i)2⊥,

from which we get the conclusion by Theorem 8.

The support of C ⊂ Fn
2 is denoted and defined by

Supp(C) := {i ∈ [n] : ci ̸= 0 for some
c = (c1, . . . , ci, . . . , cn) ∈ C}.

Corollary 10. Let S be the complement of Supp(C). If
Q(C1, C2) is a CSS-T code, then (C1|S , C2|S) is a CSS-T
code.

Proof. This is a consequence of Theorem 9.

V. QUASI-CYCLIC LOW-DENSITY CODES

In this section, we study quantum LDPC and LDGM codes
defined by quasi-cyclic codes.

Definition 11. A CSS code Q(C1, C2) is a quantum LDPC
code if C1 and C⊥

2 are LDPC codes, or, equivalently, if
C1 is an LDPC code and C2 is an LDGM code. Similarly,
Q(C1, C2) is a quantum LDGM code if C1 and C⊥

2 are LDGM
codes, or, equivalently, if C1 is an LDGM code and C2 is an
LDPC code.

Remark 12. Note that a binary generator matrix for the
stabilizer that defines a quantum LDPC code Q(C1, C2) can
be written as [

0 H1

G2 0

]
,

where H1 and G2 are sparse matrices.

Here we use those ideas to consider LDPC codes which
give rise to CSS-T pairs. As proof of concept, we make use of
a code construction found in [22], where the authors sought
codes that have both efficient encoding algorithms and fast
iterative decoding algorithms.

For an integer L ≥ 2, define the matrix

P :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 ∈ FL×L
2 .

Take positive integers m and n. Let aij ∈ ZL ∪ {∞}, for
0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. Define a code C by the
parity check matrix

H =

 P a00 P a01 · · · P a0(n−1)

...
...

. . .
...

P a(m−1)0 P a(m−1)1 · · · P a(m−1)(n−1)

 , (2)

where P∞ denotes a square matrix of zeroes of size L and
P aij is the usual aij power matrix multiplication of the matrix
P .

Observe that if a ∈ ZL, then P a is a permutation matrix.
Indeed, Rowi P a = eTa+i mod L. Note that the code C is a
quasi-cyclic LDPC (QC-LDPC) code. The weight of each row
is ≤ n and the weight of each column is ≤ m. Moreover, by

knowing a, we can recover immediately P a. Thus, we can
store H with a smaller base matrix

MH =

 a00 · · · a0(n−1)

...
. . .

...
a(m−1)0 · · · a(m−1)(n−1)

 ∈ (ZL ∪ {∞})m×n.

We aim to describe the square of C in terms of the entries
of MH . To that end, for a ∈ (ZL ∪ {∞})n, let R(a) ∈ FLn

2

be defined as

[R(a)]i =


1 if i = jL+ aj for some j ∈ {0, · · · , n− 1}

such that aj ̸=∞
0 otherwise.

Making use of this definition, the following Lemma gives a
natural connection between MH and the rows of H .

Lemma 13. Let C be a quasi-cyclic LDPC code with shift L
and assume a ∈ (ZL ∪{∞})n is such that R(a) ∈ C. Extend
the sum over ZL to ZL ∪{∞} by taking x+∞ =∞ for any
x ∈ ZL ∪ {∞} and take 1 = (1, . . . , 1) ∈ Zn

L. Then

R(a+ j1) ∈ C, ∀j ∈ ZL.

Proof. Observe that

R(ai + j) =

{
R(ai + j) if ai ̸=∞
R(∞) if ai =∞.

In either case, R(ai + j) = R(ai) · P and thus R(a + j1) ∈
C.

Consider the operation ∗ : (ZL ∪ {∞})2 → ZL ∪ {∞}
defined by

a ∗ b =

{
a if a = b

∞ otherwise.

The operation extends naturally component-wise to (ZL ∪
{∞})n. Moreover, there is a relationship between ⋆ and ∗,
as shown in the next result.

Proposition 14. Given a, b ∈ (ZL ∪ {∞})n,

R(a) ⋆ R(b) = R(a ∗ b).

Proof. Let a = (a0, . . . , an−1), b = (b0, . . . , bn−1) and 0 ≤
i ≤ n − 2. We will focus on the entries of R(a) indexed by
iL+(i+1)L− 1, meaning R(ai). Observe that R(ai) = eai

,
the athi standard basis vector in FL

2 . Thus,

R(ai) ⋆ R(bi) = eai
⋆ ebi =

{
0 if ai ̸= bi

eai otherwise.

Thus,
R(ai) ⋆ R(bi) = R(ai ∗ bi).

Since R(a) is the concatenation of R(ai), we have the
conclusion.

Proposition 15. Given the code C⊥ defined by parity check
matrix H as in Equation (2) and its corresponding matrix
MH with rows A1, . . . , Am, its square (C⊥)2 is generated by

a matrix H ′ ∈ FmL×nL
2 such that MH′ ∈ (ZL ∪ {∞})m×n

has rows Ai ∗ (Aj + h1) for any 0 ≤ h ≤ L− 1.

Proof. We know that C⊥ is generated by R(Ai + j1) with
0 ≤ j ≤ L−1. Thus, by Proposition 14, the square is generated
by

R(Ai1 + j11)⋆R(Ai2 + j21) = R((Ai1 + j11)∗ (Ai2 + j21)).

The conclusion will follow if w = (Ai1 + j11) ∗ (Ai2 +
j21) = Ai1 ∗ (Ai2 +h1)+h′1 for some h, h′ ∈ ZL. We claim
that

w = Ai1 ∗ (Ai2 + (j2 − j1)1) + j11.

Observe that if (Ai1)ν + j1 = (Ai2)ν + j2 then either
(Ai1)ν = (Ai2)ν =∞ or (Ai1)ν = (Ai2)ν + (j2− j1). In the
first case, wν =∞ and in the second case wν = (Ai2)ν + j2.
In any case, we have

wν = (Ai1)ν ∗ ((Ai2)ν + (j2 − j1)) + j1.

On the other hand, if (Ai1)ν + j1 ̸= (Ai2)ν + j2, then
necessarily wν =∞. If (Ai1)ν ̸=∞, then (Ai1)ν ̸= (Ai2)ν +
(j2 − j1) and

wν = (Ai1)ν ∗ ((Ai2)ν + (j2 − j1)) + j1.

Similarly for (Ai2)ν ̸=∞ and then we have the conclusion.
Since R(w) ∈ (C⊥)∗2, by Lemma 13, we have R(w +

h1) ∈ (C⊥)2 for any h and thus, we can store any of them
to build MH′ , from where we have the conclusion by taking
h = −j1mod L.

VI. CODE

In this section, we present Magma [23] code based on
Theorem 9 and quasi-cyclic codes to find quantum LDPC or
LDGM CSS-T codes computationally. We also describe the
algorithms in case one wishes to use a different software,
for instance Macaulay2 [24] along with the coding theory
package [25].

We start by giving the algorithms to compute the Schur
product between two matrices, the square (respect the Schur
product) of a matrix, and the H matrix given in Eq. 2.

1: function POINTWISE(A, B) ▷ Returns the pointwise
matrix between same-size matrices A and B

2: n← |{columns of A}|
3: m← |{rows of A}|
4: C ← 0n×m

5: for j ∈ [n], i ∈ [m] do
6: C[i, j]← A[i, j] ∗B[i, j]
7: end for
8: return C
9: end function

We now present the Magma code that can be used to
find LDPC or LDGM quantum CSS-T codes. The following
function returns the Schur product between same-size matrices
A and B.

1: function SQUARE(A) ▷ Returns the (Schur) square of A
2: n← |{columns of A}|
3: m← |{rows of A}|
4: C ← 0m2×n

5: ℓ← 1
6: for i, j ∈ [m] do
7: C[ℓ]← Pointwise(Row i of A, Row j of A)
8: ℓ← ℓ+ 1
9: end for

10: return C
11: end function

function Pointwise(A,B)
return Matrix([[A[i,j]*B[i,j] :
j in [1..Ncols(A)]] :
i in [1..Nrows(A)]]);
end function;

The following function returns the square of the matrix A
(in terms of the Schur product).

function Square(A)
return Matrix([Pointwise(RowSubmatrix
(A, i, 1),RowSubmatrix(A, j, 1))
: i,j in [1..Nrows(A)]]);
end function;

The following function returns the quasi-cyclic low-density
matrix H defined by the integer L and the matrix A (see Eq. 2)
that can be used as generator matrix for a QC-LDGM code or
parity-check matrix for a QC-LDPC code.

function QCLD(L,A)
P:=ZeroMatrix(FiniteField(2), L, L);
InsertBlock(~P, IdentityMatrix
(FiniteField(2), L-1), 1, 2);
P[L,1]:=FiniteField(2)!1;

H:=ZeroMatrix(FiniteField(2),
Nrows(A)*L, Ncols(A)*L);
for i in [0..Nrows(A)-1] do
for j in [0..Ncols(A)-1] do
InsertBlock(~H,P^A[i+1,j+1],
i*L+1, j*L+1);
end for;
end for;
return H;

end function;

Example 16. We will use the previous functions to generate a
CSS-T code. Specifically, we use the QCLD function to provide
a sparse generator matrix.

L:=4;
A:= Matrix(IntegerRing(),
2, 4, [3,1,2,1, 3,3,2,3]);

G:=QCLD(L,A);

C1:=LinearCode(G);
C2:=C1 meet Dual(LinearCode
(Square(GeneratorMatrix(C1))));
C1;
Dual(C2);

Then C1 is a [16, 6, 4] binary code with generator matrix
G1 =
1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

 .

Moreover,

C2 = Hull(C1) ∩Hull(C2
1) = C1

and C⊥
2 is a [16, 10, 2] binary code. So, by Corollary 4 and

Theorem 8, the quantum code Q(C1, C2) is a [[16, 0,≥ 2]]
CSS-T code.

As an additional example of the techniques introduced in
this paper, we provide the following.

Example 17. Let C1 and C2 be defined by the generator
matrices

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0


and
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 ,

respectively. We can check that (C1, C2) is a CSS-T using
Theorem 8 and [23]. As the code C2 is degenerated with
respect to the last column, we can puncture that column
to obtain that ((C1)|15, (C2)15) is also a CSS-T pair by
Theorem 9. The minimum distance of ((C2)|15)⊥ is 3 and
then we get a CSS-T code with parameters [[15, 1, 3]].

VII. CONCLUSION

In this paper, we provided a characterization of CSS-T codes
using the relative hull of a code with respect to its square.
We proved that under certain conditions, we can puncture the
component codes of a CSS-T pair to obtain another CSS-T
pair. We considered the use of quasi-cyclic codes to design
LDPC and LDGM quantum CSS-T codes computationally.
Toy examples were given as a proof of concept, demonstrating
a possible step towards obtaining CSS-T codes using the
characterization.

REFERENCES

[1] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting
codes exist,” Phys. Rev. A, vol. 54, pp. 1098–1105, Aug 1996. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.54.1098

[2] A. M. Steane, “Error correcting codes in quantum theory,” Physical
Review Letters, vol. 77, no. 5, p. 793, 1996.

[3] N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister,
“Classical coding problem from transversal T gates,” in 2020 IEEE
International Symposium on Information Theory (ISIT), 2020, pp. 1891–
1896.

[4] E. Andrade, J. Bolkema, T. Dexter, H. Eggers, V. Luongo, F. Man-
ganiello, and L. Szramowski, “CSS-T codes from Reed Muller codes
for quantum fault tolerance,” ArXiv 2305.06423, 2023.

[5] E. Berardini, A. Caminata, and A. Ravagnani, “Structure of CSS and
CSS-T quantum codes,” ArXiv 2310.16504, 2023.

[6] E. Camps-Moreno, H. H. López, G. L. Matthews, D. Ruano, R. San-
José, and I. Soprunov, “The poset of binary CSS-T quantum codes and
cyclic codes,” 2023.

[7] N. P. Breuckmann and J. N. Eberhardt, “Quantum low-density parity-
check codes,” PRX Quantum, vol. 2, p. 040101, Oct 2021. [Online].
Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.040101

[8] D. Gottesman, “Fault-tolerant quantum computation with constant over-
head,” Quantum Info. Comput., vol. 14, no. 15–16, p. 1338–1372, nov
2014.

[9] Q. Xu, J. P. B. Ataides, C. A. Pattison, N. Raveendran, D. Bluvstein,
J. Wurtz, B. Vasic, M. D. Lukin, L. Jiang, and H. Zhou, “Constant-
overhead fault-tolerant quantum computation with reconfigurable atom
arrays,” 2023.

[10] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov, P. Rall, and
T. J. Yoder, “High-threshold and low-overhead fault-tolerant quantum
memory,” 2024.

[11] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with
boundary,” 1998.

[12] J.-P. Tillich and G. Zémor, “Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength,”
IEEE Transactions on Information Theory, vol. 60, no. 2, pp. 1193–
1202, 2014.

[13] P. Panteleev and G. Kalachev, “Asymptotically good quantum and locally
testable classical LDPC codes,” in Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
375–388. [Online]. Available: https://doi.org/10.1145/3519935.3520017

[14] A. Leverrier and G. Zemor, “Quantum tanner codes,” in 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science (FOCS).
Los Alamitos, CA, USA: IEEE Computer Society, nov 2022, pp.
872–883. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/FOCS54457.2022.00117

[15] S. Evra, T. Kaufman, and G. Zémor, “Decodable quantum LDPC codes
beyond the

√
n distance barrier using high-dimensional expanders,”

SIAM Journal on Computing, vol. 0, no. 0, pp. FOCS20–276–FOCS20–
316, 0. [Online]. Available: https://doi.org/10.1137/20M1383689

[16] A. Krishna, I. L. Navon, and M. Wootters, “Viderman’s algorithm for
quantum LDPC codes,” 2023.

[17] G. Luo, X. Cao, and X. Chen, “MDS codes with hulls of arbitrary
dimensions and their quantum error correction,” IEEE Transactions on
Information Theory, vol. 65, no. 5, pp. 2944–2952, 2019.

[18] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-check
codes,” in 2013 IEEE International Symposium on Information Theory,
2013, pp. 2069–2073.

[19] E. Assmus and J. Key, “Affine and projective planes,” Discrete
Mathematics, vol. 83, no. 2, pp. 161–187, 1990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0012365X9090003Z

[20] J. L. Massey, “Linear codes with complementary duals,” Discrete
Mathematics, vol. 106-107, pp. 337–342, 1992. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0012365X9290563U

[21] S. E. Anderson, E. Camps-Moreno, H. H. López, G. L. Matthews,
D. Ruano, and I. Soprunov, “Relative hulls and quantum codes,” 2023.

[22] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic LDPC codes for fast
encoding,” IEEE Transactions on Information Theory, vol. 51, no. 8,
pp. 2894–2901, 2005.

[23] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I.
The user language,” J. Symbolic Comput., vol. 24, no. 3-4, pp. 235–265,
1997. [Online]. Available: http://dx.doi.org/10.1006/jsco.1996.0125

[24] D. R. Grayson and M. E. Stillman, “Macaulay2, a software
system for research in algebraic geometry.” [Online]. Available:
http://www.math.uiuc.edu/Macaulay2/

[25] T. Ball, E. Camps, H. Chimal-Dzul, D. Jaramillo-Velez, H. H. López,
N. Nichols, M. Perkins, I. Soprunov, G. Vera-Martínez, and G. Whiel-
don, “Coding theory package for Macaulay2,” Journal of Software for
Algebra and Geometry, to appear.

