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EXOTIC PICARD GROUPS AND CHROMATIC VANISHING
VIA THE GROSS-HOPKINS DUALITY

DOMINIC LEON CULVER AND NINGCHUAN ZHANG

AssTtrAcT. In this paper, we study the exotic K(h)-local Picard groups s; when 2p — 1 = h? and the
homological Chromatic Vanishing Conjecture when p — 1 does not divide h. The main idea is to use the
Gross-Hopkins duality to relate both questions to certain Greek letter element computations in chromatic
homotopy theory. Classical results of Miller-Ravenel-Wilson then imply that an exotic element at height
3 and prime 5 is not detected by the type-2 complex V(1). For the homological Vanishing Conjecture, we
prove it holds modulo the invariant prime ideal I}, ;. We further show that this special case of the Vanishing
Conjecture implies the exotic Picard group kj, is zero at height 3 and prime 5. Both results can be thought
of as a first step towards proving the vanishing of k3 at prime 5.

Keywords. exotic Picard groups, Chromatic Vanishing Conjecture, Gross-Hopkins duality, Greek letter
elements

0. INTRODUCTION

0.1. Statement of main results. The study of Picard groups in chromatic homotopy theory was initiated
by Hopkins in [17,33]. By analyzing the homotopy fixed point spectral sequence for the K (h)-local sphere,
Hopkins-Mahowald-Sadofsky proved the following:

Theorem ([17, Proposition 7.5]). The exotic K (h)-local Picard group x5 (see Definition 1.11) is zero when
p — 1 does not divide h and 2p — 1 > h2.

In this paper, we study x;, when 2p — 1 = h2. The smallest of such pairs is h = 3 and p = 5. Notice that
this assumption already implies (p — 1) t h.

Remark. It is an open question in number theory whether there are infinitely primes p such that 2p — 1
is a perfect square (|21, page 171]). Using SageMath [36], the authors are able to find 35,528, 083 positive

integers h less than 10° such that @ is a prime number.
Our first main result is:

Theorem (A, Theorem 3.27, Corollary 3.28). Let 2p—1 = h2. Suppose the type-(h—1) Smith-Toda complex
V(h —2) = S°/(p,v1,--+ ,vn_2) exists at prime p. Then an exotic element X € kj, cannot be detected by
V(h—2), i.e.

In particular,

(1) At height 3 and prime 5, an exotic element X in Picg () cannot be detected by V(1) = S°/(5,v1).

(2) At height'5 and prime 13, an exotic element X in Pick sy cannot be detected by V' (3) = S0/(13,v1,v9,v3).

When 4p — 3 = h2, we prove a similar statement in Theorem 3.31 for a subgroup HS) of the exotic Picard
group kp, defined in Section 1.3. In particular at (h,p) = (3,3) and (5,7), we show that V(h — 2) cannot
detect elements in this subgroup of xy,.
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Our method is also used to study the following special case of the Chromatic Vanishing Conjecture (2.29),
first proposed in [4, 5].

Conjecture (Reduced Homological Vanishing Conjecture, (RHVC)).
Fp = Ho(Gh; th) ;) Ho(Gh; Wo(Eh)/p).

Remark. The Vanishing Conjecture was stated in terms of group cohomology in [5, Conjecture 1.1.4]. This
is equivalent to the homological versions when (p — 1) { h by Poincaré duality. See Remark 2.30.

Theorem (B, Theorem 3.26). When (p—1) 1 h, the RHVC holds modulo the ideal I,_1 = (p,u1, - ,up—2),
i.e. there are isomorphisms:
Fp = HQ(Gh; th) ;> Ho(Gh; WO(Eh)/Ih—l)-

Exotic Picard groups and the Vanishing Conjecture are related by:

Theorem (C, Theorem 3.32). If the RHVC holds at height 3, then k3 =0 at p =5 and /ﬁél) =0atp=3,

where mgl) s a subgroup of k3 defined in Section 1.3

For general heights and primes, we give some bounds on the divisibility of Greek letter elements that
would imply the RHVC (when (p — 1) { h) and x5 = 0 (when 2p — 1 = h?) in Proposition 3.15.

0.2. General strategy. A summary of our strategy to study exotic Picard groups when 2p — 1 = h? is as
follows. We will show successively each claim below is implied by the following one.

I. k, =0.
II. I‘Ich2 (Sh;ﬂgp,Q(Eh)) = ng_l(sh; 772p72(Eh)) =0.
L. H! (Sp;map—o(En)/p) = 0.

IV. HY(Sp; mon—opro(En)(det)/(p,ui®, - ,u3®,)) = 0, where the determinant twist (det) is defined in
Definition 2.18 and the quotient mod (p, u$°,--- ,u5° ;) is explained in Definition 2.19.

V. HY (Sh; T o n—apta— 2] (Eh)/J) = 0 for any open invariant ideal J < m(E},) containing p such that
p—1

N
vﬁ is invariant mod J.

N
0,2h—2p+2— 212l
VL EXtBP*BIf+ »=' (BP,,v; 'BP,/J) = 0 for any invariant ideal J < v, ' BP, containing p such that

vﬁN is invariant mod J.
VIL. H%'(MP=1) =0 for any t = 2h —2p+2 — % mod p™ |v,| and all integers N > 0, where M]'~* :=
v, BP. /(.05 032).
II = I: In [11], Goerss-Henn-Mahowald-Rezk defined a map that detects the exotic Picard group xp:
evy: Ky — chpfl(Gh;pr,g(Eh)).

Using the same argument as in [17], we will show this map is injective when (p — 1) { h and 4p — 3 > h? in
Proposition 1.20.! As a result, sy, vanishes if H2~1(Gp;map—2(E)) = 0 when 2p — 1 = h2. By [9, Lemma
1.32] and [12, page 12|, we have

Hi(Gp;mi(Ep)) = Hﬁ(Sh;ﬂt(Eh))Gal for any s and t,

LA descent spectral sequence for K (h)-local Picard groups in [13, Example 6.18] implies this map is an isomorphism under
the assumptions. See Proposition 1.25.
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where S;, < Gy, is the automorphism group of the height A-Honda formal group. This indicates we just need
to show the relevant group cohomology of Sj, is zero.

III — II: Now suppose 2p — 1 = h?. By Theorem 2.8 of Lazard and the fact S; has no finite p-
group, cd,(Sp) = h®. When (p — 1) { h, the cohomology we are computing H2P~!(Gp;mep_o(Ep)) =
H fz(Gh;ﬂgp_g(Eh)) is a top degree cohomology. Using a Hochschild-Lyndon-Serre spectral sequence and
the explicit formula of the action by the center Z; of Sp,, we show in Proposition 2.3 that

H (G map-o(En)) = HY (G mop—a(En) /).

Alternatively, the above isomorphism can be proved using the Poincaré duality between top degree cohomol-
ogy and zero degree homology.

IV — III: There is another Poincaré duality between top and zero degree cohomology groups for any
p-complete Gp-module M:

HY (81 M) = HO(Sy; M),
where (—)Y := hom.(—, Q,/Z,) is the continuous equivariant Pontryagin dual (Definition 2.11). For M =
m¢(E}y), the dual MV is identified by Gross-Hopkins duality Corollary 2.22:

Wt(Eh)v = ﬂ'gh_t(Eh)<det>/m°°,
where m = (p,uy, -+ ,up—1) < mo(E}y) is the maximal ideal, mod m® is defined in Definition 2.19, and (det)
is the determinant twist defined in Definition 2.18). In the case when t = 2p — 2, we further have:
2 2
H (Sh;map—2(En)) = H;" (Sn; m2p—2(En)/p)
= H(Sh; mon—2p2(En){det) /(p,us®, - up® )Y

V — IV: In [16], Gross-Hopkins identified the determinant twist mod p > 2 with a limit of finite

suspensions:
PN vy

lim ——=%
To(Er)(det)/p = BNz P71 mo(E))/p.
This is a limit in the algebraic K(h)-local Picard group. More precisely, let J < mo(E},) be an open invariant
N
ideal containing p, such that v} is invariant modulo J. Then

N oy |

mo(Ep){det)/J =X 71 mo(Ey)/J.
By Proposition 2.27, we now have

HS(S/'H T2h—2p+2 (Eh)<det>/(p7 uclxv’ T auﬁw—l))

~ . 0 )
_pefgll}on(,lEh)Hc (Sh’ 7T2h—2p+2—p1:'_“1h(Eh)/ J) '

As a result, to show the left hand side is zero, it suffices to show every single term in the colimit system on
right hand side is zero.

VI = V Using a Change of Rings theorem, Theorem 3.1, we relate the group cohomology of Gj with
Ext-groups of BP,BP-comodules:

H*(Gpymi(Ey)/J) = Extyp gp(BP., vy, 'BP./J')

for some invariant ideal .J’ < v; 'BP,. When J = (p,uj’, - ,u)""}'), we can take J' = (p,v]*, -+ ,v7"7}').

As a result, we need to compute EXt%;*BP(BP*, U;IBP*/J/> for certain values of ¢.
VII = VI For a BP,BP-comodule M, we denote EXtESJ*BP(BP*7 M) by H**(M). The colimit of the
cohomology groups H%*(v; * BP,/.J) over all invariant ideals .J < v, ! BP, containing p is H%*(M['~ '), where
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M{“l = v;lBP*/(p7 v°, -+ ,v5° ). This is the group of mod-p Greek letter elements at height h. Keeping
track of the degree ¢, we have reduced our computation to the following:

Proposition. Suppose 2p —1 = h2. If Ho’t(Mlhfl) =0 whenevert = 2h —2p+ 2 — % mod p”|vy| for
some integer N > 0, then kp = 0.

The argument above can also be used to study the Chromatic Vanishing Conjecture (2.29) in degree
0 homology groups when (p — 1) 1 h. This conjecture has been verified at all primes at heights 1 and 2
by explicit computations. It plays an essential role in Beaudry-Goerss-Henn’s works in [5] to disprove and
completely understand the Chromatic Splitting Conjecture at h = p = 2. The Vanishing Conjecture is wide
open at h > 3. Using Gross-Hopkins duality and Change of Rings theorem, we can translate the Reduced
Homological Vanishing Conjecture (RHVC) to Greek letter element computations:

Proposition. Suppose p— 1 does not divide h. If Ho’t(Mlhfl) = F, whenever t = 2h — % mod p? |vy|
for some integer N > 0, then Ho(Gp;mo(Er)/p) = Fp, and the RHVC holds.

0.3. Greek letter element computations. Next, we need to compute the Greek letter elements in
HO(M!1). Elements in this group are classified into three families in Proposition 3.3.

%,
PU1Vp—1

elements contribute to a copy F,, in H, ?2 (Gp;mo(En)/p) via Gross-Hopkins duality, which is predicted
in the RHVC. This family does not contribute to Hg‘g (Gh;mop—2(En)/p).

(1) Family I elements are of the form , where (s,p) = 1. In Proposition 3.6, we prove Family I

(2) Family II elements are of the form ﬁ, where (p, vfl, e ,vZ”:ll) is an invariant ideal. In Corol-
pUy Vg
lary 3.11, we show this family does not contribute to either H?Q (Gp;mo(EnR)/p) or Hf2 (Gp; mop—2(En)/p).
Yh.N

(3) Family III elements are of the form where y;, v is some replacement of UZN, (s,p) =1 and

dq dp—1
PV Up g

(p, vfl g ,vZ”_"ll,yfl, ~) is an invariant regular ideal. While the precise conditions on the d;’s are out of

reach in the general situation, we established some bounds in Proposition 3.12 which would imply this

family does not contribute to either H" (G mo(Ex)/p) or H (Gp; Top—2(Er)/D)-
Combining the three cases above, we obtain the bounds on divisibility of Greek letter elements that would
imply the RHVC (when (p — 1) { h) and vanishing of xj, (when 2p — 1 = h?) in Proposition 3.15.

In [26], Miller-Ravenel-Wilson computed H**(M}_,), where M} | := v; *BP./(p,v1, -+ ,vp_2,05° ).

Using Gross-Hopkins duality and Morava’s Change of Rings Theorem, the Miller-Ravenel-Wilson computa-
tion yields when (p — 1) t h,

HY (Gpsmo(En)/In-1) = Fy,
H" (G map_o(Ep)/In_1) = 0.

It follows from first isomorphism that the RHVC holds modulo the ideal Ij,_s = (p,u1, -+ ,up—2) < 7o (ER).
This is the statement of Main Theorem B 3.26. The second group cohomology measures if there is an exotic
element in Picg () detected by the type-(h — 1) Smith-Toda complex V(h — 2) := SO/ (p,v1,- - s vn_2),
provided the latter exists. Consequently, its vanishing yields Theorem A (3.27). At height 3 and prime 5, we
further show in Theorem C (3.32) that the RHVC implies 3 = 0. This proof relies on the Miller-Ravenel-
Wilson results.

Remark (3.29 and 3.30). We learned from a referee that it is an open question whether V(h) exists when
h > 4 at any prime. By [20, Corollary 7.11], if X Ag )V ~ V for all X € x; and finite complexes V' of type
n, then kj;, = 0. Main Theorem A (3.27) can therefore be thought of as a first step towards showing kj, = 0
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when 2p — 1 = h?, since it implies X Ak ny V for any cofibers V' of vy-self maps of V(h —2). Our choices
of finite complexes are restricted to cofibers of the Smith-Toda complex V (h — 2), because we do not have
better Greek letter element computations beyond H°(M}! ) in [26] when h > 3.

0.4. Notations and Conventions. Throughout, we will let E} denote a fixed Morava E-theory based on
a height h formal group, typically the height h Honda formal group I'j. For a K (h)-local spectrum X, we
will write (E},).X for the completed Ej-homology of X. That is, we write

(Eh)*X = W*(LK(h)(Eh AN X))

We will also write X Ag ) Y for the K (h)-local smash product Ly (X AY).
Denote by W := WF» the ring of Witt vectors over F n. We will write S;, for the Morava stabilizer
group, i.e. the automorphisms of a I',, and we will write Gy, for the extended Morava stabilizer group.
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Goerss, Hans-Werner Henn, Guchuan Li, Doug Ravenel, and Vesna Stojanoska for helpful discussions related
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and the second author was at University of Illinois Urbana-Champaign as a visiting scholar. We would like
to thank both institutes for their hospitality and support.
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1. THE K (h)-LOCAL PICARD GROUP

1.1. Definitions. In chromatic homotopy theory, we study the stable homotopy category of spectra Sp via
the height filtration of the moduli stack of formal groups at each prime p. One such layer in this filtration is
the category of K(h)-local spectra Spy (), where K (h) is the Morava K-theory at h and prime p. Like Sp,
the category Spg (s also has a symmetric monoidal structure

For Sp, its Picard group is given by
Theorem 1.1 ([17, page 90]). The map Z — Pic(Sp),n — S™ is an isomorphism of groups.

The Picard group Pick n) for Spy ), however, is still not fully understood. Here we give a filtration on
Pick () via a sequence of algebraic detection maps ev;. The first fact is:
Theorem 1.2 ([17, Theorem 1.3]). The followings are equivalent:
® X € Spgy is invertible.
o (Ep)«(X) is an invertible graded (E}).-module.

As Ej, is even periodic, an invertible graded (E},).-module is either itself or its suspension. This yields
the zeroth detection map:

X2 (En)x(X), Pic(graded (E}).-modules) = Z/2.

€vp: PiCK(h)
Proposition 1.3. evq is a surjective group homomorphism.

Proof. We can check evg is a group homomorphism using the Kiinneth theorem. It is surjective since
evo(St) = m.(XE}) is concentrated in odd degrees. O
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Denote the kernel of ev( by Pic?((h). This is the group of invertible K (h)-local spectra whose Ej,-homology
is concentrated in even degrees. For any spectrum X, its Ej-homology is not only a graded (E},).-module,
but also a graded m.(Ep, A (n) En)-comodule. In the case when X € Pic(}((h), this graded comodule structure
is determined by (E4)o(X) as an ungraded mo(Ep, Agny En)-comodule. This gives rise to the first detection
map:

eviy: PlC?{(h) —>X’_>(E’L)O(X)

Pic((mo(En), mo(En Ak (n) En))-comodules).
To identify the target of evy, we use the following lemma.
Lemma 1.4 ([19]). There is an isomorphism of Hopf algebroids:
(mo(En), m0(En Ak (n) En)) = (mo(En), Map.(Gr; mo(Eh))),
where G, = Sy, x Gal(F,u /Fp) and Sy, is the automorphism group of the height-h Honda formal group.

It follows that a 7o (Ep Ak (n) En)-comodule M is equivalent to a mo (£} )-module together with a continuous
G-action such that the following diagram commutes for all g € Gp,: ([17, page 118])

mo(En) @ M 999, mo(Er) @ M
| |
M—7 M
The Picard group of such Gp-mo(E}p)-modules is computed by a continuous group cohomology of Gy,:
Proposition 1.5 ([17, Proposition 8.4]).
Pic(continuous Gp-mo(Ep)-modules) = H}(Gyp;mo(ER)™).
As a result, the first detection map is a group homomorphism:
(1.6) evy: Pic?((h) — HYN(Gp;mo(ER)X).
Definition 1.7. The Picard group of graded G-(E},).-modules is called the algebraic K (h)-local Picard
group, denoted by Pic%?h). The Picard group of ungraded Gp-mo(E},)-modules is denoted by Pic%?,’g.
Thus, by Proposition 1.5, we have
Picyfs) = H} (Gpsmo(En)™).
The first detection map ev; then extends to the full Picard group Picgp), which we will also denote by ev;.

Proposition 1.8. The K(h)-local Picard groups we have introduced so far are related by a map of short
exact sequences:

0 —— Picg ) — Picgpy —— Z/2 —— 0

J{ev 1 J{cv 1 ‘ ‘

w0, Pictl  —— Z/2 —— 0

0—— PicK(h) K(h)

Remark 1.9. It is known that the short exact sequences do not split at height h = 1 for all primes [17], and
at height 2 for p >3 [11].

Corollary 1.10. The two evy maps in the diagram above have isomorphic kernels and cokernels.

This corollary justifies the usage of ev; for both detection maps.
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1.2. Exotic Picard groups. Now the question turns to whether ev; is injective or surjective. The surjec-
tivity problem is hard and involves obstruction theory. In certain cases, we can show ev; is injective.

Definition 1.11. The exotic K (h)-local Picard group &y, is the kernel of evy in (1.6).
Theorem 1.12 (|17, Proposition 7.5]). The exotic Picard group kj vanishes when (p—1) t h and 2p—1 > h2.

The detection of elements in kyp, lies in the homotopy fixed point spectral sequence (HFPSS) to
compute the m.(X) for X € Spy(y):

(1.13) Byt = H3(Gp; (Ep)i(X)) = m_s (X))
For any X € kp, the Es-page of the HFPSS to compute its homotopy groups is isomorphic to as that for
S’%(h). The potential differences between the two spectral sequences are the higher differentials. We will
show that the higher differentials are necessarily zero under the assumption 2p — 1 > h? and (p — 1) { h. To
see this, we need the following basic facts about the HFPSS:
Lemma 1.14 (|9, Lemma 1.32],[12, Page 12|). For any Gp-mo(Ep)-module M, we have an isomorphism
HE(Gp; M) = HE(Sp,; M)GaL,
Lemma 1.15 (Sparseness, [12, Remark 1.4]). The continuous group cohomology HE(Sp;m:(Ep)) is zero
unless 2(p — 1) divides t.
Lemma 1.16 (Horizontal vanishing line, [12, Proposition 1.6]). The p-adic Lie group Sy, has cohomological
dimension h? if (p — 1) 1 h.

It follows that the HFPSS (1.13) has a horizontal vanishing line at s = h? when (p — 1) { h.
Z,, t=0

Lemma 1.17 (0-line, |9, Lemma 1.33]). H2(Gp;m(Epr)) = { 0. otherwise

Proof of Theorem 1.12. We need to show that when (p — 1) { h and h? < 2p — 1, a K(h)-local spectrum X
is weakly equivalent to S?((h) if there is a Gyp-equivariant isomorphism (Ep)«(X) = (Ep)«.

Under this assumption, HFPSS for X collapses at Es-page by sparseness (Lemma 1.15). As a result,
any unit [tx] € Eg’O(X) = Z, is a permanent cycle and induces a map S® — X. This map factors as
SO — S%(h) Xy X since X is K (h)-local. As vy : S?((h) — X induces an isomorphism on the Ea-page of the
HFPSS, it is a weak equivalence by [8, Theorem 5.3]. O

In the general case, the first possible non-trivial differential in (1.13) for X € &, is dap—1. Let’s consider
the possible dg,_1-differentials supported by Eg§(11(X) = EY°(X) =1Z,.

Construction 1.18 ([11, Construction 3.2]). Fix an Gj-equivariant isomorphism fX: (E},). — (Ep,)«(X)
and let tx = f*(1) € (E)o(X). The differential

d3y 1t By (X) — By~ 7 (X)

is determined by the image of tx. Define a homomorphism ¢~ via the following commutative diagram:

X
HY(Gimo(Ep)) —--2---3 H2=Y(Gpimapo(En))

(fﬂ{% %(fx)*

HO(Gi: (En)o(X)) 2275 HZ1 (G (B )apa( X))
(G (En)o : r; (En)2p—2

One can check that ¢~ (1) is independent of the choice of fX. We define the next detection map evy: rj, —
H2=1(Gp;map—2(Ep)) by setting eve(X) := ¢ (1).
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Proposition 1.19. The map eva: kj, — H2P~1(Gy;mop—2(E4)) is a group homomorphism.

Proof. It suffices to check eva(X Ak () Y) = eva(X) +evy(Y). This follows from the Kiinneth isomorphism
which is compatible with the Gy-actions:

(En)«(X Agn) Y) = (Ep)«X ®g,), (En)+Y.
This implies

Es (X Mg Y) = E>' (X Ay Y)
= By (X) @ g0 (s0) Ey'(Y)
= Eg})t—1(X) ®E§};‘LI(SO) ES};t—l(Y)-

Now by the multiplicative structure of the spectral sequence and the Leibniz rule, we have

d;;/yi(h)Y(LX A Ly) = dg;_l(Lx) Ry +ix X d%/p_l(by)
= eva(X Ag(n) Y) = ¢ =Y (1) = ¢ (1) + ¢¥ (1) = eva(X) + eva(Y). O

Proposition 1.20. The map evy: ki, — HZP71(Gp; map—2(E)) is injective when 4p—3 > h? and (p—1) 1 h.
In particular, it is injective when 2p — 1 = h2.

Proof. For any X € kereva, a unit [tx] in Eg’O(X ) does not support a dg,_;-differential. By Sparseness
(Lemma 1.15), the next possible non-trivial differential is dz, 5: Egzﬂ;g(X) — Ejg:g*‘lp*z()(). The target of
this differential is zero, since it is above the horizontal vanishing line at s = h? under our assumption. The
same argument shows [tx]| does not support any higher differentials and is thus a permanent cycle. The rest
of the proof is identical to that of Theorem 1.12. O

This finishes the first implication II = I in Section 0.2. The goal of this paper is to answer the following
question:

Question 1.21. Is k, = 0 when 2p — 1 = h2?

Proposition 1.20 implies this would be true if

H2 Y (G mop—2(En)) = HY (G map—a(En)) = 0.

1.3. A filtration on K (h)-local Picard groups. The main results of this paper do not depend on this
subsection. Following the construction above, one can define H;Ll) := ker evy and construct the next algebraic

detection map using the d4,_3-differential:

evsy: HS) — E§£_3’4p_4(50) = Eig:§’4p_4(50).
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Eventually, we get a descent filtration on Picg s (see [3, §3.3]):

N

(m) €Vim 42 2(m+1)(p—1)+1,2(m+1)(p—1)
Kh } EQm(p—l)Z—)i-Q 8
N
N
1 V3 4p—3,4p—4
(1.22) Ry — s By
N
Ko ——2y B3P = H207 (G map_a(En))
IN
Pich () ———— Pic(Gyp-mo(Ep)-modules) = H} (Gp;mo(Ep)™)
IN

Picy(ny ——— Pic(graded (Ej).-modules) = Z/2.
Each term in this tower is the kernel of the horizontal detection map right below it.

Remark 1.23. For each fixed p and h, (1.22) is a finite (hence Hausdorff) filtration on xj,. This is because
the HFPSS (1.13) for S?((h) has a horizontal vanishing line on the F,.-page when r is large enough by

[5, Theorem 2.3.9]. As a result, the target of ev,, will eventually be zero and /ﬁﬁlm) = mgmH) =

m > 0.

-- = 0 when

The right column in (1.22) is the O-stem of a spectral sequence (similar to the one found in [25, Theorem
3.2.1]) to compute the homotopy groups of the Picard spectrum picy ;) for Spg (. Indeed, mo (picK(h)) =
Picg(p). In a recent paper [13], Heard has proved the following:

Theorem 1.24 ([13, Example 6.18). There is a descent spectral sequence (DSS) for picy y that converges
when t — s > 0, whose Fa-page is:

0, t <0
st Z)/2, s=t=0; .
B2t = HZ(Gp;mo(ER)™), t=1; = mi—s (Plekeq) -

H(Gpimi-1(En)), t2>2,

Let’s analyze the —1,0, 1-columns on the Es-page of the descent spectral sequence Theorem 1.24, illus-
trated below in Adams grading. On this page of the spectral sequence:

° ES’O = H?(G,;Z/2) = Z/2. The non-zero element is a permanent cycle, since it represents S! in Picg (n)-
So E%0 = E9° = 7Z/2.
° Eg e HY(Gp;mo(ER)X) = Z, . This term does not support any higher differential, because they represent

X
permanent cycles Z5 C 7o (S?((h)) =m (PiCK(h))~

o Ey' = HY(Gp;mo(ER)*) = Pic%’gi’g. For degree reasons, this term cannot be hit by a differential. But it
may support one. As a result, EL! is a subgroup of H!(Gp;mo(ER)>).

e By Lemma 1.15, the next possibly nonzero terms in the —1,0, 1-stems are when ¢ = 2p — 1. In the O-
stem, it is E2P~ 2P = H2P-1(Gy; map—2(Er)). The only possible differential that could hit this term is
dop—1: Eg’l — Egp ~122=1 Byt since elements in Eg 1 = Z; are all permanent cycles, this differential is

zero. On the other hand, there is room for E;p_l’gp_l to support a differential. As a result, E2P~12P=1 ig

a subgroup of E3*~ P! = H2~1(G,; map_2(Ep)).
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4p — 2| H=%(Gp, map—a(En)) 0
4p -3 0 "\ HEP=3 (G, Tap-a(En)) 0
AN =
NN A7 0N HP~ (G, Tap-a(En))
p+1 RN
P+ 0 . N N d2p—l? 0
2p ng(Ghaﬂ—2p72(Eh)) \\\ \\\ 0 \\\
F'\ ‘\ \\ \\
2p—1 0 "\ HZPH (G, mop2(En)) N0
L \ 0 HZP=?(Gp, m2p—2(En))
l{ - ‘? \\\ \\
3 0 a2p—1 . ' . 0
Mo * d4p73?
2| H2(Gp;mo(ER)X) N0
1 ? HY(Gp;mo(ER)™) 0
s=0 0 Z/2 Zx
t — 8 = —]_ O ]‘

Now we can compare the FE..-page of the descent spectral spectral sequence for Picard spaces in Theorem 1.24
and the filtration in (1.22). Notice when ¢t > 2, the E;’t—term in Theorem 1.24 is the the same as E;’t_l in
HFPSS (1.13) for X = S?((h). The Picard group Picg ) = mo (picK(h)) is an extension of the terms E2° in
Theorem 1.24. More precisely, we have a descending filtration Picg () = FODF'DF?2DF3D..., where
the layers are related by short exact sequences:

00— Fstl Fs E5 0, s>0.

oo

As is mentioned in Remark 1.23, this is essentially a finite filtration since E3® = 0 when s > 0. In this
filtration, we have F* = Picj(,) and F? = F® = ... = F?~1 — g, is the exotic K (h)-local Picard group.
The ev-maps can then be defined as composite maps:

0,0 1,1
EY By

7 ]

FO = Picgny —2 Ey° F' = Pick) — By



EXOTIC PICARD GROUPS AND CHROMATIC VANISHING VIA THE GROSS-HOPKINS DUALITY 11

2p—1,2p—1 4p—3,4p—3
E2p-12p EX

oap—1 _ eva | p2p—1.2p—1 4p—3 _ (1) _evs  dp-34p-3
Fw-l—yp, 2, g2 N O

For evs, the only differential that can hit E;p_3’4p_3 is dap—1. So E§£_3’4p_3 cannot be hit by a differential,
4p—3,4p—3
2p :

From the factorizations above, we can see evy; and evy are surjective precisely when E;’l = Eig} and
Eap= b2l — p20-1.2p-1  This will be the case if the targets of the potential differentials supported at Fj"*

and E37~ 171 are above the horizontal vanishing line on the Ey-page.

but it may support one. As a result, E2~34=3 is a subgroup of E.

Proposition 1.25. Suppose (p — 1) t h. Theorem 1.2/ implies:

(1) [28, Remark 2.6] The map evy: Pic(])((h) — Pic%?,’g = HYGp;mo(ER)*) is an isomorphism when
2p — 1 > h? and is a surjection when 2p — 1 = h2.

(2) The map eva: kp — HZP™Y(Gp;map—o(Ey)) is an isomorphism when 4p — 3 > h? and is a surjection
when 4p — 3 = h2.

Proof. The injectivity parts are from Theorem 1.12 and Proposition 1.20, respectively.
By sparseness (Lemma 1.15), the first possible non-trivial differentials supported at the two terms are

dop1: By — B3P~ = H2P(Gis map2(En)),
d2p_11 E;P—LQp—l . E;p—2,4p—3 _ Hélp_Q(Gh;ﬂ'4p—4(Eh))-

Under the assumptions, the targets of the two dg,—1-differentials are above the horizontal vanishing line at
5 = h? in the respective cases. As a result, their targets vanish and Ey' = EL!, EP~ 1271 — p2p-12p-1
This proves the surjectivity part. O

Remark 1.26. While the proof of Proposition 1.25 depends on Theorem 1.24, the statements have been
verified independent of the descent spectral sequence in many cases, sometimes even without the assumption
that (p — 1) 1 h:
(1) The map evy is known to be surjective when

e h=1 [17, Corollary 2.6 for p > 2, Lemma 3.4 for p =2].

e h=2p>2[11, Theorem 2.9].

e 2(p—1) > h% + h for general h and p [28, Theorem 2.5].

It is an open question whether the map evy is surjective or not in the h = p = 2 case.
(2) The map evs is known to be an isomorphism when

e h=1,p=2 [11, Remark 3.3].

e h=2,p=23 [11, Theorem 3.4].

Remark 1.27. The filtration (1.22) for ko at prime 2 has been completed studied in [3]. In particular, they

showed that the detection maps
evs: /@él) — E2’4 s not surjective;
evy: nf) — Eg’ﬁ 15 1njective.
See [3, Theorem 12.30] for the full details.
We conclude this subsection by noting Theorem 1.24 implies the following:

Corollary 1.28. When 2p — 1 = h?, then the followings are equivalent:



12 DOMINIC LEON CULVER AND NINGCHUAN ZHANG

(1) evy: Picgpy — Pic%?h) is an isomorphism.

(2) evy: Pic%(h) — Pic%?,’g is an isomorphism.

(3) Kp :=kerevy = 0.

(4) HZP (G mop—(En)) = HY (G map-2(Bn)) = 0.

Proof. (1) <= (2) follows from Corollary 1.10. By Proposition 1.25, ev; is surjective and evs is an isomor-
phism when 2p — 1 = h2. This implies (2) <= (3) and (3) <= (4), respectively. O
2. DuALITY
In Proposition 1.20, we have established that there is an isomorphism

evo: Ky — HZP ™G map—o(Eh))

under the conditions that 4p — 3 > A% and h is not divisible by p — 1. In particular, this is true when
2p — 1 = h2. In light of this injection, we are thus interested in determining the group H" (Gp; Top—2(Ep)).
The purpose of this section is reduce this computation using duality argument. We will prove the successive
implications II <= III <= IV <= V mentioned in Section 0.2:

Proposition 2.1. Suppose (p — 1) 1 h.

(1) (Proposition 2.3) H" (Gp; map_2(En)) = HY (G map_2(En)/p).-
(2) (Proposition 2.27) For a general t € Z, we have

\
Hilz(Gh;Trt(Eh)/p) = |: colim HS (Gh; 7T2h7tpr‘jlh‘ (Eh)/ J>:| ’

peJ<mo(ER)

where J < wo(ER) ranges through all open invariant ideals containing p and N is the smallest integer
N

such that v} is invariant mod J. The colimit system is described in Definition 2.19.

2.1. Reduction to mod-p coefficients. The purpose of this subsection is to prove (1) in Proposition 2.1.
This is the second step III = II in Section 0.2.

Lemma 2.2 (Bounded torsion, [12, page 8]). The cohomology group H} (Gp;map—2(E})) is p-torsion.
Proposition 2.3. If (p — 1) { h, then we have an isomorphism:
H (G map—2(En)) — HY (Gimap—2(En)/p).-

Proof. Let M = mo,_o(E}). There is a short exact sequence of Gp-mo(Ej)-modules

(2.4) 0 ML= M M/p — 0.
This short exact sequence induces a long exact sequence in cohomology
(2.5) oo HY (G M) B HE (G M) — HY (G M/p) 5 HM (G M) — - -

By Lemma 2.2, all the multiplication-by-p maps in (2.5) are zero. Since p—1 does not divide h, ¢d,(G) = h?
by Lemma 1.16. As a result, the cohomology groups H?(Gp;—) = 0 when s > h?. This means the long
exact sequence (2.5) ends with

0— H" (Gp; M) = H" (Gp; M/p) = 0

and we get the desired isomorphism. O
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Remark 2.6. Let M = ma,_2(E}) as above. When s =0, we have 6: HY(Gy; M /p) — HY(Gp; M). When
1< s < h?—1, there is a short ezact sequence instead:

0— HE(Gas M) = H3(Gni M/p) = H:* (G M) = 0.
Since all three groups above are Fp-vector spaces, the short exact sequence splits (non-canonically). As a
result, we have HS(Gp; M/p) =2 HS(Gp; M) @ HETYH(Gp; M) for 1 < s < h?—1.
Remark 2.7. The claims above hold for any M = 7,(E},), where t = 2m(p — 1) and p{ m.

2.2. Poincaré duality. The Morava stabilizer group Gy, is not just a profinite group, but is also a compact
p-adic Lie group of dimension h%. This imposes a great deal of more structures on its (co-)homology. In this
section, we review the theory of Poincaré duality for p-adic analytic groups following [35]. Recall that for a
property P, a profinite group G is said to be virtually P if there is an open normal subgroup of G which is
P. A profinite group G has Poincaré duality of dimension d if

H{(G,Z,[G]) = Z,
as abelian groups ([35, (4.4.1)]).

Theorem 2.8 (Lazard, [35, Theorem 5.1.9]). Let G be a compact p-adic analytic group. Then G is a virtual
Poincaré duality group of dimension d = dimG.

In the case of the Morava stabilizer group, Sy, is a virtual Poincaré duality group of dimension h%. When
(p — 1) 1 h, then Sj, contains no p-torsion subgroups. In fact, its maximal finite subgroup is cyclic of order
p" — 1 [1, Table 5.3.1]. Under this assumption, S, is a Poincaré duality group of dimension h? (as opposed
to a virtual one).

Now G being a profinite group having Poincaré duality of dimension n implies that there is a dualizing
module D(G) such that there are natural isomorphisms [35, Theorem 4.4.3] for continuous G-modules M
that are inverse limits of discrete G-modules:

HY ™M (G M) — HE(G; D(G)z, M),
and for discrete p-torsion G-modules
nr(G; M) — HY(G;homz, (Dy(G), M)).
The dualizing module D(G) is given by
D(G) = H(G; Z,[G]).

Note that, as the coefficients Z,[G] has a left G-action, the dualizing module D(G) has a corresponding
right G-action. See [6, §4.5] for further details.

In the case when G is the Morava Stabilizer group Gy, Strickland has calculated the dualizing module
D(Gy,) along with its Gp-action.

Theorem 2.9 (Strickland, [34]). As a Gp-module, o Gu;Z,|Gr]) = Z, has the trivial Gy -action.
c D p

Corollary 2.10. Assume (p — 1) { h. The dualizing module I, for Gy, is ZIY = Q,/Z, with the trivial
Gy -action. Hence, we have a duality

HY =*(Gps M) = HE(Gyy; M)

that is natural in p-profinite continuous Gp-modules M.



14 DOMINIC LEON CULVER AND NINGCHUAN ZHANG

Definition 2.11. Write (—)Y for hom.(M, I,(G)). If M has a continuous G-action, we endow MY with a
left G-action via

(9- f)(x) = flg~ ).
In the case of G = Gy, Corollary 2.10 implies M " is the continuous Pontryagin dual M = hom.(M, Z/p>).

As usual, this also induces a version of Poincaré duality for p-profinite G-modules M in purely cohomo-
logical terms when (p — 1) { h: ([6, Theorem 4.26])

(2.12) HY (G M) = HE (G MY)Y.

Corollary 2.13. Assume (p — 1)1 h. We have the following duality:

(214)  HI(Spsm(Ey)) 2 Ho(Spsm(Ey)), HY (S me(En) /p) = Ho(Sn; me(En) /p);
(215)  HY(Spm(E) = HYSwm(By)Y)Y,  HY (Spim(En)/p) = HO(Sh: (m(Ey)/p)")".

Remark 2.16. Using the duality (2.14), we can give another proof of Proposition 2.8 by showing:

(1) The group homology H.(Gn;Tap—2(En)) is p-torsion. This is because the orbit of the action by Z,° C S,
is already p-torsion.

(2) Apply H, to the short exact sequence (2.4) to get the a long exact sequence like (2.5). Equivalently, we
are essentially applying (2.14) to every term in (2.5).

2.3. Gross-Hopkins duality. Now we want to use (2.15) to compute Hfz(Gh;M/p) where M = E;. To
do so, we have to identify the Gp-equivariant Pontryagin dual of M. This is realized by Gross-Hopkins
duality.

Remark 2.17. For the purpose of Question 1.21, we only need to study the case when t = 2p — 2. Later for
the Vanishing Conjecture, we also need the t = 0 case. So we will give a uniform treatment for all t € Z in
the remainder of this section.

We remind the reader the definition of the determinant twist. The group Sy can be realized as a subgroup
of GLy,(W). Thus, taking the determinant, we have a map

det: S, - WX,
It turns out that this map actually factors through Z;. We extend this to the extended Morava stabilizer
group via the composite
det: Gy =8, x Gal —— Z x Gal 222, 7x
This results in a Gy-action on Z,,.

Definition 2.18. The Gy-action on Z, above is denoted by Z,(det). Given a Morava module M we write
M {det) for the Morava module

M (det) = M ®z, Z,(det)
with the diagonal Gp-action. We refer to M (det) as the determinant twist of M.

Definition 2.19. We now describe the quotient mod m™. Let M be a Gy-mo(F})-module, we define

2.20 M/m®> := colim M/J,
( ) / JS]ﬂ'(](Eh,) /

where J ranges over all open invariant ideals of my(E}p). Suppose J C J’ is an inclusion of open invariant
ideals of mg(E}). Then we have a Gp-equivariant isomorphism:

M/J 2{[mle M/J|x [m]=0,Vz e J}
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This gives the structure map M/J' — M/J in the colimit system. Similarly, in the mod-p case, we have

M/(p,ul®, - ,up° )= colim M/J,
/(p,uy he1) e Ao (En) /

where J ranges over all invariant ideals of 7y(E},) containing p.

Theorem 2.21 (Gross-Hopkins). Let m < mg(E},) be the maximal ideal.

(1) [34] There is a Gp,-equivariant perfect pairing of Gp-mo(E},)-modules:
p: mo(En)/m™ @y (i) " — Qp/Zyp,

where Q"1 is the top exterior power of the module of continuous Kihler differentials for mo(E},) relative
to W.

(2) [15] The module Q"1 is Gy,-equivariantly equivalent to the bundle w®"(det) over the Lubin-Tate defor-
mation space, where w = wo(E}y) is the sheaf of invariant of differentials and {det) is the determinant
twist.

Corollary 2.22 (See [34, Proposition 19]). The Gy, -equivariant Pontryagin dual of m¢(Ey) is
(m:(En))” 2 (man—i(En))(det) /m>.
Proof. The Gp-equivariant perfect pairing p in Theorem 2.21 can be rewritten as:
p: wo(Ep) /M @ry(m,) 1 2 1(En) ©ro(my) T—t(Bn) /M Oy, Q"1 — Qp/Zy.

This implies the Gp-equivariant Pontryagin dual of m(Ejy) is m_(Er)/m™ @, (E,) Q"1 which is G-
equivariantly isomorphic to (man—¢(ER))(det)/m> by part (2) of Theorem 2.21. O

Applying (2.12), we have proved:
(2.23) H! (G mo(En)) = HY (G (man—1(En))(det) /m™) "

The formula holds with m(E}p) replaced by m(Ep)/p. This yields the third implication IV = III in
Section 0.2 when ¢ = 2p — 2. Notice (2.20) is a filtered colimit, and the group Gy, is topologically finitely
generated (since it is a finite dimensional p-adic Lie group), we have

Proposition 2.24. There are isomorphisms:
3()411Ean3(Gh;M/J) S HY (G M/m™),
NLh

colim H((Gp; M/J) —=H(Gp; M/(p,ui®,- -+ uisy)).
pEJLE),

Now set M = Esj,_op12(det). In order to prove
H((:)(Gfu M/(pa u(1>07 e )uzo—l))v = 0)

it suffices to show HO(Gy; M/J) = 0 for a cofinal system of invariant ideals J < 7o (E}) containing p. To do
that, we need to identify the determinant twist mo(FE}j){det) mod p. The following theorem was originally
stated in [16, Corollary 7] and a nice proof appears in [12, Theorem 1.32]:

Theorem 2.25 (Gross-Hopkins). When p > 2, there is an isomorphism of Gp-mo(Ep)-modules:

lim pN‘vh‘
mo(ER){det)/p = mo <EN—><><> Pt Eh> /.
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N
More precisely, let J < mo(E}) be an open invariant ideal containing p, such that v is invariant modulo
J, then
. N\’u |
o(En){det)/J = m <z Eh> /J.

/

Remark 2.26. Suppose UZN is also invariant mod J for some N’ < N. Then

N Joy |
7r0(Eh)<det>/J = 7 (Z Pflh Eh> /J
This is compatible with the statement in Theorem 2.25. This is because

PN Jon| _ N val

b1 = po1 medplud

N/
P |vpl

N v
= (El’lEh> /J = (E ”lhlEh> /J.

N
For each open invariant ideal .J, there is a smallest N such that v} is invariant mod J. It follows from
this proposition that

M/ J = map—2pt2(Ep){det)/J = Moh—2p2— 2] (Eh)/ J.

Combining all the duality arguments in Corollary 2.13 and Corollary 2.22 with the identification of the
determinant twist mo(Ep)(det) mod p in Theorem 2.25, we have proved part (2) in Proposition 2.1.

Proposition 2.27. Suppose (p — 1)1 h. Then there is an isomorphism:

GallV
HY (Gns mi(En) /p) = [ colim_ Hy <Sh§772htpthl(Eh)/J) ] ;

p€Jdmo(En)

where J < mo(E},) ranges through all opening invariant ideals containing p and N is the smallest integer

such that vz is invariant mod J.

From this, we get the implication V = IV in Section 0.2. Consequently, Question 1.21 now reduces to
checking

(2.28) H? (Gh; Mo apa— 2] (En) / J> =0

N
for a cofinal system of invariant ideals J containing p, where N is the smallest number such that v} is
invariant mod J.

2.4. The Chromatic Vanishing Conjecture. A closely related computation is the Chromatic Vanishing
Conjecture. Consider the natural inclusion ¢ : W < 7o(E},), which is Gp-equivariant. Explicit computations
at height 2 in [2, 5,11, 14, 23, 32] show that this inclusion induces isomorphisms in group cohomology of
G, for all primes and degrees. At h = p = 2, this isomorphism plays an essential role in disproving and
completely understanding the Chromatic Splitting Conjecture by Beaudry-Goerss-Henn in [5]. Observing this
phenomenon, Hans-Werner Henn first raised the question if there is a conceptual reason for the isomorphisms.
This leads to a more general conjecture:

Conjecture 2.29 (Chromatic Vanishing Conjecture, [4, Conjecture 1.1], [5, Conjecture 1.1.4]). The follow-
ings are true for all heights h, primes p, and (co)-homological degrees s:
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(1) (Integral) The continuous group cohomology and homology of coker(¢) vanish so that
te: HS(Gpy; W) — HE(Gp;mo(En)), te: Hi(Gp; W) = Hy(Gp;mo(Ep)).
(2) (Reduced) The continuous group cohomology and homology of coker(: ® W /p) vanish so that
Lt H(Gp; Fp) — HE(Gp;mo(EnR)/p), ti: Ho(Gp; Fp) — Ho(Gp;mo(En)/p).
Remark 2.30 ([4, page 692]).

(1) By Corollary 2.10 and (2.12), the cohomological and homological versions of Conjecture 2.29 are equiv-
alent when (p — 1) 1 h.

(2) The reduced version of conjecture implies the integral version by the Five Lemma and a lim! ezact
sequence.

(3) The conjecture is a tautology when h =1, since Z acts on mo(E1) = Z,, trivially.

(4) At h =2, the conjecture has been proved for all primes.

(5) The proof for s =0 at all heights can be found in [9, Lemma 1.33].

Remark 2.31 (Hopkins, [7, Theorem 8.1], [18, §5.3], [24] for p > 5; Karamanov [22] for p = 3). When h =2
and p > 3, the additive Vanishing Conjecture in cohomological degree 1 can be used to show a multiplicative
version of the conjecture:

HYN G, WX) = HY(Gy; mo(ER)X).

From there, we can compute the algebraic K (2)-local Picard groups when p > 3:

Picily) = Z, & Z, & Z/(p” — 1).

Combined with Proposition 1.20 and Remark 1.26, we know Pic%"é) & Picg(o) & Zp © Zy, © Z/|va] when
p > 5. The group is topologically generated by Sll(@) and S?((Q) (det). Those two generators are related by

Theorem 2.25 and the fact that evy: Picg (o) — Pic%?z) s an isomorphism when p > 5:

S%(det) Az V(1) = S2PHD Ay V(1).

The case of Conjecture 2.29 relevant to Question 1.21 is if the following holds when (p — 1) 1 h:
Ly © Fp = Ho(Gh;Fp) ;> Ho(Gh;Wo(Eh)/p)
= 1.0 Fy = H (G Fy) =5 HY (G; mo(En) /p).-

As this is the reduced version of Conjecture 2.29 in homological degree 0, we will call it the Reduced
Homological Vanishing Conjecture (RHVC). It follows immediately that
(RHVC) Ho(Gp;mo(En)/p) = Ho(Gp; Fpn) 2 Fp.

This is the formula we want to prove. Setting ¢ = 0 in Proposition 2.27, we get an isomorphism when
(=1 1th:

p—1

\%
Hy (Gh;ﬂo(Eh)/P)g[ colim  Hy (Gh;WthNm(Eh)/J)] :

peJ Ao (En)
As a result, to prove (RHVC), it suffices to show that

(2.32) 12 (G, (B) [ 1) =P,

N
for a cofinal system of invariant ideals J containing p, where N is the smallest number such that v} is
invariant mod J, and that the structure maps in the colimit are non-zero.
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3. GREEK LETTER ELEMENTS

3.1. The change of rings theorem. In this section we will prove the main theorems. The first step is
to translate (2.28) and (2.32) to Greek letter element computations in chromatic homotopy theory. We
refer readers to [26, §1 and §3] and [31, §5.1] for an introduction. The transition from Gp-7o(E},)-modules
to BP,BP-comodules is achieved by the following theorem:

Theorem 3.1 (Morava’s Change of Rings Theorem, [10, Theorem 6.5]). Let M be a BP,BP-comodule such
that I) M = 0 for some n, where I, = (p,u1,--- ,up—1). Then there is a natural isomorphism:

Tyt Ext;;,*BP(BP*, v}:lM) — H:(Gp; 7 (En) @pp, M),
where r, is induced by a ring homomorphism r: BP, — 7. (E}) defined below:
wul™P, i<k
r) =9 W', i=n
0, i> h.

Let p € J < mp(ER) be an open invariant ideal containing p. For our computation, M is a BP,BP-
comodule such that

To(En) ®pp, M = mo(En)/J.
Lemma 3.2. When J = (p,u]",- - ,uibh:f), we can take M := BP,/J', where J' = (p,vl*, - ,vi":ll).

The implication VI = V in Section 0.2 then follows from Theorem 3.1. We now need to compute
Ext%gi,*BP(BP*, v, ' BP,/J") for a family of invariant ideals J’ and certain values of ¢.

3.2. Families of Greek letter elements. From now on, for a graded BP, BP-comodule M, we will write

H"Y(M) := Ext %5 pp(BP., M).

Suppose J' = (p, v{1,~-~ ,vfj’:ll) for some j; > 0. The right hand term can be more explicitly identified as
the submodule of primitive elements x of degree ¢ in the comodule Mll"”1 = U;IBP*/(p, v, ..., 0% ), such

that vf:z: =0 for all 1 <i < h — 1. This establishes the final implication VII = VI in Section 0.2.
As a result, we need to compute H®? (M{“l). The computation of this Ext-group in general heights are
beyond our reach, but we can at least place elements within three distinct families.

Proposition 3.3. Let M* = v;lBP*/(p, U1y s Va1, U st 5 V). Then for 0 < m < h, the
cohomology group HO’*(M,’I”_m) is generated as an Fp-vector space by elements of the following families:

I — Y% where (s,p) =1.

pU1"Vh—1

dn_1y - . . .
1I. ﬁ, where (p, Ufl, <L) is an dnvariant ideal and dy = - -+ = dp—pp—1 = 1.
PUy U
Y, dh— X . o ‘ _
[T —=f—, where (p, Ufl,'-- ,vhill,yfnyN) is an invariant ideal with dy = -+ =dp_py—1 =1, YN =

PULT Vg

Ym—1,N mod (P» (% P ,Uh—m); N Z 1 and (S,p) =1.

Here, the degrees of elements are given by:

s
ym,N
dh—1

h—1
—ImN N ] = 3 difu.
pvy Uy i=1
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Proof. We prove this by induction on m. By [31, Proposition 5.1.12], the zeroth cohomology of M,? =

v,:lBP* /I, is Fp[vfl]. Identifying the M C M{“l as a subcomodule consisting of elements that are
N
v;-torsion for all 1 <¢ < h — 1, we have proved the m = 0 case where yo ny = vﬁ .

The m = 1 case was proved by Miller-Ravenel-Wilson in [26, Theorem 5.10] (see full statements in
Theorem 3.17 and Theorem 3.22). Their inductive step from m = 0 to m = 1 also applies to the m > 1 case,
as summarized below. Recall that there are short exact sequences of BP, B P-comodules

Vh—m—
0— M, — Mt e a0,

h—m—1 m

which leads to the vp_.,,_1-Bockstein spectral sequence

H* (M} ) @ Fplvn—m—1]/ (03 py) = H (M),

Alternatively, we can consider the long exact sequence of cohomology groups
1 “Vh—m—1 1 §
0— H® (ML) — H® (M, ) ——— H* (M7, ) = H' (Mj,,) = -+

As a result, H° (M,'l”_m) is the subgroup of vj,_,,1-torsion elements in H° (M,Tjﬁfl) On the other hand,
the Bockstein spectral sequence implies for any element z € H° (M ;’L_ﬁ_l), there is a k such that Ulﬁ,m 1T €
HO (M,T_m) We can therefore obtain an additive basis for H° (M,T_ti_l) from that for H° (M,’L”_m) by taking
their quotients of powers of vp_p,41.

Let [z] € HO (M;""} ). Tt is can be divided by vj_pq1 in HO (M) ) iff §([2]) = [0] in the long exact
sequence above. Pick a representative cocycle x for [x]. From the definition of the connecting homomor-
phism in long exact sequence, we know §([z]) is represented by the cocycle d(—=—), where d is the cobar

Vh—m-—1

differential. This cocycle being zero in H* (M, ) means that d( o——) = d(e) for some correcting term

ee M™ . Nowset 2’ =2 —vp_pm_1-c. Then 2’ =2 mod vp_,—1 and 2’ can be divided by vp_p,—1 in

0 +1
H (Mi:n—m—l)
Then the inductive hypothesis says H° (M s m) is generated by the three family of elements {pvl"ﬁ} U

dp—1 dq dp—1
"‘1)’1_1 pUl ""l)h_1

{pvdl L } U { Yn.N } Apply the procedure above to those generators [x] until §([x]/vF_, ) #
1

[0] € H' (M}™ ), we obtain an additive basis for H° (M, ,ﬁﬁfl). It remains to check the new basis obtained
from Families I and II generators in H° (M e m) have the desired forms. For Family II, the claim follows
from the cobar differential d(1) = 0.

For Family I, we can compute the cobar differential using [31, (6.1.13)]

—m—1

s—1 ph
S S o
5( v ) —d< vp ) L
= 5 = .
pbv1: - Vh—m—-1Vh—m " Vh—-1 pvr-- Y,y 1Vh—m " Uh—1 pv1 - VUph—1

This is a non-zero cocycle in H*(M;™ ) by [31, Theorem 6.5.12].% As a result, the zero cocycle [Ui’l_l}

pv1---Up

is not vp_m,—_1-divisible in H° (M ;le;ifl)' This proves the form of Family I elements. [l

Remark 3.4. To get a full account of H 0(Mlh_l) using the method above, we will need to have knowledge
of HO(M»~2) and H'(M}~?). This in terms requires the knowledge of of HO(MI=3), H?(M}~3), and
H3(M!=3). In the end, we will need to know H*(M?) for 0 < * < h — 1 to compute HO(M}~"). These
groups are only the inputs of the Bockstein spectral sequences. We still need to compute the cobar differentials

J
2Note that the hi,;j in the cited theorem is represented by the cocycle tf .
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to determine the additive bases at each step. This is why getting an additive basis for H O(Mlhfl) is out of
reach using the current technology.

One particular technical point in this computation is to find the correcting terms ¢ in the proof above.
Without them, Baird’s Lemma 3.8 would have given us the full basis. For a particular computation where
one has to add correcting terms, a classic example arises from the v;-Bockstein spectral sequence

H*(M3) ® Fy[v1]/(v5°) = H*(M)

for primes p > 5. For example, as shown in [31] and [26] (cf. [7] for another account) the class UE’; -7 in
pvy

the Ej-page of the v1-BSS is a permanent cycle and so detects a class in H%(M}). However, the element it
detects is
2

2
D p”—p+1 -
) Vs Uy

P2+l 2
puy pvy pu1

IJ,UP
3 e M.

We now analyze degrees of elements in the three families in HO(M}'~') and study the degrees of cor-
responding elements in H h2(Gh;7T* (Ep)) under duality. In Family I, the degrees of elements are given
by:

h—1

v
= sl|op| — Z |v;| = s|op| +2h — p|hl
i=1

S
Uh

3.5 —
( ) pu1 - Vp—1

Proposition 3.6. Let J < wo(E},) be an open invariant ideal containing p, such that ”UZN 1s invariant modulo
J. Then the Family I element pvlvﬁ determines a copy of F,, in HY (G mi(Ey)/J) via Gross-Hopkins
duality Proposition 2.27 and the change-of-rings Theorem 3.1, where

N
(3.7) =- <s+pp_ 1 > lop|  mod pN|vy|.

In particular,

e Elements in Family I contribute to HY (G (Ey)/p) only when |vy| divides t.
o Family I elements determine a copy of Fp, in HfQ (Gp;mo(En)/p).

Proof. By Proposition 2.27 and Theorem 3.1, we have isomorphisms

\%
12 @B )= (12 (G B, i /7))

pN

\%
s (ot o))

where J' < BP, is an invariant ideal corresponding to J as in Lemma 3.2. By construction, elements in
Family I are in H O7”“(M1h_1 /J’) for all J’. To prove the claim, we need to compare the degrees of Family

I elements (3.5) and the target degree 2h — t — % above. Notice the BP, BP-comodule M'™1/.J" is
p |up,|-periodic by assumption. Solving for ¢ in the residue equation:

||

™ol

2h —t — mod p |up|,
D—

= s|op| +2h —
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we obtain the congruence relation for ¢ in (3.7). In particular, the number ¢ is necessarily divisible by |vy].
Solving for s when ¢ = 0, we obtain the Famliy I element

mpN =2 _11
v v, P _ N gl _
h h c HO,Q}L — (M{'L 1)
pv1 - Vh—1

that contributes to a copy of F,, C Hfz(Gh;wo(Eh)/J) for some m. The claims about Hi’z (Gp;m(En)/p)
then follows by passing to the colimit. O

It follows that we can prove (2.28) and (2.32) by showing elements in Families IT and IIT do not contribute
to HfZ (Gp;mo(Ep)/J) and Ho(Gp; map—2(Ey)/J) for any open invariant ideal J containing p.

Now suppose an element ———— in Family II determines a non-zero element in H, 22 (Gp;m(EpR)/J),

7 1.,
PUyT Uy g

N
where UZ is invariant modulo J. Then we have

h—1 pN‘Uh‘
- g di|vi|52h—71—t mod p |y,
: pP—
i=1

h—1 pN‘Uhl
= t=2h d;i|v;| —
+ E |v;] b1

i=1

mod p™ |vy|.

To estimate the bounds for ¢, we use the following lemma.

Lemma 3.8 (Baird, [26, Lemma 7.6]). Let s1,...,S, be a sequence of positive integers, and let p® be the
largest power of p dividing s;. Then the sequence

S1 S
D,V yee s U

is an invariant ideal if and only if s; < p®+1 for 1 <i < mn.

In our case s, = p%, so the largest possible values of d; is when d; = dy = --- = dj_1 = p~. The smallest
possible value is when all the d;’s are 1. From this we get:

_ Y =Dl

(3.9) p—

<t <2h(1—p") mod pN|upl.

Thus we have proved the following result:

Proposition 3.10. FElements in Family II contribute to Hfz(Gh;m(Eh)/J) via Gross-Hopkins duality
N

Proposition 2.27 and the change-of-rings Theorem 3.1 only when t satisfies (3.9), where v} is invariant
modulo J.

Corollary 3.11. Elements in Family II do not contribute to HfQ(Gh; mo(Ep)/p) or Hfz(Gh; mop—2(En)/p).

Proof. This is because the residue class of ¢ = 0 or 2p — 2 never falls into the bounds in (3.9). O

Now it remains to analyze elements in Family III. When h = 2, this was computed by Miller-Ravenel-
Wilson in [26]. In the next subsection, we will study the implications of their computations. Nevertheless, we
can get some general bounds for the d;’s that would imply the RHVC and vanishing of x;, when 2p —1 = h2.

Proposition 3.12.
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(1) Elements in Family III do not contribute through Gross-Hopkins duality and the change-of-rings theorem

to Hch2 (Gn;mo(En)/p) if for all invariant ideals of the form J = (p,vi*, - 7vg’i’117yfl7N), we have
(3.13) Zd o] < 2 ‘”h| 2h.
(2) Similarly, these elements do not contribute through Gross-Hopkins duality and the change-of-rings the-
orem to H" (Gy; Top—2(En)/p) if for all invariant ideals of the form (p,v®,--- UZ“ 1> Ynn)s we have
(3.14) Zd| Z|< ‘”h| —2h+2p—2.
Proof. Similar to the Family II cases, suppose an element - flyh Nih : in Family III corresponds to non-zero

element in H"* (Gy; m(Ey)/J), where vﬁN is invariant modulo J. Then we have

h—1

vp
slyn,n| — Zd\ vi| = 2h — pp il 1| t mod p” v,
i=1

h—1 pN"Uh|

i=1

mod p” |vp|.

We want to show ¢ cannot be congruent to 0 or 2p — 2 from this residue equation. Similar to the Family II
case, we have d; > 1. From this, we get the same lower bound for ¢ as in (3.9):

17N
t>2h+Z|vz|* plol_ Lol

The right hand side of this inequality is greater than both —p™|v| and —p® |vj,| +2p — 2. The bounds (3.13)
imply ¢ < 0 in the residue equation. The lower and upper bounds together show that ¢ # 0 in the residue
equation. Similarly, we can show the other bound (3.14) implies ¢ # 2p — 2 in the residue equation. O

The analysis above yields:

Proposition 3.15.

(1) Suppose p— 1+t h. If the bounds (3.13) hold, then the RHVC is true.
(2) Suppose 2p —1 = h2. If the bounds (3.14) hold, then ry = 0. In particular, the first bounds (3.13) imply
both the RHVC and kj, = 0 in this case.

Proof. In Proposition 2.27, we showed there is an isomorphism of groups using the duality theorems:

\%
2
HY (Gp;m(En)/p) %pech}gﬁlEh)Ho (Gh;w%_t_ PNl (Eh)/ J) ,

N
where J < mo(E},) ranges through all open invariant ideals containing p and v}  is invariant mod J. Recall:

(1) Combining the Poincaré duality between homology and cohomology (2.14) and the isomorphism above,
we proved in (2.32) the RHVC reduces to the computation:

H? (Gh; Ty 2Nl (Eh)/ J) =F,.
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(2) By Proposition 1.20, kp, injects into H?Q (Gp;m2p—2(Er)) when 2p — 1 = h2. The latter is isomorphic
to HfQ(Gh; map—2(Er)/p) by Proposition 2.3. In (2.32), we concluded the vanishing of x; would follow

from
0 . _
H, (Gh, 7T2h7(2p72)7"1:‘j1h' (Eh)/J) =0.

By the Change-of-Rings Theorem 3.1, the two degree-zero cohomology groups are identified with Ext-groups
of BP.BP-comodule BP,/J’ in the corresponding internal degrees. They can be further viewed as a sub-
groups of H%*(M~1). So we need to show

N
F, *=2h— 2 lnl for the RHVC;
e R A G IR
0 *=2h—(2p—-2)—E 73, for Ky, = 0.

By Proposition 3.3, elements in H%*(M{~1) are classified into three families:

N
e Proposition 3.6 says elements in Family T contribute a copy of F,, to H>*(M!'™') when x = 2h — pplfl’“‘.
They have no contribution when * = 2h — (2p — 2) — %Ul"l.
P

e Corollary 3.11 shows elements in Family IT do not contribute to H%*(MP~1) when x = 2h — % or
PNl

e The two bounds (3.13) and (3.14) in Proposition 3.12 would respectively imply Family IIT elements do not

. 0/ sh—1 o p™ vy N |vnl
contribute to H>*(M;""") when x = 2h — £ or 2h — (2p — 2) — &3

Combining the three families above, we conclude the two bounds (3.13) and (3.14) in Proposition 3.12 would
respectively imply

Nivp|
HO? =55 (M) = F, = RHVC,

N v
OG5 () g g, =0,

As the first bound (3.13) is stronger than the second (3.14), it would imply both the RHVC and &, = 0
when 2p — 1 = A2, O

Remark 3.16. Baird’s Lemma 3.8 implies that elements in HO’*(Mlh_l) with numerator vaN for some
N > 1 and (s,p) =1 must be of the form:

spIN
v

__h
S1 Sh—17
puit vyt

such that the sequence (s1,--- ,sn_1,sp" ) satisfies s; < prsit1) Tt follows that the largest values of the s;’s
are s1 =89 = -+ = sp_1 = p¥. One can then check that
h—1 h—1
2(p" — 1 N |
> siloil =pN Y il = pN 200D gp) = 2kl —p™ - 2h
i=1 i=1 p-1 p—1

This is strictly smaller than both bounds (3.13) and (3.14) since N > 1. As is explained in Remark 3.4, we

can add correcting terms in lower Bockstein filtrations to v’ to increase their v;-divisibility for 1 < i < h—1.
This is why we cannot deduce from Baird’s Lemma 3.8 that the bounds (3.13) and (3.14) are always satisfied
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3.3. Consequences of the Miller-Ravenel-Wilson computation. Recall that Mﬁ_l is defined to be
U;lBP*/(p, Vi, ,Vh—2,V52 ). In this subsection, we discuss some consequences of the computations of
HO(M}_,) in [26] on the RHVC when (p — 1) { h and the exotic Picard groups when 2p — 1 = h%. The
Theorem 3.17 (Miller-Ravenel-Wilson, [26, Theorem 5.3]).

computations at helght 2 are given by
U1 3 T } { ] }

PF, {’N>1sezp+31<e1<p +pN ! 1}7

H"*(M{)=~F, {p

where x s defined inductively by

T = V2,
N e
T1 =Ty — U Uy U3,

p>—1 =D+l p>+p—1,p>—2p
xo =2 — v Ty —of vh V3,

N-1 N-—1
zy=af | — 2v§p+1)(p 71)1}5’771)(’) +1), N > 3.
The internal degree of x5 is spN|va| — e1|v1].

Using Gross-Hopkins duality Proposition 2.27, the results above imply the top degree cohomology groups
of Gy with coefficients in 7, (E2)/p are:

Proposition 3.18. Let [a] € HX(Ga;m(F2)/p) be a non-zero cohomology class. If [a] corresponds to an
element el € HY*(M}) for some N > 1 via the Gross-Hopkins duality, then

(PY = 1)ve]

t=—
p—1

+ (e = Dvr|  mod p™vy|.

Proof. By assumption, the element {Yl is in the image of HOs" lv2|- erlvil(M]/.J) for some J containing p
where BP,/J has a v} " el map. The Poincaré duality (2.14) gives an isomorphism:

Hy (G () /p) & HY Gy mae(E2)(det) /(p, ui®))".
By Theorem 2.25, the determinant twist mod J is identified with:

p v
7r4,t(E2)<det>/J = T4_—¢ (Z P*12 Eg)/J = 7T4 i pN\U2\ (E2)/J
The claim now follows by solving for ¢ in the residue equation:

pNva| _

4—t—
-1

spN\v2| —ep|v1] mod pN|1)2\. O

In this way, we have recovered the patterns of the top-degree cohomology H2(Go, 7 (E2)/p) in the com-
putation by Behrens in [7, Figure 3.2] when p > 5.
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Corollary 3.19. H}(Ga;m(E2)/p) # 0 iff either |va| divides t, or |v1| divides t and there is an N > 1 such
that
N _ N _
YUkl _, Y Dl
p—1 = = p—1
=2V — 2Nt —2p+6 mod p™|uvy|.

+ | +pV ' —2) mod p" |vs|

s

Proof. In degrees divisible by |vz|, we have elements corresponding to :1—}21 When |vs] 1 ¢, this follows from

Proposition 3.18 and the bounds for e; in Theorem 3.17: 1 < e; < pN +pVN—1 —1. O
We have therefore recovered the following result of Shimomura and Yabe in [32]:
Corollary 3.20. The RHVC holds and H2(Ga;m2p—2(E2)) = 0 when h =2 and p > 5.

Remark 3.21. Shimomura and Yabe proved the cohomological version of Conjecture 2.29 at h = 2 and
p > 5, which is equivalent to the homological version by Poincaré duality Corollary 2.10.

Proof. When |vga] ¢, the upper bounds for ¢ above are always negative, which implies when p > 5
Ho(Go; mo(E2)/p) = Hi(Goamo(En)/p) = Fy,
Hy(Ga;map—2(E2)) = Hy (Goimap—2(E2)) 2 Hy (Go; map—2(E2) /p) = 0.
We have therefore verified (RHVC) and the vanishing of the top degree cohomology group H2(Ga; map—2(E2)).
O

At height h > 3, HY(M}_,) is described as follows:

Theorem 3.22 (Miller-Ravenel-Wilson, [26, Theorem 5.10]). Define aj n by the recursive formula: apo =1,
ap1 =p, and
_ Dah,N—1, 1<N#1 mod (h—1);
N = papN—1+p—1, 1<N=1 mod (h—1).
Recall M} | = v, 'BP./(p,v1, - ,vn_2,v° ). Then H°(M}_|) is an Fp-vector space generated by

where pt s € Z.

PUIUp 1
II. ——— where j > 1.

J
PU1 " Vh -2V},

III. %7N6h_“ where pts € Z, 1 <ep_1 < apn, and xp N 1 is defined inductively by

PU1 " Vh—27;,
Zh,0 = Up,
Tpy =), — 'UZilrU;l'UhJ,_]_,
ThN = Th N forT<N#1 mod (h—1),
eV -nEh -1
ThN =Th g~ v, M UZN_”NAH for1<N=1 mod (h—1).
Lemma 3.23. The closed formula of ap, N is given by:

N=1 _ pr=1)

(p—1)(p p
ph—l ~1 )

where 1 < r < h —1 is an integer such that N =r mod (h —1). 3

ap,N = PN+

3r is not the usual residue of N mod h — 1 since r = h — 1 when (h — 1) | N.
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Like Corollary 3.19, we now have:

Proposition 3.24. Assume (p — 1) 1 h and let I;,_1 = (p,u1,- - ,up—2) < mo(Ey). Then the cohomology
group Hfz(Gh; 7¢(ER)/In—1) is zero unless |vy| divides t, or there is an N > 1 such that

N
-1
t= —(piw +k-|up—1] mod pN\vh| for some 0 <k < apn — 1.
=

In particular, the closed formula for aj y in Lemma 3.23 implies the upper bounds for ¢ above are always
negative. Like the h =2 and p > 5 case in Corollary 3.19, this shows that when (p — 1) { h:
HY (G mo(En)/In1) = Fy,
(3.25) HY (G map—a(En)/In_1) = 0.

Theorem 3.26 (Main Theorem B). When (p—1) 1 h, the Homological Vanishing Conjecture is true modulo
the ideal I—1 = (p,u1, -+ ,Up—2).

3.4. Conclusions at small heights and primes. Recall that by Theorem 1.24, there is an isomorphism
when 2p — 1 = h%:

Kh >(170)> HZP~H (G map—a(En)) W H (Gpimap—2(Ep)/p).
At p=>5 and h = 3, to use our method to compute H?(Gsz;ms(E3)/5), we need to know HY* (M%) at prime
p = 5. It is also needed to verify the RHVC at height h = 3 and p > 2 (which implies (p — 1) 1 h). This
computation also appears in Yexin Qu s thesis [29]. By Proposition 3.15, we need to check that for each
1 < ey <agy, if there is element el o € HO(M%), then

N
v
61'|U1|+62“’U2|<m72'3.
p—1

When e; = 1, we have e; < 2 M ;pf'l)_g — (p+1). When ey attains its maximum a3 n in Theorem 3.22,
this translates to N-lp2 4 1) -3 LN s odd:
e1 < p p p +p7‘—1 r = ) 9
p—1 ’ 2, N is even.

We observe that both bounds are larger (looser) than the bounds ag n for ve-divisibility itself. However, it
is not clear how to verify them without computing the Greek letter elements in H°(M3%). Nevertheless, the
vanishing result in (3.25) does have concrete implications on exotic elements in Picg ) when 2p — 1 = h2,
provided the relevant Smith-Toda complexes exist.

Theorem 3.27 (Main Theorem A). Let 2p—1 = h%. Suppose the type-(h—1) Smith-Toda complex V (h—2) =
SO/ (p,v1,- -+ ,vn_2) exists at prime p. Then an exotic element X € kj, cannot be detected by V (h — 2); that
18,

Proof. Using the topology of Pick sy described in [20, Proposition 14.3.(d)], we know that if the image of
X € kp, under the composite

22 B (G map2(En)) — HI (Gas map—o(En)/Tn1)

is zero, then X Ag ) V(h —2) = L)V (h—2), provided V(h —2) = S%/(p,v1,- -+ ,vp_2) exists. Since the
target of this map is zero by (3.25), the equivalence above is true for any X € x5 when 2p — 1 = h2. O

Corollary 3.28.
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(1) At height 3 and prime 5, an exotic element X in Picg () cannot be detected by V(1) = S°/(5,v1).
(2) At height 5 and prime 13, an exotic element X in Pick 5y cannot be detected by V (3) = S°/(13,v1,v2,v3).

Proof. The Smith-Toda complexes V(1) and V' (3) have been constructed for p > 3 and p > 7 by Adams-Toda
and Smith-Toda, respectively [30, Example 2.4.1]. |

Remark 3.29. A referee has pointed out to us that it is an open question whether V(4) exists any any
prime (see discussions at the end of [31, §5.6]). Recall that Smith-Toda complexes V(n) are constructed as
cofibers of vy, -self maps of V(n — 1) that induce multiplication by v, on BP-homology groups. This means
that we do not know the existence of V(n) for n > 4 at any prime p. As a result, it is unclear whether we
have a similar statement at the next pair of height and prime (h,p) = (9,41) satisfying 2p — 1 = h?, which
would require the existence of V(7) at the prime p = 41.

In [27], Nave proved the non-existence of the Smith-Toda complex V (h) when 2h = p+ 1. This does not
overlap with our consideration of the potential Smith-Toda complexes V (h — 2) when h? = 2p — 1.

Remark 3.30. By [20, Corollary 7.11], a K(h)-local spectrum X is equivalent to LK(h)SO iff X Agny V =~
L)V for all finite complexes of type h. This means if X Ny V =~ L@V for all X € kp and finite
complezes V' of type n, then Ky, = 0. Theorem 3.27 can be thought of as a first step towards showing kp = 0
when 2p — 1 = h2, since it implies X Ak V = Ligmw)V for any cofibers V' of vy-self maps of V(h —2). Our
choices of finite complexes are restricted to cofibers of the Smith-Toda complexes V(h — 2), because we do
not have better Greek letter element computation results beyond Theorem 3.22 in [26] when h > 3.

We can also use the same technique to study the subgroup K;}) of kp, when 4p — 3 = h2. Recall from

(1.22), /zgll) is the kernel of detection map
evo: Kp — Hz.pil(Gh;ﬂ'Qp_g(Eh)).

In terms of the homotopy fixed point spectral sequence, it consists of exotic K (h)-local spheres X, such that
Eg -0 (X) = Z,, does not support a dap_1-differential. Using similar argument as in Proposition 1.20, one can
show that the detection map:

(1

4p—3,4p—4
evs: Ky, — Eip=34p

2p
injective because the target of the next detection map is above the horizontal vanishing line at s = h? = 4p—3
of the Fs-page. The target of this detection map is a subquotient of

_ _ _ 2
BP0 = BT (G mapa(En)) = HY (G map—a(En))-
By Proposition 3.24, we know Hfz(Gh; Tap—a(En)/In—1) = 0 when (p — 1) { h. This implies:

Theorem 3.31. Let X be an exotic element in Picg () where h and p satisfies 4p — 3 = h2. Suppose
the Smith-Toda complex V(h — 2) exists. If X € kerevs, i.e. the EY°(X)-term in the HFPSS (1.13) does
not support a da,_1-differential, then X Ny V(h —2) ~ Lgw)V(h —2). In particular, this is true when
(h,p) = (3,3) and (h,p) = (5,7).

We end this paper with a discussion on the relation between the RHVC and exotic Picard groups.
Theorem 3.32 (Main Theorem C). At height 3, the RHVC implies k3 = 0 when p =5 and Iﬁ;él) = 0 when
p=3.

Proof. We will prove the contra-positive statement at p = 5 first. Suppose k3 # 0 at p = 5. By Proposi-
tion 1.20 and Proposition 2.3, we know H?(Ggz;ms(E3)/5) # 0. Let & be a nonzero element in this group.
Under the isomorphism in Proposition 2.27, x corresponds to a family of non-zero elements (2.28)

§ € H (G?’; 7T2-3(2452)5N(§'53_2)(E3)/J)
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for cofinal system of open invariant ideals J in my(Es3) that contains 5. By Proposition 3.24:

-3(2~52)5N(§'5f—2)(E3)/ (5’U17U2OO)> =0,

HY <G3; T, :
which implies the element £; cannot be wvi-torsion. By Proposition 3.6 and Corollary 3.11, the £;’s are
necessarily Family III Greek letter elements in Proposition 3.3. As result, we obtain a compatible family of

non-zero Family-III elements

fi, =vi0y € Hg (Gg; 71' 5N (2.53 _2) (Eg)/]) .
23-"57
Again by Proposition 2.27, ¢/; corresponds a non-zero element z’ € HY(Gs; m(Es3)/5). Recall from Proposi-
tion 3.6, this group already has a copy of F5 coming from Family I elements through Gross-Hopkins duality.
The new addition of x’ in this group from Family III elements shows that its dimension is at least 2, which
contradicts the RHVC.

At p = 3, we know Hgl) injects into the E§§73’4p74—term in the HFPSS for the K(3)-local sphere. If

k3" # 0, then neither is E3?~>*~* = B35, This implies Ey® = H)(Gy;ms(E3)) # 0, since Eg® # 0 is its
subquotient. The rest of the argument is entirely the same as the p = 5 case.

In this way, we conclude k3 # 0 at p = 5 and Kjél) = 0 at p = 3 implies the RHVC is false at the respective
primes. These are the contra-positive statements of the theorem. O

Remark 3.33. This proof relies on Proposition 3.24, a consequence of the Miller-Ravenel- Wilson computa-

tion Theorem 3.22. In general, the implication would hold at height h if we knew

N vy

(3.34) HO2h=Cr=2)= 55 (Aph=2) —

for all N. Miller-Ravenel-Wilson have calculated H*(M} _,) for all h. To prove (3.34) one would have
to calculate h — 3 many Bockstein spectral sequences, which seems dizzyingly beyond our reach with current
technology.
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