

CRISPR Gene Editing to Improve Crop Resistance to Parasitic Plants

1 **Min-Yao Jhu^{1*}, Evan E. Ellison¹, Neelima Sinha^{2*}**

2 ¹Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United
3 Kingdom

4 ²Department of Plant Biology, University of California, Davis, California, United States

5 *** Correspondence:**

6 Min-Yao Jhu
7 myj23@cam.ac.uk

8 Neelima R. Sinha
9 nrsinha@ucdavis.edu

10

11 **Keywords: CRISPR, parasitic plants, haustorium, resistance, defence. (Min.5-Max. 8)**

12 **Abstract**

13 Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and
14 hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic
15 Repeats) gene-editing technology has emerged as a promising tool for developing resistance against
16 various plant pathogens. Its application in combating parasitic plants, however, remains largely
17 unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR
18 to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene
19 editing tools, and what has been used to combat various plant pathogens. To realise the immense
20 potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host
21 interactions is critical to identify suitable target genes for modification. Therefore, we discuss the
22 intricate interactions between parasitic plants and their hosts, highlighting essential genes and
23 molecular mechanisms involved in defence response and multilayer resistance. These include host
24 resistance responses directly repressing parasitic plant germination or growth and indirectly
25 influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate
26 CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement,
27 including inducible resistance response and tissue-specific activity. In conclusion, this review
28 highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants
29 and provides insights for future research directions to safeguard global agricultural productivity.

30

31 **1 Introduction**

32 Plant pests and pathogens significantly threaten global food security, causing substantial yield losses
33 (Savary et al., 2019). Climate change exacerbates the issue by altering pathogen assemblages (Chaloner
34 et al., 2021). Efficient plant disease management is essential to sustainably meet global food demand.
35 Current disease management methods include chemical control, which is efficient but can have

negative environmental impact and promotes resistance (Yin and Qiu, 2019), and biological control, which is more environmentally friendly but has limited efficacy, consistency, and cost-effectiveness (Gerbore et al., 2014). Utilizing host resistance offers a promising alternative solution.

Therefore, harnessing knowledge about plant-pathogen interactions and defence responses is crucial for developing successful disease management strategies (Veillet et al., 2020). Developing disease-resistant crops relies on comprehending multi-dimensional defence mechanisms, including pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), to combat invading pathogens (Langner et al., 2018). Introducing host resistance through conventional breeding is hindered by linkage drag and limited genetic diversity within elite germplasm (Tester and Langridge, 2010). Mutation breeding introduces variation but also genome-wide undesired mutations (Toker et al., 2007). Genome editing, particularly CRISPR-Cas, enables precise gene modifications without off-target detrimental effects (Menz et al., 2020).

In this review, we summarise the role of CRISPR in developing resistance against parasitic plants, outlining its improvements and applications against pathogens. Understanding the genetic basis of plant-host interactions is vital for targeted gene modification. We explore essential genes and mechanisms for defence and resistance, evaluating CRISPR's effectiveness in enhancing crop resistance. We outline the challenges and opportunities of CRISPR technology for safeguarding agricultural productivity.

54

55 **2 CRISPR editing tools and recent technological advances**

56 Applications in plant biology have been no exception to the promise of targeted genome manipulation
57 provided by CRISPR/Cas systems (Gao, 2021). While some of the earliest examples of CRISPR/Cas
58 utility in plant biology were gene knockouts in model organisms, the technology has now been
59 expanded to a wide variety of applications including large-scale editing screens, base editing, targeted
60 insertions, and transcriptomic and epigenomic modifications (Gaillochet et al., 2021; Pan et al., 2021;
61 Ren et al., 2021; Zong et al., 2022). In parallel, improvements have been made in the delivery of
62 CRISPR/Cas and other plant genome engineering reagents to plant cells, particularly for non-model
63 and crop species (Ellison et al., 2020; Maher et al., 2020; Che et al., 2022; Demirer et al., 2023).
64 Together, advancements in genome editing technology with efficient delivery of reagents provide great
65 promise for gene discovery and functional genome modification.

66 RNA guided endonuclease systems, such as CRISPR/Cas, provide incredible precision for modifying
67 specific targets in the genome. CRISPR systems utilize a guide RNA (gRNA) comprised of a constant
68 repeat sequence and 20 base pair (bp) spacer sequence specific to a desired target site (Jinek et al.,
69 2012). The only requirement for this 20bp target is an adjacent protospacer adjacent motif (PAM),
70 which for *S. pyogenes* CRISPR/Cas9 consists of a simple 5'-NGG-3' sequence (Jinek et al., 2012).
71 Minimal target sequence requirements, ease in reagent design, and robust cleavage has quickly
72 established CRISPR as a highly effective tool for targeted genetic modification.

73 Many examples of CRISPR application in plants prioritize targeting protein coding sequences, using
74 indels to induce a frameshift mutation (Zsögön et al., 2018). This approach has been employed for
75 large scale screens in which dozens to thousands of unique mutants are generated to uncover novel
76 gene function and epistasis (Gaillochet et al., 2021). The adaptation of CRISPR systems from other
77 species, such as CRISPR/Cas12 from *Lachnospiraceae* bacterium ND 2006 which recognizes TTTV
78 (V = A, C, and G) PAM sequences, has provided greater flexibility in target site requirements (Zhang

et al., 2021). Greater precision in modification type is provided by base editing via cytidine or adenine deaminases fused to Cas9 nickases which can be exploited for specific nucleotide or amino acid changes (Ren et al., 2021). This precision is expanded by the recent development of prime editors for targeted sequence modification, deletion, or insertion (Zong et al., 2022). In other applications, CRISPR is used to modify or disrupt noncoding or regulatory elements resulting in quantitative variation (Rodríguez-Leal et al., 2017). Modifications to gene regulation, however, are not limited to genetic changes. By using a catalytically inactive Cas tagged with transcriptional or epigenomic regulators, gene expression can be regulated in a target-specific manner without inducing double-stranded breaks (Pan et al., 2021). We recommend a recent review for a more comprehensive discussion on recent developments in CRISPR/Cas plant genome engineering reagents (Capdeville et al., 2023).

The CRISPR systems offer robust and diverse mechanisms for targeted genome manipulation but is only relevant if effectively delivered to the appropriate plant cell types. Nearly every example of plant gene editing arises through Agrobacterium or biolistic bombardment reagent delivery to undifferentiated callus tissue followed by tissue-culture-based regeneration methods (Altpeter et al., 2016). Recently, the inclusion of developmental regulators in delivery constructs has been demonstrated to significantly improve the efficiency of tissue-culture regeneration, including transformation of previously recalcitrant species (Che et al., 2022). Ectopic expression has also been used for the generation of de novo meristems and elimination of tissue culture altogether (Maher et al., 2020). In addition to improvements in tissue-culture regeneration efficiency, other approaches have been taken to bypass tissue culture altogether. Viral vectors have emerged as a method to deliver CRISPR reagents to plant cells including, by inclusion of mobile RNA sequences, directly to stem cells to generate fixed modifications without tissue culture (Ellison et al., 2020). Mobile RNAs have also been utilized to move CRISPR reagents across graft junctions from transgenic rootstock to wild-type meristematic cells (Yang et al., 2023). These approaches to bypass-tissue culture are promising avenues for high throughput gene editing and transient delivery to recalcitrant species.

105

106 **3 CRISPR applications in disease and parasite resistance**

107 Recent advancements in genome editing technology provide powerful tools to address various
108 agricultural challenges, including creating disease and pest-resistant crop lines (Langner et al., 2018;
109 Karmakar et al., 2022). CRISPR/Cas systems have demonstrated remarkable efficiency in combatting
110 virus infections, as well as fungal and bacterial diseases across diverse plant species (Boubakri, 2023).
111 This versatile technology holds immense promise for revolutionising agricultural practices and
112 bolstering crop resilience against pathogenic threats.

113 Engineering host resistance in plants has long been anchored in the classical "gene for gene"
114 hypothesis. This principle revolves around the interaction between host R (resistance) genes and
115 pathogen Avr (avirulence) genes, determining the outcome of resistance or disease occurrence. One
116 approach for broad-spectrum resistance is through the modification of R genes by CRISPR/Cas
117 reagents (Dangl et al., 2013). Precisely mutating the leucine-rich repeat (LRR) domain within R genes
118 enables alterations in elicitor recognition specificity and confers resistance against diverse pathogens.
119 However, relying solely on a single R gene for resistance may prove inadequate due to pathogen
120 mutations that might enable them to circumvent specific resistance mechanisms, necessitating the
121 exploration of alternative strategies. Concurrently, host susceptibility (S) genes are potential targets for

122 engineering host resistance (van Schie and Takken, 2014). CRISPR/Cas editing of S genes results in
123 durable, broad-spectrum resistance against fungal and bacterial pathogens.

124 In summary, the transformative potential of CRISPR/Cas tools in engineering disease resistance in
125 plants presents exciting opportunities in agricultural research. While several review articles have
126 discussed the application of CRISPR in plant disease resistance (Langner et al., 2018; Yin and Qiu,
127 2019; Boubakri, 2023), it is crucial to recognise that plant pathogens, such as viruses, bacteria, and
128 fungi, are not the sole threats to food security. Parasitic plants also significantly impact agricultural
129 productivity worldwide (Jhu and Sinha, 2022). Compared to abundant studies on plant pathogens,
130 research and discussion on host resistance mechanisms to combat parasitic plants are relatively limited.
131 The application of CRISPR technologies to improve crops' defence against parasitic plants is still in its
132 early stages and lacks a systematic review. Therefore, this review will focus on the importance and
133 significance of utilising CRISPR to resist parasitic plants, highlighting past successful examples and
134 proposing potential future research directions to foster resilient and sustainable crop protection
135 measures.

136

137 **4 Notorious parasitic weeds and global food security**

138 Parasitic plants pose a significant risk to food security globally, approximately affecting millions of
139 hectares of croplands and targeting vital cereal crops and vegetables (Lanini and Kogan, 2005; Ejeta,
140 2007). These parasitic weeds develop specialised organs, haustoria, to invade host vascular systems
141 and hijack water and nutrients (Yoshida et al., 2016), leading to substantial reductions in agricultural
142 productivity and, in some cases, complete crop failure (Lanini and Kogan, 2005; David et al., 2022).
143 Based on the host tissue invaded, parasitic weeds can be classified as stem or root parasites (Yoshida
144 et al., 2016). Host-dependence further categorises them into obligate hemiparasitic, facultative
145 hemiparasitic, or holoparasitic. More detailed classification descriptions have been well discussed in
146 previous review articles (Yoshida et al., 2016). These diverse classifications highlight the complexity
147 of parasitic weed interactions with host plants and ecosystems. Controlling parasitic plants is
148 challenging due to their well-adapted life cycles, high seed production, and genetic diversity. The root
149 parasitic plant *Striga*, for example, can produce up to 0.5 million seeds per plant, with seeds remaining
150 viable in the soil for extended periods (David et al., 2022). Their ability to disperse seeds widely and
151 adapt to various environments makes eradication problematic.

152 Various methods have been attempted to manage parasitic plant infestations, including agricultural
153 practices, chemical or bioinoculant applications, and host resistances (Sauerborn et al., 2007).
154 However, none of these methods alone provides a sustainable, long-term solution. Conventional
155 practices like hand weeding and crop rotation have shown limited success (Kanamipi et al., 2018),
156 often due to factors such as continuous monocropping, which create favourable conditions for the
157 spread of parasitic plants. For a more effective and sustainable approach to controlling *Striga*, utilising
158 multiple-layer defence and resistance mechanisms and integrating parasitic plant-resistant or -tolerant
159 cultivars with current agricultural practice can provide more promising results (Abdullahi et al., 2022).

160

161 **5 CRISPR applications in enhancing resistance against parasitic plants**

162 **5.1 Identifying targets for CRISPR: pre-attachment and post-attachment resistance**

163 Understanding how host plants defend against parasitic plants is crucial for effectively utilizing gene
164 editing to enhance host resistance. Recent research has highlighted similar host-parasitic plant defence
165 response to interactions seen in other host-pathogen relationships (Fishman and Shirasu, 2021; Jhu and
166 Sinha, 2022). The initial response involves pathogen-triggered immunity (PTI), activating physical and
167 biochemical defences within host plant cells upon detecting parasite presence. However, parasitic
168 plants can counter PTI by introducing molecules resembling effectors into host cells, thus promoting
169 parasitism (Li and Timko, 2009). Should the host possess resistance, this leads to effector-triggered
170 immunity (ETI), causing programmed cell death and thwarting further parasite development.

171 Host resistance mechanisms can be divided into pre-attachment and post-attachment categories based
172 on whether these defences occur before or after parasitic plants establish themselves on hosts (Fishman
173 and Shirasu, 2021; Jhu and Sinha, 2022). The strategies of pre-attachment and post-attachment
174 resistance against root parasitic plants are briefly introduced in the following sections. More
175 comprehensive insights into the underlying mechanisms can be found in prior review publications
176 (Fishman and Shirasu, 2021; Jhu and Sinha, 2022).

177

178 **5.2 CRISPR applications in enhancing pre-attachment resistance**

179 Pre-attachment resistance encompasses a range of strategies employed by host plants to prevent the
180 attachment and invasion of parasitic plants before direct contact occurs. These mechanisms include
181 inhibiting the germination of parasitic plant seeds. Strigolactones (SLs), a class of plant hormones, play
182 a crucial role in triggering the germination of parasitic plants (Yoneyama et al., 2010) and signalling
183 mycorrhizal associations in soil (Waters et al., 2017; Kodama et al., 2022). Various types of SLs have
184 been identified as inducers for parasitic plant growth. For instance, mutations affecting SL production
185 or composition in *Striga* species lead to diminished germination rates (Gobena et al., 2017).

186 In addition to inhibiting parasite seed germination, some host plants release toxic compounds through
187 their root exudates, hampering the development of parasitic plant seedlings. For example, certain
188 resistant sunflower varieties produce toxic coumarins that impede *Orobanche* development (Sergolini
189 et al., 2001). On the other hand, some hosts interfere with haustorium initiation: a vital first step for
190 establishing a connection between host and parasite. Similarly, specific sorghum variants disrupt the
191 haustorium formation of *Striga asiatica*, potentially through the release of inhibitory substances in root
192 exudates. These diverse defence strategies of host plants against parasitic plants offer promising
193 avenues and targets for CRISPR approaches in tackling parasitic plant infestations and advancing
194 agricultural sustainability.

195 In recent studies, genetic manipulation techniques such as CRISPR-Cas9 have been employed to target
196 genes responsible for strigolactone biosynthesis and parasitism, resulting in resistance against parasitic
197 plants in crops respectively (Bellis et al., 2020; Bari et al., 2021). For example, mutations affecting the
198 *LOW GERMINATION STIMULANT 1 (LGS1)* gene within resistant Sorghum plants bring changes in
199 the composition of strigolactones (SLs) found in root exudates, resulting in a decrease in the
200 stimulatory impact on *Striga* germination (Figure 1) (Gobena et al., 2017). *LGS1* encodes a
201 sulfotransferase enzyme, and its functional loss leads to a shift from the potent *Striga* germination
202 stimulant, 5-deoxystrigol, to orobanchol, an SL with differing stereochemistry (Figure 1) (Gobena et
203 al., 2017).

204 However, these alterations in SLs have broader effects. Recent CRISPR/Cas9 edited sorghum
205 experiments emphasize that the benefits of LGS1-based resistance are influenced by parasite genotype

206 and environmental conditions, with the trade-off of diminished expression of photosystem-related
207 genes (Bellis et al., 2020). The systemic reduction in these genes within *LGS1* knockout lines
208 corresponds to the known role of SLs in enhancing light harvesting (Mayzlish-Gati et al., 2010).
209 Consequently, relying solely on CRISPR knockout lines could present challenges in extensive sorghum
210 cultivation.

211 Similarly, SL biosynthesis is also a target for CRISPR/Cas mediated resistance. SLs are produced
212 through the carotenoid pathway involving *Carotenoid Cleavage Dioxygenase (CCD) 7, CCD8, and*
213 *More Axillary Growth 1 (MAX1)* genes (Alder et al., 2012; Seto et al., 2014). Through CRISPR/Cas9-
214 mediated gene knockout in tomato, MAX1 disruption renders resistance against the root parasitic weed
215 *Phelipanche aegyptiaca* (Bari et al., 2021) (Figure 1). These *MAX1*-Cas9 mutant lines demonstrate
216 heightened resistance to *P. aegyptiaca* due to reduced levels of SL (specifically orobanchol). However,
217 this genetic alteration influenced the expression of the carotenoid biosynthesis gene phytoene
218 desaturase-1 (*PDS1*) and overall carotenoid levels compared to their wild-type counterparts.
219 Noteworthy, *MAX1*-Cas9 plants exhibited morphological shifts, such as increased growth of axillary
220 buds, decreased plant height, and the emergence of adventitious roots, diverging from the wild type
221 (Bari et al., 2021).

222 Given the growth-defence trade-offs seen in these genetically modified plants, it is important to
223 highlight that relying exclusively on CRISPR knockout lines might present agricultural challenges.
224 Therefore, to tackle this concern, the integration of advanced CRISPR technologies with meticulous
225 regulation mechanisms like inducible systems or tissue-specific expression becomes pivotal for
226 effectively deploying this approach in agriculture without compromising yield potential.

227

228 **5.3 CRISPR applications in enhancing post-attachment resistance**

229 Following attachment, post-attachment resistance unfolds as a plant's defensive strategy, activated
230 upon detection of parasitic plants affixed to the host. This defence repertoire encompasses various
231 mechanisms, such as hypersensitive responses (HRs), hormone-driven signalling pathways,
232 fortification of cell walls, and accumulation of defensive secondary metabolites (Fishman and Shirasu,
233 2021; Jhu and Sinha, 2022).

234 Modifying cell walls has been prominently observed and reported in prior research as a crucial strategy
235 among post-attachment resistance responses. Various host plants resistant to root and stem parasitic
236 plants have harnessed this mechanism (Fishman and Shirasu, 2021; Jhu and Sinha, 2022). For instance,
237 investigations reveal that specific Heinz tomato cultivars exhibiting resistance manifest inducible
238 lignin-based defence responses upon encountering the stem parasitic plant *Cuscuta campestris* (Jhu et
239 al., 2022a). Using CRISPR to target and knock out the key negative regulator of this lignin-based
240 response yields a state of constant lignin accumulation, bolstering the host plants' resilience against *C.*
241 *campestris* (Figure 1). However, this fortification comes at the expense of compromised vegetative
242 growth (Jhu et al., 2022a). While identifying pivotal elements within defence mechanisms marks
243 progress, it is evident that this information alone falls short. It is imperative to delve into the facilitators
244 of inducible responses and strategically integrate these systems – encompassing potential promoters,
245 regulators, and receptors – into plant genetic engineering (Zaidi et al., 2020).

246

247 **6 Discussions and future perspectives**

248 While CRISPR-mediated gene knockouts provide a valuable resource for studying gene function, their
249 utilization can potentially impede crop growth, necessitating a careful balance between modifying
250 defence responses and safeguarding crop yield. The intricate trade-off inherent in this balance
251 underscores the practical challenges in agricultural applications. Consequently, the integrated
252 implementation of emerging CRISPR technologies emerges as a promising avenue for advancing crop
253 productivity.

254

255 **6.1 Inducible Defence Responses**

256 Inducible defence responses are an adaptive mechanism triggered by plants upon detecting threats such
257 as pathogens, herbivores, or parasites. This mechanism optimizes resource allocation, thereby
258 bolstering survival and reproductive success (Shudo and Iwasa, 2001). Prior research suggests many
259 post-attachment resistance reactions against parasitic plants leverage inducible mechanisms that
260 precisely activate in the presence of such parasites (Jhu et al., 2022a). This intricate host-parasitic plant
261 interplay likely guides the co-evolution of resistance strategies, explaining the diverse gene expression
262 profiles and resistance responses among different crop genotypes cultivated across various African
263 regions (Kavuluko et al., 2021; Mutinda et al., 2023). Embracing inducible defence responses holds
264 critical significance in genetic engineering and breeding endeavours geared towards developing
265 improved future crops (Gurr and Rushton, 2005).

266 CRISPR technologies are well poised to enable inducible defence response. Expression of Cas enzymes
267 by inducible promoters enables genome manipulation only in response to specific stimuli including
268 pathogens and parasites (Ji et al., 2018; Wang et al., 2020). Of particular interest is the use of
269 CRISPR/Cas-based artificial transcription factors in which Cas enzymes are tagged with enzymes
270 repressing or promoting the transcription of a particular gene (Pan et al., 2021). Using multiplexed
271 gRNA expression, entire pathways can be artificially regulated as an adaptive immunity mechanism.
272 For example, inducible defence responses can be achieved by utilizing promoters that can be activated
273 upon perceiving parasitic plant signals or effectors to drive the expression of Cas proteins and guide
274 RNAs (Figure 2A). This CRISPR-based synthetic transcriptional regulation fuses a Cas protein to a
275 transcriptional activator, which can then activate downstream genes involved in resistance responses
276 (Figure 2A). This multifaceted approach to resistance enables broad-spectrum resistance, utilizes
277 preexisting inducible multilayer resistance responses (Yoshida and Shirasu, 2009; Fishman and
278 Shirasu, 2021; Jhu and Sinha, 2022) by expression of Cas from endogenous host promoters and will
279 not be easily overcome by parasitic plants. Furthermore, inducible expression of CRISPR/Cas reagents
280 reduces potential off-target or pleiotropic effects of defence response (Ji et al., 2018).

281

282 **6.2 Cell-Type or Tissue-Type Specific Defence Mechanisms**

283 Cell-type-specific barriers and defence mechanisms at the host and parasite interface constitute a
284 pivotal aspect of plants' repertoire to counteract parasitic plant incursions (Hu et al., 2020; Jhu et al.,
285 2022b; Kawa and Brady, 2022). These mechanisms encompass diverse facets, such as epidermal
286 barriers that physically redirect or impede parasitic plant structures, cortex barriers fortified with
287 substances like lignin, or callose, and endodermal barriers fostering lignin, silica, or phenolic
288 compound accumulations that thwart parasitic plant penetration (Yoshida and Shirasu, 2009; Yoder
289 and Scholes, 2010; Mutuku et al., 2019). Such cell-type-specific defence mechanisms decisively curtail
290 the invasion, establishment, and subsequent development of parasitic plants.

291 Similar to inducible defence response, cell-type-specific promoters can limit CRISPR activity to
292 desired cell types (Decaestecker et al., 2019). Cell-types and tissue-types-specific promoters driving
293 Cas enzymes and guide RNA expression can confer localized defence responses (Figure 2A). We
294 anticipate the continued use of single-cell RNA sequencing technology (Cole et al., 2021; Cuperus,
295 2022) and spatial transcriptomics (Giacomello et al., 2017; Pour and Yanai, 2022) will facilitate the
296 discovery of cell-type specific gene regulatory elements which can be exploited for genome
297 engineering applications.

298

299 **6.3 Precise Modification of Amino Acid Sequence**

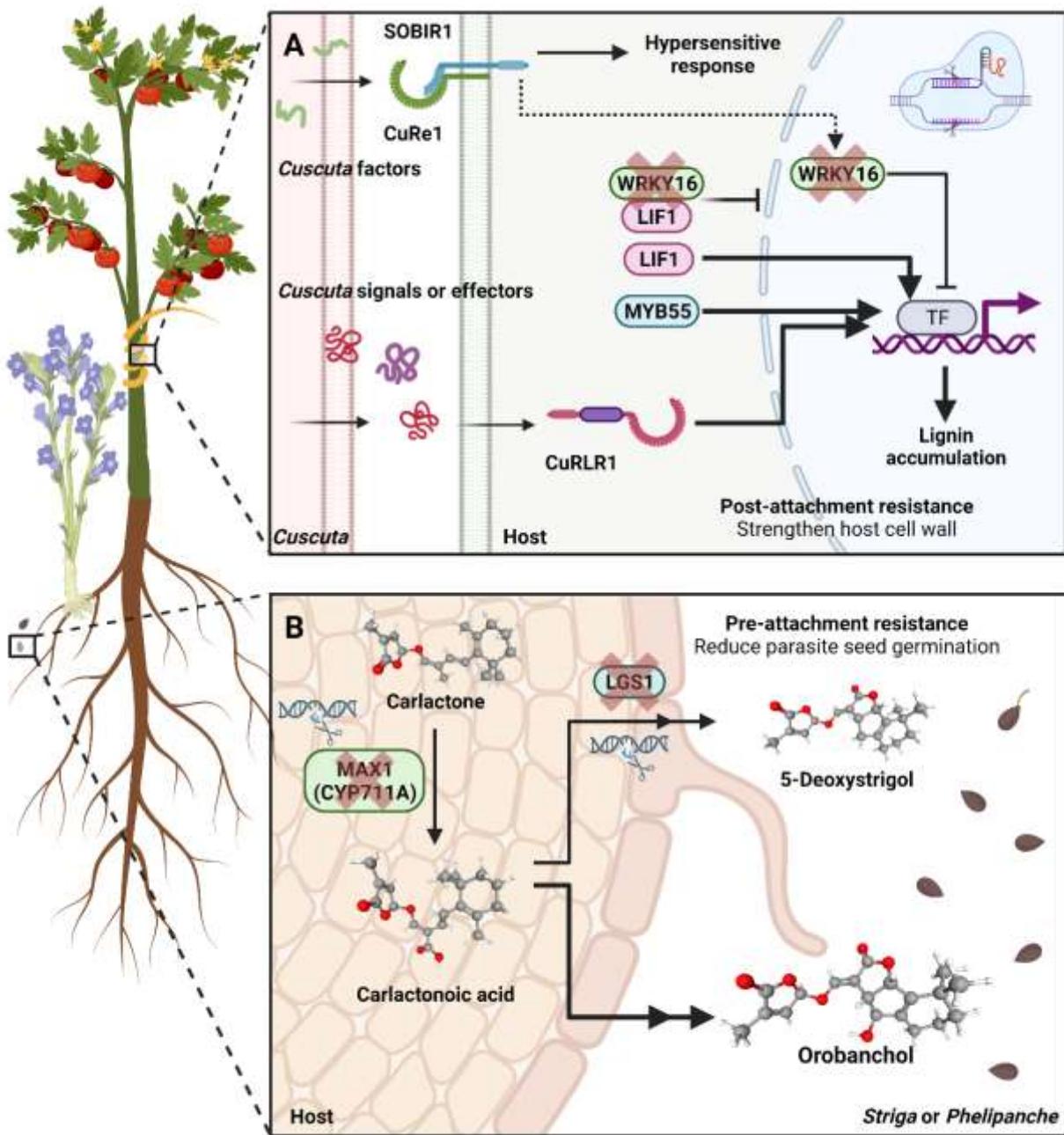
300 Constitutive resistance responses can be engineered through gene knockout of negative regulators, but
301 this approach could lead to a growth trade-off as discussed in previous sections. Therefore, targeted
302 defence requires precise modification of amino acid sequences on specific receptor-ligand binding sites
303 or protein-protein interaction sites. Recognition of parasitic plant signals and effectors is the critical
304 first step in host immunity. The use of CRISPR base editors or prime editors is a promising strategy to
305 modify peptide sequences involved in the perception of pathogenic effectors while maintaining the
306 preservation of signal transduction motifs (Ren et al., 2021; Zong et al., 2022). PAM flexible base
307 editors improve flexibility for this strategy by enabling gRNA targeting to any codon of interest (Ren
308 et al., 2021). For example, the vulnerability of specific host plants to parasitic plants results from the
309 failure to recognize signals or effectors, impeding effective immune responses (Hegenauer et al., 2020).
310 Through CRISPR base or prime editing, protein engineering of receptors can enable the recognition of
311 pathogens/effectors, thereby initiating resistance signalling (Figure 2B). Similarly, susceptibility in
312 certain host plants emerges from the incapacity to trigger downstream resistance due to a deficiency in
313 transcriptional activation (Jhu et al., 2022a). In this context, CRISPR base or prime editing can fine-
314 tune the binding affinity of transcription factors, establishing connections that bridge the gap and foster
315 subsequent defence reactions (Figure 2B).

316

317 **6.4 Direct targeting of parasitic plant genes and miRNAs**

318 Based on prior research, haustoria of parasitic plants serve not only as conduits for water and nutrients
319 but also facilitate the bidirectional transport of miRNA, mRNA, and small peptides (Kim et al., 2014;
320 Shahid et al., 2018; Liu et al., 2020). Recent investigations have demonstrated inter-species small RNA
321 trafficking through haustoria between *C. campestris* and its host and prompted the hypothesis that
322 mobile miRNAs from *C. campestris* might function as cross-species regulators, influencing host gene
323 expression and potentially acting as virulence factors that enhance parasitism (Shahid et al., 2018; Wu,
324 2018; Johnson and Axtell, 2019). On the other hand, multiple earlier studies have employed host-
325 induced gene silencing (HIGS) to combat parasitic plants by generating transgenic host plants that
326 produce specific small RNAs targeting genes of the parasitic plant (Tomilov et al., 2008; Alakonya et
327 al., 2012; Farrokhi et al., 2019; Jhu et al., 2021, 2022b). In the same role, CRISPR is likely to be applied
328 for plant host resistance by directly targeting genes, mRNAs, and miRNAs of parasitic plants.

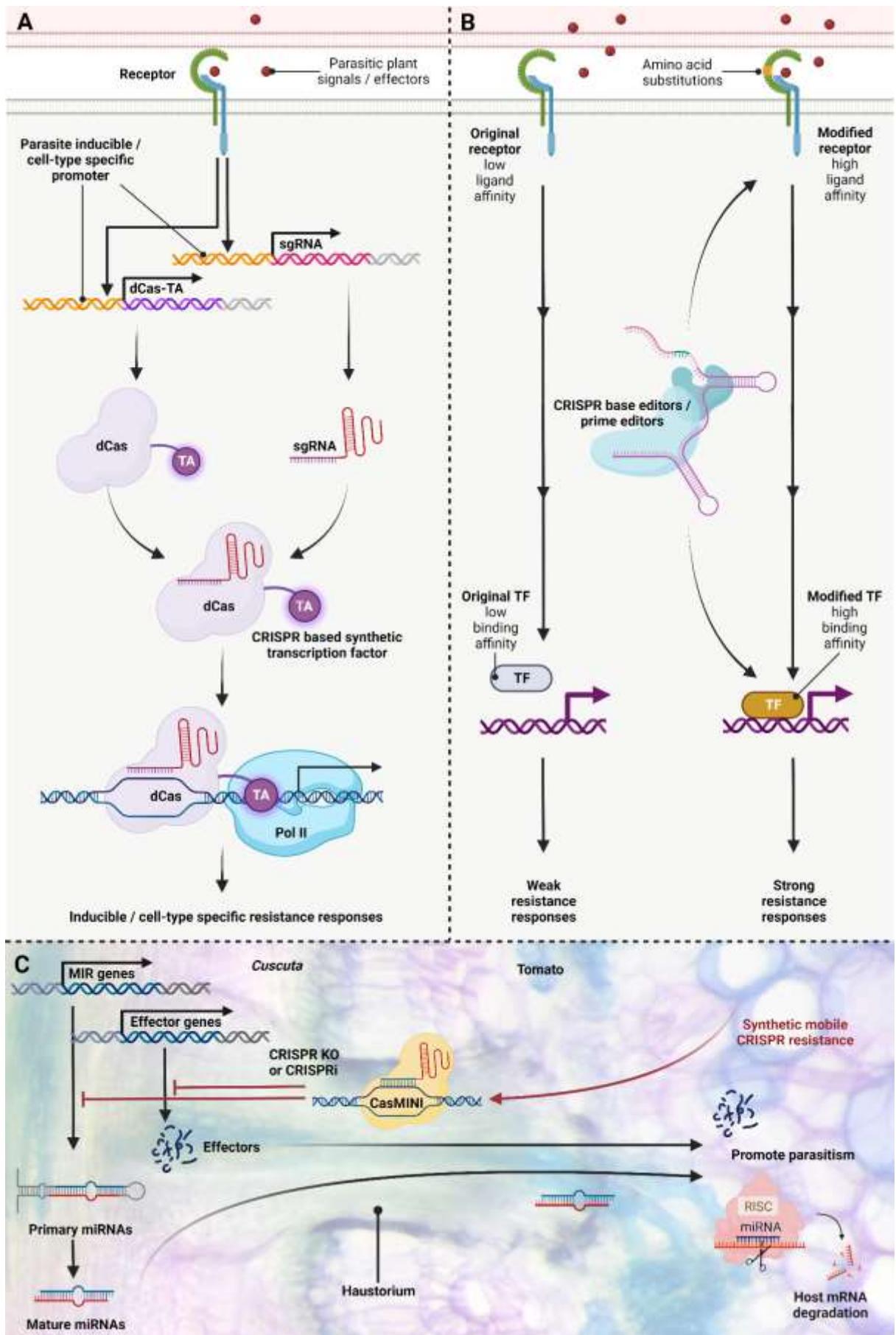
329 A pivotal aspect of adopting this approach is the optimization of CRISPR reagents, ensuring enhanced
330 mobility and high specificity. The foremost challenge revolves around delivering CRISPR/Cas
331 components effectively. The widely utilized CRISPR Cas9, a 160-kDa protein (Jinek et al., 2014),
332 poses delivery hurdles due to its substantial size. Notably, previous research indicates that the majority
333 of mobile proteins transported via haustoria range from 20 to 70 kilodaltons (kDa), though a


334 noteworthy 20% exceed 70 kDa, with the largest reaching 611 kDa (Liu et al., 2020). Moreover,
335 technological advancements have yielded smaller alternatives such as CRISPR CasΦ or CasMINI
336 (Pausch et al., 2020; Xu et al., 2021), each less than half the size of conventional Cas9. These compact
337 Cas variants hold promise as potential candidates that can be transported via haustorium and target
338 parasitic plant genes directly. Investigating transport mechanisms and incorporating mobile motifs into
339 Cas proteins will be pivotal in future research directions to facilitate their transport.

340 To ensure precise targeting, the design of guide RNAs (gRNAs) is imperative. These gRNAs should
341 specifically recognize pivotal parasite effectors or virulence factors, including mobile miRNAs, while
342 avoiding off-target effects within host plants. Harnessing CRISPR interference (CRISPRi) (Larson et
343 al., 2013; Fulco et al., 2016) for regulating parasitic plant gene expression at the transcriptional level
344 offers a potentially highly specific alternative to RNA interference (RNAi)-based knockdown
345 approaches.

346

347 7 Conclusions


348 In harnessing the potential of CRISPR technologies for enhanced crop protection, the intricate balance
349 between modifying defence responses and preserving crop yield becomes apparent. Through high-
350 throughput gene editing, targeted nucleotide modifications, and synthetic gene regulation, CRISPR
351 systems have been shown to provide immense power in gene discovery and crop improvement.
352 CRISPR knockout in bolstering pre-attachment resistance by targeting strigolactone pathways and
353 enhancing post-attachment defences through cell wall fortification offers promising avenues for
354 combating parasitic plants. However, the trade-offs of genetic modifications impacting plant growth
355 and physiology, underline the need for precise regulatory approaches. Inducible defence responses
356 through innovative synthetic transcriptional regulation offer adaptive immunity, while cell-type
357 specificity empowers localized defences. The precise modification of amino acid sequences using
358 CRISPR base and prime editing presents a future of tailored immunity. The convergence of these
359 strategies embodies a promising avenue for bolstering crop productivity and resilience, underpinning
360 a transformative shift in agricultural practices towards more robust and sustainable solutions.

363 **Figure 1. Utilizing CRISPR Techniques to Enhance Pre-attachment and Post-attachment**
 364 **Defence Mechanisms against Parasitic Plants.** (A) Overview of a CRISPR-based approach to
 365 reinforce the host plant's resistance mechanisms against stem parasitic *Cuscuta* species during and after
 366 attachment. The cellular receptor CUSCUTA RECEPTOR 1 (CuRe1) is a leucine-rich repeat (LRR)
 367 receptor-like protein (RLP) responsible for recognizing *Cuscuta*-derived factors at the cell surface
 368 (Hegenauer et al., 2016, 2020). Teaming up with the coreceptor SISOBIR1, this recognition event
 369 initiates downstream defensive reactions, including hypersensitive responses. In resistant tomato
 370 cultivars, the *Cuscuta* R-gene for lignin-based resistance 1 (CuRLR1) is an N-terminal coiled-coil
 371 (CC)-nucleotide-binding site (NBS)-LRR protein (Jhu et al., 2022a). CuRLR1 might be involved in

372 sensing specific signalling pathways or even function as a receptor for identifying unknown signals or
373 effectors produced by *Cuscuta*. Activation of CuRLR1 sets off subsequent signalling sequences,
374 leading to the activation of genes participating in the lignin biosynthesis pathway. Consequently, there
375 is a buildup of lignin in the cortex region of the tomato stem, acting as a physical barrier to hinder
376 haustorium penetration. Transcription factors like Lignin Induction Factor 1 (LIF1; an AP2-like
377 transcription factor) and MYB55 positively regulate enhanced resistance based on host lignin.
378 Conversely, WRKY16, which experiences upregulation upon infestation by *Cuscuta campestris*, plays
379 a critical role as a negative regulator of lignin production and the function of LIF1. Based on previous
380 research, one hypothesis suggests that WRKY16 acts as a connecting link (indicated by a dashed arrow)
381 between CuRe1 and the lignification response. By employing CRISPR technology to target and
382 knockout WRKY16 precisely, a sustained accumulation of lignin is achieved, thereby reinforcing the
383 plant's resilience against *C. campestris*. (B) Overview of CRISPR Applications for Reinforcing Pre-
384 attachment Resistance by Impeding Seed Germination of Root Parasitic Plants. The biosynthesis of
385 strigolactones (SLs), orchestrated by the carotenoid pathway involving genes like *More Axillary*
386 *Growth 1 (MAX1)*, is a pivotal mechanism explored for enhancing pre-attachment resistance. The
387 *MAX1* genes encode cytochrome P450 monooxygenases of the CYP711A subfamily, acting as
388 carlactone (CL) oxidases responsible for converting CL into carlactonoic acid. CRISPR-based
389 knockout generated *max1* mutant lines demonstrate heightened resilience against the root parasitic
390 plant *Phelipanche aegyptiaca*. This resilience is attributed to reduced SL levels due to *max1* mutant.
391 *LOW GERMINATION STIMULANT 1 (LGS1)*, encoding a sulfotransferase enzyme, is pivotal in SL
392 biosynthesis. In susceptible sorghum host plants, the principal SL in root exudates is 5-deoxystrigol, a
393 potent stimulant for root parasitic plant *Striga* seed germination. In contrast, orobanchol, an SL with
394 an opposing stereochemistry to 5-deoxystrigol, fails to induce *Striga* seed germination. By leveraging
395 CRISPR technology, targeted mutations in *LGS1* facilitate a shift in the dominant SL composition
396 within host plant root exudates. This composition changes from 5-deoxystrigol to orobanchol,
397 significantly reducing parasite seed germination rates. Consequently, these altered root exudates
398 enhance pre-attachment resistance in the host plants. The three-dimensional structural representations
399 of carlactone, carlactonoic acid, orobanchol, and 5-deoxystrigol are from PubChem.

400

402 **Figure 2. Enhancing Parasitic Plant Resistance using new CRISPR Technologies.** (A) Conditional
403 immunity with inducible or cell/tissue-specific activation via CRISPR-mediated transcriptional
404 regulation. Inducible defence responses against parasitic plants are achieved through tailored
405 promoters that express Cas enzymes and single-guide (sg) RNAs upon sensing parasitic signals or
406 effectors. Inactive dCas enzymes are unable to cleave DNA but can still bind specific sequences via
407 guide RNAs. dCas proteins fused with transcriptional activators (TA) trigger resistance-associated
408 gene expression. Cell and tissue-type-specific promoters driving dCas enzymes and sgRNA expression
409 can confer localized defence responses. Therefore, the activation of particular target genes can be
410 directed with CRISPR-based synthetic transcription factor complexes. This CRISPR-mediated
411 transcriptional regulation strategy offers conditionally activated transcription for parasitic plant
412 resistance. (B) Protein engineering of receptors or transcription factors via CRISPR base and prime
413 editing modifies parasite perception and protein binding affinity. Susceptibility of certain host plants
414 to parasitic plants results from signal or effector non-recognition, hampering immune responses.
415 CRISPR base and prime editing on receptors allows pathogen/effectector perception, initiating defence
416 signalling. In parallel, susceptibility in some host plants arises from the inability to activate downstream
417 resistance due to a missing link in transcriptional activation. CRISPR base and prime editing adjusts
418 transcription factor binding affinity, bridging connections and promoting downstream defence
419 responses. (C) Hypothetical illustration of synthetic mobile CRISPR application for enhancing host
420 resistance against parasitic plants. Based on previous studies, parasitic plants haustorium not only can
421 transport water and nutrients but can also transport miRNA, mRNA, and small peptides bidirectionally,
422 and these mobile *C. campestris* molecules might act as trans-species regulators of host-gene expression
423 and may act as effectors or virulence factors to promote parasitism. CRISPR can be applied in plant
424 host resistance by directly targeting genes of parasitic plants. Recent advancements offer compact
425 CRISPR-Cas variants like CasΦ and CasMINI, under half the size of traditional Cas9. These compact
426 forms could serve as candidates transported through haustoria to directly modulate parasitic plant
427 genes. Leveraging CRISPR KO or CRISPR interference (CRISPRi) for targeted mutation and
428 transcriptional regulation presents a highly precise knockdown alternative to RNAi-based methods.

429

430

431

432 **9 Conflict of Interest**

433 The authors declare that the research was conducted in the absence of any commercial or financial
434 relationships that could be construed as a potential conflict of interest.

435 **10 Author Contributions**

436 MYJ and EEE wrote the initial draft of the manuscript. MYJ created the figures with inputs from EEE.
437 MYJ, EEE, and NRS carried out subsequent manuscript editing and revisions. All authors contributed
438 to the article's development, reviewed and approved the final submitted version.

439 **11 Funding**

440 MYJ is supported by the Bill and Melinda Gates Foundation and the UK Foreign, Commonwealth and
441 Development Office (OPP1028264) through the Engineering the Nitrogen Symbiosis for Africa
442 (ENSA) project. EEE is supported by the National Science Foundation Postdoctoral Research
443 Fellowship in Biology under Grant No. 2305688. Research on parasitic plants in the NRS lab is funded
444 by the California Tomato Research Institute (CTRI). The funders had no role in study design, data
445 collection and analysis, decision to publish, or preparation of the manuscript.

446 **12 Acknowledgments**

447 We thank Eli Marable for feedback on the early draft of this manuscript.

448

449 13 Reference

450 Abdullahi, W. M., Dianda, M., Boukar, O., Dieng, I., Mohammed, G. S., Belko, N., et al. (2022).
451 Integrated management of *Striga gesnerioides* in cowpea using resistant varieties, improved crop
452 nutrition and rhizobium inoculants. *Plant Soil* 473, 197–213. doi: 10.1007/s11104-022-05295-7.

453 Alakonya, A., Kumar, R., Koenig, D., Kimura, S., Townsley, B., Runo, S., et al. (2012). Interspecific
454 RNA interference of SHOOT MERISTEMLESS-like disrupts *Cuscuta pentagona* plant
455 parasitism. *Plant Cell* 24, 3153–3166. doi: 10.1105/tpc.112.099994.

456 Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., et al. (2012). The Path
457 from β -Carotene to Carlactone, a Strigolactone-Like Plant Hormone. *Science* (1979) 335, 1348–
458 1351. doi: 10.1126/science.1218094.

459 Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A. E., Brutnell, T. P., Citovsky, V., et al. (2016).
460 Advancing crop transformation in the era of genome editing. *Plant Cell* 28, 1510–1520. doi:
461 10.1105/tpc.16.00196.

462 Bari, V. K., Nassar, J. A., and Aly, R. (2021). CRISPR/Cas9 mediated mutagenesis of MORE
463 AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed *Phelipanche*
464 *aegyptiaca*. *Sci Rep* 11. doi: 10.1038/s41598-021-82897-8.

465 Bellis, E. S., Kelly, E. A., Lorts, C. M., Gao, H., DeLeo, V. L., Rouhan, G., et al. (2020). Genomics
466 of sorghum local adaptation to a parasitic plant. *Proceedings of the National Academy of*
467 *Sciences* 117, 4243–4251. doi: 10.1073/pnas.1908707117.

468 Boubakri, H. (2023). Recent progress in CRISPR/Cas9-based genome editing for enhancing plant
469 disease resistance. *Gene* 866, 147334. doi: <https://doi.org/10.1016/j.gene.2023.147334>.

470 Capdeville, N., Schindele, P., and Puchta, H. (2023). Getting better all the time — recent progress in
471 the development of CRISPR/Cas-based tools for plant genome engineering. *Curr Opin*
472 *Biotechnol* 79, 102854. doi: 10.1016/J.COPBIO.2022.102854.

473 Chaloner, T. M., Gurr, S. J., and Bebber, D. P. (2021). Plant pathogen infection risk tracks global
474 crop yields under climate change. *Nat Clim Chang* 11, 710–715. doi: 10.1038/s41558-021-
475 01104-8.

476 Che, P., Wu, E., Simon, M. K., Anand, A., Lowe, K., Gao, H., et al. (2022). Wuschel2 enables highly
477 efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in
478 sorghum. *Commun Biol* 5. doi: 10.1038/s42003-022-03308-w.

479 Cole, B., Bergmann, D., Blaby-Haas, C. E., Blaby, I. K., Bouchard, K. E., Brady, S. M., et al. (2021).
480 Plant single-cell solutions for energy and the environment. *Commun Biol* 4. doi:
481 10.1038/s42003-021-02477-4.

482 Cuperus, J. T. (2022). Single-cell genomics in plants: current state, future directions, and hurdles to
483 overcome. *Plant Physiol* 188, 749–755. doi: 10.1093/plphys/kiab478.

484 Dangl, J. L., Horvath, D. M., and Staskawicz, B. J. (2013). Pivoting the Plant Immune System from
485 Dissection to Deployment. *Science* (1979) 341, 746–751. doi: 10.1126/science.1236011.

486 David, O. G., Ayangbenro, A. S., Odhiambo, J. J. O., and Babalola, O. O. (2022). *Striga*
487 *hermonthica*: A highly destructive pathogen in maize production. *Environmental Challenges* 8,
488 100590. doi: <https://doi.org/10.1016/j.envc.2022.100590>.

489 Decaestecker, W., Buono, R. A., Pfeiffer, M. L., Vangheluwe, N., Jourquin, J., Karimi, M., et al.
490 (2019). CRISPR-Tsko: A technique for efficient mutagenesis in specific cell types, tissues, or
491 organs in *Arabidopsis*[open]. *Plant Cell* 31, 2868–2887. doi: 10.1105/tpc.19.00454.

492 Demirer, G. S., Zhang, H., Goh, N. S., Pinals, R. L., Chang, R., and Landry, M. P. (2023). Carbon
493 nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. *Sci Adv* 6,
494 eaaz0495. doi: 10.1126/sciadv.aaz0495.

495 Ejeta, G. (2007). “THE STRIGA SCOURGE IN AFRICA: A GROWING PANDEMIC,” in
496 *Integrating New Technologies for Striga Control* (WORLD SCIENTIFIC), 3–16. doi:
497 doi:10.1142/9789812771506_0001.

498 Ellison, E. E., Nagalakshmi, U., Gamo, M. E., Huang, P. jui, Dinesh-Kumar, S., and Voytas, D. F.
499 (2020). Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs.
500 *Nat Plants* 6, 620–624. doi: 10.1038/s41477-020-0670-y.

501 Farrokhi, Z., Alizadeh, H., Alizadeh, H., and Mehrizi, F. A. (2019). Host-Induced Silencing of Some
502 Important Genes Involved in Osmoregulation of Parasitic Plant *Phelipanche aegyptiaca*. *Mol*
503 *Biotechnol* 61, 929–937. doi: 10.1007/s12033-019-00215-0.

504 Fishman, M. R., and Shirasu, K. (2021). How to resist parasitic plants: pre- and post-attachment
505 strategies. *Curr Opin Plant Biol* 62, 102004. doi: <https://doi.org/10.1016/j.pbi.2021.102004>.

506 Fulco, C. P., Munschauer, M., Anyoha, R., Munson, G., Grossman, S. R., Perez, E. M., et al. (2016).
507 Systematic mapping of functional enhancer–promoter connections with CRISPR interference.
508 *Science* (1979) 354, 769–773. doi: 10.1126/science.aag2445.

509 Gaillochet, C., Develtere, W., and Jacobs, T. B. (2021). CRISPR screens in plants: Approaches,
510 guidelines, and future prospects. *Plant Cell* 33, 794–813. doi: 10.1093/plcell/koab099.

511 Gao, C. (2021). Genome engineering for crop improvement and future agriculture. *Cell* 184, 1621–
512 1635. doi: 10.1016/J.CELL.2021.01.005.

513 Gerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., et al. (2014).
514 Biological control of plant pathogens: Advantages and limitations seen through the case study of
515 *Pythium oligandrum*. *Environmental Science and Pollution Research* 21, 4847–4860. doi:
516 doi:10.1007/s11356-013-1807-6.

517 Giacomello, S., Salmén, F., Terebieniec, B. K., Vickovic, S., Navarro, J. F., Alexeyenko, A., et al.
518 (2017). Spatially resolved transcriptome profiling in model plant species. *Nat Plants* 3, 17061.
519 doi: 10.1038/nplants.2017.61.

520 Gobena, D., Shimels, M., Rich, P. J., Ruyter-Spira, C., Bouwmeester, H., Kanuganti, S., et al. (2017).
521 Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes
522 Striga resistance. *Proceedings of the National Academy of Sciences* 114, 4471–4476. doi:
523 10.1073/pnas.1618965114.

524 Gurr, S. J., and Rushton, P. J. (2005). Engineering plants with increased disease resistance: What are
525 we going to express? *Trends Biotechnol* 23, 275–282. doi: 10.1016/j.tibtech.2005.04.007.

526 Hegenauer, V., Fürst, U., Kaiser, B., Smoker, M., Zipfel, C., Felix, G., et al. (2016). Detection of the
527 plant parasite *Cuscuta reflexa* by a tomato cell surface receptor. *Science* (1979) 353, 478–481.
528 doi: 10.1126/science.aaf3919.

529 Hegenauer, V., Slaby, P., Körner, M., Bruckmüller, J. A., Burggraf, R., Albert, I., et al. (2020). The
530 tomato receptor CuRe1 senses a cell wall protein to identify *Cuscuta* as a pathogen. *Nat
531 Commun* 11. doi: 10.1038/s41467-020-19147-4.

532 Hu, L., Wang, J., Yang, C., Islam, F., Bouwmeester, H. J., Muños, S., et al. (2020). The effect of
533 virulence and resistance mechanisms on the interactions between parasitic plants and their hosts.
534 *Int J Mol Sci* 21, 1–27. doi: 10.3390/ijms21239013.

535 Jhu, M. Y., Farhi, M., Wang, L., Philbrook, R. N., Belcher, M. S., Nakayama, H., et al. (2022a).
536 Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (*Cuscuta
537 campestris*) parasitism. *Plant Physiol* 189, 129–151. doi: 10.1093/plphys/kiac024.

538 Jhu, M. Y., Farhi, M., Wang, L., Zumstein, K., and Sinha, N. R. (2022b). Investigating Host and
539 Parasitic Plant Interaction by Tissue-Specific Gene Analyses on Tomato and *Cuscuta campestris*
540 Interface at Three Haustorial Developmental Stages. *Front Plant Sci* 12. doi:
541 10.3389/fpls.2021.764843.

542 Jhu, M. Y., Ichihashi, Y., Farhi, M., Wong, C., and Sinha, N. R. (2021). LATERAL ORGAN
543 BOUNDARIES DOMAIN 25 functions as a key regulator of haustorium development in
544 dodders. *Plant Physiol* 186, 2093–2110. doi: 10.1093/plphys/kiab231.

545 Jhu, M.-Y., and Sinha, N. R. (2022). Annual Review of Plant Biology Parasitic Plants: An Overview
546 of Mechanisms by Which Plants Perceive and Respond to Parasites. doi: 10.1146/annurev-
547 arplant-102820.

548 Ji, X., Si, X., Zhang, Y., Zhang, H., Zhang, F., and Gao, C. (2018). Conferring DNA virus resistance
549 with high specificity in plants using virus-inducible genome-editing system. *Genome Biol* 19.
550 doi: 10.1186/s13059-018-1580-4.

551 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A
552 Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity.
553 *Science* (1979) 337, 816–821. doi: 10.1126/science.1225829.

554 Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., et al. (2014). Structures of
555 Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. *Science* (1979) 343,
556 1247997. doi: 10.1126/science.1247997.

557 Johnson, N. R., and Axtell, M. J. (2019). Small RNA warfare: exploring origins and function of
558 trans-species microRNAs from the parasitic plant *Cuscuta*. *Curr Opin Plant Biol* 50, 76–81. doi:
559 10.1016/j.pbi.2019.03.014.

560 Kanampiu, F., Makumbi, D., Mageto, E., Omanyia, G., Waruingi, S., Musyoka, P., et al. (2018).
561 Assessment of management options on striga infestation and maize grain yield in Kenya. *Weed*
562 *Sci* 66, 516–524. doi: 10.1017/wsc.2018.4.

563 Karmakar, S., Das, P., Panda, D., Xie, K., Baig, M. J., and Molla, K. A. (2022). A detailed landscape
564 of CRISPR-Cas-mediated plant disease and pest management. *Plant Science* 323, 111376. doi:
565 10.1016/J.PLANTSCI.2022.111376.

566 Kavuluko, J., Kibe, M., Sugut, I., Kibet, W., Masanga, J., Mutinda, S., et al. (2021). GWAS provides
567 biological insights into mechanisms of the parasitic plant (Striga) resistance in sorghum. *BMC*
568 *Plant Biol* 21, 392. doi: 10.1186/s12870-021-03155-7.

569 Kawa, D., and Brady, S. M. (2022). Root cell types as an interface for biotic interactions. *Trends*
570 *Plant Sci* 27, 1173–1186. doi: 10.1016/j.tplants.2022.06.003.

571 Kim, G., LeBlanc, M. L., Wafula, E. K., dePamphilis, C. W., and Westwood, J. H. (2014). Genomic-
572 scale exchange of mRNA between a parasitic plant and its hosts. *Science* (1979) 345, 808–811.
573 doi: 10.1126/science.1253122.

574 Kodama, K., Rich, M. K., Yoda, A., Shimazaki, S., Xie, X., Akiyama, K., et al. (2022). An ancestral
575 function of strigolactones as symbiotic rhizosphere signals. *Nat Commun* 13, 3974. doi:
576 10.1038/s41467-022-31708-3.

577 Langner, T., Kamoun, S., and Belhaj, K. (2018). CRISPR Crops: Plant Genome Editing Toward
578 Disease Resistance. *Annu. Rev. Phytopathol* 56, 479–512. doi: 10.1146/annurev-phyto-080417.

579 Lanini, W. T., and Kogan, M. (2005). Biology and Management of Cuscuta in Crops. *International*
580 *Journal of Agriculture and Natural Resources* 32, 127–141.

581 Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., and Qi, L. S. (2013). CRISPR
582 interference (CRISPRi) for sequence-specific control of gene expression. *Nat Protoc* 8, 2180–
583 2196. doi: 10.1038/nprot.2013.132.

584 Li, J., and Timko, M. P. (2009). Gene-for-Gene Resistance in Striga-Cowpea Associations. *Science*
585 (1979) 325, 1094. doi: 10.1126/science.1174754.

586 Liu, N., Shen, G., Xu, Y., Liu, H., Zhang, J., Li, S., et al. (2020). Extensive Inter-plant Protein
587 Transfer between Cuscuta Parasites and Their Host Plants. *Mol Plant* 13, 573–585. doi:
588 10.1016/j.molp.2019.12.002.

589 Maher, M. F., Nasti, R. A., Vollbrecht, M., Starker, C. G., Clark, M. D., and Voytas, D. F. (2020).
590 Plant gene editing through de novo induction of meristems. *Nat Biotechnol* 38, 84–89. doi:
591 10.1038/s41587-019-0337-2.

592 Mayzlish-Gati, E., LekKala, S. P., Resnick, N., Wininger, S., Bhattacharya, C., Lemcoff, J. H., et al.
593 (2010). Strigolactones are positive regulators of light-harvesting genes in tomato. *J Exp Bot* 61,
594 3129–3136. doi: 10.1093/jxb/erq138.

595 Menz, J., Modrzejewski, D., Hartung, F., Wilhelm, R., and Sprink, T. (2020). Genome Edited Crops
596 Touch the Market: A View on the Global Development and Regulatory Environment. *Front*
597 *Plant Sci* 11. doi: 10.3389/fpls.2020.586027.

598 Mutinda, S., Mobegi, F. M., Hale, B., Dayou, O., Ateka, E., Wijeratne, A., et al. (2023). Resolving
599 intergenotypic Striga resistance in sorghum. *J Exp Bot*, erad210. doi: 10.1093/jxb/erad210.

600 Mutuku, J. M., Cui, S., Hori, C., Takeda, Y., Tobimatsu, Y., Nakabayashi, R., et al. (2019). The
601 structural integrity of lignin is crucial for resistance against *Striga hermonthica* parasitism in
602 rice. *Plant Physiol* 179, 1796–1809. doi: 10.1104/pp.18.01133.

603 Pan, C., Sretenovic, S., and Qi, Y. (2021). CRISPR/dCas-mediated transcriptional and epigenetic
604 regulation in plants. *Curr Opin Plant Biol* 60, 101980. doi: 10.1016/J.PBI.2020.101980.

605 Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C. A., Li, Z., Cress, B. F., et al. (2020).
606 CRISPR-CasΦ from huge phages is a hypercompact genome editor. *Science (1979)* 369, 333–
607 337. doi: 10.1126/science.abb1400.

608 Pour, M., and Yanai, I. (2022). New adventures in spatial transcriptomics. *Dev Cell* 57, 1209–1210.
609 doi: <https://doi.org/10.1016/j.devcel.2022.04.021>.

610 Ren, Q., Sretenovic, S., Liu, S., Tang, X., Huang, L., He, Y., et al. (2021). PAM-less plant genome
611 editing using a CRISPR–SpRY toolbox. *Nat Plants* 7, 25–33. doi: 10.1038/s41477-020-00827-
612 4.

613 Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., and Lippman, Z. B. (2017).
614 Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. *Cell* 171,
615 470-480.e8. doi: 10.1016/J.CELL.2017.08.030.

616 Sauerborn, J., Müller-Stöver, D., and Hershenhorn, J. (2007). The role of biological control in
617 managing parasitic weeds. *Crop Protection* 26, 246–254. doi: 10.1016/j.cropro.2005.12.012.

618 Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. (2019). The
619 global burden of pathogens and pests on major food crops. *Nat Ecol Evol* 3, 430–439. doi:
620 10.1038/s41559-018-0793-y.

621 Serghini, K., de Luque, A. P., Castejón-Muñoz, M., García-Torres, L., and Jorrín, J. V (2001).
622 Sunflower (*Helianthus annuus* L.) response to broomrape (*Orobanche cernua* Loefl.) parasitism:
623 induced synthesis and excretion of 7-hydroxylated simple coumarins. *J Exp Bot* 52, 2227–2234.
624 doi: 10.1093/jexbot/52.364.2227.

625 Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K., et al. (2014). Carlactone is an
626 endogenous biosynthetic precursor for strigolactones. *Proc Natl Acad Sci U S A* 111, 1640–
627 1645. doi: 10.1073/pnas.1314805111.

628 Shahid, S., Kim, G., Johnson, N. R., Wafula, E., Wang, F., Coruh, C., et al. (2018). MicroRNAs from
629 the parasitic plant *Cuscuta campestris* target host messenger RNAs. *Nature* 553, 82–85. doi:
630 10.1038/nature25027.

631 Shudo, E., and Iwasa, Y. (2001). Inducible Defense against Pathogens and Parasites: Optimal Choice
632 among Multiple Options. *J Theor Biol* 209, 233–247. doi:
633 <https://doi.org/10.1006/jtbi.2000.2259>.

634 Tester, M., and Langridge, P. (2010). Breeding Technologies to Increase Crop Production in a
635 Changing World. *Science* (1979) 327, 818–822. doi: 10.1126/science.1183700.

636 Toker, C., Yadav, S. S., and Solanki, I. S. (2007). “Mutation Breeding,” in *Lentil: An Ancient Crop*
637 for Modern Times, eds. S. S. Yadav, D. L. McNeil, and P. C. Stevenson (Dordrecht: Springer
638 Netherlands), 209–224. doi: 10.1007/978-1-4020-6313-8_13.

639 Tomilov, A. A., Tomilova, N. B., Wroblewski, T., Michelmore, R., and Yoder, J. I. (2008). Trans-
640 specific gene silencing between host and parasitic plants. *Plant Journal* 56, 389–397. doi:
641 [10.1111/j.1365-313X.2008.03613.x](https://doi.org/10.1111/j.1365-313X.2008.03613.x).

642 van Schie, C. C. N., and Takken, F. L. W. (2014). Susceptibility Genes 101: How to Be a Good Host.
643 *Annu Rev Phytopathol* 52, 551–581. doi: 10.1146/annurev-phyto-102313-045854.

644 Veillet, F., Durand, M., Koj, T., Cesari, S., and Gallois, J. L. (2020). Precision Breeding Made Real
645 with CRISPR: Illustration through Genetic Resistance to Pathogens. *Plant Commun* 1. doi:
646 [10.1016/j.xplc.2020.100102](https://doi.org/10.1016/j.xplc.2020.100102).

647 Wang, X., Ye, L., Lyu, M., Ursache, R., Löytynoja, A., and Mähönen, A. P. (2020). An inducible
648 genome editing system for plants. *Nat Plants* 6, 766–772. doi: 10.1038/s41477-020-0695-2.

649 Waters, M. T., Gutjahr, C., Bennett, T., and Nelson, D. C. (2017). Strigolactone Signaling and
650 Evolution. *Annu Rev Plant Biol* 68, 291–322. doi: 10.1146/annurev-arplant-042916-040925.

651 Wu, J. (2018). miRNAs as a Secret Weapon in the Battlefield of Haustoria, the Interface between
652 Parasites and Host Plants. *Mol Plant* 11, 354–356. doi: 10.1016/j.molp.2018.02.004.

653 Xu, X., Chemparathy, A., Zeng, L., Kempton, H. R., Shang, S., Nakamura, M., et al. (2021).
654 Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. *Mol
655 Cell* 81, 4333-4345.e4. doi: 10.1016/j.molcel.2021.08.008.

656 Yang, L., Machin, F., Wang, S., Saplaoura, E., and Kragler, F. (2023). Heritable transgene-free
657 genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. *Nat
658 Biotechnol.* doi: 10.1038/s41587-022-01585-8.

659 Yin, K., and Qiu, J. L. (2019). Genome editing for plant disease resistance: Applications and
660 perspectives. *Philosophical Transactions of the Royal Society B: Biological Sciences* 374. doi:
661 [10.1098/rstb.2018.0322](https://doi.org/10.1098/rstb.2018.0322).

662 Yoder, J. I., and Scholes, J. D. (2010). Host plant resistance to parasitic weeds; recent progress and
663 bottlenecks. *Curr Opin Plant Biol* 13, 478–484. doi: 10.1016/j.pbi.2010.04.011.

664 Yoneyama, K., Awad, A. A., Xie, X., Yoneyama, K., and Takeuchi, Y. (2010). Strigolactones as
665 germination stimulants for root parasitic plants. *Plant Cell Physiol* 51, 1095–1103. doi:
666 [10.1093/pcp/pcq055](https://doi.org/10.1093/pcp/pcq055).

667 Yoshida, S., Cui, S., Ichihashi, Y., and Shirasu, K. (2016). The Haustorium, a Specialized Invasive
668 Organ in Parasitic Plants. *Annu Rev Plant Biol* 67, 643–667. doi: 10.1146/annurev-arplant-
669 043015-111702.

670 Yoshida, S., and Shirasu, K. (2009). Multiple layers of incompatibility to the parasitic witchweed,
671 *Striga hermonthica*. *New Phytologist* 183, 180–189. doi: 10.1111/j.1469-8137.2009.02840.x.

672 Zaidi, S. S. e. A., Mahas, A., Vanderschuren, H., and Mahfouz, M. M. (2020). Engineering crops of
673 the future: CRISPR approaches to develop climate-resilient and disease-resistant plants.
674 *Genome Biol* 21. doi: 10.1186/s13059-020-02204-y.

675 Zhang, Y., Ren, Q., Tang, X., Liu, S., Malzahn, A. A., Zhou, J., et al. (2021). Expanding the scope of
676 plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. *Nat
677 Commun* 12. doi: 10.1038/s41467-021-22330-w.

678 Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., et al. (2022). An engineered prime editor with
679 enhanced editing efficiency in plants. *Nat Biotechnol* 40, 1394–1402. doi: 10.1038/s41587-022-
680 01254-w.

681 Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., et al. (2018). De novo
682 domestication of wild tomato using genome editing. *Nat Biotechnol* 36, 1211–1216. doi:
683 10.1038/nbt.4272.

684