
Université Grenoble Alpes

ANNALES DE

L’INSTITUT FOURIER

Maxim A�����, Dmitry F���� & Serge T����������
A family of integrable transformations of centroa�ne
polygons: geometrical aspects
Tome ��, no � (����), p. ����-����.

https://doi.org/10.5802/aif.3641

Article mis à disposition par ses auteurs selon les termes de la licence
C������� C������ ����������� – ��� �� ������������ �.� F�����

http://creativecommons.org/licenses/by-nd/3.0/fr/

C EN T R E
MER S ENN E

Les Annales de l’Institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-mersenne.org e-ISSN : ����-����

https://doi.org/10.5802/aif.3641
http://creativecommons.org/licenses/by-nd/3.0/fr/
https://www.centre-mersenne.org/


Ann. Inst. Fourier, Grenoble
74, 3 (2024) 1319-1363

A FAMILY OF INTEGRABLE TRANSFORMATIONS OF

CENTROAFFINE POLYGONS: GEOMETRICAL

ASPECTS

by Maxim ARNOLD,
Dmitry FUCHS & Serge TABACHNIKOV (*)

Abstract. — Two polygons, (P1, . . . , Pn) and (Q1, . . . , Qn) in R
2 are c-related

if det(Pi, Pi+1) = det(Qi, Qi+1) and det(Pi, Qi) = c for all i. This relation extends
to twisted polygons (polygons with monodromy), and it descends to the moduli
space of SL(2,R)-equivalent polygons. This relation is an equia�ne analog of the
discrete bicycle correspondence studied by a number of authors. We study the
geometry of this relations, present its integrals, and show that, in an appropriate
sense, these relations, considered for di�erent values of the constants c, commute.
We relate this topic with the dressing chain of Veselov and Shabat. The case of
small-gons is investigated in detail.

Résumé. — On appelle deux polygones planaires (P1, . . . , Pn) et (Q1, . . . , Qn) c-
correspondants si leurs déterminants det(Pi, Pi+1) = det(Qi, Qi+1) et det(Pi, Qi) =
c sont satisfaits pour tous i.

Cette relation est un analogue équia�ne de la correspondance de bicyclette
discrète étudiée par un certain nombre d’auteurs. Nous étudions la géométrie de
ces relations, présentons ses intégrales, et montrons que – dans un sens approprié –
ces relations commutent quand considérées pour di�érentes valeurs des constantes
c. Nous relions ce sujet à la chaîne de pansement de Veselov et Shabat.

1. Introduction

The motivation for this paper is two-fold.
The first one is the study of the discrete bicycle correspondence on poly-

gons in the Euclidean plane [15], a discretization of the bicycle correspon-
dence on smooth curves that was studied in [6, 13]. See also [7, 12] for the
discrete and [18] for the continuous versions of this correspondence.

Keywords: Liouville integrability, Integrable Systems, Centroa�ne geometry, Dressing
chain.
2020 Mathematics Subject Classification: 37J70, 37J39, 53D30.
(*) S. Tabachnikov is supported by NSF grant DMS-2005444.
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Figure 1.1. Left: folding the parallelogram P1Q1QÕ
1P2 to the trapezoid

P1Q1P2Q2. Right: the pentagons P and Q are in the discrete bicycle
correspondence.

Two n-gons, P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn), are in the discrete
bicycle correspondence if every quadrilateral PiQiQi+1Pi+1 is obtained by
folding a parallelogram along a diagonal as shown in Figure 1.1:

(1.1) |PiPi+1| = |QiQi+1|, |Pi, Qi| = c, i = 1, . . . , n,

where c is a fixed parameter. In other words, PiQiPi+1Qi+1 is an equilateral
trapezoid, perhaps self-intersecting.

The discrete bicycle correspondence is completely integrable. Specifically,
in [15] a Lax presentation with a spectral parameter of the discrete bicycle
correspondence is described, providing integrals of this correspondence.

It is also shown there that the discrete bicycle correspondence commutes
and shares its integrals with the polygon recutting, another integrable
transformation of polygons, introduced and studied in [1, 2], see Figure 1.2.

Figure 1.2. Polygon recutting on vertex P1: point P Õ
1 is the reflection of

P1 in the perpendicular bisector of the diagonal P2P5. The recutting of
the polygon is the result of five such transformations performed cycli-
cally.
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The present paper concerns an analog of the discrete bicycle correspon-
dence in the centroa�ne geometry, associated with the group SL(2,R) –
or SL(2,C), if one works with complex coe�cients. That is, we consider
two polygons in R

2 congruent if they are related by a linear transformation
with determinant 1. We denote the determinant by bracket.

Let c œ R be a non-zero number. Two n-gons, P and Q, are c-related if

(1.2) [Pi, Pi+1] = [Qi, Qi+1], [Pi, Qi] = c, i = 1, . . . , n,

see Figure 1.3. We write P c≥ Q.

Figure 1.3. Two c-related pentagons.

Equations (1.2) are centroa�ne analogs of equations (1.1): the role of the
length is played by the area (i.e., the determinant). The space of centroa�ne
polygons is foliated by the c-relation invariant subspaces consisting of the
polygons whose “side areas” [Pi, Pi+1] depend only on i.

Along with closed polygons (Pi+n = Pi for all i), we consider twisted n-
gons. A twisted n-gon P is an infinite collection of points Pi œ R

2 such that
Pi+n = MP(Pi) for all i; this map MP œ SL(2,R) is called the monodromy
of the twisted polygon P. Twisted polygons P and Q are c-related if, in
addition to (1.2), they share their monodromies.

The c-relation is a discretization of a relation on centroa�ne curves,
which is a geometrical realization of the Bäcklund transformation of the
KdV equation studied in [5, 14].

Two consecutive pairs of vertices of c-related polygons form a quadrilat-
eral satisfying

[Pi, Pi+1] = [Qi, Qi+1], [Pi, Qi] = [Pi+1, Qi+1].

We call such quadrilaterals centroa�ne butterflies, see Figure 1.4 (the term
is adopted from [15]). They are centroa�ne analogs of the folded parallel-
ograms in Figure 1.1.
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Figure 1.4. A centroa�ne butterfly: an a�ne reflection interchanges
P1 with Q2 and P2 with Q1.

We also consider centroa�ne version of polygon recutting. An elementary
centroa�ne recutting is depicted in Figure 1.4: it is a linear involution that
swaps the triangles P1Q1Q2 and P1P2Q2. The centroa�ne recutting of a
n-gon is the composition of n elementary recuttings performed cyclically.

Let fi : R2 \ {O} æ RP
1 be the natural projection. Abusing notation, we

use the same symbol for the projections of centroa�ne polygons to polygons
in RP

1. This projection commutes with the natural actions of SL(2,R) on
R

2 and RP
1.

Let P and Q be c-related centroa�ne polygons, and p and q be their
projections to RP

1. Then

(1.3) [pi, pi+1, qi, qi+1] = [Pi, Pi+1][Qi, Qi+1]
[Pi, Qi][Pi+1, Qi+1]

where the bracket on the left hand side denotes the cross-ratio (there are six
di�erent choices of cross-ratio to make; the right hand side of the formula
specifies our choice). If [Pi, Pi+1] is the same for all i, then the polygons p
and q are in the cross-ratio relation: [pi, pi+1, qi, qi+1] = – for all i.

The cross-ratio relation on projective polygons was thoroughly studied,
starting with [11] and, more recently, in [3] and [4]. This is the second
source of our motivation: many results in this paper have analogs in [4].

The cross-ratio relation can be generalized: n-gons p and q are related if
[pi, pi+1, qi, qi+1] = –i, where –i is an n-periodic sequence (not necessarily
constant). Formulas (1.2) and (1.3) imply that the projection fi conjugates
the c-relation with this generalized cross-ratio relation.

Let us present the main results of the paper.
In Section 2 we introduce coordinates in the moduli space of twisted

centroa�ne polygons and calculate the monodromy of a twisted polygon:
the result is given in terms of continuants (3-diagonal determinants). We
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INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 1323

also describe the algebraic relations satisfied by the coordinates of closed
polygons.

Let P = (P1, . . . , Pn) be a centroa�ne n-gon. Choose a test vector Q1
with [P1, Q1] = c, and consecutively construct vectors Q2, . . . , Qn, Qn+1
according to (1.2). We call the map Q1 ‘æ Qn+1 the Lax transformation
associated with the polygon P and denote it by LP,c. Then P c≥ Q if and
only if Q1 is a fixed point of LP,c. Similarly one defines the Lax transfor-
mation associated with a twisted polygon.

We show that LP,c is a Möbius map. This makes it possible to consider
the c-relation on generic polygons as a 2-2 map.

Theorem 2.11 states that the c-relation satisfies the Bianchi permutabil-
ity. Informally speaking, it says that the c-relations with di�erent values of
the constant c commute (see Section 2.6 for the precise formulation).

Theorem 3.1 states that if P and Q are c-related twisted n-gons, then
the Lax transformations LP,⁄ and LQ,⁄ are conjugated for every value of
the spectral parameter ⁄. This is the source of integrals of the c-relation.
The moduli space of twisted centroa�ne n-gons with fixed “side areas” has
dimension n; we obtain Â n+1

2 Ê integrals therein.
In Section 3.2 we study how the c-relation interacts with the centroa�ne

polygon recutting. We prove that the Lax transformation is preserved by
the recutting and that the recutting commutes with the c-relations (Theo-
rem 3.8).

In Section 3.4 we calculate the integrals provided by the conjugacy in-
variance of the Lax transformations and show that they coincide with the
integrals of the dressing chain of Veselov and Shabat [17]. In Section 3.5 we
describe two relations between these integrals that hold for closed polygons.

Section 4 concerns the space of closed centroa�ne polygons before its
factorization by the group SL(2,R). We construct presymplectic forms on
the subspaces of polygons whose “side areas” [Pi, Pi+1] depend on i only.
These forms are SL(2,R)-invariant, but they do not descend on the quotient
spaces by the group. The forms are invariant under the c-relation and under
the polygon recutting.

The reason to introduce these 2-forms is that they provide three addi-
tional integrals of the c-relation, quadratic in the coordinates; one polyno-
mial function of these three integrals is invariant under SL(2,R) and is a
pull-back of an integral defined on the moduli space. These integrals are
interpreted as the moment map of the Hamiltonian action of sl(2,R) on
the spaces of polygons with fixed “side areas”.

TOME 74 (2024), FASCICULE 3



1324 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

These integrals define a certain center C(P) of a centroa�ne polygon,
that takes values in quadratic forms on R

2. This center is invariant under
the c-relation and the recutting, and equivariant with respect to the action
of SL(2,R). It has interesting properties: it is additive with respect to
cutting polygons into two, and it coincides with the origin for centroa�ne
butterflies.

Section 5 is devoted to a study of “small-gons”, triangles, quadrilaterals,
and pentagons.

Let us emphasize that we do not prove Liouville integrability of the
c-relations here: this would involve the existence of an invariant Poisson
structure with respect to which our integrals commute. This, along with the
relation with the theory of cluster algebras, will be studied by A. Izosimov
in the forthcoming paper [8].

Acknowledgements

We are very grateful to Anton Izosimov for his insights and useful sug-
gestions. It is a pleasure to thank the author of the detailed referee report;
the suggestions therein greatly helped to improve the exposition.

2. Spaces and maps

2.1. Spaces and coordinates

In this paper we consider polygons P = (. . . PiPi+1 . . .) in R
2 that sat-

isfy [Pi, Pi+1] ”= 0 for all i (when appropriate, the indices are understood
cyclically). Denote by ÂYn and ÂXn the spaces of twisted and closed n-gons,
and by Yn and Xn their quotient spaces by SL(2,R).

Let us introduce coordinates in Yn:

(2.1) s2j≠1 = [Pj≠1, Pj ], v2j = [Pj≠1, Pj+1].

That is, s2j≠1 are the areas subtended by the sides, and v2j are the areas
subtended by the short diagonals of the polygon.

One has a linear recursion

(2.2) Pj+1 = v2j

s2j≠1
Pj ≠ s2j+1

s2j≠1
Pj≠1,

that is, 3
Pj

Pj+1

4
=

A
0 1

≠ s2j+1

s2j≠1

v2j

s2j≠1

B 3
Pj≠1
Pj

4
.

ANNALES DE L’INSTITUT FOURIER
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It follows that the (conjugacy class of the) monodromy is given by

(2.3) MP =
A

0 1
≠ s1

s2n≠1

v2n
s2n≠1

B
. . .

3
0 1

≠ s5

s3

v4

s3

4 3
0 1

≠ s3

s1

v2

s1

4
.

Note that det MP = 1.
Let S = (s1, s3, s5, . . . , s2n≠1); denote by ÂYn,S the space of twisted n-

gons with [Pi, Pi+1] = s2i+1 for all i, and let ÂXn,S be the corresponding
space for closed polygons.

Remark 2.1. — The spaces ÂXn,S and Xn,S are centroa�ne analogs of the
spaces of polygons with fixed side lengths, studied in [9].

When is ÂXn,S a smooth n-dimensional manifold? One has a map ÂXn æ
R

n that sends P to S = (. . . , [Pi, Pi+1], . . .). The next lemma describes the
regular values S of this map.

Lemma 2.2. — If n is odd and sj ”= 0 for all j, then ÂXn,S is smooth. If
n is even and s1s5s9 · · · ”= ±s3s7s11 · · · , then ÂXn,S is smooth.

Proof. — If Pi = (xi, yi) then s2i+1 = xiyi+1 ≠ xi+1yi. We need to know
when the 1-forms ds2i+1 are linearly dependent.

We may assume that the coordinates are chosen so that all xi and yi are
distinct from zero. Assume that

q
ai dsi = 0. This expands out as

ÿ

i

ai(xi dyi+1 + yi+1 dxi ≠ xi+1 dyi ≠ yi dxi+1) = 0,

where not all ai vanish, hence
ÿ

i

(aiyi+1 ≠ ai≠1yi≠1) dxi ≠ (aixi+1 ≠ ai≠1xi≠1) dyi = 0.

Therefore
ai≠1
ai

= yi+1
yi≠1

= xi+1
xi≠1

, i = 1, . . . , n,

(and hence all ai are di�erent from zero).
This implies that Pi≠1 and Pi+1 are collinear for all i. If n is odd, then

all vertices of P are collinear, and s2i+1 = 0 for all i.
If n is even, then the odd vertices of P are collinear, and so are the even

vertices. Without loss of generality, assume that

P1 = (x1, 0), P2 = (0, y2), P3 = (x3, 0), P4 = (0, y4), . . .

Then
s3 = x1y2, s5 = ≠y2x3, s7 = x3y4, s9 = ≠y4x5 . . .

and s3s7 · · · = ±s1s5 · · · This completes the proof. ⇤

TOME 74 (2024), FASCICULE 3



1326 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

2.2. Monodromy of a twisted polygon

Set
aj = v2j

s2j≠1
, bj = s2j+1

s2j≠1
.

Then
Mn =

3
0 1

≠bn≠1 an≠1

4
. . .

3
0 1

≠b1 a1

4 3
0 1

≠b0 a0

4
,

as in (2.3).
For 0 6 i 6 j, consider the continuants

(2.4) Di,j+1 = det

Q

cccccccca

ai 1 0 · · · 0
bi+1 ai+1 1 0 · · ·

0 bi+2 ai+2 1 · · ·

0
. . . . . . . . . 0

· · · 0 bj≠1 aj≠1 1
0 · · · 0 bj aj

R

ddddddddb

.

We describe the monodromy of a twisted polygon in terms of these contin-
uants.

Expanding by the last two rows, we see that

(2.5) Di,j+1 = ajDi,j ≠ bjDi,j≠1,

the same recursion as (2.2). Let us add the boundary conditions Di,i =
1, Di,i≠1 = 0.

Proposition 2.3. — One has

Mn =
3

≠b0D1,n≠1 D0,n≠1
≠b0D1,n D0,n

4
.

Proof. — Induction on n. For n = 1, the claim holds due to the boundary
conditions D1,0 = 0, D0,0 = D1,1 = 1, D0,1 = a0.

Next,

Mn+1 =
3

0 1
≠bn an

4
Mn,

and the result follows from the recurrence (2.5). ⇤
If P is a twisted n-gon, then the sequences ai and bi are n-periodic andr
i bi = 1. Proposition 2.3 implies the following statement.

Corollary 2.4. — For a closed n-gon, the coordinates (s2i≠1, v2i) sat-
isfy Di,n+i≠1 = 0 for all i.

In fact, any three of these identities imply the rest (the codimension of
the space of closed polygons is three).

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 1327

Example 2.5. — Consider the case n = 3. Corollary 2.4 implies

v0v2 = s3s5, v2v4 = s5s1, v4v0 = s1s3,

hence v2
0 = s2

3. We have two solutions;

v0 = ≠s3, v2 = ≠s5, v4 = ≠s1, and v0 = s3, v2 = s5, v4 = s1.

The first one corresponds to a closed triangle (the monodromy is Id), and
the second one to a centrally symmetric hexagon (the monodromy is ≠ Id).

Next, consider the case n = 4. Corollary 2.4 implies

v0v2v4 = s3s7v4 + s1s5v0

and its three cyclic permutations. Rewrite it as
s3s7
v0v2

+ s1s5
v2v4

= 1

and its cyclic permutations. This is a system of four linear equations on
the variables

1
v0v2

,
1

v2v4
,

1
v4v6

,
1

v6v0
with coe�cients s3s7 and s1s5. This system implies

1
v0v2

= 1
v4v6

,
1

v2v4
= 1

v6v0
,

and hence v2
4 = v2

0 . As before, one has two choices of signs, one correspond-
ing to the monodromy Id, and another to ≠ Id. In the former case of closed
quadrilaterals, one has

v4 = ≠v0, v6 = ≠v2 and v0v2 = s7s3 ≠ s1s5,

the latter being the Ptolemy–Plücker relation.

2.3. Lax transformation is fractional-linear

Given a non-zero vector Pi, the ith vertex of a polygon P, the vectors Q
with [Pi, Q] = c comprise a line LPi parallel to Pi. Identify LPi with R by
parameterizing it as

cPi+1
[Pi, Pi+1] + tPi, t œ R.

Let P = (P1, . . . , Pn) be a closed n-gon. As described in Introduction,
choose a test vector Q1 with [P1, Q1] = c, and consecutively construct
vectors Q2, . . . , Qn, Qn+1 according to (1.2), which we recall here:

[Pi, Pi+1] = [Qi, Qi+1], [Pi, Qi] = c, i = 1, . . . , n.

TOME 74 (2024), FASCICULE 3



1328 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

For this to work, that is, for each next point Qi+1 to be defined, we need
the lines given by the equations [Qi, Qi+1] = [Pi, Pi+1] and [Pi+1, Qi+1] = c
to intersect. This is the case if the vectors Pi+1 and Qi are not parallel.
This is a general position condition that we assume to hold for all i.

We use the notation

LP1P2,c(Q1) = Q2, LP2P3,c(Q2) = Q3, . . .

(we omit c from the notation when it does not lead to confusion). The Lax
transformation LP,c : LP1

æ LP1
is the composition of these maps. The

polygonal line Q closes up, that is, Qn+1 = Q1, if and only if Q1 is a fixed
point of LP,c : R æ R. Then we have P c≥ Q.

Likewise, if P is a twisted n-gon with monodromy MP, then MP sends
LP1

to LPn+1
and, as a map R æ R, it is the identity. Hence it is still

true that the fixed points of LP,c give rise to twisted polygons Q such that
P c≥ Q.

Lemma 2.6. — The Lax transformations are fractional-linear.

Proof. — Denote by RQ1,P2
the centroa�ne reflection that interchanges

Q1 and P2. This map is given by the formula

(2.6) RQ1,P2
(X) = [Q1, X]Q1 + [X, P2]P2

[Q1, P2] ,

and one has Q2 = RQ1,P2
(P1), that is, LP1P2

(Q1) = RQ1,P2
(P1).

Using the identifications of LP1
and LP2

with R, the map LP1P2
: Q1 ‘æ

Q2 becomes

t ‘æ ≠ c[P1, P3]
[P1, P2][P2, P3] + [P1, P2]2 ≠ c2

t[P1, P2]2 = ≠ cv4
s3s5

+ s2
3 ≠ c2

ts2
3

,

a fractional-linear transformation. Hence LP,c is fractional-linear as
well. ⇤

The above fractional-linear transformation is represented by the matrix

(2.7)

Q

a≠ cv4
s3s5

1 ≠ c2

s2
3

1 0

R

b ,

its determinant equals c2

s2
3

≠ 1.

If the ground field is C, a fractional-linear transformation has two fixed
points, perhaps, coinciding (unless it is the identity). Over the reals, this
number is 0, 1, 2, or Œ.

Over C, Lemma 2.6 makes it possible to consider c-relation as a map
(defined in a Zariski open set of polygons): start with P and choose one

ANNALES DE L’INSTITUT FOURIER
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of the two c-related polygons, say Q1. This polygon also has two c-related
ones, one of which is ≠P, the polygon that is centrally symmetric to P.
Choose the other polygon c-related to Q1 and continue in a similar way. If
at the beginning we choose Q2 instead of Q1 then ≠Q2

c≥ P, that is, up
to central symmetry, we obtain the inverse of the same map.

Over R, a polygon may have no c-related ones. To have a map, one needs
to assume that a c-related polygon exists. We shall see in Section 3.1 that
the c-related polygons have conjugated Lax transformations. This makes it
possible to continue in the same way as in the complex case.

2.4. Centroa�ne butterflies

We show that centroa�ne butterflies have trivial Lax transformations
for all c and classify all such quadrilaterals. Here and in what follows we
say that two vertices are not collinear if they do not lie on the same line
through the origin.

Lemma 2.7. — The Lax transformation for a quadrilateral is the iden-
tity for every c if and only if the quadrilateral is a centroa�ne butterfly,
or it is obtained from a centroa�ne butterfly by reflecting one of the ver-
tices in the origin (an “anti-butterfly”), or its two opposite vertices are
symmetric with respect to the origin.

Proof. — Assume first that a pair of opposite vertices of a quadrilateral
P is not collinear. Applying a linear transformation, assume that

P1 = (1, 0), P2 = (a, b), P3 = (0, 1), P4 = (u, v), Q1 = (x, y),

so y = c. Applying equation (2.6) twice, we find

Q2 = 1
bx ≠ ay

(ab ≠ xy, b2 ≠ y2), Q3 =
A

≠y,
≠y

!
a2 + b2"

+ abx + y3

ab ≠ xy

B
.

Going in the opposite direction, that is, replacing (a, b) with (u, v), we
obtain point A

≠y,
≠y

!
u2 + v2"

+ uvx + y3

uv ≠ xy

B
.

This point coincides with Q3 for all x, which implies

ab = uv, a2 + b2 = u2 + v2.

Hence either u = b, v = a, a butterfly, or u = ≠b, v = ≠a, an anti-butterfly,
or u = ≠a, v = ≠b, symmetric opposite vertices.

TOME 74 (2024), FASCICULE 3
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It remains to consider the case when both pairs of opposite vertices of P
are collinear. Then one may assume that

P1 = (1, 0), P2 = (0, 1), P3 = (a, 0), P4 = (0, b), Q1 = (x, y).

Using equation (2.6) consecutively, one calculates

Q5 =
3

x(a2 ≠ y2)(b2 ≠ y2)
(a2b2 ≠ y2)(1 ≠ y2) , y

4
.

Equating it to Q1 yields

(a2 ≠ y2)(b2 ≠ y2) = (a2b2 ≠ y2)(1 ≠ y2),

hence (a2 ≠ 1)(b2 ≠ 1) = 0. If a = 1 or b = 1, then P1 = P3 or P2 = P4, and
if a = ≠1 or b = ≠1, we have the already considered symmetric case. ⇤

Thus if P is a centroa�ne butterfly, then for every choice of the seed
vertex Q1, the quadrilateral Q closes up. In fact, it is a centroa�ne butterfly
as well.

Lemma 2.8. — If P is a centroa�ne butterfly and Q is c-related to it,
then Q is also a butterfly, see Figure 2.1.

Figure 2.1. Two centroa�ne butterflies are c-related.

Proof. — We need to show that

[Q1, Q2] = [Q4, Q3], [Q1, Q4] = [Q2, Q3].

By definition of c-relation,

[Q1, Q2] = [P1, P2], [Q4, Q3] = [P4, P3],

and [P1, P2] = [P4, P3] because P is a butterfly. This implies the first of the
claimed equalities. The second follows in the same way. ⇤
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2.5. Constructing c-related polygons

In this section we describe a construction that yields a pair of c-related
n-gons. This is a centroa�ne analog of a construction that yields pairs of
polygons in the discrete bicycle correspondence that is described in [15].

Assume first that n is odd. Start with an n-gon (pentagon A in Fig-
ure 2.2). Connect the midpoints of its sides with the origin. Consider the
a�ne reflections in these lines that interchange the vertices of the respec-
tive sides of A. Let R be the composition of these reflections taken around
the polygon.

Figure 2.2. Constructing a c-related pair of n-gons, odd n.

Lemma 2.9. — The map R is an a�ne reflection.

Proof. — Since n is odd, R is orientation reversing and its determinant
equals ≠1. Hence it has two eigendirections. Also R has a fixed point, a
vertex of A. Therefore the eigenvalues of R are 1 and ≠1, and it is an a�ne
reflection. ⇤

It follows that R2 = Id. The construction of a c-related pair follows.
Start with an arbitrary point P1 and apply consecutive a�ne reflections

around the polygon A twice. This produces 2n points

P1 ‘æ Q2 ‘æ P3 ‘æ Q4 ‘æ · · · ‘æ Qn,
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see Figure 2.2. Each quadrilateral PiPi+1QiQi+1 is a centroa�ne butterfly,
therefore P c≥ Q.

One has c = [P1, Q1] = [P1, R(P1)]. The locus of points P1 for which
[P1, R(P1)] is fixed is a hyperbola (indeed, R is conjugated to the map
(x, y) ‘æ (≠x, y), in which case this claim is obvious).

Now assume that n is even. We repeat the above construction, but this
time the transformation R has determinant 1. It still has an eigendirection
with eigenvalue 1 (a vertex of A is a fixed point), but it is not necessarily
the identity. We need to assume that R = Id, see below.

Figure 2.3. Constructing a c-related pair of n-gons, even n.

With this assumption, we choose two starting points, P1 and Q1 and
apply consecutive a�ne reflections to obtain polygons P c≥ Q with c =
[P1, Q1] as before, see Figure 2.3.

We describe when the transformation R is the identity. Recall that we
consider the case of an even-gon.

Lemma 2.10. — One has R = Id if and only if
nÿ

i=1
(≠1)i v2i

s2i≠1s2i+1
= 0,

where the coordinates v2i, s2i+1 are associated with the polygon A.

Proof. — Since R has a fixed point, a vertex of polygon A, the trans-
formation R is the identity if and only if it has another fixed point not
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collinear with the first one. Thus we need to learn when a polygon B ex-
ists, not homothetic to A, whose sides are parallel to those of A and the
midpoints of whose sides are collinear to those of A.

These conditions are written as

[Ai+1 + Ai, Bi+1 + Bi] = 0 and [Ai+1 ≠ Ai, Bi+1 ≠ Bi] = 0,

or

(2.8) [Ai, Bi] + [Ai+1, Bi+1] = 0, [Ai, Bi+1] + [Ai+1, Bi] = 0.

We will look for points Bi written as Bi = aiAi≠1 + biAi. Then Bi+1 =
ai+1Ai + bi+1Ai+1. Taking cross-products with Ai and Ai+1, we also find
that Bi = bi+1Ai + ai+1Ai+1. Since

[Ai≠1, Ai] = s2i≠1, [Ai, Ai+1] = s2i+1, [Ai≠1, Ai+1] = v2i,

we also have

ai+1s2i+1 = ≠ais2i≠1, (bi+1 ≠ bi)s2i+1 = aiv2i.

It follows that ai = (≠1)it/s2i≠1 for some non-zero constant t (non-zero
since B is not homothetic to A), and

bi+1 ≠ bi = t
(≠1)iv2i

s2i≠1s2i+1
.

This system of linear equations on bi has a solution if and only if the sum
of the right hand sides vanishes, as needed. ⇤

We add that the above described construction is a general method of
constructing c-related pairs. Indeed, a pair of c-related n-gons with odd n
gives rise to an a�ne reflection R, as described above and illustrated in
Figure 2.2. Then one can chose a fixed point of R as a vertex of n-gon A
and obtain the other vertices by consecutive a�ne reflections. A similar
remark applies to the case of even n as well.

2.6. Bianchi permutability

In the following theorem, the polygons are either closed or twisted.

Theorem 2.11. — Assume that P c≥ Q and P d≥ R. Then there exists
a polygon S such that Q d≥ S and R c≥ S.
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Figure 2.4. Bianchi permutability: one can see four butterflies in a
coordinated “flight”.

Proof. — Recall that L is the Lax transformation. The idea of the proof
is to define polygon S such that PiQiSiRi is a centroa�ne butterfly for all
i and to show that this polygon is a Lax c-orbit with respect to R and a
Lax d-orbit with respect to Q.

Thus we define point S1 by requiring P1Q1S1R1 to be a centora�ne
butterfly. Then [R1, S1] = c, [Q1, S1] = d. Let LQ1Q2,d(S1) = S2 and
LR1R2,c(S1) = SÕ

2. We claim that S2 = SÕ
2 and that P2Q2S2R2 is a cen-

toa�ne butterfly.
Indeed, one has

LS1R1
(SÕ

2) = R2, LR1P1
(R2) = P2, LP1Q1

(P2) = Q2, LQ1S1
(Q2) = S2.

Since P1Q1S1R1 is a centora�ne butterfly, Lemma 2.7 implies that the
quadrilateral SÕ

2R2P2Q2S2 closes up and that it is a centoa�ne butterfly.
This shows that one can define the polygon S so that PiQiSiRi is a

centora�ne butterfly for all i. ⇤
We leave it to the reader to make sure that Theorem 2.11 can be inter-

preted as a configuration theorem depicted in Figure 2.4.

3. Integrals

3.1. Invariance of the Lax transformations

The next result provide a Lax presentation of the c-relation.
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Theorem 3.1. — If P and Q are c-related twisted n-gons, then the
Lax transformations LP,⁄ and LQ,⁄ are conjugated for every value of the
parameter ⁄.

Proof. — We know that PiPi+1Qi+1Qi is a centroa�ne butterfly.
Lemma 2.7 shows that the product of the Lax transformations along its
sides is trivial. This can be rearranged to show that LPiPi+1

and LQiQi+1

are conjugate:

LQiQi+1,⁄ = LPi+1Qi+1,⁄ LPiPi+1,⁄ L≠1
PiQi,⁄.

Taking composition over i = 1, . . . , n yields the result. ⇤
Since LP,⁄ is a fractional-linear transformation, one can realize it as a

2◊2 matrix that, abusing notation, we also call L. Then (Tr L)2/ det L is a
well-defined conjugacy invariant function. It depends on ⁄, and expanding
in a Taylor series in ⁄, one obtains integrals of the c-relation.

Note that the determinant of the Lax transformation, det L, depends only
on the variables s2i≠1 (and, of course, ⁄), see formula 2.7. This determinant
is itself an integral, therefore we may – and will – use Tr L, rather than
(Tr L)2/ det L, to obtain integrals of the c-relation.

Example 3.2. — Consider the case of twisted triangles. Let v2, v4, v6 and
s1, s3, s5 be the respective coordinates in the moduli space. Consider the
space Y3,S.

Multiply the three matrices (2.7) (replacing c by ⁄) to find the Lax
matrix L depending on this spectral parameter ⁄. One has

TrL = ⁄3
3

v2v4v6
s1s3s5

≠ v2
s5

≠ v4
s1

≠ v6
s3

4
+ ⁄(v2s5 + v4s1 + v6s3),

and
det L = (⁄2 ≠ s2

1)(⁄2 ≠ s2
3)(⁄2 ≠ s2

5).
The determinant does not depend on the v-variables, and since the s-
variables are preserved by the c-relation, the trace is invariant. We obtain
two integrals:

I = v2v4v6
s1s3s5

≠
3

v2
s5

+ v4
s1

+ v6
s3

4

and
J = v2

s1s3
+ v4

s3s5
+ v6

s5s1
.

Thus Y3,S is foliated by the common level curves of the functions I and J .
For comparison, let M be the monodromy of the twisted triangle. Using

formula (2.3), we find that Tr M = I.
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Example 3.3. — Similarly, in the case of twisted quadrilaterals, we have
variables v2, v4, v6, v8 and parameters s1, s3, s5, s7. The trace of the Lax
matrix is a biquadratic polynomial in ⁄, and its three coe�cients are in-
tegrals. The free term is 2s1s3s5s7, a constant on Y4,S, and the other two
terms give two integrals

I = v2v4v6v8
s1s3s5s7

≠
3

v2v4
s3s7

+ v4v6
s5s1

+ v6v8
s7s3

+ v8v2
s1s5

4

and
J =

3
v2v4

s1s2
3s5

+ v4v6
s3s2

5s7
+ v6v8

s5s2
7s1

+ v8v2
s7s2

1s3

4

(omitting the terms that do not depend on the v-variables). Thus Y4,S is
foliated by the common level surfaces of the functions I and J . Note that
again one has Tr M = I.

If the quadrilateral is closed, according to Example 2.5, we have

v6 = ≠v2, v8 = ≠v4, v2v4 = s1s5 ≠ s3s7,

and both integrals, I and J , become functions of the parameters sj only.

Example 3.4. — Consider the case of twisted pentagons. As before, we
calculate Tr L and decompose it in homogeneous components in the spec-
tral parameter ⁄. There are three terms, of degrees 1,3, and 5. This gives
three integrals:

I = v2v4v6v8v10
s1s3s5s7s9

≠
3

v2v4v6
s3s5s9

+ v4v6v8
s5s7s1

+ v6v8v10
s7s9s3

+ v8v10v2
s9s1s5

+ v10v2v4
s1s3s7

4

+
3

v2s7
s5s9

+ v4s9
s7s1

+ v6s1
s9s3

+ v8s3
s1s5

+ v10s5
s3s7

4

(this also comes from the trace of the monodromy),

J = v2v4v6
s1s2

3s2
5s7

+ v4v6v8
s3s2

5s2
7s9

+ v6v8v10
s5s2

7s2
9s1

+ v8v10v2
s7s2

9s2
1s3

+ v10v2v4
s9s2

1s2
3s5

≠ v2
s1s3

3
1
s2

5
+ 1

s2
9

4
≠ v4

s3s5

3
1
s2

7
+ 1

s2
1

4
≠ v6

s5s7

3
1
s2

9
+ 1

s2
3

4

≠ v8
s7s9

3
1
s2

1
+ 1

s2
5

4
≠ v10

s9s1

3
1
s2

3
+ 1

s2
7

4
.

and

K = v2
s1s3

+ v4
s3s5

+ v6
s5s7

+ v8
s7s9

+ v10
s9s1

.

The common level surfaces of these integrals foliate the 5-dimensional
space Y5,S.
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In the case of closed pentagons, we have the Ptolemy–Plücker relations

v2v4 = s1s5 ≠ s3v8

and its cyclic permutations. This makes the integrals functionally depen-
dent, and leaves a single integral K on the 2-dimensional space X5,S.

The formulas of Examples 3.2, 3.3, and 3.4 are extended to arbitrary
values of n in Sections 3.4 and 3.5 below.

3.2. Centroa�ne polygon recutting

As mentioned in Introduction, by the elementary recutting of a closed
polygon P we mean the linear transformation that changes only one vertex:
P Õ

j = RPj≠1Pj+1
(Pj). Denote this transformation by Rj . Elementary recut-

ings are involutions. The recutting R of the polygon P is the composition
Rn ¶ · · · ¶ R1.

The next lemma is a centroa�ne analog of [1, Corollary 2].

Lemma 3.5. — Let Rj be the elementary recutting at the vertex j. Then
(RjRj+1)3 = Id, R2

j = Id and RjRk = RkRj for |k ≠ j| > 2.

Proof. — The only non-trivial fact is the (RjRj+1)3 = Id. We have two
approaches to the proof. The first approach consists in normalizing two
vertices involved to be the standard basis in R

2, to denote the other vertices
using variables, such as (a, b), (c, d), etc., and to work out the necessary
calculations in Mathematica (or another CAS). The calculations are not
too complicated.

The alternative, hand calculation based, approach is presented below.
Consider Figure 3.1 that depicts the configuration theorem described

by this identity. One fixes the frame made of the vectors Pj≠1 and Pj+2.

Figure 3.1. To Lemma 3.5.
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Then we have six points Pj , P Õ
j , P ÕÕ

j , Pj+1, P Õ
j+1, P ÕÕ

j+1 that should satisfy 12
relations (cf. (1.2)):

[Pj≠1, Pj ] = [P Õ
j , Pj+1], [Pj≠1, P Õ

j ] = [Pj , Pj+1],
[Pj≠1, P Õ

j ] = [P ÕÕ
j , P Õ

j+1], [Pj≠1, P ÕÕ
j ] = [P Õ

j , P Õ
j+1],

[Pj≠1, P ÕÕ
j ] = [Pj , P ÕÕ

j+1], [Pj≠1, Pj ] = [P ÕÕ
j , P ÕÕ

j+1],
[P ÕÕ

j+1, Pj+2] = [Pj , Pj+1], [Pj+1, Pj+2] = [Pj , P ÕÕ
j+1],

[Pj+1, Pj+2] = [P Õ
j , P Õ

j+1], [P Õ
j+1, Pj+2] = [P Õ

j , Pj+1],
[P Õ

j+1, Pj+2] = [P ÕÕ
j , P ÕÕ

j+1], [P ÕÕ
j+1, Pj+2] = [P ÕÕ

j , P Õ
j+1].

This system is equivalent to the system of 9 relations

(3.1)

[Pj≠1, Pj ] = [P Õ
j , Pj+1] = [P ÕÕ

j , P ÕÕ
j+1] = [P Õ

j+1, Pj+2] := x,

[Pj≠1, P Õ
j ] = [P ÕÕ

j , P Õ
j+1] = [Pj , Pj+1] = [P ÕÕ

j+1, Pj+2] := y,

[Pj≠1, P ÕÕ
j ] = [Pj , P ÕÕ

j+1] = [P Õ
j , P Õ

j+1] = [Pj+1, Pj+2] := z.

Assume, without loss of generality, that [Pj≠1, Pj+2] = 1 and express the
remaining points as linear combinations of Pj≠1 and Pj+2:

Pj = ⁄Pj≠1 + xPj+2, P Õ
j = ⁄1Pj≠1 + yPj+2,

P ÕÕ
j = ⁄2Pj≠1 + zPj+2, Pj+1 = µPj+2 + zPj≠1,

P Õ
j+1 = µ1Pj+2 + xPj≠1, P ÕÕ

j+1 = µ2Pj+2 + yPj≠1.

Then the rest of the equations (3.1) become the following six equations on
the nine variables x, y, z, ⁄i, µi, i = 1, 2, 3:

⁄1µ = x + yz = ⁄2µ2, ⁄2µ1 = y + xz = ⁄µ, ⁄µ2 = z + xy = ⁄1µ1.

These equations are not independent: the product of the three left hand
sides equals the product of the three right hand sides.

Overall, one has nine variables satisfying five relations. The resulting four
degrees of freedom make it possible to choose point Pj and Pj+1 arbitrarily,
proving the existence of the configuration of the lemma. ⇤

Remark 3.6. — The relations of Lemma 3.5 show that one has a repre-
sentation of the group of permutations Sn+1 on the space of centroa�ne n-
gons, similar to the situation with the Euclidean polygon recutting, see [1].

The next lemma states that elementary recuttings commute with the
c-relations (an analog of one of the statements of Theorem 4 in [15]).

Lemma 3.7. — If P c≥ Q then Rj(P) c≥ Rj(Q) for all j.
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Proof. — The situation with the proof of this lemma is similar to that
of the preceding lemma: one can delegate the calculation to CAS, or can
do it by hand. We did both, and the latter approach is presented below.

One only has to check that [P Õ
j , QÕ

j ] = c. From (2.2) it follows that

Pj = s2j+1(P)
v2j(P) Pj≠1 + s2j≠1(P)

v2j(P) Pj+1.

Since [P Õ
j , Pj+1] = [Pj≠1, Pj ] and [Pj≠1, P Õ

j ] = [Pj , Pj+1], one has

(3.2) P Õ
j = s2j≠1(P)

v2j(P) Pj≠1 + s2j+1(P)
v2j(P) Pj+1.

Likewise, for Q one has

Qj = s2j+1(Q)
v2j(Q) Qj≠1 + s2j≠1(Q)

v2j(Q) Qj+1,

and
QÕ

j = s2j≠1(Q)
v2j(Q) Qj≠1 + s2j+1(Q)

v2j(Q) Qj+1.

Since Q c≥ P we have

c = [Pj , Qj ] =
3

s2j+1(P)
v2j(P)

s2j+1(Q)
v2j(Q) + s2j≠1(P)

v2j(P)
s2j≠1(Q)
v2j(Q)

4
c

+ s2j+1(P)
v2j(P)

s2j≠1(Q)
v2j(Q) [Pj≠1, Qj+1]

+ s2j≠1(P)
v2j(P)

s2j+1(Q)
v2j(Q) [Pj+1, Qj≠1].

For [P Õ
j , QÕ

j ], we have

[P Õ
j , QÕ

j ] =
3

s2j+1(P)
v2j(P)

s2j+1(Q)
v2j(Q) + s2j≠1(P)

v2j(P)
s2j≠1(Q)
v2j(Q)

4
c

+ s2j≠1(P)
v2j(P)

s2j+1(Q)
v2j(Q) [Pj≠1, Qj+1]

+ s2j+1(P)
v2j(P)

s2j≠1(Q)
v2j(Q) [Pj+1, Qj≠1].

But
s2j≠1(P)
v2j(P)

s2j+1(Q)
v2j(Q) = [Pj≠1, Pj ][Qj , Qj+1]

[Pj≠1, Pj+1][Qj≠1, Qj+1]

= [Qj≠1, Qj ][Pj , Pj+1]
[Pj≠1, Pj+1][Qj≠1, Qj+1] = s2j+1(P)

v2j(P)
s2j≠1(Q)
v2j(Q) .

Hence the result. ⇤
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Lemma 3.7 also can be interpreted as a configuration theorem, see Fig-
ure 3.2. As before, we leave it to the reader to make sure of it.

Figure 3.2. Elementary recutting commutes with c-relation.

Theorem 3.8.

(1) The Lax transformation is preserved by recutting;
(2) Recutting commutes with c-relations.

Proof. — The first statement follows from Lemma 2.7:

LPiPi+1
LPi≠1Pi = LP Õ

i Pi+1
LPi≠1P Õ

i

for all i. The second statement follows from Lemma 3.7: if P c≥ Q then
R1(P) c≥ R1(Q), therefore R2R1(P) c≥ R2R1(Q), etc. ⇤

3.3. Odd-gons, infinitesimal map

If the constant c is infinitesimal, we obtain an SL(2,R)-invariant vector
field on the space of twisted polygons, that is, a vector field on the moduli
space Yn. In this section we calculate this field.

Let P be a twisted n-gon with odd n. Let the field be given by vectors ›i

with foot points Pi, i = 1, . . . , n. The conditions [Pi, Qi] = c, [Pi, Pi+1] =
[Qi, Qi+1] become

(3.3) [Pi, ›i] = 1, [Pi, ›i+1] + [›i, Pi+1] = 0

(we normalize the field so the constant in the first equation is 1).
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Theorem 3.9. — In terms of the (v,s)-coordinates, the field › is given by

v̇2i = v2i

A
n≠1ÿ

k=1
(≠1)k≠1 v2i+2k

s2i+2k≠1s2i+2k+1

B
+ s2i+1

s2i≠1
≠ s2i≠1

s2i+1
.

Proof. — Let ›i = aiPi + biPi+1. Then (3.3) implies

bis2i+1 = 1, (ai + ai+1)s2i+1 + bi+1v2i+2 = 0.

Since n is odd, there is a unique solution

(3.4) ai = 1
2

nÿ

k=1
(≠1)k v2i+2k

s2i+2k≠1s2i+2k+1
, bi = 1

s2i+1
.

Since v2i = [Pi≠1, Pi+1], we have

(3.5)
v̇2i = [Pi≠1, ›i+1] + [›i≠1, Pi+1]

= [Pi≠1, ai+1Pi+1 + bi+1Pi+2] + [ai≠1Pi≠1 + bi≠1Pi, Pi+1]
= (ai≠1 + ai+1)v2i + bi+1[Pi≠1, Pi+2] + bi≠1s2i+1.

By the Prolemy–Plücker relation,

[Pi≠1, Pi+2] = v2iv2i+2 ≠ s2i≠1s2i+3
s2i+1

,

and the values of ai and bi are found in (3.4). Substitute in (3.5) to obtain
the result. ⇤

It follows from Theorems 2.11 and 3.8 that the flow of the field › com-
mutes with the c-relations and with the polygon recutting.

Remark 3.10. — If n is even, then a necessary condition for ai to exist is
nÿ

i=1
(≠1)n v2i

s2i≠1s2i+1
= 0,

the equation that appeared in Lemma 2.10. If this necessary condition
holds, the vector field is defined modulo a 1-dimensional space, the kernel
of the matrix that gives the linear equations on the variables ai.

Set
gi = v2i

s2i≠1s2i+1
, —i = ≠ 1

s2
2i≠1

.

Then, after scaling, the vector field › is given by

ġi = ≠gi(gi+1 ≠ gi+2 + gi+3 ≠ · · · ≠ gi+n≠1) + —i ≠ —i+1.

This is the dressing chain of Veselov–Shabat, formula (12) in [17].
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3.4. Integrals for twisted polygons

In view of Theorem 3.1, we calculate the trace of the Lax matrix L of an
n-gon, the product of n matrices (2.7). Notice that

3
0 1
1 0

4 3
0 1

≠b a

4 3
0 1
1 0

4≠1

=
3

a ≠b
1 0

4
.

That is, the Lax matrices are conjugated to the monodromy matrires, and
we can use the calculations of the latter from Section 2.2.

Set

(3.6) ai = ⁄v2i

s2i≠1s2i+1
, bi = ⁄2

s2
2i≠1

≠ 1, i = 0, . . . , n ≠ 1,

and consider the continuants (2.4). Then Proposition 2.3 implies that

Tr L = D0,n ≠ b0D1,n≠1.

The homogeneous in ⁄ components are integrals of the c-relations for all
values of c.

A combinatorial rule for calculation of the general continuants
--------------

a1 c1 0 . . . 0 0
b1 a2 c2 . . . 0 0
0 b2 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an≠1 cn≠1
0 0 0 . . . bn≠1 an

--------------

is as follows: one term of the continuant is a1a2 . . . an, and the other terms
are obtained from it by replacing any number of disjoint pairs (aiai+1) by
(≠bici), see [10]. That is, this continuant can be written as

(3.7)
n≠1Ÿ

i=1

3
E ≠ bici

ˆ2

ˆaiˆai+1

4
(a1a2 · · · an),

where E is the identity operator. Note that the di�erential operators in-
volved in this formula commute with each other.

As in [4], a subset of the set {0, 1, . . . , n ≠ 1} is called cyclically sparse if
it contains no pairs of consecutive indices, and the indices are understood
cyclically mod n (the empty set is also sparse).

The above rule implies
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Lemma 3.11. — One has

Tr L =
ÿ

I sparse
(≠1)|I|⁄n≠2|I|

Ÿ

j,j+1/œI

3
v2j

s2j≠1s2j+1

4 Ÿ

iœI

3
⁄2

s2
2i≠1

≠ 1
4

= ⁄n
ÿ

I sparse

Ÿ

j,j+1/œI

3
v2j

s2j≠1s2j+1

4 Ÿ

iœI

3
1
⁄2 ≠ 1

s2
2i≠1

4
.

(3.8)

Thus, for t = ⁄≠2,

(3.9)
ÿ

I sparse

Ÿ

j,j+1/œI

3
v2j

s2j≠1s2j+1

4 Ÿ

iœI

3
1
⁄2 ≠ 1

s2
2i≠1

4
=:

ÿ

k

tkFk,

is a generating function of the integrals Fk of the c-relation on twisted
n-gons.

Note that, as a polynomial in the variables v2i, one has deg Fk = n ≠ 2k.
In particular, if n = 2q + 1, then

Fq =
ÿ

i

v2i

s2i≠1s2i+1
,

and one has q + 1 integrals in this case. If n = 2q, then

Fq≠1 =
ÿ

i

v2iv2i+2
s2i≠1s2

2i+1s2i+3
,

and one has q integrals in this case. Compare with the examples in Sec-
tion 3.1.

To summarize, we obtain Â n+1
2 Ê integrals on the moduli space of twisted

n-gons. We do not dwell on the independence and completeness of this set
of integrals here; see [8] and the remark below.

Remark 3.12. — If one has s2i≠1 = 1 for all i, corresponding – as ex-
plained in Introduction – to the case studied in [4], then formula (3.8)
simplifies. The integrals in [4] are given by the formulas

Fk =
ÿ

I sparse,|I|=k

Ÿ

iœI

ci,

where, in our notation, ci = 1/(v2iv2i+2). Multiplying by (
r

ci)≠1/2 (which
is also an integral), this becomes

ÿ

I sparse,|I|=k

Ÿ

j,j+1/œI

v2j ,

precisely what (3.8) yields when s2i≠1 = 1 for all i.

TOME 74 (2024), FASCICULE 3



1344 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

As before, we write

gi = v2i

s2i≠1s2i+1
, —i = ≠ 1

s2
2i≠1

.

Modifying formula (3.7) to account for the cyclic symmetry, we write the
generating function of the integrals Fk as

n≠1Ÿ

i=0

5
E + (t + —i+1) ˆ2

ˆgiˆgi+1

6 Q

a
n≠1Ÿ

j=0
gj

R

b .

Comparing this formula with formula (22) in [17], we conclude that our
integrals coincide with the integrals of the dressing chain obtained in [17].
This is not unexpected, given the appearance of the dressing chain as the
infinitesimal version of the c-relation in the preceding Section 3.3. Note
that the independence of the integrals is asserted in [17].

3.5. Integrals for closed polygons

When restricted to the moduli space of closed polygons, the integrals
from Section 3.4 become dependent. This follows from the next general
observation.

Let X be a manifold, Mt : X æ SL(2,R) be a 1-parameter family of
smooth maps, analytically depending on parameter t. Assume that the
identity matrix E œ SL(2,R) is a regular value of M0, and let Y = M≠1

0 (E).
Consider a 1-parameter family of smooth functions Gt = Tr Mt : X æ R.
Let prime denote d/dt.

Lemma 3.13. — One has:

G0 |Y = 2, GÕ
0 |Y = 0, dG0 |Y = 0.

Proof. — Since M0 sends Y to the unit matrix, G0 equals 2 on Y .
Fix y œ Y and consider the curve Mt(y) in SL(2,R). The tangent vector

M Õ
t(y) at t = 0 lies in sl(2,R), and this matrix has zero trace. This proves

the second equality.
For the third equality, let the eigenvalues of Mt(x) be e±µ(x,t). Then

Gt(x) = eµ(x,t) + e≠µ(x,t), hence dGt = (eµ(x,t) ≠ e≠µ(x,t)) dµ(x, t). Since
µ(x, 0) = 0 for x œ Y , one has dG0 |Y = 0, as claimed. ⇤

We shall apply this lemma to a modified Lax matrix of an n-gon. Recall
that t = ⁄≠2. Let

(3.10) L = LÚr 1
⁄2

s2

2i≠1

≠ 1
2 = (

rn
i=1 s2i≠1) L

⁄n
Òr !

1 ≠ ts2
2i≠1

" .
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Then, according to (2.7), L œ SL(2,R). We write Lt to emphasize the
dependence on t. In what folows we consider the limit t æ 0, that is,
⁄ æ Œ.

Lemma 3.14. — One has L0 = E on closed polygons.

Proof. — We will show that the Lax matrix Lt is a deformation of the
monodromy M.

The monodromy was calculated in Proposition (2.3), where the variables
in the continuants were

ai = v2i

s2ji1
, bi = s2i+1

s2i≠1
.

One can rewrite these continuants as follows:

Di,j+1 = (s2i+1s2i+3 · · · s2j+1)Di,j+1,

where

Di,j+1 = det

Q

ccccccca

v2i
s2i≠1s2i+1

1 0 · · · 0
1

s2

2i+1

v2i+2

s2i+1s2i+3

1 0 · · ·

0
. . . . . . . . . 0

· · · 0 1
s2

2j≠3

v2j≠2

s2j≠3s2j≠1

1
0 · · · 0 1

s2

2j≠1

v2j

s2j≠1s2j+1

R

dddddddb

.

Since M = E for closed n-gons, we have

(3.11) ≠
3rn

i=1 s2i≠1

s2
2n≠1

4
D1,n≠1 =

A
nŸ

i=1
s2i≠1

B
D0,n = 1, D1,n = D0,n≠1 = 0.

On the other hand, L0 is also given by Proposition (2.3), where the
variables in the continuants are as in (3.6). This matrix equals

⁄n

Q

a
≠

1
1

s2

2n≠1

≠ t
2

D1,n≠1(t), 1
⁄ D0,n≠1(t)

≠⁄
1

1
s2

2n≠1

≠ t
2

D1,n(t), D0,n(t)

R

b ,

where

Di,j+1(t) = det

Q

ccccccca

v2i
s2i≠1s2i+1

1 0 · · · 0
1

s2

2i+1

≠ t v2i+2

s2i+1s2i+3

1 0 · · ·

0
. . . . . . . . . 0

· · · 0 1
s2

2j≠3

≠ t v2j≠2

s2j≠3s2j≠1

1
0 · · · 0 1

s2

2j≠1

≠ t v2j

s2j≠1s2j+1

R

dddddddb

.
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Since D1,n = 0, one has D1,n(t) = O(t), and hence limtæ0 ⁄D1,n(t) = 0.
This, along with equations (3.11), implies that L0 = E, as claimed. ⇤

We apply Lemma 3.13 to Lt. Recall that TrLt = ⁄n(F0 +tF1 + . . .) where
Fi are integrals of the c-relation on twisted n-gons.

Proposition 3.15. — Restricted to the space Xn of closed n-gons, one
has the following relations:

F0 |X = 2
A

nŸ

i=1
s2i≠1

B≠1/2

, F1 |X = ≠
A

1
2

nÿ

i=1
s2i≠1

B
F0 |X , dF0 |X = 0.

Proof. — One has
nŸ

i=1
(1 ≠ ts2i≠1)≠1/2 = 1 +

A
1
2

nÿ

i=1
s2i≠1

B
t + O(t2),

and then, according to (3.10),

TrLt =
A

nŸ

i=1
s2i≠1

B C
1 +

A
1
2

nÿ

i=1
s2i≠1

B
t + O(t2)

D
#
F0 + tF1 + O(t2)

$

=
A

nŸ

i=1
s2i≠1

B C
F0 +

A
F1 +

A
1
2

nÿ

i=1
s2i≠1

B
F0

B
t + O(t2)

D
.

Now Lemma 3.13 implies the result. ⇤
As before, we do not dwell here on the question whether the relations

from Proposition 3.15 are the only ones satisfied by the integrals when
restricted to the moduli space of closed polygons (similarly to [4], we do
expect this to be the case).

4. Closed centroa�ne polygons, before factorizing by
SL(2,R)

4.1. Presymplectic forms

Recall that ÂXn,S is the space of closed n-gons with fixed “side areas”
s2i≠1, i = 1, . . . , n.

Choose a coordinate system in R
2, and let Pi = (xi, yi) be the vertices

of an n-gon. Consider the di�erential 2-form

(4.1) Ê =
nÿ

i=1
s2i+1(dxi · dyi+1 + dxi+1 · dyi)
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in ÂXn. The restriction of Ê to ÂXn,S, which we denote by the same letter, is
closed, that is, a presymplectic form in ÂXn,S.

The generators of the Lie algebra sl(2,R) are the vector fields

xˆ/ˆy, xˆ/ˆx ≠ yˆ/ˆy, yˆ/ˆx,

and the generators of its diagonal action on polygons are the vector fields

e =
ÿ

i

xiˆ/ˆyi, h =
ÿ

i

(xiˆ/ˆxi ≠ yiˆ/ˆyi), f =
ÿ

i

yiˆ/ˆxi.

These vector fields are tangent to the submanifolds ÂXn,S.
Let

I =
ÿ

i

s2i+1xixi+1, J =
ÿ

i

s2i+1(xiyi+1 + xi+1yi), K =
ÿ

i

s2i+1yiyi+1.

The restrictions of these functions on ÂXn,S are the Hamiltonian functions
of the above vector fields:

(4.2) ieÊ = ≠dI, ihÊ = dJ, if Ê = dK,

as shown by a straightforward calculation.

Theorem 4.1.

(1) The restriction of Ê to ÂXn,S is SL(2,R)-invariant, but it is not basic:
it does not descend on the moduli space Xn,S.

(2) The form Ê is invariant under the c-relations for all values of c and
under the polygon recutting.

Proof. — Equations (4.2) and the Cartan formula imply that Le(Ê) =
Lh(Ê) = Lf (Ê) = 0, where L denotes the Lie derivative. Therefore Ê is
SL(2,R)-invariant, but it is not basic, that is, it is not a pull-back of a
di�erential form defined on the quotient space, since it is not annihilated
by sl(2,R).

To prove the invariance of Ê under the c-relations, let Q be an n-gon
such that Q c≥ P, and let Qi = (ui, vi). In the calculations below we tacitly
consider Q to be a function of P, so when we write a di�erential form,
such as dui or dvi, we mean their pull back to P, that is, di�erential forms
that are linear combinations of dxj and dyj , with j = 1, . . . , n. Now, to the
calculations.

One has

s2i+1Qi = cPi+1 + [Qi, Pi+1]Pi, s2i+1Pi+1 = cQi + [Qi, Pi+1]Qi+1.
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Take the bracket (i.e., the determinant) of the first equality with dQi+1,
bracket of the second equality with dPi, subtract the second from the first,
and sum up over i:

(4.3)
ÿ

s2i+1([Qi, dQi+1] ≠ [Pi+1, dPi])

= c
ÿ

([Pi+1, dQi+1] ≠ [Qi, dPi])

+
ÿ

([Qi, Pi+1]([Pi, dQi+1] ≠ [Qi+1, dPi])).

The di�erential of the left hand side of (4.3) is the di�erence of Ê evaluated
at Q and P. Therefore it su�ces to show that the right hand side is an
exact 1-form on ÂXn,S.

Indeed,

ÿ
([Pi+1, dQi+1] ≠ [Qi, dPi]) =

ÿ
([Pi, dQi] ≠ [Qi, dPi])

=
ÿ

d(xivi + yiui).

Next, [Pi, dQi+1] ≠ [Qi+1, dPi] = d[Pi, Qi+1]. Equation (2.6) implies

[Pi, Qi+1] =
s2

2i+1 ≠ c2

[Qi, Pi+1] .

It follows that, up to a constant,

[Qi, Pi+1]([Pi, dQi+1] ≠ [Qi+1, dPi]) = [Qi, Pi+1]d([Qi, Pi+1]≠1)
= ≠d ln([Qi, Pi+1]),

therefore the second sum on the right hand side of (4.3) is also an exact
1-form.

To show that the form Ê is invariant under the polygon recutting, con-
sider the di�erence of the form evaluated at P and at R1(P). Let P Õ

1 =
(x, y) = R1(P)1. Then

x = xns1 + x2s3
v2

, y = yns1 + y2s3
v2

.
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We get

Ê(P) ≠ Ê(R1(P))
= s3(dx1 · dy2 + dx2 · dy1 ≠ dxn · dy ≠ dx · dyn)

+ s1(dxn · dy1 + dx1 · dyn ≠ dx · dy2 ≠ dx2 · dy)
= (s3dx1 ≠ s1dx) · dy2 + dx2 · (s3dy1 ≠ s1dy)

+ (s1dx1 ≠ s3dx) · dyn + dxn · (s1dy1 ≠ s3dy)

= s2
3

v2
(dxn · dy2 + dx2 · dyn) ≠ s2

3
v2

(dxn · dy2 + dx2 · dyn)

= 0,

as needed. ⇤

Remark 4.2. — It was pointed out by A. Izosimov that the 2-form Ê
is also well defined on the space ÂXn,S,M of twisted n-gons with mon-
odromy M.

4.2. Additional integrals

The next theorem, providing two additional integrals of the c-relation, is
a discrete version of Proposition 3.4 in [14], concerning a continuous version
of the c-relation on centroa�ne curves. It is also an analog of Theorem 16
in [4].

Theorem 4.3.

(1) The functions I, J, K are integrals of the c-relations for all values
of c and of the polygon recutting.

(2) The integral 4IK ≠ J2 descends to the moduli space Xn,S.

Proof. — We use the notations from the proof of Theorem 4.1.
One has

xivi ≠ yiui = c, xiyi+1 ≠ yixi+1 = s2i+1 = uivi+1 ≠ viui+1

for all i. Hence vi = (c + yiui)/xi and
ui(c + yi+1ui+1)

xi+1
≠ ui+1(c + yiui)

xi
= s2i+1.

It follows that

c(xiui ≠ xi+1ui+1) + uiui+1(xiyi+1 ≠ yixi+1) = s2i+1xixi+1
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or
c[xiui ≠ xi+1ui+1] + s2i+1uiui+1 = s2i+1xixi+1.

Taking sum over i eliminates the first summand on the left hand side and
shows that I is an integral.

Next we show that I is also an integral for the polygon recutting. Indeed,
I(P) ≠ I(R1(P)) = (x1x2s3 + xnx1s1) ≠ (xx2s1 + xnxs3)

= x2(x1s3 ≠ xs1) + xn(x1s1 ≠ xs3) = 0.

Therefore I(P) = I(R1(P)) = I(R2R1(P)) = · · · = R(P).
One also has

(4.4)
e(I) = 0, e(J) = 2I, e(K) = J, h(I) = 2I, h(J) = 0, h(K) = ≠2K,

f(I) = J, f(J) = 2K, f(K) = 0.

Since the c-relations and the recutting commute with SL(2,R), it follows
that J and K are also integrals.

Finally, (4.4) imply that 4IK ≠ J2 is an sl(2,R)-invariant function. This
proves the last claim. ⇤

The space spanned by I, J, K is the irreducible 3-dimensional represen-
tation of the Lie algebra sl(2,R), the symmetric square of its standard
2-dimensional representation, or the coadjoint representation. The map
Xn,S æ R

3, whose components are the functions I, J, K, is the moment
map of the Hamiltonian action of sl(2,R) on Xn,S.

Remark 4.4. — One has

4IK ≠ J2 = ≠
ÿ

k,l

s2k+1s2l+1([Pk, Pl][Pk+1Pl+1] ≠ [Pk, Pl+1][Pk+1, Pl]).

4.3. Center of a polygon

Define the center of a polygon P as the quadratic form on R
2

C(P) = I(P)x2 ≠ J(P)xy + K(P)y2.

The center is invariant under the c-relation and the polygon recutting, and
it conjugates the diagonal action of SL(2,R) on polygons and on its action
on quadratic forms. In more detail, the group SL(2,R) naturally acts on
quadratic forms, that is, on S2(R2), and it acts diagonally on centroa�ne
polygons in R

2. The map C that assigns the center to a polygon conjugates
these two actions.

In this section we present some properties of the center, somewhat anal-
ogous to those of the circumcenter of mass, see [16].
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The center is additive in the following sense.

Lemma 4.5. — Let P = (P1, . . . , Pk, . . . , Pn). Cut P into two polygons
P1 = (P1, . . . , Pk) and P2 = (P1, Pk, . . . , Pn). Then C(P) = C(P1) +
C(P2).

Proof. — Each of the three components of the sum C(P1) + C(P2) con-
tains all the terms of the respective component of C(P) plus the additional
terms (two or four), that appear due to the cut P1Pk. Since the “side area”
[P1Pk] changes the sign when the orientation of the side is reversed, these
additional terms cancel pairwise. ⇤

According to the preceding lemma, the calculation of the center of a
polygon reduces to that of a triangle. The next result gives a geometrical
interpretation to the center of a triangle.

Lemma 4.6. — A triangle P = (P1P2P3) admits a unique circumscribed
central conic given by the equation ax2 ≠ bxy + cy2 = 1, that is, the conic
whose center is at the origin and that passes through the vertices of the
triangle. The center of the triangle P is 2A(ax2 ≠ bxy + cy2), where A is
the oriented area of P.

Proof. — Let Pi = (xi, yi), i = 1, 2, 3. We recall that the sides do not
pass through the origin.

To find the circumscribed central conic one needs to solve the linear
system M(a, ≠b, c)T = (1, 1, 1)T where

M =

Q

a
x2

1 x1y1 y2
1

x2
2 x2y2 y2

2
x2

3 x3y3 y2
3

R

b .

One has det M = s1s3s5. Denote by N the cofactor matrix of M . Then

M≠1 = 1
s1s3s5

N,

and hence
(a, ≠b, c)T = 1

s1s3s5
N(1, 1, 1)T .

Note that s1s3s5 is twice the oriented area of the triangle.
On the other hand, one notices that N(1, 1, 1)T = (K, ≠J, I)T . This

implies the result. ⇤

Lemma 4.7. — The center of a centroa�ne butterfly is the origin.
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Figure 4.1. Triangles P1P2Q2 and P1Q1Q2 share the circumsribed cen-
tral conic.

Proof. — An a�ne reflection in a line through the origin interchanges
points P1 with Q2, and P2 with Q1, see Figure 4.1. This reflection preserves
the central conic circumscribed about triangle P1P2Q2, therefore triangles
P1P2Q2 and P1Q1Q2 share the circumsribed central conic. Now the result
follows from Lemmas 4.5 and 4.6. ⇤

Lemmas 4.5 and 4.7 provide an alternative proof that the center is in-
variant under polygon recutting.

5. Small-gons

5.1. Triangles

In this section we investigate closed triangles.

Theorem 5.1.

(1) A triangle admits a c-related triangle if and only if

c2(s1 + s3 + s5)(s1 + s3 ≠ s5)(s3 + s5 ≠ s1)(s5 + s1 ≠ s3) 6 4(s1s3s5)2.

No triangles have infinitely many c-related ones for any c ”= 0.
(2) Two c-related triangles are SL(2,R)-equivalent.
(3) The linear transformation M that relates them and that defines the

dynamics is elliptic if and only if

(5.1) (s1 + s3 + s5)(s1 + s3 ≠ s5)(s3 + s5 ≠ s1)(s5 + s1 ≠ s3) > 0.

M is parabolic if and only if the origin is located on the lines that
bisect two sides of the triangle, see Figure 5.1.
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(4) Let triangle AÕBÕC Õ be the recutting of triangle ABC done in the
order A æ B æ C, and let AÕÕBÕÕC ÕÕ be the second iteration of this
recutting. Then there exists a transformation M œ SL(2,R) that
takes ABC to AÕÕBÕÕC ÕÕ.

Figure 5.1. The shaded regions are where the origin should be located
for the linear map M to be elliptic.

We cannot help noticing that the left hand side of (5.1) reminds one of
Heron’s formula that expresses the area of a triangle in terms of its side
lengths. We do not know whether this similarity has a meaning or it is a
pure coincidence.

Proof. — A triangle is uniquely determined, modulo SL(2,R), by the
areas s1, s3, s5. These numbers are preserved by the c-relation, proving the
second claim.

Let Q = MP where M =
!

m n
k l

"
œ SL(2, R), and let Pj = (xj , yj). Then

the relation the P c≥ Q implies
Y
__]

__[

(m ≠ l)x1y1 ≠ kx2
1 + ny2

1 = c

(m ≠ l)x2y2 ≠ kx2
2 + ny2

2 = c

(m ≠ l)x3y3 ≠ kx2
3 + ny2

3 = c.

Here is the solution:
Q

a
m ≠ l

k
n

R

b = c

Q

a
x1y1 ≠x2

1 y2
1

x2y2 ≠x2
2 y2

2
x3y3 ≠x2

3 y2
3

R

b

≠1 Q

a
1
1
1

R

b .

For M to exist, one needs the relation ml≠kn = 1 to hold. Since m≠l, k, n
are already determined, this reduces to a quadratic equation on m that has
real roots if and only if

(m ≠ l)2 + 4kn + 4 > 0.
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One has a remarkable identity:

(m≠ l)2 +4kn = ≠c2 (s1 +s3 +s5)(s1 +s3 ≠s5)(s3 +s5 ≠s1)(s5 +s1 ≠s3)
(s1s3s5)2 ,

that we verified using Mathematica. This implies the first claim of the
theorem. Furthermore, M is elliptic if and only if

Tr(M)2 ≠ 4 det(M) = (m + l)2 ≠ 4 < 0

or, which is equivalent, (m ≠ l)2 + 4kn < 0. This implies the third claim.
The right hand side vanishes when s1 = s3 +s5 or its cyclic permutation,

that is, the origin lies on one of the three middle lines of the triangle. These
lines separate the elliptic and hyperbolic regions.

For the last claim, one has [A, B] = [BÕ, C Õ] and [B, C] = [AÕ, BÕ], see
Figure 5.2. Since the total area is preserved by recutting, one also has
[C, A] = [C Õ, AÕ].

Figure 5.2. Triangle recutting.

Repeating this argument going from AÕBÕC Õ to AÕÕBÕÕC ÕÕ, we see that

[A, B] = [AÕÕ, BÕÕ], [B, C] = [BÕÕ, C ÕÕ], [C, A] = [C ÕÕ, AÕÕ].

Therefore the triangles ABC and AÕÕBÕÕC ÕÕ are SL(2,R)-equivalent. ⇤
Remark 5.2. — The first claim in Theorem 5.1 has the following geomet-

ric interpretation. Given a triangle, there exists a central conic through its
vertices. Assume that this conic is an ellipse and apply a transformation
from SL(2,R) to make this ellipse into a circle of radius R. Then a c-related
triangle is also inscribed in this circle, and one has c 6 R2.

Thus one expects the following identity to hold:

(5.2) R4(s1 +s3 +s5)(s1 +s3 ≠s5)(s3 +s5 ≠s1)(s5 +s1 ≠s3) = 4(s1s3s5)2.
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Let –, —, “ be the (signed) angles under which the sides of the triangle are
seen from the origin. Then – + — + “ = 2fi,

s1 = R2 sin –, s3 = R2 sin —, s5 = R2 sin “,

and (5.2) becomes a true trigonometric identity

(sin – + sin — + sin “)(sin – + sin — ≠ sin “)(sin – ≠ sin — + sin “)
◊ (≠ sin – + sin — + sin “) = 4 sin2 – sin2 — sin2 “.

5.2. Quadrilaterals

Let us consider the dynamics of the c-relation on closed quadrilaterals.
Let P be a quadrilateral, and assume that LP,c ”= Id.

Proposition 5.3.

(1) Let P c≥ Q. Then there exist homothetic central conics C1 and
C2 such that P1, Q2, P3, Q4 œ C1 and Q1, P2, Q3, P4 œ C2, see Fig-
ure 5.3.

(2) The conics in questions are ellipses if and only if

(s1 +s3 +s5 +s7)(s1 +s3 ≠s5 ≠s7)(s3 +s5 ≠s7 ≠s1)(s5 +s7 ≠s1 ≠s3) < 0.

Figure 5.3. Homothetic concentric conics containing the vertices of c-
related quadrilaterals.
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Proof. — As in Section 2.5, one has four a�ne reflections Ri whose com-
position is the identity map. Consider Ri as an orientation reversing isom-
etry of the hyperbolic plane, a reflection in a line ¸i. Then R2 ¶ R1 is an
orientation preserving isometry. One has four cases: this isometry is elliptic,
hyperbolic, parabolic, or the identity.

In the elliptic case, the isometry is a rotation about a point in H
2. Hence

R4¶R3 is a rotation about the same point, and therefore the four lines ¸i are
concurrent at this point. It follows that Ri belong to group G µ GL(2,R)
that is conjugated to O(2), that is, the group generated by the rotations

3
cos t sin t

≠ sin t cos t

4
and by

3
≠1 0
0 1

4
,

and preserving the quadratic form x2 + y2. Thus G preserves a positive-
definite quadratic form whose circles are the homothetic ellipses preserved
by the reflections Ri. Since Ri swaps Pi with Qi+1 and Qi with Pi+1, we
are done in this case.

In the hyperbolic case, the argument is similar. The isometries Ri of
H

2 are reflections in the lines ¸i that share a common perpendicular (and
the lines are concurrent at a point of the projective plane outside of the
absolute). In this case the argument is similar with the group G being
conjugated to O(1, 1) and generated by

3
cosh t sinh t
sinh t cosh t

4
,

3
≠1 0
0 1

4
, and by

3
≠1 0
0 ≠1

4
,

preserving the quadratic form x2 ≠ y2. Thus G preserves a non-degenerate
sign-indefinite quadratic form whose level curves are the desired homothetic
hyperbolas (note that one of the level curves is singular: it is a pair of lines
intersecting at the origin).

Figure 5.4. The parabolic case.
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In the parabolic case, the conics degenerate to pairs of origin-symmetric
parallel lines, see Figure 5.4. Another degenerate case is when two opposite
vertices of P are collinear, this happens in the hyperbolic case when the
zero level curve of the sign-indefinite quadratic form is a pair of intersecting
lines.

Finally, in the case of the identity, one has P1 = (R2 ¶ R1)(P1) = P3,
contradicting the non-degeneracy of the quadrilateral.

We write the conics in the format ÈP, MP Í=const, where P = (x, y) and
M =

!
m n
n k

"
. The homogeneous equation for the matrix elements
I

m(x2
1 ≠ x2

3) + 2n(x1y1 ≠ x3y3) + k(y2
1 ≠ y2

3) = 0
m(x2

2 ≠ x2
4) + 2n(x2y2 ≠ x4y4) + k(y2

4 ≠ y2
4) = 0

has a solution
S

U
m
n
k

T

V =

S

U
y1y2s3 + y2y3s5 + y3y4s7 + y4y1s9

≠(1/2)((x2
1 ≠ x2

3)(y2
2 ≠ y2

4) ≠ (x2
2 ≠ x2

4)(y2
1 ≠ y2

3))
x1x2s3 + x2x3s5 + x3x4s7 + x4x1s9

T

V ,

where the square bracket denotes the projective equivalence class. A calcu-
lation shows that

n2 ≠ mk

= (s1 +s3 +s5 +s7)(s1 +s3 ≠s5 ≠s7)(s3 +s5 ≠s7 ≠s1)(s5 +s7 ≠s1 ≠s3),

which implies the second result. ⇤
Arguing as in the preceding section, Proposition 5.3 has the following

corollary.

Corollary 5.4. — Let Q be the recutting of the quadrilateral P. Then
the odd vertices of Q lie on the same central conic as the odd vertices of
P, and the even vertices of Q lie on the same homothetic central conic as
the even vertices of P.

Let P be a quadrilateral with coordinates (s1, s3, s5, s7) and (v2, v4).

Theorem 5.5.

(1) A quadrilateral admits a c-related quadrilateral if and only if

(5.3) c2(s1 + s3 ≠ s5 ≠ s7)(s1 ≠ s3 + s5 ≠ s7)(s1 ≠ s3 ≠ s5 + s7)
◊ (s1 + s3 + s5 + s7) > 4(s3s5 ≠ s1s7)(s3s7 ≠ s1s5)(s1s3 ≠ s5s7).

This condition is symmetric in {s1, s3, s5, s7}, and it has solution
in c for every S.
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(2) The second iteration of the c-transformation of P is
SL(2,R)-equivalent to P.

(3) The third iteration of the recutting of P is SL(2,R)-equivalent to P.

Proof. — To prove the first statement, note that P is SL(2,R)-equivalent
to the following one:

P0 = (1, 0), P1 = (0, s1), P2 =
3

≠s3
s1

, v2

4
, P3 =

3
≠v4

s1
, ≠s7

4
,

where v2v4 = s1s5 ≠ s3s7 (the Ptolemy–Plücker relation).
Let Q0 = (b, c). A calculation using (2.6) shows that Q4 = (bÕ, c), and

we need bÕ = b. This is a quadratic equation b2 + ub + v = 0 on b whose
coe�cients are given by the formulas

u = c

v2

5
s2

1 ≠ s2
3 ≠ s2

5 ≠ s2
7

s5s7 ≠ s1s3
+ 2s3s5s7

s1(s5s7 ≠ s1s3)

6
,

v = (c2 ≠ s2
1)(s3s5 ≠ s1s7)(s3s7 ≠ s1s5)

v2
2s2

1(s5s7 ≠ s1s3) .

One calculates the discriminant D = u2 ≠ 4v, and, after some cancellation,
this results in (5.3) (we used Mathematica to clean-up the formulas).

One also has D = c2P + 4s2
1Q, where

Q(s1, s3, s5, s7) = (s5s7 ≠ s1s3)(s3s7 ≠ s1s5)(s3s5 ≠ s1s7),
P (s1, s3, s5, s7) = s2

1(s2
1 ≠ s2

3 ≠ s2
5 ≠ s4

7)2 ≠ Q(s1, s3, s5, s7).

Therefore one cannot have P < 0 and Q < 0 simultaneously, and this
implies that (5.3) always has a solution.

The group of permutations of the "four elements of the set S is generated
by the involutions (13), (35), (57) that leave inequality (5.3) intact.

The second statement of the theorem follows from Proposition 5.3: if
R c≥ Q, then the vertices of the quadrilateral R lie, alternating, on the
same homothetic conics as those of P, and the respective “side areas” of
these quadrilaterals are equal. This implies that R and P are SL(2,R)-
equivalent.

For the third statement, using the Ptolemy–Plücker relation, one calcu-
lates that after the first recutting the coordinates become

(s1, s5, s7, s3),
3

v2
s1s3 ≠ s5s7
s1s5 ≠ s3s7

, v4
s1s7 ≠ s3s5
s1s3 ≠ s5s7

4
.
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Then after the second recutting we have

(s1, s7, s3, s5),
3

v2
s1s3 ≠ s5s7
s1s7 ≠ s3s5

, v4
s1s7 ≠ s3s5
s1s5 ≠ s3s7

4
,

so after the third recutting one obtains (s1, s3, s5, s7), (v2, v4), as
claimed. ⇤

5.3. Pentagons: invariant area form

In this section we consider the moduli space X5,S. This material is parallel
to the one in [4, Section 7.1.3].

The space X5,S is 2-dimensional: the variables v2i satisfy the Ptolemy–
Plücker relation v2v4 + v8s3 = s1s5 and its cyclic permutations. We break
the cyclic symmetry by setting v2 = x, v8 = y. Then

(5.4) v4 = s1s5 ≠ s3y

x
, v6 = s5s9 ≠ s7x

y
, v0 = s1s7x + s3s9y ≠ s1s5s9

xy
.

Recall (Example 3.4) that

K := v2
s1s3

+ v4
s3s5

+ v6
s5s7

+ v8
s7s9

+ v10
s9s1

,

the only integral of the c-relation on the moduli space of closed pentagons.
In terms of (x, y)-coordinates, one has

K = x

s1s3
+ y

s7s9
+ (s2

1 + s2
3)

s1s3x
+ (s2

7 + s2
9)

s7s9y
≠ x

s5y
≠ y

s5x
≠ s5

xy
.

Let
Ê = dx · dy

xy
.

The origin of the area form Ê on X5,S is in the theory of cluster algebras,
and we do not dwell on it here.

Theorem 5.6. — The c-relation preserves the form Ê.

Proof. — Recall the vector field › from Section 3.3. Using the formula
from Theorem 3.9, one has

ẋ = x

3
v4

s3s5
≠ v6

s5s7
+ v8

s7s9
≠ v0

s9s1

4
+ s3

s1
≠ s1

s3
,

ẏ = y

3
v0

s9s1
≠ v2

s1s3
+ v4

s3s5
≠ v6

s5s7

4
+ s3

s1
≠ s1

s3
.

(5.5)

We claim that i›Ê = dK, that is, the integral K is the Hamiltonian
function of the vector field ›. This claim is verified by a direct calculation,
after substitution of the formulas (5.4) into (5.5).
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Consider the c-relation as a transformation T . By the Bianchi permutabil-
ity, �t, the t-flow of the field ›, commutes with T , and these maps preserve
the level curves of the function K. Since �t is symplectic, we have

�ú
t T ú(Ê) = T ú�ú

t (Ê) = T ú(Ê),

that is, T ú(Ê) is also invariant under the flow of ›. Hence T ú(Ê) = HÊ,
where the function H is an integral of �t and of T that has the same level
curves as K. We want to show that H © 1.

Assume that a level curve K = c is closed. Consider an infinitesimally
close level curve K = c+Á. Both curves are preserved by T , hence the area
between them remains the same. On the other hand, this area is multiplied
by the value of the function H on the curve K = c. Hence this value
equals 1, as needed.

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 5.5. Three level curves K = ≠10, ≠9, ≠8.2 on X5,S with S =
(1, 1, 1, 1, 1).

Thus Ê is invariant under T near local maxima or minima of I, see
Figure 5.5. The c-relation is an algebraic relation, and we can use analytic
continuation to conclude that c-relation preserves Ê everywhere. ⇤

This theorem implies a Poncelet-style porism: if a level curve of the
integral K contains a periodic point of the c-relation, then every point of
this curve is periodic with the same period.

5.4. Pentagons: when the c-relation is not defined

Let P = (P0, P1, . . . , P4) be a pentagon. Using an appropriate SL(2,R)-
transformation, we can make P0 = (1, 0) and P1 = (0, s1). Then

P2 = (≠s3, s1v2)
s1

, P3 = (s3s7 ≠ s5v4, s1s5s9 ≠ s1s7v4)
v2v4 ≠ s3s9

, P4 = (v4, ≠s1s9)
s1

.
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To find a pentagon Q = (Q0Q1, . . . , Q4) c-related to P, we first put Q0 =
(b, c) (with some unknown b) and compute the remaining vertices using the
formulas from Section 2.3.

Our goal is to find a value of b such that Q5 = Q0; but for an arbitrary
b we will have Q5 = (bÕ, c) with some bÕ which may be di�erent from
b (because [Q5, P5] = [Q5, P0] must be equal to c). This bÕ will depend
on b, c, and all s, v, and it is not hard to see that it will be, actually, a
quadratic polynomial in b with coe�cients depending on c, s, and v. Then
the equation bÕ = b is quadratic with respect to b. (For n = 4, a similar
equation was explicitly calculated in the proof of Theorem 5.5.)

We were able to make these calculations, but the result looks depressing,
and we do not present it here. Actually, we are more interested in the
discriminant of this quadratic equation. This discriminant D depends on
c, s1, s3, s5, s7, s9, and v2, v4, but in reality its dependence on v2, v4 may be
reduced to the dependence on

K = v2
s1s3

+ v4
s3s5

+ v6
s5s7

+ v8
s7s9

+ v10
s9s1

.

Moreover, D turns out to be also a quadratic function of K with coe�cients
depending on c, and s1, s3, s5, s7, s9. An explicit expression for this function
D = D(K) is less awkward, it can be derived from Propositions 5.7 and 5.8
below.

What we really need is the discriminant of D(K), for which we will use
a weird notation D(D). Indeed, if, for some c, s1, s3, s5, s7, s9, D(D) 6 0,
then c-related pentagons exist for all pentagons with these s1, s3, s5, s7, s9;
if D(D) > 0, then the equation D(K) = 0 has two di�erent real roots K1
and K2 and no c-related pentagons exist for pentagons with K between K1
and K2.

Notice that both D and D(D) are defined up to positive factors, which
we ignore in the formulas below.

Proposition 5.7. — One has

D(D) =
5Ÿ

j=1
(c2 ≠ s2

2j≠1).

Thus, if 0 < s1 < . . . < s9 (this condition is not really restrictive, since all
our results are not sensitive to permutations and sign changes of s1, . . . s9)
then the relation may be undefined only if s1 < |c| < s3, or s5 < |c| < s7,
or |c| > s9. See Figure 5.6.
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Figure 5.6. The zones where the c-relation is not defined; here S =
{1, 3, 5, 7, 9}. The horizontal and vertical axes are c and K.

Proposition 5.8. — The solutions of the equation D(K) = 0 are

K =
((

q
j s2

2j≠1) ≠ 2c2)c2
r

j s2j≠1
±

2


D(D)
c

r
j s2j≠1

.

The proofs consist in tedious but explicit calculations.
By the way, to check a reliable formula, after it has been obtained, we

need, as a rule, to prove the equality between two polynomials of the same
degree, and for this it is su�cient to verify the equality for a certain number
of integral variables, which is an easy task for a computer program.
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