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ll Differential Geometry of Space

Curves: Forgotten Chapters

Dmitry Fuchs, Ivan Izmestiev, Matteo Raffaelli, Gudrun Szewieczek, and Serge Tabachnikov

volutes, involutes, and osculating circles of

curves belong to the main notions of planar

differential geometry, going back to Christiaan

Huygens in the seventeenth century. They

have many interesting properties, including the

surprising Tait—Kneser theorem: the osculating
circles of a curve with monotonic curvature are nested (see
[2, 10] or [8, Chapter 10]). Here, we consider three kinds of
evolutes and involutes of space curves, all of which were
studied in the early days of differential geometry. They pos-
sess many familiar properties of evolutes and involutes of
plane curves, but they also have some unexpected features.
One of our goals, then, is to describe their intricate interre-
lations by surveying these properties and surprises.

Since the terminology is not canonical, we follow [6] and
[9] and define the evolute as the locus of centers of osculat-
ing spheres, or equivalently, the curve whose osculating
planes are the normal planes of the given curve.!

We also discuss a natural modification of the construc-
tion in which the normal planes are replaced by the recti-
fying planes. For the resulting curve we use a somewhat
awkward term, pseudo-evolute, and this is the second kind
of space evolute that we consider. Properties of pseudo-
evolutes offer further surprises.

In the plane, involutes are constructed by wrapping an
unstretchable string around a curve. The same construc-
tion in space provides yet another definition of involute,
and one defines the evolute of a curve as the result of the
converse operation. We call this third version Monge evo-
lutes and Monge involutes, after the French mathematician
Gaspard Monge (1746-1818).

Although much of the material we present is not new
and can be found in such classic books as [1, 5, 13], we be-
lieve that a modern and unified treatment—complemented
with several novel observations and results and illustrated
with the help of computer graphics—may be useful, since
the geometry of space curves remains highly relevant in
modern mathematics.

For example, it is closely related to the theory of
completely integrable systems: the filament (aka binor-
mal, smoke ring, local induction) equation is a completely
integrable evolution of space curves, equivalent to the
nonlinear Schrédinger equation [11]. Another important
application is the study of curved origami, which can be
informally described as folding paper along curves (as op-
posed to straight lines) [4, 7].

In what follows, we present some—but not all—of the
calculations behind the geometric statements. They involve
only elementary calculus but in some cases are cumber-
some. Readers are encouraged to perform the missing calcu-
lations on their own.

Textbook Material

The following facts are undoubtedly known to the majority
of readers, but we prefer to provide a brief survey of them
to establish the settings, terminology, and notation.

Evolutes and involutes of plane curves. The evolute of
a plane curve is the envelope of its normal lines. Equiva-
lently, it is the locus of the centers of osculating circles of
the curve; see Figure 1. The singular points of the evolute
correspond to the vertices of the curve, that is, to the criti-
cal points of the curvature.

If a curve e is the evolute of a curve &, then £ is an in-
volute of e. An involute of a curve e can be constructed as
follows: fix one end of an unstretchable string at a point of
e, wrap the string about the curve, and move the free end,
keeping the string tight. In this way, one obtains a one-
parameter family of involutes: the length of the string is a
parameter.

Equivalently, one can roll a straight line along the curve
e. Then the trajectory of each point of the line is an invo-
lute of e.

Frenet apparatus. By a space curve & = &(t), or x = x(t),
y = y(t), z = z(t), we mean a smooth map from R to R>.
We consider generic curves, the precise meaning of which
varies depending on the situation, but it always describes an
open dense set in the space of curves.

Specifically, our curves are free from inflection points,
that is, points where the curvature vanishes. If a curve has
a singular point, then generically, it is a semicubic cusp,
expressed in local coordinates by &(t) = (tz, 2, t4). The
tangent line at such cusp point is well defined, and the
curvature is infinite.

Given a unit-speed curve &, the Frenet frame

(t=t(),n=n(),b=Db()

In [1, 5], the term evolute means something else, and Uribe-Vargas, in his detailed study of the evolute in our sense [14], prefers

the term focal curve.
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Figure 1. Left: the red curve is the evolute of the blue one, and the blue curve is an involute of the red one. Right: the evolute of
an ellipse. The four cusps of the evolute correspond to the two minima and two maxima of the curvature of the ellipse.

consists of the tangent vector t = &’; the (principal) normal
n, which is the unit vector in the direction of &’; and

the binormal b = t X n. The dependence of t,n,b on ¢ is
described by the Frenet formulas

t = kn,
n' = kt+7b,
b’ = —tn,

where k and 7 are the curvature and the torsion of the
curve £. We denote the radius of curvature 1/k by r.

There are well-known formulas for the curvature and
torsion:

L det(f',‘f",é"')
e

If the parametrization is not of unit speed, then the formu-
las become slightly more complicated:
llg' x & det(&’, &", &)
k= e ’ iz (1)
(154 g x &l

The plane spanned by t and n is called the osculating plane
of £, the plane spanned by n and b is the normal plane, and
the plane spanned by t and b is the rectifying plane.

k=1E"1l,

Developable Surfaces. A surface in space is called
developable if it is locally isometric to a plane. An informal
description of a developable surface is that it is a surface
that can be made by bending, but not folding, a piece of
paper. Certainly, we have in mind an “ideal paper” that is
ideally bendable (without any bounds on the curvature),
incompressible, and unstretchable, i.e., the length of any
curve drawn on the paper remains unchanged in the process
of bending.

The theory of developable surfaces was developed
(pardon the unintended pun) in the late 1700s by Euler
and Monge. Let us translate the main results into modern
language.

A generic (in particular, nowhere planar) developable
surface is ruled, that is, every point belongs to a unique
straight line that is fully contained in the surface. More-
over, the tangent plane is constant along each line; this
property distinguishes developable surfaces in the class of
all ruled surfaces.

Generically these lines, known as rulings, are tangent to
a certain curve, called the regression edge of the surface.
There the surface is not smooth: all sections by planes
transverse to the regression edge have cusps.

The latter property (also a characteristic one) provides
a universal method for constructing developable surfaces:
take an arbitrary (generic) curve ¢ in space, possibly with
cusps, and consider the union of all its tangent lines. This
union is a developable surface with regression edge &, and
all (generic) developable surfaces can be obtained in this
way. This surface is called the tangent developable of £; see
Figure 2.

The tangent developable deforms isometrically if the
curve is deformed without changing its curvature. In par-
ticular, flattening the curve transforms its tangent devel-
opable into two identical sheets on the convex side of the
curve; see [13, Section 4-5] for details.

There are two types of nongeneric developable surfaces:
cylinders and cones over an arbitrary curve.

Another universal construction of developable sur-
faces uses an arbitrary (generic) one-parameter family of
planes. For such a family there exists a unique develop-
able surface tangent to all the planes, called the envelope
of the family. These planes are the osculating planes of
the regression edge. For each plane, tangency occurs
along a whole line, which is a tangent of the regression
edge.

10 ® The Mathematical Intelligencer



Figure 2. Tangent developable of a curve x = at?, y= bt3, z = ct®. Left: the rulings of the surface; right: the sections of the sur-

face by parallel planes.

The last construction provides a convenient analytic
description of everything mentioned above. Namely, if
F(x,y,z;t) = 0is the equation of the family of planes (with
parameter t), then we can form three systems of equations:

F(x,y,z;t) =0,
F'(x,y,2;t) =0;

F(x,y,z;t) =0,
F'(x,y,z;t)=0,
F'(x,y,z;t) = 0; )

F(x,y,2z;t) =0,

Fl(x,y,z;1) =0,
F'"(x,y,z;t) =0,
F'”(x,y, z;t)=0

(the primes denote the partial derivative with respect to ).

The solutions of the first system describe the intersec-
tion lines of two infinitesimally close planes. Therefore,
if we exclude ¢ from this system, we get the equation of a
ruled surface.

The solutions of the second system correspond to the
intersection points of three infinitesimally close planes, that
is, two infinitesimally close rulings of the surface. Thus if
we solve the second system with respect to x, y, z, we ob-
tain a parametric equation of the regression edge.

Finally, three close rulings meet only in the cuspidal
points of the regression edge, so the solutions of the last
system provide coordinates of those points.

Notice that all of this may be repeated for the case in
which F(x, y, z; t) = 0is a family of surfaces, not necessarily
planes.
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Evolutes

Let £ = &(t) be a (generic) curve in space. There arise three
families of planes: the osculating planes, the normal planes,
and the rectifying planes. Each of them has an envelope
(the regression edge of the developable surface tangent to
the family). The first of these three cases is not interesting:
the envelope is the curve § itself.

The envelope of the family of normal planes is called the
normal developable, and its regression edge is what we call
the evolute of the curve; this is similar to the definition of
the evolute of a planar curve as the envelope of the family
of its normals.

Equation of the evolute. Let § = £(¢) = (x(t),y(t), z(t))
be a curve parametrized by arc length, and let e = e(¢) be its
evolute.

!
Proposition 1. e =&+ rn+ %b.—

Proof. The proof is based on formulas (2). We denote the
coordinates of points in R3 by P = (X, Y, Z), and we use the
dot product to make the formulas more compact.

The family of normal planes to & is described by

F(Pit)y=¢E'(t)- (P-E&@1)=0.
The derivatives of F are
F' Py =E"(1)- (P—E@) - LF'(Py= &) - (P - &)

(we used the equalities &'(¢) - €'(t) = 1and &"(¢) - &'() = 0).
The resulting (middle) system of equations (2) becomes



@) - (P-E@) =0,
&' P-E@) =1,
EM@) - (P—-E@) =0.

Solving this system for P gives the evolute e(t).
The Frenet formulas imply

&=t
5// — k'n,
E" = —k’t+ k'n + ktb,

whence
1 K1
P—¢é=>n-—=b,

¢ k k*t
and finally,

1 K1 r’

e=§+En—ﬁ;b=§+rn+?b,

as required d

In this calculation, we assume that 7 # 0; otherwise, the
evolute escapes to infinity.

Osculating circles and osculating spheres. Let & = £(t)
be a curve, and let &, = £(¢,) be a point on this curve. For
ty <ty <tsclose toty, we denote by C, , , acircle passing
through &(z)), £(¢,), £(23); for¢; < t, < t3 <t close tot,
we denote by S, , .. . asphere passing through £(z,), £(z,),
E(ty), E(ty).

In the generic case, bothC, , , andS, , , , arewell
defined. Moreover, both have limits as all ¢; go to ¢,. This limit
circle and limit sphere are called the osculating circle and the
osculating sphere of the curve £ at the point &,.

It is well known (and obvious) that the osculating sphere
can be described as the unique sphere that has a tangency of
order > 3 with £ at &,. The osculating circle is the intersection
circle of the osculating sphere with the osculating plane; it
has tangency of order > 2 with £ at the point &,.

For our purposes, a more convenient description of the
(center of the) osculating sphere is the following. We take
three parameter values¢; < t, < ¢5close to ¢, and consider
the three normal planes to the curve & at points &(¢,), £(¢,),
&(23). These three planes have a common point, and this point
approaches the center of the osculating sphere at the point
&y = &(ty) whent, t,, and t; approach ¢,

Evolutes and osculating spheres. We have the following
proposition.

Proposition 2. The evolute of a curve is the locus of the cent-
ers of its osculating spheres.

Proof. If F(x,y, z,t) = 0 is the equation of the normal plane
at £(t), then on the one hand, the solution set of the second

system in (2) consists of the intersection points of triples of
infinitesimally close normal planes, and on the other hand,
it describes the regression edge of the normal developable,
i.e., the evolute. |

Propositions 1 and 2 imply the following.

Corollary 3. Let R be the radius of the osculating sphere of

& at &(t). Then
RP=¢24 il ’
—) -

Singularities of the evolute. From Proposition 1, one has

1’” ! VI
e =t+r’'n—krt+trb+ [ — | b—-—17n
T

G S

Thus, analogously to the two-dimensional case, the tangent
to the evolute is always parallel to the binormal. It follows
that the cusps of the evolute occur when

' '
0':=M+<—> =0.
T

In particular, ¢ = 0 is the condition for a curve to be spher-
ical; indeed, the evolute of a spherical curve is a point, the
center of the sphere.

On the other hand, from Corollary 3,

r /0N
(RY =2r"r + zr—<r—> ,
T T

/
and so (R?) = 2%0‘. This shows that at every cusp of the

evolute, R? has zero derivative; thus generically, R achieves
a maximum or a minimum.

But there is also the possibility that v’ =0and o #0,
so although R is maximal or minimal, the evolute has no
cusp at this point. By Corollary 3, in this case r = R, that
is, the osculating circle is a great circle of the osculating
sphere, and the center of the osculating sphere is con-
tained in the osculating plane of the curve. This is one of
the essential differences between the evolutes of planar
and space curves.

Remark 4. The quantity

Krlc
R5/2

is called the conformal torsion and is one of the two invari-
ants of space curves in conformal geometry (the other being
the conformal curvature); see, e.g., [3]. In conformal geom-
etry, spheres are “flat,” and the conformal torsion measures
the deviation of the curve from its osculating sphere.
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Example 1 (A closed curve whose evolute has no cusps). The
evolute of a closed convex plane curve has cusps, in fact, at
least four of them, according to the 4-vertex theorem (see,
e.g., [10] or [8, Chapter 10]). But the evolute of a closed
space curve with nonvanishing curvature and torsion may
be free of cusps, as shown in Figure 3.

Example 2 (Evolute of a curve with a cusp). It is well known
that for a planar curve with a generic cusp (such as a semi-
cubic parabola), its evolute passes through the cusp and
has no cusp at this point. The situation for a space curve is

Figure 3. A cusp-free evolute (orange) of a closed

space curve (blue). The blue curve is given by

t = ((I + mcos5t)cost, (I +mcos5t)sint, —msin 5¢t) with [ =1
and m = 0.15.

evolute

entirely different. Here is a parametric equation of a curve
with a generic cusp and its evolute (see Figure 4, left). The
curve has equation

while the evolute has equation

x=§#+2mﬂ

y=-8—320°,

1
c=1i 20 s
2 2

We see that our curve has a cusp at the point (0, 0, 0), and
the evolute has a cusp at the point (1/2, 0, 0).

Example 3 (An elliptical helix). The evolute of the standard
(circular) helix is just another helix. For the elliptical helix
x =acost, y = bsint, z = ct, the evolute has four cusps
for each turn (see Figure 4, right). The heavy dots on the
evolute mark its noncuspidal points with ' = 0 and ¢ # 0,
which correspond to maxima or minima of R.

Interior and exterior points of a curve. Since at a ge-
neric point a curve has an odd degree of tangency with the
osculating sphere, a neighborhood of such a point is con-
tained either in the interior or the exterior of that sphere.
It remains unclear how to visualize the difference between
“interior” and “exterior” points. Just imagine that you

/

<:=’////

~

evolute curve

Figure 4. Left: the evolute of a curve with a cusp. Right: the evolute of an elliptical helix.
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have a rigid curve, say a twisted bicycle spoke. Can you tell
the interior points from the exterior ones?

The type of a point, that is, whether it is interior or
exterior, changes when the curve has a higher-order con-
tact with its osculating sphere, and this happens when the
evolute has a singularity, that is, when 6 = 0. A calcula-
tion, which we do not reproduce here, shows that a point is
interior if and only if 67 > 0.

Here is a geometric interpretation: a curve of positive
torsion locally lies inside its osculating sphere if the center
of the osculating sphere moves in the direction of the
binormal to the curve; it lies outside its osculating sphere if
the center of the sphere moves in the direction opposite to
the binormal.

Curvature and torsion of the evolute. As we know,
¢’ = ob. Using the Frenet formulas, we calculate the next
two derivatives of e:
¢ =6¢'b—-o01n,
¢"" = cktt — 26't + 07’ )n + (6" — 672)b.
The formulas for e/ and e’’ show that the Frenet frame of the
evolute has the form (t,, n,, b,) = (£b, £n, *t).
Formulas (1) imply the following result.

Proposition 5. The curvature and the torsion of the evolute
are related to the curvature and the torsion of the initial curve
by the formulas

k_lrl K

=lel %o

7\ 1
o-=r'r+<—> and r = —.
T k

Assume that the evolute has no cusps, that is, ¢ # 0.
Without loss of generality, ¢ > 0. The magical cancella-
tions that occur on integrating the curvature or the tor-
sion of the evolute, namely

b b |T| b
/kelle'Hdt:/ —|0'|dt=/ || de,
a a O-| a
b by b
/Te||6'||dt=/ —|0'|dt=/ sgn(o)k dt,
a a o a

imply the following corollary.

where

Corollary 6. The total curvature of the evolute is equal to
the total absolute torsion of the curve. The total torsion of the
evolute is equal to the total curvature of the curve taken with
the sign of 6.

Curves congruent to their evolutes. In the plane,
logarithmic spirals and cycloids are examples of curves
congruent to their evolutes. For a logarithmic spiral of
slope angle 45°, that is, the spiral (¢’ cost, ' sin ¢), the

congruence sends every point to the center of its osculat-
ing circle.

We will say that this congruence is compatible with
the parametrization. For other logarithmic spirals, the
congruence involves a scaling of the parameter, and for
the cycloid, a parameter shift (cusps correspond to verti-
ces and vice versa).

The 45° logarithmic spirals are the only planar curves
congruent to their evolutes in a parameter-compatible way.
What about space curves?

Proposition 7. The only space curves congruent to their evo-
lutes (with the congruence compatible with the parametrization)
are circular helices of slope angle 45° and helices of slope 45°
on paraboloids of revolution. The latter helices project down to
circle involutes.

A (generalized) helix (see Figure 5) is a curve that forms
a constant angle with a given direction; see [13, Sec-
tion 1-9]. On the one hand, a helix is uniquely deter-
mined by its orthogonal projection along the axis and
by the slope angle. On the other hand, on every surface
there is a unique helix for a given axis, slope angle, and
starting point (as long as the tangent plane to the sur-
face has enough slope). The helices in the proposition
above have remarkable projections and lie on remarkable
surfaces.

Proof of Proposition 7. If a curve & is congruent to its evolute
e in a parameter-compatible way, then the arc-length param-
eter of £ is also an arc-length parameter of e.

Due to the equation ¢’ = &b, this is equivalent to || = 1.
By Proposition 5, one then has k, = |7|, 7, = k.

Congruent curves have the same curvature and the same
or opposite torsion; thus k = |7|is a necessary condition for
a parameter-compatible congruence between & and e. This
condition is also sufficient, since a space curve is determined
by its curvature and torsion (as functions of an arc-length
parameter) uniquely up to congruence.

Note that the reflection in a plane preserves k but changes
the sign of 7; therefore, it changes the sign of o. Hence,
without loss of generality, we may assume that 6 = 1and thus
k = 7. Substituting k = 7 into the formula for ¢, we obtain

N
0'=l+(r'r)'=1+<%> .

Thus ¢ = lif and only if r? = at + b. If a = 0, then
k = 7 = const, and one obtains helices of equal curvature
and torsion. If a # 0, then after a time shift and, if needed,
time reversal, one has r* = t/c?, thatis, k = 7 = ct1/2,
Curves with a constant ratio of curvature and torsion are
generalized helices; see [13, Section 1-9]. Those with equal
curvature and torsion have slope angle 45°. If a helix forms an
angle @ with its axis, then the orthogonal projection multiplies
its length element by sin @ and divides its curvature by sin? a
[13, Section 1-9]. Because of this, it suffices to find all plane
curves whose curvature is proportional to the — power of the
arc-length parameter.
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Figure 5. A curve whose curvature and torsion are both equal to ct~!/2 (blue) together with its congruent evolute (orange). The
curves are circular helices of slope angle 45° and helices of slope 45° on paraboloids of revolution.

This problem has a direct solution (see the proof of the
“fundamental theorem of plane curves”), and the curves are
the circle involutes.

The involute of a circle of radius R has the parametrization

y(¢t) = R(cost + tsint,sint — tcost).

Observe that ||y’(¢)|| = Rt, so that the arc-length parameter
of y is Rt? /2. The corresponding helix is given by

E@t) = R(cost+ tsint, sint — tcost, t2/2);

it lies on the paraboloid x? +y2 =2R*>2+R. O

It is tempting to apply Corollary 6 twice: the cur-
vature density and the torsion density of the second
evolute coincide with those of the initial curve (under
the nonrestrictive assumption that the torsion is posi-
tive). This is equivalent to the fact that the Frenet frame
of the second evolute is parallel to the Frenet frame of
the initial curve (which also follows from the identity
(t,,n,, b,) = (b, +n, +t), which we mentioned earlier).

Two simultaneously parametrized curves with parallel
tangents at the corresponding points are called Combescure
transformations of each other; see [12] for a detailed study.

A curve is congruent to its second evolute in a para-
metrization-compatible way if and only if an arc-length
parameter for the curve is also an arc-length parameter for
the second evolute. This condition is equivalent to a com-
plicated differential equation:

AN ENTIAY
ZORCO R
rt\ 7 oT\T

However, if the curvature k is constant, then ¢ = 7/k, and
equation (3) is satisfied. It follows that a space curve of con-

stant curvature is congruent to its second evolute. See [9]
for curves that are homothetic to their second evolutes.

Involutes. By definition, the curve £ is an involute of a
curve e if e is the evolute of £&. A generic curve has a two-
parameter family of involutes: they are the curves orthogo-

nal to the family of osculating planes of the given curve.
Let S be the tangent developable of ¢, and let H be the
osculating plane of e at some point. Let us roll the plane H
along the surface S without slipping and twisting. The in-
stantaneous motion of the plane H is a rotation about a line

The Mathematical Intelligencer ® 15

in H. Therefore, the velocity of each point of the plane H is
perpendicular to H, and the involutes of e are the trajecto-
ries of the points of H in the process of rolling.

This description shows that the involutes of a curve
are equidistant: the distances between the points of the
rolling plane do not change. It also shows that each invo-
lute has a cusp every time it reaches S.

Assume that e is a generic smooth closed curve with
nonvanishing torsion. After rolling the osculating plane
H all the way around e, this plane returns to the origi-
nal position. A self-map of H arises, which we call the
monodromy.

If we orient the osculating planes of a curve by its
binormals, then the monodromy is an isometry of H that
preserves this orientation. An orientation-preserving
isometry of the plane is either the identity, a rotation, or a
translation. The rotation angle of the monodromy is com-
puted in Corollary 9 below. Since a rotation has a unique
fixed point, we conclude that a generic smooth closed
curve e has a unique closed involute.

This is in contrast to the planar case: for the involute of
a closed plane curve to be closed, the curve must have zero
alternating perimeter (the sign changes after every cusp),
and if this alternating perimeter vanishes, then all involutes
are closed; see [10] or [8, Chapter 10].

Consider the trace ey of the curve e in the plane H as
this plane rolls along e. This trace is a planar develop-
ment of the curve e: its curvature, as a function of the
arc length, is the same as that of e. (Imagine that a curve
is made of wire that is hard to bend but easy to twist.
Then one can flatten this curve without changing its
curvature.)

While the curve e is closed, ey in general is not. The
endpoints of e;; and the tangent directions therein are two
contact elements in the plane H.

Proposition 8. The monodromy is the orientation-preserv-
ing isometry of H that sends the initial contact element of the
curve ey to its terminal contact element.

Proof. When one surface is rolled without slipping and
twisting along a curve on another surface, this curve and
its trace on the rolling surface have the same geodesic cur-
vatures at corresponding points. This describes the relation
between the curves e and ey,.

An instantaneous displacement of the plane H when it is
rolled along the curve e is the parallel translation distance



Figure 6. Osculating circles of a space curve.

dt in the tangent direction ¢/ (t), combined with the rotation
through the angle k(¢) dt. Integrated along e, this defines the
motion described in the statement. |

Corollary 9. The rotation angle of the monodromy is equal to
the total curvature of the curve.

Assume that a curve has a closed involute. When are
all involutes also closed? That is, when is the monodromy
the identity map?

Corollary 10. If a curve has at least one closed involute and
the total torsion of this involute is an integer multiple of 2x,
then all involutes are closed.

This follows from Corollary 6: the total curvature of the
evolute is equal to the total absolute torsion of the curve.
The torsion of the involute does not change its sign if the
curve has no cusps.

An example of a closed space curve whose planar devel-
opment is also closed is a curve of constant curvature 1 and
length 2kr (the development is a circle traversed k times).

Osculating circles. As we mentioned earlier, the osculat-
ing circles of a plane curve with monotonic curvature are
nested. What about the osculating circles of a space curve?
In particular, can the osculating circles at neighboring

points be linked?

The osculating circles of the curve in Figure 6 seem to be
unlinked. The next proposition confirms that locally, this is
always the case.

Proposition 11. Let & be a curve with nonvanishing torsion.
Then its osculating circle at every point is disjoint from its

osculating planes at sufficiently close points. In particular, the
osculating circles at close points are not linked.

Proof. We view the curve as the regression edge of

the envelope of the 1-parameter family of planes

z = a(t)x + b(t)y + c(t). We assume that for ¢t = 0, the plane
is z = 0, that £(0) = (0, 0, 0), and that the tangent line to &
at the origin is the x-axis. This means that

a(0) = b(0) = ¢(0) = d’'(0) ='(0) =" (0)=0.
Thus
a(t) = at®> + O(t3) ,
b(t) = bt + 0(£*),
c@)=ct’ +0(*).

We will ignore the “big O” terms in what follows: this
will not affect the result, but it will make the formulas less
awkward.

We find the equation of the curve using the middle equa-

tion (2):
£t = (—% %,cﬁ) .

The curvature of this curve at the origin is 2a*/3bc, and
the radius of curvature is 3bc/2a2.

The intersection of the osculating planes of the curve &(t),
that is, the planes z = a(t)x + b(t)y + c(t), with the plane
z = 0 are the lines a(t)x + b(t)y + c(t) = 0 (whent = 0, it is
the x-axis), that is, at®x + bty + ct> = 0.

The envelope of this family of lines is the parabola

_ 2 ct?

X a, y=7
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Figure 7. Data for the proof of Proposition 11.

The curvature of this curve at the origin is a*/2bc, and
its radius of curvature is 2bc/a?, which is greater than
3bc/2a%.

It follows that the osculating circle of the curve £ at the
origin lies inside the parabola. Therefore, the tangent lines to
the parabola, that is, the intersections of the osculating planes
of £(t) with its osculating plane at £(0), are disjoint from
the osculating circle at £(0). This implies the result;
see Figure 7. O

Pseudo-evolutes

Definition and first properties. A generic space curve

¢ determines a one-parameter family of rectifying planes.
This is the family of tangent planes to a certain develop-
able surface S, called a rectifying developable, and this
surface has a regression edge. We call this regression edge
the pseudo-evolute of the initial curve. In other words, the
pseudo-evolute of a curve ¢ is a curve whose osculating
planes are the rectifying planes of &.

Proposition 12. The curve & is a geodesic on S.

Proof. According to one of many descriptions of a geodesic
on a surface in space, it is a curve whose principal normals
are normal to the surface. For £ on S, this clearly holds: the
principal normals of £ are perpendicular to the rectifying
planes of £, that is, to the tangent planes of S. O

Informally, this means that a piece of paper with a
straight line drawn on it may be attached (without crum-
blings and foldings) in a unique way to a given space curve
in such a way that the line follows the curve (see [7]). This
surface is unique because the normals to this surface are
determined: they are the normals of £. This gives another
description of the pseudo-evolute of a (generic) curve &: it
is the regression edge of the unique developable surface S
that contains £ as a geodesic.

The Mathematical Intelligencer ® 17

Equation of the pseudo-evolute. The equation of the rec-
tifying plane to the curve £ at the point £(¢) is

(P—&®)-n@)=0.
The first and second derivatives of this equation with
respect to t are

(P = &) - (=kt() + 7h(1)) =0,
k+((P—&@®)- (—K't+7'b— (kK +7*)n) =0.

These three equations form the system that has the solution

_ kt
(P—&0)-t() = P——
(P—£&(1)-b@) = Pt

’

We thereby obtain the equation of the pseudo-evolute £(t)
of the curve &(¢):

Proposition 13. The pseudo-evolute € of the curve & has the
equation

k
=&+ ——(rt+kb).
€=¢ k’r—kr’(T )

Escapes to infinity and cusps.

Proposition 14. Let & be a generic curve with curvature k
and torsion t. Then:

1. The pseudo-evolute of & escapes to infinity when the first
derivative of the ratio T [k vanishes.

2. The pseudo-evolute of & has cusps when the second
derivative of T [k vanishes.

Proof. Statement 1 follows from Proposition 13: € escapes to
infinity when k't — k7’ = 0.

Statement 2 requires some computation. From the formula
in Proposition 13, we obtain

!/
/ k /
=t+< ) t+kb) + ——— (¢t +kb) .
£ (z It o )

(4)
By Frenet’s formulas, (7t + kb) = (7't + k'b), so the right-
hand side of (4) is a linear combination of t and b. The coef-
ficients of t and b are

T( 2k k(KT - k‘r’)’)

k't — k1’

Kr—kt! (Kt —kt')?

and

2k
k —
<k’r — kt’

Hence &/ = 0if

k(k't — k')
(Kt —kt')? )~



curve

pseudo-
evolute

Figure 8. Left: the pseudo-evolute of an elliptical helix. Right: the pseudo-evolute of a closed smooth curve. Its four visible cusps

are marked by green dots, and it escapes four times to infinity.

2k’ k(kK't — k')
Kt -kt  (Kt—kt')2

’

and the last expression is

k3 T 1
(k'f—kf')2<2> '
O

Thus the derivative (7/k)’ plays, for pseudo-evolutes,
a role similar to that of the curvature for evolutes of pla-
nar curves.

The function 7/k has the following geometric meaning.
The tangent indicatrix of a space curve £(¢) is the curve
&' () on the unit sphere (recall that & is parametrized by arc
length). The geodesic curvature of the tangent indicatrix
equals 7 /k.

Proposition 14 has the following consequence [13, Sec-
tion 2-4, Problem 5].

Corollary 15. The rectifying developable is a cone if and
only if T /k is a linear function, and it is a cylinder if and only
if t/k is a constant.

Figure 9. The pseudo-evolute of a curve with a cusp.

Examples. Figure 8 shows two examples: the pseudo-
evolutes of the same elliptical helix as in Figure 4, and
that of the curve x = cos¢, y =sint, z = % sin 2¢.

Pseudo-evolute of a curve with a cusp. Our definition
works in this case, but we are puzzled by the geometry of
the result; see Figure 9.

Let us consider the standard example of a curve with a
cusp:x =t*, y=1,z=14

After writing the equations of the rectifying planes
and finding the regression edge of their envelope by
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solving the middle system in (2), we obtain a curve with a
degenerate cusp of the type (tz, 4,8 ), situated at the point

with coordinates %(16, 0, 9); see Figure 9.

It is not clear to us how our geometric interpretation of
the pseudo-evolute (that the pseudo-evolute of a curve is
the regression edge of the developable surface that contains
the curve as a geodesic) works in this case.

Pseudo-involutes. Every curve has a two-parameter family
of pseudo-involutes, namely the curves whose pseudo-
evolute is the initial curve; indeed, a curve # is the regression
edge of a developable surface, the union of tangent lines of
n, and the geodesics of this surface are pseudo-involutes of #.

Pseudo-involutes may have cusps: it happens every
time the involute reaches #. (This makes pseudo-involutes
similar to involutes of planar curves, but there is a big
difference: pseudo-involutes of # do not need to be perpen-
dicular to # at the cuspidal points.)

A pseudo-involute may be a smooth closed curve, as
shown in the right-hand side of Figure 8. Then it is a
closed geodesic on a developable surface, and its equidis-
tant curves on this surface are also closed geodesics. Hence
such a curve is included in a 1-parameter family of smooth
closed pseudo-involutes.

An annoying question. We see that pseudo-evolutes have
many properties similar to those of evolutes. Still, their
geometric meaning remains enigmatic. Evolutes are the loci
of centers of osculating spheres. And pseudo-evolutes are
the loci—of what??

Monge Evolutes
Monge involutes. Attach one end of an unstretchable string
to a space curve 7, pull the string tight, and wrap it around #.
The velocity of the free end of the string is always orthogonal
to the string (it is unstretchable). The trajectory of the free end
is the curve £, a Monge involute of #. Changing the length of
the string yields a 1-parameter family of these involutes.
Differentiating the formula

SO =n@®)+( -y, (5)
where ¢ is the length of the string attached at the point
n(0), yields

g = (¢ -vkm,. (6)
It follows that if the curvature of # never vanishes, then the

cusps of £ lie on #, which happens when the free end of the
string lands on the curve.

Monge evolutes. If £ is a Monge involute of #, then by defi-
nition, 7 is a Monge evolute of £. Does every curve have such
an evolute, and if so, how many?

If n is an evolute of &, then # — & is the free part of the
string wrapped around #. Since the string is tangent to #,
one has

n=&é+yn+zb,
for some functions y and z of the parameter (n and b denote
the normal and binormal of §). Differentiate with respect
to the arc-length parameter of £ and apply the Frenet
formulas:

n"=Qa- ky)t + (y’ —7z2)n+ (' + 7y)b.

By assumption, n’ must be parallel toy — & = yn + zb,
which leads to the system of equations

y,—TZ

!
+
| ky=o, _7ty
Y

z

This system has the one-parameter family of solutions

y=r, z:—rtan/rdt.

This leads to the following result.

Proposition 16. The Monge evolutes of an arc-length-para-
metrized curve £ are given by

n=E&4+rn—rtanab, o =r7.

In particular, spatial Monge evolutes of a plane curve
are geodesics on the cylinder over the plane evolute of this
curve.

Corollary 17. The corresponding points of two different evo-
lutes are seen from the corresponding point of the curve under
a constant angle.

Singularities of Monge evolutes. Proposition 16 implies that

1
k|cosal

lln =&l =

On the other hand, due to (5), one has

t
= el =/ Il de.
)

!
/ — 1
lIn'1l = (—leM) .

It follows that the cusps of a Monge evolute correspond to
the critical points of the function k cos @. This generalizes
a property of plane evolutes: their cusps correspond to the
critical points of the curvature k, the vertices of the curve.

Proposition 16 also makes it possible to determine when
an evolute escapes to infinity: this happens if either k = 0
ora = % + kx.

Therefore,

Closed Monge evolutes and Monge involutes. Proposi-
tion 16 has the following consequence.

2Spoiler alert: the answer will be given at the very end of the article.

The Mathematical Intelligencer ® 19



Proposition 18. Monge evolutes of a closed space curve are
closed if and only if the total torsion of the curve is an integer
multiple of . In particular, Monge evolutes of a centrally
symmetric curve are closed.

This statement is due to the obvious fact that a central sym-
metry reverses the sign of the torsion (Figure 10).

As for closed Monge involutes, the situation is exactly
the same as in the plane:

Proposition 19. Monge involutes of a closed space curve are
closed if and only if the curve has zero length (the length ele-
ment changes sign after each cusp).

Interrelations between evolutes. As promised, we
describe how the three kinds of evolutes interact with one
another.

Figure 10. A Monge evolute (green) of a centrally symmetric
curve.

The line {£ + rn + Ab | A € R} is called the polar line of
the curve ¢ at the corresponding point. This is the line that
goes through the center £ + rn of the osculating circle and
is orthogonal to the osculating plane of £. The center of the
osculating sphere lies on the polar line.

Recall the formula e/ = ob. It implies that the polar line
is tangent to the evolute of £. It follows that the polar lines
are the rulings of the normal developable of the curve &.

Proposition 16 implies that each point of a Monge evo-
lute lies on some polar line, and every point of a polar line
lies on a unique Monge evolute. It follows that the normal
developable surface of the curve £ is foliated by its Monge
evolutes.

A Monge evolute of £ meets the evolute of £ at the points
where ' = rrtana. The tangent to the Monge evolute at
those points coincides with the binormal of £, that is, the
Monge evolute is tangent to the evolute (Figure 11).

As a result, we have the following.

Proposition 20. The evolute is the envelope of Monge evolutes.

We conclude with yet another relation between the differ-
ent types of evolutes [13, Section 2-4, Exercise 3].

Proposition 21. The pseudo-evolute of any space curve is the
evolute of any of its Monge involutes.

Proof. Let n be a space curve, and let £ be a Monge evolute
of 7. One has to show that the normal planes of # are the
rectifying planes of £. These planes are parallel because
their normals are parallel; see (6). And they coincide,
because £ — 7 is tangent to # and normal to & and thus is
contained in both planes. O

In particular, this provides an answer to the above
“annoying question”: the pseudo-evolute of a curve is the

Figure 11. The evolute (orange) and some Monge evolutes (green) of a curve & (blue) together with its normal developable
(orange surface). Left: The polar lines are tangent to the evolute and lie on the normal developable of &. Middle: The tangents of
the Monge evolute intersect £ orthogonally. Right: The Monge evolutes also foliate the normal developable of .
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locus of the centers of the osculating spheres of its Monge
evolute.
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