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Evolutes, involutes, and osculating circles of 
curves belong to the main notions of planar 
di!erential geometry, going back to Christiaan 
Huygens in the seventeenth century. They 
have many interesting properties, including the 
surprising Tait–Kneser theorem: the osculating 

circles of a curve with monotonic curvature are nested (see 
[2, 10] or [8, Chapter 10]). Here, we consider three kinds of 
evolutes and involutes of space curves, all of which were 
studied in the early days of di!erential geometry. They pos-
sess many familiar properties of evolutes and involutes of 
plane curves, but they also have some unexpected features. 
One of our goals, then, is to describe their intricate interre-
lations by surveying these properties and surprises.

Since the terminology is not canonical, we follow [6] and 
[9] and de#ne the evolute as the locus of centers of osculat-
ing spheres, or equivalently, the curve whose osculating 
planes are the normal planes of the given curve.1

We also discuss a natural modi#cation of the construc-
tion in which the normal planes are replaced by the recti-
fying planes. For the resulting curve we use a somewhat 
awkward term, pseudo-evolute, and this is the second kind 
of space evolute that we consider. Properties of pseudo-
evolutes o!er further surprises.

In the plane, involutes are constructed by wrapping an 
unstretchable string around a curve. The same construc-
tion in space provides yet another de#nition of involute, 
and one de#nes the evolute of a curve as the result of the 
converse operation. We call this third version Monge evo-
lutes and Monge involutes, after the French mathematician 
Gaspard Monge (1746–1818).

Although much of the material we present is not new 
and can be found in such classic books as [1, 5, 13], we be-
lieve that a modern and uni#ed treatment—complemented 
with several novel observations and results and illustrated 
with the help of computer graphics—may be useful, since 
the geometry of space curves remains highly relevant in 
modern mathematics.

For example, it is closely related to the theory of 
completely integrable systems: the #lament (aka binor-
mal, smoke ring, local induction) equation is a completely 
integrable evolution of space curves, equivalent to the 
nonlinear Schrödinger equation [11]. Another important 
application is the study of curved origami, which can be 
informally described as folding paper along curves (as op-
posed to straight lines) [4, 7].

In what follows, we present some—but not all—of the 
calculations behind the geometric statements. They involve 
only elementary calculus but in some cases are cumber-
some. Readers are encouraged to perform the missing calcu-
lations on their own.

Textbook Material
The following facts are undoubtedly known to the majority 
of readers, but we prefer to provide a brief survey of them 
to establish the settings, terminology, and notation.

Evolutes and involutes of plane curves. The evolute of 
a plane curve is the envelope of its normal lines. Equiva-
lently, it is the locus of the centers of osculating circles of 
the curve; see Figure 1. The singular points of the evolute 
correspond to the vertices of the curve, that is, to the criti-
cal points of the curvature.

If a curve e is the evolute of a curve ! , then ! is an in-
volute of e. An involute of a curve e can be constructed as 
follows: #x one end of an unstretchable string at a point of 
e, wrap the string about the curve, and move the free end, 
keeping the string tight. In this way, one obtains a one-
parameter family of involutes: the length of the string is a 
parameter.

Equivalently, one can roll a straight line along the curve 
e. Then the trajectory of each point of the line is an invo-
lute of e.

Frenet apparatus. By a space curve ! = !(t) , or x = x(t) , 
y = y(t) , z = z(t) , we mean a smooth map from ℝ to ℝ3 . 
We consider generic curves, the precise meaning of which 
varies depending on the situation, but it always describes an 
open dense set in the space of curves.

Speci#cally, our curves are free from in%ection points, 
that is, points where the curvature vanishes. If a curve has 
a singular point, then generically, it is a semicubic cusp, 
expressed in local coordinates by !(t) =

(
t2, t3, t4

)
 . The 

tangent line at such cusp point is well de#ned, and the 
curvature is in#nite.

Given a unit-speed curve ! , the Frenet frame
(
t = t(t),n = n(t),b = b(t)

)

1In [1, 5], the term evolute means something else, and Uribe-Vargas, in his detailed study of the evolute in our sense [14], prefers 
the term focal curve.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-023-10280-8&domain=pdf


  ⚫  The Mathematical Intelligencer10

consists of the tangent vector ! = !′ ; the (principal) normal 
n, which is the unit vector in the direction of !′′ ; and 
the binormal ! = " × # . The dependence of t,n,b on t is 
described by the Frenet formulas

where k and ! are the curvature and the torsion of the 
curve ! . We denote the radius of curvature 1/k by r.

There are well-known formulas for the curvature and 
torsion:

If the parametrization is not of unit speed, then the formu-
las become slightly more complicated:

The plane spanned by t and n is called the osculating plane 
of ! , the plane spanned by n and b is the normal plane, and 
the plane spanned by t and b is the rectifying plane.

Developable Surfaces. A surface in space is called 
developable if it is locally isometric to a plane. An informal 
description of a developable surface is that it is a surface 
that can be made by bending, but not folding, a piece of 
paper. Certainly, we have in mind an “ideal paper” that is 
ideally bendable (without any bounds on the curvature), 
incompressible, and unstretchable, i.e., the length of any 
curve drawn on the paper remains unchanged in the process 
of bending.

t
′ = kn ,

n
′ = kt + !b ,

b
′ = −!n ,

k = ‖!′′‖, " =
det(!′, !′′, !′′′)

‖!′′‖2 .

(1)k =
‖!′ × !′′‖
‖!′‖3 , " =

det(!′, !′′, !′′′)

‖!′ × !′′‖2 .

The theory of developable surfaces was developed 
(pardon the unintended pun) in the late 1700s by Euler 
and Monge. Let us translate the main results into modern 
language.

A generic (in particular, nowhere planar) developable 
surface is ruled, that is, every point belongs to a unique 
straight line that is fully contained in the surface. More- 
over, the tangent plane is constant along each line; this 
property distinguishes developable surfaces in the class of 
all ruled surfaces.

Generically these lines, known as rulings, are tangent to 
a certain curve, called the regression edge of the surface. 
There the surface is not smooth: all sections by planes 
transverse to the regression edge have cusps.

The latter property (also a characteristic one) provides 
a universal method for constructing developable surfaces: 
take an arbitrary (generic) curve ! in space, possibly with 
cusps, and consider the union of all its tangent lines. This 
union is a developable surface with regression edge ! , and 
all (generic) developable surfaces can be obtained in this 
way. This surface is called the tangent developable of ! ; see 
Figure 2.

The tangent developable deforms isometrically if the 
curve is deformed without changing its curvature. In par-
ticular, %attening the curve transforms its tangent devel-
opable into two identical sheets on the convex side of the 
curve; see [13, Section 4-5] for details.

There are two types of nongeneric developable surfaces: 
cylinders and cones over an arbitrary curve.

Another universal construction of developable sur-
faces uses an arbitrary (generic) one-parameter family of 
planes. For such a family there exists a unique develop-
able surface tangent to all the planes, called the envelope 
of the family. These planes are the osculating planes of 
the regression edge. For each plane, tangency occurs 
along a whole line, which is a tangent of the regression 
edge.

Figure 1.  Left: the red curve is the evolute of the blue one, and the blue curve is an involute of the red one. Right: the evolute of 
an ellipse. The four cusps of the evolute correspond to the two minima and two maxima of the curvature of the ellipse.
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The last construction provides a convenient analytic 
description of everything mentioned above. Namely, if 
F(x, y, z; t) = 0 is the equation of the family of planes (with 
parameter t), then we can form three systems of equations:

(the primes denote the partial derivative with respect to t).
The solutions of the #rst system describe the intersec-

tion lines of two in#nitesimally close planes. Therefore, 
if we exclude t from this system, we get the equation of a 
ruled surface.

The solutions of the second system correspond to the 
intersection points of three in#nitesimally close planes, that 
is, two in#nitesimally close rulings of the surface. Thus if 
we solve the second system with respect to x, y, z, we ob-
tain a parametric equation of the regression edge.

Finally, three close rulings meet only in the cuspidal 
points of the regression edge, so the solutions of the last 
system provide coordinates of those points.

Notice that all of this may be repeated for the case in 
which F(x, y, z; t) = 0 is a family of surfaces, not necessarily 
planes.

(2)

{
F(x, y, z; t) = 0,

F′(x, y, z; t) = 0;
{

F(x, y, z; t) = 0,

F′(x, y, z; t) = 0,

F′′(x, y, z; t) = 0;

⎧
⎪
⎨
⎪⎩

F(x, y, z; t) = 0,

F′(x, y, z; t) = 0,

F′′(x, y, z; t) = 0,

F′′′(x, y, z; t) = 0

Evolutes
Let ! = !(t) be a (generic) curve in space. There arise three 
families of planes: the osculating planes, the normal planes, 
and the rectifying planes. Each of them has an envelope 
(the regression edge of the developable surface tangent to 
the family). The #rst of these three cases is not interesting: 
the envelope is the curve ! itself.

The envelope of the family of normal planes is called the 
normal developable, and its regression edge is what we call 
the evolute of the curve; this is similar to the de#nition of 
the evolute of a planar curve as the envelope of the family 
of its normals.

Equation of the evolute. Let ! = !(t) =
(
x(t), y(t), z(t)

)
 

be a curve parametrized by arc length, and let e = e(t) be its 
evolute.

Proposition 1. e = ! + rn + r′

"
b.-

Proof. The proof is based on formulas (2). We denote the 
coordinates of points in ℝ3 by P = (X,Y, Z) , and we use the 
dot product to make the formulas more compact.

The family of normal planes to ! is described by

The derivatives of F are

(we used the equalities !′(t) ⋅ !′(t) = 1 and !′′(t) ⋅ !′(t) = 0).
The resulting (middle) system of equations (2) becomes

F(P;t) = !′(t) ⋅ (P − !(t)) = 0 .

F
′(P;t) =!′′(t) ⋅ (P − !(t)) − 1,F′′(P;t) = !′′′(t) ⋅ (P − !(t))

Figure 2.  Tangent developable of a curve x = at2 , y = bt3 , z = ct4 . Left: the rulings of the surface; right: the sections of the sur-
face by parallel planes.
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Solving this system for P gives the evolute e(t).
The Frenet formulas imply

whence

and #nally,

as required   ◻

In this calculation, we assume that ! ≠ 0 ; otherwise, the 
evolute escapes to in#nity.

Osculating circles and osculating spheres. Let ! = !(t) 
be a curve, and let !0 = !(t0) be a point on this curve. For 
t1 < t2 < t3 close to t0 , we denote by Ct1,t2,t3

 a circle passing 
through !(t1) , !(t2) , !(t3) ; for t1 < t2 < t3 < t4 close to t0 , 
we denote by St1,t2,t3,t4 a sphere passing through !(t1) , !(t2) , 
!(t3) , !(t4).

In the generic case, both Ct1,t2,t3
 and St1,t2,t3,t4 are well 

de#ned. Moreover, both have limits as all ti go to t0 . This limit 
circle and limit sphere are called the osculating circle and the 
osculating sphere of the curve ! at the point !0.

It is well known (and obvious) that the osculating sphere 
can be described as the unique sphere that has a tangency of 
order ≥ 3 with ! at !0 . The osculating circle is the intersection 
circle of the osculating sphere with the osculating plane; it 
has tangency of order ≥ 2 with ! at the point !0.

For our purposes, a more convenient description of the 
(center of the) osculating sphere is the following. We take 
three parameter values t1 < t2 < t3 close to t0 and consider 
the three normal planes to the curve ! at points !(t1) , !(t2) , 
!(t3) . These three planes have a common point, and this point 
approaches the center of the osculating sphere at the point 
!0 = !(t0) when t1 , t2 , and t3 approach t0.

Evolutes and osculating spheres. We have the following 
proposition.

Proposition 2. The evolute of a curve is the locus of the cent-
ers of its osculating spheres.

Proof. If F(x, y, z, t) = 0 is the equation of the normal plane 
at !(t) , then on the one hand, the solution set of the second 

{
!′(t) ⋅ (P − !(t)) = 0,
!′′(t) ⋅ (P − !(t)) = 1,
!′′′(t) ⋅ (P − !(t)) = 0.

!′ = t,

!′′ = kn,

!′′′ = −k2t + k′n + k"b,

P − ! =
1
k
n −

k′

k2
1
"
b,

e = ! +
1
k
n −

k′

k2
1
"
b = ! + rn +

r′

"
b,

system in (2) consists of the intersection points of triples of 
in#nitesimally close normal planes, and on the other hand, 
it describes the regression edge of the normal developable, 
i.e., the evolute.   ◻

Propositions 1 and 2 imply the following.

Corollary 3. Let R be the radius of the osculating sphere of 
! at !(t) . Then

Singularities of the evolute. From Proposition 1, one has

Thus, analogously to the two-dimensional case, the tangent 
to the evolute is always parallel to the binormal. It follows 
that the cusps of the evolute occur when

In particular, ! ≡ 0 is the condition for a curve to be spher-
ical; indeed, the evolute of a spherical curve is a point, the 
center of the sphere.

On the other hand, from Corollary 3,

and so (R2)′ = 2 r′

!
" . This shows that at every cusp of the 

evolute, R2 has zero derivative; thus generically, R achieves 
a maximum or a minimum.

But there is also the possibility that r′ = 0 and ! ≠ 0 , 
so although R is maximal or minimal, the evolute has no 
cusp at this point. By Corollary 3, in this case r = R , that 
is, the osculating circle is a great circle of the osculating 
sphere, and the center of the osculating sphere is con-
tained in the osculating plane of the curve. This is one of 
the essential di!erences between the evolutes of planar 
and space curves.

Remark 4. The quantity

is called the conformal torsion and is one of the two invari-
ants of space curves in conformal geometry (the other being 
the conformal curvature); see, e.g., [3]. In conformal geom-
etry, spheres are “%at,” and the conformal torsion measures 
the deviation of the curve from its osculating sphere.

R2 = r2 +

(
r′

!

)2

.

e′ = t + r′n − krt + !rb +

(
r′

!

)′

b −
r′

!
!n

=

(
r! +

(
r′

!

)′)
b.

! ∶= r" +

(
r′

"

)′

= 0.

(R2)′ = 2r′r + 2
r′

!

(
r′

!

)′

,

k3!2"

R5∕2
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Example 1 (A closed curve whose evolute has no cusps). The 
evolute of a closed convex plane curve has cusps, in fact, at 
least four of them, according to the 4-vertex theorem (see, 
e.g., [10] or [8, Chapter 10]). But the evolute of a closed 
space curve with nonvanishing curvature and torsion may 
be free of cusps, as shown in Figure 3.

Example 2 (Evolute of a curve with a cusp). It is well known 
that for a planar curve with a generic cusp (such as a semi-
cubic parabola), its evolute passes through the cusp and 
has no cusp at this point. The situation for a space curve is 

entirely di!erent. Here is a parametric equation of a curve 
with a generic cusp and its evolute (see Figure 4, left). The 
curve has equation

x = t2, y = t3, z = t4 ,

while the evolute has equation

We see that our curve has a cusp at the point (0, 0, 0), and 
the evolute has a cusp at the point (1/2, 0, 0).

Example 3 (An elliptical helix). The evolute of the standard 
(circular) helix is just another helix. For the elliptical helix 
x = a cos t , y = b sin t , z = ct , the evolute has four cusps 
for each turn (see Figure 4, right). The heavy dots on the 
evolute mark its noncuspidal points with r′ = 0 and ! ≠ 0 , 
which correspond to maxima or minima of R.

Interior and exterior points of a curve. Since at a ge-
neric point a curve has an odd degree of tangency with the 
osculating sphere, a neighborhood of such a point is con-
tained either in the interior or the exterior of that sphere. 
It remains unclear how to visualize the di!erence between 
“interior” and “exterior” points. Just imagine that you 

x =
9
2
t4 + 20t6,

y = −8t3 − 32t5,

z =
1
2
+

9
2
t2 + 15t4.

Figure 3.  A cusp-free evolute (orange) of a closed 
space curve (blue). The blue curve is given by 
t ↦ ((l +m cos 5t) cos t, (l +m cos 5t) sin t,−m sin 5t) with l = 1 
and m = 0.15.

Figure 4.  Left: the evolute of a curve with a cusp. Right: the evolute of an elliptical helix.
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have a rigid curve, say a twisted bicycle spoke. Can you tell 
the interior points from the exterior ones?

The type of a point, that is, whether it is interior or 
exterior, changes when the curve has a higher-order con-
tact with its osculating sphere, and this happens when the 
evolute has a singularity, that is, when ! = 0 . A calcula-
tion, which we do not reproduce here, shows that a point is 
interior if and only if !" > 0.

Here is a geometric interpretation: a curve of positive 
torsion locally lies inside its osculating sphere if the center 
of the osculating sphere moves in the direction of the 
binormal to the curve; it lies outside its osculating sphere if 
the center of the sphere moves in the direction opposite to 
the binormal.

Curvature and torsion of the evolute. As we know, 
e′ = !b . Using the Frenet formulas, we calculate the next 
two derivatives of e:

The formulas for e′ and e′′ show that the Frenet frame of the 
evolute has the form (te,ne,be) = (±b,±n,±t).

Formulas (1) imply the following result.

Proposition 5. The curvature and the torsion of the evolute 
are related to the curvature and the torsion of the initial curve 
by the formulas

where

Assume that the evolute has no cusps, that is, ! ≠ 0 . 
Without loss of generality, ! > 0 . The magical cancella-
tions that occur on integrating the curvature or the tor-
sion of the evolute, namely

imply the following corollary.

Corollary 6. The total curvature of the evolute is equal to 
the total absolute torsion of the curve. The total torsion of the 
evolute is equal to the total curvature of the curve taken with 
the sign of !.

Curves congruent to their evolutes. In the plane, 
logarithmic spirals and cycloids are examples of curves 
congruent to their evolutes. For a logarithmic spiral of 
slope angle 45◦ , that is, the spiral (et cos t, et sin t) , the 

e′′ = !′b − !"n ,

e′′′ = !k"t − (2!′" + !"′)n + (!′′ − !"2)b.

ke =
|!|
|"| , !e =

k
"
,

! = r" +

(
r′

"

)′

and r =
1

k
.

∫
b

a
ke‖e′‖ dt = ∫

b

a

|!|
|"| |"| dt = ∫

b

a
|!| dt ,

∫
b

a
!e‖e′‖ dt = ∫

b

a

k
"
|"| dt = ∫

b

a
sgn(")k dt ,

congruence sends every point to the center of its osculat-
ing circle.

We will say that this congruence is compatible with 
the parametrization. For other logarithmic spirals, the 
congruence involves a scaling of the parameter, and for 
the cycloid, a parameter shift (cusps correspond to verti-
ces and vice versa).

The 45◦ logarithmic spirals are the only planar curves 
congruent to their evolutes in a parameter-compatible way. 
What about space curves?

Proposition 7. The only space curves congruent to their evo-
lutes (with the congruence compatible with the parametrization) 
are circular helices of slope angle 45◦ and helices of slope 45◦ 
on paraboloids of revolution. The latter helices project down to 
circle involutes.

A (generalized) helix  (see Figure 5) is a curve that forms 
a constant angle with a given direction; see [13, Sec-
tion 1-9]. On the one hand, a helix is uniquely deter-
mined by its orthogonal projection along the axis and 
by the slope angle. On the other hand, on every surface 
there is a unique helix for a given axis, slope angle, and 
starting point (as long as the tangent plane to the sur-
face has enough slope). The helices in the proposition 
above have remarkable projections and lie on remarkable 
surfaces.

Proof of Proposition 7. If a curve ! is congruent to its evolute 
e in a parameter-compatible way, then the arc-length param-
eter of ! is also an arc-length parameter of e.

Due to the equation e′ = !b , this is equivalent to |!| = 1 . 
By Proposition 5, one then has ke = |!| , !e = k.

Congruent curves have the same curvature and the same 
or opposite torsion; thus k = |!| is a necessary condition for 
a parameter-compatible congruence between ! and e. This 
condition is also su&cient, since a space curve is determined 
by its curvature and torsion (as functions of an arc-length 
parameter) uniquely up to congruence.

Note that the re%ection in a plane preserves k but changes 
the sign of ! ; therefore, it changes the sign of ! . Hence, 
without loss of generality, we may assume that ! = 1 and thus 
k = ! . Substituting k = ! into the formula for ! , we obtain

Thus ! = 1 if and only if r2 = at + b . If a = 0 , then 
k = ! = const , and one obtains helices of equal curvature 
and torsion. If a ≠ 0 , then after a time shift and, if needed, 
time reversal, one has r2 = t∕c2 , that is, k = ! = ct−1∕2.

Curves with a constant ratio of curvature and torsion are 
generalized helices; see [13, Section 1-9]. Those with equal 
curvature and torsion have slope angle 45◦ . If a helix forms an 
angle ! with its axis, then the orthogonal projection multiplies 
its length element by sin ! and divides its curvature by sin2 ! 
[13, Section 1-9]. Because of this, it su&ces to #nd all plane 
curves whose curvature is proportional to the − 1

2
 power of the 

arc-length parameter.

! = 1 + (r′r)′ = 1 +

(
r2

2

)′′

.
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This problem has a direct solution (see the proof of the 
“fundamental theorem of plane curves”), and the curves are 
the circle involutes.

The involute of a circle of radius R has the parametrization

Observe that ‖! ′(t)‖ = Rt , so that the arc-length parameter 
of ! is Rt2∕2 . The corresponding helix is given by

it lies on the paraboloid x2 + y2 = 2R2z + R .   ◻

It is tempting to apply Corollary 6 twice: the cur-
vature density and the torsion density of the second 
evolute coincide with those of the initial curve (under 
the nonrestrictive assumption that the torsion is posi-
tive). This is equivalent to the fact that the Frenet frame 
of the second evolute is parallel to the Frenet frame of 
the initial curve (which also follows from the identity 
(te,ne,be) = (±b,±n,±t) , which we mentioned earlier).

Two simultaneously parametrized curves with parallel 
tangents at the corresponding points are called Combescure 
transformations of each other; see [12] for a detailed study.

A curve is congruent to its second evolute in a para-
metrization-compatible way if and only if an arc-length 
parameter for the curve is also an arc-length parameter for 
the second evolute. This condition is equivalent to a com-
plicated di!erential equation:

However, if the curvature k is constant, then ! = "∕k , and 
equation (3) is satis#ed. It follows that a space curve of con-
stant curvature is congruent to its second evolute. See [9] 
for curves that are homothetic to their second evolutes.

Involutes. By de#nition, the curve ! is an involute of a 
curve e if e is the evolute of ! . A generic curve has a two-
parameter family of involutes: they are the curves orthogo-
nal to the family of osculating planes of the given curve.

Let S be the tangent developable of e, and let H be the 
osculating plane of e at some point. Let us roll the plane H 
along the surface S without slipping and twisting. The in-
stantaneous motion of the plane H is a rotation about a line 

!(t) = R(cos t + t sin t, sin t − t cos t) .

!(t) = R
(
cos t + t sin t, sin t − t cos t, t2∕2

)
;

(3)1
r!

(
r′

!

)′

+

(
1
"!

(
"

!

)′
)′

= 0 .

in H. Therefore, the velocity of each point of the plane H is 
perpendicular to H, and the involutes of e are the trajecto-
ries of the points of H in the process of rolling.

This description shows that the involutes of a curve 
are equidistant: the distances between the points of the 
rolling plane do not change. It also shows that each invo-
lute has a cusp every time it reaches S.

Assume that e is a generic smooth closed curve with 
nonvanishing torsion. After rolling the osculating plane 
H all the way around e, this plane returns to the origi-
nal position. A self-map of H arises, which we call the 
monodromy.

If we orient the osculating planes of a curve by its 
binormals, then the monodromy is an isometry of H that 
preserves this orientation. An orientation-preserving 
isometry of the plane is either the identity, a rotation, or a 
translation. The rotation angle of the monodromy is com-
puted in Corollary 9 below. Since a rotation has a unique 
#xed point, we conclude that a generic smooth closed 
curve e has a unique closed involute.

This is in contrast to the planar case: for the involute of 
a closed plane curve to be closed, the curve must have zero 
alternating perimeter (the sign changes after every cusp), 
and if this alternating perimeter vanishes, then all involutes 
are closed; see [10] or [8, Chapter 10].

Consider the trace eH of the curve e in the plane H as 
this plane rolls along e. This trace is a planar develop-
ment of the curve e: its curvature, as a function of the 
arc length, is the same as that of e. (Imagine that a curve 
is made of wire that is hard to bend but easy to twist. 
Then one can %atten this curve without changing its 
curvature.)

While the curve e is closed, eH in general is not. The 
endpoints of eH and the tangent directions therein are two 
contact elements in the plane H.

Proposition 8. The monodromy is the orientation-preserv-
ing isometry of H that sends the initial contact element of the 
curve eH to its terminal contact element.

Proof. When one surface is rolled without slipping and 
twisting along a curve on another surface, this curve and 
its trace on the rolling surface have the same geodesic cur-
vatures at corresponding points. This describes the relation 
between the curves e and eH.

An instantaneous displacement of the plane H when it is 
rolled along the curve e is the parallel translation distance 

Figure 5.  A curve whose curvature and torsion are both equal to ct−1∕2 (blue) together with its congruent evolute (orange). The 
curves are circular helices of slope angle 45◦ and helices of slope 45◦ on paraboloids of revolution.
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dt in the tangent direction e′(t) , combined with the rotation 
through the angle k(t) dt . Integrated along e, this de#nes the 
motion described in the statement.   ◻

Corollary 9. The rotation angle of the monodromy is equal to 
the total curvature of the curve.

Assume that a curve has a closed involute. When are  
all involutes also closed? That is, when is the monodromy 
the identity map?

Corollary 10. If a curve has at least one closed involute and 
the total torsion of this involute is an integer multiple of 2! , 
then all involutes are closed.

This follows from Corollary 6: the total curvature of the 
evolute is equal to the total absolute torsion of the curve. 
The torsion of the involute does not change its sign if the 
curve has no cusps.

An example of a closed space curve whose planar devel-
opment is also closed is a curve of constant curvature 1 and 
length 2k! (the development is a circle traversed k times).

Osculating circles. As we mentioned earlier, the osculat-
ing circles of a plane curve with monotonic curvature are 
nested. What about the osculating circles of a space curve? 
In particular, can the osculating circles at neighboring 
points be linked?

The osculating circles of the curve in Figure 6 seem to be 
unlinked. The next proposition con#rms that locally, this is 
always the case.

Proposition 11. Let ! be a curve with nonvanishing torsion. 
Then its osculating circle at every point is disjoint from its 

osculating planes at su#ciently close points. In particular, the 
osculating circles at close points are not linked.

Proof. We view the curve as the regression edge of 
the envelope of the 1-parameter family of planes 
z = a(t)x + b(t)y + c(t) . We assume that for t = 0 , the plane 
is z = 0 , that !(0) = (0, 0, 0) , and that the tangent line to ! 
at the origin is the x-axis. This means that

Thus

We will ignore the “big O” terms in what follows: this 
will not a!ect the result, but it will make the formulas less 
awkward.

We #nd the equation of the curve using the middle equa-
tion (2):

The curvature of this curve at the origin is 2a2∕3bc , and 
the radius of curvature is 3bc∕2a2.

The intersection of the osculating planes of the curve !(t) , 
that is, the planes z = a(t)x + b(t)y + c(t) , with the plane 
z = 0 are the lines a(t)x + b(t)y + c(t) = 0 (when t = 0 , it is 
the x-axis), that is, at2x + bty + ct3 = 0.

The envelope of this family of lines is the parabola

a(0) = b(0) = c(0) = a′(0) = c′(0) = c′′(0) = 0 .

a(t) = at2 + O
(
t3
)
,

b(t) = bt + O
(
t2
)
,

c(t) = ct3 + O
(
t4
)
.

!(t) =

(
−
3ct
a
,
3ct2

b
, ct3

)
.

x =
2ct
a
, y =

ct2

b
.

Figure 6.  Osculating circles of a space curve.
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The curvature of this curve at the origin is a2∕2bc , and 
its radius of curvature is 2bc∕a2 , which is greater than 
3bc∕2a2.

It follows that the osculating circle of the curve ! at the 
origin lies inside the parabola. Therefore, the tangent lines to 
the parabola, that is, the intersections of the osculating planes 
of !(t) with its osculating plane at !(0) , are disjoint from  
the osculating circle at !(0) . This implies the result;  
see Figure 7.  ◻

Pseudo-evolutes
De"nition and "rst properties. A generic space curve 
! determines a one-parameter family of rectifying planes. 
This is the family of tangent planes to a certain develop-
able surface S, called a rectifying developable, and this 
surface has a regression edge. We call this regression edge 
the pseudo-evolute of the initial curve. In other words, the 
pseudo-evolute of a curve ! is a curve whose osculating 
planes are the rectifying planes of !.

Proposition 12. The curve ! is a geodesic on S.

Proof. According to one of many descriptions of a geodesic 
on a surface in space, it is a curve whose principal normals 
are normal to the surface. For ! on S, this clearly holds: the 
principal normals of ! are perpendicular to the rectifying 
planes of ! , that is, to the tangent planes of S.   ◻

Informally, this means that a piece of paper with a 
straight line drawn on it may be attached (without crum-
blings and foldings) in a unique way to a given space curve 
in such a way that the line follows the curve (see [7]). This 
surface is unique because the normals to this surface are 
determined: they are the normals of ! . This gives another 
description of the pseudo-evolute of a (generic) curve ! : it 
is the regression edge of the unique developable surface S 
that contains ! as a geodesic.

Equation of the pseudo-evolute. The equation of the rec-
tifying plane to the curve ! at the point !(t) is

The #rst and second derivatives of this equation with 
respect to t are

These three equations form the system that has the solution

We thereby obtain the equation of the pseudo-evolute !(t) 
of the curve !(t):

Proposition 13. The pseudo-evolute ! of the curve ! has the 
equation

Escapes to in"nity and cusps.

Proposition 14. Let ! be a generic curve with curvature k 
and torsion ! . Then: 

1.  The pseudo-evolute of ! escapes to in$nity when the $rst 
derivative of the ratio !∕k vanishes.

2.  The pseudo-evolute of ! has cusps when the second 
derivative of !∕k vanishes.

Proof. Statement 1 follows from Proposition 13: ! escapes to 
in#nity when k′! − k!′ = 0.

Statement 2 requires some computation. From the formula 
in Proposition 13, we obtain

By Frenet’s formulas, (!t + kb)′ = (!′t + k′b) , so the right-
hand side of (4) is a linear combination of t and b . The coef-
#cients of t and b are

and

Hence !′ = 0 if

(P − !(t)) ⋅ n(t) = 0 .

(P − !(t)) ⋅ (−kt(t) + "b(t)) = 0 ,

k + (P − !(t)) ⋅
(
−k′t + "′b −

(
k
2 + "2

)
n
)
= 0 .

(P − !(t)) ⋅ t(t) =
k"

k′" − k"′
,

(P − !(t)) ⋅ b(t) =
k2

k′" − k"′
.

! = " +
k

k′# − k#′
(#t + kb) .

(4)

!′ = t +
(

k
k′" − k"′

)′

("t + kb) +
k

k′" − k"′
("t + kb)′ .

!

(
2k′

k′! − k!′
−

k(k′! − k!′)′

(k′! − k!′)2

)

k

(
2k′

k′! − k!′
−

k(k′! − k!′)′

(k′! − k!′)2

)
.

Figure 7.  Data for the proof of Proposition 11.



  ⚫  The Mathematical Intelligencer18

and the last expression is

  ◻

Thus the derivative (!∕k)′ plays, for pseudo-evolutes, 
a role similar to that of the curvature for evolutes of pla-
nar curves.

The function !∕k has the following geometric meaning. 
The tangent indicatrix of a space curve !(t) is the curve 
!′(t) on the unit sphere (recall that ! is parametrized by arc 
length). The geodesic curvature of the tangent indicatrix 
equals !∕k.

Proposition 14 has the following consequence [13, Sec-
tion 2-4, Problem 5].

Corollary 15. The rectifying developable is a cone if and 
only if !∕k is a linear function, and it is a cylinder if and only 
if !∕k is a constant.

2k′

k′! − k!′
−

k(k′! − k!′)′

(k′! − k!′)2
= 0 ,

k3

(k′! − k!′)2

(
!

k

)′′
.

Examples. Figure 8 shows two examples: the pseudo- 
evolutes of the same elliptical helix as in Figure 4, and 
that of the curve x = cos t , y = sin t , z = 1

2
sin 2t.

Pseudo-evolute of a curve with a cusp.  Our definition 
works in this case, but we are puzzled by the geometry of 
the result; see Figure 9.

Let us consider the standard example of a curve with a 
cusp: x = t2 , y = t3 , z = t4.

After writing the equations of the rectifying planes  
and #nding the regression edge of their envelope by 

Figure 8.  Left: the pseudo-evolute of an elliptical helix. Right: the pseudo-evolute of a closed smooth curve. Its four visible cusps 
are marked by green dots, and it escapes four times to in#nity.

Figure 9.  The pseudo-evolute of a curve with a cusp.
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solving the middle system in (2), we obtain a curve with a 
degenerate cusp of the type 

(
t2, t4, t5

)
 , situated at the point 

with coordinates 3
350

(16, 0, 9) ; see Figure 9.
It is not clear to us how our geometric interpretation of 

the pseudo-evolute (that the pseudo-evolute of a curve is 
the regression edge of the developable surface that contains 
the curve as a geodesic) works in this case.

Pseudo-involutes. Every curve has a two-parameter family 
of pseudo-involutes, namely the curves whose pseudo-
evolute is the initial curve; indeed, a curve ! is the regression 
edge of a developable surface, the union of tangent lines of 
! , and the geodesics of this surface are pseudo-involutes of !.

Pseudo-involutes may have cusps: it happens every 
time the involute reaches ! . (This makes pseudo-involutes 
similar to involutes of planar curves, but there is a big 
di!erence: pseudo-involutes of ! do not need to be perpen-
dicular to ! at the cuspidal points.)

A pseudo-involute may be a smooth closed curve, as 
shown in the right-hand side of Figure 8. Then it is a 
closed geodesic on a developable surface, and its equidis-
tant curves on this surface are also closed geodesics. Hence 
such a curve is included in a 1-parameter family of smooth 
closed pseudo-involutes.

An annoying question. We see that pseudo-evolutes have 
many properties similar to those of evolutes. Still, their 
geometric meaning remains enigmatic. Evolutes are the loci 
of centers of osculating spheres. And pseudo-evolutes are 
the loci—of what?2

Monge Evolutes
Monge involutes. Attach one end of an unstretchable string 
to a space curve ! , pull the string tight, and wrap it around ! . 
The velocity of the free end of the string is always orthogonal 
to the string (it is unstretchable). The trajectory of the free end 
is the curve ! , a Monge involute of ! . Changing the length of 
the string yields a 1-parameter family of these involutes.

Di!erentiating the formula

where ! is the length of the string attached at the point 
!(0) , yields

It follows that if the curvature of ! never vanishes, then the 
cusps of ! lie on ! , which happens when the free end of the 
string lands on the curve.

Monge evolutes. If ! is a Monge involute of ! , then by defi-
nition, ! is a Monge evolute of ! . Does every curve have such 
an evolute, and if so, how many?

If ! is an evolute of ! , then ! − " is the free part of the 
string wrapped around ! . Since the string is tangent to ! , 
one has

(5)!(t) = "(t) + (! − t)t",

(6)!′ = (! − t)k"n" .

for some functions y and z of the parameter ( n and b denote 
the normal and binormal of ! ). Di!erentiate with respect 
to the arc-length parameter of ! and apply the Frenet 
formulas:

By assumption, !′ must be parallel to ! − " = yn + zb , 
which leads to the system of equations

This system has the one-parameter family of solutions

This leads to the following result.

Proposition 16. The Monge evolutes of an arc-length-para-
metrized curve ! are given by

In particular, spatial Monge evolutes of a plane curve 
are geodesics on the cylinder over the plane evolute of this 
curve.

Corollary 17. The corresponding points of two di"erent evo-
lutes are seen from the corresponding point of the curve under 
a constant angle.

Singularities of Monge evolutes. Proposition 16 implies that

On the other hand, due to (5), one has

Therefore,

It follows that the cusps of a Monge evolute correspond to 
the critical points of the function k cos ! . This generalizes 
a property of plane evolutes: their cusps correspond to the 
critical points of the curvature k, the vertices of the curve.

Proposition 16 also makes it possible to determine when 
an evolute escapes to in#nity: this happens if either k = 0 
or ! = "

2
+ k".

Closed Monge evolutes and Monge involutes. Proposi-
tion 16 has the following consequence.

! = " + yn + zb ,

!′ = (1 − ky)t + (y′ − "z)n + (z′ + "y)b .

1 − ky = 0,
y′ − !z

y
=

z′ + !y

z
.

y = r, z = −r tan∫ ! dt.

! = " + rn − r tan # b, #′ = $ .

‖! − "‖ =
1

k| cos #| .

‖! − "‖ = ∫
t

t0

‖!′‖ dt.

‖!′‖ =

(
1

k| cos "|
)′

.

2Spoiler alert: the answer will be given at the very end of the article.
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Proposition 18. Monge evolutes of a closed space curve are 
closed if and only if the total torsion of the curve is an integer 
multiple of ! . In particular, Monge evolutes of a centrally 
symmetric curve are closed.

This statement is due to the obvious fact that a central sym-
metry reverses the sign of the torsion (Figure 10).

As for closed Monge involutes, the situation is exactly 
the same as in the plane:

Proposition 19. Monge involutes of a closed space curve are 
closed if and only if the curve has zero length (the length ele-
ment changes sign after each cusp).

Interrelations between evolutes. As promised, we 
describe how the three kinds of evolutes interact with one 
another.

The line {! + rn + "b ∣ " ∈ ℝ} is called the polar line of 
the curve ! at the corresponding point. This is the line that 
goes through the center ! + rn of the osculating circle and 
is orthogonal to the osculating plane of ! . The center of the 
osculating sphere lies on the polar line.

Recall the formula e′ = !b . It implies that the polar line 
is tangent to the evolute of ! . It follows that the polar lines 
are the rulings of the normal developable of the curve !.

Proposition 16 implies that each point of a Monge evo-
lute lies on some polar line, and every point of a polar line 
lies on a unique Monge evolute. It follows that the normal 
developable surface of the curve ! is foliated by its Monge 
evolutes.

A Monge evolute of ! meets the evolute of ! at the points 
where r′ = r! tan " . The tangent to the Monge evolute at 
those points coincides with the binormal of ! , that is, the 
Monge evolute is tangent to the evolute (Figure 11).

As a result, we have the following.

Proposition 20. The evolute is the envelope of Monge evolutes.

We conclude with yet another relation between the di!er-
ent types of evolutes [13, Section 2-4, Exercise 3].

Proposition 21. The pseudo-evolute of any space curve is the 
evolute of any of its Monge involutes.

Proof. Let ! be a space curve, and let ! be a Monge evolute 
of ! . One has to show that the normal planes of ! are the 
rectifying planes of ! . These planes are parallel because 
their normals are parallel; see (6). And they coincide, 
because ! − " is tangent to ! and normal to ! and thus is 
contained in both planes.   ◻

In particular, this provides an answer to the above 
“annoying question”: the pseudo-evolute of a curve is the 

Figure 10.  A Monge evolute (green) of a centrally symmetric 
curve.

Figure 11.  The evolute (orange) and some Monge evolutes (green) of a curve ! (blue) together with its normal developable 
 (orange surface). Left: The polar lines are tangent to the evolute and lie on the normal developable of ! . Middle: The tangents of 
the Monge evolute intersect ! orthogonally. Right: The Monge evolutes also foliate the normal developable of !.
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locus of the centers of the osculating spheres of its Monge 
evolute.
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