
1.  Introduction
Anthropogenic forcing is expected to alter the atmospheric circulation as a response to increased net absorbed 
radiative heat fluxes (Held & Soden, 2006; Lu et al., 2008; Vecchi & Soden, 2007). The adjustment of the atmos-
pheric circulation to anthropogenic forcing can then impact the ocean circulation by altering winds or buoyancy 
fluxes, two major drivers of the large-scale ocean circulation. The large-scale ocean circulation plays a key role in 
setting the spatially varying pattern of sea surface temperature (SST) warming by redistributing the heat taken up 
by the ocean from increased downward heat flux (Banks & Gregory, 2006; Hu et al., 2020, 2022; Liu et al., 2018; 
Lyu et al., 2020). This pattern of SST warming can feed back onto the atmosphere through pattern-dependent 
radiative feedbacks, largely linked to cloud-SST feedbacks (termed “the pattern effect”; Armour, 2017; Armour 
et al., 2013; Dong et al., 2019, 2020; Rose et al., 2014; Stevens et al., 2016). Therefore, changes to the atmos-
pheric circulation that drive a change in ocean circulation could alter the globally averaged rate of anthropogenic 
warming.

Externally forced changes to the atmospheric circulation, and the impacts of these changes onto the oceanic 
circulations, have already begun to occur over the historical record. The Southern Hemisphere midlatitude 
winds have increased over the past four decades (Thompson et al., 2011; Thompson & Solomon, 2002), altering 
the wind-driven circulation in the South Indian and South Pacific subtropical gyres (Beal & Elipot, 2016; Lee 
et al., 2015; McMonigal et al., 2018, 2022; Palmer et al., 2004; Roemmich et al., 2007, 2016). In the tropical 
Pacific, the trade winds have increased in strength (M. H. England et al., 2014; Mcgregor et al., 2012; Merrifield 
et al., 2012; Timmermann et al., 2010), leading to cooling in the equatorial Pacific (Seager et al., 2022).
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Previous studies have quantified the role of the ocean circulation on the rate of anthropogenic warming under 
high emissions scenarios, such as a doubling or quadrupling of CO2 (Garuba et al., 2018; Trossman et al., 2016; 
Winton et al., 2013). In these scenarios, the projected decline of the Atlantic Meridional Overturning Circula-
tion (AMOC) dominates the oceanic response of the climate system, by cooling the high latitude North Atlantic 
and allowing for increased deep ocean heat uptake within the North Atlantic (Rugenstein et  al.,  2013). This 
leads to a decrease in the globally averaged surface warming; thus, the overall role of the ocean is to mediate 
the surface warming rate. Beyond the impacts from AMOC decline, whether externally forced changes in the 
wind-driven ocean circulation mediate or amplify the warming rate is relatively unexplored despite its potential 
influence on regional scales. Moreover, developing mitigation and adaptation strategies relies on accurate near-
term (20–40 years) climate projections (Hewitt & Lowe, 2018; Nissan et al., 2019), a timescale over which large 
AMOC trends are not expected (Lobelle et al., 2020; Weijer et al., 2020).

In this study, we quantify the role of externally forced changes to the wind-driven ocean from 1979 to 2014 in the 
Community Earth System Model version 2 (CESM2). We isolate this effect by comparing two large ensembles 
within CESM2: one including the role of changes to the wind-driven ocean circulation, and the other excluding it. 
Crucially, the effect of changes in the wind-driven ocean circulation is opposite in sign to the role of ocean circu-
lation on global warming under higher emission scenarios (Garuba et al., 2018; Trossman et al., 2016; Winton 
et al., 2013). This implies that the role of the changing ocean circulation on the globally averaged rate of surface 
warming depends on the ocean dynamics at play, with opposing roles of boundary-driven ocean circulation 
changes like AMOC, and wind-driven ocean circulation changes.

2.  Methods
2.1.  Experimental Design

We use two CESM2 ensembles forced by realistic, time-varying 1850–2014 external forcing, including green-
house gasses, anthropogenic aerosol emissions, natural aerosols (e.g., volcanic), and solar irradiance. In the first 
ensemble, referred to as FCM for “Fully Coupled Model,” the ocean and atmosphere exchange time-varying 
buoyancy and wind stress (momentum) fluxes. In the second ensemble, referred to as MDM for “Mechanically 
Decoupled Model,” the ocean and atmosphere exchange time-varying buoyancy fluxes, but the ocean is forced by 
a fixed wind stress climatology, calculated from preindustrial conditions. The atmospheric winds in MDM vary in 
time; only the wind stress forcing onto the ocean is fixed to a climatology. Both models have similar preindustrial 
mean climates and ocean circulation (Figures S1–S3 in Supporting Information S1). Additionally, because the 
low frequency, interhemispheric component of AMOC is predominantly buoyancy forced (Biastoch et al., 2008; 
Medhaug et al., 2012; Polo et al., 2014; Yeager & Danabasoglu, 2014), FCM and MDM simulate similar AMOC 
mean states (Larson et al., 2020), similar externally forced declines in AMOC (Figure 1a), and similar externally 
forced trends in ocean meridional heat transport (Figure 1b).

To isolate the externally forced trends, we compute the ensemble mean linear trends in each simulation to remove 
the internal variability (Bengtsson & Hodges, 2019; Deser et al., 2012, 2020; Hawkins et al., 2016; Machete & 
Smith, 2016). The difference between the ensemble mean trends in the FCM and MDM isolates climate changes 
due to externally forced trends in the wind-driven ocean circulation. We refer to this component of the trends as 
due to the dynamic response of the ocean to changes in the “Winds,” as we expect the total forced trend to be a 
linear superposition of wind and buoyancy forced trends (Fyfe et al., 2007; Yeager & Danabasoglu, 2014). In this 
coupled model setup, ocean circulation trends can feedback onto the atmosphere, sea ice, and land.

2.2.  Model Ensembles

Both FCM and MDM ensembles were run using the smoothed biomass-burning setup of the CESM2 (Danabasoglu 
et  al.,  2020; Fasullo et  al.,  2022; Rodgers et  al.,  2021). This model consists of the Community Atmosphere 
Model version 6, the Parallel Ocean Project version 2 (Smith et al., 2010), the Community Land Model version 
5 (Lawrence et al., 2019), and the Los Alamos Community Ice CodE version 5 (Hunke et al., 2017). The model 
components communicate through the Common Infrastructure for Modeling the Earth (CIME) coupler. The 
alteration of the wind stress forcing passed to the ocean in the MDM ensemble is done within CIME, by over-
writing the time-varying wind stress forcing passed from the atmosphere to the ocean. Both models were forced 
by realistic 1850–2014 greenhouse gas emissions.
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CESM2 is a part of CMIP6. In CMIP6, stratospheric ozone trends are prescribed, but no tropospheric ozone 
trends are included (Liu et al., 2022). Anthropogenic aerosols are prescribed, and lead to an SST cooling that is 
similar in structure to the greenhouse gas-induced warming (Xie et al., 2013) but show distinct regional patterns 
in surface wind trends (Wang et al., 2016). CESM2 has a horizontal ocean resolution of approximately 1°.

The FCM ensemble was created by branching 50 ensemble members from a spun-up, preindustrial model run 
for more than 1,000 years. This includes 10 macro ensemble members, where each of the members is branched 
from a different preindustrial climate state, and four sets of 10 micro ensemble members, where each set of micro 
ensemble members is branched from a different preindustrial climate, and each ensemble member is created by 
adding a random, round off error level perturbation to the atmospheric potential temperature field.

The MDM ensemble was created by branching 20 ensemble members from a spun-up, preindustrial MDM model 
run. The wind stress climatology forcing in the MDM runs was calculated from 50 years of the FCM preindus-
trial run. Each ensemble member was branched from a different year of the preindustrial MDM run, making it a 
macro ensemble.

The FCM and MDM preindustrial runs have similar mean states. In the preindustrial run, SSTs are warmer and 
mixed layer depths are shallower in MDM (Figures S1 and S2 in Supporting Information S1). The ocean circu-
lation mean state is similar in the two models, in all regions except the Southern Ocean (Figure S3 in Supporting 
Information S1). MDM has a stronger Antarctic Circumpolar Current, likely due to alterations of the isopycnals 
across the Southern Ocean.

2.3.  Observational Data

For comparison to the modeled trends, observational trends were estimated by using GISS Surface Temperature 
Anomaly version 4 (GISTEMP) surface air temperature and ECMWF reanalysis version 5 (ERA5) wind stress.

2.4.  Analyses

To analyze the globally averaged surface temperature response, we consider the ensemble mean reference height 
air temperature. AMOC max is calculated as the maximum AMOC stream function between 20° and 65°N, at 
each time step. All trends shown are linear trends calculated from annual mean anomalies from the climatology 
calculated over the 1941–1970 period, to remove any dependence on mean state differences. Trends are multiplied 

Figure 1.  (a) Ensemble mean Atlantic Meridional Overturning Circulation (AMOC) intensity in each simulation (thick lines) with two standard deviation shading. 
Histogram shows trends from 1979 to 2014 in each ensemble member. (b) Ensemble mean trends in ocean meridional heat transport (MHT; thick lines) with two stand 
deviation shading.

 19448007, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L102846 by N
orth C

arolina State U
niversit, W

iley O
nline Library on [30/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Geophysical Research Letters

MCMONIGAL ET AL.

10.1029/2023GL102846

4 of 11

by the length of the time period, to give units that match the variable of interest. Top-of-atmosphere (TOA) total 
radiation, longwave radiation, and shortwave radiation are defined as positive downward. For the radiative flux 
regressions shown in Figure S10 in Supporting Information S1, the earlier time period trends are calculated as the 
linear trends over 1966–1987, excluding 1975, 1982, and 1983. This is due to the large volcanic influence during 
the 3 excluded years. The later time period trends are calculated as the linear trends over 1996–2014, to avoid the 
large volcanic influence of Mt. Pinatubo in 1991.

2.5.  Significance Testing

To determine the regions and time periods where trends are significantly different, we consider the spread of the 
ensemble members as a normal distribution. To test if the distributions are significantly different, we calculate 
the Z statistic and use 95% significance (Z ≥ 1.96) as a threshold, where:

𝑍𝑍 =
𝑋𝑋FCM −𝑋𝑋MDM

2

√

𝜎𝜎
2

FCM
− 𝜎𝜎

2

MDM

�

X is the ensemble mean from each simulation. 𝝈 is the standard deviation of each ensemble member divided by 
the square root of the number of ensemble members.

The global mean temperature difference is also significant at the 95% level when considering temporal correla-
tions of residuals of the difference of ensemble means, following (Santer et al., 2000).

3.  Wind Stress and Wind-Driven Ocean Circulation Trends
Externally forced changes to the wind stress primarily manifest within the Southern Hemisphere westerlies and the 
Pacific trades and North Pacific westerlies (Figure 2a). The Southern Hemisphere westerlies strengthen and shift 
poleward beginning in 1970 (Figure S4 in Supporting Information S1) and broadly agree with reanalysis product 
wind stress trends in the region (Figure S5 in Supporting Information S1). The strengthening and  shifting of 
the Southern Hemisphere westerlies have been linked to both stratospheric ozone and greenhouse gas forcing 
(Thompson et al., 2011; Thompson & Solomon, 2002). The Pacific trades and North Pacific westerlies weaken 
beginning in 1990 (Figure S4 in Supporting Information S1). The weakening of the Pacific trades is inconsistent 
with reanalysis products (M. H. England et al., 2014; Mcgregor et al., 2012; Merrifield et al., 2012; Timmermann 
et al., 2010), while the weakening of the North Pacific westerlies broadly matches the reanalysis product trend 
(Figure S5 in Supporting Information S1).

These wind stress trends lead to externally forced changes in the horizontal barotropic ocean circulation (BSF) 
over 1979–2014 (Figure 2c; mean barotropic stream function shown in Figure S6 in Supporting Information S1). 
The Antarctic Circumpolar Current accelerates due to wind stress trends, in agreement with the observed accel-
eration of Antarctic Circumpolar Current velocities (Shi et al., 2021). The tropical and North Pacific circulations 
weaken. Trends in the barotropic circulation are generally similar to trends in ocean currents averaged over the 
upper 150 m (Figure S7 in Supporting Information S1).

Comparing the role of buoyancy (illustrated by the MDM trend) and wind stress forcing (illustrated by the Winds 
trend) on externally forced changes in the BSF shows that buoyancy forcing dominates the changes in the Atlantic 
Ocean (Figures 2b and 2c). The buoyancy-forced weakening of the North Atlantic circulation is consistent with 
the simulated decline in the interhemispheric AMOC in the model (Figure 1a). Although the simulated AMOC 
decline is similar in both models, a significantly larger decline of 3.5 Sv is seen in FCM, while MDM simu-
lates a decline of 2.6 Sv. This suggests that, although buoyancy forcing dominates the forced AMOC decline, 
the changes in surface wind stress act to enhance the AMOC decline by about 25%. Both buoyancy and wind 
stress changes contribute to a weakening of the South Indian Ocean subtropical gyre. This is the opposite sign 
of the observed strengthening of the Southern Hemisphere gyres (McMonigal et al., 2018; Palmer et al., 2004; 
Roemmich et al., 2007, 2016), suggesting that the model may be biased or low-frequency internal variability 
projects onto the observed trends. Both buoyancy and wind stress changes contribute to changes in the Antarc-
tic Circumpolar Current strength, although with opposite signs. Wind stress changes accelerate the Antarctic 
Circumpolar Current, while buoyancy changes slightly weaken it. This is opposite to the role of buoyancy forcing 
found under stronger greenhouse gas forcing (Peng et al., 2022; Shi et al., 2020). This suggests that the response 
of the Southern Ocean to buoyancy forcing may depend on the timescale or magnitude of forcing.
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Overall, the modeled externally forced acceleration of the Antarctic Circumpolar Current due to changes in the 
overlying westerlies is in agreement with atmospheric and oceanic observations. The weakening of the Pacific 
circulations due to weakening of the overlying winds is not corroborated by atmospheric reanalysis products.

4.  Wind-Driven Ocean Circulation Trend Feedbacks
Global mean surface temperature anomalies are very similar with and without wind-driven ocean circulation 
changes, until the 1970s (Figure 3a). Trends in the wind stress forcing on the ocean lead to statistically signif-
icant global mean surface warming differences in the early 1990s (Figure  3b). This is several decades after 

Figure 2.  (a) Trend in FCM ensemble mean barotropic stream function (BSF) over 1979–2014 (colored contours) and wind stress (arrows). Gray contours show the 
1941–1970 mean BSF, with contour values every 15 Sv from −75 to 60 Sv. (b) Trend in MDM ensemble mean barotropic stream function over 1979–2014 (colored 
contours) and wind stress (arrows). Gray contours show the 1941–1970 mean BSF, with contour values every 15 Sv from −75 to 60 Sv. (c) Winds ensemble mean 
trends. Stippling shows where FCM and MDM ensemble mean trends are significantly different. For all panels, negative values indicating counterclockwise circulation 
are dashed and positive values indicating clockwise circulation are solid.

 19448007, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L102846 by N
orth C

arolina State U
niversit, W

iley O
nline Library on [30/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Geophysical Research Letters

MCMONIGAL ET AL.

10.1029/2023GL102846

6 of 11

Figure 3.  (a) Surface air temperature anomalies, with red showing FCM and blue showing MDM. Thick lines are ensemble 
means. Shading shows 2 standard deviations across ensemble members. Thick black line shows the GISTEMP observational 
product. Right-hand side histograms show the trend over 1979–2015 multiplied by the time period, to yield the change of 
each field. (b) The FCM-MDM temperature difference, with shading showing the 95% confidence interval. (c) Same as (a) 
but for global mean all sky top-of-atmosphere upward shortwave radiation anomalies.
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changes in the Southern Ocean winds, and temporally aligned with changes to the Pacific trade winds (Figure 
S4 in Supporting Information S1). Changes to the wind stress-driven ocean circulation lead to increased global 
warming of 0.15°C, or 17% of the trend in FCM (Table S1 in Supporting Information S1). The observed rate of 
global surface temperature change (0.59°C) is within the range of the MDM ensemble and is slightly colder than 
the range of possibilities simulated by the FCM ensemble. To understand the cause of the amplified warming in 
FCM compared to MDM, we first focus on the differences in the warming patterns between the two simulations.

Changes in the wind-driven ocean circulation lead to more warming over the Southern Hemisphere and the 
eastern tropical Pacific (Figure 4d). In both regions, models commonly show too much warming as compared 
to observations (Fan et al., 2014; Seager et al., 2022; Turner et al., 2013). In these regions, the MDM simulation 
shows better agreement with observations as compared to the more realistic FCM simulation, suggesting that a 
component of the model biases could be due to incorrect wind stress trends or incorrect ocean response to wind 
stress trends. In the Northern Hemisphere, trends in wind stress forcing shift warming patterns, including a zonal 
shift of the North Atlantic warming hole and a meridional shift of the simulated location of maximum warming 
in the North Pacific. Trends in wind stress forcing also significantly alter surface temperature trends over land, 
leading to a faster warming rate over much of the Americas, Europe, Africa, and Australia and slower warming 
over parts of Asia.

As an initial assessment of the dynamics leading to the warming pattern in Winds, we compare the surface air 
temperature trend (Figure 4d) to the upper 2,000 m ocean heat content (OHC) trend (Figure S8c in Supporting 
Information S1) and the mixed layer depth trend (Figure S9c in Supporting Information S1). Changes to the 
wind-driven ocean circulation lead to more OHC warming (greater surface heat fluxes into the ocean) in the 
Southern Hemisphere, North Atlantic, and high latitude North Pacific, and less OHC warming (surface heat 
fluxes out of the ocean) in the tropical Pacific. In the zonal mean, heat flux into the ocean is larger in FCM than 
MDM in the subtropics, while near the equator, FCM has surface heat fluxes out of the ocean while MDM has 
surface heat fluxes into the ocean (Figure S10a in Supporting Information S1). Changes to the wind-driven ocean 
circulation lead to a deeper mixed layer depths in the Southern Ocean and high latitude North Atlantic. Therefore, 
in the Southern Ocean, warmer surface temperatures in Winds are collocated with regions of larger OHC warm-
ing (Figure S8 in Supporting Information S1) and deeper mixed layers (Figure S9 in Supporting Information S1), 
suggesting that atmospheric processes may dominate. In contrast, in the tropical Pacific, Winds show amplified 
air temperature warming, reduced OHC warming, surface heat fluxes out of the ocean, and an altered mixed layer 
depth gradient across the basin (Figures S8 and S9 in Supporting Information S1). This suggests that dynamic 
oceanic processes dominate the wind-driven warming seen in the Pacific. Further study using regional heat budg-
ets will elucidate specific dynamics at play.

The different warming patterns in each simulation could drive the different globally averaged warming rates 
through ocean heat uptake differences, or through differences in radiative feedbacks which alter the TOA radia-
tion balance. Specifically, when comparing two simulations with the same external forcing, the simulation with 
a faster global warming rate must either have smaller ocean heat uptake or larger net radiative energy absorption 
by the planet (i.e., a larger TOA radiation imbalance) than the simulation with a slower global warming rate. 
The zonally averaged ocean heat uptake patterns in FCM and MDM are different, especially in the tropics where 

Figure 4.  (a) Ensemble mean trend in surface air temperature over 1979–2014 in FCM. (b) Same but for GISTEMP 
observational product (c) Same but for MDM. (d) Same but for Winds. Stippling in bottom right is where FCM and MDM 
ensemble means are statistically different.
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FCM takes up less heat than MDM (Figure S10a in Supporting Information S1), which likely plays a role in the 
different zonal mean rates of surface warming (Figure S10b in Supporting Information S1) and differing values 
of ocean heat uptake efficiency (Table S1 in Supporting Information S1). Globally averaged, however, FCM 
warms more than MDM while also taking up more heat into the ocean (Table S1 in Supporting Information S1). 
Therefore, ocean heat uptake cannot explain the amplified warming in FCM. Instead, radiative fluxes, which 
are known to be dependent on the pattern of surface warming, lead to the amplification of the globally averaged 
warming rate in FCM. FCM begins to warm faster than MDM in about 1990 (Figure 3c), and so we focus the next 
analyses on the period 1995–2014.

Over 1995–2014, the all-sky, TOA radiation imbalance in FCM increases at a faster rate than in MDM (Figure 
S10c in Supporting Information S1), signifying the planet is gaining radiative energy at a faster rate in FCM than 
in MDM. This increase in radiative energy occurs in shortwave radiation under all-sky conditions but not in clear-
sky conditions (Figure S10f in Supporting Information S1) nor in longwave radiation under all-sky conditions 
(Figure S10e in Supporting Information S1), suggesting shortwave cloud radiative effects explain the difference 
in the overall net radiative trends between FCM and MDM. In context of the different SST warming patterns 
between the simulations, we expect to see different net radiative trends. The amplified warming beginning in 
1995 is consistent with when the Pacific trades weaken in FCM, leading to increased warming in the east-
ern equatorial Pacific (Figure 4d) through ocean dynamical processes. Anomalous SST warming in the eastern 
tropical Pacific is known to decrease the lower tropospheric stability and reduce low clouds locally (Andrews 
et al., 2015; Andrews & Webb, 2018; Ceppi & Gregory, 2017; Zhou et al., 2017), thereby reducing the global 
reflected shortwave radiation (Figure  3c) and resulting in an increased downward TOA radiation imbalance 
(Figure S10c in Supporting Information S1). These results suggest that the weakening of the Pacific trades may 
play a larger role than the poleward intensified Southern Hemisphere westerlies in the amplification of global 
surface warming in FCM. However, it is possible that regional warming differences in the Southern Hemisphere 
are more impacted by the Southern Hemisphere westerly changes than the Pacific trade changes. Additionally, 
the Southern Hemisphere westerly wind shift and the weakened Pacific trades could be indirectly linked through 
an extratropical to tropical teleconnection (Dong et al., 2022; M. R. England et al., 2020).

5.  Conclusions
Our study demonstrates that the wind-driven ocean circulation plays a critical role in pacing the global warming 
rate over 1979–2014 in a CMIP6 model, under realistic greenhouse gas and aerosol forcing. Externally forced 
changes to the wind-driven ocean circulation lead to increased surface warming of 0.15°C (17%). This increased 
warming is distributed as amplified warming over most of the Southern Hemisphere and a shifting of warming 
patterns in the Northern Hemisphere. The increased rate of warming caused by trends in wind-driven ocean is 
opposite in sign to the decreased rate of global warming due to ocean circulation changes found in previous stud-
ies (Garuba et al., 2018; Trossman et al., 2016; Winton et al., 2013). We hypothesize that this discrepancy is due 
to the different role of the AMOC decline, which dominates in studies that use large greenhouse gas forcings, and 
wind-driven ocean circulation changes which are isolated in our experimental setup. This suggests that the role 
of ocean circulation changes on global surface warming is dependent on dynamics and that at any point in time, 
the competing effects of an AMOC decline-driven cooling and a wind-driven ocean circulation warming dictate 
the total role of ocean circulation changes on surface warming. If this hypothesis is correct, ocean circulation 
changes could be contributing to time variability in the climate feedback parameter (Andrews et al., 2015). Over 
long time periods, AMOC decline likely dominates the oceanic warming feedback, and reduces global surface 
warming, whereas over shorter time scales (like those investigated here), wind-driven ocean circulation changes 
can amplify surface warming.

Wind-driven ocean circulation changes amplify SST warming in the eastern tropical Pacific, which feeds back 
onto the TOA radiation imbalance and leads to amplified global surface warming. What this means for the climate 
system depends on whether the wind stress trends in coupled models are systematically biased. Coupled climate 
models commonly simulate inaccurate SST trends in the eastern tropical Pacific (Seager et al., 2019, 2022), which 
can lead to global biases through cloud-SST feedback (Dong et al., 2021). Under this interpretation, biased wind 
stress trends or an incorrectly simulated oceanic response to the wind stress trends may be driving an overesti-
mate of the rate of global surface warming. On the other hand, it is possible that the model-bias mismatch in the 
eastern tropical Pacific is due to natural variability, which offsets the forced trend isolated by model ensembles 
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(Bordbar et al., 2017; Olonscheck et al., 2020; Watanabe et al., 2021). This interpretation would imply that the 
role of wind-driven ocean circulation changes could amplify the surface warming rate, once the eastern tropical 
Pacific internal variability changes phases. In either case, it is crucial to understand climate model behavior to 
ensure future climate model projections are accurate.

Data Availability Statement
CESM2 FCM output is available from the Earth System Grid Federation (ESGF; at https://esgf-node.llnl.gov/
search/cmip6/) as part of the CESM2 Large Ensemble (LENS2; https://www.cesm.ucar.edu/projects/commu-
nity-projects/LENS2/). GISTEMP output was obtained freely from the National Aeronautics and Space 
Administration (NASA) Goddard Institute for Space Studies (https://data.giss.nasa.gov/gistemp/). ERA5 output 
was obtained freely from the European Centre for Medium-Range Weather Forecasts (ECMWF; https://www.
ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). Data analyzed from the CESM2 MDM are available 
in the Zenodo data repository at https://doi.org/10.5281/zenodo.7154374. CESM2 MDM model source code 
changes and wind stress climatology forcing data sets are available in the Zenodo data repository at https://doi.
org/10.5281/zenodo.6678286. Code to make the figures is available in the Zenodo data repository at https://doi.
org/10.5281/zenodo.7158684.
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