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On Cusps of Caustics by Reflection: Billiard
Variations on the Four Vertex Theorem and

on Jacobi’s Last Geometric Statement
Gil Bor and Serge Tabachnikov

Abstract. A point source of light is placed inside an oval. The nth caustic by reflection is the
envelope of the light rays emanating from the light source after n reflections off the curve. We
show that, for a generic point light source, each of these caustics has at least 4 cusps. This is
a billiard variation on Jacobi’s Last Geometric Statement concerning the number of cusps of
the conjugate locus of a point on a convex surface. We present various proofs, using different
ideas, including the curve shortening flow and Legendrian knot theory.

1. INTRODUCTION.

Motivation and background. The conjugate locus of a point on a surface is the locus
of first conjugate points along geodesics emanating from that point. In his “Lectures
on Dynamics” [11], published posthumously, Jacobi stated that the conjugate locus of
a generic point on an ellipsoid has exactly four cusps. This Last Geometric Statement
of Jacobi was proved only in this century, see [18]. Indeed, as recently as the end of
the 20th century, Marcel Berger wrote [4]:

... this latter assumption depends on the scandalously unproved Jacobi “statement”: the conju-
gate locus of a nonumbilical point of an ellipsoid has exactly four cusps.

A related result is that the conjugate locus of a generic point on a convex surface
has at least four cusps, see [26] for a recent proof. This theorem was attributed to C.
Carathéodory (1912) by W. Blaschke (sect. 103 of [5]), who presented a sketch of the
proof. This theorem belongs to a long list of results that stem from and are motivated
by the celebrated 4-vertex theorem of S. Mukhopadhyaya. See [2, 15] for surveys.

The conjugate locus can be equivalently described as the locus of the first inter-
sections of infinitesimally close geodesics emanating from a point. These geodesics
may intersect more than once, and the loci of their intersections are known as second,
third, etc., caustics of the point. It is still an open question whether Jacobi’s statement
generalizes to these higher order caustics and to arbitrary convex surfaces. There is
some experimental evidence that if the surface is an ellipsoid then, for a nonumbilic
point, each such caustic has exactly four cusps, see [21] and Figure 1 from this paper
(presented with permission). See also [22].

In this article we consider a billiard version of this problem. Let γ be an oval (a
smooth strictly convex closed curve in R2), the boundary of a billiard table or, equiv-
alently, an ideal mirror. Let O be a point inside γ , a source of light. For n = 1, 2. . . .,
the 1-parameter family of rays that have undergone n optical reflections in γ envelopes
a curve "n, the nth caustic by reflection. See Figure 2.

These caustics may have singularities, generically, these singularities are semicu-
bical cusps, locally given, in appropriate coordinates, by the equation y2 = x3. We
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Figure 1. The first three caustics of a nonumbilic point on an ellipsoid.

Figure 2. The nth caustic by reflection "n is the envelope of the family of rays emanating from O that have
undergone n reflections by γ .

always assume that the caustics "n are in general position in this sense. The singulari-
ties of caustics were thoroughly studied by Bruce, Giblin, and Gibson; see [8] and the
references therein.

Figure 3a shows that a caustic by reflection may extend beyond the interior of γ , and
furthermore, it can be disconnected in the Euclidean plane; however, as the envelope
of a 1-parameter family of lines, it is a connected curve in the projective plane RP2

(possibly, with singularities). Indeed, a 1-parameter family of lines is a curve in the
space of lines, and the respective envelope is projectively dual to this curve.

Figure 3. (a) The first three caustics by reflection in a circle, showing 4 cusps on each of them. The small
circle is the light source. (b) The first caustic by reflection in a circle with an external source of light (each ray
optically reflects at both intersection points with the circle). The caustic in this case has only 2 cusps. In this
paper we consider only an internal light source.
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The main result and two conjectures. Our main result is as follows.

Theorem 1. For every oval γ ⊂ R2, a generic light source inside γ and n ≥ 1, the
nth caustic by reflection "n ⊂ RP2 has at least four cusps.

We present three proof sketches.
Let L be the space of directed lines in R2. To each caustic "n is associated its

dual curve Cn ⊂ L, corresponding to the tangent lines along "n (the rays of the nth
reflected beam). One can identify L with the complement of the ‘north’ and ‘south’
pole of the unit sphere S2 ⊂ R3, so that cusps of "n correspond to inflection points of
Cn (points with vanishing spherical geodesic curvature). Using standard properties of
convex billiards, we show that Cn is a closed simple smooth curve in S2, intersecting
every great circle. A theorem of B. Segre from 1968 [20, 27] states that such a curve
has at least four spherical inflection points, thus completing the proof of Theorem 1.

Another approach starts with a realization of L as the vertical cylinder circum-
scribing S2 and the curve Cn ⊂ L representing the tangent lines of "n. Following S.
Angenent [1], apply the curve shortening flow with respect to the flat metric on the
cylinder to the curve Cn to deform it to the graph of a function F : S1 → R with zero
mean value. Spherical inflection points of Cn correspond to the zeroes of F ′′ + F , a
function with vanishing constant and first order Fourier terms. By the Sturm-Hurwitz
theorem, it has at least four zeros.

Yet another approach is to use the relation between the cusps of the caustic "n

and the vertices (critical points of the curvature) of its normal front #n, a closed planar
curve whose normal lines, parametrized by Cn, are the lines tangent to "n, see Figure 4.
The relation between "n and #n is the familiar relation between evolutes and involutes,
see, e.g., [15].

Figure 4. The 2nd caustics "2 with an involute #2 for an elliptical billiard table γ . The rays correspond to
C2, they are normal to the wave front #2 and are tangent to "2.

We show that #n exists as a closed curve, possibly with cusps (in fact, there is a
1-parameter equidistant family of such curves). We show that #n lifts to a Legendrian
embedding of a circle in the space of cooriented contact elements in the plane. We
next show that this Legendrian lift is ‘unknoted’, that is, it is Legendrian isotopic to
the Legendrian lift of a circle. Finally, we use a theorem of Chekhanov and Pushkar
[9] stating that the planar projection of a ‘Legendrian unknot’ has at least 4 vertices.
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The rest of the article provides background information and details of these argu-
ments. In the last section we mention some generalizations of Theorem 1 to spherical
and hyperbolic geometry, as well as to “projective billiards.”

We present two conjectures; the first one is supported by experimental evidence, the
second one might be overly optimistic.

Conjecture 2. If γ is an ellipse, then the caustic by reflection "n for a light source
inside γ and different from a focus has exactly four cusps for every n ≥ 1 (see Fig-
ure 5).

This conjecture is only known to hold in the case of n = 1 (the ‘catacaustic’, see
next section).

Figure 5. The 2nd, 5th and 8th caustics by reflection in an ellipse, each with 4 cusps (marked by gray disks).

Conjecture 3. If γ is not an ellipse then, for some choice of light source inside γ and
some n ≥ 1, the caustic by reflection "n has more than four cusps.

Figure 6 shows caustics with more than 4 cusps for nonelliptical γ .

Figure 6. First caustic by reflection with more than four cusps of nonelliptical ovals. Left: x4 + y4 = 1,
O = (.6, .4). Right: .5x2 + (1 + .25x)y2 = 1, O = (.5, .3).
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Figure 7. (a) The curve γ is the locus of points X such that |OX| + |XB|+
$

|BA|= const (point A is fixed on
"1). The point Z is the reflection of O in the tangency line to γ at X. The locus of points Z is the orthotomic
curve #1, orthogonal to BZ and whose evolute is "1. (b) The catacaustic "1 is the locus of 2nd foci B of the
osculating Kepler conic (thin oval) to the curve γ at X, with 1st foci at O.

Catacaustics. The first caustics by reflections, called catacaustics, are well studied.
We give a brief summary of what is known about them, referring to [7, 8, 17] and the
literature cited in these articles.

A version of the string construction that recovers a billiard curve from a billiard
caustic (see, e.g., [25]) makes it possible to reconstruct the curve γ from its first caustic
by reflection "1. This construction involves a parameter, the length of the string. See
Figure 7 (left).

The orthotomic curve #1 is an involute of the catacaustic "1, see Figure 7 (left), and
"1 is the evolute of #1, that is, the envelope of its normals. The cusps of "1 correspond
to the vertices of #1. It is known that when γ is an ellipse and O is not one of its foci
then #1 has 4 vertices [8].

A Kepler conic is a conic with one focus fixed at the origin O. The curve γ has
a Kepler conic that has 3-point contact with it at every point, see [6]. The locus of
the second foci of these osculating Kepler conics is the first caustic "1—this follows
from the optical properties of conics (a ray from one focus reflects to another focus). It
follows that the cusps of the catacaustics "1 correspond to the points where the Kepler
conics hyperosculate the curve γ .

Computer graphics and animations. Most figures in this article were made using the
computer program Mathematica. In the web page https://www.cimat.mx/∼gil/caustics/
we provide some additional animations.

2. BACKGROUND MATERIAL.

The phase cylinder and the billiard ball map. This section contains some standard
material on mathematical billiards, see, e.g., [25].

Denote by L the space of oriented lines in R2. We use the ‘cylinder model’ of L,
with coordinates (α, p) defined as follows: α ∈ S1 = R/2πZ is the direction of the
line and p ∈ R is the signed distance from the oriented line to the origin O (which we
choose to be the center of the initial beam of light). The sign of p is defined by the
right-hand rule, see Figure 8. Thus L is an infinite cylinder.

The space L of oriented lines in R2 admits an area form, unique up to scale, invariant
under the Euclidean group action. In coordinates, this area form is ω = dα ∧ dp.

The phase cylinder of the billiard system inside an oval γ ⊂ R2 is the set M ⊂ L of
oriented lines intersecting γ . It is a bounded cylinder whose two boundary components
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Figure 8. The coordinates (α, p) of an oriented line in R2.

correspond to the lines tangent to γ , one component for each orientation. The “equa-
tor” p = 0 corresponds to the lines through O, see Figure 9.

Figure 9. Left: the phase cylinder M ⊂ L. Right: the billiard ball map T : M → M .

The billiard ball map T : M → M , sending an incoming ray to the reflected one, is
an area preserving transformation, that is, T ∗ω = ω. Since ω = −d(pdα), the differ-
ential 1-form T ∗(pdα) − pdα is closed. In fact, more is true: as we will now show, it
is exact, that is, T ∗(pdα) − pdα = dF for some function F : M → R. An example
of an area preserving, but nonexact, map is (α, p) +→ (α, p + 1).

Proposition 4. The billiard ball map T : M → M is exact.

In order to prove Proposition 4, consider another description of the phase cylinder
as the set of unit vectors with a foot point on γ , pointing inwards (the initial position
and velocity of the billiard ball). These unit vectors are in one-to-one correspondence
with the oriented lines that they generate. Let γ (t) be an arc length counterclockwise
parameterization and ϕ be the angle between the tangent γ ′(t) and the unit vector. See
Figure 10a.

Consider the differential 1-form cos ϕ dt . Let L = |γ (t1) − γ (t)| be the distance
between the intersection points of a line with γ . See Figure 10b.

Lemma 5. T ∗(cos ϕ dt) − cos ϕ dt = dL.

Proof. One has: T (t, ϕ) = (t1, ϕ1) and

∂L(t, t1)

∂t
= − cos ϕ,

∂L(t, t1)

∂t1
= cos ϕ1,

that is, dL = cos ϕ1 dt1 − cos ϕ dt, as needed.
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Figure 10. (a) The coordinates (t,ϕ) on M and their relation to (α, p). (b) The generating function L of the
billiard ball map T .

Two differential 1-forms are cohomologous if their difference is the differential of
a function.

Lemma 6. The 1-form p dα is cohomologous to cos ϕ dt .

Proof. Using complex notation, see Figure 10a, one has

ei(α−ϕ) = γ ′(t), p = det(γ (t), eiα).

Differentiating these equations, we get

dα ≡ dϕ (mod dt), dp ≡ sin ϕ dt (mod dα),

so

dα ∧ dp = sin ϕ dϕ ∧ dt = −d(cos ϕ dt),

hence pdα − cos ϕ dt is closed.
To show that p dα − cos ϕ dt is exact it suffices to show that its integral along a

noncontractible closed curve in M vanishes. As such a curve take C, the boundary
component of the phase cylinder M given by ϕ = 0. Clearly,

∫
C

cos ϕ dt equals the
perimeter of γ .

On the other hand, by the Cauchy-Crofton formula, this perimeter equals π times
the average length of the orthogonal projection of γ on a line, that is,

∫
C

pdα. This
implies the result.

Proof of Proposition 4. Lemma 5 shows that T preserves the integral
∫

C
cos ϕ dt , and

Lemma 6 shows that
∫

C
cos ϕ dt =

∫
C

p dα, hence T preserves the integral
∫

C
p dα,

i.e., it is exact.

The curve C0 representing the initial beam of light is the equator p = 0. Define the
signed area enclosed by an oriented closed curve C in L as the line integral

∫
C

pdα:
this is the algebraic area between C and C0. Tautologically, C0 encloses zero area.
Since T is an exact map, the same holds for the curves Cn = T n(C0). See Figure 11.

Contact elements, Legendrian knots, and wave fronts. A contact element in the
plane is a pair consisting of a point and a line through it. A coorientation of a contact
element is a choice of one of the sides of the line. More conceptually, the space of
cooriented contact elements is the spherization of the cotangent bundle ST ∗R2: assign
to a covector η its kernel, a tangent line, and define coorientation by choosing the side
where η is positive.

The space of contact elements carries a contact structure, a 2-dimensional distribu-
tion (a field of tangent planes), defined by the “skating condition”: the foot point may
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Figure 11. The successive iterates Cn = T n(C0), for n = 1, 2, 3, drawn on the phase cylinder L (spread flat).
Each is a simple closed smooth curve of 0 signed area. The billiard table is the ellipse 4x2/5 + y2 = 1 and the
source is (.6, .2).

move along the line, and the line may rotate about the foot point. Let (x, y) be the stan-
dard coordinates in R2 and θ the angle between the positive x-axis and the direction of
the line; then the contact distribution is the kernel of the 1-form sin θ dx − cos θ dy.

A smooth curve in ST ∗R2 that is tangent to the contact distribution is called Legen-
drian. Its projection to the plane is a wave front, a curve that may have singularities,
generically semicubical cusps, but that has a tangent line at every point. Conversely,
such a curve has a unique lift to the space of contact elements as a Legendrian curve.

We introduce coordinates (α, p, z) in ST ∗R2, where (α, p) ∈ T ∗S1 are the coordi-
nates of the orthogonal line at the foot point A, and z is the (signed) distance of the
line to the origin O. See Figure 12.

Figure 12. Coordinates (α, p, z) on the space ST ∗R2 of cooriented contact elements in R2. With a cooriented
line , through A we associate the (signed) distance z to O and the coordinates (α, p) of the perpendicular
oriented line at A, pointing to the positive side of ,.

This defines an identification of ST ∗R2 with J 1S1, the space of 1-jets of functions
f : S1 → R, where z = f (α) and p = f ′(α). On J 1S1 there is a standard contact
form dz − pdα (the 1-jets of functions z = f (α) are Legendrian curves).

Lemma 7. The identification ST ∗R2 = J 1S1 is a contactomorphism.

Proof. Using the notation of Figure 12,

α = θ + π/2, p = det(A, eiα), z = det(A, eiθ ),
so

dz − pdα = det(dA, eiθ ) = sin θdx − cos θdy,

as claimed.
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We have two projections

ST ∗R2

R2 L

π1 π2

where π1 maps a cooriented contact element (A, ,) to A and π2 maps it to the line
through A, orthogonal to ,, oriented towards its positive side.

In coordinates, π2 : (α, p, z) +→ (p, α) (“forgetting z”). The fibers of π1 are Leg-
endrian, spanned by the vector field ∂α − z∂p + p∂z, while the fibers of π2, spanned
by the vector field ∂z, are transverse to the contact distribution. Hence π2 projects a
smooth Legendrian curve in ST ∗R2 to a smooth curve in L.

Conversely, let C be a closed curve in L. We want to lift it via π2 : ST ∗R2 → L to
a Legendrian curve C̃ ⊂ ST ∗R2. Since the contact distribution on ST ∗R2 is transverse
to the fibers of π2, once the initial point of the lifting is chosen, the lifting is uniquely
determined, but it may fail to close up.

Lemma 8. The lifted curve C̃ is closed if and only if
∫

C
pdα = 0: the curve C encloses

zero signed area.

Proof. The curve C̃ is closed if and only if the value of the third coordinate z is the
same at the endpoints. Since dz = pdα along a Legendrian curve, the values of z at
the endpoints are equal if and only if

∫
C

pdα = 0.

The curve C ⊂ L defines a 1-parameter family of oriented lines. The projection of
the lifted Legendrian curve C̃ ⊂ ST ∗R2 to R2 is a wave front # that is orthogonal to
this family of lines and is cooriented by their directions. If a closed front # exists, i.e.,
C encloses zero signed area, then there exists a whole 1-parameter family of fronts
that are equidistant from each other. This nonuniqueness corresponds to the choice of
the initial point of the lifted curve C̃.

The situation is the same as in the familiar relation between evolutes and involutes:
for an involute of a closed curve to close up it is necessary and sufficient for the curve to
have zero signed length (the sign changes after each cusp), and the equidistant family
of curves share their normals, and hence their evolutes.

Vertices of wave fronts and Legendrian isotopies. A vertex of a plane curve is an
extremum of its curvature or, equivalently, a cusp of the evolute, the envelope of its
normals. The notion of vertex extends to cooriented wave fronts: the curvature at cusps
is infinite, changing from −∞ to ∞ (so cusps are not vertices).

The classical 4-vertex theorem asserts that a simple closed convex curve has at least
four vertices. Let # be a cooriented wave front whose Legendrian lift to ST ∗R2 is
embedded, i.e., is a Legendrian knot. V. Arnold conjectured [2, 3] that if this Legen-
drian knot is homotopic as a Legendrian knot to the Legendrian lift of a circle, then
# has at least four vertices. This conjecture was proved by Chekanov and Pushkar [9]
using Legendrian knot theory.

A generic regular homotopy of a cooriented wave front is a composition of a num-
ber of moves, similar to the Reidemeister moves in knot theory, see Figure 13, bor-
rowed from [9]. The first five moves are isotopies of the respective Legendrian knot,
but the “dangerous” self-tangency with coinciding coorientations correspond to self-
intersection of the Legendrian lifted curve and changes the Legendrian knot type.

462 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



Figure 13. Generic “perestroikas” of cooriented wave fronts.

For example, the curve on the left of Figure 14 has only two vertices, but the curve
on the right is Legendrian isotopic to a circle, therefore it has at least four vertices no
matter how one draws it. Thus these curves are not Legendrian isotopic. On the other
hand, the Whitney winding number of both curves is one, hence they are regularly
isotopic.

Figure 14. Left: only two vertices; right: at least four vertices.

Summary. With each “beam” of light rays (a 1-parameter family of oriented lines in
R2) we have associated four curves,

C ⊂ L, C̃ ⊂ ST ∗R2, # ⊂ R2, " ⊂ RP2.

(we recall that the zero enclosed area by the curve C is the necessary and sufficient
condition for C̃ to close up). The correspondences between the cusps, vertices, and
inflection points on these curves are depicted in Figure 15.

3. PROOFS OF THEOREM 1.

First proof. Cusps of "n correspond, by projective duality, to inflection points of Cn.
These inflection points are 3-point contacts of Cn with the curves in L corresponding to
the 1-parameter families of lines passing through a fixed point. If the point is (a, b) ∈
R2, then the respective curve in L is the graph of the first harmonic

p = a sin α − b cos α,
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Figure 15.

that is, it is an ellipse obtained as the intersection of the cylinder L with a plane through
the origin. Note that this graph encloses zero signed area.

Consider the central projection of this cylinder to the unit sphere. This projection
sends the graphs of the first harmonics to great circles.

Since Cn encloses zero signed area, it intersects every graph of the first harmonics.
It follows that C̄n, the image of the curve Cn, is a smooth spherical curve that is not
contained in any hemisphere. In particular, the convex hull of C̄n contains the origin.

The (geodesic) inflections of C̄n in the standard metric of the sphere are its 3-point
contacts with great circles. By the Segre theorem mentioned earlier, C̄n has at least
four inflections. Therefore so does Cn.

Second proof. Following [1], one can use the curve shortening flow to prove that the
curve Cn has at least four inflections. Recall that under the curve shortening flow, each
point of the curve moves in the normal direction with the speed equal to the curvature;
see [14, 16] and the book [10].

Equip L with the flat Riemannian metric dα2 + dp2 and apply the curve shortening
flow to Cn. Let Cn(s) be arclength parametrization, then the flow is given by the partial
differential equation Ct = Css .

A variation of the standard proof shows that the evolution is defined for all t ≥
0, deforming Cn through embedded curves, shrinking it to a horizontal curve p =
const , which is a closed geodesic. A version of the maximum principle implies that the
number of inflections does not increase during this evolution, see [1]. This is illustrated
in Figure 16.

Next, a version of Lemma 3.1.7 in [14] or Lemma 1.10 of [16] shows that the
evolving curves enclose zero signed areas.

Lemma 9. The curve shortening flow Ct = Css preserves the signed area
∫

C
pdα.

Proof. Let (α(s), p(s)) be an arc length parameterization of a noncontractible closed
curve in L, so that α2

s + p2
s = 1. Then its time evolution under the curve-shortening

flow is given by (αt , pt ) = kN = k(−ps, αs), where the subscript denotes the deriva-
tive, k is the curvature, and N is the unit normal. It follows that

d
∫

pdα

dt
=

∫
[kα2

s − p(kps)s]ds =
∫

[kα2
s + kp2

s ]ds =
∫

k(s)ds,

where the second equality is due to integration by parts.
It remains to note that the total curvature of a closed curve that goes around the

cylinder equals zero.
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Figure 16. In the curve shortening flow, two nearby inflection points may cancel each other, but they cannot
appear on a convex arc.

Recall that C0 is the equator p = 0. As Cn approaches C0 (with derivatives), it
is given by the graph of a function p = F(α). The inflection points of this graph
are the points where it is tangent to 2nd order to the graphs of functions of the form
h(α) = a cos(α) + b sin(α).

For each α ∈ S1, one can find unique a, b such that F(α) = h(α), F ′(α) = h′(α).
Since h′′ + h = 0, the equation F ′′(α) = h′′(α) holds if and only if F ′′(α) + F(α) =
0. So the inflection points of F are the zeros of the function G := F ′′ + F.

To conclude that G has no less than four zeros, apply the Sturm-Hurwitz theorem
that states that the number of zeros of a 2π-periodic function is not less than the num-
ber of zeros of its first nontrivial harmonic, see, e.g., [2, 3, 13].

Since the differential operator d2 + 1 preserves the order of Fourier terms and kills
the 1st order terms, G has no first harmonics. Since the curve encloses zero signed
area, F has zero constant term, and so does G, as needed.

Remark. The Sturm-Hurwitz theorem has many proofs, see Section 8.1 of [19]. Inter-
estingly, one of them, due to G. Polya, makes use of the heat equation, a close relative
of the curve shortening flow.

Third proof. This argument relies on the correspondence between the cusps of "n

and the vertices of #n, its normal front.
Since Cn encloses zero signed area, Lemma 8 implies that it admits a Legendrian

lift C̃n ⊂ ST ∗R2, and its projection to R2 is a closed curve, possibly with cusps, which
is normal to the rays of Cn.

A homotopy of the curve Cn to C0 in the class of smooth closed embedded curves
that enclose zero signed area induces a Legendrian isotopy between the Legendrian
knots C̃n and C̃0. (Such a homotopy is provided by the curve shortening flow but,
unlike the second proof, one can use any other homotopy for this purpose).

Now our “black box”, the Pushkar-Chekanov theorem [9], implies that #n has at
least four vertices.

4. VARIATIONS. One can extend Theorem 1 to geodesically convex billiards in
spherical and hyperbolic geometries (the former lie in one hemisphere); the first proof
works with small modifications.

May 2023] 465



Theorem 1, along with its proofs, also extends to some other initial beams of light.
For example, one may consider a 1-dimensional source, an oval that lies inside γ and
that emanates rays of light in the outward normal directions.

Projective billiards. For any convex curve γ ⊂ R2 with a transverse vector field v
along it one can define the projective billiard map T : M → M [12,23,24]. The reflec-
tion law is as follows. Consider an incoming ray at a point x ∈ γ in the direction u,
decompose u = u1 + u2, where u1 is tangent to γ at x and u2 is a multiple of v(x).
Then the outgoing ray passes through x in the direction u1 − u2. Equivalently, the tan-
gent line, the transverse line, the incoming, and the outgoing ones, form a harmonic
quadruple of lines.

If the transverse field consists of the normals, one has the usual law “the angle of
incidence equals the angle of reflection”.

If γ is an origin-centered ellipse and the transverse field v is given by the gradient of
a homogeneous function of two variables, then the projective billiard ball map is again
exact area preserving. The area form on the phase space M is the same as the one on
the space of oriented geodesics in the hyperbolic plane, considered in the projective,
or Cayley-Klein, model of hyperbolic geometry in the interior of the ellipse γ . The
total area of M is infinite in this case.

And, as before, Theorem 1 holds: see Figure 17 for an illustration.

Figure 17. The 1st caustic by reflection, showing 8 cusps, in a projective billiard system with a circular table
and the exact transverse field v = ∇(x4 + y4).
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