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Abstract

The evolute of a curve is the envelope of its normals. In this note
we consider a projectively natural discrete analog of this construction:
we define projective perpendicular bisectors of the sides of a polygon
in the projective plane, and study the map that sends a polygon to the
new polygon formed by the projective perpendicular bisectors of its
sides. We consider this map acting on the moduli space of projective
polygons.

We analyze the case of pentagons; the moduli space is 2-dimensional
in this case. The second iteration of the map has one integral whose
level curves are cubic curves, and the transformation on these level
curves is conjugated to the map x 7! �4x mod 1. We also present the
results of an experimental study in the case of hexagons.

1 Introduction

Given a k-sided polygon P , we define the projective normals n1, ..., nk by
the construction shown in Figure 1 for k = 5. Figure 1 just shows the
construction of n1 but the other normals are constructed similarly.
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Figure 1: Constructing the projective normals

We get a new polygon T (P ) whose vertices are n1 \ n2, n2 \ n3, etc. Figure
2 shows an example.

Figure 2: P in black and T (P ) in blue.

The map T is projectively natural, since it is defined entirely in terms of
lines and their intersections. If P and Q are projectively equivalent polygons,
then so are T (P ) and T (Q). In particular, the map T is well defined on the
moduli space Mk of projective equivalence classes of k-gons in the projective
plane.

The case k = 5 is the first nontrivial case. It is specially attractive because
M5 is just 2 dimensional. On M5, the map T 2 has a nicer action than T . In
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this note we will describe structural algebraic properties of T 2 on M5 and
also describe the dynamics. We work over the reals.

Theorem 1.1 The map T 2
acts on M5(R) in such a way as to preserve

a pencil of elliptic curves given by a single invariant rational function, I.
Moreover, T 2

is conformal-symplectic in the sense that there is an area form

! on M5 such that (T 2)⇤(!) = �4!.

See Equations 3 and 4 for I and ! respectively.

Theorem 1.2 The map T 2
preserves each unbounded component of each

invariant elliptic curve, and the restriction of T 2
to such a component, upon

completion, is conjugate to the map x ! �4x on the circle R/Z.

By unbounded we mean that the component intersects the a�ne plane
R2 in an unbounded set. The level sets all have one unbounded component
and sometimes they have a bounded component as well. See Lemma 3.2 for
a precise statement. When there is also a bounded component, T 2 maps the
bounded component to the unbounded component. The bounded compo-
nents consist of pentagons which are either convex or star-convex. See the
remark at the end of §3.1. Figure 2 shows this phenomenon in action: P is
convex and T (P ) is not. This situation explains how T 2 “blows up” around
the regular pentagon. A nearly regular pentagon lies on a tiny bounded level
set, and then T 2 stretches this tiny set all the way around the big unbounded
component.

Our motivation for studying T is two-fold. On the one hand, in [1] two of
us studied the dynamics of a related map defined in terms of the perpendic-
ular bisectors of the sides of P . This Euclidean-geometry construction is a
discrete analogue of the map that sends a smooth curve to its evolute. So, we
view the map here as a projectively natural analogue of the discrete evolute
map. On the other hand, in [5] one of us studied the map which sends the
polygon P to the new polygon P# whose vertices (referring to Figure 1) are
the intersection points n1 \ e1, n2 \ e2, .... We called this map the projective

heat map to bring out some analogy with discrete heat flow.
In §2 we prove Theorem 1.1. We first derive the equation for the map

T in the most straightforward way. We then give a more general derivation
which relates nicely to Frieze patterns and cluster algebras and explains the
conformal symplectic nature of the map in conceptual terms. This second
derivation is not needed for the proof of Theorem 1.2 however.
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In §3 we prove Theorem 1.2. This amounts to an analysis of the pencil
of elliptic curves and the geometry imposed on them by the pair (I,!).

In §4 we have a brief discussion of what we see for polygons with an even
number of sides, concentrating on hexagons.

2 Algebraic Structure

2.1 A Formula for the Map

Let RP 2 denote the real projective plane. The point [a : b : c] 2 RP 2

denotes the scale equivalence class of vectors (ra, rb, rc) with r 2 R � {0}.
Dually, [a : b : c] also represents the line given by ax + by + cz = 0. The
cross product (a1, b1, c1) ⇥ (a2, b2, c2) naturally represents the line through
[a1 : b1 : c1] and [a2 : b2 : c2]. Dually, if these objects are interpreted as lines,
then the cross product represents their intersection.

The non-singular linear transformations induce automorphisms of RP 2

which map lines to lines. These automorphisms are called projective trans-

formations . The projective transformations act simply transitively on the
set of general position 4-tuples of points.

Each element ofM5 is uniquely projectively equivalent to one with vertices
V1, ..., V5 given by

[0 : �1 : 1], [1 : 0 : 0], [0 : 1 : 0], [�1 : 0 : 1], [x : y : 1]. (1)

We call this equivalence class P (x, y). Let

n(V1, V2, V3, V4) = V 0
1 ⇥ V 0

2 ,

V 0
1 = (V1 ⇥ V3)⇥ (V2 ⇥ V4),

V 0
2 = (V1 ⇥ V2)⇥ (V3 ⇥ V4).

Then n(V1, V2, V3, V4) gives the vector representing the projective normal line
associated to the edge V2V3 of P . Let

W1 = n(V1, V2, V3, V4), W2 = n(V2, V3, V4, V5), · · ·

X1 = W2 ⇥W3, X2 = W3 ⇥W4, · · ·

The vectors X1, ..., X5 represent the vertices of T (P (x, y)).

4



We normalize T (P (x, y)) as in Equation 1 to get P (x, y). We compute
that

(x, y) =
⇣ (1 + y)(1 + x� xy)2

(1 + x)(�1� y + xy)(1 + x� y2)
,

(x� y)2(1 + x+ y)

(1 + y � x2)(1 + x� y2)

⌘
,

(2)
Our map is T (x, y) = (x, y).

2.2 The Invariants

Some members of M5 are degenerate, namely the ones which have triples of
collinear points. In terms of our coordinates, this happens for the line at
infinity and for the lines

x+ 1 = 0, y + 1 = 0, x+ y + 1 = 0, x = 0, y = 0.

It turns out that a certain product of these defining equations is an invariant
for the map T 2. Define

I(x, y) =
(x+ 1)(y + 1)(x+ y + 1)

xy
. (3)

A direct calculation in Mathematica shows that

I(x, y)I(x, y) = �1.

Hence I � T 2 = I. This is our invariant.
The conformally invariant area form is given by

! =
1

xy
dx ^ dy. (4)

To verify this, we let J denote the Jacobian of T 2. We compute that

J(x, y)

xy
=

�4

xy
.

This is equivalent to the statement that (T 2)⇤(!) = �4!.
This completes the proof of Theorem 1.1.
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2.3 A Di↵erent Derivation

In this section we derive the equation for T in a di↵erent way. This derivation
is more elaborate, but it has two advantages. First, it generalizes more nicely
to polygons with more sides. Second, the derivation puts into perspective
the invariant quantities from Theorem 1.1, relating them to topics such as
the pentagram map and cluster algebras. This material is not needed for the
proof of Theorem 1.2.

It is convenient to work in R3. An n-gon in the projective plane can be
lifted to a polygon inR3. Such a lifting is not unique, but if n is not a multiple
of 3, we can normalize the lifting by requiring that the determinant of every
triple of its consecutive vertices equals 1, and this makes this lifting unique
(cf. [4], Proposition 4.1). We call the polygons satisfying this determinant
relation unimodular.

Let P1...., Pn be the vertices of the lifted unimodular n-gon. Since

det(Pi�1, Pi, Pi+1) = 1

for all i, we have
Pi+2 = ai+1Pi+1 � biPi + Pi�1, (5)

where ai, bi are two n-periodic sequences. These coordinates, ai, bi, are in-
variant under the diagonal action of SL(3,R) on polygons. The formulas
for the map given above are entirely in terms of cross products, so it make
sense to apply it to unimodular polygons. For the sake of getting the indices
correct, let us write it out again, using (P,Q) in place of (V,X). We make
this change because the indices here are slightly di↵erent than the ones given
above.

Qi = [((Pi�2 ⇥ Pi�1)⇥ (Pi ⇥ Pi+1))⇥ ((Pi�2 ⇥ Pi)⇥ (Pi�1 ⇥ Pi+1))]

⇥[((Pi�1 ⇥ Pi)⇥ (Pi+1 ⇥ Pi+2))⇥ ((Pi�1 ⇥ Pi+1)⇥ (Pi ⇥ Pi+2))], (6)

From now on, we specialize to the case n = 5. In particular, we take
indices mod 5. Analogs of the three lemmas that follow exist for other values
of n not divisible by 3.

SinceM5 is two-dimensional, the 10 coe�cients ai, bi, i = 1, . . . , 5, depend
on two parameters, as in Example 5.6 of [4].

Lemma 2.1 We have bi = ai+3, ai + 1 = ai+2ai+3.
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Proof: Equation (5) implies

ai+1 = det(Pi�1, Pi, Pi+2), bi = det(Pi�1, Pi+1, Pi+2),

therefore bi = ai+3. Also

Pi+3 = (ai+2ai+1 � bi+1)Pi+1 + (1� ai+2bi)Pi + ai+2Pi�1.

Since det(Pi+3, Pi�1, Pi) = 1, we conclude that ai+2ai+1 � bi+1 = 1, therefore
ai + 1 = ai+2ai+3. �

Set a3 = x, a1 = y, then

a4 =
1 + y

x
, a2 =

1 + x+ y

xy
, a5 =

1 + x

y
.

The coordinates x, y determine the projective equivalence class of a pentagon.
The numbers ai comprise the rows of a frieze pattern

1 1 1 1 1 1

x y+1
x

x+1
y y x+y+1

xy x

y x+y+1
xy x y+1

x
x+1
y y

1 1 1 1 1 1

related to the Pentagramma Mirificum of Gauss, see [3].
Let {Ui} be a (not necessarily unimodular) pentagon in R3. Let Qi =

tiUi be a rescaling, such that the pentagon Q is unimodular. Set Di =
det(Ui�1, Ui, Ui+1).

Lemma 2.2 One has

ti =
(
Q

i Di)1/3

Di�1Di+1
.

Proof: One needs to solve the system of five equations

ti�1titi+1 =
1

Di
, i = 1, . . . , 5,

which becomes a linear system after taking logarithms. Its solution is as
stated. �

The unimodular pentagon Q satisfies the recurrences

Qi+2 = āi+1Qi+1 � b̄iQi +Qi�1,

where the coe�cients satisfy the conditions of Lemma 2.1.
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Lemma 2.3 One has

āi+1 =
det(Ui�1, Ui, Ui+2)

det(Ui�1, Ui, Ui+1)
.

Proof: Since

āi+1 = det(Qi�1, Qi, Qi+2) = ti�1titi+2 det(Ui�1, Ui, Ui+2),

the result follows by substituting the values of ti from from Lemma 2.2. �

Let x̄ and ȳ denote the respective variables related to āi and b̄i as in
Lemma 2.1. We again write our map as T (x, y) = (x̄, ȳ). A Mathematica
calculation using formula (6) and Lemma 2.3 yields the same equation for T
as we got in Equation 2.

This alternate derivation puts the invariant quantities in perspective. The
integral I equals

Q
i ai. The product

Q
i ai is a monodromy integral of the

pentagram map, see Example 5.6 in [4]. Curiously, we also can write

I =
X

i

ai + 3.

This alternate form can be deduced from the relations from Lemma 2.1.
The symplectic form ! is known in the theory of cluster algebras; the

spaces of frieze patterns of arbitrary width possess analogous (pre)symplectic
structures. The function I and the form ! appeared in the study of the cross-
ratio dynamics on ideal polygons in [2]: in contrast with Theorem 1.1, both
are invariant under the cross-ratio dynamics in the case of ideal pentagons.
See Section 7.1.3 of [2].

3 The Dynamics

In this section we prove Theorem 1.2.

3.1 The Invariant Curves

For each real r, the map T 2 preserves the curve I(x, y) = r. The equation
for this curve is

(x+ 1)(y + 1)(x+ y + 1)� rxy = 0. (7)
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This is an example of an elliptic curve. To understand it better, we homoge-
nize the curve and consider it as a projective variety in RP 2. Homogenizing
Equation 7 we get:

Q(x, y, z) = x2y + xy2 + x2z + y2z + (3� r)xyz + 2xz2 + 2yz2 + z3. (8)

Lemma 3.1 The elliptic curve in Equation 8 is nonsingular if r 6= 0 and

r 6= (11± 5
p
5)/2.

Proof: We consider the gradient. When z = 0 we have

rQ = (2xy + y2, 2xy + x2, (3� r)xy + x2 + y2).

Suppose rQ = 0. If y = 0 then the second coordinate is x2, which forces
x = 0. Now assume that y 6= 0. Setting the first coordinate equal to 0, we get
x = �y/2. But then the second coordinate is �3y2/4. This gives x = y = 0.
So, when z = 0 we have no singular points at all.

When z 6= 0 it su�ces to set z = 1 and consider the gradient (Qx, Qy)
of the inhomogeneous equation. When x = 0 we have Qy = 2 + 2y. This
vanishes only when y = �1. But then Qx = r. This only vanishes if r = 0.
If x = �1 we have Qy = r. Again this vanishes only if r = 0.

Let res(Qx, Q, y) denote the resultant of Qx and Q with respect to y. Let

R1 = res(Qx, Q, y), R2 = res(Qy, Q, y).

Since we have already analyzed the case x = �1, we can assume x + 1 6= 0.
It turns out that x + 1 divides R1 and R2, so we divide out by x + 1 and
compute

res(R1/(x+ 1), R2/(x+ 1), x) = �r8(r2 � 11r � 1)2.

This only vanishes when r has one of the advertised values. �

Let Er be the level curve corresponding to the invariant I(x, y) = r. Let

r± =
11± 5

p
5

2
.

Here r� ⇡ �.09 and r+ ⇡ 11.09. Let R0 = R � {0, r�, r+}. The set
{�1,�.05, 1, 12} intersects each connected component of R0. Figure 3 shows
plots of Er for r in this set.
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Figure 3: Er for r = �1,�.05, 1, 12.

Lemma 3.2 For all r 2 R0
the curve Er has an unbounded component which

contains the points

[1 : 0 : 0], [0 : 1 : 0], [1 : �1, 0], [�1 : 0 : 1], [0 : �1 : 1]

and which is otherwise disjoint from the coordinate axes and the line at in-

finity. When r 2 (r�, 0) the curve Er also has a bounded component that lies

in the (�,�) quadrant. When r 2 (r+,1) the curve Er also has a bounded

component that lies in the (+,+) quadrant.

Proof: We set (�1, 0) = [�1 : 0 : 1] and (0,�1) = [0 : �1 : 1] for ease of
notation.
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We have Q(x, y, 0) = xy(x+ y), so Er intersects the line at infinity at the
three points [1 : 0 : 0] and [0 : 1 : 0] and [1 : �1 : 0]. Now, the topological
type of Er cannot change, as a function of r, unless r passes through a value
where the curve is singular. Thus, the topological type does not change
within each of the 4 intervals of R0. We check, making an explicit plot for
each of these points, that the topology is as stated. Hence, it is always as
stated. See Figure 3.

We find that Q(0, y, 1) = (1 + y)2. Hence Q(0, y, 1) = 0 if and only if
y = �1. This means that our level sets intersect the x-axis only at (�1, 0).
A similar argument establishes this result for the y-axis. When only the
unbounded components exist, they contain the points (�1, 0) and (0,�1).
As r crosses into the regions which have bounded components, these compo-
nents appear at points that do not lie on the coordinate axes. So, at least
for some values in (r�, 0) and (r+,1), it is the unbounded components that
contain these special points. But then the bounded components are always
contained in single quadrants. Two evaluations are su�cient to check that
the components are in the quadrants as stated. �

Remark: We reiterate what we said in introduction. The convex and star-
convex pentagon classes lie on the bounded components, and conversely the
bounded components consists of convex or star convex pentagon classes.
Thus, the unbounded components consist of projective classes of pentagons
which are neither convex nor star convex.

3.2 Intrinsic Boundedness

Let E be one of our elliptic curve level sets. Let XI denote the Hamiltonian
vector field with respect to the invariant I and the area form !. We get XI

by rotating rI by 90 degrees counterclockwise and then multiplying both
components by xy. That is

XI =
⇣(1 + x)(1 + x� y2)

y
,
(1 + y)(�1� y + x2)

x

⌘

The vector field XI is tangent to the level curves. If XI is entirely defined
on some arc of a level set, XI defines a metric on this arc. The distance
between points on the arc is the time it takes to flow from one point to the
other along XI . More precisely, this defines a metric on all points of each
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nonsingular level curve away from the points (�1, 0) and (0,�1), which are
the only points where the level curves intersect the coordinate axes.

Each bounded component B is disjoint from the coordinate axes and rI
is nonzero at all points of B. (This follows from the quotient rule and from
the non-singularity of B.) But then XI is entirely defined and nonzero on B.
Hence B is isometric to R/�Z for some � that depends on the level set.

Now let us consider some unbounded component U . The vector field XI

is defined and nonzero at all points of U \ R2 except (�1, 0) and (0,�1).
Since U has 3 points at infinity, our construction gives us a metric on U away
from 5 points. We show that this metric is bounded, so that the completion
is again isometric to R/�Z for some � that depends on the parameter. We
treat the points in turn.

Case 1: Consider the picture near (�1, 0). We are going to restrict XI

to U and see what happens as we approach (�1, 0). The x-axis is tangent
to U at (�1, 0) and also intersects U at the point [1 : 0 : 0]. Since the
x-axis can only intersect U three times, counting multiplicity, we see that U
cannot have an inflection point at (0, 0). So, we may write x = u � 1 and
y = ↵u2 + �(u)u3. Here ↵ is a nonzero constant and � is a function that
remains bounded as u ! 0. With these substitutions, we find that

XI ·XI =
1

(u� 1)2(↵ + �u)2
⇥

⇣
1� 2u+O(u2)

⌘
.

But this means that kXIk ! 1/|↵| as u ! 0.

Case 2: The argument for (0,�1) is the same as Case 1.

Case 3: Consider the picture near the point [1 : 0 : 0]. If we stay on
the level set Er we have x ! 1 and y ! �1. We have

XI ·XI =
x6 + P (x, y)

x2y2
,

where P (x, y) is a polynomial whose largest degree in x is 5. Therefore, as
we approach [1 : 0 : 0] along Er, we have kXIk ⇠ x2 along Er. Starting near
the point (n,�1) we reach a point near (n + 1,�1) in 1/n2 units of time,
Since

P
1/n2 is a convergent series, we reach [1 : 0 : 0] by flowing along XI

for a finite time.
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Case 4: The argument for [0 : 1 : 0] is the same as Case 3.

Case 5: Consider the picture near the point [1 : �1 : 0]. If we stay on
the level set Er we have x+ y+ 1 ! r. This time we have |x|/|y| ! 1 as we
approach [1 : �1 : 0]. We have

XI ·XI =
2x4y4 + P (x, y)

x2y2
,

where P is a polynomial whose monomials have maximum degree 7. From
this we see that again kXIk ⇠ x2 as we approach [1 : �1 : 0] along Er. The
same analysis as in Case 3 works here.

This completes the analysis. Now we know that each component of Er

has a metric completion which is isometric to R/�Z for some constant �
that depends on the value of r. In case Er works for both components, we
guess that the same � works for both but we don’t know how to prove this.

3.3 The Dynamics

We will prove Theorem 1.2 with respect to the space R/�Z. The final
conjugacy to R/Z is given by a similarity.

We first consider the cases when r 2 (�1, r�) [ (0, r+). In this case,
there is only the unbounded component to worry about. The vector field XI

gives a metric to Er which (upon completion) makes it isometric to R/�Z.
The map T 2 preserves the level sets and multiplies the area form by �4.
From this we see that the di↵erential d(T 2) maps XI to �4XI .

Let  : Er ! R/�Z be an isometry. Consider the conjugate map

⌧2 =  � T 2 �  �1 : R/�Z ! R/�Z.

From what we have just said, ⌧2 acts as multiplication by �4 wherever it is
defined. Moreover, ⌧2 is defined on all but finitely many points of R/�Z.

The subset of R/�Z where ⌧2 is defined is not connected; it consists of
a finite number of intervals. On each interval ⌧2 acts as multiplication by
�4. We want to see that ⌧2 is continuous across these undefined points. It
is more convenient to show that T 2 is continuous across the points where it
is not defined. This is the same thing.
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Let ⇠ be some point in Er where T 2 is not defined. Let J ⇢ Er be some
small interval containing ⇠ such that T 2 is entirely defined on J � {⇠}. Let
J1, J2 be the two components of J � {⇠}. Restricting to Jj for each j = 1, 2
we get a limiting value

⇣j = lim
⇠02Jj!⇠

T 2(⇠0) 2 Er.

This follows from the fact that the restriction of T 2 to Jj is 4-Lipshitz.

Lemma 3.3 We have ⇣1 = ⇣2.

Proof: We will suppose that ⇣1 6= ⇣2 and we will derive a contradiction. The
idea is to work in local coordinates and hit the problem with some complex
analysis. Let ⇡1 : R

2 ! R be projection onto the first coordinate. We choose
real projective transformations  1 and  2 such that

1.  1(⇠) = (0, 0) and  1(Er) is tangent to the x-axis at (0, 0).

2.  2 � T 2(J1 [ J2) is contained in compact subset of R2.

3. ⇡1 � 2(⇣1) 6= ⇡1 � 2(⇣2).

The second property uses the fact that the limits ⇣1 and ⇣2 exist.
If we choose J small enough there is an algebraic (and hence analytic)

parametrization � : (�✏, ✏) !  1(J) which is the inverse of ⇡1. We can write
�(x) = (x,�2(x)) where �2 is an analytic function of one variable.

f = ⇡1 � 2 � T 2 � �1
1 � �.

By construction, f is discontinuous across 0. When we work over the complex
numbers, the restriction of ⇡1 to a neighborhood of 0 in  1(Er) is a nonsin-
gular holomorphic map. But then �2 is holomorphic in a neighborhood of 0
in C. In particular, �2 has a convergent power series in a neighborhood of 0.

Continuing to work over the complex numbers, we have

f(z) =
P (z,�2(z))

Q(z,�2(z))
=

pkzk + pk+1zk+1 + ...

q`z` + q`+1z`+1 + ...
= zk�`h(z). (9)

Here P and Q are polynomials in 2 variables. Let us explain the rest of Equa-
tion 9. Since �2 has a convergent power series in a neighborhood of 0, the
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functions z ! P (z,�2(z)) and z ! Q(z,�2(z)) also have convergent power
series near 0, as we have written. The quotient of these two series has the
given form, with h being a holomorphic function defined in a neighborhood
of 0. If k � ` < 0 then the restriction of f to (0, ✏) would be unbounded.
This contradicts Item 2 above. Hence f has a removable singularity at 0. In
particular, f extends continuously to 0. This is a contradiction. �

This argument works for any missing point of Er. We conclude that ⌧2 is
globally the map x ! �4x on R/�Z.

It remains to consider the cases when r 2 (r�, 0) [ (r+,1). We will
consider the case when r 2 (r+,1). The other case has the same treatment.
A single evaluation su�ces to show that T 2 maps the bounded component
to the unbounded component. For instance I(3, 4) = 40/3 and this point
lies on the bounded component. We compute that T 2(3, 4) and T 4(3, 4) both
lie in the (�,+) quadrant. Hence both these points lie on the unbounded
component. Thus, T 2 maps both the bounded and unbounded components
to the unbounded component. Dynamically, we could say that a pentagon
loses convexity (or star-convexity) immediately when the map is applied.

This completes the proof of Theorem 1.2.

4 Polygons with More Sides

Here we briefly discuss some things we observed for polygons with an even
number of sides. We say that a 2n-gon is axis aligned if its sides are alter-
nately horizontal and vertical. Let ⌦2n denote the set of these. It is not hard
to see that T (⌦2n) = ⌦2n. If the kth side of P 2 ⌦2n is vertical (respectively
horizontal) then the kth side of T (P ) is horizontal (respectively vertical).
For this reason, it makes good sense to reflect in the diagonal line y = x after
applying T . The simplest conjecture is that ⌦2n is a global attractor for T .
This definitely appears to be the case for ⌦6 and we have some numerical
evidence that this is also true for ⌦8. We hope to return to these kinds of
results in a later paper.

We first explain how ⌦6 embeds in M6. Letting (V1, ..., V6) be a hexagon,
we normalize so that V1, ..., V6 are given by

(0, 1), (�1, 1), (�1, 0), (0, 0), (x5, y5), (x6, y6)
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The coordinates (x5, y5, x6, y6) are coordinates for M6.
We define

A = x5 + x6 + 1, B = x5 � x6 + 2y5 � 1, C = 2y5 � 1, D = y6 � y5.

The set of equivalence classes in M6 which are represented by elements of ⌦6

is given by
A2 � B2 + C2 = 1, D = 0.

Now we discuss the dynamics of T on ⌦6. For this purpose it is convenient
to change coordinates. We normalize a hexagon in ⌦6 to have vertices

(0, 0), (a, 0), (a, b), (1, b), (1, 1), (0, 1).

We call this hexagon H(a, b). We then apply T , then reflect in the diagonal,
then apply an a�ne transformation which preserves the vertical and hori-
zontal directions and carries the hexagon back to the same form. The new
hexagon has the equation H(f(a), f(b)) where

f(t) =
2t� 1

t2 � 1
, (10)

The map f is a degree 2 expanding map from R [1 to itself.

Figure 4: The orbit of a hexagon projected on the (A,C)- and the
(B,C)-planes, respectively.

We think that almost every orbit of the map (a, b) ! (f(a), f(b)) has
dense orbits but we did not work out a proof. In short, it appears that for
hexagons, everything in M6 is attracted to the image of ⌦6 in M6 and then
(after changing coordinates) the map on ⌦ is given by (a, b) ! (f(a), f(b)).

16



References

[1] M. Arnold, D. Fuchs, I. Izmestiev, S.Tabachnikov, E.Tsukerman. Iterat-
ing evolutes and involutes. Discrete Comput. Geom. 58 (2017), 80–143.

[2] M. Arnold, D. Fuchs, I. Izmestiev, S.Tabachnikov. Cross-ratio dynamics

on ideal polygons. Int. Math. Res. Notes, online first https://doi.org/
10.1093/imrn/rnaa289.

[3] S. Morier-Genoud. Coxeter’s frieze patterns at the crossroads of algebra,

geometry and combinatorics. Bull. Lond. Math. Soc. 47 (2015), 895–938.

[4] V. Ovsienko, R. Schwartz, S. Tabachnikov. The pentagram map: a dis-

crete integrable system. Comm. Math. Phys. 299 (2010), 409–446.

[5] R. Schwartz. The projective heat map. Math. Surveys and Monographs,
219. Amer. Math. Soc., Providence, RI, 2017.

17


