Titania mixed with silica:

A low thermal-noise coating material for gravitational-wave detectors

Graeme I. McGhee, 1, * Viola Spagnuolo, 2, 3, * Nicholas Demos, 4, * Simon C. Tait, 1 Peter G. Murray, 1 Martin Chicoine,⁵ Paul Dabadie,⁶ Slawek Gras,⁴ Jim Hough,¹ Guido Alex Iandolo,^{2,3} Ross Johnston,¹ Valérie Martinez,⁶ Oli Patane,⁷ Sheila Rowan,¹ François Schiettekatte,⁵ Joshua R. Smith,⁸ Lukas Terkowski, Liyuan Zhang, Matthew Evans, Iain W. Martin, and Jessica Steinlechner, A. 7, 7, 7 ¹SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland ²Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, The Netherlands ³Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands ⁴Massachusetts Institute of Technology, 185 Albany Street, Cambridge, Massachusetts 02139, USA ⁵Département de Physique, Université de Montréal, Montréal, Québec, Canada, ⁶ Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France ⁷Department off Physics, California State University Fullerton, Fullerton, California 92831, USA ⁸Nicholas and Lee Begovich Center for Gravitational-Wave Physics and Astronomy, California State University, Fullerton, Fullerton, CA 92831, USA ⁹ Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany ¹⁰LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 USA

Coating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This article presents investigations of TiO_2 mixed with SiO_2 ($\text{TiO}_2:\text{SiO}_2$) as a coating material. We find that, after heat treatment for 100 hrs at 850°C, thermal noise of a highly-reflective coating comprising of $\text{TiO}_2:\text{SiO}_2$ and SiO_2 reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors – with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO_2 layers. Furthermore, those coatings show low optical absorption of < 1 ppm and optical scattering of \lesssim 5 ppm. Notably, we still observe excellent optical and thermal noise performance following crystallisation in the coatings. These results show the potential to meet the parameters required for the next upgrades of the Advanced LIGO and Advanced Virgo detectors.

(Dated: July 30, 2024)

Introduction. — Gravitational waves are generated by ⁴⁹ massive, accelerating objects such as merging black holes ⁵⁰ and neutron stars. These waves, predicted by Einstein ⁵¹ more than 100 years ago, cause transverse quadrupole ⁵² strains in space resulting in dimension changes in appro- ⁵³ priately oriented objects [1, 2].

To measure these length changes, enhanced Michelson 55 interferometers have been developed to monitor the dis-56 tance between highly-reflective (HR) mirrors suspended 57 several kilometers apart. Since the first detection in 2015, 58 a large number of gravitational-wave signals have been 59 observed [3–6] by the Advanced LIGO (aLIGO) [7] and 60 Advanced Virgo (AdV) [8] detectors. One of the major 61 limitations to the detectors' sensitivity is displacement 62 noise of the mirrors' surfaces arising from Brownian ther-63 mal motion in the mirror coatings. The magnitude of the 64 coating thermal noise (CTN) amplitude spectral density 65 is given by [9]

$$x(f) = \sqrt{\frac{2k_B T}{\pi^2 f} \frac{1}{w^2} \frac{1 - \sigma_{\text{sub}} - 2\sigma_{\text{sub}}^2}{Y_{\text{sub}}} \sum_{j} b_j d_j \phi_j} . \quad (1)_{60}^{60}$$

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

39

41

42

45

47

Here $k_{\rm B}$ is the Boltzmann constant, T the mirror temperature, f the frequency, w the radius of the laser beam on the coating and $Y_{\rm sub}$ and $\sigma_{\rm sub}$ are the Young's modulus and the Poisson ratio of the mirror substrate. d_j and ϕ_j are the thickness and the mechanical loss of the $j^{\rm th}$ layer in the coating, and b_j is a weighting factor for the $j^{\rm th}$ layer defined in [9]. We assume here that the mechanical losses associated with bulk motion and shear motion [10] are approximately equal ($\phi_{\rm bulk} \approx \phi_{\rm shear} \approx \phi$).

A reduction in CTN is critical to reach the required sensitivity and full astronomical potential of planned detector upgrades and future detectors. For current detectors, operating at room temperature and with a given beam size, a reduction in thickness via the use of materials with a higher contrast in refractive index, n, or a reduction in coating mechanical loss is therefore required.

The coatings of the aLIGO and AdV detectors, produced by LMA [11] via ion beam sputtering, are stacks of alternating layers of SiO₂ (low n), and Ta₂O₅ mixed with 25 % TiO₂ (high n, referred to as TiO₂:Ta₂O₅) [12]. The optical absorption of these HR coatings is as low as ≈ 0.25 ppm at the detector wavelength of $\lambda = 1064$ nm [13]. The TiO₂:Ta₂O₅ layers dominate the overall mechanical loss, and therefore the CTN [14–16].

To reduce CTN, materials to replace TiO₂:Ta₂O₅ are being investigated [17]. Strong candidates include silicon

^{*} The first three authors contributed equally to this work.

[†] Jessica.Steinlechner@ligo.org

nitride [18], and TiO_2 :GeO₂ [19]. A current drawback of silicon nitride is the relatively high optical absorption [18]. For TiO_2 :GeO₂, mechanical loss measurements have shown the potential for 50 % CTN reduction [19], however, direct CTN measurements confirming this reduction are awaited. The absorption for an HR coating was shown to be a few ppm and recent progress with mitigating initial delamination issues due to heat treatment [20] has been made.

In this letter, we present an extensive study of another previously identified candidate high-index material: SiO_2 mixed with TiO_2 (TiO_2 : SiO_2) [21, 22]. To investigate the effect of composition on the refractive index and mechanical loss, single layers of different compositions were produced. Two HR multi-layer stacks, using SiO_2 for the low-index layers, were also studied. Investigations into the effect of heat treatment on the optical properties were carried out, and we present a comparison of mechanical loss measurements and direct CTN measurements. We discuss defect formation during heat treatment, and the onset of crystallisation which, perhaps surprisingly, does not cause significant deterioration in the optical or thermal noise performance.

Coating deposition and composition.— The TiO₂:SiO₂ coatings were deposited by FiveNine Optics [23] using ion beam sputtering with Ti and SiO₂ targets and argon as the sputtering ion. To investigate the effects of the¹³³ composition, four single layer coatings were deposited,¹³⁴ of which three were different in composition, while that¹³⁵ with the highest TiO₂ concentration was deposited twice,¹³⁶ allowing consistency checks of the deposition process.

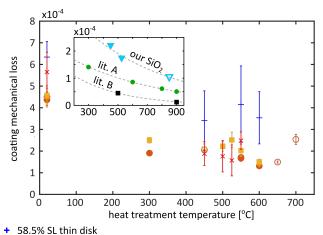
Rutherford backscattering spectrometry (RBS) was used to determine the composition of the single lay-139 ers [24]. Simulations with the ion beam analysis software 140 SIMNRA [25], using a uniform and stoichiometric layer 141 model, allowed the measured cation ratios Ti/(Ti+Si) to 142 be estimated (see Tab. I). As-deposited layers contain 143 0.5 % Ar.

Two HR multi-layer stacks were also deposited, us-¹⁴⁵ ing SiO₂ as the low-n partner to the high-n TiO₂:SiO₂¹⁴⁶ layers – one with 63.2 % Ti concentration (target 50%), ¹⁴⁷ using 17.5 layer pairs (starting and ending with the high-¹⁴⁸ n material), and the other with a 69.5 % Ti concentra-¹⁴⁹ tion (target 60%), using 21.5 layer pairs. Each layer was ¹⁵⁰ nominally $\lambda/4n$ in thickness to give high reflectivity. The ¹⁵¹ Ti cation concentrations were verified using elastic recoil ¹⁵² detection time of flight measurements [26] probing the el-¹⁵³ emental composition of the top four layers of each stack. ¹⁵⁴

From transmission spectra of the single layers, thick-155 ness t and n were obtained using the software tool156 SCOUT [27]. Table I shows the results for the as-157 deposited single layers and for selected annealing tem-158 peratures, showing that n increases with the Ti cation159 concentration. For the 69.5 % layers, n was estimated160 from a linear extrapolation of the single layers indices. 161

Table I also shows the calculated thickness $t_{\rm HR}$ of an¹⁶² HR stack of reflectivity $R \geq 99.9994\%$ using TiO₂:SiO₂¹⁶³ layers partnered with SiO₂. The lowest Ti-concentration₁₆₄

TABLE I. Nominal and measured Ti-cation concentrations, n at 1064 nm at selected heat-treatment temperatures T, t and ρ of the single layers, and $t_{\rm HR}$ required for $R \geq 99.9994\,\%$ (using $n_{\rm SiO_2} = 1.45$).


Ti co target	ncentr. [%] meas.	t [nm]	T [°C]	n	t_{HR} [$\mu\mathrm{m}$]	$\rho~[\rm kg/m^3]$
single layers						
40	46.2 ± 0.4	298	as dep.	1.77	10.83	2686 ± 50
			450	1.75	11.56	
50	58.5 ± 0.5	274	as dep.	1.88	7.94	2889 ± 50
			450	1.86	8.63	
			750	1.88	7.94	
60	62.3 ± 0.5	272	as dep.	1.93	7.21	2967 ± 50
			450	1.92	7.54	
			500	1.91	7.56	
60	62.6 ± 0.5	256	as dep.	1.93	7.21	3022 ± 50
			450	1.91	7.56	
HR coatings						
50	63.2 ± 2.0	·	as dep.	1.93	7.21	
60	69.5 ± 1.7		as den.	1.97	6.83	

from the single layers would require a very thick HR coating due to the low n, as each $TiO_2:SiO_2$ layer becomes thicker, and more pairs of layers are required to generate the desired reflectivity [28, 29].

Mechanical loss.— The mechanical loss of the coatings was measured using the gentle nodal support (GeNS) technique [30], in which a disk is balanced on a spherical lens. The loss is calculated from the time dependence of the amplitude decay of excited vibrational modes, measured via an optical lever readout. Comparison of the loss before and after coating deposition allows the loss of the coating material to be calculated, using the ratio of the strain energies stored in the coating and substrate found using finite element analysis COMSOL [31]. The coating density, ρ , used in this analysis was found by combining the areal density of the scattering atoms measured by RBS with the measured thickness of the coatings. Resonant modes between 2 kHz and 31 kHz were measured.

Figure 1 shows the average mechanical loss, across 6 – 8 modes, of the 58.5 % and 62.3 % single layer coatings, and of the two HR stacks. These coatings were deposited on two silica disk geometries: $\varnothing=50.8\,\mathrm{mm}\times1\,\mathrm{mm}$, and $\varnothing=76.2\,\mathrm{mm}\times2.5\,\mathrm{mm}$ (respectively referred to as 'thin disk' and as 'thick disk' in Fig. 1) [32], heat treated to 950 °C for 4.5 hours pre-deposition. The higher Ticoncentration HR coating was deposited on two different thick disks, labelled A and B. The coated disks were heat treated, increasing the oven temperature at $100\,^{\circ}\mathrm{C/hr}$ to the desired temperature, which was then maintained for 10 hrs, after which the oven cooled naturally. Following each heat treatment, the mechanical loss was measured.

The mechanical loss of all coatings reduced after their

★ 62.6 % SL thin disk
 O 63.2 % HR thin disk
 O 63.2 % HR thick disk
 O 69.5 % HR thick d. A
 O 69.5 % HR thick d. B

FIG. 1. Mechanical loss of the 58.5% and 62.6% single layers and the HR coatings as a function of heat treatment temperature. Each point represents the average loss of 6-8 modes, with the standard deviation used as the error bars. Inlay: mechanical loss of our SiO_2 estimated by comparing the single layers and HR losses [33], and SiO_2 loss from literature A [34] and B [18]. Axis labels are identical to the main plot.

165

166

168

169

170

171

172

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

initial heat treatment step (300°C for the HR stacks,¹⁹⁹ 450°C for the single layers). The single layer coatings²⁰⁰ then increased in loss after heat treatment at 550°C. The²⁰¹ HR coatings behaved differently: the loss of the 63.2%²⁰² HR minimizes at 600°C before starting to increase again,²⁰³ while the 69.5% coating shows a slight increase in loss²⁰⁴ around 500°C – 550°C before the loss decreases again at²⁰⁵ 600°C. Some mechanical loss HR samples started show-²⁰⁶ ing considerable damage such as blisters, cracks, or both,²⁰⁷ visible by eye after the highest temperature heat treat-²⁰⁸ ments.

Interestingly, the single layer and HR coatings with210 $\approx 63\%$ Ti-concentration have very similar losses, while₂₁₁ a lower HR loss would be expected due to the loss of 212SiO₂ generally being low – see literature data in Fig. 1₂₁₃ (inlay) [18, 34]. By decomposing our measured HR losses, 214 using the measured TiO₂:SiO₂ single layer losses [35] at₂₁₅ 450°C and 525°C, we estimated the loss our SiO₂ layers₂₁₆ would need to have for the single layer and HR loss to₂₁₇ be consistent - this is shown by solid blue triangles in218 Fig. 1 (inlay). The hollow blue triangle assumes further 219 improvement of our SiO₂ with heat treatment at 850°C,220 by the same factor ($\times 1.85$) as observed for the literature₂₂₁ data (green and black points). The grev, dashed lines222 show exponential least-square fits through all three data₂₂₃ sets, indicating their trends. This may suggest that the 224 loss of our SiO₂ is high compared to other SiO₂ films. 225

Discrepancies of CTN calculated from single layer and²²⁶ HR losses have been observed previously. In literature no²²⁷ strong evidence of significant interface losses between lay-²²⁸ ers has been found [35, 36]. While stress relaxation may²²⁹ cause excess loss particularly on thin substrates [36], it²³⁰

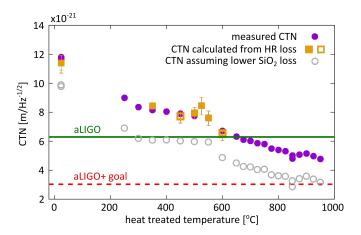


FIG. 2. Directly measured CTN at 100 Hz of the 69.5 % HR coating, scaled to the aLIGO end test mass beam size (purple, solid points), and CTN calculated from the HR coating mechanical loss shown by yellow squares, corresponding to the losses in Fig. 1. The grey circles show CTN calculated from individual $\rm TiO_2{:}SiO_2$ and $\rm SiO_2$ losses – see Fig. 1. The red, dashed line represents a reduction compared to aLIGO (green line), which is the CTN goal for the aLIGO+ upgrade.

seems unlikely to be the dominant source in our case of relatively thick samples, with consistent loss for different thicknesses. Discrepancies in the literature predominantly arose from differences in the frequency dependence of single-layer and multi-layer losses [12, 16], which we do not observe. The possibility that SiO_2 is the source of excess loss was concluded before [12, 16], although the exact reasons, or if this is the case for our coating, remain unclear.

Coating Thermal Noise.— CTN was measured directly in a high-finesse cavity – see Gras & Evans for details [37] - using super polished fused silica substrates of which an 8 mm diameter area in the centre was coated with the 69.5 % HR stack. The purple dots in Fig. 2 show the measured CTN at 100 Hz, scaled using Equ. (4) in [37] to the magnitude expected in an aLIGO end test mass mirror (i.e. using a TEM00 mode and a laser beam radius of 6.2 cm). The CTN of our TiO₂:SiO₂-based HR stack decreases with increasing heat treatment temperature, reaching the aLIGO CTN level, measured and scaled in the same way (green line), at 650°C. It then further decreases to a minimum value at 850°C where it is at 79% of the aLIGO level after 10 hrs of heat treatment and at 76 % after 100 hrs. Higher temperatures do not show further improvement. Here the oven temperature was increased and decreased by 50°C/hr, which is a lower rate than used for the mechanical loss samples and notably implemented controlled cooling. None of the CTN samples heat treated in this way developed any cracks or defects below 950°C. The yellow squares show CTN calculated from the measured mechanical loss of the 69.5%HR coating (yellow squares in Fig. 1), agreeing within < 4% of the directly measured CTN.

To estimate the effect of potentially high SiO_2 loss, or

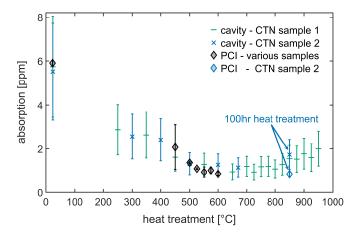


FIG. 3. Optical absorption at 1064 nm of the 69.5% HR stack as function of heat treatment temperature. The measurement of sample 2 after heat treatment at $850^{\circ}\mathrm{C}$ for $100\,\mathrm{hrs}$ is indicated with arrows. All other measurements on both systems were from samples heat treated for $10\,\mathrm{hrs}$.

231

232

233

234

235

237

238

240

241

242

243

244

245

246

247

248

249

250

252

253

254

255

256

257

258

260

261

263

264

265

266

267

other excess loss in the stack, the fit through the blue tri-268 angles (Fig. 1, inlay) was used to extract the TiO₂:SiO₂269 loss from the directly measured CTN at each tempera-270 ture. The result was combined with the best SiO₂ loss271 from literature (black squares in Fig. 1) [38] to calculate272 the CTN shown by the grey circles in Fig. 2. This anal-273 ysis suggests that a maximum CTN reduction to $\approx 45\,\%_{274}$ of aLIGO/AdV could be achieved, beating the aLIGO+275 goal of 50 % CTN reduction, if the excess loss was re-276 duced. If the SiO₂ itself is the excess loss source, im-277 proved SiO₂ could also possibly reduce the loss of the278 TiO₂:SiO₂ layers in the coating, further improving per-279 formance.

Optical Absorption. — The optical absorption of the 281 69.5% TiO₂:SiO₂ HR coating used for direct CTN mea-282 surements was determined by measuring the resonant fre-283 quency of the high-finesse cavity as a function of circulat-284 ing power. Heating from the absorbed power changes the285 optical path length in the cavity via thermal expansion₂₈₆ and dn/dT, resulting in a change in resonant frequency₂₈₇ that is proportional to the circulating power. A sample₂₈₈ of known absorption is used to calibrate the measure-289 ment. Each measurement was made using a single 50 µm²⁹⁰ laser-beam spot near the center of the coating surface, 291 resulting in absorption values shown as green dashes and₂₉₂ blue crosses in Fig. 3. The absorption reduces with in-293 creasing heat treatment temperature to a minimum of₂₉₄ (0.9 ± 0.4) ppm at 650°C, and then remains fairly con-295 stant until it starts to slightly increase at 800°C.

The absorption was also measured using photothermal²⁹⁷ common-path interferometry (PCI) [39], a technique to²⁹⁸ measure very low optical absorption with a high spatial²⁹⁹ resolution. For these measurements, the mechanical loss³⁰⁰ disks were used as well as some smaller-scale samples³⁰¹ coated in the same coating run. Samples heat treated³⁰² for 10 hrs at target temperatures up to 600°C were mea-³⁰³ sured, shown as black diamonds in Fig. 3, where the op-³⁰⁴

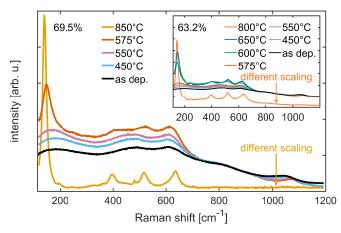


FIG. 4. Raman spectra of the 69.5% HR coating (main plot), and for the 63.2% (inlay - axis range identical to main plot). Peak magnitude increases with heat treatment temperature. The data for the 69.5% 850° C and 63.2% 800° C heat treated coatings is scaled down with respect to the other spectra.

tical absorption reduced to (0.84 ± 0.09) ppm. The sample used for direct CTN measurements, heat treated to 850°C for 100 hrs, was also measured with PCI, shown as a blue diamond, yielding absorption of (0.82 ± 0.10) ppm.

Crystallisation and defects.— Raman spectroscopy on the 69.5 % HR coating was carried out to assess crystallisation after heat treatment. The as-deposited coating, and the lower temperature heat treatments, show a characteristic amorphous spectrum with broad Raman bands, see Fig. 4, consistent with being a combination of SiO₂ and TiO_2 . The coating starts crystallising (as anatase) between 550°C and 575°C, as evidenced by the narrower peaks in the spectrum, which is a significantly higher temperature than for pure $IBS-TiO_2$ [40, 41]. Through heat treatment, the peaks converge on bulk crystalline anatase TiO₂ values [42] in all cases except the primary peak where a progressive red shift is seen - settling at 140 cm⁻¹ after 850°C. This shift may result from stresses arising from the thermal mismatch of the materials [43], and its position is only clearly resolved after advanced crystallisation. It could also originate from increasing oxygen content in the high-n layers as a result of heat treatment in air [44, 45] or potential interdiffusion from neighboring SiO_2 layers [46]. The inlay shows the results for the 63.2 % HR coating, which starts crystallizing at 600°C, doing so as both anatase and rutile.

Macroscopic defects were noted for many of the mechanical loss samples at higher heat treatment temperatures: HR stacks of both compositions on three different 76.2 mm disks started showing blisters, mainly in a ring-shape near the edge, after heat treatment at 600°C, while the 63.2% HR coating on a 50.8 mm disk did not show blisters, but started cracking after heat treatment at 650°C. It is interesting to note that the 76.2 mm disks were polished to a better surface quality, i.e. lower rms surface roughness, than the 50.8 mm disk.

The samples used for direct CTN measurements did

not show any blistering, while cracks were only observed₃₄₄ after heat treatment at 950°C. Possible reasons could₃₄₅ be (i) that the coatings were of a smaller diameter, (ii)₃₄₆ that the coating ended several millimeters away from the₃₄₇ substrate edges while the other samples were completely₃₄₈ coated, or (iii) that a controlled cool-down rate after heat₃₄₉ treatment was used, which was much slower than the nat-₃₅₀ ural cool-down rate used for the other samples.

306

307

308

309

310

311

312

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

330

331

332

333

334

335

336

337

339

340

341

342

384

385

386

387

388

389

390

391

392

393

394

395

397

398

399

Scattering.—The total integrated scatter (TIS) of the³⁵² 69.5% HR coating was measured using two techniques.³⁵³ The first used an integrating sphere, which has a scat-³⁵⁴ tered light capture range from 1 to 75° [47], and a 0.3 mm³⁵⁵ diameter 1064 nm laser beam, while the second used an³⁵⁶ angle-resolved scatterometer (ARS) which records the³⁵⁷ scattered light at discrete angles between 3 and 80°, using³⁵⁸ a 5.2 mm diameter 1056 nm beam from a superlumines-³⁵⁹ cent diode. With the ARS, integrated scatter over this³⁶⁰ range of angles is estimated assuming isotropic scattering³⁶¹ in azimuthal angles [48].

For the as-deposited HR stack, the integrating sphere measurement gave a TIS of (2.8 ± 1.0) ppm and the ARS yielded (2.9 ± 1.0) ppm. For the HR stack heat treated at 850°C for 100 hours, the TIS was higher, but still at a relatively low level: (4.6 ± 1.0) ppm from the integrating sphere and (5.2 ± 1.9) ppm from the ARS. In comparason, the TIS of the aLIGO mirror coatings have been measured to be (9.5 ± 2.0) ppm [47] using the same integrating sphere setup, while another technique [49] yielded a value of (4.9 ± 1.5) ppm [13]. While care is needed when comparing our test sample to the aLIGO mirrors, due to the difference in size of the coating and differences in the substrate surface quality, these initial scatter results for the optimally heat-treated, defect-free and partially reystallised TiO₂:SiO₂ HR coating are very promising.

Discussion.— We have shown by direct CTN measure- $_{379}$ ments that HR coatings made of 69.5% TiO₂:SiO₂ and $_{380}$ SiO₂ have the potential to reduce CTN to $_{76\%}$ of the $_{381}$ aLIGO CTN. From comparing the measured losses of $_{382}$ the TiO₂:SiO₂ single layer and HR coatings, we con- $_{383}$

clude that either the SiO₂ in our coatings has a much higher loss than expected based on literature data, or some other excess loss is present. When combining our TiO₂:SiO₂ with the loss of state-of-the-art SiO₂, we calculate a lower boundary of 45% of aLIGO/AdV CTN. Therefore, further investigation of the reason for the discrepancy between single layer and HR loss is of high interest. While the TiO₂ in our 69.5 % HR coating begins to crystallise at 575°C, with crystallisation resulting in a scattering increase of about a factor of two at 850°C, it is very interesting to note that the resulting scattering level is still comparable to, or better than, that of an aLIGO coating. While some coating samples displayed a small number of defects at higher heat treatment temperatures, other samples survived with no defects until a temperature of 950°C was reached, demonstrating that this material has the potential to survive the annealing temperatures required for optimum CTN performance. After heat treatment at 850°C for 100 hrs, the HR coating had an absorption of (0.82 ± 0.10) ppm.

Overall, this coating has high potential for providing improved CTN, compared to aLIGO and AdV, in room-temperature gravitational-wave detectors while also showing promising optical properties.

Acknowledgments.— We are grateful for financial support from STFC (ST/V005634/1, ST/V001736/1), the University of Glasgow, the Royal Society (RG110331), ETpathfinder (Interreg Vlaanderen-Nederland), E-TEST (Interreg Euregio Meuse-Rhine), the Province of Limburg and National Science Foundation awards PHY-2207998 and PHY-2219109. Work done at U. Montréal is funded by NSERC, CFI, and FRONT through the ROMP. We thank our colleagues within the LIGO Scientific Collaboration and Virgo Collaboration and within SUPA for their interest in this work. This Letter has LIGO Document No. P2300203. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under cooperative agreement PHY-1764464.

 ^[1] A. Einstein, Näherungsweise Integration der Feldgle-400 ichungen der Gravitation, Springer Berlin Heidelberg, 401
 Berlin, Heidelberg, 2018, pp. 149–158. https://doi.402 org/10.1007/978-3-662-57411-9_13

^[2] A. Einstein, Über Gravitationswellen, John Wiley &404 Sons, Ltd, 2005, pp. 135-149. https://onlinelibrary.405 wiley.com/doi/abs/10.1002/3527608958.ch12

^[3] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Aber-407 nathy, F. Acernese, K. Ackley, C. Adams, T. Adams, 408 P. Addesso, R. X. Adhikari, et al., Observation of grav-409 itational waves from a binary black hole merger, Phys.410 Rev. Lett. 116 (2016) 061102. https://link.aps.org/411 doi/10.1103/PhysRevLett.116.061102

^[4] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, 413 K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Ad-414 hikari, V. B. Adya, et al., GW170817: Observation of 415

gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101. https://link.aps.org/doi/10.1103/PhysRevLett.119.161101

^[5] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, et al., GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X 11 (2021) 021053. https://link.aps.org/doi/10.1103/ PhysRevX.11.021053

^[6] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, et al., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run (2021). https://arxiv. org/abs/2111.03606v2

B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Aber-480
 nathy, F. Acernese, K. Ackley, C. Adams, T. Adams, 481
 P. Addesso, R. X. Adhikari, et al., GW150914: The ad-482
 vanced LIGO detectors in the era of first discoveries, 483
 Phys. Rev. Lett. 116 (2016) 131103. https://link.aps.484
 org/doi/10.1103/PhysRevLett.116.131103

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

465

467

468

469

470

471

472

473

474

475

476

477

478

479

- [8] F. Acernese, et al., Advanced Virgo: a second-generation486 interferometric gravitational wave detector, Classical and487 Quantum Gravity 32 (2) (2015) 024001. http://stacks.488 iop.org/0264-9381/32/i=2/a=024001
- [9] W. Yam, S. Gras, M. Evans, Multimaterial coat-490 ings with reduced thermal noise, Phys. Rev. D 91491 (2015) 042002. https://link.aps.org/doi/10.1103/492 PhysRevD.91.042002
- [10] T. Hong, H. Yang, E. K. Gustafson, R. X. Adhikari,⁴⁹⁴ Y. Chen, Brownian thermal noise in multilayer coated⁴⁹⁵ mirrors, Phys. Rev. D 87 (2013) 082001. https://link.⁴⁹⁶ aps.org/doi/10.1103/PhysRevD.87.082001 ⁴⁹⁷
- [11] Laboratoire des Matériaux Avancés. https://lma.498 in2p3.fr
- [12] M. Granata, A. Amato, L. Balzarini, M. Canepa,500 J. Degallaix, D. Forest, V. Dolique, L. Mereni,501 C. Michel, L. Pinard, B. Sassolas, J. Teillon, G. Cagnoli,502 Amorphous optical coatings of present gravitational-503 wave interferometers*, Classical and Quantum Grav-504 ity 37 (9) (2020) 095004. https://dx.doi.org/10.1088/505 1361-6382/ab77e9
- [13] L. Pinard, et al., Mirrors used in the LIGO interfer-507 ometers for first detection of gravitational waves, Appl.508 Opt. 56 (4) (2017) C11-C15. http://opg.optica.org/509 ao/abstract.cfm?URI=ao-56-4-C11
- [14] G. Harry, et al., Thermal noise from optical coatings in₅₁₁ grav. wave detectors, Appl. Opt. 45 (7) (2006) 1569–1574.₅₁₂ http://ao.osa.org/abstract.cfm?URI=ao-45-7-1569 ₅₁₃
- [15] G. M. Harry, M. R. Abernathy, A. E. Becerra-Toledo, 514
 H. Armandula, E. Black, K. Dooley, M. Eichenfield, 515
 C. Nwabugwu, A. Villar, D. R. M. Crooks, G. Cagnoli, 516
 J. Hough, C. R. How, I. MacLaren, P. Murray, S. Reid, 517
 S. Rowan, P. H. Sneddon, M. M. Fejer, R. Route, 518
 S. D. Penn, P. Ganau, J.-M. Mackowski, C. Michel, 519
 L. Pinard, A. Remillieux, Titania-doped tantala/silicas20
 coatings for gravitational-wave detection, Classical and 521
 Quantum Gravity 24 (2) (2006) 405. https://dx.doi.522
 org/10.1088/0264-9381/24/2/008
- [16] A. Amato, G. Cagnoli, M. Granata, B. Sassolas, J. De-524 gallaix, D. Forest, C. Michel, L. Pinard, N. Demos,525 S. Gras, M. Evans, A. Di Michele, M. Canepa, Op-526 tical and mechanical properties of ion-beam-sputtered527 nb205 and tio2-nb205 thin films for gravitational-wave528 interferometers and an improved measurement of coat-529 ing thermal noise in Advanced LIGO, Phys. Rev.530 D 103 (2021) 072001. https://link.aps.org/doi/10.531 1103/PhysRevD.103.072001
- [17] M. A. Fazio, G. Vajente, L. Yang, A. Ananyeva, C. S.533 Menoni, Comprehensive study of amorphous metal oxide534 and ta₂0₅-based mixed oxide coatings for gravitational-535 wave detectors, Phys. Rev. D 105 (2022) 102008. https:536 //link.aps.org/doi/10.1103/PhysRevD.105.102008 537
- [18] M. Granata, et al., Progress in the measurements₃₈ and reduction of thermal noise in optical coatings₅₃₉ for gravitational-wave detectors, Appl. Opt. 59 (5)₅₄₀ (2020) A229-A235. http://www.osapublishing.org/₅₄₁ ao/abstract.cfm?URI=ao-59-5-A229 ₅₄₂
- [19] G. Vajente, et al., Low mechanical loss TiO₂:GeO₂ coat-543

- ings for reduced thermal noise in gravitational wave interferometers, Phys. Rev. Lett. 127 (2021) 071101. https://link.aps.org/doi/10.1103/PhysRevLett.127.071101
- [20] A. Davenport, et al., The development of high reflection TiO₂:GeO₂ and SiO₂ coatings for gravitational wave detectors, in: Optical Interference Coatings Conference (OIC) 2022, Optica Publishing Group, 2022, p. WA.6. https://opg.optica.org/abstract.cfm?URI=OIC-2022-WA.6
- [21] C. S. Menoni, L. Yang, M. Fazio, G. Vajente, A. Ananyeva, G. Billingsley, F. Schiettekatte, M. Chicoine, A. Markosyan, R. Bassiri, M. M. Fejer, Survey of metal oxides for coatings of ultra-stable optical cavities, in: 2021 Conference on Lasers and Electro-Optics (CLEO), 2021, pp. 1–2. https://opg.optica. org/abstract.cfm?URI=CLEO_SI-2021-STu1C.7
- [22] S. Chao, W.-H. Wang, C.-C. Lee, Low-loss dielectric mirror with ion-beam-sputtered TiO₂-SiO₂ mixed films, Appl. Opt. 40 (13) (2001) 2177-2182. https://opg. optica.org/ao/abstract.cfm?URI=ao-40-13-2177
- [23] FiveNine Optics. https://www.fivenineoptics.com/
- [24] W.-K. Chu, J. W. Mayer, M.-A. Nicolet, Backscattering Spectrometry, Academic Press, New York, 1978. https://www.sciencedirect.com/science/article/ pii/B9780121738501500028
- [25] M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conference Proceedings 475 (1) (1999) 541–544. https://aip.scitation.org/doi/abs/10.1063/1.59188
- [26] M. Chicoine, F. Schiettekatte, M. Laitinen, T. Sajavaara, Oxy-nitrides characterization with a new ERD-TOF system, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 406 (2017) 112–114. https://doi.org/10.1016/ j.nimb.2017.02.041
- [27] WTheiss Hardware and Software. http://www.wtheiss.
- [28] O. S. Heavens, Thin film physics, Vol. 95, Methuen, 1970.
- [29] J. Steinlechner, Development of mirror coatings for gravitational-wave detectors, Phil. Trans. R. Soc. A 376. https://royalsocietypublishing.org/doi/10. 1098/rsta.2017.0282
- [30] E. Cesarini, M. Lorenzini, E. Campagna, F. Martelli, F. Piergiovanni, F. Vetrano, G. Losurdo, G. Cagnoli, A "gentle" nodal suspension for measurements of the acoustic attenuation in materials, Review of Scientific Instruments 80 (5) (2009) 053904. https://doi.org/10.1063/ 1.3124800
- [31] COMSOL, COMSOL Multiphysics User's Guide, The Heat Transfer Branch (2012) 709-745. https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/COMSOL_ReferenceManual.pdf
- [32] A set of 'thick disk' single layers was also coated and heat treated to 300°C, however, the thickness ratio of coatings and substrates was too small ($\lesssim 10^{-4}$) for the coating loss to be extracted from those samples.
- [33] D. R. M. Crooks, Mechanical Loss and its Significance in the Test Mass Mirrors of Gravitational Wave Detectors, Ph.D. thesis, University of Glasgow (2002). http: //theses.gla.ac.uk/id/eprint/2893
- [34] R. Robie, Characterisation of the mechanical properties of thin-film mirror coating materials for use in future interferometric gravitational wave detectors, Ph.D. thesis, University of Glasgow (2018). http://theses.gla.ac.

uk/id/eprint/30645

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

- [35] S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Bet-582 zwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M.583 Fejer, A. M. Gretarsson, G. M. Harry, J. Hough, S. E.584 Kittelberger, M. J. Mortonson, R. Route, S. Rowan,585 C. C. Vassiliou, Mechanical loss in tantala/silica di-586 electric mirror coatings, Classical and Quantum Grav-587 ity 20 (13) (2003) 2917. https://dx.doi.org/10.1088/588 0264-9381/20/13/334
- [36] M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, 590
 G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, 591
 C. Michel, L. Pinard, R. Flaminio, Mechanical loss in 592
 state-of-the-art amorphous optical coatings, Phys. Rev. 593
 D 93 (2016) 012007. https://link.aps.org/doi/10.594
 1103/PhysRevD.93.012007
- [37] S. Gras, M. Evans, Direct measurement of coating596 thermal noise in optical resonators, Phys. Rev. D597 98 (2018) 122001. https://link.aps.org/doi/10.1103/598 PhysRevD.98.122001
- [38] Other parameters used for SiO_2 were n=1.45, a Young's600 modulus of 73.2 GPa and a Poisson ratio of 0.11, which601 are parameters identical to those of Granata, used by602 Vajente [18, 19].
- [39] A. Alexandrovski, M. Fejer, A. Markosian, R. Route,604 Photothermal common-path interferometry (PCI): new605 developments, Solid State Lasers XVIII: Technology and606 Devices 7193 (November) (2009) 71930D. https://doi.607 org/10.1117/12.814813
- [40] C. She, Raman characterization of optical thin film609 coatings, Thin Solid Films 154 (1) (1987) 239-247.610 https://www.sciencedirect.com/science/article/ 611 pii/0040609087903683
- [41] C.-C. Lee, C.-J. Tang, TiO₂-Ta₂O₅ composite thin films₆₁₃ deposited by radio frequency ion-beam sputtering, Appl.₆₁₄ Opt. 45 (36) (2006) 9125-9131. https://opg.optica.₆₁₅ org/ao/abstract.cfm?URI=ao-45-36-9125
- [42] L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Nau-617

- mov, L. Fedorenko, V. Kshnyakin, J. Baran, Laser-excited excitonic luminescence of nanocrystalline TiO2 powder, Ukrainian Journal of Physics 59 (2014) 246-253. https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018437
- [43] D. Liu, P. Flewitt, Raman Measurements of Stress in Films and Coatings, Vol. 45, 2014, pp. 141–177. https://doi.org/10.1039/9781782621485-00141
- [44] J. C. Parker, R. W. Siegel, Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes, Journal of Materials Research 5 (6) (1990) 1246–1252. https://doi.org/10.1557/JMR.1990.1246
- [45] J. C. Parker, R. W. Siegel, Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2, Applied Physics Letters 57 (9) (1990) 943–945. https://doi.org/10.1063/1.104274
- [46] A. Krost, W. Richter, D. R. T. Zahn, K. Hingerl, H. Sitter, Chemical reaction at the ZnSe/GaAs interface detected by Raman spectroscopy, Applied Physics Letters 57 (19) (1990) 1981–1982. https://doi.org/10.1063/1.104149
- [47] G. Billingsley, H. Yamamoto, L. Zhang, Characterization of Advanced LIGO core optics, Vol. 66, American Society for Precision Engineering (ASPE), 2017, pp. 78–83. https://www.proceedings.com/37625.html
- [48] F. Magana-Sandoval, R. X. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. R. Saulson, J. R. Smith, Large-angle scattered light measurements for quantumnoise filter cavity design studies, J. Opt. Soc. Am. A 29 (8) (2012) 1722–1727. https://opg.optica.org/ josaa/abstract.cfm?URI=josaa-29-8-1722
- [49] J. Degallaix, C. Michel, B. Sassolas, A. Allocca, G. Cagnoli, L. Balzarini, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, L. Pinard, Large and extremely low loss: the unique challenges of gravitational wave mirrors, J. Opt. Soc. Am. A 36 (11) (2019) C85-C94. https://opg.optica.org/ josaa/abstract.cfm?URI=josaa-36-11-C85