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Abstract
The ease and speed of spreading misinformation
and propaganda on the Web motivate the need to
develop trustworthy technology for detecting fal-
lacies in natural language arguments. However,
state-of-the-art language modeling methods exhibit
a lack of robustness on tasks like logical fallacy
classification that require complex reasoning. In
this paper, we propose a Case-Based Reasoning
method that classifies new cases of logical fallacy
by language-modeling-driven retrieval and adapta-
tion of historical cases. We design four comple-
mentary strategies to enrich input representation
for our model, based on external information about
goals, explanations, counterarguments, and argu-
ment structure. Our experiments in in-domain and
out-of-domain settings indicate that Case-Based
Reasoning improves the accuracy and generaliz-
ability of language models. Our ablation studies
suggest that representations of similar cases have a
strong impact on the model performance, that mod-
els perform well with fewer retrieved cases, and
that the size of the case database has a negligible
effect on the performance. Finally, we dive deeper
into the relationship between the properties of the
retrieved cases and the model performance.

1 Introduction
The ease and speed of spreading misinformation [Wu et al.,
2019; Allcott et al., 2019] and propaganda [Da San Martino
et al., 2019; Barrón-Cedeno et al., 2019] on the Web moti-
vate the need to develop trustworthy technology for under-
standing novel arguments [Lawrence and Reed, 2020]. In-
spired by centuries of philosophical theories [Aristotle, 1989;
Locke, 1997; Copi, 1954; Barker, 1965], recent work has pro-
posed the natural language processing (NLP) task of Logical
Fallacy Detection. Logical Fallacy Detection goes beyond
prior work on binary detection of misinformation and fake
news classification, and aims to classify an argument into one
of the dozens of fallacy classes. For instance, the argument
There is definitely a link between depression and drinking al-
coholic drinks. I read about it from Wikipedia belongs to the
class Fallacy of Credibility, as the validity of the argument is

based on the credibility of the source rather than the argument
itself. Here, the focus is on informal fallacies that contain
incorrect or irrelevant premises, as opposed to formal falla-
cies, which have an invalid structure [Aristotle, 1989]. The
identification of informal fallacies is challenging for both hu-
mans and machines as it requires complex reasoning and also
common knowledge about the concepts involved in the fal-
lacy [Hansen, 2020]. To predict the correct fallacy type, the
model has to know what Wikipedia is and how it is used in
societal discourse, the potential relationship between depres-
sion and consuming alcoholic beverages, and also the causal
link between the first and second parts of the argument.

The currently dominant NLP paradigm of language mod-
els (LMs) has been shown to struggle with reasoning over
logical fallacies [Jin et al., 2022] and similar tasks that
require complex reasoning [Da San Martino et al., 2019;
Barrón-Cedeno et al., 2019]. As LMs are black boxes, at-
tempts to improve their performance often focus on adapt-
ing their input data. Prior work has pointed to the need to
include context [Vijayaraghavan and Vosoughi, 2022], sim-
plify the input structure [Jin et al., 2022], or perform special
training that considers soft logic [Clark et al., 2021]. How-
ever, these ideas have not been successful in classifying logi-
cal fallacies yet. Alternatively, methods that leverage reason-
ing by example, e.g., based on Case-Based Reasoning (CBR),
have shown promise in terms of accuracy and explainabil-
ity for other tasks like question answering [Das et al., 2022],
but have not been applied to reason over logical fallacies to
date. We conclude that integrating such explainable methods
with generalizable LMs provides an unexplored opportunity
to reason over logical fallacies.

In this paper, we pursue the question: Does reasoning over
examples improve the ability of language models to classify
logical fallacies? To answer this question, we develop a
method based on the idea of CBR [Aamodt and Plaza, 1994].
We focus on the interpretive problem-solving variant of CBR,
which aims to understand novel cases in terms of previous
similar cases while not necessarily using the solutions from
previous cases directly [Leake, 2001]. We adapt this idea to
the task of classifying logical fallacies by using LMs as back-
bones when retrieving and adapting prior similar cases. We
measure the ability of our models in terms of accuracy and
generalizability and also probe their explainability. The main
contributions of this paper are as follows:

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5188



1. We design the first Case-Based Reasoning method for
logical fallacy classification to solve new cases based
on past similar cases. The framework implements the
theory of CBR with state-of-the-art (SOTA) techniques
based on language modeling and self-attention.

2. We design four enriched case representations: Coun-
terarguments, Goals, Explanations, and Structure of the
argument to allow CBR to retrieve and exploit simi-
lar cases based on implicit information, like argument
goals. To our knowledge, we are the first who inves-
tigate the effect of these case representations on CBR
performance.

3. We perform extensive experiments that investigate the
impact of CBR against Transformer LM baselines on in-
domain and out-of-domain settings. We perform abla-
tions to provide insight into the sensitivity of our CBR
method on its parameters and investigate the explana-
tions extracted from the model.

We make our code and data available to support future re-
search on logical fallacy classification.1 For additional dis-
cussion, please refer to longer version of the paper on Arxiv.

2 Method
CBR [Schank, 1983] is a method that reasons over new cases
based on similar past cases with a known label [Aamodt and
Plaza, 1994]. Our CBR formulation (Figure 1) consists of
three steps: (1) given a new case, retrieve similar cases from
a case database, (2) adapt fetched similar cases based on
the current one, and (3) classify the new case based on the
adapted exemplars. In this work, we use LMs in the retriever
and the adapter because of their strong ability to encode and
compute similarity for any textual information.
Retriever. Finding k similar cases Si (i ∈ {1, ..., k}) to
the new case C from a case database is retriever’s task. The
retriever estimates the similarity between C and Si by encod-
ing each of them with the same LM encoder and computing
the cosine similarity of the resulting encodings. The retriever
then picks the k cases with top cosine similarities from the
database. The new case is concatenated to its similar cases,
i.e., S = C ⊕ < SEP > ⊕S1 ⊕ S2 ⊕ ...⊕ Sk and is passed
as input to the CBR adapter.
Adapter. The framework’s middle part aims to prioritize
the most relevant information from S for reasoning over the
new case C. Based on the second step of the pipeline by
[Aamodt and Plaza, 1994], after fetching similar cases, it
might be the case that only certain retrieved cases would be
useful, and therefore, they should be weighted according to
their utility for approaching the new case. The fusion of the
current case with its previously seen similar problems would
give the model the chance to come up with a better represen-
tation of the current problem, as well as better abstractions
and generalizations for further uses. The adapter consists of
two parts: an encoder and an attention component. The en-
coder is an LM that takes as an input C and S separately,
then outputs their respective embedding representations EC

1https://github.com/zhpinkman/CBR

Figure 1: Three stages of the CBR pipeline. Using the new case
C, the retriever finds k similar cases {S1, S2, ..., Sk} and creates
S = C ⊕ < SEP > ⊕S1 ⊕ S2 ⊕ ...⊕ Sk. The adapter processes
both the new case and fetched similar cases and tries to adapt S
based on the new case C, and extracts more abstract information
from the fusion of the two. Finally, the classifier receives the adapted
information and returns the probabilities associated with the new
class belonging to each fallacy type. In the example, k = 1.

and ES . We use the hidden states of the last layer of the LM
as the input embedding. A multi-headed attention component
[Vaswani et al., 2017] with H heads selects the most use-
ful information from the similar cases embeddings ES given
the embedding of the new case EC . As commonly done in
Transformer architectures, the Adapter generates Value and
Key vectors from ES and Query vectors from EC . The dot
product of the Query and Key vectors, fed through a soft-
max layer, results in an Attention vector, which indicates the
importance of each token in S when generating the adapted
vector A. An adapted vector with adjusted attention on its
elements is produced by the weighted sum of the Value vec-
tors based on Attention weights. The output of the attention
component is A, the adjusted embedding of ES .

Classifier. Last part of the framework predicts the final
class based on the adapter output A. The classifier is de-
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signed as a fully connected neural layer with a depth d and
an activation function. The objective function of the classifier
is the cross-entropy loss. The cross-entropy loss is computed
over the probabilities that are extracted from C logits corre-
sponding to each of the C classes. Also, during training, the
retriever’s component weights are frozen while the rest of the
framework is trained in an end-to-end fashion.

Overall, our CBR architecture resembles a standard
‘vanilla’ LM with a classification head but brings the addi-
tional benefit of having access to prior relevant labeled cases
weighed based on the attention mechanism.2 We hypoth-
esize that the CBR models bring two benefits over vanilla
LMs: (1) the integration of similar labeled cases helps the
model analyze the new fallacious argument better and clas-
sify it more accurately, and (2) provides explicit insights into
the reasoning of the model by yielding similar cases to the
current one [Renkl, 2014].

3 Case Representation
Merely retrieving labeled cases may not be sufficient for rea-
soning on new cases, as it is unclear what dimensions of sim-
ilarity their relevance is based on. For instance, two cases
may be similar in terms of their explanation, structure, or the
goal behind the cases. As these dimensions are implicit and
not apparent from the plain text, we make them explicit by
enriching the original text of the case with such information.
We consider four representations in which the case formula-
tion is enriched with its counterargument, goal, explanation,
and structure. As a baseline, we also include the original
text without any enrichments. Table 1 illustrates examples of
these representations for the sample case There was a thun-
derstorm with rain therefore I did not finish my homework.

Each of the enrichment strategies r modifies the case
representation by concatenating it with additional informa-
tion, r(case). We introduce a case representation function
R(case, r) that concatenates case with additional informa-
tion r(case) resulting in case ⊕ r(case). These representa-
tions modify both the new case C to R(C, r) and cases from
the database Si to R(Si, r), and change the cosine similarity
to be computed between enriched cases instead of plain text.
We next describe the design of the enrichment strategies.
Counterarguments. Counterarguments are common in
persuasive writing, where they explain why one’s position is
stronger than the counterargument and serve as a preemptive
action to anticipate and remove any doubts about arguments
[Harvey, 2009]. We hypothesize that counterarguments are
often implicit in the arguments, and would therefore be useful
to be provided directly to the model. For instance, in the argu-
ment presented in Table 1, although the plain text claims that
the reason for not finishing the homework is the heavy rain,
the counterargument points out other reasons for not finishing
the homework such as the person being too tired.
Goals. Studies of argumentation often focus on the inter-
play between the goals that the writer is pursuing and their
argumentations [Tracy, 2013]. Thus, when classifying logical

2Our experiments using the framework without the attention
mechanism consistently showed sub-optimal performance.

fallacies, we expect that it is beneficial to take into account the
goals of the arguments. The goal may be entirely missing in
the argument’s text, or the argument may implicitly hint at the
goal. An example of the latter is shown in Table 1, where the
phrase therefore I did not finish my homework alludes to the
implicit goal of the writer to justify not finishing their home-
work. As shown in this example, we include an explicit goal
statement to fill this gap.

Explanations. By using explanations about logically falla-
cious arguments, we aim to augment the arguments with a
broader notion of information that might be useful for classi-
fying logical fallacies but is not already included in the orig-
inal argument, such as reasoning steps getting from premises
to conclusions of an argument [Barker, 1965]. As we do not
impose any restrictions on the explanations, their content may
overlap with the previous two representations. Alternatively,
explanations may provide different complementary informa-
tion. Such is the example in Table 1 that discusses the causal
relationship between two events that are not actually related.
Thus, the explanation acts as a general gap-filling mechanism
that can provide any relevant information that is missing in
the original argument.

Structure. Tasks like logical fallacy classification involve
higher-order relation comprehension that is often based on
the structure rather than the content of the argument. In that
sense, the semantics of specific entities and concepts in the ar-
gument may be misleading to the model. Similarly to [Jin et
al., 2022], we hypothesize that focusing on the logical struc-
ture of an argument rather than its content is beneficial for the
model’s performance [Gabbay et al., 2004]. An example of
a structural simplification of an argument is presented in Ta-
ble 1. While this simplification may help the model grasp the
case structure more directly, the structure formulation may
not detect the implicit causal links between the thunderstorm
(X) and the homework (Z).

We extract the enrichment information for a case using a
combination of few-shot and zero-shot prompting with two
SOTA models: ChatGPT [OpenAI, 2022] and Codex [Chen
et al., 2021]. Given a representation strategy r, we prompt
ChatGPT to get the representations for a case for five differ-
ent examples using one template per representation. For in-
stance, we use the template Express the goal of the argument
{case} to retrieve the goals of the argument case. The five
obtained examples per representation are used as demonstra-
tions to prompt Codex in a few-shot manner. For a representa-
tion strategy r, we use the same demonstrations together with
each new case C from our task as input to the Codex model,
which yields enrichment information r(case) per case. In
this manner, we combine the strong zero-shot ability of the
closed-source ChatGPT model with the few-shot generation
strength of the Codex model.

4 Experimental Setup
In this section, we describe the evaluation data and metrics,
the baselines we compare to, and the implementation details.

Evaluation dataset. We use two logical fallacy datasets
from [Jin et al., 2022], called LOGIC and LOGIC Climate.
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Representation Transformed Text
Goals It’s possible that the goal is to explain why the speaker did not finish their homework. The speaker may be trying to

convince the listener that they did not finish their homework because of the thunderstorm.

Counterarg. There are many factors that contribute to a person’s ability to complete their homework, and it’s not fair to suggest
that the thunderstorm was the only factor. It’s possible that the person did not finish their homework because they
were distracted by the thunderstorm or because they were tired.

Explanations It presents a causal relationship between two events that might not be actually related.

Structure There was an X with Y therefore I did not do Z.

Table 1: One example of different representations for the case There was a thunderstorm with rain therefore I did not finish my homework.

The LOGIC dataset includes thirteen logical fallacy types
about common topics, namely: Ad Hominem, Ad Populum,
Appeal to Emotion, Circular Reasoning, Equivocation, Fal-
lacy of Credibility, Fallacy of Extension, Fallacy of Logic,
Fallacy of Relevance, False Causality, False Dilemma, Faulty
Generalization, and Intentional. LOGIC Climate dataset con-
sists of more challenging examples for the same logical fal-
lacy types on the climate change topic. We use LOGIC
for in-domain evaluation and LOGIC Climate for out-of-
domain evaluation. As LOGIC dataset is severely imbal-
anced, we augment its train split using two techniques, i.e.,
back-translation, and substitution of entities in the arguments
with their synonymous terms. This augmentation makes
LOGIC dataset train split have 281 arguments for each fallacy
type. Note that we do not fine-tune our model on the LOGIC
Climate dataset in our experiments to evaluate the general-
izability of our framework. We model the classification task
as a multi-class classification problem and use the customary
metrics of weighted precision, recall, and F1-score.
Baselines. We consider three different LMs: BERT [Devlin
et al., 2018], RoBERTa [Liu et al., 2019], and ELECTRA
[Clark et al., 2020]. We apply our CBR method (§2) on each
of these models. As baselines, we use vanilla LMs without
a CBR extension. We also compare against Codex in a few-
shot setting, with the prompt including all the possible classes
as well as one example for each class resulting in thirteen la-
beled examples in the prompt. Finally, we include the results
of a frequency-based predictor that predicts fallacy classes
based on the distribution of fallacy types in the training set.
Implementation details. We use SimCSE [Gao et al.,
2021], a transformer-based retriever that is optimized for cap-
turing overall sentence similarity, to compute the similarity
between cases (§2) and also use H = 8 heads for the multi-
headed attention component. The depth of our classifier is
d = 2. It uses gelu [Hendrycks and Gimpel, 2016] as an ac-
tivation function. We analyze the performance of our model
using k ∈ {1, 2, 3, 4, 5}. To test the generalization of our
model with sparser case databases, we experiment with vari-
ous ratios of the case database within {0.1, 0.4, 0.7, 1.0}.

5 Results
In this section, we measure the effectiveness of CBR per
model and case representation. We further provide ablations
that measure the sensitivity of the model to the size of the
case database and the number of cases. Finally, we present a

LOGIC LOGIC Climate
Model Type P R F1 P R F1

Freq-based baseline 0.094 0.094 0.093 0.120 0.079 0.080
Codex few-shot 0.594 0.422 0.386 0.198 0.093 0.077

ELECTRA baseline 0.614 0.602 0.599 0.276 0.229 0.217
CBR 0.663 0.664 0.657 0.355 0.254 0.270

RoBERTa baseline 0.577 0.561 0.560 0.237 0.211 0.200
CBR 0.631 0.619 0.619 0.379 0.248 0.245

BERT baseline 0.585 0.598 0.586 0.166 0.130 0.120
CBR 0.613 0.616 0.611 0.359 0.204 0.200

Table 2: Comparison of the best results of the CBR framework with
vanilla LMs and two external baselines on two benchmarks focusing
on both in-domain (LOGIC) and out-of-domain (LOGIC Climate)
settings. The best results per model are boldfaced and the overall
best results are underlined.

qualitative analysis of the explainability of CBR and a thor-
ough discussion about how retrieved cases help to classify
new ones.
Impact of CBR. Table 2 shows the performance of the
CBR framework and relevant baselines. For each model,
we present the results using the best case representation per
model and using k = 1 while exploiting 10% of the case
database that we found to yield the best results among all pos-
sible combinations. Overall, the CBR method brings a con-
sistent and noticeable quantitative improvement in the clas-
sification of logical fallacies by LMs. For each of the three
LMs, CBR outperforms the vanilla baselines by 2.5 - 6 abso-
lute F1 points on the in-domain dataset and up to 8 points on
the out-of-domain dataset. Furthermore, CBR outperforms
Codex, which is utilized in a few-shot setting, despite it be-
ing a much larger model. Across the different LMs, ELEC-
TRA is achieving the best score and benefits the most from
the CBR framework on the in-domain benchmark, which we
attribute to its efficiency of pre-training [Clark et al., 2020].
The same pattern of the superiority of CBR over vanilla LMs
can be observed for the other two models with different pre-
training procedures and varying numbers of internal param-
eters. The CBR method notably and consistently improves
the performance of the LMs on the out-of-domain (LOGIC
Climate) benchmark as well, with ELECTRA performing the
best and BERT benefiting the most from CBR.3 We conclude

3Per-class experiments demonstrated the ability of CBR model
to improve the accuracy of baseline models for all fallacy types, es-
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that CBR is a general framework that can be applied to any
LM and can generalize well to unseen data and to various fal-
lacy classes. The generalization of CBR is in line with prior
work that suggests its strong performance on tasks with data
sparsity [Das et al., 2020].

LOGIC LOGIC Climate
Model Representation P R F1 P R F1

ELECTRA Text 0.655 0.634 0.635 0.317 0.242 0.242
Counterarg. 0.663 0.664 0.657 0.355 0.254 0.270
Goals 0.646 0.622 0.621 0.376 0.217 0.222
Structure 0.634 0.625 0.618 0.375 0.254 0.269
Explanations 0.605 0.580 0.578 0.314 0.242 0.237

RoBERTa Text 0.633 0.613 0.619 0.343 0.236 0.251
Counterarg. 0.624 0.613 0.615 0.367 0.198 0.216
Goals 0.632 0.613 0.619 0.351 0.242 0.263
Structure 0.631 0.619 0.619 0.379 0.248 0.245
Explanations 0.575 0.558 0.559 0.359 0.192 0.181

BERT Text 0.595 0.604 0.596 0.311 0.192 0.204
Counterarg. 0.607 0.613 0.603 0.342 0.217 0.228
Goals 0.598 0.607 0.596 0.310 0.204 0.203
Structure 0.613 0.616 0.611 0.359 0.204 0.200
Explanations 0.540 0.531 0.532 0.274 0.217 0.190

Table 3: Performance of the CBR framework using different case
representations. The best results per model are boldfaced and the
overall best results are underlined.

Effect of different representations. The results in Table
3 confirm our expectation that the case representation plays
an important role in the effectiveness of the CBR frame-
work. Depending on the LM used, the performance dif-
ference among different case representations ranges from 6
to 8% F1-scores for the in-domain setting and 4 to 8% F1-
scores for the out-of-domain setting. In general, we observe a
boost in performance when enhancing the original represen-
tation (text). Counterargument information yields the highest
boost, though the impact of the representations varies across
models. Using ELECTRA, the enrichment with counterar-
guments helps the most, outperforming the model based on
the original text and the other enrichment strategies. With
RoBERTa, goals and structure of the arguments perform on
par with text, while with BERT, including information about
counterarguments and argument structure outperforms the
text representation. As the LMs have been trained with differ-
ent data and may optimize for different notions of similarity,
it is intuitive that the impact of the case representations varies
across models. This finding is in line with theoretical work,
which discusses that knowledge transfer is strictly guided
by the similarity function of the reasoning model [Holyoak
and Thagard, 1996]. Meanwhile, using a generic enrichment
with explanations performs consistently poorly and harms
the model performance, which suggests that the CBR mod-
els benefit from more precise case representations.
Effect of case database size. Next, we investigate the sen-
sitivity of the best-performing CBR model based on ELEC-
TRA to the size of the case database. Figure 2 (left) depicts
the performance of this model using different ratios of the
case database. The figure shows that the CBR framework
consistently outperforms the vanilla LM baseline (with 0%

pecially the ones having the least number of training examples.

Figure 2: Performance of the CBR framework using different ratios
of the case database (left) and different numbers of cases (right). The
baseline is outlined as the dotted line.

of cases) on in- and out-of-domain settings. This trend stands
regardless of the size of the case database, which indicates
the low sensitivity of the CBR model to the case database
size. However, we note that using 10% of the case database
yields the best performance, which indicates that a limited
case database offers a better potential of abstraction to CBR.
Moreover, comparing the performance of the model using
different ratios of the case database, we observe a continu-
ous decrease in the performance using higher percentages of
the case database. Having access to too much data makes
the model dependent and sensitive to the unnecessary and in-
significant details of similar cases retrieved. These observa-
tions point us to the data efficiency properties of the CBR
framework [Das et al., 2020].
Effect of different number of cases. The performance of
the best CBR model that uses ELECTRA with different num-
bers of cases is illustrated in Figure 2 (right). In both in-
domain and out-of-domain settings, we observe a consistent
pattern of performance decrease when more cases are taken
into account in the reasoning process. The CBR framework
reaches its peak performance using only one similar case
while once more outperforming the vanilla LM (with 0 cases)
in all the settings. This indicates that the models get easily
overwhelmed with past information when considering a new
case. While intuitively, one would expect that a larger num-
ber of cases should help the model analyze a new case better,
the reasoner should have the capacity to process all of these
past cases. Otherwise, as observed in this experiment, includ-
ing more cases can have an adverse effect on the reasoner by
distracting it rather than helping it.
Case study on explainability. A key promise of the CBR
framework is its native explainability by cases since its re-
trieval of similar cases and reasoning over them are integrated
into the CBR process. We perform a qualitative analysis of
the cases retrieved by CBR to develop a better intuition about
its reasoning process. Table 4 illustrates four example cases
that the vanilla LM classifies incorrectly. For each case, we
show two CBR representations: one leading to a correct pre-
diction and one leading to an incorrect one. The first example
shows the scenario where the original text of a retrieved case
does not suffice for the model to reason correctly, despite its
topical surface similarity to the input case. In other words,
the high surface similarity of similar cases is confusing the
model and forcing it to incorrectly predict the same class that
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Input Sentence Enriched Representation for Correct
Prediction (representation)

Enriched Representation for Wrong Predic-
tion (representation) (predicted class)

Class

People who don’t sup-
port the proposed mini-
mum wage increase hate
the poor.

There are often multiple perspectives on
an issue. It’s possible to have a nuanced or
balanced view that doesn’t align with any
side completely. (Counterarg.)

That candidate wants to raise the minimum wage,
but they aren’t even smart enough to run a busi-
ness. (Text) (Ad Hominem)

Fallacy of
Extension

The house is white;
therefore it must be big.

X is y; therefore, it is z. (Structure) The sentence ”People who drive big cars hate
the environment” presents a generalization about
a group of people without sufficient evidence
and it relies on oversimplification.(Explanations)
(Faulty Generalization)

Fallacy of
Logic

Student: You didn’t teach
us this; we never learned
this. Teacher: So, you’re
either lazy or unwilling
to learn is that right?

It’s possible that the argument ”It’s pos-
sible to pass the class without attending.
so, you will pass even if you don’t attend”
is trying to convince the listener that they
will pass the class even if they don’t at-
tend. The speaker may be trying to per-
suade the listener to skip class. (Goals)

The sentence ”Teacher: You are receiving a zero
because you didn’t do your homework. Students:
Are you serious? You gave me a zero because
you hate me?” attacks the person making the ar-
gument rather than the argument itself. (Expla-
nations) (Fallacy of Extension)

False
Dilemma

One day, Megan wore a
Donald Duck shirt, and
she got an A on her test.
Now she wears that shirt
every day to class.

There are many factors that contribute to a
student’s grade, and it’s not fair to suggest
that the student’s past grades are the only
factor. It’s possible that the student failed
the test because they didn’t study, or be-
cause they were sick. (Counterarg.)

The sentence ”Eating five candy bars and drink-
ing two sodas before a test helps me get better
grades. I did that and got an A on my last test
in history” presents a causal relationship between
two events without sufficient evidence to support
the claim. (Explanations) (Fallacy of Relevance)

False
Causality

Table 4: Four examples from different classes in which the CBR model predicts the correct class. For each example, we show a representation
that leads to a correct prediction and a representation that still leads to predicting the wrong class. We also show the corresponding wrong
class predicted by the second variation of the model.

is associated with the retrieved similar case. However, we
see that enriching the case with its counterargument helps the
CBR model, even though the counterargument is phrased in
an abstract manner and is not similar to the new case on the
surface. We observe a similar situation with the explanations
enrichment in the third example, having high surface simi-
larity between the retrieved case and the new one, where an-
alyzing the argument goals instead helps the model. In the
second example, the structure of the argument and the logical
depiction of the past cases help the most, while in the fourth
example, the counterarguments assist the reasoning of CBR.
From the second and the fourth example, we observe that en-
riching arguments with cases that are semantically far from
the new case is confusing for the CBR model, even if their
reasoning would be helpful.

LOGIC LOGIC Climate
Representation ground

truth
overlap

predictions
overlap

ground
truth
overlap

predictions
overlap

Text 0.184 0.232 0.136 0.173
Counterarg. 0.208 0.220 0.062 0.068
Goals 0.178 0.196 0.130 0.124
Structure 0.238 0.250 0.105 0.242
Explanations 0.277 0.447 0.086 0.478

Table 5: Overlap of retrieved cases’ labels with true labels and pre-
dictions of the best CBRmodel (ELECTRA). We highlight the high-
est overlaps in bold.

In summary, presented examples show that the retrieved
cases help the model indirectly by providing CBR with high-
level information (first example), symbolic abstractions (sec-
ond example), extensive analysis of the writer’s goal (third
example), and alternative possibilities (fourth example). This
brings up a natural question: does CBR performance correlate
to class overlap between the current case and retrieved similar
cases? In other words, can we label a new case solely based
on its k-nearest neighbors’ labels? To answer this question,
we compute the overlap of retrieved cases’ labels with both
the true and the predicted label for different case representa-
tions (Table 5). We observe a low overlap of a maximum of
27.7% between the retrieved cases’ labels and the true labels,
which is only slightly better than a frequency-based predic-
tion. Also, centering on the direct effect of retrieved cases on
the CBR predictions, the model with the highest class over-
lap between the retrieved cases and the predicted classes also
has the lowest performance (explanations). Meanwhile, the
best CBR variants (e.g., counterarguments) do not directly
reuse the labels of the retrieved cases. We conclude that while
retrieving similar cases provides the CBR models with use-
ful information, this additional evidence influences the model
reasoning indirectly and may have adverse effects otherwise.
Although CBR, in its simplest form, can act as a k-nearest
neighbors algorithm, our results suggest that the neighbors’
labels cannot be used blindly, and further reasoning step over
the retrieved cases is necessary. We believe that these findings
open exciting future research directions that investigate the
relationship between case similarity and CBR performance.
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6 Related Work
In this section, we present prior research on logical fallacy
classification, CBR, and methods that prompt very large LMs.
Logical fallacy. Prior computational work on logical fal-
lacies has mostly focused on formal fallacies using rule-
based systems and theoretical frameworks [Nakpih and San-
tini, 2020]. Nevertheless, recent work has switched attention
to informal logical fallacies and natural language input. Jin
et al. propose the task of logical fallacy classification, con-
sidering thirteen informal fallacy types and two benchmarks.
The authors gather a rich set of arguments containing vari-
ous logical fallacies from online resources and evaluate the
capabilities of large LMs in classifying logical fallacies both
in in-domain and out-of-domain settings. Similarly, Goffredo
et al. present a dataset of political debates from U.S. Presi-
dential Campaigns and use it to evaluate Transformer LMs.
Processing different parts of arguments, such as dialogue’s
context, they create separate expert models for each part of
arguments and train all the models together, from which they
report the importance of discussion context in argument un-
derstanding. Although LMs have been used to classify logi-
cal fallacies, both independently and in an ensemble setting,
to our knowledge, no prior work has tried to improve LMs’
capabilities to reason over previous cases of logical fallacies
encountering a new case nor experimented with enriching the
argument representation. We fill this gap by employing CBR
with LMs to reason over similar past cases to classify logical
fallacies in new cases.
Case-Based Reasoning. Case-Based Reasoning [Schank,
1983] has been a cornerstone of interpretable models in many
areas. For instance, researchers have applied CBR over past
experiences in mechanical engineering [Qin and Regli, 2003]
and medical applications [Oyelade and Ezugwu, 2020]. Case-
Based Reasoning has been also used in education, particu-
larly to teach students to recognize fallacies [Spensberger
et al., 2022]. Exploiting its interpretable properties, Walia
et al. use Case-Based Reasoning as a transparent model for
Word Sense Disambiguation, Brüninghaus and Ashley use
Case-Based Reasoning for predicting legal cases an inter-
pretable pipeline, while Ford et al. use Case-Based Reason-
ing to enhance the transparency of classifications made on
written digits [Lecun et al., 1998]. Inspired by its advantages,
we couple Case-Based Reasoning with LMs, leading to en-
hanced accuracy and explainability of classifying logical fal-
lacies. To our knowledge, this is the first work that combines
CBR with LMs for complex tasks like logical fallacy clas-
sification. Nevertheless, there are frameworks that are close
to CBR that also have a notion of memory, but cannot serve
as replacements, given their restrictions. Analogical reason-
ing [Gentner and Smith, 2012] methods typically focus on
proportions between words or short text sequences and can-
not generalize well to unstructured text. K-nearest neighbor
methods are a simplified version of CBR that, given our ob-
servations, can not perform as well as CBR. Our framework
can also be seen broadly as a memory-based model [Weston
et al., 2014], however, our proposed formulation that com-
bines CBR and LMs has not been explored before for tasks
like logical fallacy classification.

Prompting LMs. The behavior of LMs is dependent on the
quality of their inputs. Aiming to create more comprehensive
inputs for LMs and assist them in complex reasoning tasks,
researchers have attempted to transfer knowledge from very
large LMs to smaller ones. Shwartz et al. show that LMs
can discover useful contextual information about the question
they answer, from another LM. Wang et al. propose an LM
pipeline that learns to faithfully reason over prompt-based ex-
tracted rationales. Wei et al. explore how generating a series
of intermediate reasoning steps using prompting can equip
LMs with complex reasoning skills. Inspired by the ability of
large LMs to provide relevant information for novel inputs, as
well as prior work that performs knowledge distillation from
large to smaller LMs [West et al., 2021], we use prompting to
enrich the arguments containing logical fallacies. According
to [Barker, 1965], logical fallacies are created by transition
gaps from premises to conclusions, and we try to enrich the
arguments using prompting to cover the gaps. Our method re-
sembles retrieval-augmentation methods [Lewis et al., 2020],
yet, our enrichment strategies are novel and have not been
explored on such complex tasks.

7 Conclusions and Future Work
In this paper, we presented a novel method that uses Case-
Based Reasoning with LMs to classify logical fallacies. The
CBR method reasons over new cases by utilizing past experi-
ences. To do so, the method retrieves the most relevant past
cases, adapts them to meet the needs of a new case, and fi-
nally classifies the new case using the adjusted information
from past cases. We devised four auxiliary case represen-
tations that enrich the cases with implicit information about
their counterarguments, goals, structure, and explanations.
Our results showed that CBR can classify logical fallacies and
can leverage past experiences to fill the gaps in LMs. CBR
outperformed the LM baselines in all settings and across all
thirteen logical fallacy classes. CBR was able to generalize
well and transfer its knowledge to out-of-domain setting. The
representation of its cases played a key role: enriching cases
with counterarguments helped the most, while adding generic
explanations harmed the model’s performance. Furthermore,
CBR models performed best when a small number of cases
are provided, but showed low sensitivity to the size of the
case database. Finally, our qualitative analysis demonstrated
the value of CBR as an interpretable framework that benefits
from past similar cases indirectly.

Since our experiments showed that similar cases assist
CBR indirectly, future research should further qualify the re-
lationship between the information provided by the retrieved
cases and the performance of the model. Moreover, future
work should focus on evaluating CBR on other natural lan-
guage tasks that require abstraction, such as propaganda de-
tection and dialogue modeling. For instance, given a task-
oriented dialogue about cooking a new meal, the model may
benefit from procedures for cooking similar meals. The ap-
plication of CBR on such tasks might also inspire additional
case enrichment strategies, e.g., that describe the causal rela-
tion between text chunks, and point to additional knowledge
gaps that CBR needs to fill.
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