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Abstract 1 

Growing environmental concerns and the urgency to address climate change have increased 2 

demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. 3 

Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach 4 

for achieving this goal. This review discusses the coupling of systems and synthetic biology, to 5 

enable the elucidation and manipulation of microbial phenotypes for the production of chemicals 6 

that can substitute for petroleum-derived counterparts and contribute to advancing green 7 

biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate 8 

precise and data-driven design of biosynthetic pathways is also discussed, along with the 9 

identification of current limitations and proposition of strategies for optimizing of biosystems, 10 

thereby propelling the field of chemical biology towards sustainable chemical production. 11 
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Introduction 1 

Since the advent of the Industrial Revolution, human reliance on fossil feedstocks for energy and 2 

chemical production has markedly increased. These resources, essential for transportation, 3 

manufacturing, and daily life, have driven technological advancements and significantly 4 

improved living standards. However, this dependency has also led to significant environmental 5 

issues, such as climate change and pollution, primarily due to the combustion of fossil fuels and 6 

the persistence of non-biodegradable waste. In light of these challenges, the development of 7 

sustainable and eco-friendly methods for energy and chemical synthesis has become crucial. A 8 

promising approach involves leveraging microorganisms as biocatalysts to produce target 9 

chemicals, mirroring nature's synthesis of diverse compounds [1]. Additionally, the use of 10 

renewable and non-edible feedstocks, including carbon dioxide, plastics, and waste, offers a 11 

sustainable alternative, while eliminating the need for harmful solvents and non-reusable 12 

catalysts often found in traditional chemical production methods [2]. 13 

Advances in biotechnology and metabolic engineering have facilitated the tailoring of 14 

microorganisms to produce a wide range of chemicals previously obtained from petrochemical 15 

routes. Recent progress in systems and synthetic biology has provided deep insights into 16 

biological systems and the tools for precise genetic engineering, propelling the field of metabolic 17 

engineering forward [1]. Systems biology has benefitted from advancements in sequencing 18 

technology, enriching the available data for analysis and enhancing our understanding of the 19 

genotype-to-phenotype in target organisms. Synthetic biology, utilizing this knowledge, has 20 

introduced methods to alter gene expression and regulation through advanced genetic 21 

engineering techniques, enabling effective modifications [3]. Moreover, the integration of 22 

artificial intelligence with complex molecular and cellular networks has addressed numerous 23 
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challenges, laying a solid foundation for designing, engineering, and optimizing the production 1 

of desired chemicals [4]. The synergy of these disciplines has facilitated sustainable processes 2 

for producing a wide range of products, from bulk chemicals and natural products to biofuels, 3 

through microbial systems [5-7]. 4 

This review delineates essential strategies for the microbial synthesis of target chemicals, 5 

focusing on host selection, system analysis, rational design, and process optimization (Figure 1). 6 

Illustrated through recent case studies, these strategies highlight the current trends and potential 7 

future developments in the field. Lastly, we discuss the challenges faced and propose viable 8 

solutions to enhance the efficiency of bio-based production systems. 9 

 10 

Selecting the Host System 11 

Selecting the appropriate host organism is a pivotal step in the successful biological production 12 

of chemicals. The host essentially serves as the foundational 'hardware,' endowed with intrinsic 13 

metabolic pathways, gene expression mechanisms, and the necessary resources to support 14 

biochemical reactions [8]. The selection process involves a comprehensive evaluation of various 15 

factors, notably the host's growth capabilities and the feasibility of genetic modifications. The 16 

ability of the host to utilize different substrates, maintain growth under specific pH and 17 

temperature conditions, and its resilience to stress are crucial considerations. For example, 18 

modifying host systems to accommodate higher temperatures and acidic pH has led to enhanced 19 

biochemical production of compounds such as 2,3-butanediol and citramalate, surpassing the 20 

yields obtained with previous hosts [9,10]. Furthermore, hosts that exhibit increased tolerance to 21 

toxic substrates have demonstrated a six-fold increase in 2,3-butanediol production compared to 22 

their wild-type counterparts [11].  23 
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Model organisms have been preferred for chemical production due to the vast array of 1 

genetic information and tools (Figure 1b). Escherichia coli and Saccharomyces cerevisiae stand 2 

out as the most extensively employed hosts over the past three decades [2]. The wealth of tools 3 

available for these strains, such as rigorously validated in silico models, including whole-cell 4 

models, and detailed gene annotations, facilitates thorough and rational engineering efforts  [12-5 

14]. The availability of optimized genetic engineering tools streamlines the development process, 6 

eliminating the time-consuming task of identifying appropriate toolboxes for each host and 7 

thereby conserving valuable research resources [15]. This suite of advantages has enabled the 8 

synthesis of complex compounds, ranging from bioplastics and biofuels to natural products [16-9 

18]. 10 

Non-model organisms, which may be less characterized or recently isolated, present 11 

unique opportunities for biochemical production due to their distinctive physiological traits and 12 

inherent production capabilities. The ability to process a wide array of substrates, including those 13 

that are toxic, can significantly reduce the need for extensive genetic engineering. Notably, 14 

acetogens and methanotrophs exploit C1 substrates, such as carbon monoxide (CO), carbon 15 

dioxide (CO2), and methanol, for biomass accumulation, thus playing a role in reducing 16 

greenhouse gas emissions and fostering a sustainable bio-economy by demonstrating the 17 

production of 3 g/L/h of acetone and isopropanol with 90% selectivity [19-21]. The natural 18 

propensity of non-model organisms to produce substantial quantities of target chemicals is 19 

frequently attributed to their extensive metabolic capabilities and finely tuned endogenous 20 

pathways, a result of evolutionary adaptations to challenging environments [22-24]. An example 21 

of utilizing metabolic capabilities is Yarrowia lipolytica, which naturally accumulates lipids up 22 

to 30% of dry cell weight, while engineered strains can accumulate lipids to more than 50% of 23 
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the cell weight [22]. Recent advancements in genome sequencing have enabled the detailed 1 

characterization of these organisms, providing insights into their physiology and potential for 2 

novel chemical synthesis [23,24].  3 

The advent of chassis systems in synthetic biology introduces a tailored platform through 4 

strategic gene integration and deletion, aimed at simplifying genomic complexity and enhancing 5 

system predictability for more manageable control. This strategy focuses on redesigning host 6 

systems for specific functions while minimizing unnecessary genetic load, thus optimizing 7 

energy use for the desired outcomes. Although this approach necessitates a deep understanding 8 

of the host system, which can sometimes be a limiting factor, chassis systems developed from 9 

well-characterized organisms have shown promising results [25]. Techniques such as sequential 10 

deletion have led to significant genome reductions in species like E. coli, enhancing cell density 11 

and threonine production (Figure 1b) [26,27]. Moreover, a genome-reduced Pseudomonas 12 

putida strain has exhibited beneficial outcomes in applications like plastic upcycling and lignin 13 

valorization [28,29]. Concurrently, the reduction in DNA synthesis costs and improvements in 14 

DNA assembly techniques have led to  the development of innovative strategies for chassis 15 

reconstruction [30]. Investigations into the minimal cell JCVI-syn3.0, complemented by strategic 16 

gene insertions, have clarified the minimal gene set essential for cellular replication, marking a 17 

significant breakthrough in delineating the core requirements for minimal cell viability [31].  18 

 19 

Understanding the Host System 20 

Following the selection of a suitable host system, it is important to understand and predict the 21 

organism's phenotype for informed and rational design. The essence of systems biology lies in 22 
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understanding the organism holistically and predicting biological responses under specific 1 

conditions (Figure 1c). 2 

Advanced sequencing technologies have enabled the acquisition of vast amounts of 3 

information, providing molecular-level insights and unraveling complex biological processes 4 

within a system (Figure 2). This is particularly crucial for non-model organisms, where existing 5 

research may be limited. At the same time, developments in mass spectrometry have facilitated 6 

detailed metabolite analyses, offering valuable insights for the optimization of biochemical 7 

production. Collectively, these advancements allow for the integration and interpretation of data, 8 

paving the way for more feasible rational engineering with an expanded array of genetic 9 

components for fine-tuning molecular regulations (Figure 2a - d) [1].  10 

Recent studies demonstrated that the multi-omics approach offers a comprehensive view 11 

of the host system (Figure 2a) [21,32]. Genome sequencing, the first step, provides the 12 

foundational blueprint essential for understanding the system by predicting phenotypic responses 13 

and facilitating genome mining. Resources such as antiSMASH and MIBiG can reveal 14 

previously unknown pathways or metabolites, including novel natural products and vaccine 15 

adjuvants (Figure 2e) [33-36]. Integrating genomic data with transcriptomics reveals patterns of 16 

gene expression, determining which genes are actively transcribed under given conditions 17 

(Figure 2a). This combination not only identifies genetic compositions but also quantifies gene 18 

expression and expands the molecular regulatory toolbox (Figure 2b). By leveraging native 19 

promoters, the genetic toolkit for CO2-fixing archaea and bacteria has been broadened, enabling 20 

the utilization of CO2 as the sole substrate for biochemical production [32,37]. Moreover, 21 

exploring the translational step reveals the actual genes translated into proteins, bridging the gap 22 

between DNA and protein caused by post-transcriptional regulation and facilitating rational 23 
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engineering. Such investigations provide insights into the translational efficiency of genetic 1 

parts, allowing for tailored protein synthesis and resource allocation for bioproduction [21,32]. 2 

The development of in silico models has revolutionized our ability to calculate 3 

phenotypic responses through simulation, encompassing both metabolic networks and whole-cell 4 

levels (Figure 2e). These models serve as instrumental tools in identifying candidates for 5 

achieving desired phenotypes (Figure 1c). Genome-scale models, constructed using genomic 6 

data as a backbone and incorporating other omics data, mathematically represent the organism 7 

under targeted conditions by calculating fluxes (Figure 1c). These models suggest ways to 8 

rewire pathways to minimize carbon loss and increase the biosynthesis rate of desired products, 9 

while reducing the accumulation of undesired byproducts [38,39]. A well-constructed model can 10 

rationalize metabolic engineering strategies for various biochemical productions, such acetone, 11 

heme, and isopropanol production [21,40]. Metabolomics data further enrich these models by 12 

providing kinetic insights into reactions within the host system, enabling more accurate flux 13 

predictions and phenotypic response forecasting [41]. Moreover, the integration of machine 14 

learning (ML) in pathway design and deep learning (DL) in enzyme design has significantly 15 

enhanced our understanding of cellular responses, thus improving engineering efficiency through 16 

more accurate predictions [1].  17 

The development of artificial intelligence in systems biology has introduced novel 18 

applications for designing host systems to alter phenotypes and boost biochemical production 19 

(Figure 2e) [42]. Integrating these technologies with genome-scale model reconstruction and 20 

analysis streamlines traditionally labor-intensive processes such as gap filling, making 21 

simulations more feasible and accurate [43]. Furthermore, ML-based simulation methods surpass 22 

conventional flux balance analysis, offering improved phenotype predictions [44]. The design of 23 
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metabolic pathways, a process traditionally marred by the need for extensive manual labor, has 1 

been significantly improved. Contemporary tools, employing both template-based and freeform 2 

approaches, facilitate the efficient selection of biochemical production routes [4]. These tools 3 

leverage ML and DL algorithms to recommend suitable enzymes, either by identifying 4 

similarities or by predicting the enzymatic functions, as indicated by EC numbers, pertinent to 5 

the enzymatic reactions in question [45]. Predictive models based on ML can ascertain the 6 

properties of these selected enzymes, including kinetic parameters, providing valuable insights 7 

that guide further engineering efforts [4]. In cases where an appropriate enzyme is lacking, the 8 

field of de novo protein engineering offers a possible solution. Recent advancements in de novo 9 

design techniques enable the creation of enzymes tailored to specific functional requirements, 10 

thereby expanding the possibilities for biochemical synthesis and host system modification 11 

[46,47]. 12 

 13 

Optimizing Biochemical Production 14 

Following the investigative and design phases, optimizing biochemical production 15 

necessitates comprehensive engineering at both the molecular and cellular levels. Despite the 16 

rapid advances in genetic engineering, plasmid-based systems remain potent for manipulating 17 

host organisms, including E. coli and non-model organisms (Figure 2d). These systems regulate 18 

gene expression at both the transcriptional level, where DNA is transcribed into RNA, and the 19 

translational level, where RNA is translated into proteins, both of which are essential for 20 

synthesizing complex biochemicals (Figure 2c) [16,32]. Employing plasmid-based systems, 21 

alongside native or synthetic biological parts derived from multi-omics analyses, has proven 22 

effective in host engineering [32,48,49]. In addition, a notable application is activating silent 23 
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biosynthetic gene clusters through heterologous expression, facilitating the production of 1 

complex natural products and biofuels [7]. 2 

Genome modification to introduce genetic cassettes has gained favor for its ability to 3 

ensure the stability of heterologous devices, reduce the metabolic burden associated with 4 

maintaining plasmids, avoid antibiotic resistance issues, and control gene copy numbers (Figure 5 

1d). Traditional recombination systems, including Lambda Red and RecET, have been widely 6 

used for DNA integration into genomes. The advent of CRISPR-Cas systems has revolutionized 7 

genetic engineering by streamlining processes and enhancing efficiency and with demonstrated 8 

utility across different kingdoms of life. For example, CRISPR systems have been developed not 9 

only for bacteria but also for filamentous fungi, demonstrating the versatility and broad 10 

applicability of these tools [15,50]. CRISPR-Cas9, in particular, facilitates precise genomic 11 

alterations through double-stranded DNA breaks, followed by homology-directed repair for 12 

knock-in and knockout applications, even in non-model organisms [15,50]. Integration efficiency 13 

can be further augmented by combining CRISPR with conventional systems like Lambda Red 14 

[15]. 15 

In addition to creating double-strand DNA breaks, the Cas9 protein has been modified 16 

(Asp10Ala) to function as nCas9, targeting single DNA strands for nicking rather than cleaving 17 

(Figure 1d). This adaptation facilitated the development of base editors (BEs), such as cytosine 18 

base editors (CBE) and adenine base editors (ABE), which convert cytosine to uracil or adenine 19 

to inosine, respectively, altering nucleotide pairs from C:G to T:A or A:T to G:C. A further 20 

iteration, glycosylase base editors (GBE), emerged by fusing nCas9 with cytidine deaminase and 21 

uracil-DNA glycosylase, enabling the conversion of cytosine to adenine or guanine. 22 

Additionally, the prime editor system, incorporating nCas9 (His840Ala), reverse transcriptase, 23 
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and prime editing sgRNA (pegRNA), offers the capability to insert, delete, or mutate specific 1 

genomic sequences as dictated by pegRNA design [15]. These BEs have shown potential for 2 

multiplex genome-wide targeting, enhancing organismal fitness under stress [51]. Recent 3 

advancements have introduced tools capable of accurately predicting the efficiency of ABE, 4 

CBE, and GBE, facilitating precise single nucleotide engineering [52]. 5 

Gene expression modulation has been effectively achieved using CRISPR interference 6 

(CRISPRi) and activation (CRISPRa) systems (Figure 1d). By deactivating the Cas protein 7 

(Asp10Ala and His840Ala mutations), specific genomic regions can be targeted to suppress or 8 

enhance gene expression. CRISPRi, particularly useful for downregulating essential genes, 9 

serves as an alternative to knockout strategies and has become a popular tool for functional 10 

genomics screens. It leverages genome-wide targeting of sgRNAs to pinpoint genes that, when 11 

modulated, improve fitness and biochemical output [53]. CRISPRa, on the other hand, employs 12 

cellular machinery to activate silent biosynthetic gene clusters (BGCs), boosting the expression 13 

of key genes for complex antibiotic production [54]. 14 

The integration of CRISPR systems with transposons has enabled efficient incorporation 15 

of foreign DNA into both model and non-model organism genomes. This methodology extends 16 

to diverse microbial communities, showcasing the potential for broad-scale genomic editing 17 

[55,56]. Additionally, combining error-prone DNA polymerase with nCas9 has diversified target 18 

gene sequences, creating a vast library of variants that have led to increased production of 19 

compounds like L-proline [57]. 20 

Evolutionary approaches, particularly adaptive laboratory evolution (ALE), offer 21 

significant potential for phenotype enhancement in host systems. The production of toxic 22 

biochemicals and inefficient substrate utilization often hampers efficiency, burdening the host. 23 
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ALE enables organisms to adapt to and thrive under such stressors, improving overall fitness. 1 

This technique has been instrumental in enabling non-model organisms to tolerate otherwise 2 

inhibitory substrates. One example is gaining tolerance to the toxic substrate CO via ALE, then 3 

utilizing native promoters obtained from omics analysis to integrate heterologous gene 4 

expression and optimize gene expression in the non-model organism, leading to enhanced 2,3-5 

butanediol production from C1 substrates [11]. The integration of ALE with automated culturing 6 

systems further increases the likelihood of achieving desirable phenotypes in bio-systems [58]. 7 

 8 

Conclusion and Perspectives 9 

The integration of systems and synthetic biology for the engineering of biological 10 

systems has witnessed rapid development, propelled by advancements in sequencing and genome 11 

engineering technologies. The field of artificial intelligence has further revolutionized our 12 

capacity to analyze vast datasets, uncovering previously overlooked insights and establishing 13 

relationships between various variables. This has significantly improved our ability to predict the 14 

responses of biosystems to specific conditions.  15 

Despite these strides, several challenges remain that must be addressed to design and 16 

construct biosystems that function optimally. A primary concern is the need to broaden the 17 

spectrum of host systems. Through environmental isolation and genome analysis, a diverse array 18 

of potential host systems has been identified. The advent of high-throughput culturomics, 19 

enhanced by machine learning and automation, offers a robust methodology for correlating 20 

physiological traits with genomic data [59]. Automation could potentially play a critical role in 21 

streamlining the culturing and analysis processes, possibly reducing the time and labor required 22 

for large-scale experiments. This efficiency may be beneficial for studying non-model 23 
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organisms, which often have unique growth requirements and are less well-characterized. By 1 

automating repetitive tasks and integrating advanced data analysis tools, researchers can rapidly 2 

screen and optimize conditions for these organisms, facilitating their establishment as viable 3 

hosts for biochemical production. Furthermore, automated systems can handle high-throughput 4 

screening of genetic variants and environmental conditions, accelerating the potential discovery 5 

of optimal strains and pathways for target compound synthesis. However, the exploration of 6 

additional non-model organisms is imperative to discover more efficient methods for producing 7 

novel or complex biochemicals. Co-culture systems present a potential strategy for achieving 8 

desired phenotypes, though they also introduce a level of complexity that may be difficult to 9 

control. 10 

Optimization of pathway design is another critical area for improvement. While ML and 11 

DL have advanced our ability to predict cellular responses and devise production pathways, 12 

challenges such as enzyme kinetics, gene regulation optimization, resource allocation, toxicity of 13 

intermediates and final products, and economic viability persist. Tools for enzyme identification 14 

exist, yet integrating these enzymes into biosystems to optimize production, ensure enzyme 15 

activity and solubility, and provide necessary substrates and cofactors requires meticulous flux 16 

rewiring and can only be refined through experimental validation. As experimental data 17 

accumulate, the precision in pathway design is expected to improve. 18 

The processes involved in host selection, biosystem investigation, and engineering are 19 

labor-intensive and time-consuming, rendering them challenging for a single research lab to 20 

undertake independently. The demand for standardized biological parts, accessible analytical 21 

tools, and rapid build-test infrastructures is growing. Efforts are underway to develop a universal 22 
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platform that merges systems and synthetic biology, yet the accessibility and affordability of 1 

such infrastructure are limited [60]. 2 

Richard Feynman, a renowned theoretical physicist, once stated, "What I cannot create, I 3 

do not understand." This philosophy resonates profoundly with the endeavor to engineer 4 

biosystems with specific phenotypes, whether for complex biochemical production or 5 

bioremediation. The advancements discussed in this review bring us closer to the goal of 6 

accurately and efficiently engineering desired biosystems. By addressing the challenges outlined, 7 

we can deepen our understanding and develop bio-platforms capable of supplanting traditional 8 

chemical production methods reliant on fossil resources. 9 
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Figures 1 

 2 

Figure 1. Schematic representation of reconstructing biosystems for targeted phenotypes. 3 

(a) Target Determination: Establish the objective for the biosystem, whether to synthesize bulk 4 

chemicals, natural products, biofuels, or to undertake eco-friendly activities such as plastic 5 

degradation or the utilization of non-canonical substrates. (b) Host Selection: Commonly utilized 6 

model organisms include Escherichia coli and Saccharomyces cerevisiae, while non-model 7 

organisms encompass those recently isolated from the environment or not extensively 8 

characterized. An additional option is a chassis organism, streamlined by the removal of non-9 

essential genomic regions to optimize the host system for the desired function. (c) Systematic 10 

Investigation: Through multi-omics analysis, an intricate understanding of the regulatory systems 11 

governing the biosystems is achieved. Genome-scale modeling offers a comprehensive 12 

perspective of the host, enabling the identification of candidate modifications to augment desired 13 

biochemical production. Database utilization alongside artificial intelligence provides an 14 



21 
 

efficient methodology for determining the most effective production pathways. (d) Strategic 1 

Engineering: Engineering efforts typically include modular manipulation using biological parts 2 

for gene expression regulation, CRISPR-mediated genome editing for precise modifications, and 3 

tolerance engineering to improve organismal robustness and fitness for the production of desired 4 

compounds.  5 

 6 
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Figure 2. 1 

From omics analysis to host system engineering. (a) Regulatory Systems: The flow from 2 

genomic DNA through RNA transcription, protein translation, and resultant metabolite 3 

production within the biosystem. (b) Multi-Omics Analysis: Comprehensive multi-omics 4 

approaches unveil the host system's intricate regulatory networks, spanning genomics, 5 

transcriptomics, translatomics, proteomics, and metabolomics. (c) Biological parts Identification: 6 

Leveraging multi-omics data facilitates the acquisition of biological parts, elucidating gene 7 
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functions, the properties of individual components, and translational bottlenecks. (d) Genetic 1 

Delivery Systems: Plasmid-based systems and CRISPR technologies are employed to introduce 2 

and integrate genetic components into the biosystem. (e) AI-Powered In Silico Prediction: Multi-3 

omics data are collated and processed through artificial intelligence algorithms, predicting 4 

optimal strategies for host system design. (f) These strategies, integrated with engineering 5 

techniques and fitness optimization processes, enable the construction of host systems capable of 6 

processing diverse substrates and producing a range of compounds, from bulk chemicals to 7 

biofuels and natural products. 8 

 9 


