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Abstract

Growing environmental concerns and the urgency to address climate change have increased
demand for the development of sustainable alternatives to fossil-derived fuels and chemicals.
Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach
for achieving this goal. This review discusses the coupling of systems and synthetic biology, to
enable the elucidation and manipulation of microbial phenotypes for the production of chemicals
that can substitute for petroleum-derived counterparts and contribute to advancing green
biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate
precise and data-driven design of biosynthetic pathways is also discussed, along with the
identification of current limitations and proposition of strategies for optimizing of biosystems,

thereby propelling the field of chemical biology towards sustainable chemical production.
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Introduction

Since the advent of the Industrial Revolution, human reliance on fossil feedstocks for energy and
chemical production has markedly increased. These resources, essential for transportation,
manufacturing, and daily life, have driven technological advancements and significantly
improved living standards. However, this dependency has also led to significant environmental
issues, such as climate change and pollution, primarily due to the combustion of fossil fuels and
the persistence of non-biodegradable waste. In light of these challenges, the development of
sustainable and eco-friendly methods for energy and chemical synthesis has become crucial. A
promising approach involves leveraging microorganisms as biocatalysts to produce target
chemicals, mirroring nature's synthesis of diverse compounds [1]. Additionally, the use of
renewable and non-edible feedstocks, including carbon dioxide, plastics, and waste, offers a
sustainable alternative, while eliminating the need for harmful solvents and non-reusable
catalysts often found in traditional chemical production methods [2].

Advances in biotechnology and metabolic engineering have facilitated the tailoring of
microorganisms to produce a wide range of chemicals previously obtained from petrochemical
routes. Recent progress in systems and synthetic biology has provided deep insights into
biological systems and the tools for precise genetic engineering, propelling the field of metabolic
engineering forward [1]. Systems biology has benefitted from advancements in sequencing
technology, enriching the available data for analysis and enhancing our understanding of the
genotype-to-phenotype in target organisms. Synthetic biology, utilizing this knowledge, has
introduced methods to alter gene expression and regulation through advanced genetic
engineering techniques, enabling effective modifications [3]. Moreover, the integration of

artificial intelligence with complex molecular and cellular networks has addressed numerous



10

11

12

13

14

15

16

17

18

19

20

21

22

23

challenges, laying a solid foundation for designing, engineering, and optimizing the production
of desired chemicals [4]. The synergy of these disciplines has facilitated sustainable processes
for producing a wide range of products, from bulk chemicals and natural products to biofuels,
through microbial systems [5-7].

This review delineates essential strategies for the microbial synthesis of target chemicals,
focusing on host selection, system analysis, rational design, and process optimization (Figure 1).
[lustrated through recent case studies, these strategies highlight the current trends and potential
future developments in the field. Lastly, we discuss the challenges faced and propose viable

solutions to enhance the efficiency of bio-based production systems.

Selecting the Host System

Selecting the appropriate host organism is a pivotal step in the successful biological production
of chemicals. The host essentially serves as the foundational 'hardware,' endowed with intrinsic
metabolic pathways, gene expression mechanisms, and the necessary resources to support
biochemical reactions [8]. The selection process involves a comprehensive evaluation of various
factors, notably the host's growth capabilities and the feasibility of genetic modifications. The
ability of the host to utilize different substrates, maintain growth under specific pH and
temperature conditions, and its resilience to stress are crucial considerations. For example,
modifying host systems to accommodate higher temperatures and acidic pH has led to enhanced
biochemical production of compounds such as 2,3-butanediol and citramalate, surpassing the
yields obtained with previous hosts [9,10]. Furthermore, hosts that exhibit increased tolerance to
toxic substrates have demonstrated a six-fold increase in 2,3-butanediol production compared to

their wild-type counterparts [11].
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Model organisms have been preferred for chemical production due to the vast array of
genetic information and tools (Figure 1b). Escherichia coli and Saccharomyces cerevisiae stand
out as the most extensively employed hosts over the past three decades [2]. The wealth of tools
available for these strains, such as rigorously validated in silico models, including whole-cell
models, and detailed gene annotations, facilitates thorough and rational engineering efforts [12-
14]. The availability of optimized genetic engineering tools streamlines the development process,
eliminating the time-consuming task of identifying appropriate toolboxes for each host and
thereby conserving valuable research resources [15]. This suite of advantages has enabled the
synthesis of complex compounds, ranging from bioplastics and biofuels to natural products [16-
18].

Non-model organisms, which may be less characterized or recently isolated, present
unique opportunities for biochemical production due to their distinctive physiological traits and
inherent production capabilities. The ability to process a wide array of substrates, including those
that are toxic, can significantly reduce the need for extensive genetic engineering. Notably,
acetogens and methanotrophs exploit C1 substrates, such as carbon monoxide (CO), carbon
dioxide (COz), and methanol, for biomass accumulation, thus playing a role in reducing
greenhouse gas emissions and fostering a sustainable bio-economy by demonstrating the
production of 3 g/L/h of acetone and isopropanol with 90% selectivity [19-21]. The natural
propensity of non-model organisms to produce substantial quantities of target chemicals is
frequently attributed to their extensive metabolic capabilities and finely tuned endogenous
pathways, a result of evolutionary adaptations to challenging environments [22-24]. An example
of utilizing metabolic capabilities is Yarrowia lipolytica, which naturally accumulates lipids up

to 30% of dry cell weight, while engineered strains can accumulate lipids to more than 50% of
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characterization of these organisms, providing insights into their physiology and potential for
novel chemical synthesis [23,24].

The advent of chassis systems in synthetic biology introduces a tailored platform through
strategic gene integration and deletion, aimed at simplifying genomic complexity and enhancing
system predictability for more manageable control. This strategy focuses on redesigning host
systems for specific functions while minimizing unnecessary genetic load, thus optimizing
energy use for the desired outcomes. Although this approach necessitates a deep understanding
of the host system, which can sometimes be a limiting factor, chassis systems developed from
well-characterized organisms have shown promising results [25]. Techniques such as sequential
deletion have led to significant genome reductions in species like E. coli, enhancing cell density
and threonine production (Figure 1b) [26,27]. Moreover, a genome-reduced Pseudomonas
putida strain has exhibited beneficial outcomes in applications like plastic upcycling and lignin
valorization [28,29]. Concurrently, the reduction in DNA synthesis costs and improvements in
DNA assembly techniques have led to the development of innovative strategies for chassis
reconstruction [30]. Investigations into the minimal cell JCVI-syn3.0, complemented by strategic
gene insertions, have clarified the minimal gene set essential for cellular replication, marking a

significant breakthrough in delineating the core requirements for minimal cell viability [31].

Understanding the Host System
Following the selection of a suitable host system, it is important to understand and predict the

organism's phenotype for informed and rational design. The essence of systems biology lies in
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understanding the organism holistically and predicting biological responses under specific
conditions (Figure 1c¢).

Advanced sequencing technologies have enabled the acquisition of vast amounts of
information, providing molecular-level insights and unraveling complex biological processes
within a system (Figure 2). This is particularly crucial for non-model organisms, where existing
research may be limited. At the same time, developments in mass spectrometry have facilitated
detailed metabolite analyses, offering valuable insights for the optimization of biochemical
production. Collectively, these advancements allow for the integration and interpretation of data,
paving the way for more feasible rational engineering with an expanded array of genetic
components for fine-tuning molecular regulations (Figure 2a - d) [1].

Recent studies demonstrated that the multi-omics approach offers a comprehensive view
of the host system (Figure 2a) [21,32]. Genome sequencing, the first step, provides the
foundational blueprint essential for understanding the system by predicting phenotypic responses
and facilitating genome mining. Resources such as antiSMASH and MIBiG can reveal
previously unknown pathways or metabolites, including novel natural products and vaccine
adjuvants (Figure 2e) [33-36]. Integrating genomic data with transcriptomics reveals patterns of
gene expression, determining which genes are actively transcribed under given conditions
(Figure 2a). This combination not only identifies genetic compositions but also quantifies gene
expression and expands the molecular regulatory toolbox (Figure 2b). By leveraging native
promoters, the genetic toolkit for CO2-fixing archaea and bacteria has been broadened, enabling
the utilization of COz as the sole substrate for biochemical production [32,37]. Moreover,
exploring the translational step reveals the actual genes translated into proteins, bridging the gap

between DNA and protein caused by post-transcriptional regulation and facilitating rational
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engineering. Such investigations provide insights into the translational efficiency of genetic
parts, allowing for tailored protein synthesis and resource allocation for bioproduction [21,32].

The development of in silico models has revolutionized our ability to calculate
phenotypic responses through simulation, encompassing both metabolic networks and whole-cell
levels (Figure 2e). These models serve as instrumental tools in identifying candidates for
achieving desired phenotypes (Figure 1¢). Genome-scale models, constructed using genomic
data as a backbone and incorporating other omics data, mathematically represent the organism
under targeted conditions by calculating fluxes (Figure 1¢). These models suggest ways to
rewire pathways to minimize carbon loss and increase the biosynthesis rate of desired products,
while reducing the accumulation of undesired byproducts [38,39]. A well-constructed model can
rationalize metabolic engineering strategies for various biochemical productions, such acetone,
heme, and isopropanol production [21,40]. Metabolomics data further enrich these models by
providing kinetic insights into reactions within the host system, enabling more accurate flux
predictions and phenotypic response forecasting [41]. Moreover, the integration of machine
learning (ML) in pathway design and deep learning (DL) in enzyme design has significantly
enhanced our understanding of cellular responses, thus improving engineering efficiency through
more accurate predictions [1].

The development of artificial intelligence in systems biology has introduced novel
applications for designing host systems to alter phenotypes and boost biochemical production
(Figure 2e) [42]. Integrating these technologies with genome-scale model reconstruction and
analysis streamlines traditionally labor-intensive processes such as gap filling, making
simulations more feasible and accurate [43]. Furthermore, ML-based simulation methods surpass

conventional flux balance analysis, offering improved phenotype predictions [44]. The design of
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metabolic pathways, a process traditionally marred by the need for extensive manual labor, has
been significantly improved. Contemporary tools, employing both template-based and freeform
approaches, facilitate the efficient selection of biochemical production routes [4]. These tools
leverage ML and DL algorithms to recommend suitable enzymes, either by identifying
similarities or by predicting the enzymatic functions, as indicated by EC numbers, pertinent to
the enzymatic reactions in question [45]. Predictive models based on ML can ascertain the
properties of these selected enzymes, including kinetic parameters, providing valuable insights
that guide further engineering efforts [4]. In cases where an appropriate enzyme is lacking, the
field of de novo protein engineering offers a possible solution. Recent advancements in de novo
design techniques enable the creation of enzymes tailored to specific functional requirements,
thereby expanding the possibilities for biochemical synthesis and host system modification

[46,47].

Optimizing Biochemical Production

Following the investigative and design phases, optimizing biochemical production
necessitates comprehensive engineering at both the molecular and cellular levels. Despite the
rapid advances in genetic engineering, plasmid-based systems remain potent for manipulating
host organisms, including E. coli and non-model organisms (Figure 2d). These systems regulate
gene expression at both the transcriptional level, where DNA is transcribed into RNA, and the
translational level, where RNA is translated into proteins, both of which are essential for
synthesizing complex biochemicals (Figure 2¢) [16,32]. Employing plasmid-based systems,
alongside native or synthetic biological parts derived from multi-omics analyses, has proven

effective in host engineering [32,48,49]. In addition, a notable application is activating silent
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biosynthetic gene clusters through heterologous expression, facilitating the production of
complex natural products and biofuels [7].

Genome modification to introduce genetic cassettes has gained favor for its ability to
ensure the stability of heterologous devices, reduce the metabolic burden associated with
maintaining plasmids, avoid antibiotic resistance issues, and control gene copy numbers (Figure
1d). Traditional recombination systems, including Lambda Red and RecET, have been widely
used for DNA integration into genomes. The advent of CRISPR-Cas systems has revolutionized
genetic engineering by streamlining processes and enhancing efficiency and with demonstrated
utility across different kingdoms of life. For example, CRISPR systems have been developed not
only for bacteria but also for filamentous fungi, demonstrating the versatility and broad
applicability of these tools [15,50]. CRISPR-Cas9, in particular, facilitates precise genomic
alterations through double-stranded DNA breaks, followed by homology-directed repair for
knock-in and knockout applications, even in non-model organisms [15,50]. Integration efficiency
can be further augmented by combining CRISPR with conventional systems like Lambda Red
[15].

In addition to creating double-strand DNA breaks, the Cas9 protein has been modified
(Aspl0Ala) to function as nCas9, targeting single DNA strands for nicking rather than cleaving
(Figure 1d). This adaptation facilitated the development of base editors (BEs), such as cytosine
base editors (CBE) and adenine base editors (ABE), which convert cytosine to uracil or adenine
to inosine, respectively, altering nucleotide pairs from C:G to T:A or A:T to G:C. A further
iteration, glycosylase base editors (GBE), emerged by fusing nCas9 with cytidine deaminase and
uracil-DNA glycosylase, enabling the conversion of cytosine to adenine or guanine.

Additionally, the prime editor system, incorporating nCas9 (His840Ala), reverse transcriptase,

10
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and prime editing sgRNA (pegRNA), offers the capability to insert, delete, or mutate specific
genomic sequences as dictated by pegRNA design [15]. These BEs have shown potential for
multiplex genome-wide targeting, enhancing organismal fitness under stress [51]. Recent
advancements have introduced tools capable of accurately predicting the efficiency of ABE,
CBE, and GBE, facilitating precise single nucleotide engineering [52].

Gene expression modulation has been effectively achieved using CRISPR interference
(CRISPRi) and activation (CRISPRa) systems (Figure 1d). By deactivating the Cas protein
(Asp10Ala and His840Ala mutations), specific genomic regions can be targeted to suppress or
enhance gene expression. CRISPRIi, particularly useful for downregulating essential genes,
serves as an alternative to knockout strategies and has become a popular tool for functional
genomics screens. It leverages genome-wide targeting of sgRNAs to pinpoint genes that, when
modulated, improve fitness and biochemical output [53]. CRISPRa, on the other hand, employs
cellular machinery to activate silent biosynthetic gene clusters (BGCs), boosting the expression
of key genes for complex antibiotic production [54].

The integration of CRISPR systems with transposons has enabled efficient incorporation
of foreign DNA into both model and non-model organism genomes. This methodology extends
to diverse microbial communities, showcasing the potential for broad-scale genomic editing
[55,56]. Additionally, combining error-prone DNA polymerase with nCas9 has diversified target
gene sequences, creating a vast library of variants that have led to increased production of
compounds like L-proline [57].

Evolutionary approaches, particularly adaptive laboratory evolution (ALE), offer
significant potential for phenotype enhancement in host systems. The production of toxic

biochemicals and inefficient substrate utilization often hampers efficiency, burdening the host.
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ALE enables organisms to adapt to and thrive under such stressors, improving overall fitness.
This technique has been instrumental in enabling non-model organisms to tolerate otherwise
inhibitory substrates. One example is gaining tolerance to the toxic substrate CO via ALE, then
utilizing native promoters obtained from omics analysis to integrate heterologous gene
expression and optimize gene expression in the non-model organism, leading to enhanced 2,3-
butanediol production from C1 substrates [11]. The integration of ALE with automated culturing

systems further increases the likelihood of achieving desirable phenotypes in bio-systems [58].

Conclusion and Perspectives

The integration of systems and synthetic biology for the engineering of biological
systems has witnessed rapid development, propelled by advancements in sequencing and genome
engineering technologies. The field of artificial intelligence has further revolutionized our
capacity to analyze vast datasets, uncovering previously overlooked insights and establishing
relationships between various variables. This has significantly improved our ability to predict the
responses of biosystems to specific conditions.

Despite these strides, several challenges remain that must be addressed to design and
construct biosystems that function optimally. A primary concern is the need to broaden the
spectrum of host systems. Through environmental isolation and genome analysis, a diverse array
of potential host systems has been identified. The advent of high-throughput culturomics,
enhanced by machine learning and automation, offers a robust methodology for correlating
physiological traits with genomic data [59]. Automation could potentially play a critical role in
streamlining the culturing and analysis processes, possibly reducing the time and labor required

for large-scale experiments. This efficiency may be beneficial for studying non-model

12
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organisms, which often have unique growth requirements and are less well-characterized. By
automating repetitive tasks and integrating advanced data analysis tools, researchers can rapidly
screen and optimize conditions for these organisms, facilitating their establishment as viable
hosts for biochemical production. Furthermore, automated systems can handle high-throughput
screening of genetic variants and environmental conditions, accelerating the potential discovery
of optimal strains and pathways for target compound synthesis. However, the exploration of
additional non-model organisms is imperative to discover more efficient methods for producing
novel or complex biochemicals. Co-culture systems present a potential strategy for achieving
desired phenotypes, though they also introduce a level of complexity that may be difficult to
control.

Optimization of pathway design is another critical area for improvement. While ML and
DL have advanced our ability to predict cellular responses and devise production pathways,
challenges such as enzyme kinetics, gene regulation optimization, resource allocation, toxicity of
intermediates and final products, and economic viability persist. Tools for enzyme identification
exist, yet integrating these enzymes into biosystems to optimize production, ensure enzyme
activity and solubility, and provide necessary substrates and cofactors requires meticulous flux
rewiring and can only be refined through experimental validation. As experimental data
accumulate, the precision in pathway design is expected to improve.

The processes involved in host selection, biosystem investigation, and engineering are
labor-intensive and time-consuming, rendering them challenging for a single research lab to
undertake independently. The demand for standardized biological parts, accessible analytical

tools, and rapid build-test infrastructures is growing. Efforts are underway to develop a universal
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platform that merges systems and synthetic biology, yet the accessibility and affordability of
such infrastructure are limited [60].

Richard Feynman, a renowned theoretical physicist, once stated, "What I cannot create, |
do not understand." This philosophy resonates profoundly with the endeavor to engineer
biosystems with specific phenotypes, whether for complex biochemical production or
bioremediation. The advancements discussed in this review bring us closer to the goal of
accurately and efficiently engineering desired biosystems. By addressing the challenges outlined,
we can deepen our understanding and develop bio-platforms capable of supplanting traditional

chemical production methods reliant on fossil resources.
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Figure 1. Schematic representation of reconstructing biosystems for targeted phenotypes.

(a) Target Determination: Establish the objective for the biosystem, whether to synthesize bulk

chemicals, natural products, biofuels, or to undertake eco-friendly activities such as plastic

degradation or the utilization of non-canonical substrates. (b) Host Selection: Commonly utilized

model organisms include Escherichia coli and Saccharomyces cerevisiae, while non-model

organisms encompass those recently isolated from the environment or not extensively

characterized. An additional option is a chassis organism, streamlined by the removal of non-

essential genomic regions to optimize the host system for the desired function. (¢) Systematic

Investigation: Through multi-omics analysis, an intricate understanding of the regulatory systems

governing the biosystems is achieved. Genome-scale modeling offers a comprehensive

perspective of the host, enabling the identification of candidate modifications to augment desired

biochemical production. Database utilization alongside artificial intelligence provides an
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efficient methodology for determining the most effective production pathways. (d) Strategic
Engineering: Engineering efforts typically include modular manipulation using biological parts
for gene expression regulation, CRISPR-mediated genome editing for precise modifications, and
tolerance engineering to improve organismal robustness and fitness for the production of desired

compounds.
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From omics analysis to host system engineering. (a) Regulatory Systems: The flow from
genomic DNA through RNA transcription, protein translation, and resultant metabolite
production within the biosystem. (b) Multi-Omics Analysis: Comprehensive multi-omics
approaches unveil the host system's intricate regulatory networks, spanning genomics,
transcriptomics, translatomics, proteomics, and metabolomics. (¢) Biological parts Identification:

Leveraging multi-omics data facilitates the acquisition of biological parts, elucidating gene
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functions, the properties of individual components, and translational bottlenecks. (d) Genetic
Delivery Systems: Plasmid-based systems and CRISPR technologies are employed to introduce
and integrate genetic components into the biosystem. (e) Al-Powered /n Silico Prediction: Multi-
omics data are collated and processed through artificial intelligence algorithms, predicting
optimal strategies for host system design. (f) These strategies, integrated with engineering
techniques and fitness optimization processes, enable the construction of host systems capable of
processing diverse substrates and producing a range of compounds, from bulk chemicals to

biofuels and natural products.
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