Machine Learning Facilitated Investigations of Intonational Meaning: Prosodic
Cues to Epistemic Shifts in American English Utterances
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Abstract

This work analyzes experimentally elicited speech to capture
the relationship between prosody and semantic/pragmatic
meanings. Production prompts were comicstrips where
contexts were manipulated along axes prominently discussed in
sem/prag literature. Participants were tasked with reading lines
as the speaker would, uttering a target phrase communicating a
proposition p (e.g., “only marble is available”) to a hearer who
had epistemic authority on p. Prompts varied whether the
speaker’s initial belief (prior bias) was confirmed (condition A:
bias=p) or corrected (condition B: bias=—p); this meaning
difference was reinforced by response particles (A: “okay so”
vs. B: “oh really”) preceding the target phrase.

485 productions were annotated with phonologically-
informed phonetic labels (PoLaR). To model many-to-many
mappings between features (prosodic form) and classification
(sem/prag meaning), Random Forests were designed on labels
and derived measures (including 0 ranges, slopes, TCoG) from
286 recordings — classifying meaning with high accuracy
(>85%). RFs identified condition-distinguishing prosodic cues
in both response particle and target phrases, leading to
questions of how/whether functionally-overlapping lexical
content might affect prosodic realization. Moreover, RFs
identified phrase-final f0 as important, leading to deeper edge-
tone explorations. These highlight how explanatory ML models
can help iteratively improve targeted analysis.

Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction and Background

Intonation systematically communicates a wide range of
linguistic meanings (related to, e.g., the common ground,
conversational dynamics, and information structure). This
paper explores the intonational contours associated with
another meaning that has been prominently discussed in the
sem/prag literature (e.g., [5], [9]): a speaker’s previous
beliefs/biases about the proposition in question, p, influence the
utterance-final boundary tone. In evaluating whether certain
types of “biased” contexts —namely evidential bias (e.g., prior
discourse context supports p) and epistemic bias (e.g., the
interlocutor believes p)— map onto intonational contours, we
keep in mind that we expect any such mappings between the
two to be many-to-many , as morphological form-meaning
mappings are commonly many-to-many (in part due to
homophony and polysemy).

For instance, a rising tune on a declarative radical p (‘it’s
raining’) has sometimes been associated with a speaker’s prior
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epistemic bias towards ‘not p’ (‘itisn’t raining’), but other times
with speakers’ prior bias towards ‘p’. (see e.g., [6], [12], and
references therein). From the other direction, meaning which
conveys something along the lines of revision of prior epistemic
bias towards ‘not p’ has sometimes been associated with /L* H*
L-L%/, often called the surprise-redundancy contour [13], but
alternatively with a particular kind of rising tune, namely a
steeply-rising /L* H-H%/ [4].

Based on this state of affairs, much recent work in the
sem/prag literature posits that tunes do not directly encode
particular contextual biases, but rather encode a more abstract
level of meaning that may nevertheless systematically derive
the attested correlations, mediated by pragmatic reasoning and
diverse sociopragmatic input contexts (see e.g., [6], [12],
among many others). But claims about what exactly this
abstract meaning is for a given tune varies depending on the
theory, and there is no widespread consensus on which aspects
of'a tune are relevant (e.g., is it the terminal contour like /H* L-
L%/? something larger like a larger portion of the intonational
melody? something smaller and gradient like the slopes of pitch
accents or edge tones?) Part of the uncertainty stems from the
fact that, to date, these theories have concentrated primarily on
a few idealized tunes and contextual set-ups, while the
associations between the two in actual interactional use
involves complex many-to-many mappings.

1.1. The Present Study

To test and adjudicate among these theories, one can analyze
large-scale production data that are nevertheless controlled in a
theoretically informed way, so that we can identify all and only
the correlations between tune and contextual bias that are
systematic/significant, and thereby clarify the landscape of
intonational variation. Put differently, it would be useful to
identify the ways in which people adopt multiple alternative
intonational strategies in parallel situations.

Investigating complex empirical data of this type can be
done through the use of automatic algorithms to find
relationships in speech between prosody-related input
parameters and seg/prag conditions elicited under controlled,
theoretically informed contexts. While standard ANOVA and
regression models have been used historically to validate
relationships, other Machine Learning models may be more
useful for the kinds of complex exploration and analysis
required to deal with multiple, often overlapping, dependent
features. Models that can accommodate categorical (e.g., the
locations of prominences and phrase boundaries, the identity of
particular words) and numeric parameters (TCoG, f0 range,
relative duration) are best suited to initial investigation of such
data. In addition, explanatory classification models suggest
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Figure 1: Two conditions for the same target sentence, condition A (above, bias = p) and condition B (above; bias = —p)

insights that can be iteratively used by linguists to refine
parameter extraction.

For these reasons, Random Forests were used to investigate
which prosodic attributes were useful in classifying the two
pragmatic contexts (p/—p bias) investigated in this project. A
further useful characteristic of Random Forests is the ability to
estimate the importance of each input parameter based on its
contribution to decreasing the Gini Index/Impurity. The Gini
Index measures the relative heterogeneity (impurity or entropy)
of a data set with respect to classification. If a feature (say,
phrase final lengthening) is used to partition the data into two
subsets that are, collectively, more homogeneous than the entire
set (e.g. a greater proportion of +bias in one subset and a greater
proportion of -bias in the other), the Gini Impurity decreases.
The amount of this decrease can be used as a measure of the
importance of the feature. The standard R random forest
algorithm [7] attempts all possible feature splits and calculates
the benefit of each. As shown below, this featural “importance”
measure is a useful byproduct that can be used to rigorously
investigate the features and combinations of features.

2. Methods

2.1. Production Task

This work is part of a larger study where conditions differed
along two dimensions: speaker’s previous belief (bias about p)
and whether the speaker or the hearer is the epistemic authority
on p; see Table 1. The data discussed here involves only the
epistemic authority dimension.

Table 1: Experimental design for the elicitation task:
4 conditions x 24 target sentences = 96 stimuli.
The present work analyzes conditions A and B.

Speaker’s previous ! Speaker’s previous
belief: p belief: —p
Epistemic authority A B
Hearer
Epistemic authority C D
Speaker

To date, 85 native speakers of American English have
participated in an internet-based production task using PClIbex
[15], recruited via Prolific, and paid $15 for their participation.
Participants were cis, gender balanced, aged 24-40, with no
reported speech or reading impairments, and of a variety of
racial backgrounds (69% White; 13% Black; 11% Latinx; 5%
mixed, 2% Native American). The prompts for production were

comic strips with dialogs conveying contexts that reflected the
experimental manipulations. 24 target items were designed
such that the same target sentence (with identical text) was
produced in each of the experimental contexts. (Fig.1). Target
sentences were preceded by a set of response particles ( “okay
so” for condition A, “oh really” for condition B), chosen to
reinforce the pragmatic context. A Latin square design was
used, such that subjects saw each of the 24 target items only
once. Items were randomized along with 48 filler comics of
comparable format to the target items. Subjects were presented
with and asked to read the full comic before reading aloud (and
recording) the target sentence and response particles, which
were highlighted in red in the comic. Participants were asked to
respond to comprehension questions to confirm that they were
reading the entire comic, and were attending to the contexts.

2.2. Annotation and data extraction

Each recorded utterance was force-aligned with the Montreal
Forced Aligner [8] and was then independently annotated in
Praat [2] with advanced PoLaR labels [1], by pairs of trained
labellers. PoLaR labels (as in Fig.2) are phonologically-
informed descriptive labels on multiple tiers, that encode the
location and relative strength of prominences and boundaries
(Pr(osodic) Str(ucture) tier), salient turning points in the f0
contour (Points tier), local ranges (Ranges tier), and scaled pitch
levels for each Points label within those ranges (Levels tier).
Pairs of labellers then arrived at a single consensus label for
each file, via a process of comparison and discussion.
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Figure 2: A sample annotated file, with
consensus PoLaR labels

Scripts in Praat and R [10] using RStudio [11] were then used
to extract measures from these recordings, guided and
facilitated by these annotations. The most direct measures were
the locations of pitch accents (PoLaR PrStr * labels). Also



rather direct were the locally defined f0 range
(floor/ceiling/size; PoLaR Ranges labels) and the phrase-final
f0 (PoLaR Points/Levels). (4!l f0 measures [in semitones] were
extracted from the “straight line approximation” [14] of the f0
contour produced by Points labels, and were normed against
the local f0 range defined by Ranges labels.)

We also took two measures of the phrase-final fO
movements. The first of these measures was slope and the
second was (a more novel usage of) TCoG [2]; the fO measures
were drawn from the straight line approximation for each f0
contour (and normed according to local {0 range), and the time
domain was the beginning of the final vowel through the end of
the phrase (with values normed according to the midpoint and
length of the domain). Phrase-final measures were taken at the
final ] (boundary label) in the PrStr tier in the response particle
domain, and at the final ] of the target sentence.

Additionally, TCoG measures were calculated for three
pitch accents: the final PrStr * (phrase-level prominence) in the
response particle domain, and the penultimate and final *s in
the target sentence. For pitch accents, the time domain was
defined by the midpoint of the vowel interval and extended one
vowel length in each direction (with time values for TCoG
calculations normed according to the midpoint and length of the
domain). Again, the f0 measures were drawn from the straight
line approximation (and normed according to local f0 range)
and were weighted such that measures towards the center of the
vowel had stronger influence (as a way of controlling for
segmental effects).

Finally, we measured phrase-final lengthening, using force
aligned phone intervals and PrStr labels. We measured the
durations of all vowel-to-vowel (or vowel-to-phrase-edge)
intervals. Of these intervals, a mean unlengthened interval was
determined by averaging all intervals that were not phrase final
and did not contain a pitch accent; final lengthening was then
measured as a ratio of the final vowel-to-edge duration to the
mean unlengthened interval.

2.3. Machine Learning

As mentioned above, Random Forests were chosen to model the
prosodic features that algorithmically model implementation
differences between p/—p bias in the project data. The data was
split into training data (70%, randomly selected) and test data
(the remaining 30%) and checked to ensure that the proportion
of positive/negative tokens were consistent across the two sets.
The R randomForest package [7] was used to train two
classification random forest models (see below) using 3
features / split on 500 polled trees. Accuracy was calculated
based on its performance on the held out test data.

The models presented here were trained on 23 acoustically-
derived attributes that include prominence- and phrasing-
related cues: f0 min/max, slopes, TCoG-time, TCoG-freq on
prominences and at phrase boundaries in both the response
particle and target sentence. Notably, no lexical information
was used in these models. (Numeric parameters were
normalized, as described above, to minimize algorithmic
abnormalities.) In addition, a uniformly-distributed, randomly
generated parameter was included. As described in the results,
this parameter serves to determine which features decrease Gini
Impurity more than a random variable might.

To date, 485 condition A (p bias; n=239) and B (—p bias;
n=246) utterances have been fully PoLaR annotated.
Recordings in which the target word lacked a pitch accent or
was not the final pitch accent (n=199) were excluded. Of the

remaining 286 utterances, 107 were in Condition A and 179
were in Condition B.

During data exploration, several other characteristics
were discovered that required adjustments. Phrases with
missing f0 values were extracted as having flat slope (0) and
these cases were adjusted to be NA (missing values), a more
felicitous description. Other missing values were handled in one
of several ways: (a) the feature itself was removed if it had a
significant number of missing values (e.g. penultimate
prominences were not consistently present, so related
parameters were removed), (b) the utterance was removed if
there were missing values or (c¢) the R random forest
na.roughfix process was used that replaces numeric missing
values with the overall mean and categorical missing values by
the majority value.

3. Results

Two resulting random forest models serve to demonstrate the
usefulness of machine-learning aided inquiry: the first (rf-all),
most inclusive model revealed prosodic features associated
with the initial response particle phrases (abbreviated with
rPrt.*) were more important than those associated with the
target sentence (abbreviated with targS.*).

Table 2: Confusion matrix for rf-all: rPrt + targS
features: 84.8% accurate, N=79 (7 lost to na.omit)

Predicted
A B

Al 22 7
B 5 45

Actual

rPrt.phrFinal.lengthening
rPrt.phrFinal.slope.normed_ST
rPrt.prom.final.tcogT.normed_ST ©
rPrt.ranges.fOMax.normed_ST o
rPrt.phrFinal . f0_ST
rPrt.prom.final.tcogF.normed_ST
targS.phrFinal.lengthening
targS.ranges.fOMax.normed_ST o
rPrt.phrFinal.tcogT.normed_ST o]
rPrt.phrFinal tcogF.normed_ST
rPrt.ranges.f0Size.normed_ST o
randVar ©

MeanDecreaseGini

Figure 3: Relative importance of features used in
rf-all. Only features that were more important than a
random variable parameter are shown.

This suggested that target sentences might not need to “carry”
as much of the classification burden and that prosodic cues were
primarily present in the response particle phrase. As a result, a
second model (rf-target) using only features  associated with
a target sentence was built.

The target-only model performs less well in terms of
classification, although several features are demonstrated to
contribute. These features are associated with phrase-final
lengthening and overall ranges. This suggests that future
inquiries (and parameter calculations) might be focused on
phrase boundary cues. Further, other phrase related variables
were not useful despite the value of lengthening. This suggests
a possible information loss when phrase-final f0 estimates are



compromised by f0 inaccuracies in the final syllable, where
robust, regular utterance-final f0 often fades away. This is a
consistent difficulty in intonation research, and it is an
advantage of this model that it serves to motivate creative
solutions to such missing f0 measures.

Table 3: Confusion matrix for rf-target: targS
features: 69% accurate (just better than chance: 62%)

Predicted
A B
A 16 16
Actual
B 10 43

targS.phrFinal.lengthening
targS.ranges.f0Size.normed_ST
targS.ranges.fOMax.normed_ST
targS.prom.final.tcogF.normed_ST
targS.prom.final.tcogT.normed_ST
targS.phrFinal fO_ST
targS.ranges.fOMin.normed_ST
randvar
targS.phrFinal.tcogT.normed_ST
targS.phrFinal.tcogF.normed_ST
speaker.age
targS.phrFinal fOLvI_ST Gl

T T T T T T T

0 2 4 6 8 10 12

MeanDecreaseGini

Figure 4: Relative importance of features used in
rf-target. Here features both more and less important
than a random variable parameter are shown.

4. Discussion

Speakers in this study reliably distinguished utterances along a
subset of measures identified by Random Forest models: these
measures relate to phrase-final prosody, as well as to pitch
accent prosody and local pitch range ceiling. This RF model
demonstrates a high degree of classification accuracy,
indicating that speech produced in p/—p contexts can be
distinguished based on their prosodic attributes.

In particular, these RF models found the most influential
prosodic characteristics in the response particle portion of the
utterance (which is produced before the target sentence is
uttered). This finding is noteworthy in at least two ways. First,
it shows that the prosodic cues to this meaning are distributed
across the utterance and are not restricted to any one prosodic
element. Second, the response particle portion of the utterance
has two sets of cues about the speaker’s epistemic shift: lexical
content (the response particles themselves, which were absent
from RF models) and prosodic content (the prosodic measures
that come out as important in RF models). This sheds light on
the interplay between prosodic and lexical content: it has been
suggested that there is “cue trading” across lexical and prosodic
content, but that idea is not supported in the domain of this
meaning.

These findings also suggest that the phrase boundary
implementation provides cues to the two p/~p bias contexts. In
addition to phrase final lengthening, the normed f0 and f0 range
maximum and the slope of the f0 and at the end of the phrase
appear to be discriminative. It may be somewhat surprising that,
in the rf-all model (Fig.3), utterance-final intonation for the
target sentence was not important, while the phrase-final
(utterance-medial) intonation of the response particle phrases.

One possibility is that utterance-final intonation is susceptible
to issues with f0 tracking and difficulties in annotation. As a
result, we are returning to the data and feature extraction with
goals of including phonological analysis of edge tones (e.g.,
with MAE ToBI) and of developing better measures of
utterance-final f0.

Finally, the Tonal Center of Gravities (in time and in
frequency) on the prominent syllable in the response phrase also
served to separate the two contexts. Moreover, when response
particle phrase cues are excluded from the RF model, the target
sentence boundary lengthening and the TCoG-T were also
influential in separating p/—p bias context utterances. Since
TCoG is linked to phonology [2], the importance of TCoG
measures in both the response and the target sentences suggests
a phonological difference between the prominences in A vs B
contexts in both phrases.

5. Conclusions

These results suggest that a speaker’s prior belief (i.e, their bias)
influences the intonation of a utterance produced in response to
information from an epistemically authoritative interlocutor.
Primary cues were found at phrase boundaries, but also in pitch
accents. Further work on the annotation and data extraction is
expected to uncover more precise and pointed results. These
investigations will include incorporating more information
about the speakers than is currently present (e.g., age, gender,
race, language background; information already collected) as
well as more honed measures of prosody, to which reserachers
have been directed by the present Machine Learning results.

The importance of phrase-final intonation in the response
phrase was identified through these ML analyses, and the lack
of “important” effects from the target sentence phrase-final
intonation suggested that we ought to return to our data. After
returning to the data, the researchers (as speakers of English and
trained expert linguists) did indeed have the impression that
many recordings do differ between the two conditions in the
target sentence region. In this way, Machine Learning is not
used as an end-point classifier but also as input to an iterative
analytic process: these results have helped identify directions
for further areas of investigation.

In sum, this work demonstrates the usefulness of ML in
facilitating and encouraging iterative modelling and analysis,
specifically: ML can help identify which aspects of the
phonology to focus on and reconsider how those features are
extracted, which ought to yield improved ML models— and
highlights the usefulness of both domain-specific expertise and
mindful usage of modelling tools.
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