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Abstract 

This work analyzes experimentally elicited speech to capture 

the relationship between prosody and semantic/pragmatic 

meanings. Production prompts were comicstrips where 

contexts were manipulated along axes prominently discussed in 

sem/prag literature. Participants were tasked with reading lines 

as the speaker would, uttering a target phrase communicating a 

proposition p (e.g., “only marble is available”) to a hearer who 

had epistemic authority on p. Prompts varied whether the 

speaker’s initial belief (prior bias) was confirmed (condition A: 

bias=p) or corrected (condition B: bias=¬p); this meaning 

difference was reinforced by response particles (A: “okay so” 

vs. B: “oh really”) preceding the target phrase. 

485 productions were annotated with phonologically-

informed phonetic labels (PoLaR). To model many-to-many 

mappings between features (prosodic form) and classification 

(sem/prag meaning), Random Forests were designed on labels 

and derived measures (including f0 ranges, slopes, TCoG) from 

286 recordings — classifying meaning with high accuracy 

(>85%). RFs identified condition-distinguishing prosodic cues 

in both response particle and target phrases, leading to 

questions of how/whether functionally-overlapping lexical 

content might affect prosodic realization. Moreover, RFs 

identified phrase-final f0 as important, leading to deeper edge-

tone explorations. These highlight how explanatory ML models 

can help iteratively improve targeted analysis. 

Index Terms: speech recognition, human-computer interac-

tion, computational paralinguistics 

1. Introduction and Background 

Intonation systematically communicates a wide range of 

linguistic meanings (related to, e.g., the common ground, 

conversational dynamics, and information structure). This 

paper explores the intonational contours associated with 

another meaning that has been prominently discussed in the 

sem/prag literature (e.g., [5], [9]): a speaker’s previous 

beliefs/biases about the proposition in question, p, influence the 

utterance-final boundary tone. In evaluating whether certain 

types of “biased” contexts —namely evidential bias (e.g., prior 

discourse context supports p) and epistemic bias (e.g., the 

interlocutor believes p)— map onto intonational contours, we 

keep in mind that we expect any such mappings between the 

two to be many-to-many , as morphological form-meaning 

mappings are commonly many-to-many (in part due to 

homophony and polysemy). 

For instance, a rising tune on a declarative radical p (‘it’s 

raining’) has sometimes been associated with a speaker’s prior 

epistemic bias towards ‘not p’ (‘it isn’t raining’), but other times 

with speakers’ prior bias towards ‘p’. (see e.g., [6], [12], and 

references therein). From the other direction, meaning which 

conveys something along the lines of revision of prior epistemic 

bias towards ‘not p’ has sometimes been associated with /L* H* 

L-L%/, often called the surprise-redundancy contour [13], but 

alternatively with a particular kind of rising tune, namely a 

steeply-rising /L* H-H%/ [4]. 

Based on this state of affairs, much recent work in the 

sem/prag literature posits that tunes do not directly encode 

particular contextual biases, but rather encode a more abstract 

level of meaning that may nevertheless systematically derive 

the attested correlations, mediated by pragmatic reasoning and 

diverse sociopragmatic input contexts (see e.g., [6], [12], 

among many others). But claims about what exactly this 

abstract meaning is for a given tune varies depending on the 

theory, and there is no widespread consensus on which aspects 

of a tune are relevant (e.g., is it the terminal contour like /H* L-

L%/? something larger like a larger portion of the intonational 

melody? something smaller and gradient like the slopes of pitch 

accents or edge tones?) Part of the uncertainty stems from the 

fact that, to date, these theories have concentrated primarily on 

a few idealized tunes and contextual set-ups, while the 

associations between the two in actual interactional use 

involves complex many-to-many mappings. 

1.1. The Present Study 

To test and adjudicate among these theories, one can analyze 

large-scale production data that are nevertheless controlled in a 

theoretically informed way, so that we can identify all and only 

the correlations between tune and contextual bias that are 

systematic/significant, and thereby clarify the landscape of 

intonational variation. Put differently, it would be useful to 

identify the ways in which people adopt multiple alternative 

intonational strategies in parallel situations. 

Investigating complex empirical data of this type can be 

done through the use of automatic algorithms to find 

relationships in speech between prosody-related input 

parameters and seg/prag conditions elicited under controlled, 

theoretically informed contexts. While standard ANOVA and 

regression models have been used historically to validate 

relationships, other Machine Learning models may be more 

useful for the kinds of complex exploration and analysis 

required to deal with multiple, often overlapping, dependent 

features. Models that can accommodate categorical (e.g., the 

locations of prominences and phrase boundaries, the identity of 

particular words) and numeric parameters (TCoG, f0 range, 

relative duration) are best suited to initial investigation of such 

data. In addition, explanatory classification models suggest 



insights that can be iteratively used by linguists to refine 

parameter extraction.    

For these reasons, Random Forests were used to investigate 

which prosodic attributes were useful in classifying the two 

pragmatic contexts (p/¬p bias) investigated in this project. A 

further useful characteristic of Random Forests is the ability to 

estimate the importance of each input parameter based on its 

contribution to decreasing the Gini Index/Impurity. The Gini 

Index measures the relative heterogeneity (impurity or entropy) 

of a data set with respect to classification. If a feature (say, 

phrase final lengthening) is used to partition the data into two 

subsets that are, collectively, more homogeneous than the entire 

set (e.g. a greater proportion of +bias in one subset and a greater 

proportion of -bias in the other), the Gini Impurity decreases. 

The amount of this decrease can be used as a measure of the 

importance of the feature.  The standard R random forest 

algorithm [7] attempts all possible feature splits and calculates 

the benefit of each. As shown below, this featural “importance” 

measure is a useful byproduct that can be used to rigorously 

investigate the features and combinations of features. 

2. Methods 

2.1. Production Task 

This work is part of a larger study where conditions differed 

along two dimensions: speaker’s previous belief (bias about p) 

and whether the speaker or the hearer is the epistemic authority 

on p; see Table 1. The data discussed here involves only the 

epistemic authority dimension.  

Table 1: Experimental design for the elicitation task: 

4 conditions × 24 target sentences = 96 stimuli. 

The present work analyzes conditions A and B. 

 
Speaker’s previous 

belief: p 

Speaker’s previous 

belief: ¬p 

Epistemic authority 

Hearer 
A B 

Epistemic authority 

Speaker 
C D 

 

To date, 85 native speakers of American English have 

participated in an internet-based production task using PCIbex 

[15], recruited via Prolific, and paid $15 for their participation. 

Participants were cis, gender balanced, aged 24-40, with no 

reported speech or reading impairments, and of a variety of 

racial backgrounds (69% White; 13% Black; 11% Latinx; 5% 

mixed, 2% Native American). The prompts for production were 

comic strips with dialogs conveying contexts that reflected the 

experimental manipulations. 24 target items were designed 

such that the same target sentence (with identical text) was 

produced in each of the experimental contexts. (Fig.1). Target 

sentences were preceded by a set of response particles ( “okay 

so” for condition A,  “oh really” for condition B), chosen to 

reinforce the pragmatic context. A Latin square design was 

used, such that subjects saw each of the 24 target items only 

once. Items were randomized along with 48 filler comics of 

comparable format to the target items. Subjects were presented 

with and asked to read the full comic before reading aloud (and 

recording) the target sentence and response particles, which 

were highlighted in red in the comic. Participants were asked to 

respond to comprehension questions to confirm that they were 

reading the entire comic, and were attending to the contexts.  

2.2. Annotation and data extraction 

Each recorded utterance was force-aligned with the Montreal 

Forced Aligner [8] and was then independently annotated in 

Praat [2] with advanced PoLaR labels [1], by pairs of trained 

labellers. PoLaR labels (as in Fig.2) are phonologically-

informed descriptive labels on multiple tiers, that encode the 

location and relative strength of prominences and boundaries 

(Pr(osodic) Str(ucture) tier), salient turning points in the f0 

contour (Points tier), local ranges (Ranges tier), and scaled pitch 

levels for each Points label within those ranges (Levels tier). 

Pairs of labellers then arrived at a single consensus label for 

each file, via a process of comparison and discussion.  

 

Figure 2: A sample annotated file, with 

consensus PoLaR labels 

Scripts in Praat and R [10] using RStudio [11] were then used 

to extract measures from these recordings, guided and 

facilitated by these annotations. The most direct measures were 

the locations of pitch accents (PoLaR PrStr * labels). Also 

Figure 1: Two conditions for the same target sentence; condition A (above; bias = p) and condition B (above; bias = ¬p) 



rather direct were the locally defined f0 range 

(floor/ceiling/size; PoLaR Ranges labels) and the phrase-final 

f0 (PoLaR Points/Levels). (All f0 measures [in semitones] were 

extracted from the “straight line approximation” [14] of the f0 

contour produced by Points labels, and were normed against 

the local f0 range defined by Ranges labels.) 

We also took two measures of the phrase-final f0 

movements. The first of these measures was slope and the 

second was (a more novel usage of) TCoG [2]; the f0 measures 

were drawn from the straight line approximation for each f0 

contour (and normed according to local f0 range), and the time 

domain was the beginning of the final vowel through the end of 

the phrase (with values normed according to the midpoint and 

length of the domain). Phrase-final measures were taken at the 

final ] (boundary label) in the PrStr tier in the response particle 

domain, and at the final ] of the target sentence. 

Additionally, TCoG measures were calculated for three 

pitch accents: the final PrStr * (phrase-level prominence) in the 

response particle domain, and the penultimate and final *s in 

the target sentence. For pitch accents, the time domain was 

defined by the midpoint of the vowel interval and extended one 

vowel length in each direction (with time values for TCoG 

calculations normed according to the midpoint and length of the 

domain). Again, the f0 measures were drawn from the straight 

line approximation (and normed according to local f0 range) 

and were weighted such that measures towards the center of the 

vowel had stronger influence (as a way of controlling for 

segmental effects).  

Finally, we measured phrase-final lengthening, using force 

aligned phone intervals and PrStr labels. We measured the 

durations of all vowel-to-vowel (or vowel-to-phrase-edge) 

intervals. Of these intervals, a mean unlengthened interval was 

determined by averaging all intervals that were not phrase final 

and did not contain a pitch accent; final lengthening was then 

measured as a ratio of the final vowel-to-edge duration to the 

mean unlengthened interval.  

2.3. Machine Learning 

As mentioned above, Random Forests were chosen to model the 

prosodic features that algorithmically model implementation 

differences between p/¬p  bias in the project data. The data was 

split into training data (70%, randomly selected) and test data 

(the remaining 30%) and checked to ensure that the proportion 

of positive/negative tokens were consistent across the two sets. 

The R randomForest package [7] was used to train two 

classification random forest models (see below) using 3 

features / split on 500 polled trees.  Accuracy was calculated 

based on its performance on the held out test data.   

The models presented here were trained on 23 acoustically-

derived attributes that include prominence- and phrasing-

related cues: f0 min/max, slopes, TCoG-time, TCoG-freq on 

prominences and at phrase boundaries in both the response 

particle and target sentence. Notably, no lexical information 

was used in these models. (Numeric parameters were 

normalized, as described above, to minimize algorithmic 

abnormalities.) In addition, a uniformly-distributed, randomly 

generated parameter was included. As described in the results, 

this parameter serves to determine which features decrease Gini 

Impurity more than a random variable might.   

To date, 485 condition A (p bias; n=239) and B (¬p bias; 

n=246) utterances have been fully PoLaR annotated. 

Recordings in which the target word lacked a pitch accent or 

was not the final pitch accent (n=199) were excluded. Of the 

remaining 286 utterances, 107 were in Condition A and 179 

were in Condition B. 

During data exploration, several other characteristics      

were discovered that required adjustments. Phrases with 

missing f0 values were extracted as having flat slope (0) and 

these cases were adjusted to be NA (missing values), a more 

felicitous description. Other missing values were handled in one 

of several ways: (a) the feature itself was removed if it had a 

significant number of missing values (e.g. penultimate 

prominences were not consistently present, so related 

parameters were removed), (b) the utterance was removed if 

there were missing values or (c) the R random forest 

na.roughfix process was used that replaces numeric missing 

values with the overall mean and categorical missing values by 

the majority value.  

3. Results 

Two resulting random forest models serve to demonstrate the 

usefulness of machine-learning aided inquiry: the first (rf-all), 

most inclusive model revealed prosodic features associated 

with the initial response particle phrases (abbreviated with 

rPrt.*) were more important than those associated with the 

target sentence (abbreviated with targS.*). 

Table 2: Confusion matrix for rf-all: rPrt + targS 

features: 84.8% accurate, N=79 (7 lost to na.omit) 

  Predicted 

      A B 

Actual 
A 22 7 

B 5 45 

 

 

Figure 3: Relative importance of features used in 

rf-all. Only features that were more important than a 

random variable parameter are shown. 

This suggested that target sentences might not need to “carry” 

as much of the classification burden and that prosodic cues were 

primarily present in the response particle phrase. As a result, a 

second model (rf-target) using only features      associated with 

a target sentence was built.  

The target-only model performs less well in terms of 

classification, although several features are demonstrated to 

contribute. These features are associated with phrase-final 

lengthening and overall ranges. This suggests that future 

inquiries  (and parameter calculations) might be focused on 

phrase boundary cues. Further, other phrase related variables 

were not useful despite the value of lengthening. This suggests 

a possible information loss when phrase-final f0 estimates are 



compromised by f0 inaccuracies in the final syllable, where 

robust, regular utterance-final f0 often fades away. This is a 

consistent difficulty in intonation research, and it is an 

advantage of this model that it serves to motivate creative 

solutions to such missing f0 measures. 

Table 3: Confusion matrix for rf-target: targS 

features: 69% accurate (just better than chance: 62%) 

  Predicted 

      A B 

Actual 
A 16 16 

B 10 43 

 

 

Figure 4: Relative importance of features used in 

rf-target. Here features both more and less important 

than a random variable parameter are shown. 

4. Discussion 

Speakers in this study reliably distinguished utterances along a 

subset of measures identified by Random Forest models: these 

measures relate to phrase-final prosody, as well as to pitch 

accent prosody and local pitch range ceiling. This RF model 

demonstrates a high degree of classification accuracy, 

indicating that speech produced in p/¬p contexts can be 

distinguished based on their prosodic attributes.  

In particular, these RF models found the most influential 

prosodic characteristics in the response particle portion of the 

utterance (which is produced before the target sentence is 

uttered). This finding is noteworthy in at least two ways. First, 

it shows that the prosodic cues to this meaning are distributed 

across the utterance and are not restricted to any one prosodic 

element. Second, the response particle portion of the utterance 

has two sets of cues about the speaker’s epistemic shift: lexical 

content (the response particles themselves, which were absent 

from RF models) and prosodic content (the prosodic measures 

that come out as important in RF models). This sheds light on 

the interplay between prosodic and lexical content: it has been 

suggested that there is “cue trading” across lexical and prosodic 

content, but that idea is not supported in the domain of this 

meaning. 

These findings also suggest that the phrase boundary 

implementation provides cues to the two p/¬p bias contexts. In 

addition to phrase final lengthening, the normed f0 and f0 range 

maximum and the slope of the f0 and at the end of the phrase 

appear to be discriminative. It may be somewhat surprising that, 

in the rf-all model (Fig.3), utterance-final intonation for the 

target sentence was not important, while the phrase-final 

(utterance-medial) intonation of the response particle phrases. 

One possibility is that utterance-final intonation is susceptible 

to issues with f0 tracking and difficulties in annotation. As a 

result, we are returning to the data and feature extraction with 

goals of including phonological analysis of edge tones (e.g., 

with MAE_ToBI) and of developing better measures of 

utterance-final f0. 

Finally, the Tonal Center of Gravities (in time and in 

frequency) on the prominent syllable in the response phrase also 

served to separate the two contexts.  Moreover, when response 

particle phrase cues are excluded from the RF model, the target 

sentence boundary lengthening and the TCoG-T were also 

influential in separating p/¬p bias context utterances. Since 

TCoG is linked to phonology [2], the importance of TCoG 

measures in both the response and the target sentences suggests 

a phonological difference between the prominences in A vs B 

contexts in both phrases. 

5. Conclusions 

These results suggest that a speaker’s prior belief (i.e, their bias) 

influences the intonation of a utterance produced in response to 

information from an epistemically authoritative interlocutor. 

Primary cues were found at phrase boundaries, but also in pitch 

accents. Further work on the annotation and data extraction is 

expected to uncover more precise and pointed results. These 

investigations will include incorporating more information 

about the speakers than is currently present (e.g., age, gender, 

race, language background; information already collected)  as 

well as more honed measures of prosody, to which reserachers 

have been directed by the present Machine Learning results. 

The importance of phrase-final intonation in the response 

phrase was identified through these ML analyses, and the lack 

of “important” effects from the target sentence phrase-final 

intonation suggested that we ought to return to our data. After 

returning to the data, the researchers (as speakers of English and 

trained expert linguists) did indeed have the impression that 

many recordings do differ between the two conditions in the 

target sentence region. In this way, Machine Learning is not 

used as an end-point classifier but also as input to an iterative 

analytic process: these results have helped identify directions 

for further areas of investigation. 

In sum, this work demonstrates the usefulness of ML in 

facilitating and encouraging iterative modelling and analysis, 

specifically: ML can help identify which aspects of the 

phonology to focus on and reconsider how those features are 

extracted, which ought to yield improved ML models— and 

highlights the usefulness of both domain-specific expertise and 

mindful usage of modelling tools. 
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