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Accurate prediction of citywide crowd activity levels (CALs), i.e., the numbers of participants of citywide crowd
activities under different venue categories at certain time and locations, is essential for the city management,
the personal service applications, and the entrepreneurs in commercial strategic planning. Existing studies
have not thoroughly taken into account the complex spatial and temporal interactions among different
categories of CALs and their extreme occurrences, leading to lowered adaptivity and accuracy of their models.
To address above concerns, we have proposed IE-CALP, a novel spatio-temporal Interactive attention-based
and Extreme-aware model for CrowdActivity Level Prediction. The tasks of IE-CALP consist of (a) forecasting
the spatial distributions of various CALs at different city regions (spatial CALs), and (b) predicting the number
of participants per category of the CALs (categorical CALs). To realize above, we have designed a novel
spatial CAL-POI interaction-attentive learning component in IE-CALP to model the spatial interactions across
different CAL categories, as well as those among the spatial urban regions and CALs. In addition, IE-CALP
incorporate the multi-level trends (e.g., daily and weekly levels of temporal granularity) of CALs through a
multi-level temporal feature learning component. Furthermore, to enhance the model adaptivity to extreme
CALs (e.g., during extreme urban events or weather conditions), we further take into account the extreme
value theory and model the impacts of historical CALs upon the occurrences of extreme CALs. Extensive
experiments upon a total of 738,715 CAL records and 246,660 POIs in New York City (NYC), Los Angeles (LA),
and Tokyo have further validated the accuracy, adaptivity, and effectiveness of IE-CALP’s interaction-attentive
and extreme-aware CAL predictions.
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1 INTRODUCTION
Accurate prediction of the citywide crowd activity levels (CALs), i.e., the numbers of participants in
different categories of activities (e.g., dining or shopping venues) at certain time and locations, is
essential for many smart city planning and mobility management services [1, 13, 42, 55, 61]. For
instance, knowing the spatial and temporal trends of each category of citywide crowd activities
in advance would enable venue recommendation [3] and assist decision making [3] of personal
crowd activities, thus effectively reducing the commute overhead during the peak hours of certain
activities.
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Fig. 1. Research challenges, motivations, and ubiquitous applications of citywide CAL prediction.

Despite the prior studies on the crowd activity prediction [22, 28, 40], as illustrated in Fig. 1, there
remain the following three major technical challenges to be solved before a practical spatio-temporal
CAL prediction system can be effectively deployed:
(1) Complex Spatial CAL-POI Interactions: The spatial distributions of various categories of

crowd activities are highly correlated with different city regions, their respective points-of-
interest (POIs), and their mutual spatial proximity and temporal correlations. On the other
hand, the diverse functions of a city region can lead to co-occurrence of related crowd activities.
How to extract the spatial interactions among different categories of crowd activities, as well
as those among crowd activities and the region POIs, is essential for accurate forecasting of
incoming crowd activities, which, however, remains largely unexplored.

(2) Multi-level Temporal CAL Interactions: Citywide CALs might demonstrate multiple
short- and long-term recurrent patterns due to the diverse commute routines of the crowds,
likely due to the related contexts and correlated categories of the location venues. For instance,
the everyday crowd activities in both food (dining) and transportation categories in Tokyo
might demonstrate similar peaks during the rush hours of morning and late afternoon,
implying multi-level recurrent mobility patterns. How to capture and leverage the temporal
dynamics of each category of crowd activities, and the temporal correlations among different
categories of crowd activities is essential but challenging for the crowd activity prediction.

(3) Adaptivity and Predictability to Extreme CAL: In addition to the regular temporal
dynamics, CALs may surge or drop within a short period due to impacts of various complex
external factors, leading to rare and extreme occurrences of certain crowd activities that are
much higher than majority of the historical records. Since these extreme crowd activities
are relatively rare within the entire historical crowd activities, many existing deep learning
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techniques (including long short-term memory [43, 51]) might only capture the overall
trends of major crowd activities, but overlook these extreme crowd activities due to the
imbalanced distributions of these extreme records, namely the problem of extreme crowd
activities prediction. There exists a pressing need to actively and proactively learn and capture
these extreme crowd activities within the prediction model, which, however, has not been
thoroughly studied in the previous literature.

To address the above challenges concerning the ubiquitous and urban computing communities,
we propose IE-CALP, a novel spatio-temporal Interactive attention-based and Extreme-aware
model for Crowd Activity Level Prediction. Specifically, our IE-CALP aims at jointly predicting (a)
the spatial distributions of crowd activity levels at different categories, namely the spatial CALs,
and (b) the aggregate number of participants with respect to each category of the crowd activities
(including the extreme distributions), namely the categorical CALs. Towards the joint predictions of
above CALs, we have made the following three major technical contributions:

(1) Spatio-Temporal CAL-POI Graph Interaction-Attentive Learning: To enhance the
model learnability given Challenges (1) and (2), we have formulated the geospatial interactions
across the region POIs and CALs into graph interaction, and quantified the interactions across
POIs and the regional crowd activities. Specifically, we formulate the city regions as nodes
with the spatial proximity and temporal correlations as the edges, and design a novel CAL-POI
graph interaction learning based on a multi-graph interactive attention mechanism. Then we
further evaluate the spatial and temporal graph correlations among different categories of
crowd activities.

(2) Extreme-aware CAL Model Co-Design & Adaptive Learning: To adapt to the impacts of
the extreme distributions and the unbalanced frequencies of crowd activities as discussed in
Challenge (3), we have designed a novel extreme-aware CAL learning component with an
adaptive loss function based on the Extreme Value Theory [9]. Through the novel co-designs
with the graph interaction-attentive learning, our IE-CALP adaptively captures and integrates
the temporal occurrence patterns of extreme CALs, enabling a ubiquitous extreme-aware
CAL prediction framework.

(3) Extensive Real-world Data Analysis & Experimental Studies: We have conducted
extensive data analytics and experimental studies on a total of 738,715 CAL records and
246,660 POIs from the cities of New York City (NYC), Los Angeles (LA), and Tokyo. Our
extensive experimental studies have demonstrated that IE-CALP outperforms the other
baseline approaches in terms of spatial and categorical CAL prediction accuracy (including
extreme categorical CALs), with substantial error reduction by 24.12% on average.

• System Framework:We overview the system framework of IE-CALP in Fig. 2, which consists
of three major technical designs.

(a) Spatial CAL-POI Interaction-Attentive Learning Component: In this module, IE-CALP
takes in the spatial CALs, and captures the important regions for each category of crowd
activities by evaluating the spatial correlations between city regions and the historical crowd
activities. Specifically, IE-CALP models the city regions into graphs where each region is
considered as nodes connected by the spatial, temporal, and POI similarity graphs. After
capturing the spatial distributions of each category of crowd activities, and their interactions
throughout the above graphs, IE-CALP jointly predicts the spatial CALs and categorical
CALs.

(b) Multi-level Temporal Feature Learning Component: This component further leverages
the gated recurrent unit (GRU) to model the recurrent and multi-level temporal patterns for
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each category of CALs (e.g., daily and weekly in our studies), and outputs another set of
categorical CAL predictions.

(c) Extreme-Aware CAL Learning Component: To further capture the temporal character-
istic of extreme CALs, IE-CALP models the recurrent occurrence probabilities of different
categories of extreme CALs from the windows of historical CALs, quantifies the varying
influences of historical extreme CALs upon the future CALs, and finally outputs the final
categorical CAL predictions.
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Extreme CAL SequencesInputs
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Fig. 2. Overview of the IE-CALP framework, with three categories of inputs and processes them with three
novel modules.

• Broader Societal Implications: Our research studies and the developed IE-CALP as well as
insights on the ubiquitous crowd activity levels (CALs) based on ubiquitous check-in analytics can
pave new directions in ubiquitous/mobile/urban app designs and interactive user mobility analysis.
While our studies here focus on crowd mobility data [15] such as social network check-ins, our
core model and methodologies are general, and can be easily extended to other ubiquitous sensing
modalities (such as cellular [40]), mobility platforms (say, bike/ride/vehicle sharing [34]), and urban
event datasets [28, 56, 58] (such as anomalies or crimes). Our demonstrated joint predictions of
both spatial distributions and extreme activities will benefit the city planners and many other urban
computing practitioners in ubiquitous computing, urban applications [60] and system development,
as illustrated in Fig. 1.

• Paper Organization: The rest of the paper is organized as follows. We review the related
work in Sec. 2. Then we overview the data used in this study, importance concepts, and problem
formulation in Sec. 3. We further detail the core designs of the interaction-attentive learning module
in Sec. 4, and the extreme-aware learning module in Sec. 5. We present our experimental studies
and results in Sec. 6, and finally conclude in Sec. 7.

2 RELATEDWORK
We briefly overview the related work in the following two major categories.

• Deep Learning For Ubiquitous Crowd Mobility Analytics: Deep learning techniques
have emerged as the effective tools for many big data applications, including crowd mobility
analytics [4, 25, 52–54, 56]. Various spatio-temporal models [14, 32, 34, 35] have been studied for
crowd mobility analytics, where graph neural networks have been considered in prediction of
traffic volume [11, 16, 19, 44, 45, 59], bike flow [7, 24], and ride-hailing demand [18, 23]. Different
from these studies [6, 20, 47], we have studied and utilized the graph attention neural network to
model the important POI-to-CAL and CAL-to-CAL interactions for the ubiquitous CAL prediction,
enabling an interaction-attentive learning mechanism.
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Table 1. Crowd activity data from NYC, LA, and Tokyo.

City Description Total Records Geographic Bounding Box
Range

NYC 5 grouped categories, i.e., (i) arts &
entertainment & nightlife spot &
outdoors & recreation, (ii) travel &
transportation, (iii) food & shop &
service, (iv) education &
professional, and (v) residence.

227,428 [40.55085°N, 40.98833°N ],
[73.68382°W, 74.27476°W ]

LA 10,329 [33.6099916°N, 34.1813999°N ],
[117.5323391°E, 118.4984708°E]

Tokyo 500,958 [35.51018469°N, 35.86715042°N ],
[139.4708776°E, 139.9125931°E]

Table 2. POI data from NYC, LA, and Tokyo.

City Description Total Records
NYC 9 categories, i.e., commercial, cultural, education, health, recreational, religious,

residential, social service, and transportation.
29,298

LA 6 categories, i.e., arts & recreation, communication, education, health, social service,
and transportation.

27,385

Tokyo 4 categories, i.e., education, health, public transportation, and shop & food & service. 189,977

• Extreme Detection and Prediction for Time Series: Extreme values generally occur in
various time-series datasets [9], including climate and network stream records. To mitigate the
influence upon the time-series modeling and estimation, various statistical analysis and learning
approaches have been proposed [29]. Lozano et al. [33] incorporated extreme value modeling for
modeling extreme climate events. To detect the extreme values dynamically, Siffer et al. [39] and
Na et al. [37] further proposed the Extreme Value Theory and Local Outlier Factor approaches,
respectively. They studied how to detect outliers in data streams without manual determination
of the thresholds and assumption of the underlying distributions. However, these approaches
might only handle the univariate data streams. Manzoor et al. [36] further proposed a density-
based ensemble outlier detector for high-dimensional feature-evolving streams. Su et al. [41]
proposed a stochastic recurrent neural network for multivariate time series anomaly detection.
However, these above studies could only detect the anomalies after the occurrences of the events
rather than prediction, which might largely delay the response actions given certain anomalies in
real-world applications. Besides extreme detection, how to forecast the extreme values has also
attracted attention recently [12, 48, 50]. Deng et al. [10] considered the high-frequency and low
frequency componentswithin the time-series data to yield high prediction accuracy. Huang et al. [26]
proposed predicting the anomalies of each region of a city by modeling the temporal dependency
of anomaly occurrences of different regions. Inspired by the aforementioned studies [9, 12, 41],
through integration of extreme value theory (EVT) with spatio-temporal CAL learning, we have
proposed a novel model co-design which combines the learnability of novel interaction-attentive
learning as well as the extreme-awareness of the EVT-based loss function. Our results show that
IE-CALP models the extreme CALs and enhances the model prediction accuracy and adaptivity.

3 DATASETS, CONCEPTS, & PROBLEM DEFINITIONS
In this section, we present the details of datasets in Sec. 3.1, and introduce the important concepts
of this study in Sec. 3.2. After that, we present the problem formulation in Sec. 3.3, and show the
data analysis in Sec. 3.4.

3.1 Datasets Studied
In this study, we utilize the urban POI as well as the crowd activity level (CAL) data from cities
of New York City (NYC), Los Angeles (LA), and Tokyo to model the citywide crowd activity
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Table 3. Summary of the key symbols and their definitions.

Symbols Definitions Symbols Definitions
𝑀 Number of POI categories. 𝑅 Number of regions.
𝑇 Number of the time units within a

day.
𝐻 Hours of one time unit.

𝑙 Time interval index of categorical
CAL.

𝑙 ′ time interval index of spatial CAL.

𝑒 Each time interval in spatial CAL is
𝑒 × 𝐻 hours.

N Number of both the categorical CAL
and spatial CAL categories.

𝑡 ′ The target time interval of spatial
CAL.

𝑡 The target time interval of
categorical CAL.

𝐿 Number of time intervals of near
history data.

C𝑙,𝑛 Categorical CAL of category 𝑛 in
time interval 𝑙 .

C𝑙 Categorical CAL of 𝑁 categories in
time interval 𝑙 .

CNear Categorical CAL of 𝑁 categories
during the past 𝐿 time intervals.

CDaily 𝑃 time intervals of categorical CAL
which in the same time interval
within a day as the target time
interval 𝑡 from the past 𝑃 days.

CWeekly 𝑄 time intervals of categorical CAL
which in the same time interval
within a day and the same day
within a week as the target time
interval 𝑡 from the past𝑄 weeks.

S The spatial CAL of each categories
in all regions during the past 𝐿

intervals.

E𝑘 The𝑇 time intervals of extreme CAL
sequence of the previous 𝑘 th day of
the day of the target time step 𝑡 .

Q𝑘 The extreme label vector at time
interval of (𝑡 − 𝑘 × 𝑇 ) .

ADis The region-to-region geographical
distance adjacency matrix.

ATmp The region-to-region temporal CAL
correlation adjacency matrix.

APOI The region-to-region POI correlation
adjacency matrix.

Ĉ𝑡 The categorical CAL prediction at
time interval 𝑡 .

ŜSCPIAL𝑡 ′ The spatial CAL prediction at time
interval 𝑡 ′ .

participation. The details of the CAL and POI datasets are respectively summarized in Tables 1
and 2. We have further summarized the symbols and their definitions presented in this work in
Table 3.

• POI Data: To model the spatial and temporal interactions with the CAL, we have harvested
the Point of Interests (POIs) from the OpenStreetMap1. The POIs are classified into 𝑀 distinct
categories based on the function of the POIs (in our studies 𝑀 = 9 for NYC, 𝑀 = 6 for LA, and
𝑀 = 4 for Tokyo).

• Mobile CAL Data: CAL venues reflect the types of crowd activities due to the urban region
functions and the local venues. In this study, we consider a total of 5 CAL venue categories2 for the
three metropolitan cities: (i) arts & entertainment & nightlife spot & outdoors & recreation, (ii)
travel & transportation, (iii) food & shop & service, (iv) education & professional, and (v) residential.

3.2 Important Concepts
Based on the above, we further present the important concepts in this study as follows.

Definition 3.1. Spatial Region Discretization. Conventional methods divide the city into
rectangular distinct regions to model the citywide crowd mobility [57]. However, we notice that
such partition method may results in the sparsity of data in some regions. To alleviate this problem
and account for both the data density and geography distance of the regions, we partition the city
1https://www.openstreetmap.org
2https://developer.foursquare.com/docs/venues/categories
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(a) NYC. (b) LA. (c) Tokyo.

Fig. 3. Spatial distributions and the corresponding regions of all the CALs of NYC (04/02/2012–02/16/2013),
LA (12/01/2009–04/30/2010), and Tokyo (04/02/2012–02/16/2013).

into 𝑅 disjoint regions by k-means clustering [21] using all the location data of the CALs within a
city. We apply squared Euclidean distance to measure the spatial proximity across each pair of city
regions. In this study, 𝑅 is set as 15 for NYC, 6 for LA, and 10 for Tokyo due to different sizes of the
cities studied. The partitioned regions are shown in the maps in Fig. 3, where we also provide the
region indices within each city.

Definition 3.2. Time Discretization. For CAL computation, we discretize the time within a
day equally into 𝑇 time units. The length of each time unit is 𝐻 = 24/𝑇 hours (for instance, we
set 𝑇 = 8 and 𝐻 = 3 in NYC). The categorical CALs and spatial CALs often occur with temporal
patterns in different time ranges and scales. Therefore, to model the categorical CAL and spatial CAL
predictions for ubiquitous CAL modeling, we set different lengths of time interval for predictions
of the categorical CALs and spatial CALs.
Specifically, we have: (i) the length of the time interval for the categorical CALs prediction is

one time unit, i.e., 𝐻 hours, and we denote such an time interval as 𝑙 ; (ii) the length of the time
interval for spatial CALs prediction is 𝑒 time units, i.e., 𝑒 · 𝐻 hours, and we denote such an time
interval as 𝑙 ′. In our current studies, for NYC, LA, and Tokyo, we respectively set (𝑇,𝐻, 𝑒) as (8, 3h,
8), (2, 12h, 2), and (24, 1h, 1) due to the sampling frequency variations from the three cities.

Definition 3.3. Categorical and Spatial CALs.We let the aggregate number of participants of
CAL category 𝑛 ∈ {1, . . . , 𝑁 } within an interval 𝑙 be the C𝑙,𝑛 ∈ R1. Then we form the vector of
categorical CAL as

C𝑙 = {C𝑙,1, . . . ,C𝑙,𝑛, . . . ,C𝑙,𝑁 } ∈ R𝑁 . (1)
Based on above, we further denote

CNear = {C1, . . . ,C𝑙 , . . . ,C𝐿} ∈ R𝐿×𝑁 , (2)
as the categorical CALs.

To evaluate the spatial distributions of different categories of CALs, we find the spatial occurrences
of the 𝑁 categories of CALs in all the 𝑅 regions of the city in the past 𝐿 ∈ R time intervals, i.e.,
{𝑡 ′ − 𝐿, . . . , 𝑡 ′ − 𝐿 + 𝑙 ′, . . . , 𝑡 ′ − 1}, and denote the occurrences as S ∈ R𝐿×𝑅×𝑁 .

Definition 3.4. Extreme CALs. To enable the extreme-aware CAL prediction, we further label
the extreme CALs for the IE-CALP’s model learning. In particular, we denote the extreme CAL
label 𝑄𝑙,𝑛 ∈ R of the CAL category 𝑛 in time interval 𝑙 as an extreme value and label it as 1 if it is
greater than 𝜃 (𝜃 > 0) percent of all the categorical CALs of the city, and 0 otherwise.
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Given the labeled extreme CALs, we further construct the𝐾 historical extreme CAL sequence, and
form the extreme CAL tuples, i.e., {(E1,Q1) , (E2,Q2) , . . . , (E𝐾 ,Q𝐾 )}, as the model inputs, where

E𝑘 = [C𝑡−𝑘 ·𝑇−𝑇 , . . . ,C𝑡−𝑘 ·𝑇−𝑙 , . . . ,C𝑡−𝑘 ·𝑇−1] ∈ R𝑇×𝑁 , (3)

denotes the𝑇 consecutive time intervals of categorical CALs on the previous𝑘 th day (𝑘 ∈ {1, . . . , 𝐾})
of the day of the target time step 𝑡 , and

Q𝑘 = [𝑄𝑡−𝑘 ·𝑇,1 . . . , 𝑄𝑡−𝑘 ·𝑇,𝑁 ] ∈ R𝑁 , (4)

denotes the 𝑘 th (𝑘 ∈ {1, . . . , 𝐾}) historical extreme CAL label vectors at the time interval (𝑡 − 𝑘 ·𝑇 ).
For instance, if we have 𝑇 = 8, 𝐻 = 3h, and 𝑘 = 2 for the target time interval 𝑡 = [0am, 3am] on

09/05/2012, E2 is given by the sequence of the𝑇 = 8 categorical CALs from the interval [0am, 3am],
09/02/2012 to [9pm, 0am], 09/02/2012, and Q2 represents the extreme CAL labels of [0am, 3am] on
09/03/2012. Through the historical extreme CAL sequences and label vectors, we can further enable
IE-CALP to capture the occurrence patterns of the extreme CALs.

Definition 3.5. Daily-aggregated and Weekly-aggregated Categorical CALs. In order to
conduct multi-level CAL learning to capture the daily and weekly patterns of the categorical CALs,
we further construct the data vectors of 𝑃 daily-aggregated categorical CALs from the past 𝑃 days,
denoted as

CDaily = {C𝑡−𝑃 ·𝑇 ,C𝑡−(𝑃−1) ·𝑇 , . . . ,C𝑡−𝑇 } ∈ R𝑃×𝑁 , (5)
from the past 𝑃 days {𝑡 − 𝑃 · 𝑇, 𝑡 − (𝑃 − 1) · 𝑇, . . . , 𝑡 − 𝑇 }. We also have 𝑄 weekly-aggregated
categorical CALs from the past 𝑄 weeks, denoted as

CWeekly = {C𝑡−7·𝑄 ·𝑇 ,C𝑡−7· (𝑄−1) ·𝑇 , . . . ,C𝑡−7·𝑇 } ∈ R𝑄×𝑁 , (6)

from the time intervals {𝑡 − 7 ·𝑄 ·𝑇, 𝑡 − 7 · (𝑄 − 1) ·𝑇, . . . , 𝑡 − 7 ·𝑇 }.

• CAL-POI Interaction Graph Formulation. To evaluate the spatial distributions of different
categories of CALs, we construct the graph G(V, E), where each node in V ∈ R𝑅 denotes each
of the 𝑅 regions in the city, and the weight of each edge in E is based on the correlations across
the city regions. We note that the designs of the effective encoded correlations among regions
are important for the network parameter learning and accurate CAL prediction. We assign large
weights to the edges between regions with similar CAL patterns.

To this end, we have designed the following three weighted adjacency matrices for E, as the
CAL-POI interaction graphs, to further represent the following the spatial, temporal, and contextual
interactions across CALs and POIs.
(1) Spatial Region Distance: To capture the correlations among the city regions that are

geographically close to each other, we construct a distance adjacency matrix, denoted as
ADis ∈ R𝑅×𝑅 , where each element, ADis

(𝑖, 𝑗 ) , is given by the reverse of geo-distance (in km)
between pairs of regions, 𝑖 ∈ {1, 2, . . . , 𝑅} and 𝑗 ∈ {1, 2, . . . , 𝑅}. We set the diagonal elements
as zeros, i.e., ADis

(𝑖,𝑖 ) = 0 for 𝑖 ∈ {1, 2, . . . , 𝑅}.
(2) Temporal CAL Correlation: As mentioned above, some regions may share similar temporal

patterns of the CALs. With the historical aggregate occurrences of all CALs in different time
intervals, we further construct the region-to-region temporal CAL correlation adjacency
matrix to quantify the dynamic connectivities among regions. More specifically, we calculate
aggregate occurrences of CALs over all historical intervals in each region. Then we find
correlation adjacency matrix as ATmp ∈ R𝑅×𝑅 . Each element ATmp

(𝑖, 𝑗 ) ∈ R denotes the Pearson
coefficient [5] of the historical CALs between region 𝑖 and region 𝑗 . In particular, the total
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number CALs in each time interval of the entire dataset in regions 𝑖 and 𝑗 is denoted as the
vectors of U𝑖 and U𝑗 . The Pearson coefficient between U𝑖 and U𝑗 is denoted as ATmp

(𝑖, 𝑗 ) .
(3) Region-to-Region POI Correlation: The check-in patterns of a region may be dependent

on the attractions of the POIs to and their potential interactions with the human visitations
of the region. Therefore, we further construct another adjacency matrix APOI ∈ R𝑅×𝑅 to
represent the POI correlations between regions where APOI

(𝑖, 𝑗 ) ∈ R denotes the cosine similarity
of the POI distributions between regions 𝑖 and 𝑗 . In particular, we find the numbers of each
of the𝑀 categories of POIs in regions 𝑖 and 𝑗 , and form the vectors of B𝑖 ∈ R𝑀 and B𝑗 ∈ R𝑀 .
Then we form the cosine similarity between B𝑖 and B𝑗 for APOI

(𝑖, 𝑗 ) . Similar to ADis and ATmp,
we set the diagonal elements APOI

(𝑖,𝑖 ) = 0 for 𝑖 ∈ {1, 2, . . . , 𝑅}.

3.3 Problem Formulation
Based on the above concepts, we present the core problem formulation of IE-CALP. In particular,
we take in the following as the inputs: (a) spatial CALs and spatio-temporal CAL-POI interaction
graphs: including the spatial CALs S ∈ R𝐿×𝑅×𝑁 in the historical 𝐿 time intervals, the region-to-
region distance adjacency matrix 𝐴Dis ∈ R𝑅×𝑅 , the temporal CAL correlation adjacency matrix
𝐴Tmp ∈ R𝑅×𝑅 , and the POI similarity matrix 𝐴POI ∈ R𝑅×𝑅 ; (b) multi-level categorical CALs: including
the 𝐿 historical time intervals of all categorical CALs, CNear, the 𝑃 time intervals of historical
daily-aggregated categorical CALs, CDaily, and the𝑄 time intervals of historical weekly-aggregated
categorical CALs, CWeekly; and (c) extreme categorical CALs: the historical 𝐾-day extreme CAL
sequence and label tuples, i.e., {(E1,Q1) , . . . , (E𝐾 ,Q𝐾 )}. Our IE-CALP aims at jointly predicting: (i)
the spatial CALs Ŝ𝑡 ′ ∈ R𝑅×𝑁 and (ii) the categorical CALs Ĉ𝑡 ∈ R𝑁 .

3.4 Spatial-Temporal CAL Data Analysis
We have further conducted large-scale spatial-temporal CAL data analysis to drive our model
designs.
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Fig. 4. The Pearson correlations among 5 categories of spatial CALs and 9 categories of POIs of NYC. The
5 categories of CALs are: (i) arts & entertainment & nightlife spot & outdoors & recreation, (ii) travel &
transportation, (iii) food & shop & service, (iv) education & professional, and (v) residence. The 9 categories of
POIs are: (a) commercial, (b) cultural, (c) education, (d) health, (e) recreational, (f) religious, (g) residential, (h)
social service, and (i) transportation.

• Spatial Interactions of CALs: We show the spatial Pearson correlations between the 5
categories of CALs and 9 categories of POIs in 15 regions of NYC in Fig. 4. We can see that different
interactions between POIs and CALs. For instance, the recreational POIs have an overall higher
correlations with the CALs than other POI categories, while the arts & entertainment and food &
shop & service CALs are more correlated with POIs than other CAL categories. We can learn from
Fig. 4 that there are spatial interactions between the POI distributions and the CALs, and that the
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spatial interactions vary across different categories. Such spatial interactions should be carefully
characterized for accurate CAL predictions.

•TemporalMulti-level Interactions andExtremeCALs: Fig. 5a shows the temporal sequence
of CALs for transportation category in Tokyo during 12/03/2012–12/07/2012, demonstrating the
recurrent routines in the CALs. We can observe the temporal interactions between the daily activity
patterns. Fig. 5b shows the average ratios of the CALs of food, professional, shop & service, and
transportation categories in Tokyo. The horizontal axis represents the time gap between two
intervals, ranging from 1 to 24 time steps, where the time step is 1 hour for the data of Tokyo. We
can observe temporal interactions between the multiple categories of activities. Fig. 5b motivates
our multi-level interaction learning designs, where daily and weekly trends are further captured for
IE-CALP’s accurate prediction. We further illustrate the extreme occurrences of the transportation
activities in Fig. 6, from which we could observe several extreme occurrences (say, exceeding 200
records) during the rush hours. Since the extreme CALs are largely imbalanced in the historical
records, we further design the Extreme-aware CAL Learning Component to enhance the model
adaptivity and prediction accuracy.
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Fig. 5. The (a) original crowd activities of transportation category of Tokyo from 12/03/2012 to 12/07/2012,
and the (b) average ratio curves of each two crowd activities in the same category and have the same time
gaps from 1 time step to 24 time steps, using the crowd activity data of food, professional, shop & service and
transportation categories of Tokyo.
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Fig. 6. Crowd activities from transportation category of Tokyo from 05/12/2012 to 05/18/2012.

4 INTERACTION-ATTENTIVE LEARNING DESIGNS
To realize the extreme-aware and interaction-attentive prediction, we have designed the core
architecture of IE-CALP, as illustrated in Fig. 7, which consists of the three essential modules, i.e.,
spatial CAL-POI interaction-attentive learning, multi-level temporal feature learning, and extreme-
aware CAL learning. In this section, we first show the Spatial CAL-POI Interaction-Attentive Learning
in Sec. 4.1 and the Multi-level Temporal Feature Learning in Sec. 4.2,
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Fig. 7. The detailed design of IE-CALP framework. (I) The Spatial CAL-POI Interaction-Attentive Learning
Component; (II) the Multi-level Temporal Feature Learning Component; and (III) the Extreme-aware CAL
Learning Component.

4.1 Spatial CAL-POI Interaction-Attentive Learning Component
• Motivations & Component Overview. In this component, we leverage the regional POI-CAL
interactions for both the spatial CALs (shown in Fig. 8) and categorical CALs (detailed in Fig. 9)
prediction. In particular, we formulate three CAL-POI interaction graphs as discussed in Sec. 3.1, and
then we predict the spatial CAL Ŝ𝑡 ′ via (a) adjacency matrix normalization, (b) graph convolution,
and (c) graph embedding attention components. The spatial features FSpa from the graph embedding
attention component are fused with historical categorical CALs CNear by (d) the categorical CAL
fusion design to compute the categorical CAL prediction ĈSCPIAL

𝑡 . Details of each component are
presented as follows.
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Fig. 8. Designs of Spatial CAL-POI Interaction-Attentive Learning Component in predicting the spatial CALs:
(a) adjacency matrix normalization; (b) graph convolution; and (c) graph embedding attention.
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Fig. 9. The design of Spatial CAL-POI Interaction-Attentive Learning Component in predicting the categorical
CALs.

• Adjacency Matrix Normalization. Given the three CAL-POI interaction graphs, we first
normalize their adjacency matrix. Specifically, taking the distance adjacency matrix ADis as an
example, we first normalize it by

ADis′ =

(
DDis

)− 1
2 ADis

(
DDis

) 1
2 + I, (7)
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where DDis ∈ R𝑅×𝑅 is the degree matrix of the adjacency matrices of ADis and I ∈ R𝑅×𝑅 is the
identity matrix. Similarly, we normalize the ATmp and APOI, and obtain ATmp′ and APOI′ , respectively.

• Graph Convolution Design. To further capture the CAL-POI interactions, we have designed
a graph convolutional network (GCN) [30], which takes in the normalized adjacency matrices and
the spatial CALs, S = {S𝑡 ′−𝐿, . . . , S𝑡 ′−𝐿+𝑙 ′ , . . . , S𝑡 ′−1}, and generates three graph embeddings, i.e.,
FA, FB, and FC, respectively, for the three CAL-POI interaction graphs. Mathematically, the graph
convolution is formulated by

FA
𝑙 ′ = ADis′S𝑙 ′WA

𝑐 , (8)

where FA
𝑙 ′ ∈ R𝑅×𝐿

Emb represents the resulting graph embedding of the spatial region distance graph
in the time interval 𝑙 ′ ∈ {𝑡 ′ − 𝐿, . . . , 𝑡 ′ − 𝐿 + 𝑙 ′, . . . , 𝑡 ′ − 1}. Here we let 𝐿Emb ∈ R be the embedding
length, S𝑙 ′ ∈ R𝑅×𝑁 be the spatial CALs at time interval 𝑙 , andWA

𝑐 ∈ R𝑁×𝐿Emb be the trainable weight
matrices. Similar to above, we obtain the graph embeddings, FB and FC, for the temporal CAL
correlation graph and region-to-region POI correlation graph, respectively.

• Graph Embedding Attention Design. Given the CAL-POI interaction graph embeddings,
i.e., FA, FB, and FC, we have designed a graph embedding attention mechanism to differentiate
the varying importance of different graph embeddings based on the occurrence of different CAL
categories in each city region.
First, we apply a fully-connected layer whose number of units is set as 𝐿Emb to further encode

the spatial CALs, i.e.,
FA

′
= Dense

(
FA

)
. (9)

We further transform the updated graph embedding FA
′ ∈ R𝐿×𝑅×𝐿

Emb through a nonlinear Tanh
operation. Then, we apply one attention vector W𝑞 ∈ R𝐿

Emb×1 to obtain the embedding value
w𝐴𝑣 ∈ R𝐿×𝑅×1, i.e.,

w𝐴𝑣 = Tanh
(
FA

)
W𝑞 . (10)

We integrate the same attention vectorW𝑞 for the other two graph embeddings, and obtain the
updated embedding values, i.e., w𝐵𝑣 from FB and w𝐶𝑣 from FC, respectively.
We then have obtained the final attention scores, i.e., a𝐴𝑣 , a𝐵𝑣 , a𝐶𝑣 ∈ R𝐿×𝑅×1 by a Softmax func-

tion [7], i.e.,

a𝐴𝑣 , a
𝐵
𝑣 , a

𝐶
𝑣 = Softmax

(
w𝐴𝑣 ,w

𝐵
𝑣 ,w

𝐶
𝑣

)
. (11)

Given the attention scores, we weigh the graph embeddings and find the final spatial CAL
features FSpa ∈ R𝐿×𝑅×𝐿

Emb by

FSpa = a𝐴𝑣 ⊙ FA + a𝐵𝑣 ⊙ FB + a𝐶𝑣 ⊙ FC, (12)

where ⊙ is the Hadamard (element-wise) product operator.
We then apply the gated recurrent unit (GRU) to capture the temporal features of the spatial CAL,

i.e.,
FTem = GRU

(
FSpa

)
, (13)

where FTem ∈ R𝐿
Tem represents the resulting temporal features with 𝐿Tem being the size of the hidden

state of the GRU.
Finally, to predict the spatial CALs in time interval 𝑡 ′, Ŝ𝑡 ′ ∈ R𝑅×𝑁 , we further apply another

fully-connected layer on the temporal features FTem with units of 𝑅 × 𝑁 followed by a reshape
operation, i.e.,

Ŝ𝑡 ′ = Reshape
(
Dense

(
FTem

) )
. (14)
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• Categorical CAL Fusion Design. The spatial distribution of different categories of CALs are
highly correlated with the future occurrences of the citywide categorical CALs. In this step, we
utilize both the extracted spatial features FSpa ∈ R𝐿×𝑅×𝐿

Emb from the previous component and the
𝑁 categories of categorical CALs CNear to predict the occurrences of the categorical CALs in the
time interval 𝑡 . The detailed designs of the processes are illustrated in Fig. 9.

First, to leverage the spatial features of the CALs, we sum up the extracted spatial features FSpa
over all the city regions by

FSpa
′
=

𝑅∑︁
𝑖

FSpa
𝑖
, (15)

to obtain the aggregate spatial features, i.e., FSpa′ ∈ R𝐿×𝐿
Emb .

We then apply the GRU with the size of the hidden states as 𝐿Uni to further extract the temporal
dependencies across the spatial features, i.e.,

FSpa
′′
= GRU(FSpa′ ). (16)

To leverage the historical categorical CALs, CNear, for categorical CAL prediction, we capture
the temporal features of categorical CALs by a fully-connected layer followed by the GRU with the
size of the hidden states as 𝐿Uni, i.e.,

CNear′ = GRU
(
Dense

(
CNear) ) . (17)

With both the spatial CAL features FSpa′‘ ∈ R𝐿
Uni and the categorical CAL features CNear′ ∈ R𝐿

Uni ,
we further concatenate them together and utilize the fully-connected layer with units of 𝑁 to
obtain the predictions of the 𝑁 categories of categorical CALs in time interval 𝑡 , i.e.,

ĈSCPIAL
𝑡 = Dense

(
Concat

(
FSpa

′′
,CNear′

))
, (18)

where ĈSCPIAL
𝑡 ∈ R𝑁 is the categorical CAL prediction in time interval 𝑡 .

4.2 Multi-level Temporal Feature Learning Component
•Motivations&ComponentOverview.Crowd activities usually follow certain temporal patterns,
which need to be captured for accurate CAL prediction. We note that the recurrent layers of
gated recurrent unit (GRU) [8] is capable of capturing the shor-term and medium-term temporal
dependencies with their memorization designs. However, GRU might still fail to recognize the
long-term temporal characteristics. Previous studies [31, 46] leverage the periodic patterns among
real-world datasets for time series prediction. Inspired by the idea that historical data in the same
time period within a day/week/month/year as the predicted time step are highly correlated, we
proposed the GRU-based Multi-level Temporal Feature Learning Component to further extract the
daily and weekly long-term patterns of CAL.
As shown in Fig. 10, the Multi-level Temporal Feature Learning Component includes two iden-

tical sub-components to capture the daily and weekly patterns of CALs, respectively. Each sub-
component is comprised of the GRU-based recurrent skip neural network. The outputs from the
two sub-components are fed into the Dense operation to have the categorical CAL prediction in
time interval 𝑡 .
As discussed in Sec. 3.1, there are 𝑇 ∈ R time units discretized for each day, and the length of

each time unit is 𝐻 hours (𝐻 = 24/𝑇 ). Given categorical CALs (from 𝑁 categories) CDaily from
time intervals {𝑡 − 𝑃 ·𝑇, 𝑡 − (𝑃 − 1) ·𝑇, . . . , 𝑡 −𝑇 } (past 𝑃 days), and weekly-aggregated categorical
CAL CWeekly from time intervals {𝑡 − 7 ·𝑄 ·𝑇, 𝑡 − 7 · (𝑄 − 1) ·𝑇, . . . , 𝑡 − 7 ·𝑇 } (past 𝑄 weeks), we
first capture the daily trend ĈDaily

𝑡 ∈ R𝑁 and weekly trend ĈWeekly
𝑡 ∈ R𝑁 of the categorical CALs
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Fig. 10. Multi-level Temporal Feature Learning Component. (a) Daily pattern extraction; and (b) weekly
pattern extraction

in time interval 𝑡 . Then we take into account both of these two trends for the prediction of the 𝑁
categories of CALs ĈMTFL

𝑡 ∈ R𝑁 in time interval 𝑡 via a fully connected layer (denoted as Dense).
Since we utilize the same structure to consider the daily and weekly patterns of CALs, we will

focus on presenting the formulations of capturing the daily temporal patterns of CAL as an example.
(a) Daily Pattern Extraction. Having 𝑁 categories of historical categorical CAL CDaily =

{C𝑡−𝑃 ·𝑇 ,C𝑡−(𝑃−1) ·𝑇 , . . . ,C𝑡−𝑇 } ∈ R𝑃×𝑁 in the past 𝑃 days, we apply the GRU units to discover the
daily temporal patterns of categorical CAL. The processes are formulated as, i.e.,

zDailyp = 𝜎

(
WdzC𝑝 + UdzhDaily

𝑝−𝑇 + bdz
)
, (19)

rDaily𝑝 = 𝜎

(
WdrC𝑝 + UdrhDaily

𝑝−𝑇 + bdr
)
, (20)

ĥ
Daily

p = 𝜙

(
WdhC𝑝 + Udh

(
rDailyp ⊙ hDaily

𝑝−𝑇

)
+ bdh

)
, (21)

hDaily
𝑝 = zDailyp ⊙ hDaily

𝑝−𝑇 +
(
1 − zDaily𝑝

)
⊙ ĥ

Daily

𝑝 , (22)

where zDailyp ∈ R𝑁 , rDailyp ∈ R𝑁 , and ĥ
Daily

p ∈ R𝑁 are the update gate, reset gate, and candidate
hidden state of the GRU unit. hDaily

𝑝 ∈ R𝑁 is the hidden representation of the 𝑁 categories of
categorical CAL in time interval 𝑝 ∈ {𝑡 −𝑃 ·𝑇, 𝑡 − (𝑃 − 1) ·𝑇, . . . , 𝑡 −𝑇 }.Wdz ∈ R𝑁×𝑁 , Udz ∈ R𝑁×𝑁 ,
bdz ∈ R𝑁 , Wdr ∈ R𝑁×𝑁 , Udr ∈ R𝑁×𝑁 , bdr ∈ R𝑁 , Wdh ∈ R𝑁×𝑁 , Udh ∈ R𝑁×𝑁 , rDailyp ∈ R𝑁 , and
bdh ∈ R𝑁 are parameters to learn. Ĉ𝑝 ∈ R𝑁 represents the 𝑁 categories of categorical CAL in time
interval 𝑝 .
The final daily hidden representation hDaily

𝑡 ∈ R𝑁 of 𝑁 categories of categorical CAL in time
interval 𝑡 is used as the daily trend prediction ĈDaily

𝑡 ∈ R𝑁 of the categorical CALs.
(b) Weekly Pattern Extraction. The same operation is also utilized to capture the weekly

trend of the categorical CALs. Given the 𝑄 weeks of 𝑁 categories of categorical CAL CWeekly =

{C𝑡−7·𝑄 ·𝑇 ,C𝑡−7· (𝑄−1) ·𝑇 , . . . ,C𝑡−7·𝑇 }, we further use the same GRU-based recurrent skip neural net-
work as in the Daily Pattern Extraction to predict the weekly trend of categorical CALs ĈWeekly

𝑡 ∈ R𝑁

in the time interval 𝑡 . Given both the ĈDaily
𝑡 and ĈWeekly

𝑡 , a fully-connected layer is applied for weight-
ing the three predictions and output the 𝑁 categories of categorical CAL prediction ĈMTFL

𝑡 ∈ R𝑁 at
time interval 𝑡 .
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5 EXTREME-AWARE CAL LEARNING AND MODEL INTEGRATION
We first overview and present our motivations of the extreme-aware CAL learning component in
Sec. 5.1, and then discuss the integration of the extreme value theory for the loss function designs
in Sec. 5.2.

5.1 Extreme-aware CAL Learning Component
• Motivations & Component Overview. As shown in Sec. 3.4, the occurrences of CALs may
follow their routines. However, some CALs will show extreme high/low records owing to some
rare external factors. For instance, the outdoor recreation activities and nightlife activities might
burst during festivals, whereas work activities drop significantly at the same time. The traditional
deep learning models like LSTM/GRU can hardly learn the occurrence patterns of such an imbalanced
data distribution, and fail to predict the extreme CALs.
To overcome the data imbalance issue in categorical CAL prediction, we propose a novel co-

design called Extreme-aware CAL Learning Component, which integrates the Extreme Value
Theory (EVT) [12], for adaptively modeling of the extreme categorical CALs. Specifically, our
Extreme-aware CAL Learning Component accounts for capturing the extremely high occurrences of
the CALs. As illustrated in Fig. 11, the Extreme-aware CAL Learning Component first models the
probabilities and the temporal patterns of the historical occurrence of extreme CALs by applying the
GRU on the 𝐾 historical extreme CAL sequence and label pairs {(E1,Q1) , (E2,Q2) , . . . , (E𝐾 ,Q𝐾 )}.
Then we utilize the attention operation to further differentiate the impacts of the occurrences of
historical extreme CALs on the categorical CALs in time interval 𝑡 .

GRU

Categorical CAL 
Prediction

�𝑪𝑪t
{𝑬𝑬1, 𝑬𝑬2, …, 𝑬𝑬𝐾𝐾}

𝐾𝐾 Historical Extreme 
CAL Sequences

GRU

𝑮𝑮1

𝑮𝑮𝐾𝐾

�𝑪𝑪𝑡𝑡SCPIAL

Dense

Attention Operation

Extreme Labels

Tanh

ReLU

ReLU

�𝑪𝑪𝑡𝑡MTFL

�𝑪𝑪t

𝑬𝑬𝐾𝐾

𝑬𝑬1

GRU ReLU
𝑬𝑬𝑘𝑘 𝑮𝑮𝑘𝑘

{𝑸𝑸1, 𝑸𝑸2, …, 𝑸𝑸𝐾𝐾}

(a) (b)

Fig. 11. Extreme-aware CAL Learning Component: (a) extreme CAL occurrence patterns modeling; and (b)
prediction incorporation & attention operation.

(a) Extreme CAL Occurrence Patterns Modeling. To predict the occurrence of 𝑁 cate-
gories of categorical CALs in time interval 𝑡 , we first construct the 𝐾 historical extreme CAL
sequence and label pairs {(E1,Q1) , (E2,Q2) , . . . , (E𝐾 ,Q𝐾 )}. As defined in Def. 3.4, we note that
E𝑘 = (C𝑡−𝑘 ·𝑇−𝑇 , . . . ,C𝑡−𝑘 ·𝑇−𝑙 , . . . ,C𝑡−𝑘 ·𝑇−1) ∈ R𝑇×𝑁 denotes the 𝑘 th (𝑘 ∈ {1, . . . , 𝐾}) historical
extreme CAL sequence during time intervals {𝑡 − 𝑘 · 𝑇 − 𝑇, . . . , 𝑡 − 𝑘 · 𝑇 − 𝑙, . . . , 𝑡 − 𝑘 · 𝑇 − 1},
and Q𝑘 ∈ R𝑁 denotes the 𝑘 th ∈ {1, . . . , 𝐾} ground truth historical extreme CAL labels of the 𝑁
categories of categorical CALs at time interval 𝑡 − 𝑘 ·𝑇 .
To enable the occurrence pattern modeling of extreme high and normal CALs, we first classify

the categorical CALs in each time interval into two classes. As discussed in Sec. 3.1, the categorical
CAL in a time interval is labeled as one (extreme high) if its value is greater than 𝜃 percent of all
the categorical CALs, and zero otherwise.
Given the extreme CAL sequence and label pairs, we first leverage a Tanh activation operation

on the extreme CAL sequences {E1, E2, . . . , E𝐾 }, and then use 𝐾 Gated Recurrent Units (GRUs) to
each of the extreme CAL sequence E𝑘 , 𝑘 ∈ {1, . . . , 𝐾}. GRUs are running with a ReLU activation
function. The last hidden state outputs of all the extreme CAL sequences from GRUs are denoted
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as G ∈ {G1,G2, . . . ,G𝐾 }, i.e., the latent representation of the 𝐾 historical extreme CAL sequences.
G𝑘 ∈ {G𝑘,1, . . . ,G𝑘,𝑁 } are the representations of each of the 𝑁 categories of categorical CAL in
extreme CAL sequence E𝑘 , where G𝑘,𝑛 ∈ R, 𝑛 ∈ {1, 2, . . . , 𝑁 }.

The intuition behind utilizing the previous 𝐾 historical extreme CAL sequence and label pairs to
model the probabilities and the temporal patterns of extreme CALs is two-fold. First, the occurrences
of CALs fall into different frequency ranges in different long time periods (different seasons, etc.).
Second, the citywide extreme CALs of each category are usually influenced by the sudden change
of some external factors. In this work, we focus on the short-term sudden frequency changes of
CAL as extreme cases.
(b) Prediction Incorporation & Attention Operation. After finding the 𝐾 latent represen-

tation vectors G ∈ {G1, . . . ,G𝐾 } of the 𝐾 historical extreme CAL sequences {E1, E2, . . . , E𝐾 }, we
further incorporate the 𝑁 categories of categorical CAL prediction ĈSCPIAL

𝑡 ∈ R𝑁 from the Spatial
CAL-POI Interaction-Attentive Learning Component and ĈMTFL

𝑡 ∈ R𝑁 from the Multi-level Tempo-
ral Feature Learning Component in time interval 𝑡 for the final categorical CAL prediction in the
time interval 𝑡 .
We first produce the categorical CAL prediction Ĉ𝑡 ∈ R𝑁 in the time interval 𝑡 through linear

projection of ĈSCPIAL
𝑡 and ĈMTFL

𝑡 as follows,

Ĉ𝑡 = Dense
( [
ĈSCPIAL
𝑡 , ĈMTFL

𝑡

] )
, (23)

where [ĈSCPIAL
𝑡 , ĈMTFL

𝑡 ] represents the concatenation of ĈSCPIAL
𝑡 and ĈMTFL

𝑡 .
To further leverage the temporal patterns of extreme CALs, we quantify the varying influences

of the occurrences of historical extreme CALs by the Attention Operation [2], i.e.,

a𝑘 =
exp(𝑐 𝑗 )∑𝐾
𝑗=1 exp(C𝑗 )

, and C𝑗 = Ĉ𝑡 ⊙ G𝑗 , (24)

where a𝑘 ∈ R𝑁 represents the attention weight of the extreme CAL sequences {E𝑘 }. Furthermore,
the overall influence û𝑡 = {û𝑡,1, û𝑡,2, . . . , û𝑡,𝑁 } ∈ R𝑁 of extreme CAL sequences {E1, E2, . . . , E𝐾 }
on the categorical CAL prediction is evaluated by

û𝑡 =
𝐾∑︁
𝑗=1

exp(a𝑗 ⊙ Q𝑗 ). (25)

The final categorical CAL prediction which considers the spatio-temporal POI-CAL interactions,
multi-level temporal patterns, and existence of extreme CAL is given by

Ĉ𝑡 = Ĉ𝑡 +WExt ⊙ û𝑡 , (26)

whereWExt ∈ R𝑁 is the model parameter to be trained.

5.2 Integrating Extreme Value Theory for Loss Function Designs
In this section, we further discuss how to integrate the extreme value theory for the loss function
of IE-CALP in model training. For instance, Fig. 12 shows the transportation CALs of Tokyo
(04/02/2012–02/16/2013), as well as the corresponding fitted truncated Gaussian distribution. We can
learn from Fig. 12 that CALs with frequency higher than 150 follow a heavy-tailed distribution [38].
The occurrences of such activity frequencies located in the tail of the truncated Gaussian distribution
make it hard to model the temporal dependencies of extreme CALs for conventional deep learning
methods.
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Fig. 12. Probability density function of CALs from transportation category in Tokyo and the fitted truncated
Gaussian distribution (04/02/2012 to 02/16/2013).

Generalized Extreme Value Theory (GEVT) [17] takes an important step in modeling the dis-
tributions of heavy-tailed data (extreme CALs in our case). Formally, given 𝐼 random variables
{𝑦1, . . . , 𝑦𝐼 }, GEVT aims at modeling the distributions of the maximum data, which is formulated as

𝐹 (𝑦) = lim
𝐼→∞

𝑃{max{𝑦1, . . . , 𝑦𝐼 } ≤ 𝑦}. (27)

To make 𝐹 (𝑦) non-degenerated to 0, we can further transform the maximum data distribution
in Eq. (27) into 𝐸 (𝑦), which is formulated by GEVT as follows,

𝐸 (𝑦) =
{
exp

(
−

(
1 − 1

𝜌
𝑦

))𝜌
, if 𝜌 ≠ 0, 1 − 1

𝜌
𝑦 > 0;

exp (−𝑒−𝑦) , 𝜌 = 0.
(28)

We further extended the GEVT to model the heavy-tailed distribution [49] by

1 − 𝐹 (𝑦) ≈ (1 − 𝐹 (𝜉))
[
1 − log𝐸

(
𝑦 − 𝜉
𝑓 (𝜉)

)]
, 𝑦 > 𝜉, (29)

where 𝜉 > 0 represents a threshold parameter.
To take the extreme high CAL which follow the heavy-tailed distribution into consideration, we

further proposed the Extreme Value Theory (EVT) based loss function as which based on Eq. (29) to
minimize the prediction error of extreme CAL. Based on above, our model in IE-CALP takes in the
following three perspectives to enable extreme-aware prediction of spatial and categorical CALs.
(a) Categorical CAL Prediction. Mean Squared Error (MSE) is the default loss function for

many forecasting task. In this study, we also utilize the MSE as the loss function to formulate the
prediction and ground truth values of categorical CAL, i.e.,

MSECate =
1
𝑁

×
𝑁∑︁
𝑛=1

(
Ĉ𝑡,𝑛 − C𝑡,𝑛

)2
, (30)

where Ĉ𝑡,𝑛 ∈ R and C𝑡,𝑛 ∈ R are the prediction and ground-truth of categorical CALs of category 𝑛
in time interval 𝑡 .
(b) Spatial CAL Prediction. The spatial CAL prediction is also evaluated by MSE, i.e.,

MSESpa =
1

𝑅 × 𝑁 ×
𝑅∑︁
𝑟=1

𝑁∑︁
𝑛=1

(
Ŝ𝑡 ′,𝑟 ,𝑛 − S𝑡 ′,𝑟 ,𝑛

)2
, (31)

where Ŝ𝑡 ′,𝑟 ,𝑛 and S𝑡 ′,𝑟 ,𝑛 are the prediction and ground truth of the spatial CAL of category 𝑛 ∈
{1, 2, . . . , 𝑁 } in region 𝑟 ∈ {1, 2, . . . , 𝑅} in time interval 𝑡 ′.

ACM Trans. Intell. Syst. Technol., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:18 Yang et al.

(c) Extreme CAL Sequence and Label Prediction. However, merely using the MSE may fail to
consider the temporal distribution of extreme CAL. In order to improve the prediction accuracy
of the categorical CAL, we proposed two additional loss functions which based on Eq. (29). We
consider both the output latent representations G ∈ {G1,G2, . . . ,G𝐾 } of the 𝐾 historical extreme
CAL sequences {E1, E2, . . . , E𝐾 }, and the predicted extreme label û𝑡 = {û𝑡,1, û𝑡,2, . . . , û𝑡,𝑁 } ∈ R𝑁

in the time interval 𝑡 while training.
Specifically, based on Eq. (29), the temporal distribution of categorical CAL of category 𝑛 ∈

{1, . . . , 𝑁 } in time interval 𝑡 is formulated as, i.e.,

1 − 𝐹
(
Ĉ𝑡,𝑛

)
≈

(
1 − 𝑃

(
𝑢𝑡,𝑛 = 1

) )
log𝐸

(
Ĉ𝑡,𝑛 − 𝜉1
𝑓 (𝜉1)

)
, (32)

where 𝑃
(
û𝑡,𝑛 = 1

)
represents the probability that Ĉ𝑡,𝑛 is extreme CAL, u𝑡,𝑛 ∈ {0, 1} is the ground

truth label of the categorical CAL Ĉ𝑡,𝑛 of category 𝑛 in time interval 𝑡 , and 𝜉1 ∈ R+ is the extreme
threshold of the categorical CAL.
In this study, we treat the predicted extreme label û𝑡,𝑛 ∈ [0, 1] of categorical CAL of category

𝑛 in time interval 𝑡 as the hard approximation for Ĉ𝑡,𝑛−𝜉1
𝑓 (𝜉1 ) . Then we can formulate the temporal

distribution of the extreme CAL by modifying the binary cross entropy. Taking the distribution of
categorical CAL of category 𝑛 in time interval 𝑡 as example, we have

EUA
(
û𝑡,𝑛,u𝑡,𝑛

)
= −

(
1 − 𝑃

(
û𝑡,𝑛 = 1

) )
× [log𝐸

(
u𝑡,𝑛

)
]û𝑡,𝑛 log

(
u𝑡,𝑛

)
−

(
1 − 𝑃

(
û𝑡,𝑛 = 0

) )
×

[log𝐸
(
1 − u𝑡,𝑛

)
]
(
1 − û𝑡,𝑛

)
log

(
1 − u𝑡,𝑛

)
.

(33)

The loss function of the output latent representations G ∈ {G1,G2, . . . ,G𝐾 } of the 𝐾 historical
extreme CAL sequences {E1, E2, . . . , E𝐾 } is formulated as, i.e.,

EUA𝑄 =

𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

(
EUA

(
Q𝑘,𝑛,G𝑘,𝑛

) )
, (34)

which aims at capturing the distribution differences of the predicted extreme CALs.
The loss function of both predicted and ground-truth extreme labels of the categorical CALs in

time interval 𝑡 is formulated as

EUA𝑢 =

𝑁∑︁
𝑛=1

(EUA (𝑢𝑛, 𝑢𝑛)) . (35)

Given above Eqs. (30), (31), (34), and (35), the final loss function in this study is denoted as, i.e.,

Loss = 𝜂1 × MSECate + 𝜂2 × MSESpa + 𝜂3 × EUA𝑄 + 𝜂4 × EUA𝑢, (36)

where 𝜂1, 𝜂2, 𝜂3, and 𝜂4 are the coefficients evaluating the importance of each prediction.

6 EXPERIMENTAL STUDIES
In this section, we first introduce the baseline approaches and the experimental settings in Sec. 6.1,
and then we present the experimental results of this study in Sec. 6.2.

6.1 Baselines & Experimental Settings
In this study, we compare our proposed method IE-CALPwith the following baselines or state-of-art
algorithms. In particular, all of them are implemented into two versions to predict the spatial CAL
and categorical CAL, respectively. In order to compare our proposed method IE-CALP with the
baselines and state-of-art algorithms who require image-like data input, we further construct a
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𝐻 ×𝑊 heatmap based on the adjacency of the clustered regions of each city. For the heatmap of
NYC, LA, and Tokyo, 𝐻 ×𝑊 are set as 6 × 5, 3 × 5, and 2 × 4, respectively. Specifically, we compare
IE-CALP with the following baselines.

(1) Recurrent Neural Networks (RNN): In the prediction of spatial CAL, the aggregate spatial CAL
SAgg ∈ R𝐿×𝐻×𝑊 are flattened in each time interval before fed into RNN. The RNN is followed by
a Dense layer to predict the spatial CAL of 𝑁 categories in time interval 𝑡 ′. In the prediction
of categorical CAL, 𝐿 historical time intervals of categorical CAL of 𝑁 categories are utilized
to predict categories CAL in time interval 𝑡 .

(2) Gated Recurrent Unit (GRU): We apply the same operation as RNN to predict both the categorical
CAL and spatial CAL by GRU.

(3) Long Short-Term Memory (LSTM): To predict both the categorical CAL in time interval 𝑡 and
the spatial CAL in time interval 𝑡 ′ via LSTM, we apply the same operation as RNN as mentioned
above.

(4) Convolutional LSTM Network (ConvLSTM): In the predictions of both the categorical CAL
in time interval 𝑡 and the spatial CAL in time interval 𝑡 ′, 𝐿 historical time intervals of the
aggregate spatial CAL SAgg ∈ R𝐿×𝐻×𝑊 are fed into ConvLSTM. ConvLSTM is followed by a
Dense layer.

(5) Historical Average (HA): In the prediction of categorical CAL, 𝐿 historical time intervals of
categorical CAL of 𝑁 categories are fed into HA. In addition, we predict the spatial CAL in
time interval 𝑡 ′ of each of the 𝑁 categories separately using the historical spatial CAL of
each category.

(6) CHAT [27]: We also utilize a Dense layer as the last layer of Cross-Interaction Hierarchical At-
tention (CHAT) network to predict both the categorical CAL and the spatial CAL. In particular,
𝐿 historical time intervals of the aggregate spatial CAL CAgg are fed into CHAT.

(7) ST-ResNet [57]: The proposed model of ST-ResNet is adapted to take in the historical
aggregate spatial CAL SAgg to predict the categorical CAL and spatial CAL. In particular,
the lengths of closeness, period, trend sequences in ST-ResNet are all set as 𝐿, 𝑃 , and 𝑄 ,
respectively.

(8) ST-Norm [10]: which implements the Spatial and Temporal Normalization-based (ST-Norm)
framework to predict the categorical CAl and spatial CAL separately.

(9) EVL [12]: which implements the Extreme Value Loss (EVL) to predict the categorical CAl and
spatial CAL separately.

• Parameters: In this study, we evaluate our proposed method and the baselines with the crowd
flow data, crowd activity data and Point of Interests (POIs) of NYC, Tokyo and LA. The data of
NYC and Tokyo are both during 04/02/2012 – 02/01/2013. The data of LA are during 12/01/2009 –
04/30/2010. Unless otherwise stated, we use the following parameter settings by default.
For NYC, LA, and Tokyo, the last 20/30/20 days of each dataset are utilized for validation and

testing, 10/15/10 days for validation and 10/15/10 days for testing, and the rest are used for training.
The training epochs, batch size, and learning rate are set as: (500, 32, 0.0002), (500, 16, 0.0002), and
(500, 16, 0.0002), respectively. In addition, the number of historical time intervals 𝐿, the number of
days 𝑃 , the number of weeks 𝑄 , the number of historical extreme CAL sequence and label pairs 𝐾 ,
the number of CAL categories 𝑁 are set as (3, 5, 4, 4, 5), (2, 3, 4, 4, 5), and (3, 6, 4, 4, 5), respectively,
for NYC, LA, and Tokyo. The embedding length 𝐿Emb, the GRU units 𝐿Uni, and 𝜃 are set as (512, 128,
80), (64, 64, 80), and (256, 128, 80), respectively for the three cities.

•Metrics: The evaluation metrics in this study are included the Mean Absolute Error (MAE),
the Root Mean Squared Error (RMSE), the Error Rate (ER), and the Mean Squared Logarithmic

ACM Trans. Intell. Syst. Technol., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:20 Yang et al.

Table 4. Prediction results and performance comparison on NYC.

Scheme Categorical CAL Total (NYC) Categorical CAL Extreme High (NYC) Categorical CAL Normal (NYC) Spatial CAL (NYC)
MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE

RNN 4.537 7.158 0.681 2.635 22.123 24.103 0.520 1.950 3.899 5.659 0.727 2.660 3.666 7.027 0.667 2.320
GRU 4.698 7.263 0.705 4.272 20.051 21.385 0.471 1.103 4.141 6.170 0.773 4.387 3.648 7.286 0.663 1.636
LSTM 5.216 8.828 0.783 3.936 30.084 31.717 0.707 8.441 4.314 6.654 0.805 3.772 3.696 7.700 0.672 1.812
ConvLSTM 6.013 10.432 0.903 3.706 40.436 40.673 0.950 15.391 4.765 7.264 0.889 3.283 3.425 6.642 0.623 1.456
HA 11.298 15.444 1.696 5.289 24.386 25.341 0.573 1.990 10.823 14.962 2.019 5.409 3.569 6.811 0.649 1.578
CHAT 5.098 8.561 0.765 2.235 33.141 33.480 0.778 4.491 4.081 5.941 0.761 2.153 3.434 5.995 0.624 1.543
ST-ResNet 5.969 9.723 0.896 4.505 30.692 32.368 0.721 8.094 5.072 7.744 0.946 4.375 3.607 6.265 0.656 2.253
ST-Norm 4.523 6.942 0.604 2.200 21.457 23.534 0.500 1.664 3.602 5.124 0.620 2.341 3.412 6.341 0.620 1.503
EVL 4.123 6.534 0.552 1.932 20.064 21.532 0.483 1.194 3.353 4.865 0.593 2.012 3.311 6.125 0.606 1.471
IE-CALP 3.273 5.672 0.491 1.659 19.619 21.312 0.455 1.091 2.680 4.106 0.500 1.680 3.294 5.986 0.599 1.447

Table 5. Prediction results and performance comparison on LA.

Scheme Categorical CAL Total (LA) Categorical CAL Extreme High (LA) Categorical CAL Normal (LA) Spatial CAL (LA)
MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE

RNN 7.342 12.714 0.862 5.502 34.615 35.095 1.000 26.434 4.754 7.753 0.787 3.516 1.299 2.131 0.700 0.940
GRU 5.472 7.525 0.642 3.201 6.882 8.421 0.199 0.133 5.338 7.434 0.883 3.492 1.433 2.509 0.772 1.272
LSTM 8.291 13.295 0.973 7.400 34.615 35.095 1.000 26.434 5.793 8.755 0.959 5.594 1.368 2.326 0.737 1.190
ConvLSTM 8.077 12.644 0.948 5.754 32.859 33.339 0.949 14.582 5.725 8.341 0.947 4.916 1.306 2.242 0.703 0.802
HA 6.741 10.222 0.791 1.492 10.369 11.417 0.300 0.179 6.397 10.101 1.058 1.617 0.849 1.490 0.613 0.350
CHAT 5.166 7.454 0.606 1.387 7.203 9.195 0.208 0.146 4.972 7.267 0.823 1.504 1.228 1.945 0.661 0.773
ST-ResNet 5.228 6.799 0.678 1.999 8.904 9.544 0.278 0.235 4.966 6.560 0.832 2.125 1.169 1.874 0.681 0.838
ST-Norm 5.210 7.572 0.619 1.591 6.942 8.623 0.221 0.156 5.152 7.321 0.835 2.521 1.274 2.094 0.699 0.798
EVL 5.012 7.242 0.596 1.521 6.364 8.075 0.184 0.113 4.989 7.142 0.814 1.663 1.253 1.983 0.687 0.703
IE-CALP 4.989 7.123 0.586 1.494 6.193 7.850 0.179 0.096 4.874 7.050 0.807 1.627 1.227 1.869 0.661 0.646

Table 6. Prediction results and performance comparison in Tokyo.

Scheme Categorical CAL Total (Tokyo) Categorical CAL Extreme High (Tokyo) Categorical CAL Normal (Tokyo) Spatial CAL (Tokyo)
MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE

RNN 4.390 8.753 0.401 1.425 15.824 20.609 0.276 0.313 2.398 3.999 0.840 1.618 0.728 1.712 0.665 0.412
GRU 4.161 8.609 0.380 1.164 13.843 18.800 0.241 0.230 2.475 5.045 0.866 1.326 0.744 2.002 0.679 0.402
LSTM 4.146 8.628 0.379 1.297 14.301 19.311 0.249 0.294 2.377 4.738 0.832 1.472 0.762 2.087 0.696 0.453
ConvLSTM 8.029 19.692 0.733 1.391 61.672 65.617 0.787 4.874 3.522 7.658 0.665 1.098 0.693 1.710 0.633 0.356
HA 9.746 17.792 0.890 4.666 32.261 37.930 0.412 0.723 7.854 14.910 1.484 4.997 0.785 1.983 1.083 0.574
CHAT 4.633 10.448 0.423 0.743 19.862 24.910 0.254 0.274 3.354 8.136 0.634 0.783 0.713 1.812 0.651 0.320
ST-ResNet 4.695 9.931 0.429 0.985 18.676 23.343 0.238 0.269 3.521 7.818 0.665 1.045 0.695 1.645 0.634 0.333
ST-Norm 4.012 8.477 0.369 0.931 14.965 20.043 0.263 0.210 3.132 7.421 0.583 1.044 0.701 1.709 0.625 0.365
EVL 3.732 8.342 0.348 0.902 14.325 18.932 0.203 0.162 2.899 6.954 0.521 0.981 0.681 1.692 0.603 0.332
IE-CALP 3.564 8.212 0.325 0.877 14.125 18.756 0.180 0.121 2.677 6.599 0.506 0.941 0.641 1.647 0.585 0.327

Error (MSLE), i.e.,

MAE =
1
𝑁

×
𝑁∑︁
𝑛=1

��Ĉ𝑡,𝑛 − C𝑡,𝑛
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∑𝑁
𝑛=1
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)2
,

and MSLE =
1
𝑁

×
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���log2 (
Ĉ𝑡,𝑛 + 1

)
− log2

(
C𝑡,𝑛 + 1

) ��� ,
where Ĉ𝑡,𝑛 and C𝑡,𝑛 denote the predicted and ground truth of categorical CAL of category 𝑛 in time
interval 𝑡 . All the experiments are conducted upon the Google Colab3 and a desktop of Intel i7-9700
CPU, NVIDIA GeForce RTX 2060 SUPER GPU, 16.0 GB RAM, and Windows 10. The proposed
model is implemented in Python with Tensorflow-GPU-2.3.0.

6.2 Evaluation Results
We present our experimental evaluation results as follows.

• General Performance: Tables 4, 5, and 6 show all the experimental results of predicting the
categorical CAL and spatial CAL of NYC, LA, and Tokyo. Compared with other baselines and the
state-of-the-arts, IE-CALP on average improves 24.12% in terms of all metrics. In particular, IE-CALP
3https://colab.research.google.com/notebooks/intro.ipynb#recent=true
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improves 35.90% in the prediction of extreme CAL on average, thanks to the novel co-design of the
CAL-POI graph interaction and extreme value theory.
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Fig. 13. Performance of categorical CAL prediction for NYC with (i) IE-CALP, (ii) IE-CALP without the Spatial
CAL-POI Interaction-Attentive Learning Component, (iii) IE-CALP without the Multi-level Temporal Feature
Learning Component, and (iv) IE-CALP without the Extreme-aware CAL Learning Component.

• Ablation Studies: To validate the component designs of our proposed model, we have con-
ducted a thorough ablation study based on the dataset of NYC. Since removing some of the
components in IE-CALP will disable the spatial CAL prediction, we conduct the ablation study just
for categorical CAL prediction. Specifically, we compare the base design of (i) IE-CALP, with the
variations of: (ii) IE-CALP without the spatial CAL prediction structure (detailed in Fig. 8) of the
Spatial CAL-POI Interaction-Attentive Learning Component, (iii) IE-CALP without the Multi-level
Temporal Feature Learning Component, and (iv) IE-CALP without the Extreme-aware CAL Learn-
ing Component. We can observe the most significant performance degradation in ablation setting
(iii), which demonstrate the effectiveness and importance of Multi-level Temporal Feature Learning
Component in capturing both the daily and weekly patterns of the categorical CAL.

• Sensitivity Studies: In this section, we evaluate the influences of different parameter settings
in IE-CALP on the categorical CAL and spatial CAL predictions. All the experiments in this section
are running with the data of NYC. As shown in Fig. 14, the lengths of the near categorical CALs and
spatial CALs in the Spatial CAL-POI Interaction-Attentive Learning Component plays an important
role in the CAL prediction. We can see that with small and large 𝐿’s, i.e., small/large number of
historical CALs for model input, IE-CALP achieves higher errors in all metrics. It is mainly because
a small 𝐿 may not bring enough information for modeling the CALs, while a large 𝐿 may introduce
noise and lead to inaccurate prediction.
To verify our selection of 𝐾 in the construction of the historical extreme CAL sequence and

label pairs, we implement our IE-CALP using 𝐾 from 2 to 6 and show the results in Fig. 15. We
can observe that the occurrences of extreme CAL are more related to the temporal patterns of the
extreme CAL during the past 4 to 6 days. Small 𝐾 may overlook the important CAL features. But
large 𝐾 may also increase the model and computational complexities and introduce noise within
the data. Based on above, we consider 𝐾 = 5 in our current studies.
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Fig. 14. Performance of categorical CAL prediction for NYC using 𝐿 from 1 to 5.
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Fig. 15. Performance of categorical CAL prediction for NYC using 𝐾 from 2 to 6.
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Fig. 16. Categorical CAL predictions of categories of (a) travel & transportation; and (b) food & shop & service
of Tokyo during 02/07/2013–02/16/2013.
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three interaction graphs.

• Result Visualization: Fig. 16 illustrates the categorical CAL
prediction results of travel & transportation, and food & shop &
service of Tokyo during 02/07/2013–02/16/2013. We can learn from
the figures that IE-CALP works well in capturing the routines of
categorical CALs as well as adapting to the extreme distributions.
We also illustrate the attention scores (Eq. (11)) of the three CAL-
POI interaction graphs for a selected region in NYC on 11/28/2012
in Fig. 17, demonstrating the spatial and temporal interactions
across the three graphs. We can observe the relative importance of
the graphs generated from the spatial region distance (dis), temporal CAL correlation (tmp), and
region-to-region POI correlation (POI).

Fig. 18 further illustrates the spatial CAL prediction of categories of travel & transportation, and
food & shop & service of Tokyo of one selected time interval during 02/07/2013–02/16/2013. We can
observe from the figure that, IE-CALP can effectively capture the spatial distributions of different
categories of spatial CALs. This also validates our IE-CALP in modeling the region-to-region
CAL-POI interactions.

(a) Ground truth. (b) Prediction. (c) Ground truth. (d) Prediction.

Fig. 18. Spatial CAL prediction of categories of travel & transportation ((a), (b)), and food & shop & service
((c), (d)) in one selected time interval during 02/07/2013–02/16/2013 using the data of Tokyo.
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7 CONCLUSION
We have proposed IE-CALP, a spatio-temporal Interactive attention-based and Extreme-aware
model for Crowd Activity Level Prediction. IE-CALP predicts both the categorical crowd activity
levels (CALs) and spatial CALs by (a) capturing the spatial distribution of each categories of CAL
by measuring the spatial interactions among different categories of POI and spatial CALs, and
extract the spatial and temporal interactions among different categories of CALs; (b) modeling the
daily and weekly temporal patterns of categorical CALs; and (c) integrating the temporal patterns
of extreme categorical CAL by a novel Extreme-aware CAL Learning Component. We have also
designed an adaptive loss function based on the Extreme Value Theory to capture and integrate the
occurrence patterns of extreme CALs. Extensive experiments upon the crowd activity data and
POIs of New York City (NYC), Los Angeles (LA), and Tokyo have further validated the accuracy
and effectiveness of our proposed designs.
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