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We present simulations of stochastic fluid dynamics in the vicinity of a critical endpoint belonging to the
universality class of the Ising model. This study is motivated by the challenge of modeling the dynamics of
critical fluctuations near a conjectured critical endpoint in the phase diagram of quantum chromodynamics
(QCD). We focus on the interaction of shear modes with a conserved scalar density, which is known as
modelH. We show that the observed dynamical scaling behavior depends on the correlation length and the
shear viscosity of the fluid. As the correlation length is increased or the viscosity is decreased we observe a
crossover from the dynamical exponent of critical diffusion, z ≃ 4, to the expected scaling exponent of
modelH, z ≃ 3. We use our method to investigate the time-dependent correlation function of non-Gaussian
moments MnðtÞ of the order parameter. We find that the relaxation time depends in a nontrivial manner on
the power n.
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Introduction.—The transition from hadronic matter to a
quark gluon plasma along the finite temperature axis in the
QCD phase diagram is known to be a smooth crossover [1].
As the baryon doping is increased, this crossover may turn
into a first-order phase transition at a critical endpoint [2].
Experimental searches for critical behavior have focused on
a possible nonmonotonic dependence of fluctuation observ-
ables, such as the cumulants of conserved charges, on the
beam energy [3–6]. Understanding the dynamical evolution
of these observables in a heavy ion collision requires a
hydrodynamic theory that incorporates the effects of
fluctuations [7–9].
Theories of this type were first classified by Hohenberg

and Halperin [10]. They include purely relaxational dynam-
ics (model A) [11,12], the diffusive dynamics of a con-
served charge (model B) [8,13,14], and the diffusive
evolution of an order parameter field advected by the
momentum density of the fluid (model H). Model H is
expected to govern the dynamics near a possible critical
endpoint in the QCD phase diagram [9].
Stochastic hydrodynamic theories have been studied

using a variety of methods [15–22], but there is little work
on direct numerical simulation (see Refs. [11–14,23,24] for
exceptions). In particular, model H has not been studied
numerically. This is related to the fact that numerical
simulations face a number of obstacles, including the need
to regularize and renormalize short-distance noise, the
requirement to implement fluctuation-dissipation relations,
and the necessity to resolve ambiguities in the definition of
stochastic partial differential equations.
In the present work, we describe a numerical imple-

mentation of model H using a Metropolis method pre-
viously applied to models A, B, and G (chiral dynamics)
[12,25–27]. The novel feature of model H compared to

purely relaxational or diffusive theories is the presence of
“mode couplings” or “Poisson brackets.” These terms
describe advective interactions that conserve the hydro-
dynamic Hamiltonian, but lead to nonlinear mode cou-
plings between shear waves and the diffusive evolution of
the order parameter. In the following, we introduce the
model, explain our numerical approach, present a number
of consistency checks, and then present results for the
dynamical evolution of non-Gaussian moments. We com-
ment on other applications and possible extensions of our
methods.
Model H.—Model H is defined by [10,28]

∂tϕ ¼ Γ∇2

!
δH
δϕ

"
−
!
∇⃗ϕ

"
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þ ζ; ð1Þ
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þ ξi; ð2Þ

where ϕ is the order parameter density, π⃗ is the momentum
density of the fluid, and Γ and η are transport coefficients
[29]. We can take ϕ to be proportional to the specific
entropy s=n of the fluid [19,30]. Γ is the thermal diffusivity,
and η is the shear viscosity. The transverse projection
operator is given by

PT
ij ¼ δij −

∇i∇j

∇2
ð3Þ

and πTi ¼ PT
ijπj. The Hamiltonian (the free energy func-

tional) is given by
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where ρ is the mass density (the density of enthalpy in the
relativistic case),m0 is the bare inverse correlation length, λ
is a nonlinear self-coupling, and h is an external field. In
practical applications, these parameters can be mapped
onto the chemical potential-temperature ðμ; TÞ plane; see
for example [31,32]. The noise terms ζ and ξi are random
fields constrained by fluctuation-dissipation relations. The
noise correlation functions are given by

hζðt; x⃗Þζðt0; x⃗0Þi ¼ −2TΓ∇2δðx⃗ − x⃗0Þδðt − t0Þ; ð5Þ

hξiðt; x⃗Þξjðt0; x⃗0Þi ¼ −2TηPT
ij∇2δðx⃗ − x⃗0Þδðt − t0Þ: ð6Þ

Note that Eqs. (1) and (2) describe the interaction of shear
modes with the order parameter, but they do not include
sound modes. This truncation is expected to be sufficient to
describe the critical dynamics of the fluid [9,10], but for
other applications it will be interesting to include the
coupling to longitudinal modes [33].
Numerical method.—In order to study the theory numeri-

cally, we discretize the fields ϕðx⃗Þ and π⃗ðx⃗Þ on a
d-dimensional lattice x⃗ ¼ n⃗a with ni ¼ 1;…; N. In the
following, we will focus on d ¼ 3. The main idea under-
lying the algorithm we employ is that the dissipative and
stochastic updates are combined into a single Metropolis
step. This method ensures that fluctuation-dissipation
relations are satisfied and that the fluid equilibrates to a
state in which the fields ϕðx⃗Þ and π⃗Tðx⃗Þ are sampled from
the distribution expð−H=TÞ. The Metropolis step is fol-
lowed by a deterministic step that implements the non-
dissipative mode coupling terms.
The Metropolis update for the field ϕ is given by

ϕtrialðx⃗; tþ ΔtÞ ¼ ϕðx⃗; tÞ þ qðμÞ; ð7Þ

ϕtrialðx⃗þ μ̂; tþ ΔtÞ ¼ ϕðx⃗þ μ̂; tÞ − qðμÞ; ð8Þ

qðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓTðΔtÞ

p
ζðμÞ; ð9Þ

where each ζðμÞ is a Gaussian random variable with zero
mean and unit variance, and μ̂ is an elementary lattice
vector in the direction μ ¼ 1;…; d. The update is accepted
with probability minð1; e−ΔH=TÞ. This algorithm is based on
the observation that the average update h½ϕðx⃗; tþ ΔtÞ −
ϕðx⃗; tÞ&i realizes the diffusion equation, and the second
moment h½ϕðx⃗; tþ ΔtÞ − ϕðx⃗; tÞ&2i reproduces the noise
term; see Refs. [25,26].
We can follow the same procedure for π⃗ and perform a

trial update:

πtrialν ðx⃗; tþ ΔtÞ ¼ πTν ðx⃗; tÞ þ rðμÞν ; ð10Þ

πtrialν ðx⃗þ μ̂; tþ ΔtÞ ¼ πTν ðx⃗þ μ̂; tÞ − rðμÞν ; ð11Þ

rðμÞν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηTðΔtÞ

p
ξðμÞν ; ð12Þ

where rðμÞν is a random flux and ξðμÞν are Gaussian random
variables with hξðαÞμ ξðβÞν i ¼ δμνδαβ. Again, the update is
accepted with probability minð1; e−ΔH=TÞ. After a sweep
through the lattice we project on the transverse component
of the momentum density, πTμ ðx⃗; tÞ ¼ PT

μνπνðx⃗Þ. The pro-
jection is carried out in Fourier space.
The deterministic update implements the advection

terms

∂tϕ ¼ −
1

ρ
πTμ∇μϕ; ð13Þ

∂tπTμ ¼ −
1

ρ
πTν∇νπTμ − PT

μν½ð∇νϕÞ∇2ϕ&: ð14Þ

In the continuum limit, these equations conserve the
integrals of ϕ and πTμ , as well as the Hamiltonian H. We
have found that it is important to preserve these conserva-
tion laws in the lattice theory to the greatest extent possible.
Using the skew discretized derivatives introduced by
Morinishi et al. [34] it is possible to construct an advec-
tion step that conserves integrals of the kinetic energy
terms ð1=2ρÞðπTμ Þ2 þ 1

2 ð∇μϕÞ2 exactly [35]. We integrate
Eqs. (13) and (14) using the strongly stable third-order
Runge-Kutta scheme of Shu and Osher [36]. The fields ϕ
and πTμ satisfy conservation laws after projection, and the
total energy is conserved to very good accuracy. This
statement can be quantified in terms of the observed shift in
the critical mass (see Results), which is about 1%.
A complete update consists of a Metropolis update of all

fields, followed by a Runge-Kutta step for the advection
terms. After every update of the momentum density, the
projector PT is applied in Fourier space. The time step Δt is
chosen such that the acceptance rate of the Metropolis step
is of order 1=2. In practice, we have used Δt ¼ 0.04=Γ.
Results.—We have solved the model H equations on a

periodic lattice of size L3 with L ¼ Na. In the following,
we will set a ¼ 1, which means that all quantities that have
units of length are measured in units of a. We will also set
Γ ¼ 1, which implies that our unit of time is a4=Γ. We tune
m2 to fix the correlation length in units of a. In particular,
for h ¼ 0 there is a critical m2 ≡m2

c at which the
correlation length diverges. In the following, we will study
the dependence on the parameters η and ρ.
Static behavior: We first consider the static equilibrium

state of the fluid described by Eqs. (1) and (2). The
Hamiltonian does not contain any coupling between ϕ
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and πT , and in the continuum, we expect the static
correlation function Cðx⃗Þ ¼ hϕð0; tÞϕðx⃗; tÞi of the order
parameter to be unaffected by the dynamics of the
momentum density. In particular, the critical value of
the mass parameter is expected to agree with the value
previously determined in models A and B, m2

c ¼ −2.2858
(for λ ¼ 4) [12,26], and the correlation function Cðx⃗Þ is
predicted to be the same in model B and model H [37]. In
practice, our advection step does not conserve the potential
energy of ϕ exactly, and we see a small shift δm2

c ¼ −0.030
in the critical mass parameter [38]. After taking this shift
into account, we find that the correlation function Cðx⃗Þ is
the same in models B and H [35].
Renormalization of the shear viscosity: Next we study

the dynamics of the momentum density without the
coupling to the order parameter ϕ. This corresponds to
the noncritical dynamics of a fluid in the limit m2 → ∞. It
was previously observed that the nonlinear self-coupling of
π⃗ leads to a renormalization of the shear viscosity, referred
to as the “stickiness of sound” in [39]. In the present case,
the phenomenon is more accurately characterized as the
stickiness of shear waves. A one-loop calculation predicts
that [39,40]

ηR ¼ ηþ 7

60π2
ρTΛ
η

; ð15Þ

where Λ ≃ π=a is the UV cutoff. We have extracted the
renormalized viscosity from the exponential decay of the
unequal time correlation function hπTi ð0; k⃗ÞπTi ðt;−k⃗Þi ∼
exp½−ðηR=ρÞk2t& for the first nontrivial momentum mode
in the Cartesian direction j for i ≠ j. The result is shown in
Fig. 1. We observe that as the bare viscosity is reduced, the
renormalized ηR levels off and then increases, in agreement
with Eq. (15).

We have also studied the renormalization of η in a theory
in which the coupling between ϕ and π⃗T is retained, but the
self-advection of π⃗T is ignored. This is a consistent
truncation of model H, which we will call model H0.
Indeed, the self-coupling of π⃗T is irrelevant in the sense of
the renormalization group, and model H0 is sufficient to
compute critical exponents for the liquid-gas critical
endpoint [10]. In model H0 critical fluctuations lead to a
multiplicative renormalization,

ηR ¼ η

#
1þ 8

15π2
logðξ=ξ0Þ

$
; ð16Þ

where ξ is the correlation length and ξ0 ≃ a is the bare
correlation length. This effect is difficult to observe
because of the small prefactor in Eq. (16). Noncritical
fluctuations generate a finite additive renormalization,
ηR ¼ ðTξ0Þ=ð160πΓÞ. This effect is also much smaller
compared to Eq. (15). Indeed, Fig. 1 shows that the
renormalized viscosity in model H0 continues to drop
with η and can reach very small values of order ηR ≃ 10−2.
Dynamical scaling: Consider the time-dependent cor-

relation function Cðk⃗; tÞ ¼ hϕðk⃗; 0Þϕð−k⃗; tÞi. Dynamical
scaling is the hypothesis that C̃ðkξ; t=ξzÞ, where z is called
the dynamical exponent, is a universal function near the
critical point. To understand the behavior of the correlation
function it is useful to start from the prediction of the mode
coupling theory [10]. In this approximation, it is assumed
that the correlation function is controlled by a single
relaxation rate, Cðk⃗; tÞ ∼ expð−ΓktÞ, and that the renor-
malized viscosity ηR is a constant, independent of ξ. Based
on these assumptions one finds

Γk ¼
Γ
ξ4

ðkξÞ2ð1þ ðkξÞ2Þ þ T
6πηRξ3

KðkξÞ; ð17Þ

FIG. 1. Renormalized viscosity as a function of the bare
viscosity in four different models: (1) pure momentum diffusion
(no mode couplings), (2) self-advection (πT only couples to
itself), (3) critical modelH0 (mutual advection of ϕ and π⃗T only),
and (4) modelH at the critical point. All data were taken in lattice
volume V ¼ L3 with L ¼ 48 and with ρ ¼ 1. Model H results
were offset horizontally for better visibility.

FIG. 2. Dynamic order parameter correlation function Cðt; k⃗Þ
for the second nontrivial momentum mode and for different
values of L plotted as a function of the scaled time variable. This
figure shows data taken at η ¼ 10−2 for L ¼ 40 and 48. Data
collapse occurs for z ≃ 3.01, and the model B value z ¼ 4 is
clearly excluded.
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where the Kawasaki function KðxÞ is given by KðxÞ ≃ x2

for x ≪ 1 and KðxÞ ≃ ð3π=8Þx3 for x ≫ 1 [41]. This result
suggests that the dynamic exponent crosses over from z ≃ 4
at modest values of the correlation length to z ≃ 3 if the
correlation length is large, ξ ≫ ð6πηRΓÞ=T.
The values z ¼ 3 and 4 are approximate; a more sophis-

ticated calculation using the ϵ expansion gives z ¼ 3.07 and
z ¼ 3.96, but the Kawasaki function is a very good approxi-
mation to the behavior of real fluids [42]. We conclude from
Eq. (17) that in any finite volume we are likely to observe a
scaling exponent between 3 and 4, and that observing the
model H scaling exponent requires a combination of a very
large correlation length and a small viscosity.
Since the renormalized viscosity is smaller in model H0

(see Fig. 1) we have explored the scaling behavior in
model H0. At the critical point m2 ¼ m2

c we compute the
correlation function for a range of values of η andL3. For any
given η we look for data collapse when comparing different
L in order to determine the value of z. This is shown in Fig. 2
for η ¼ 0.01 and L ¼ 40 and L ¼ 48. We observe that
scalingworks verywell.We then plot the extracted value of z
as a function of η [43]. The result is shown in Fig. 3, and
compared to the Kawasaki prediction. We observe the
expected crossover from z ≃ 4 at large viscosity to z ≃ 3
for small viscosity. For η ¼ 10−2 we obtain the dynamical
exponent z ≃ 3.013' 0.058, consistent with the prediction
of the two-loop ϵ expansion, z ≃ 3.0712 [44].
Non-Gaussian moments: Having established that our

numerical results are compatible with theoretical expect-
ations, we turn to an observable that is not easily predicted
by approximate analytical methods. Consider the correla-
tion function of higher moments of the order parameter

GnðtÞ ¼ hMnðtÞMnð0Þi; MðtÞ ¼
Z

V
d3xϕðx⃗; tÞ; ð18Þ

where V is a subvolume of the simulation volume. Higher
cumulants of the order parameter have been proposed as
signatures of critical behavior [45], and their time evolution
was previously studied in [12,15,30].
We consider modelH with parameters relevant to a QCD

critical endpoint. We take a ¼ 0.75 fm and Δt ¼ 0.3 fm,
and consider a temperature T ¼ 130 MeV. Then, the
enthalpy density of a noninteracting quark-gluon plasma
corresponds to ρ ¼ 11.1 in lattice units. A viscosity to
entropy density ratio η=s ¼ 1=ð4πÞ implies η ¼ 0.50 [46].
We take a simulation volume V0 ¼ L3 and measure the
order parameter in half the simulation volume. The results
are shown in Fig. 4. The correlation functions satisfy
dynamical scaling for all values of n, but the relaxation
time depends on n. In particular,G2ðtÞ decays more quickly
than G1ðtÞ, but the relaxation rate of G3ðtÞ is intermediate
between G1ðtÞ and G2ðtÞ. These results are not compatible
with simple mean field models. Note that at the critical
point the correlation length is only limited by L, and
equilibration is extremely slow: In physical units, the 1=e
decay time in Fig. 4 exceeds 103 fm.
Summary and outlook.—In this work we have presented

a method for performing stochastic fluid dynamics simu-
lations. We find that the dynamic scaling exponent in a
near-critical fluid depends sensitively on the value of the
correlation length and the shear viscosity. Genuine model
H behavior with z ≃ 3 requires a large correlation length
and small shear viscosity. We also observe that while the
self-coupling of the momentum density is technically
irrelevant in the sense of the renormalization group (the
critical behavior of model H and H0 is the same) it is
numerically quite important in limiting how small the
viscosity can become.
We have studied the time evolution of higher moments of

the order parameter, but we have not attempted to perform a
complete calculation that can be compared to higher order
cumulants measured in relativistic heavy ion collisions.

FIG. 3. Scaling exponent z extracted from the dynamic corre-
lation functions for different values of the bare viscosity η in
model H0. We determined z by comparing the correlation
function for two different volumes, L ¼ 40 and 48. We also
show the prediction of the Kawasaki approximation, Eq. (17); the
error band is defined by varying the correlation length in the
range ξ∈ ½L=2π; L=2&.

FIG. 4. Correlation functions GnðtÞ ¼ hMnðtÞMnð0Þi in model
H at the critical point for physical values of the parameters
(see text). The calculation was performed for L ¼ 48 with M
integrated over half of the volume. For even n we subtract
disconnected pieces.
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For this purpose we have to couple our calculation to a
realistic background that describes an expanding and
cooling fluid. There are two basic approaches that one
might follow in order to achieve this. One approach is to
extend the methods described in this work to stochastic
relativistic fluid dynamics, where we retain all the degrees
of freedom of the fluid (both shear and sound modes). This
could be accomplished along the lines recently proposed
in [47]. Another option is to couple the model described
here to a deterministic background flow, obtained from
conventional fluid dynamic simulations.
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