
Soft-Search: Two Datasets to Study the Identification and
Production of Research Software

Eva Maxfield Brown
evamxb@uw.edu

University of Washington Information School
Seattle, Washington, USA

Lindsey Schwartz
lsschwar@uw.edu

University of Washington Information School
Seattle, Washington, USA

Richard Lewei Huang
lwhuang@uw.edu

University of Washington Information School
Seattle, Washington, USA

Nicholas Weber
nmweber@uw.edu

University of Washington Information School
Seattle, Washington, USA

ABSTRACT
Software is an important tool for scholarly work, but software
produced for research is in many cases not easily identifiable or
discoverable. A potential first step in linking research and software
is software identification. In this paper we present two datasets
to study the identification and production of research software.
The first dataset contains almost 1000 human labeled annotations
of software production from National Science Foundation (NSF)
awarded research projects. We use this dataset to train models
that predict software production. Our second dataset is created by
applying the trained predictive models across the abstracts and
project outcomes reports for all NSF funded projects between the
years of 2010 and 2023. The result is an inferred dataset of software
production for over 150,000 NSF awards. We release the Soft-Search
dataset to aid in identifying and understanding research software
production: https://github.com/si2-urssi/eager

CCS CONCEPTS
• Information systems → Digital libraries and archives; Clus-
tering and classification; • Software and its engineering→ Soft-
ware creation and management; Software libraries and repositories.

KEYWORDS
datasets, text classification, research software

1 INTRODUCTION
Software production, use, and reuse is an increasingly crucial part
of scholarly work [1, 10]. While historically underutilized, citing
and referencing software used during the course of research is be-
coming common with new standards for software citation [2, 6]
and work in extracting software references in existing literature [5].
However, records of software production are not readily identifiable
or available at scale in the way that peer-reviewed publications
or other scholarly outputs are [8]. To make progress on this prob-
lem, we introduce two related datasets for studying and inferring
software produced as a part of research, which we refer to as the
Soft-Search dataset.

The Soft-Search dataset is aimed at identifying research projects
which are likely to have produced software while funded by a
federal grant. We start by identifying GitHub repositories that ac-
knowledge funding from at least one National Science Foundation
(NSF) award. We then annotate each GitHub repository found with

a binary decision for its contents: software or not-software (e.g. not
all github repositories contain software, they might include re-
search notes, course materials, etc.). We then link each annotated
GitHub repository to the specific NSF award ID(s) referenced in
its README.md file. Finally, we compile the Soft-Search Training
dataset using the annotations for each GitHub repository, and the
text from the linked NSF award abstract and the project outcomes
report.

Using the Soft-Search Training dataset, we train a variety of
models to predict software production using either the NSF award
abstract or project outcomes report text as input. We use the best
performing models to then infer software production against all
awards funded by the National Science Foundation from 2010 to
2023 (additional details are offered in Section 2). The predictions
and metadata for each NSF award between the 2010 and 2023 period
are compiled to form the Soft-Search Inferred dataset.

In total, our new Soft-Search dataset includes the following con-
tributions:

1. Soft-Search Training: A ground truth dataset compiled us-
ing linked NSF awards and GitHub repositories which have
been annotated for software production.

2. Multiple classifiers which infer software production from ei-
ther the text of an NSF award’s abstract or project outcomes
report.

3. Soft-Search Inferred: A dataset of more than 150,000 NSF
funded awards from between 2010 and 2023. Each award
has two predictions for software production: one from pre-
diction using the abstract text and the other from prediction
using the project outcomes report text.

The rest of the paper proceeds as follows. In Section 2 we detail
the data collection and annotation process used for creating the
Soft-Search Training dataset. In Section 3 we briefly describe the
model training process and report results. In Section 4 we provide
summary statistics for the Soft-Search Inferred dataset and observe
trends in software production over time. We conclude with discus-
sion regarding the limitations of our approach and opportunities
for future work.

228

2023 ACM/IEEE Joint Conference on Digital Libraries (JCDL)

2575-8152/23/$31.00 ©2023 IEEE
DOI 10.1109/JCDL57899.2023.00040

20
23

 A
CM

/IE
EE

 Jo
in

t C
on

fe
re

nc
e

on
 D

ig
ita

l L
ib

ra
rie

s (
JC

DL
) |

 9
79

-8
-3

50
3-

99
31

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/J
CD

L5
78

99
.2

02
3.

00
04

0

Authorized licensed use limited to: University of Illinois. Downloaded on July 30,2024 at 13:20:47 UTC from IEEE Xplore. Restrictions apply.

2 DATA COLLECTION AND ANNOTATION
2.1 Finding Software Produced by NSF Awards
The first step in our data collection process was to find software
outputs from National Science Foundation (NSF) funded research.
This step has two potential approaches. The first approach is a
manual search for references and promises of software production
within NSF award abstracts, project outcome reports, and papers
supported by each award. This first approach is labor intensive
and may be prone to labeling errors because while there may be
a promise of software production in these documents, it may not
be possible to verify such software was ultimately produced. The
other approach is to predict software production using a trained
model. We pursue this approach with the caveat that there are also
potential label errors.

To gather examples of verifiable software production, we created
a Python script which used the GitHubAPI to search for repositories
which included reference to financial support from an NSF award
in the repositories README.md file. Specifically our script queried
for README.md files which contained any of the following text
snippets: ‘National Science Foundation’, ‘NSF Award’, ‘NSF Grant’,
‘Supported by NSF’, or ‘Supported by the NSF’. GitHub was selected
as the basis for our search because of its widespread adoption
and mention in scholarly publication [3]. This search found 1520
unique repositories which contained a reference to the NSF in the
repository’s README.md file.

2.2 Software Production Annotation
The next step in our data collection process was to annotate each
of the GitHub repositories found as either “software” or “not soft-
ware.” In our initial review of the repositories we had collected, we
found that the content of repositories ranged from documentation,
experimental notes, course materials, collections of one-off scripts
written during a research project, to more typical software libraries
with installation instructions, testing, and community support and
use.

Using existing definitions of what constitutes research software
to form the basis of our annotation criteria [7, 9], we conducted
multiple rounds of trial coding on samples of the data. Fleiss’ kappa
was used to determine if there was agreement between our research
team on whether ten GitHub repositories contained ‘software’ or
not. On each round of trial coding ten GitHub repositories were ran-
domly selected from our dataset for each member of our research
team to annotate independently. When assessing a repository, mem-
bers of the research team were allowed to use any information in
the repository to determine their annotation (i.e. the content of the
README.md file, the repository activity, documentation availabil-
ity, etc.)

Our final round of trial coding showed that there was near perfect
agreement between the research team (K=0.892) [11].

Our final annotation criteria was generally inclusive of labeling
repositories as software, rather there were specific exclusion cri-
teria that resulted in a repository being labeled as “not software”.
Specifically repositories were labeled as “not software” when a
repository primarily consisted of:

1. project documentation or research notes
2. teaching materials for a workshop or course

Table 1: Predictive Model Results (Trained with Abstract
Text)

model accuracy precision recall f1
0 tfidf-logit 0.674 0.674 0.674 0.673
1 transformer 0.636 0.608 0.697 0.649
2 semantic-logit 0.630 0.630 0.630 0.630
3 regex 0.516 0.515 0.516 0.514

3. the source code for a project or research lab website
4. collections of scripts specific to the analysis of a single

experiment without regard to further generalizability
5. utility functions for accessing data without providing any

additional processing capacity
We then annotated all GitHub repositories in our dataset as

either “software” or “not software” according to our agreed upon
annotation criteria.

2.3 Linking GitHub Repositories to NSF Awards
Our final step in the data collection process was to link the anno-
tated GitHub repositories back to specific NSF awards. To do so,
we created a script which would load the webpage for each GitHub
repository, scrape the content of the repository’s README and find
the specific NSF award ID number(s) referenced. While annotating
the dataset, and with this script, our dataset size was reduced as
we found some repositories were returned in the initial search be-
cause of the “NSF” acronym being used by other, non-United-States
governmental agencies which also fund research.

When processing each repository, our Python script would load
the README content, search for NSF Award ID patterns with
regular expressions, and then verify that each NSF award ID found
was valid by requesting metadata for the award from the NSF award
API.

We then retrieved the text for each award’s abstract and project
outcomes report. This was the final step of our data collection
process and allowed us to create a dataset of 446 unique NSF awards
labeled as ‘produced software’ and 471 unique NSF awards labeled
as ‘did not produce software’.

3 PREDICTIVE MODELS
Using the compiled Soft-Search Training dataset, we trained three
different models using the text from either the award abstract or
project outcomes report. The models trained include a logistic re-
gressionmodel trainedwith TF-IDFword embeddings (tfidf-logit),
a logistic regression model trained with semantic embeddings
(semantic-logit), and a fine-tuned transformer (transformer).
The semantic embeddings and the base model from which we fine-
tuned our own transformer model was the ‘distilbert-base-uncased-
finetuned-sst-2-english’ model [4]. Each model was trained with
80% of the Soft-Search Training dataset. We then test each of the
models and use F1 to rank each model’s performance.

Table 1 reports the results from training using the abstract text
as input. The best performing model was the tfidf-logit which
achieved an F1 of 0.673.

229

Authorized licensed use limited to: University of Illinois. Downloaded on July 30,2024 at 13:20:47 UTC from IEEE Xplore. Restrictions apply.

Table 2: Predictive Model Results (Trained with Project Out-
comes Report Text)

model accuracy precision recall f1
0 tfidf-logit 0.745 0.745 0.745 0.745
1 transformer 0.673 0.638 0.771 0.698
2 semantic-logit 0.633 0.633 0.633 0.632
3 regex 0.510 0.507 0.510 0.482

Table 3: Composition of the NSF Soft Search Dataset

Program # Awards # Software % Software
0 MPS 32885 19178 0.583184
1 CISE 24633 13274 0.538871
2 ENG 22900 11242 0.490917
3 GEO 17822 5142 0.288520
4 BIO 16990 6013 0.353914
5 EHR 13703 575 0.041962
6 SBE 13318 1966 0.147620
7 TIP 8597 4501 0.523555
8 OISE 2329 636 0.273079
9 OIA 498 123 0.246988

Table 2 reports the results from training using the project out-
comes reports as input. The best performingmodel was the tfidf-logit
which achieved an F1 of 0.745.

While the models trained with the project outcomes reports
were trained with less data, the best model of the group achieved a
higher F1 than any of the models trained with the abstracts. While
we have not investigated further, we believe this to be because the
project outcomes reports contain more direct citation of produced
software rather than an abstract’s promise of software production.

The data used for training, and functions to reproduce these
models, are made available via our Python package: soft-search.

4 THE SOFT-SEARCH DATASET
Using the predictive models, we compile the Soft-Search Inferred
dataset which contains the metadata, abstract text, and project out-
comes report text, for all NSF awarded projects during the 2010-2023
period. The Soft-Search Inferred dataset additionally contains our
predictions for software production using both texts respectively.

4.1 Trends and Observations
Using the Soft-Search Inferred dataset we can observe trends in
software production over time. Figure 1 plots the percent of awards
which we predict to have produced software (using the award’s
abstract) over time.While there areminor year-to-year deviations in
predicted software production, we observe the “Math and Physical
Sciences” (MPS) funding program as funding themost awardswhich
we predict to produce software, with “Computer and Information
Science and Engineering” (CISE), and “Engineering” (ENG) close
behind.

We can additionally observe trends in software production as
award duration increases. Figure 2 plots the percent of awards

Figure 1: Software Production Over Time (Using Predictions
from Abstracts)

Figure 2: Software Production Grouped By Award Duration
(Using Predictions from Abstracts)

which we predict to have produced software (using the award’s
abstract) grouped by the award duration in years. We note that
as award duration increases, the percentage of awards which are
predicted to have produced software also tends to increase.

5 CONCLUSION
We introduce Soft-Search, a pair of novel datasets for studying
software production from NSF funded projects. The Soft-Search
Training dataset is a human-labeled dataset with almost 1000 exam-
ples used to train models which predict software production from
either the NSF award abstract text or the project outcomes report
text. We used these models to generate the Soft-Search Inferred
dataset. The Soft-Search Inferred dataset includes project metadata,
the awards abstract and project outcomes report, and predictions
of software production for each NSF funded project between 2010
and 2023. We hope that Soft-Search helps further new studies and
findings in understanding the role software development plays in
scholarly publication.

230

Authorized licensed use limited to: University of Illinois. Downloaded on July 30,2024 at 13:20:47 UTC from IEEE Xplore. Restrictions apply.

All datasets and predictive models produced by this work are
available from our GitHub repository: si2-urssi/eager.

5.1 Limitations
As discussed in Section 2, the Soft-Search Training dataset was
entirely composed of NSF awards which ultimately released or
hosted software (and other research products) on GitHub. Due to
our data collection strategy, it is possible that each of the predictive
models learned not to predict if an NSF award would produce
software, but rather, if anNSF awardwould produce software hosted
on GitHub.

5.2 Future Work
As discussed in Section 2.1, our initial method for attempting to
find research software produced from NSF supported awards was
to search for references and promises of software production in
the abstract, project outcomes report, and attached papers of each
award. While attempting this approach to create the dataset, we
found that many awards and papers that reference computational
methods do not provide a reference web link to their code reposi-
tories or websites. In some cases, we found repositories related to
an award or paper via Google and GitHub search ourselves. While
we support including references to code repositories in award ab-
stracts, outcomes reports, and papers, future research should be
conducted on how to enable automatic reconnection of papers and
their software outputs.

6 ACKNOWLEDGEMENTS
We thank the USRSSI team, especially Karthik Ram for their input.
This material is based upon work supported by the National Science
Foundation under Grant 2211275.

REFERENCES
[1] Prajjwal Bhattarai, Mohammed Ghassemi, and Tuka Alhanai. 2022. Open-Source

Code Repository Attributes Predict Impact of Computer Science Research. In
Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries (Cologne,
Germany) (JCDL ’22). Association for Computing Machinery, New York, NY,
USA, Article 16, 7 pages. https://doi.org/10.1145/3529372.3530927

[2] Cai Fan Du, Johanna Cohoon, Patrice Lopez, and James Howison. 2022. Un-
derstanding progress in software citation: a study of software citation in the
CORD-19 corpus. PeerJ Computer Science 8 (2022).

[3] Emily Escamilla, Martin Klein, Talya Cooper, Vicky Rampin, Michele C. Weigle,
and Michael L. Nelson. 2022. The Rise of GitHub in Scholarly Publications.
https://doi.org/10.48550/ARXIV.2208.04895

[4] HF Canonical Model Maintainers. 2022. distilbert-base-uncased-finetuned-sst-2-
english (Revision bfdd146). https://doi.org/10.57967/hf/0181

[5] Ana-Maria Istrate, Donghui Li, Dario Taraborelli, Michaela Torkar, Boris Veyts-
man, and Ivana Williams. 2022. A large dataset of software mentions in the
biomedical literature. https://doi.org/10.48550/ARXIV.2209.00693

[6] Daniel S. Katz, Neil P. Chue Hong, Tim Clark, August Muench, Shelley Stall,
Daina R. Bouquin, Matthew Cannon, Scott C. Edmunds, Telli Faez, Patricia
Feeney, Martin Fenner, Michael Friedman, Gerry Grenier, Melissa Harrison, Joerg
Heber, Adam Leary, Catriona J. MacCallum, Hollydawn Murray, Erika Pastrana,
Kath Perry, Douglas C. Schuster, Martina Stockhause, and Jake S. Yeston. 2021.
Recognizing the value of software: a software citation guide. F1000Research 9
(2021).

[7] Carlos Martinez-Ortiz, Paula Martinez Lavanchy, Laurents Sesink, Brett G.
Olivier, James Meakin, Maaike de Jong, and Maria Cruz. 2022. Practical guide to
Software Management Plans. https://doi.org/10.5281/zenodo.7185371

[8] David Schindler, Felix Bensmann, Stefan Dietze, and Frank Krüger. 2022. The role
of software in science: a knowledge graph-based analysis of software mentions
in PubMed Central. PeerJ Computer Science 8 (2022).

[9] Vanessa Sochat, Nicholas May, Ian Cosden, Carlos Martinez-Ortiz, and Sadie
Bartholomew. 2022. The Research Software Encyclopedia: a community frame-
work to define research software. Journal of Open Research Software (2022).

[10] Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Mercè Crosas. 2021. A
large-scale study on research code quality and execution. Scientific Data 9 (2021).

[11] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver
agreement: the kappa statistic. Fam med 37, 5 (2005), 360–363.

231

Authorized licensed use limited to: University of Illinois. Downloaded on July 30,2024 at 13:20:47 UTC from IEEE Xplore. Restrictions apply.

