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1. Introduction

Let 01,05,...,0, be positive real numbers. The Luce model (o) is a probability dis-
tribution on the symmetric group S, driven by these weights. In words, “put n balls
with weights 61,05, ...,6, into an urn. Each time, withdraw a ball from the urn (sam-
pling without replacement) with probability proportional to its weight (relative to the
remaining balls).” Thus, if w, =6y + -+ + 6,
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In Section 2, a host of applied problems are shown to give rise to the Luce model. These
include the celebrated Tsetlin library, a Markov chain on S, described as: “at each step,
choose a card labeled ¢ with probability proportional to #; and move it to the top” —
(o) is the stationary distribution of this Markov chain.

It is natural to ask basic enumerative questions: pick o from 7 (o).

e What is the distribution of the number of fixed points, cycles, longest cycle, and
order of o7
o What is the distribution of the length of the longest increasing subsequence of o7

Most of these questions are open at this time. The main results below settle

o What is the distribution of the top k cards o(1),...,0(k)? (Section 3)
e What is the distribution of the bottom k cards o(n —k +1),...,0(n)? (Section 4)

Weighted sampling without replacement from a finite population is a standard topic.
This may be accessed from the Wikipedia entries of “Horvitz—Thompson estimator” [35]
and “concomitant order statistics.”

Coming closer to combinatorics, two papers by Rosen [44] treat the coupon collector’s
problem and other coverage problems.

The recent paper by Ben-Hamou, Peres and Salez [6] couples sampling with and
without replacement so that tail and concentration bounds, derived for partial sums when
sampling with replacement, are seen to apply “as is” to sampling without replacement.

In computer science applications, Tsetlin library is studied as the “move to the front
rule.” In these applications, interest centers on the search cost. Here, the search cost for
item 7 at time ¢ is the number of cards j above card labeled ¢ at time ¢. Summing over i,
say with weight 0, /w,,, gives the average search cost and letting ¢ tend to infinity gives
the limiting search cost. These average and limiting distributions are studied in [29] and
[28], which give extensive references to the literature. These statistics are close to the
number of inversions, and it may be hoped that some of the novel techniques introduced
in [29] and [28] can be used to get at the distribution of inversions.

A final item; throughout, we have assumed that the weights 6; are fixed and known.
It is also natural to consider random weights. For a full development, see [43].

Section 5 develops the connections of the Tsetlin library to the Bidigare-Hanlon—Rock-
more (BHR) walk on the chambers of a real hyperplane arrangement. Understanding the
stationary distributions of these Markov chains is almost completely open.

Section 2 begins with a review of enumerative group theory. These questions make
sense for continuous groups. Georgia Benkart made fundamental contributions here
through her work on decomposing tensor products.
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2. Background
2.1. Enumerative group theory

Let G be a finite group. A classical question is “pick ¢ € G at random. What does it
look like?” For example, if G = S,

o What is the distribution of F(g), the number of fixed points of g7
e How many cycles are typical?

o What is the expected length of the longest cycle?

e What about the length of the longest increasing subsequence of g7
e What about the descent structure of g?

o How many inversions are typical?

All of these questions have classical answers (references below).

For G = GL,(q), parallel questions involve the conjugacy class structure of a random
g € G. For a splendid development (for finite groups of Lie type), see Fulman [30], which
has full references to the results above. The recent survey of Diaconis and Simper [23]
brings this up to date. It focuses on enumeration by double cosets H \ G/K.

The questions above make sense for continuous groups, where they become “random
matrix theory.” For example, when G = O,, (the real orthogonal group), one may study
the eigenvalues of g € G under Haar measure by studying the powers of traces

/ (Tx(g))" dg.

O’!L

Patently this asks for the number of times the trivial representation appears in the kth
tensor power of the usual n-dimensional representation of O,,. See [20] for details.

Georgia Benkart did extensive work on decomposing tensor powers of representations
of classical (and more general) groups. She worked on this with many students and
coauthors. Her monograph with Britten and Lemire [7] is a convenient reference. Most
of this work can be translated into probabilistic limit theorems. We started to do this with
Georgia during MSRI 2018, but got sidetracked into doing a parallel problem working
over fields of prime characteristic in joint work with Benkart—Diaconis-Liebeck—Tiep [§].

Most all of the above is enumeration under the uniform distribution. A recent trend
in enumerative (probabilistic) group theory is enumeration under natural non-uniform
distributions. For example, on S,,,

+ The Ewens measure my(0) = Z~1(#)#°(?). Here, 0 is a fixed positive real number,
C(o) is the number of cycles of o, and Z~1(0) is a simple normalizing constant.
The Ewens measure originated in biology, but has blossomed into a large set of
applications. See Crane [18].
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+ The Mallows measure my(c) = Z~1(0)0'(?), where I(c) is the number of inversions
of 6. This was originally studied for taste testing experiments but has again had a
huge development.

e More generally, if G is a finite group and S C G is a symmetric generating set,
let £(g) be the length function and define Py(g) = Z~(0)0*9). Ewens and Mal-
lows models are special cases with G = S, and S = {all transpositions} and
S = {all adjacent transpositions}.

Most of the questions studied above under the uniform distribution have been fully
worked out under Ewens and Mallows measures. See the survey by Diaconis and Simper
[23] for pointers to a large literature.

The above can be amplified to “permutons” [34] and “theons” [17]. It shows that
enumeration under non-uniform distributions is an emerging and lively subject. We turn
next to the main subject of the present paper.

2.2. The Luce model
This section gives several applications where the Luce model appears.

2.2.1. Psychology
In psychophysics experiments, a panel of subjects are asked to rank things, such as:

e Here are seven shades of red; rank them in order of brightness.

o Here are five tones; rank them from high to low.

e The same type of task occurs in taste-testing experiments. Rank these five brands
of chocolate chip cookies (or wines, etc.) in order of preference.

This generates a collection of rankings (permutations) and one tries to draw conclusions.

Patently, rankings vary stochastically; if the same person is asked the same question
at a later time, we expect the answers to vary slightly.

Duncan Luce introduce the model (1) via the simple idea that each item has a true
weight (say, 6;) and the model (1) induces natural variability (which can then be com-
pared with observed data).

Indeed, he did more, crafting a simple set of axioms for pairwise comparison and
showing that any consistent ranking distribution has to follow (1) for some choice of 6;.
This story is well and clearly told in [36] and [37].

We would be remiss in not pointing to the widespread dissatisfaction over the “in-
dependence of irrelevant alternatives” axiom in Luce’s derivation. The long Wikipedia
article on “irrelevance of alternatives” chronicles experiments and theory disputing this,
not only for Luce but in Arrow’s paradox and several related developments. Amos Tver-
sky’s “elimination by aspects (EBA)” model is a well-liked alternative.
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2.2.2. Ezponential formulation

Luce’s work followed fifty years of effort to model such rankings. Early work of Thur-
stone and Spearman postulated “true weights” 6;,...,68, for the ordered values and
supposed people perceived 0; +¢;,1 < i < n with &; independent normal N'(0, 02). They
then reported the ordering of these perturbed values. See [26] for an up-to-date account
of Thurstonian ranking models.

Yellott [48] noticed that if in fact the &; had an extreme value distribution, with
" —00 < & < o0, then the associated Thurstonian ranking
model is exactly the Luce model!

distribution function e~¢

It is elementary, that if the random variable Y has an exponential distribution (P(Y >
x) = e~ %), then log Y has an extreme value distribution. This gives the following theorem
(used in Section 4):

Theorem 2.1. For 1 < ¢ < n, let X; be independent exponential random variables on
[0, 00) with density

eie—xai
(so X; =Y;/0; with Y; the standard exponential). Then, the chance of the event
Xi<Xo<--- <X,

is (with wy, =014+ +0,)

>

0, 0, 05
Wn, wn—01 wn—91—02 9n

Proof. Consider the event X; < X5 < --- < X,,. The chance of this is

o0 o0 o0 n
91...9n/ / / exp{zxﬂi}dévl'“dffn
r1=0z2=2x1 Tn==Tnp—1 i=1
[e's} oo n—2
701...(9”/ / 3 w6 (Bn—1+6n) p d d
= o exp : ;0 — xn—1(On-1 n X1 Tn—1
z1=0 Tp_1=Tp_2 i=1
0y 0 0 0 n—3
1 - i0;i — Tn—2 (On—2 +0p—1+0n) p dz1 - -drp—
9n(9n+9n71)/ / exp{ Zlcc Tn—2 (On—2 +On-1+ )} 71 Tn—2
x1=0 Tp—2=Tp—3 =
61---0n

= en(en —+ enfl)(en +60nh_1+ 07172) “ee (0n 4t 91) ’
which is indeed equal to

b0 s 6
Wn, wn—91 wn—91—92 9n

>

Thus, the order statistics follow the Luce model (1). O
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For an application of the exponential representation to survey sampling, see Gordon
[31].

2.2.8. Tsetlin library

The great algebraist Tsetlin was forced to work in a library science institute. While
there, he postulated (and solved) the following problem:

Consider n library books arranged in order 1,2, ..., n. Suppose book ¢ has popularity
0;. During the day, patrons come and pick up book labeled i with probability 6;/w,, and
after perusing, they replace it at the left end of the row.

This is a Markov chain on S,, and Tsetlin [47] showed that it has (1) as its stationary
distribution.

The same model has been repeatedly rediscovered; in computer science, the books are
discs in deep storage. When a disc is called for, it is replaced on the front of the queue
to cut down on future search costs. See Dobrow and Fill [24].

The model (and its stationary distribution) appear in genetics as the GEM (Griffiths—
Engen-McCloskey) distribution [25].

Over the years, a host of properties of the Tsetlin chain have been derived. For exam-
ple, Phatarfod [42] found a simple formula for the eigenvalues and Diaconis [21] found
sharp rates of convergence to stationarity (including a cutoff) for a wide class of weights.
See further Nestoridi [39]. All of this is now subsumed under “hyperplane walks”; see
Section 5.

A monotonicity property. Suppose, without essential loss, that 8, > 6 > --- > 6, > 0.
Then,

e The largest 7(0) is for o = id.

e The smallest 7(0) is for 0 = (n,n —1,...,1).

e More generally, (o) is monotone decreasing in the weak Bruhat order on permuta-
tions.

To explain, the weak Bruhat order is a partial order on S,, with cover relations o < o’
if o can be reached from ¢’ by a single adjacent transposition of the ith and (i 4+ 1)th
symbols when ¢’(7) < o’(i + 1). Thus, when n = 3,

123
RN
213 132
231 312

N S

321
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Proposition 2.2. For 6, > 0y > --- > 0, n(0) is monotone decreasing in the weak Bruhat
order.

Proof. The formulas for 7(c) and 7(0’) only differ in one term. If o; > ;41 and these
terms were transposed from o, then

(o) 1=05 =05y — =05,
71—(0—/) B 1_901_902_"'_901'

Irrelevance of alternatives. The following property characterizes the Luce measure
(1): let {i1,42,...,ix} be a subset of {1,2,...,n}. Fix 01,...,0, and pick o from 7 (o).
The distribution of cards labeled {iy,...,ix} follows the Luce model with parameters

3

91'—1—9]»

iy, ..,0;, . For example, the chance that i is above j in o is . This is easy to see

from the exponential representation.

2.2.4. Order statistics and a natural choice of weights

Many questions in probability and mathematical statistics can be reduced to the
study of the order statistics of uniform random variables on [0, 1] by using the simple
fact that, if X is a real random variable with continuous distribution function F(z) (so
P(X < z) = F(x)), then Y = F(X) is uniformly distributed on [0,1]. This implies
that standard goodness of fit tests (e.g., Kolmogorov—Smirnov) have distributions that
are universal under the null hypothesis (they do not depend on F). If Y is uniform on
[0,1], then —logY is standard exponential as above, so order statistics of independent
exponentials are a mainstream object of study. A marvelous introduction to this set of
ideas is in Chapter 3 of [27] with Ronald Pyke’s articles on spacings [41] providing deeper
results.

With this background, let Y7,Y5,...,Y,, be independent standard exponentials on
(0,00). Denote the order statistics by Y{1) < ¥(9) < -+ < Y(y,). The following property
is easy to prove [27].

Theorem 2.3. With above notation,
Yy, Yio) =Y, Yio) = Y2), -+ Yin) = Yin-n)
are independent exponential random variables with distributions
Yy ~ Eq/n, Yio) — Yy ~ E2/(n— 1), Yi) — Y1) ~ En,
where Ey, ..., E, are independent standard exponentials (density e~ on (0,00)).

It follows from our Luce calculations that the chance that the smallest spacing is
2 -1

Y is 77:_1 = , and that the smallest spacing is Y(o) — Y(q) is Ln+1 , and so on.
(")) ntl ("2")
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Specifically, Y(;11) — Y(;) has probability DI of being smallest, and Y,y — Y{(,,_1) has

("3

1
chance (nT of being smallest.

2
The whole permutation is given by the Luce model (1) with §; = n — i + 1. This
classical fact is due to Sukhatme [46]. We will call these Sukhatme weights in the following

discussion.

2.2.5. Application to poker and the ICM (iterated card model)

In tournament poker (e.g., the World Series of Poker), suppose there are n players at
the final table with player i having ; dollars. It is current practice among top players
to assume that the order of the players, as they are eliminated, follows the Luce model
(with the player having the largest 6, least likely to be eliminated; thus most likely to win
all the money), and so on. This is called the ICM (iterated card model) and is used as
a basis for splitting the total capital and for calculating chances as the game progresses.
For careful details and references, see Diaconis—Ethier [22], which disputes the model.

2.2.6. Applications to horse racing

In horse racing, players can bet on a horse to win, place (come in second), or show
(come in third). The “crowd” does a good job of determining the chances of each of the
n horses running to come in first. Call the amount bet on horse i just before closing, ;.
However, the crowd does a poor job of judging the chance of a horse showing. Often,
there is sufficient disparity between the crowd’s bet and the true odds that money can
be made (perhaps one race in four). This is despite the track’s rake being 17% of the
total. A group of successful bettors uses the 6;’s and the Luce model to evaluate the
chance of placing. For details, see Hausch, Lo and Ziemba [33] or Harville [32].

With this list of applications, we trust we have sufficient motivation to ask “what does
the distribution (1), 7(o), look like?”

3. The top k cards

Throughout this section, without loss of generality, assume 61 4+ --- + 6, = 1. For 8
and k fixed, let

00_ 90_ 00
Uk): 1Y02 k
(1 _90'1)(1 _'901 _902)"'(1 _'901 - _oak—l)

(2)

P(Ul o9 -+

denote the measure induced on the top k cards by the Luce measure. It is cumbersome
to compute, e.g.,

0;
P(o3) =05, Y e
i;éa'g
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On the other hand, the Luce measure is just sampling from an urn without replacement.
If {6;} are “not too wild” and k is small, then sampling with or without replacement
should be “about the same.” This is made precise in two metrics.

Let Q(o1 02 - -+ o)) be the product measure

Q(010-2 ".o-k):90190'2'"90'k7 (3)

where o1, ..., 0k need not be distinct. Both P and @ depend on {6;} and k, but this is
suppressed below. Define

0o (P, Q) = max <1 _ M)

P(O'l PR O'k)
and
1P~ Qllrv = 5 3 I ) - Q )
TV = B . g1 Ok 01 [
where, in both formulas, o1, ..., 0} are not necessarily distinct, and P(oy --- of) = 0 if

they are not distinct. Clearly, [|P — Q|lrv < doo(P, Q).
Theorem 3.1. For 6, +---4+6, =1, 0; < % for all 1 <i<n,
doo(P,Q) <1 —exp{—2((k—1)01) + (k — 2)02) + - + Ox—1)) } -

Here, 0(1) > 03y = -+ > 0y, are the ordered values.

k n
Theorem 3.2. As n — 0o, suppose <2> Z 0? — \. Then,

=1
IP—Qllry ~1—e™.

In Theorem 3.2, {6;} form a triangular array, but again, this is suppressed in the
notation. The remarks below point to non-asymptotic versions.

Proof of Theorem 3.1. From the definitions,

dOO(P7Q> = mgx (1 - (1 - 901)(1 - 90’1 - 902) e (1 - 90’1 - 90k—1)) )
where the maximum is over all oy, ..., o) distinct (because, if they are not distinct, then
Q(Ul Uk)

we have that 1 — = —o0, which does not contribute to the maximum). Use

-2z <log(l—z)< —zfor0<z< % Since all 6; < %,
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doo(P, Q) < max 1 —exp{=2 (0, + (0, +05,) + -+ (0o, + - +05,_,)) } -
The right-hand side is maximized for oy, ...,0,—1 with the largest weights. O

Proof of Theorem 3.2. A prepatory observation is useful:

|P—Q|rv = Z (P(o) — Qo)) =1— Pg(o1,...,o0 are distinct).
o:P(0)2Q(0)

This is just the chance that there are two or more balls in the same box if k balls are
dropped independently into n boxes, the chance of box i being #;. This non-uniform
version of the classical birthday problem has been well-studied. If X;; is 1 or 0 as balls
1,7 are dropped into the same box and

W = Z Xij,

1<i<j<k

k n
EW) = <2> 2922 Under the condition E(W) — A, W is known to have a limiting
i=1

Poisson()) distribution and Pg(W = 0) ~ e~*. See Chatterjee-Diaconis—Meckes [16] or
Barbour-Holst—Janson [4] for further details and more quantitative bounds. O

Example 3.3. Consider the Sukhatme weights from Section 2.2.4:

n+1—1
("3

The exponent for the right-hand side of Theorem 3.1 is

6; =

2
("3")

Simple asymptotics show that for k = ¢y/n, ¢ > 0, this is

42 + 0O (%) .

((k=Dn+(k-2)n—1)+ - (n—k+2)}.

So,

)

)

doo(P,Q) < 1— %0

and k < /n suffices for product measures to be a useful approximation to the first
k-coordinates of the Luce measure. With k = c\/n,
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B\ = g
(5) 2~ 5=

giving a similar approximation in total variation.

Example 3.4. The bound in Theorem 3.1 is useful when

(k=10 + -+ 0p_1)

is small. To see that this condition is needed, take #; = %7 0; = ﬁ for 2 < i < n. For
k=2,
0,0
P(]' 2) = 2 ) Q(]'Z) = 01923
1—06;

and s0, do(P,Q) = 1 — (1 — 61) = %. This does not tend to zero when n is large. The
two-sided bounds for log(1 — ) show Theorem 3.1 is sharp in this sense for general k.

Example 3.5. As discussed above, if the infinity distance tends to zero, then total varia-
tion tends to zero. Here is a choice of weights #; so that the total variation convergence
holds for the joint distribution of the first k& coordinates of the Luce model to i.i.d., but
not in infinity distance.

Fix k,1 <k <n and let ; = k~7/* for i < k and

1— k=31
bi = n—k

fori>ksothat912022-~~20n>0and291:1. Note that

i=1

- k2
()z_: S22:92 k2292<k1/2 "

= i=k+1
while
k_l(k;—zﬂ =k~ 7/42 1( 3/4(k—1)).
i=1 2
k—1
Thus, if 1 < k < /n, Z(kfi)ei is large, but < ) Z is small. Moreover, if K = \y/n,
i=1 i=1

k n ) )\2 k—1
then <2> ;ai — 5, but ;(k —i)8; — oo.



150 S. Chatterjee et al. / Journal of Algebra 655 (2024) 139-162

Remark 3.6.

(a) Our proof of Theorem 3.2 used the Poisson approximation for the non-uniform ver-
sion of the birthday problem. There are other possible limits which can be used to
bound [|P — Q||7v. See [15].

(b) It is easy to see that

Qo(o1,. .., 0k distinct) = kleg(01,02,...,0,),
where ey, is the kth elementary symmetric function. From here, Muirhead’s theorem
shows ||P — Q||rv is a Schur-concave function of 61,...,6,, smallest when 6; = L.
4. The bottom k cards
4.1. Introduction

For naturally occurring weights, the bottom k cards behave very differently from the
top k cards. To illustrate by example, consider the Sukhatme weights of Section 2.2.4:
n+1—1

("3

2

The results of Section 3 show that, for large n,

€T

P(ﬁgx)NZ/(l—y)dy.

n
0
That is, 01 /n has a limiting 5(1,2) distribution.
Using Theorems 3.1 and 3.2, the same holds for o;/n for fixed i < /n. Of course,
large numbers have higher probabilities, but all values in {1,2,...,n} occur.

In contrast, consider the value of bottom card o,,. Intuitively, this should be small
since the high numbers have higher weights. We were surprised to find

P(o, =1) ~0.516...

In fact, we computed, using a result that follows, that

P(£ is last)

0.516094
0.213212
0.107310
0.0597505
0.0354888
0.0220716
0.0142167
0.00941619
0.00638121
0 0.00440862

= OO0 U WN S

The section below sets up its own notation from first principles.



S. Chatterjee et al. / Journal of Algebra 655 (2024) 139162 151

4.2. Main result

Let N denote the set of positive integers and let NN be the set of all maps from N into
N. Consider the topology of pointwise convergence on NN, This topology is naturally
metrizable with a complete separable metric, and so we can talk about convergence of
probability measures on this space.

Now suppose that for each n, o, is a random element of the symmetric group S,,. We
can extend o, to a random element of NN by defining ¢,,(i) = i for i > n.

Proposition 4.1. Let o, be as above. Then o, converges in law as n — oo if and only if
for each k, the random vector (o,(1),...,0,(k)) converges in law as n — oo.

Proof. Since the coordinate maps on NN are continuous in the topology of pointwise
convergence, one direction is clear.

For the other direction, suppose that for each k, (o,(1),...,0,(k)) converges in law
as n — 0o. Notice that for any sequence of positive integers ay,as, ..., the set
{f e NN: (i) < a; for all z} (4)

is a compact subset of NN, since any infinite sequence in this set has a convergent
subsequence by a diagonal argument. Take any ¢ > 0. By the given condition, o, ()
converges in law as n — oo for each 4. In particular, {0, (¢)},>1 is a tight family (a
family of measures is tight if it is almost compactly supported, see [10]), and so there is
some number a; such that for each n,

P(o,(i) > a;) < 27 %.

Therefore if K denotes the set defined in (4) above, then for each n,

Plo,e K)>1- ZP(O’n<i) >a;) >1— 22_15 =1-c
i=1 i=1

This proves that {o,}n>1 is a tight family of random variables on NN Therefore the
proof will be complete if we can show that any probability measure on N is determined
by its finite dimensional distributions. But this is an easy consequence of Dynkin’s 7-A
theorem (see [10] for a theorem and proof of the Dynkin 7-A theorem). O

The above proposition implies, for instance, that if o, is a uniform random element
of S,,, then o, does not converge in law on NN, because o,(1) does not converge in law.
Let 0 < 6; <03 < --- be a non-decreasing infinite sequence of positive real numbers.
For each n, consider the Luce model on S,, with parameters 64,...,60,. Let o,, be the
reverse of a random permutation drawn from this model. That is, 0,(1) is the last ball



152 S. Chatterjee et al. / Journal of Algebra 655 (2024) 139-162

that was drawn and o, (n) is the first. As we know from prior discussions, an equivalent
definition is the following. Let X7, X, ... be an infinite sequence of independent random
variables, where X; has exponential distribution with mean 1/6;. Then o,, € S,, is the
permutation such that X, ) > X5 (2) > > X5, (n)-

Theorem 4.2. Let o,, be as above. For each x > 0, let

where we allow f(z) to be oo if the sum diverges. Let
xo :=inf {z : f(z) < o0},

with the convention that the infimum of the empty set is co. Then o, converges in law
as n — oo if and only if xo < 0o and f(xg) = oo. Moreover, if this condition holds,
then the limiting finite dimensional probability mass functions are given by the following
formula: For any k and any distinct positive integers a1, . .., ak,

lim P(o,(1) = aq,...,0n(k) = ax)

n—oo

k
= / [[a,e %) T (1 —e%*)day---day.

T1>T2 > > >0 J=1 ig{alv“aak}

Before proving the theorem, let us work out some simple examples. Suppose that
0; = i for each 4. This corresponds to the Luce model with the Sukhatme weights. Then
clearly f(x) < oo for all > 0, and hence xy = 0. Also, clearly, f(0) = oo. Therefore in
this case o, converges in law as n — oo. Moreover, by the formula displayed above,

00 00 1
— emi7)
RILH;O P(o,(1) = / H (1—e /
0 J=2 0

On the other hand, for the case of uniform random permutations, 8; = 1 for all 7. In this

y))dy = 0.516094 . .

W::]g

case, f(x) = oo for all z, and hence xy = co. Thus, the theorem implies that o, does
not converge in law (which we know already).

Next, suppose that 6; = Slog(i + 1) for some 8 > 0. Here f(z) < oo for z > 1/
and f(x) = oo for x < 1/8. Thus, o = 1/8 and f(x¢) = oo, and so by the theorem, o,
converges in law.

Strangely, o, does not converge in law if §; = log(i + 1) + 2loglog(i + 1). To see this,
note that in this case,

= 1
=2 (i + 1)=(log(i + 1))2=

=1
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Thus, f(z) < oo for z > 1 and f(z) = oo for z < 1, showing that zo = 1. But

oo
1
@) = 2 T Ditogu s IE <

which violates the second criterion required for convergence. This shows that we cannot
determine convergence purely by inspecting the rate of growth of 6;. The criterion is
more subtle than that.

What happens if the tightness criterion does not hold? In this case, the formula for
the limit of P(o,(1) = aq,...,0,(k) = ax) remains valid, but it may not represent a
probability mass function, i.e., the sum over all a1, ..., a; may be strictly less than 1.

Proof of Theorem 4.2. Take any £ > 1 and distinct positive integers a1, ...,ax. Take
n > maxi<i<k @;. Let E, be the event {0,(1) = a1,...,0,(k) = ar}. Then

P(E,) =P(Xa, > Xy > > Xq, > X, Vie [n]\{a1,...,ax})

k

= / H(@ajefe”‘imj) H (1—e %) dz, - - day,.

T1>T2> - >a >0 J=1 i€[n]\{a1,...,ax}
By the dominated convergence theorem, this gives

k

. —0,. T —0;
Jim P(E,) = / [[@ae™™) JI (1 —e ) da - day.
T1>x2> - >T >0 Jj=1 i¢{a1,....,ar}
Thus, we have shown that for any k& and distinct positive integers asi,...,ag,
lim, 00 P(on(1) = ay,...,0,(k) = ai) exists, and also found the desired formula for the

limit. However, we have not shown convergence in law because we have not established
tightness. (This is not surprising, because we did not use any properties of the 6,’s yet.)
From what we have done until now, it follows that (o,(1),...,0,(k)) converges in law
as n — oo if and only if it is a tight family. But this holds if and only if {0, (i) }n>1 is a
tight family for every ¢. We will now complete the proof of the theorem by showing that
{on () }n>1 is a tight family for every ¢ if and only if 2o < oo and f(zg) = oo.

First, suppose that {0, (1)},>1 is a tight family. Then there is some a such that

lim P(o,(1) =a) > 0.

n—oo

From the above calculation, we know that

n—00 .
i#a

lim P(o,(1) =a) = /Gae_‘g“x H(l —e %) dg.
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If this is nonzero, then there is at least one x > 0 for which

oo

[[a-e)>o0.

i=1

But this implies that

o0
x) = Zefo”” < 00.
i=1

Thus, zp < oo. Next, we show that f(z¢o) = oco. Suppose not. Then zy > 0, since
f(0) = co. Fix a positive integer a. For each n > a, and let A4,, be the event {0, (1) < a}.
Let F), be the event {max;<, X; < x¢}. Take any z € (0,z0) and let G,, be the event
{max;<, X; < z}. Then

P(An) < P(An 0 (Fp \ Gn)) + P((Fn \ Gr)°)

(An O (Fa \ Gn)) + P(F7 U Gy)
(An N (Fo \ Gn)) + P(Gy) + P(EY).

P
P

IN

If the event A, N (F, \ G,) happens, then max;<, X; belongs to the interval (z,zo],
and one of Xi,..., X, is the maximum among Xj, ..., X,,. Thus, in particular, one of
X1,...,Xq isin (x, zo]. Plugging this into the above inequality, we get

a n

P(An) §Z<e—9m_ —0; aco +H —Gz +1_H(1_6_0ﬂ0>'

i=1 =1

oo
Since f(x) = oo, we have H(l — %) = 0. Thus, taking n — oo on both sides, we get
i=1

oo

D R RAE | (e}

n—o00
i=1

Now notice that the definition of A,, does not involve z. So we can take z " x(y on the
right, which makes the first term vanish and leaves the rest as it is. Thus,

oo

lim P(A,) <1- ] —e %)

n—o00 .
i=1

But the assumed finiteness of f(xg) implies that the product on the right is strictly
positive. Thus, we get an upper bound on nlgr;O P(A,) which is less than 1. But observe
that this upper bound does not depend on a. This contradicts the tightness of o,(1),
thereby completing the proof of one direction of the theorem.
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Next, suppose that g < co and f(zo) = co. We consider two cases. First, suppose
that zp = 0. Then f(z) < oo for each z > 0. But

fla) = 30 P(X, > ). )

Therefore by the Borel-Cantelli lemma, X; — 0 almost surely as i — co. Now take any
1 and integers n and a bigger than i. Then the event o,,(¢) > a implies that

max X; > min{Xy,..., X},

jza

because otherwise the ith largest value among (X;)7_; cannot be one of (X;);>4. Thus,
P(on(i) >a)< P (m>aij > min{Xl,...7Xi}> .
Jj=za

But the right side is a function of only a (and not n), and tends to zero as a — oo
because X; — 0 almost surely as j — oo. This proves tightness of {0, (i)},~,; when
zg = 0. -

Next, consider the case x¢ > 0. For convenience, let us define the partial sums

n

fn(ﬂT) = Ze*f)m’ gn(x) — H (1 _ 676"’1) .

i=1 i=1

Take i, n and a as before. Let x be a real number bigger than xg, to be chosen later.
The event 0, (i) > a implies that at least one of the following two events must happen:
(a) There are less than i elements of (X;)j_; that are bigger than z, or (b) X; > x for
some j > a. This gives

Ploa()za)< S [JTe® ) [ TI (-e) )+ e

AC[n],|Al<i \J€EA JjE\A j>a

Now note that for any A C [n] with |A| < 4,

1—etimy g — D o)
je[l;][\A ( ) H (1 — 6—0;'06) (1- 6761300)17

jeA
Therefore

> (e { I a-e)

AC[n], |Al<i \JEA JEMMNA
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= (1_%2)—1 > (Il

AC[n], |Al<i \jeA

9n(@) (L4 fn(@) + Fa(@) + -+ ful2) 1)

= (1 — e=Ormo)i-1

x

By the inequality 1 — 2 < e~%, we have g, (z) < e~ /(®), Thus,

e*fn(m) n(T n]}2 naiiil —0.;
P(oa(i) 2 a) < L ((1)+efe(w2)i+1 i )+Z€ .

jza

Let m be the largest integer such that 6,, < 1/(x — x). Suppose that n > m. Then

m m m
fn(m) Z Z —0;20—0;(z—x0) > e—l Ze—éjxg.
Jj=1 Jj=1

=1

But m — oo as x N\ xg, and f(zg) = oo by assumption. Thus, the above inequality
shows that given any L > 0, we can first choose z sufficiently close to z(, and then
choose ng sufficiently large, such that for all n > ng, f,(x) > L. Now take any € > 0 and
find L so large that for all y > L,

e V14+y+yi+-+yh
(1 _ 6791:100)2’71

<6
%

Choose x and then ng as in the previous paragraph corresponding to this L. Then find
a so large that

—0.x 9
E e < =
2)

jza

which exists since f(x) < co. For this choice of a, the above steps show that P(o, (i) >
a) < e for all n > ng. This proves tightness of {0, ()},; when o > 0, completing the
proof of the theorem. O

5. A vast generalization — hyperplane walks
5.1. Introduction

The Tsetlin library has seen vast generalizations in the past twenty years. In this
section, we explain walks on the chambers of a hyperplane arrangement due to Bidigare—

Hanlon-Rockmore [9] and Brown-Diaconis [13]. The Tsetlin library is a (very) special
case of the braid arrangement. These Markov chains have a fairly complete theory (simple
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forms for the eigenvalues and good rates of convergence to stationarity). But the descrip-
tion of the stationary distribution, the analog of the Luce model, is indirect, involving a
weighted sampling without replacement scheme. Thus the problem

What does the stationary distribution of hyperplane walks look like?

Section 5.2 sets things up and states the main theorems (with examples). The few cases
where something is known are reported in Section 5.3. The final section points to semi-
group walks where parallel problems remain open. The main point of this section is to
cast Sections 2—4 above as contributions to a general problem.

5.2. Hyperplane walks

We work in R, Let A= {Hy, Ha, ..., Hy} be a finite collection of affine hyperplanes
(translates of codimension one subspaces). These divide R? into

o chambers (points not on any H;). Let C be the chambers.
o faces (points on some H; and on one side or another of others). Let F be the faces.

Fig. 1. Four lines in R2. There are 10 chambers and 30 faces (chambers, points of intersection and the empty
face are faces).

A key notion is the projection of a chamber onto a face (Tits projection). For C € C
and F' € F, PROJ C — F is the unique chamber adjacent to F' and closest to C' (in the
sense of crossing the fewest number of H;’s). In the Fig. 1, PROJ C — F = C".

With these definitions, we are ready to walk. Choose face weights {wr}p.» with

wp > 0 and Z wp = 1. Define a Markov chain «(C, C’) on chambers via:
FeF

e from C, choose F' € F with probability wr and move to PROJ C — F.

Thus, x(C,C") = Z WE.
PROJ C—F=C"
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Example 5.1 (Boolean arrangements). Let H; = {x eRe:z; = 0} ,1 < i < d be the
usual coordinate hyperplanes. These divide R? into 2¢ chambers (the usual orthants)
and 3¢ faces. A face may be labeled by a vector of length d containing 0, £1 to delineate
0 (on) or on one side or the other of the ith hyperplane. Chambers are faces with no
zeros. For PROJ C — F = (', set the ith coordinate of C’ to the ith coordinate of F if
this is £1 and leave it as the ith coordinate of C' if the ith coordinate of F' is 0.

Thus, a walk proceeds via: from C, pick a subset of coordinates and install £+1 in
them as determined by F'. For example, if

1
0 otherwise,

F=(0,...,0,+1,0,...,0),

the walk becomes “pick a coordinate at random and replace it with +1 chosen uniformly.”
This is the celebrated Ehrenfest urn model of statistical physics. Dozens of natural
specializations of these Boolean walks are spelled out in [13].

Example 5.2 (Braid arrangement). Take H;; = {x ER?:z; = xj} ,1<i<j<d. Now,
the chambers are points in R? with no equal coordinates. It follows that the relative
order is fixed within a chamber, so chambers can be labeled by permutations. The faces
are indexed by “block ordered set partitions”: coordinates within a block are equal and
all coordinates in the first block are smaller than the coordinates in the second block,
and so on.

For the projection, suppose the chamber labeled 7 is thought of as a deck of cards in
arrangement 7 (with 7 (z) the label of the card at position ¢). Suppose d = 5 and the
face is F' =13/2/45. Remove cards labeled 1 and 3 from 7 (keeping them in their same
relative order, then remove the card labeled 2 and place it under cards 1, 3. Finally,
remove cards labeled 4, 5 and place them at the bottom of the five card deck. This is
PROJ m — 13/2/45.

The Tsetlin library arises from the choice

wF:{ai if F=i/[n]\i

0 otherwise

That is the walk on S,, with “choose label ¢ with probability #; and move this card to
the top.”
Riffle shuffling arises from

1
5 if F =S, [d] — S where S is not equal to 0 or [d]
I
W = 5T if F=1d

0 otherwise
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Another way to say this — label each of d cards in the current deck with a fair coin
flip, remove all cards labeled “heads” keeping them in their same relative order, and
place them on top. This is exactly “inverse riffle shuffling,” the inverse of the Gilbert—
Shannon-Reeds model studied by Bayer-Diaconis [5].

There are hundreds of other hyperplane arrangements where the chambers are labeled
by natural combinatorial objects, and there are choices of face weights so that the walk
is a natural object ot study. Indeed, any finite reflection group leads to a hyperplane
arrangement with Hy being the hyperplane orthogonal to the vector v determining
the reflection. Any finite graph leads to a “graphical arrangement.” For a wonderful
exposition, see Stanley [45].

As said, the Markov chains «(C, C”) admit a complete theory with known eigenvalues
and rates of convergence. We will not spell this out here; see [13], but turn to the main
object of interest — the stationary distribution.

Let A be a general arrangement with chosen face weights {wr}pc» and x(C,C’)
the associated Markov chain on C, the chambers of the arrangement. m(C') > 0 and
> m(C) =1 is stationary for  if >, 7(C)k(C,C") = w(C") — thus m can be thought
of as a left eigenvector with eigenvalue 1. When does a unique such 7 exist?

Theorem 5.3 (Brown—Diaconis). Call {wr} separating if they are not all supported in
the same hyperplane (for H € A, there exists H € A and wg >0 for F C H'). Then &
has a unique stationary distribution 7(C) if and only if {wr} are separating.

This 7 is the analog of the Luce model and becomes the Luce model for the braid
arrangement as above. The following result gives a “weighted sampling without replace-
ment characterization” of 7(C).

Theorem 5.4 (Brown—Diaconis). Suppose {wr} are separating. The following algorithm
generates a pick from w(C):

o place all {wp} in an urn.

o draw them out, without replacement, with probability proportional to size (relative to
what is left).

o say this results in the ordered list F1, Fa, ..., FiF.

e from any starting chamber C' (the choice does not matter), project on F|r|, then on
Fir|—1, and so on until Fy. The resulting chamber is evactly distributed as w(C).

Of course, for the Tsetlin library, this is just the Luce measure on permutations. The
following subsection delineates the few examples where something can be said about .
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5.3. Understanding

Suppose a group of orthogonal transformations acts transitively on A preserving
k(C,C"). Then, 7(C) is uniform over C (supposing separability). Examples include riffle
shuffles, the Ehrenfest urn, and “random to top” (the Tsetlin library with 6; = %,1 <
i <n). For more on this, see [39].

Simple features of 7 can sometimes be calculated directly. See Pike [40] and its refer-
ences.

Aside from the present paper, the only other examples that have been carefully studied

are in the following graph coloring problems.

5.8.1. Graph coloring
Let G be a connected and undirected simple graph. Let X be the set of 2-colorings
(say by £) of the vertex set of G. Define a Markov chain on X' by

o fromze X
e pick an edge e € G uniformly at random
+ o+ = =
*——0 *———o
» change the two endpoints of e in z to be € or € with probability
1

5
Thus “neighbors are inspired to match, at random times.” This is a close cousin of
standard particle systems such as the voter model. All the theory works. The process
is a hyperplane walk for the Boolean arrangement of dimension D, where D denotes
the number of edges in the graph G. All eigenvalues and rates of convergence are easily
available.

The only thing open is

“what can be said about the stationary distribution?”

To understand the question, suppose the graph is an n-point path

+ — + +
1 2 3 n

The distribution 7 is far from uniform. All + or all — have chance % of staying, but
+ — + — .-+ is impossible. Of course, 7(x) is invariant under switching + and —. It is
easy to show that, under 7, the 7 process is a 1-dependent point process (see [11]). This
means various central limit theorems are available.

How much more likely is “all +” than “many alternations”? This problem was carefully
studied in a difficult paper by Chung and Graham [19] (see also [14]). They show, under
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7, all + (or all —) have chance of order C'/2", but many alternations has chance of order
C’/nl. Very nice systems of recursive differential equations appear.

The point is, even in the simplest case, understanding the stationary distribution leads
to interesting mathematics. We offer the present paper in this spirit.

5.4. Semigroups and beyond

The past ten years have shown yet broader generalization of the Tsetlin library. Ken-
neth Brown extended it to idempotent semigroups (allowing walks on the chambers of
a building) [12]. Ben Steinberg, working with many coauthors, extended further in the
semigroup direction. A convenient reference is the book length treatment [38].

In another direction, a sweeping generalization of much of modern algebra based on
hyperplane and semigroup walks has been developed by Aguiar and Mahajan [1-3]. The
three large volumes contain hundreds of fresh examples.

In none of these developments is the stationary measure understood.
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