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The Tsetlin library is a well-studied Markov chain on the 
symmetric group Sn. It has stationary distribution π(σ)
the Luce model, a nonuniform distribution on Sn, which 
appears in psychology, horse race betting, and tournament 
poker. Simple enumerative questions, such as “what is the 
distribution of the top k cards?” or “what is the distribution of 
the bottom k cards?” are long open. We settle these questions 
and draw attention to a host of parallel questions on the 
extension to the chambers of a hyperplane arrangement.
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1. Introduction

Let θ1, θ2, . . . , θn be positive real numbers. The Luce model π(σ) is a probability dis-
tribution on the symmetric group Sn driven by these weights. In words, “put n balls 
with weights θ1, θ2, . . . , θn into an urn. Each time, withdraw a ball from the urn (sam-
pling without replacement) with probability proportional to its weight (relative to the 
remaining balls).” Thus, if wn = θ1 + · · · + θn,
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π(σ) =
θσ(1)
wn

θσ(2)
wn − θσ(1)

θσ(3)
wn − θσ(1) − θσ(2)

· · ·
θσ(n)
θσ(n)

. (1)

In Section 2, a host of applied problems are shown to give rise to the Luce model. These 
include the celebrated Tsetlin library, a Markov chain on Sn, described as: “at each step, 
choose a card labeled i with probability proportional to θi and move it to the top” – 
π(σ) is the stationary distribution of this Markov chain.

It is natural to ask basic enumerative questions: pick σ from π(σ).

• What is the distribution of the number of fixed points, cycles, longest cycle, and 
order of σ?

• What is the distribution of the length of the longest increasing subsequence of σ?

Most of these questions are open at this time. The main results below settle

• What is the distribution of the top k cards σ(1), . . . , σ(k)? (Section 3)
• What is the distribution of the bottom k cards σ(n − k + 1), . . . , σ(n)? (Section 4)

Weighted sampling without replacement from a finite population is a standard topic. 
This may be accessed from the Wikipedia entries of “Horvitz–Thompson estimator” [35]
and “concomitant order statistics.”

Coming closer to combinatorics, two papers by Rosen [44] treat the coupon collector’s 
problem and other coverage problems.

The recent paper by Ben-Hamou, Peres and Salez [6] couples sampling with and 
without replacement so that tail and concentration bounds, derived for partial sums when 
sampling with replacement, are seen to apply “as is” to sampling without replacement.

In computer science applications, Tsetlin library is studied as the “move to the front 
rule.” In these applications, interest centers on the search cost. Here, the search cost for 
item i at time t is the number of cards j above card labeled i at time t. Summing over i, 
say with weight θi/wn, gives the average search cost and letting t tend to infinity gives 
the limiting search cost. These average and limiting distributions are studied in [29] and 
[28], which give extensive references to the literature. These statistics are close to the 
number of inversions, and it may be hoped that some of the novel techniques introduced 
in [29] and [28] can be used to get at the distribution of inversions.

A final item; throughout, we have assumed that the weights θi are fixed and known. 
It is also natural to consider random weights. For a full development, see [43].

Section 5 develops the connections of the Tsetlin library to the Bidigare–Hanlon–Rock-
more (BHR) walk on the chambers of a real hyperplane arrangement. Understanding the 
stationary distributions of these Markov chains is almost completely open.

Section 2 begins with a review of enumerative group theory. These questions make 
sense for continuous groups. Georgia Benkart made fundamental contributions here 
through her work on decomposing tensor products.



S. Chatterjee et al. / Journal of Algebra 655 (2024) 139–162 141

2. Background

2.1. Enumerative group theory

Let G be a finite group. A classical question is “pick g ∈ G at random. What does it 
look like?” For example, if G = Sn,

• What is the distribution of F (g), the number of fixed points of g?
• How many cycles are typical?
• What is the expected length of the longest cycle?
• What about the length of the longest increasing subsequence of g?
• What about the descent structure of g?
• How many inversions are typical?

All of these questions have classical answers (references below).
For G = GLn(q), parallel questions involve the conjugacy class structure of a random 

g ∈ G. For a splendid development (for finite groups of Lie type), see Fulman [30], which 
has full references to the results above. The recent survey of Diaconis and Simper [23]
brings this up to date. It focuses on enumeration by double cosets H \G/K.

The questions above make sense for continuous groups, where they become “random 
matrix theory.” For example, when G = On (the real orthogonal group), one may study 
the eigenvalues of g ∈ G under Haar measure by studying the powers of traces

∫

On

(Tr(g))k dg.

Patently this asks for the number of times the trivial representation appears in the kth 
tensor power of the usual n-dimensional representation of On. See [20] for details.

Georgia Benkart did extensive work on decomposing tensor powers of representations 
of classical (and more general) groups. She worked on this with many students and 
coauthors. Her monograph with Britten and Lemire [7] is a convenient reference. Most 
of this work can be translated into probabilistic limit theorems. We started to do this with 
Georgia during MSRI 2018, but got sidetracked into doing a parallel problem working 
over fields of prime characteristic in joint work with Benkart–Diaconis–Liebeck–Tiep [8].

Most all of the above is enumeration under the uniform distribution. A recent trend 
in enumerative (probabilistic) group theory is enumeration under natural non-uniform 
distributions. For example, on Sn,

• The Ewens measure πθ(σ) = Z−1(θ)θC(σ). Here, θ is a fixed positive real number, 
C(σ) is the number of cycles of σ, and Z−1(θ) is a simple normalizing constant. 
The Ewens measure originated in biology, but has blossomed into a large set of 
applications. See Crane [18].
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• The Mallows measure πθ(σ) = Z−1(θ)θI(σ), where I(σ) is the number of inversions 
of θ. This was originally studied for taste testing experiments but has again had a 
huge development.

• More generally, if G is a finite group and S ⊆ G is a symmetric generating set, 
let $(g) be the length function and define Pθ(g) = Z−1(θ)θ#(g). Ewens and Mal-
lows models are special cases with G = Sn and S = {all transpositions} and 
S = {all adjacent transpositions}.

Most of the questions studied above under the uniform distribution have been fully 
worked out under Ewens and Mallows measures. See the survey by Diaconis and Simper 
[23] for pointers to a large literature.

The above can be amplified to “permutons” [34] and “theons” [17]. It shows that 
enumeration under non-uniform distributions is an emerging and lively subject. We turn 
next to the main subject of the present paper.

2.2. The Luce model

This section gives several applications where the Luce model appears.

2.2.1. Psychology
In psychophysics experiments, a panel of subjects are asked to rank things, such as:

• Here are seven shades of red; rank them in order of brightness.
• Here are five tones; rank them from high to low.
• The same type of task occurs in taste-testing experiments. Rank these five brands 

of chocolate chip cookies (or wines, etc.) in order of preference.

This generates a collection of rankings (permutations) and one tries to draw conclusions.
Patently, rankings vary stochastically; if the same person is asked the same question 

at a later time, we expect the answers to vary slightly.
Duncan Luce introduce the model (1) via the simple idea that each item has a true 

weight (say, θi) and the model (1) induces natural variability (which can then be com-
pared with observed data).

Indeed, he did more, crafting a simple set of axioms for pairwise comparison and 
showing that any consistent ranking distribution has to follow (1) for some choice of θi. 
This story is well and clearly told in [36] and [37].

We would be remiss in not pointing to the widespread dissatisfaction over the “in-
dependence of irrelevant alternatives” axiom in Luce’s derivation. The long Wikipedia 
article on “irrelevance of alternatives” chronicles experiments and theory disputing this, 
not only for Luce but in Arrow’s paradox and several related developments. Amos Tver-
sky’s “elimination by aspects (EBA)” model is a well-liked alternative.
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2.2.2. Exponential formulation
Luce’s work followed fifty years of effort to model such rankings. Early work of Thur-

stone and Spearman postulated “true weights” θ1, . . . , θn for the ordered values and 
supposed people perceived θi + εi, 1 ≤ i ≤ n with εi independent normal N (0, σ2). They 
then reported the ordering of these perturbed values. See [26] for an up-to-date account 
of Thurstonian ranking models.

Yellott [48] noticed that if in fact the εi had an extreme value distribution, with 
distribution function e−e−x/r

, −∞ < x < ∞, then the associated Thurstonian ranking 
model is exactly the Luce model!

It is elementary, that if the random variable Y has an exponential distribution (P (Y >

x) = e−x), then log Y has an extreme value distribution. This gives the following theorem 
(used in Section 4):

Theorem 2.1. For 1 ≤ i ≤ n, let Xi be independent exponential random variables on 
[0, ∞) with density

θie
−xθi

(so Xi = Yi/θi with Yi the standard exponential). Then, the chance of the event

X1 < X2 < · · · < Xn

is (with wn = θ1 + · · · + θn)

θ1
wn

· θ2
wn − θ1

· θ3
wn − θ1 − θ2

· · · θn
θn

.

Proof. Consider the event X1 < X2 < · · · < Xn. The chance of this is

θ1 · · · θn
∞∫

x1=0

∞∫

x2=x1

· · ·
∞∫

xn=xn−1

exp
{
−

n∑

i=1
xiθi

}
dx1 · · · dxn

= θ1 · · · θn
θn

∞∫

x1=0

· · ·
∞∫

xn−1=xn−2

exp
{
−

n−2∑

i=1
xiθi − xn−1 (θn−1 + θn)

}
dx1 · · · dxn−1

= θ1 · · · θn
θn (θn + θn−1)

∞∫

x1=0

· · ·
∞∫

xn−2=xn−3

exp
{
−

n−3∑

i=1
xiθi − xn−2 (θn−2 + θn−1 + θn)

}
dx1 · · · dxn−2

= θ1 · · · θn
θn(θn + θn−1)(θn + θn−1 + θn−2) · · · (θn + · · · + θ1)

,

which is indeed equal to

θ1
wn

· θ2
wn − θ1

· θ3
wn − θ1 − θ2

· · · θn
θn

.

Thus, the order statistics follow the Luce model (1). !
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For an application of the exponential representation to survey sampling, see Gordon 
[31].

2.2.3. Tsetlin library
The great algebraist Tsetlin was forced to work in a library science institute. While 

there, he postulated (and solved) the following problem:
Consider n library books arranged in order 1, 2, . . . , n. Suppose book i has popularity 

θi. During the day, patrons come and pick up book labeled i with probability θi/wn and 
after perusing, they replace it at the left end of the row.

This is a Markov chain on Sn and Tsetlin [47] showed that it has (1) as its stationary 
distribution.

The same model has been repeatedly rediscovered; in computer science, the books are 
discs in deep storage. When a disc is called for, it is replaced on the front of the queue 
to cut down on future search costs. See Dobrow and Fill [24].

The model (and its stationary distribution) appear in genetics as the GEM (Griffiths–
Engen–McCloskey) distribution [25].

Over the years, a host of properties of the Tsetlin chain have been derived. For exam-
ple, Phatarfod [42] found a simple formula for the eigenvalues and Diaconis [21] found 
sharp rates of convergence to stationarity (including a cutoff) for a wide class of weights. 
See further Nestoridi [39]. All of this is now subsumed under “hyperplane walks”; see 
Section 5.

A monotonicity property. Suppose, without essential loss, that θ1 ≥ θ2 ≥ · · · ≥ θn > 0. 
Then,

• The largest π(σ) is for σ = id.
• The smallest π(σ) is for σ = (n, n − 1, . . . , 1).
• More generally, π(σ) is monotone decreasing in the weak Bruhat order on permuta-

tions.

To explain, the weak Bruhat order is a partial order on Sn with cover relations σ ' σ′

if σ can be reached from σ′ by a single adjacent transposition of the ith and (i + 1)th 
symbols when σ′(i) < σ′(i + 1). Thus, when n = 3,

3 2 1

2 3 1 3 1 2

2 1 3 1 3 2

1 2 3
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Proposition 2.2. For θ1 ≥ θ2 ≥ · · · ≥ θn, π(σ) is monotone decreasing in the weak Bruhat 
order.

Proof. The formulas for π(σ) and π(σ′) only differ in one term. If σi > σi+1 and these 
terms were transposed from σ′, then

π(σ)
π(σ′) = 1 − θσ1 − θσ2 − · · ·− θσi+1

1 − θσ1 − θσ2 − · · ·− θσi

< 1. !

Irrelevance of alternatives. The following property characterizes the Luce measure 
(1): let {i1, i2, . . . , ik} be a subset of {1, 2, . . . , n}. Fix θ1, . . . , θn and pick σ from π(σ). 
The distribution of cards labeled {i1, . . . , ik} follows the Luce model with parameters 
θi1 , . . . , θik . For example, the chance that i is above j in σ is θi

θi + θj
. This is easy to see 

from the exponential representation.

2.2.4. Order statistics and a natural choice of weights
Many questions in probability and mathematical statistics can be reduced to the 

study of the order statistics of uniform random variables on [0, 1] by using the simple 
fact that, if X is a real random variable with continuous distribution function F (x) (so 
P (X ≤ x) = F (x)), then Y = F (X) is uniformly distributed on [0, 1]. This implies 
that standard goodness of fit tests (e.g., Kolmogorov–Smirnov) have distributions that 
are universal under the null hypothesis (they do not depend on F ). If Y is uniform on 
[0, 1], then − log Y is standard exponential as above, so order statistics of independent 
exponentials are a mainstream object of study. A marvelous introduction to this set of 
ideas is in Chapter 3 of [27] with Ronald Pyke’s articles on spacings [41] providing deeper 
results.

With this background, let Y1, Y2, . . . , Yn be independent standard exponentials on 
(0, ∞). Denote the order statistics by Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). The following property 
is easy to prove [27].

Theorem 2.3. With above notation,

Y(1), Y(2) − Y(1), Y(3) − Y(2), . . . , Y(n) − Y(n−1)

are independent exponential random variables with distributions

Y(1) ∼ E1/n, Y(2) − Y(1) ∼ E2/(n− 1), . . . Y(n) − Y(n−1) ∼ En,

where E1, . . . , En are independent standard exponentials (density e−x on (0, ∞)).

It follows from our Luce calculations that the chance that the smallest spacing is 
Y(1) is n(n+1

2
) = 2

n + 1, and that the smallest spacing is Y(2) − Y(1) is n− 1(n+1
2
) , and so on. 
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Specifically, Y(j+1) − Y(j) has probability 
n− j(n+1

2
) of being smallest, and Y(n) − Y(n−1) has 

chance 
1(n+1
2
) of being smallest.

The whole permutation is given by the Luce model (1) with θi = n − i + 1. This 
classical fact is due to Sukhatme [46]. We will call these Sukhatme weights in the following 
discussion.

2.2.5. Application to poker and the ICM (iterated card model)
In tournament poker (e.g., the World Series of Poker), suppose there are n players at 

the final table with player i having θi dollars. It is current practice among top players 
to assume that the order of the players, as they are eliminated, follows the Luce model 
(with the player having the largest θi least likely to be eliminated; thus most likely to win 
all the money), and so on. This is called the ICM (iterated card model) and is used as 
a basis for splitting the total capital and for calculating chances as the game progresses. 
For careful details and references, see Diaconis–Ethier [22], which disputes the model.

2.2.6. Applications to horse racing
In horse racing, players can bet on a horse to win, place (come in second), or show 

(come in third). The “crowd” does a good job of determining the chances of each of the 
n horses running to come in first. Call the amount bet on horse i just before closing, θi. 
However, the crowd does a poor job of judging the chance of a horse showing. Often, 
there is sufficient disparity between the crowd’s bet and the true odds that money can 
be made (perhaps one race in four). This is despite the track’s rake being 17% of the 
total. A group of successful bettors uses the θi’s and the Luce model to evaluate the 
chance of placing. For details, see Hausch, Lo and Ziemba [33] or Harville [32].

With this list of applications, we trust we have sufficient motivation to ask “what does 
the distribution (1), π(σ), look like?”

3. The top k cards

Throughout this section, without loss of generality, assume θ1 + · · · + θn = 1. For θ
and k fixed, let

P (σ1 σ2 · · · σk) = θσ1θσ2 · · · θσk

(1 − θσ1)(1 − θσ1 − θσ2) · · · (1 − θσ1 − · · ·− θσk−1)
(2)

denote the measure induced on the top k cards by the Luce measure. It is cumbersome 
to compute, e.g.,

P (σ2) = θσ2

∑

i#=σ2

θi
1 − θi

.
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On the other hand, the Luce measure is just sampling from an urn without replacement. 
If {θi} are “not too wild” and k is small, then sampling with or without replacement 
should be “about the same.” This is made precise in two metrics.

Let Q(σ1 σ2 · · · σk) be the product measure

Q(σ1 σ2 · · · σk) = θσ1θσ2 · · · θσk , (3)

where σ1, . . . , σk need not be distinct. Both P and Q depend on {θi} and k, but this is 
suppressed below. Define

d∞(P,Q) = max
σ

(
1 − Q(σ1 · · · σk)

P (σ1 · · · σk)

)

and

‖P −Q‖TV = 1
2
∑

σ

|P (σ1 · · · σk) −Q(σ1 · · · σk)| ,

where, in both formulas, σ1, . . . , σk are not necessarily distinct, and P (σ1 · · · σk) = 0 if 
they are not distinct. Clearly, ‖P −Q‖TV ≤ d∞(P, Q).

Theorem 3.1. For θ1 + · · · + θn = 1, θi ≤ 1
2 for all 1 ≤ i ≤ n,

d∞(P,Q) ≤ 1 − exp
{
−2

(
(k − 1)θ(1) + (k − 2)θ(2) + · · · + θ(k−1)

)}
.

Here, θ(1) ≥ θ(2) ≥ · · · ≥ θ(n) are the ordered values.

Theorem 3.2. As n → ∞, suppose 
(
k

2

) n∑

i=1
θ2
i → λ. Then,

‖P −Q‖TV ∼ 1 − e−λ.

In Theorem 3.2, {θi} form a triangular array, but again, this is suppressed in the 
notation. The remarks below point to non-asymptotic versions.

Proof of Theorem 3.1. From the definitions,

d∞(P,Q) = max
σ

(
1 − (1 − θσ1)(1 − θσ1 − θσ2) · · · (1 − θσ1 − · · ·− θσk−1)

)
,

where the maximum is over all σ1, . . . , σk distinct (because, if they are not distinct, then 

we have that 1 − Q(σ1 · · · σk)
P (σ1 · · · σk)

= −∞, which does not contribute to the maximum). Use 

−2x ≤ log(1 − x) ≤ −x for 0 ≤ x ≤ 1
2 . Since all θi ≤ 1

2 ,
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d∞(P,Q) ≤ max
σ

1 − exp
{
−2

(
θσ1 + (θσ1 + θσ2) + · · · + (θσ1 + · · · + θσk−1)

)}
.

The right-hand side is maximized for σ1, . . . , σk−1 with the largest weights. !

Proof of Theorem 3.2. A prepatory observation is useful:

‖P −Q‖TV =
∑

σ:P (σ)≥Q(σ)
(P (σ) −Q(σ)) = 1 − PQ(σ1, . . . ,σk are distinct).

This is just the chance that there are two or more balls in the same box if k balls are 
dropped independently into n boxes, the chance of box i being θi. This non-uniform 
version of the classical birthday problem has been well-studied. If Xij is 1 or 0 as balls 
i, j are dropped into the same box and

W =
∑

1≤i<j≤k

Xij ,

E(W ) =
(
k

2

) n∑

i=1
θ2
i . Under the condition E(W ) → λ, W is known to have a limiting 

Poisson(λ) distribution and PQ(W = 0) ∼ e−λ. See Chatterjee–Diaconis–Meckes [16] or 
Barbour–Holst–Janson [4] for further details and more quantitative bounds. !

Example 3.3. Consider the Sukhatme weights from Section 2.2.4:

θi = n + 1 − i(n+1
2
) .

The exponent for the right-hand side of Theorem 3.1 is

2(n+1
2
) {(k − 1)n + (k − 2)(n− 1) + · · · (n− k + 2)} .

Simple asymptotics show that for k = c
√
n, c > 0, this is

4c2 + O
( 1√

n

)
.

So,

d∞(P,Q) ≤ 1 − e
−4c2+O

(
1√
n

)

,

and k ,
√
n suffices for product measures to be a useful approximation to the first 

k-coordinates of the Luce measure. With k = c
√
n,
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(
k

2

) n∑

i=1
θ2
i ∼ c2

3 = λ

giving a similar approximation in total variation.

Example 3.4. The bound in Theorem 3.1 is useful when

(k − 1)θ(1) + · · · + θ(k−1)

is small. To see that this condition is needed, take θ1 = 1
2 , θi = 1

2(n−1) for 2 ≤ i ≤ n. For 
k = 2,

P (1 2) = θ1θ2
1 − θ1

, Q(1 2) = θ1θ2,

and so, d∞(P, Q) = 1 − (1 − θ1) = 1
2 . This does not tend to zero when n is large. The 

two-sided bounds for log(1 − x) show Theorem 3.1 is sharp in this sense for general k.

Example 3.5. As discussed above, if the infinity distance tends to zero, then total varia-
tion tends to zero. Here is a choice of weights θi so that the total variation convergence 
holds for the joint distribution of the first k coordinates of the Luce model to i.i.d., but 
not in infinity distance.

Fix k, 1 ≤ k ≤ n and let θi = k−7/4 for i ≤ k and

θi = 1 − k−3/4

n− k

for i > k so that θ1 ≥ θ2 ≥ · · · ≥ θn > 0 and 
n∑

i=1
θi = 1. Note that

(
k

2

) n∑

i=1
θ2
i ≤ k2

k∑

i=1
θ2
i + k2

n∑

i=k+1
θ2
i ≤ k−1/2 + k2

n− k

while

k−1∑

i=1
(k − i)θi = k−7/4

k−1∑

i=1
(k − i) = 1

2
(
k−3/4(k − 1)

)
.

Thus, if 1 , k ,
√
n, 

k−1∑

i=1
(k−i)θi is large, but 

(
k

2

) n∑

i=1
θ2
i is small. Moreover, if k = λ

√
n, 

then 
(
k

2

) n∑

i=1
θ2
i → λ2

2 , but 
k−1∑

i=1
(k − i)θi → ∞.
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Remark 3.6.

(a) Our proof of Theorem 3.2 used the Poisson approximation for the non-uniform ver-
sion of the birthday problem. There are other possible limits which can be used to 
bound ‖P −Q‖TV . See [15].

(b) It is easy to see that

Qθ(σ1, . . . ,σk distinct) = k!ek(θ1, θ2, . . . , θn),

where ek is the kth elementary symmetric function. From here, Muirhead’s theorem 
shows ‖P −Q‖TV is a Schur-concave function of θ1, . . . , θn, smallest when θi = 1

n .

4. The bottom k cards

4.1. Introduction

For naturally occurring weights, the bottom k cards behave very differently from the 
top k cards. To illustrate by example, consider the Sukhatme weights of Section 2.2.4:

θi = n + 1 − i(n+1
2
) , 1 ≤ i ≤ n.

The results of Section 3 show that, for large n,

P
(σ1
n

≤ x
)
∼ 2

x∫

0

(1 − y) dy.

That is, σ1/n has a limiting β(1, 2) distribution.
Using Theorems 3.1 and 3.2, the same holds for σi/n for fixed i ,

√
n. Of course, 

large numbers have higher probabilities, but all values in {1, 2, . . . , n} occur.
In contrast, consider the value of bottom card σn. Intuitively, this should be small 

since the high numbers have higher weights. We were surprised to find

P (σn = 1) ∼ 0.516 . . .

In fact, we computed, using a result that follows, that

# P (# is last)
1 0.516094
2 0.213212
3 0.107310
4 0.0597505
5 0.0354888
6 0.0220716
7 0.0142167
8 0.00941619
9 0.00638121
10 0.00440862

The section below sets up its own notation from first principles.
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4.2. Main result

Let N denote the set of positive integers and let NN be the set of all maps from N into 
N. Consider the topology of pointwise convergence on NN. This topology is naturally 
metrizable with a complete separable metric, and so we can talk about convergence of 
probability measures on this space.

Now suppose that for each n, σn is a random element of the symmetric group Sn. We 
can extend σn to a random element of NN , by defining σn(i) = i for i > n.

Proposition 4.1. Let σn be as above. Then σn converges in law as n → ∞ if and only if 
for each k, the random vector (σn(1), . . . , σn(k)) converges in law as n → ∞.

Proof. Since the coordinate maps on NN are continuous in the topology of pointwise 
convergence, one direction is clear.

For the other direction, suppose that for each k, (σn(1), . . . , σn(k)) converges in law 
as n → ∞. Notice that for any sequence of positive integers a1, a2, . . . , the set

{
f ∈ NN : f(i) ≤ ai for all i

}
(4)

is a compact subset of NN , since any infinite sequence in this set has a convergent 
subsequence by a diagonal argument. Take any ε > 0. By the given condition, σn(i)
converges in law as n → ∞ for each i. In particular, {σn(i)}n≥1 is a tight family (a 
family of measures is tight if it is almost compactly supported, see [10]), and so there is 
some number ai such that for each n,

P (σn(i) > ai) ≤ 2−iε.

Therefore if K denotes the set defined in (4) above, then for each n,

P (σn ∈ K) ≥ 1 −
∞∑

i=1
P (σn(i) > ai) ≥ 1 −

∞∑

i=1
2−iε = 1 − ε.

This proves that {σn}n≥1 is a tight family of random variables on NN . Therefore the 
proof will be complete if we can show that any probability measure on NN is determined 
by its finite dimensional distributions. But this is an easy consequence of Dynkin’s π-λ
theorem (see [10] for a theorem and proof of the Dynkin π-λ theorem). !

The above proposition implies, for instance, that if σn is a uniform random element 
of Sn, then σn does not converge in law on NN , because σn(1) does not converge in law.

Let 0 < θ1 ≤ θ2 ≤ · · · be a non-decreasing infinite sequence of positive real numbers. 
For each n, consider the Luce model on Sn with parameters θ1, . . . , θn. Let σn be the 
reverse of a random permutation drawn from this model. That is, σn(1) is the last ball 
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that was drawn and σn(n) is the first. As we know from prior discussions, an equivalent 
definition is the following. Let X1, X2, . . . be an infinite sequence of independent random 
variables, where Xi has exponential distribution with mean 1/θi. Then σn ∈ Sn is the 
permutation such that Xσn(1) > Xσn(2) > · · · > Xσn(n).

Theorem 4.2. Let σn be as above. For each x ≥ 0, let

f(x) :=
∞∑

i=1
e−θix,

where we allow f(x) to be ∞ if the sum diverges. Let

x0 := inf {x : f(x) < ∞} ,

with the convention that the infimum of the empty set is ∞. Then σn converges in law 
as n → ∞ if and only if x0 < ∞ and f(x0) = ∞. Moreover, if this condition holds, 
then the limiting finite dimensional probability mass functions are given by the following 
formula: For any k and any distinct positive integers a1, . . . , ak,

lim
n→∞

P (σn(1) = a1, . . . ,σn(k) = ak)

=
∫

x1>x2>···>xk>0

k∏

j=1
(θaje

−θajxj )
∏

i/∈{a1,...,ak}

(1 − e−θixk) dx1 · · ·dxk.

Before proving the theorem, let us work out some simple examples. Suppose that 
θi = i for each i. This corresponds to the Luce model with the Sukhatme weights. Then 
clearly f(x) < ∞ for all x > 0, and hence x0 = 0. Also, clearly, f(0) = ∞. Therefore in 
this case σn converges in law as n → ∞. Moreover, by the formula displayed above,

lim
n→∞

P (σn(1) = 1) =
∞∫

0

e−x
∞∏

j=2
(1 − e−jx)dx =

1∫

0

∞∏

j=2
(1 − yj)dy = 0.516094 . . .

On the other hand, for the case of uniform random permutations, θi = 1 for all i. In this 
case, f(x) = ∞ for all x, and hence x0 = ∞. Thus, the theorem implies that σn does 
not converge in law (which we know already).

Next, suppose that θi = β log(i + 1) for some β > 0. Here f(x) < ∞ for x > 1/β
and f(x) = ∞ for x ≤ 1/β. Thus, x0 = 1/β and f(x0) = ∞, and so by the theorem, σn

converges in law.
Strangely, σn does not converge in law if θi = log(i + 1) + 2 log log(i + 1). To see this, 

note that in this case,

f(x) =
∞∑

i=1

1
(i + 1)x(log(i + 1))2x .
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Thus, f(x) < ∞ for x > 1 and f(x) = ∞ for x < 1, showing that x0 = 1. But

f(x0) =
∞∑

i=1

1
(i + 1)(log(i + 1))2 < ∞,

which violates the second criterion required for convergence. This shows that we cannot 
determine convergence purely by inspecting the rate of growth of θi. The criterion is 
more subtle than that.

What happens if the tightness criterion does not hold? In this case, the formula for 
the limit of P (σn(1) = a1, . . . , σn(k) = ak) remains valid, but it may not represent a 
probability mass function, i.e., the sum over all a1, . . . , ak may be strictly less than 1.

Proof of Theorem 4.2. Take any k ≥ 1 and distinct positive integers a1, . . . , ak. Take 
n ≥ max1≤i≤k ai. Let En be the event {σn(1) = a1, . . . , σn(k) = ak}. Then

P (En) = P (Xa1 > Xa2 > · · · > Xak > Xi ∀i ∈ [n] \ {a1, . . . , ak})

=
∫

x1>x2>···>xk>0

k∏

j=1
(θaje

−θajxj )
∏

i∈[n]\{a1,...,ak}

(1 − e−θixk) dx1 · · ·dxk.

By the dominated convergence theorem, this gives

lim
n→∞

P (En) =
∫

x1>x2>···>xk>0

k∏

j=1
(θaje

−θajxj )
∏

i/∈{a1,...,ak}

(1 − e−θixk) dx1 · · ·dxk.

Thus, we have shown that for any k and distinct positive integers a1, . . . , ak,
limn→∞ P (σn(1) = a1, . . . , σn(k) = ak) exists, and also found the desired formula for the 
limit. However, we have not shown convergence in law because we have not established 
tightness. (This is not surprising, because we did not use any properties of the θi’s yet.) 
From what we have done until now, it follows that (σn(1), . . . , σn(k)) converges in law 
as n → ∞ if and only if it is a tight family. But this holds if and only if {σn(i)}n≥1 is a 
tight family for every i. We will now complete the proof of the theorem by showing that 
{σn(i)}n≥1 is a tight family for every i if and only if x0 < ∞ and f(x0) = ∞.

First, suppose that {σn(1)}n≥1 is a tight family. Then there is some a such that

lim
n→∞

P (σn(1) = a) > 0.

From the above calculation, we know that

lim
n→∞

P (σn(1) = a) =
∞∫

0

θae
−θax

∏

i#=a

(1 − e−θix) dx.
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If this is nonzero, then there is at least one x > 0 for which

∞∏

i=1
(1 − e−θix) > 0.

But this implies that

f(x) =
∞∑

i=1
e−θix < ∞.

Thus, x0 < ∞. Next, we show that f(x0) = ∞. Suppose not. Then x0 > 0, since 
f(0) = ∞. Fix a positive integer a. For each n ≥ a, and let An be the event {σn(1) ≤ a}. 
Let Fn be the event {maxi≤n Xi ≤ x0}. Take any x ∈ (0, x0) and let Gn be the event 
{maxi≤n Xi ≤ x}. Then

P (An) ≤ P (An ∩ (Fn \Gn)) + P ((Fn \Gn)c)
= P (An ∩ (Fn \Gn)) + P (F c

n ∪Gn)
≤ P (An ∩ (Fn \Gn)) + P (Gn) + P (F c

n).

If the event An ∩ (Fn \ Gn) happens, then maxi≤n Xi belongs to the interval (x, x0], 
and one of X1, . . . , Xa is the maximum among X1, . . . , Xn. Thus, in particular, one of 
X1, . . . , Xa is in (x, x0]. Plugging this into the above inequality, we get

P (An) ≤
a∑

i=1
(e−θix − e−θix0) +

n∏

i=1
(1 − e−θix) + 1 −

n∏

i=1
(1 − e−θix0).

Since f(x) = ∞, we have 
∞∏

i=1
(1 − e−θix) = 0. Thus, taking n → ∞ on both sides, we get

lim
n→∞

P (An) ≤
a∑

i=1
(e−θix − e−θix0) + 1 −

∞∏

i=1
(1 − e−θix0).

Now notice that the definition of An does not involve x. So we can take x ↗ x0 on the 
right, which makes the first term vanish and leaves the rest as it is. Thus,

lim
n→∞

P (An) ≤ 1 −
∞∏

i=1
(1 − e−θix0).

But the assumed finiteness of f(x0) implies that the product on the right is strictly 
positive. Thus, we get an upper bound on lim

n→∞
P (An) which is less than 1. But observe 

that this upper bound does not depend on a. This contradicts the tightness of σn(1), 
thereby completing the proof of one direction of the theorem.
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Next, suppose that x0 < ∞ and f(x0) = ∞. We consider two cases. First, suppose 
that x0 = 0. Then f(x) < ∞ for each x > 0. But

f(x) =
∞∑

i=1
P (Xi > x). (5)

Therefore by the Borel–Cantelli lemma, Xi → 0 almost surely as i → ∞. Now take any 
i and integers n and a bigger than i. Then the event σn(i) ≥ a implies that

max
j≥a

Xj > min {X1, . . . , Xi} ,

because otherwise the ith largest value among (Xj)nj=1 cannot be one of (Xj)j≥a. Thus,

P (σn(i) ≥ a) ≤ P

(
max
j≥a

Xj > min {X1, . . . , Xi}
)
.

But the right side is a function of only a (and not n), and tends to zero as a → ∞
because Xj → 0 almost surely as j → ∞. This proves tightness of {σn(i)}n≥1 when 
x0 = 0.

Next, consider the case x0 > 0. For convenience, let us define the partial sums

fn(x) :=
n∑

i=1
e−θix, gn(x) :=

n∏

i=1

(
1 − e−θix

)
.

Take i, n and a as before. Let x be a real number bigger than x0, to be chosen later. 
The event σn(i) ≥ a implies that at least one of the following two events must happen: 
(a) There are less than i elements of (Xj)nj=1 that are bigger than x, or (b) Xj > x for 
some j ≥ a. This gives

P (σn(i) ≥ a) ≤
∑

A⊆[n],|A|<i




∏

j∈A

e−θjx








∏

j∈[n]\A

(
1 − e−θjx

)


 +
∑

j≥a

e−θjx.

Now note that for any A ⊆ [n] with |A| < i,

∏

j∈[n]\A

(
1 − e−θjx

)
≤ gn(x)∏

j∈A

(
1 − e−θjx

) ≤ gn(x)
(1 − e−θ1x0)i−1 .

Therefore

∑

A⊆[n], |A|<i




∏

j∈A

e−θjx








∏

j∈[n]\A

(
1 − e−θjx

)



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≤ gn(x)
(1 − e−θ1x0)i−1

∑

A⊆[n], |A|<i




∏

j∈A

e−θjx





≤ gn(x)(1 + fn(x) + fn(x)2 + · · · + fn(x)i−1)
(1 − e−θ1x0)i−1 .

By the inequality 1 − x ≤ e−x, we have gn(x) ≤ e−fn(x). Thus,

P (σn(i) ≥ a) ≤ e−fn(x)(1 + fn(x) + fn(x)2 + · · · + fn(x)i−1)
(1 − e−θ1x0)i−1 +

∑

j≥a

e−θjx.

Let m be the largest integer such that θm ≤ 1/(x − x0). Suppose that n ≥ m. Then

fn(x) ≥
m∑

j=1
e−θjx =

m∑

j=1
e−θjx0−θj(x−x0) ≥ e−1

m∑

j=1
e−θjx0 .

But m → ∞ as x ↘ x0, and f(x0) = ∞ by assumption. Thus, the above inequality 
shows that given any L > 0, we can first choose x sufficiently close to x0, and then 
choose n0 sufficiently large, such that for all n ≥ n0, fn(x) ≥ L. Now take any ε > 0 and 
find L so large that for all y ≥ L,

e−y(1 + y + y2 + · · · + yi−1)
(1 − e−θ1x0)i−1 <

ε

2 .

Choose x and then n0 as in the previous paragraph corresponding to this L. Then find 
a so large that

∑

j≥a

e−θjx <
ε

2 ,

which exists since f(x) < ∞. For this choice of a, the above steps show that P (σn(i) ≥
a) ≤ ε for all n ≥ n0. This proves tightness of {σn(i)}n≥1 when x0 > 0, completing the 
proof of the theorem. !

5. A vast generalization – hyperplane walks

5.1. Introduction

The Tsetlin library has seen vast generalizations in the past twenty years. In this 
section, we explain walks on the chambers of a hyperplane arrangement due to Bidigare–
Hanlon–Rockmore [9] and Brown–Diaconis [13]. The Tsetlin library is a (very) special 
case of the braid arrangement. These Markov chains have a fairly complete theory (simple 
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forms for the eigenvalues and good rates of convergence to stationarity). But the descrip-
tion of the stationary distribution, the analog of the Luce model, is indirect, involving a 
weighted sampling without replacement scheme. Thus the problem

What does the stationary distribution of hyperplane walks look like?

Section 5.2 sets things up and states the main theorems (with examples). The few cases 
where something is known are reported in Section 5.3. The final section points to semi-
group walks where parallel problems remain open. The main point of this section is to 
cast Sections 2–4 above as contributions to a general problem.

5.2. Hyperplane walks

We work in Rd. Let A = {H1, H2, . . . , Hk} be a finite collection of affine hyperplanes 
(translates of codimension one subspaces). These divide Rd into

• chambers (points not on any Hi). Let C be the chambers.
• faces (points on some Hi and on one side or another of others). Let F be the faces.

Fig. 1. Four lines in R2. There are 10 chambers and 30 faces (chambers, points of intersection and the empty 
face are faces).

A key notion is the projection of a chamber onto a face (Tits projection). For C ∈ C
and F ∈ F , PROJ C → F is the unique chamber adjacent to F and closest to C (in the 
sense of crossing the fewest number of Hi’s). In the Fig. 1, PROJ C → F = C ′.

With these definitions, we are ready to walk. Choose face weights {wF }F∈F with 
wF ≥ 0 and 

∑

F∈F
wF = 1. Define a Markov chain κ(C, C ′) on chambers via:

• from C, choose F ∈ F with probability wF and move to PROJ C → F .

Thus, κ(C, C ′) =
∑

PROJ C→F=C′

wF .
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Example 5.1 (Boolean arrangements). Let Hi =
{
x ∈ Rd : xi = 0

}
, 1 ≤ i ≤ d be the 

usual coordinate hyperplanes. These divide Rd into 2d chambers (the usual orthants) 
and 3d faces. A face may be labeled by a vector of length d containing 0, ±1 to delineate 
0 (on) or on one side or the other of the ith hyperplane. Chambers are faces with no 
zeros. For PROJ C → F = C ′, set the ith coordinate of C ′ to the ith coordinate of F if 
this is ±1 and leave it as the ith coordinate of C if the ith coordinate of F is 0.

Thus, a walk proceeds via: from C, pick a subset of coordinates and install ±1 in 
them as determined by F . For example, if

wF =






1
2d F = (0, . . . , 0,±1, 0, . . . , 0),
0 otherwise,

the walk becomes “pick a coordinate at random and replace it with ±1 chosen uniformly.” 
This is the celebrated Ehrenfest urn model of statistical physics. Dozens of natural 
specializations of these Boolean walks are spelled out in [13].

Example 5.2 (Braid arrangement). Take Hij =
{
x ∈ Rd : xi = xj

}
, 1 ≤ i < j ≤ d. Now, 

the chambers are points in Rd with no equal coordinates. It follows that the relative 
order is fixed within a chamber, so chambers can be labeled by permutations. The faces 
are indexed by “block ordered set partitions”: coordinates within a block are equal and 
all coordinates in the first block are smaller than the coordinates in the second block, 
and so on.

For the projection, suppose the chamber labeled π is thought of as a deck of cards in 
arrangement π (with π(i) the label of the card at position i). Suppose d = 5 and the 
face is F = 1 3/2/4 5. Remove cards labeled 1 and 3 from π (keeping them in their same 
relative order, then remove the card labeled 2 and place it under cards 1, 3. Finally, 
remove cards labeled 4, 5 and place them at the bottom of the five card deck. This is 
PROJ π → 1 3/2/4 5.

The Tsetlin library arises from the choice

wF =
{
θi if F = i/[n] \ i
0 otherwise

.

That is the walk on Sn with “choose label i with probability θi and move this card to 
the top.”

Riffle shuffling arises from

wF =






1
2d if F = S, [d] − S where S is not equal to ∅ or [d]

1
2d−1 if F = [d]
0 otherwise

.
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Another way to say this – label each of d cards in the current deck with a fair coin 
flip, remove all cards labeled “heads” keeping them in their same relative order, and 
place them on top. This is exactly “inverse riffle shuffling,” the inverse of the Gilbert–
Shannon–Reeds model studied by Bayer–Diaconis [5].

There are hundreds of other hyperplane arrangements where the chambers are labeled 
by natural combinatorial objects, and there are choices of face weights so that the walk 
is a natural object ot study. Indeed, any finite reflection group leads to a hyperplane 
arrangement with Hv being the hyperplane orthogonal to the vector v determining 
the reflection. Any finite graph leads to a “graphical arrangement.” For a wonderful 
exposition, see Stanley [45].

As said, the Markov chains κ(C, C ′) admit a complete theory with known eigenvalues 
and rates of convergence. We will not spell this out here; see [13], but turn to the main 
object of interest – the stationary distribution.

Let A be a general arrangement with chosen face weights {wF }F∈F and κ(C, C ′)
the associated Markov chain on C, the chambers of the arrangement. π(C) ≥ 0 and ∑

C π(C) = 1 is stationary for κ if 
∑

C π(C)κ(C, C ′) = π(C ′) – thus π can be thought 
of as a left eigenvector with eigenvalue 1. When does a unique such π exist?

Theorem 5.3 (Brown–Diaconis). Call {wF } separating if they are not all supported in 
the same hyperplane (for H ∈ A, there exists H ′ ∈ A and wF > 0 for F ⊂ H ′). Then κ
has a unique stationary distribution π(C) if and only if {wF } are separating.

This π is the analog of the Luce model and becomes the Luce model for the braid 
arrangement as above. The following result gives a “weighted sampling without replace-
ment characterization” of π(C).

Theorem 5.4 (Brown–Diaconis). Suppose {wF } are separating. The following algorithm 
generates a pick from π(C):

• place all {wF } in an urn.
• draw them out, without replacement, with probability proportional to size (relative to 

what is left).
• say this results in the ordered list F1, F2, . . . , F|F|.
• from any starting chamber C (the choice does not matter), project on F|F|, then on 

F|F|−1, and so on until F1. The resulting chamber is exactly distributed as π(C).

Of course, for the Tsetlin library, this is just the Luce measure on permutations. The 
following subsection delineates the few examples where something can be said about π.
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5.3. Understanding π

Suppose a group of orthogonal transformations acts transitively on A preserving 
κ(C, C ′). Then, π(C) is uniform over C (supposing separability). Examples include riffle 
shuffles, the Ehrenfest urn, and “random to top” (the Tsetlin library with θi = 1

n , 1 ≤
i ≤ n). For more on this, see [39].

Simple features of π can sometimes be calculated directly. See Pike [40] and its refer-
ences.

Aside from the present paper, the only other examples that have been carefully studied 
are in the following graph coloring problems.

5.3.1. Graph coloring
Let G be a connected and undirected simple graph. Let X be the set of 2-colorings 

(say by ±) of the vertex set of G. Define a Markov chain on X by

• from x ∈ X
• pick an edge e ∈ G uniformly at random

• change the two endpoints of e in x to be 

+ +
e or 

− −
e with probability 

1
2 .

Thus “neighbors are inspired to match, at random times.” This is a close cousin of 
standard particle systems such as the voter model. All the theory works. The process 
is a hyperplane walk for the Boolean arrangement of dimension D, where D denotes 
the number of edges in the graph G. All eigenvalues and rates of convergence are easily 
available.

The only thing open is

“what can be said about the stationary distribution?”

To understand the question, suppose the graph is an n-point path

+ + − + +
1 2 3 n

· · ·

The distribution π is far from uniform. All + or all − have chance 1
2 of staying, but 

+ − + − · · · is impossible. Of course, π(x) is invariant under switching + and −. It is 
easy to show that, under π, the π process is a 1-dependent point process (see [11]). This 
means various central limit theorems are available.

How much more likely is “all +” than “many alternations”? This problem was carefully 
studied in a difficult paper by Chung and Graham [19] (see also [14]). They show, under 
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π, all + (or all −) have chance of order C/2n, but many alternations has chance of order 
C ′/n!. Very nice systems of recursive differential equations appear.

The point is, even in the simplest case, understanding the stationary distribution leads 
to interesting mathematics. We offer the present paper in this spirit.

5.4. Semigroups and beyond

The past ten years have shown yet broader generalization of the Tsetlin library. Ken-
neth Brown extended it to idempotent semigroups (allowing walks on the chambers of 
a building) [12]. Ben Steinberg, working with many coauthors, extended further in the 
semigroup direction. A convenient reference is the book length treatment [38].

In another direction, a sweeping generalization of much of modern algebra based on 
hyperplane and semigroup walks has been developed by Aguiar and Mahajan [1–3]. The 
three large volumes contain hundreds of fresh examples.

In none of these developments is the stationary measure understood.
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