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Abstract. It was shown in [10] that that there exist strongly dense free
subgroups in any semisimple algebraic group over a large enough field.
These are nonabelian free subgroups all of whose subgroups are either
cyclic or Zariski-dense. Here we show that the same is true for as long
as the transcendence degree of the field is at least 1 in characteristic 0
and transcendence degree at least 2 in positive characteristic.
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1. Introduction

There is a long history regarding free subgroups of linear groups, in which
J. Tits played a prominent role with his celebrated alternative [36]: every
finitely generated linear group either contains a non-abelian free subgroup
or a solvable subgroup of finite index. We consider here a somewhat stronger
property. If G is a semisimple algebraic group over a field K, then a strongly
dense free subgroup of G over K is a nonabelian free subgroup Γ of G(K)
such that every nonabelian subgroup ∆ of Γ is Zariski-dense over K in G
(meaning that there is no proper closed K-subgroup H over G such that
∆ ⊂ H(K) ⊂ G(K).)
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It was shown in [10, 11] that if G is a semisimple algebraic group over an
algebraically closed field K of sufficiently large transcendence degree over
the prime field (the degree depending upon dimG), then G always contains
a strongly dense subgroup. We gave applications to the Banach-Hausdorff-
Tarski paradox and to generation properties for finite simple groups of Lie
type of bounded rank and also used this to study Cayley graph expanders
associated to finite simple groups of Lie type.

In this note, we show the existence of such subgroups over much smaller
fields. In particular, we prove:

Theorem 1.1. Let K be a transcendental extension of Q and G a split
semisimple algebraic group over K. Then G contains a strongly dense free
subgroup over K. In fact, the set of pairs (a, b) ∈ G(K)×G(K) generating
a strongly dense free subgroup is Zariski-dense in G×G.

Theorem 1.2. Let K be an extension of Fp of transcendence degree ≥ 2 and
G a split semisimple algebraic group over K. Then G contains a strongly
dense free subgroup over K. In fact, the set of pairs (a, b) ∈ G(K)×G(K)
generating a strongly dense free subgroup is Zariski-dense in G×G.

Letting L = K(t) with K a global field, we produce d-generated free
subgroups Γ of G(A), where A is a finitely generated K-subalgebra of L, so
that if we reduce modulo certain maximal ideals mi of A, we get strongly
dense free subgroups of the Ki-points of predetermined special subgroups
Hi of G, where Ki = A/mi. These Hi are images in G of products of groups
of the form SL1(Di,j), where each Di,j is a central division algebra of prime
degree overKi. These SL1(Di,j) are special because all of their proper closed
subgroups over Ki are close to being abelian, and it is this property that
enables us to prove strong density. Then using some algebraic geometry
and algebraic group theory, we see that Γ, regarded as a subgroup of G(L),
must be free and strongly dense in G. The strategy is not so dissimilar from
that of [10] where degenerations of certain maximal rank subgroups of G
were studied. However, a key feature of the proof in [10] was the use of the
result of Borel [6] that word maps on algebraic groups are dominant (see
also [23]). This is not used in our proof of the existence of free strongly
dense subgroups, which uses the properties of special subgroups instead. A
major advantage of the new strategy is that it lets us work over fields of
lower transcendence degree.

A key technical ingredient, which may be of independent interest, is The-
orem 4.7, relating the Zariski closure of the generic image of a family of
representations of a group Γ to the Zariski closure of a member of the fam-
ily.

We can also prove strong density results for certain non-free groups.

Definition 1.3. A nonabelian subgroup Γ of a semisimple algebraic group
G over K is strongly dense (over K) if every nonabelian subgroup of Γ is
Zariski-dense in G over K.
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As an illustration of the definition, we prove that in a number of situations,
G(K) contains strongly dense surface groups.

Theorem 1.4. Let Σg, g ≥ 2 be the fundamental group of a compact ori-
entable surface of genus g and G a semisimple algebraic group over an al-
gebraically closed field K. Then there are strongly dense embeddings of Σg

in G over K if any of the following conditions holds:

1. K has infinite transcendence degree over its prime field.
2. K is transcendental over Q and G is a classical group.
3. K is of characteristic p ≥ 3 and is of transcendence degree ≥ 10

over Fp, and G is a special linear group.

We also prove the existence of dense (or strongly dense) embeddings of
other finitely generated groups Γ in G(K) under certain assumptions on Γ,
G and K. See Theorems 8.1 and 8.5.

2. Representation Varieties

Throughout this section, we fix a linear algebraic group G = Spec B over
a field K0. If Γ is a d-generated group, we define FΓ to be the functor from
K0-algebras A to sets given by

A ↦→ Hom(Γ, G(A)).

When Γ is the free group Fd, the functor FΓ is represented by the affine
K0-scheme Gd = Spec B⊗d, and evaluation at any element γ in Γ defines a
morphism eγ of K0-schemes Gd → G. The fiber of eγ over the identity of G

defines a closed subscheme of Gd associated to an ideal Iγ in the coordinate

ring B⊗d. If Γ = Fd/NΓ, we define

IΓ =
∑︂
γ∈NΓ

Iγ .

We define CΓ = B⊗d/IΓ, so Spec CΓ is a closed subscheme of Gd. For
every K0-algebra A, an element of FΓ(A) corresponds to a homomorphism
Hom(Γ, G(A)), i.e., a homomorphism Fd → G(A) which restricts to the
identity at each γ ∈ NΓ. Equivalently, it is an element of Gd(A) which
maps by eγ to the identity, i.e., an element of HomK0(Spec A,G) whose
composition with eγ is the morphism Spec A→ G which factors through the

identity map Spec K → G. This means that Spec A → Gd factors through
Spec B⊗d/Iγ for all γ ∈ IΓ, or, equivalently, a morphism Spec A→ Spec CΓ.
Thus FΓ is representable by the affine scheme Spec CΓ, which we call the
representation scheme.

Let AΓ denote the quotient of CΓ by its nilradical. If we restrict to K0-
algebras A with radical (0), we have

HomK0(CΓ, A) = HomK0(AΓ, A).
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We define Spec AΓ to be the representation variety of Γ (where G and K0

are understood). In particular, the identity map on AΓ defines an element
of FΓ(AΓ), which we call the universal representation.

This representation variety is irreducible if and only if AΓ is an integral do-
main. IfK is any field extension of AΓ, the universal representation defines a
homomorphism Γ → G(K) which corresponds to a map from Spec K to the
representation variety whose image is the generic point. Various conditions
on Γ-representations in G determine closed subsets of the representation va-
riety defined over K0; unless such a condition holds for all representations,
it does not hold for Γ → G(K) of the kind we are discussing. Therefore, if K
is any algebraically closed field of transcendence degree ≥ dimSpec AΓ over
K0, there exists a homomorphism Γ → G(K) satisfying no proper closed
condition. This can be useful, for example, in proving that there exists an
injective homomorphism from Γ to G(K).

3. Some Groups over Global Fields

We first point out the following easy result (see also [16, Prop. 4.1]).

Lemma 3.1. Let K be any field, p a prime, D a central division algebra of
degree p over K, and G = SL1(D) the inner form of SLn over K associated
to D. Then every proper K-subgroup of positive dimension of G is contained
in the normalizer of a maximal torus of G.

Proof. Let H denote a proper connected subgroup of G. As G(K) ⊂ D×,
it contains no non-trivial unipotent elements, so the same must be true for
H. In particular, H is reductive. If S denotes the derived group of H, it is
semisimple of dimension less than p2−1 and therefore of rank r < p−1. Let
T denote a maximal torus of S defined over K. Let Ks denote a separable
closure of K, and X ∼= Zr the character group of T . Then T determines a
continuous homomorphism Gal(Ks/K) → Aut(X) ∼= GLr(Z) whose image I
is finite. There are no elements of order p in I since the minimal polynomial
of a primitive pth root of unity has degree p − 1 > r. Thus T splits over
a Galois extension L/K such that Gal(L/K) ∼= I is of prime to p order.
Therefore the class of D does not lie in the kernel of Br(K) → Br(L), and
DL := D ⊗K L is a central division algebra over K.

Thus SL1(DL) is an algebraic group over L containing a non-trivial split
torus TL, i.e., an isotropic semisimple group. It follows that SL1(DL) con-
tains non-trivial unipotents [33, 3.4 (iii)], which is absurd since DL has no
non-trivial nilpotents.

In fact over a global field, groups of type Am withm+1 prime are the only
simple algebraic groups that have a form with the above property (called
almost abelian). See [16] for more about this.
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Lemma 3.2. Let K be a global field and D1, . . . , Dm K-central division alge-
bras of prime degrees p1, . . . , pm respectively such that SL1(D1), . . . ,SL1(Dm)
are pairwise non-isomorphic. Then

G(K) = G1(K)× · · · ×Gm(K) = SL1(D1)× · · · × SL1(Dm)

contains a strongly dense free subgroup.

Proof. By the Tits alternative, there exist elements xi, yi ∈ SL1(Di) which
generate a free subgroup F2. Let Γ = ⟨(x1, . . . , xm), (y1, . . . , ym)⟩. Since
x1 and y1 satisfy no word relation, the same is true for (x1, . . . , xm) and
(y1, . . . , ym), so Γ is isomorphic to F2. Let ∆ ⊂ Γ be a non-abelian subgroup.
To show that ∆ is Zariski-dense in G, by Goursat’s lemma and the fact that
the Gi are simple as algebraic groups and pairwise non-isomorphic, it suffices
to prove that the projection of ∆ on each factor Gi is Zariski-dense.

Let Hi denote the Zariski closure of the image of ∆ in Gi. Every proper
subgroup of Gi is contained in the normalizer of a maximal torus, so we may
assume Hi normalizes Ti, but as ∆ is non-abelian, it is a free group on ≥ 2
generators and therefore not contained in the normalizer of a torus.

Corollary 3.3. With K and pi as above, there exists a finite separable
extension L/K such that SLp1 × · · · × SLpm contains a strongly dense free
subgroup over L.

Proof. Let L be a finite separable extension of K ′ which splits all the
SL1(Di).

4. Degenerations

In this section, we introduce a variant of the notion of degeneration intro-
duced in [10]. Let K0 be a field, A a K0 algebra, and n a positive integer.
Let P1 and P2 denote prime ideals of A such that P1 ⊂ P2, and let Ki de-
note the field of fractions of A/Pi. Let Γ be a finitely generated subgroup
of GLn(A) and let G1 and G2 denote the Zariski closures over K1 and K2

respectively, of the images of Γ in GLn(K1) and GLn(K2) respectively.

Definition 4.1. In this situation, we say G2 is a degeneration of G1 or G1

can degenerate to G2.

Note that if G1 can degenerate to G2, then G
◦
1 can degenerate to G◦

2. In-
deed Γ maps to G1(K1)×G2(K2), and the inverse image of G◦

1(K1)×G◦
2(K2)

is of finite index in Γ. For i = 1, 2, replacing Γ by this finitely generated
subgroup replaces Gi by a finite index subgroup of G◦

i and therefore with
G◦

i itself.

Proposition 4.2. Let P1 ⊂ P2 ⊂ A, Ki, Γ ⊂ GLn(A) a finitely generated
group, and Gi be as above. Let X be a projective scheme over A endowed



6 BREUILLARD, GURALNICK, AND MICHAEL LARSEN

with an action of (GLn)A defined over A. If (G1)K1
has a fixed point on

XK1
, then (G2)K2

has a fixed point on XK2
.

Proof. Let Γ = ⟨γ1, . . . , γd⟩. The embedding of Γ in GLn(A) defines a
section of (GLn)

d
A → Spec A. The image is therefore closed in (GLn)

d
A. Let

Y denote the inverse image of X, diagonally embedded in Xd+1, under the
morphism (GLn)

d
A ×X → Xd+1 given by

(g1, . . . , gd, x) ↦→ (g1.x, . . . , gd.x),

and let Z be the image of Y under the projection map from (GLn)
d
A × X

to (GLn)
d
A. As X is complete, the projection map is proper and therefore

closed, so Z is a closed subset of Spec A. As (G1)K1
has a fixed point on

XK1
, Z contains P1. As P2 lies in the closure of P1, it contains P2 as well,

so choosing a K2-point of Y which lies over P2, (G2)K2
has a fixed point on

XK2
.

This has the following consequence:

Corollary 4.3. With notations as above, if G1 fixes a k-dimensional sub-
space of K1

n
, then G2 fixes a k-dimensional subspace of K2

n
.

Proof. This follows from the previous result using the fact that the Grass-
mannian variety of d-dimensional subspaces is a complete variety.

As K1 and K2 are both extensions of K0, we have char K1 = char K2,
so we can embed both fields as subfields of a common algebraically closed
field, and it then makes sense to ask whether G2 is conjugate (in GLn)
to a subgroup of G1. In general, this is not the case. For instance, if
A = C[t], P1 = (0), P2 = (t), and Γ is the (infinite cyclic) subgroup of

GL2(A) generated by

(︃
1 1
0 1 + t

)︃
, then G1

∼= Gm and G2
∼= Ga.

For any linear algebraic group G, we define Gcr to be the (connected and
reductive) quotient of the identity component G◦ by its unipotent radical
Radu(G

◦). Every homomorphism of algebraic groups ϕ : G → H over an
algebraically closed field K determines a homomorphism ψ : G◦ → Hcr. As
U := ψ(RaduG

◦) ⊂ Hcr is connected and unipotent, it is contained in
the unipotent radical of a canonically defined parabolic subgroup P ⊂ Hcr

[20, §30], so ψ(G◦) ⊂ P . Letting P = MN denote a Levi decomposition,
U ⊂ N , so ψ induces a well-defined homomorphism Gcr → M . As Levi
decomposition is unique up to conjugation [20, Theorem 30.2], composition
of ψ withM ↪→ Hcr gives a morphism ϕcr : Gcr → Hcr, which is well-defined
up to conjugation. If G◦ ∩ kerϕ is connected and unipotent then the same
is true of kerψ, so ϕcr is injective.

Lemma 4.4. Let G and H be linear algebraic groups over an algebraically
closed field K and ϕ : G → H and ρ : H → GLn homomorphisms defined
over K. Then the representations of Gcr defined by ρcr ◦ ϕcr and (ρ ◦ ϕ)cr
have isomorphic semisimplifications.
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Note that the condition on semisimplifications just means that every ir-
reducible representation of Gcr has the same multiplicity as a constituent of
the two given representations.

Proof. It suffices to prove that the characteristic polynomials of ρcr◦ϕcr(gcr)
and (ρ ◦ ϕ)cr(gcr) are the same for all gcr ∈ Gcr(K). Let g ∈ G◦(K) map
to gcr. Writing ψ(g) = mn ∈ M(K)N(K) = P (K) ⊂ Hcr(K), we have
ϕcr(gcr) = m.

We denote by Ñ and P̃ the inverse images of N and P respectively in
H◦. Let h ∈ H◦(K) map to m, so ϕ(g) = hu for some u ∈ Ñ(K). We claim
that ρ(h) and ρ(hu) have the same characteristic polynomial.

Indeed, ρ(Ñ) is a connected unipotent subgroup of GLn, so there exists

a parabolic subgroup Q of GLn such that ρ(Ñ) ⊂ Radu(Q) and ρ(P̃ ) ⊂ Q.
Thus, ρ(u) ∈ Radu(Q)(K) and ρ(h) ∈ Q(K). So, indeed ρ(h) and ρ(h)ρ(u)
have the same characteristic polynomial.

If ρ1 : G1 → GLn and ρ2 : G2 → GLn are defined over K, for a mor-
phism ϕ : Gcr

1 → Gcr
2 to be compatible with ρi means ρcr2 ◦ ϕ and ρcr1 define

representations of Gcr
1 which have isomorphic semisimplifications.

Lemma 4.5. Let Γ be a group and f1, f2 : Γ → GLn(K) homomorphisms
defining representations whose semisimplifications are isomorphic. Let G1

and G2 denote the Zariski closure of f1(Γ) and f2(Γ) respectively and ρ1,
ρ2 the inclusion morphisms from G1 and G2 to GLn. Then there exists an
isomorphism between Gcr

1 and Gcr
2 compatible with ρcri .

Proof. Passing to a finite index normal subgroup of Γ, we may assume that
G1 and G2 are connected. As the maps ρi are injective, the same is true for
ρcri .

For all g ∈ Γ let gi denote the image of fi(g) in G
cr
i (K). Then ρcri (gi) has

the same characteristic polynomial as fi(gi), which is therefore the same
for i = 1 and i = 2. Let G12 denote the Zariski closure of Γ under the
diagonal map to Gcr

1 (K) × Gcr
2 (K). There are two morphisms from G12

to characteristic polynomials, one via ρcr1 and one via ρcr2 , and they must
coincide.

We claim that G12 is the diagonal of an isomorphism between Gcr
1 and

Gcr
2 . Otherwise, there exists a non-trivial normal subgroup H of, say, Gcr

1

such that H ×{1} ⊂ G12, and H maps under ρcr1 to the closed subvariety of
unipotent elements. This is impossible, so H gives an isomorphism between
Gcr

1 and Gcr
2 compatible with the ρcri .

Theorem 4.6. Let K be a field,

f : Γ → GLn(K[[t]]) ⊂ GLn(K((t)))
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a representation of a group Γ, and f̄ : Γ → GLn(K) the reduction of f
(mod t). Let G (resp. Ḡ) denote the Zariski closure in GLn over K((t))
(resp. K) of f(Γ) (resp. f̄(Γ)), and let ρ (resp. ρ̄) denote the inclusion
G → GLn as a morphism of algebraic groups over K((t)) (resp. K). Then
there exists a finite extension L of K((t)) and an injective homomorphism
Ḡ

cr ×K L→ Gcr ×K((t)) L compatible with ρcr ×K((t)) L and ρ̄cr ×K L.

Proof. Replacing Γ with a finite index subgroup, we may assume without
loss of generality that G and Ḡ are connected.

Let V1 ⊂ V2 ⊂ · · · ⊂ Vk = K((t))n denote a flag ofK((t))-spaces preserved
by f(Γ) and such that f(Γ) acts irreducibly on each Vj+1/Vj . Let Λj =
Vj ∩ K[[t]]n, so that f(Γ) preserves each Λj and Λj+1/Λj is a free K[[t]]-
module of rank dimVj+1/Vj . We may therefore fix a K[[t]]-free complement
Mj+1 to Λj in Λj+1. We have a surjective homomorphism from the stabilizer

of the flag V in GLn(K[[t]]) to
∏︁k

j=1AutK[[t]]Mj , and a section of this latter

group whose image consists of K[[t]]-linear maps preserving the direct sum
decomposition given by the Mj . Replacing f by the composition with these
two homomorphisms, we obtain a semisimplification of f which still lands
in GLn(K[[t]]) and such that f̄(g) has the same characteristic polynomial
as f̄(g) for all g ∈ Γ. Therefore, without loss of generality, we may assume
f is semisimple.

By [31, Chap. 2, §2], every finite extension of K((t)) is complete with
respect to the unique extension of the t-adic valuation on K((t)). Each such
extension is therefore of the form K ′((t′)), where K ⊆ K ′, K[[t]] ⊆ K ′[[t′]],
and t is a non-unit in K ′[[t′]]. As every semisimple group splits over a finite
extension, we may assume that G is split over K((t)).

Next, we claim that f(Γ) is a bounded subgroup of G(K((t))) in the sense
of Bruhat-Tits [13, 4.2.19]. Indeed, we can fix a finite set of generators of
the coordinate ring of G. As ρ is a closed immersion, each generator lifts to
an element of the coordinate ring of GLn. As f(Γ) is bounded in the GLn

sense, it is bounded in the G sense as well. By [12, 3.3.1], it stabilizes the
centroid of some facet of the Bruhat-Tits building B(G/K((t))).

By [22, 2.4], replacing K((t)) by a finite extension, we may assume that
f(Γ) stabilizes a hyperspecial vertex of B(G/K((t))). By [13, 4.6.22], there
exists a split semisimple group G0 over K and an isomorphism ι from G
to G0 ×K K((t)) such that ι(f(Γ)) ⊂ G0(K[[t]]). By [35] there exists a
homomorphism ρ0 : G0 → GLn of algebraic groups over K whose extension
of scalars to K((t)), via ι, defines the same representation as ρ. Explicitly,
this means there exists g ∈ GLn(K((t))) such that

(ρ0 ×K K((t))) ◦ ι = Int(g) ◦ ρ

as K((t))-morphisms G→ GLn. Thus,

(ρ0 ×K K((t))) ◦ ι(f(Γ)) = g−1f(Γ)g.
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By the Brauer-Nesbitt theorem, the (mod t) reductions of f(Γ) and
g−1f(Γ)g have the same semisimplification. By Lemma 4.5, without loss
of generality we may assume g = 1.

Replacing f by ι ◦ f , we have therefore reduced to the situation that G is
a semisimple group over K embedded in GLn by the K-homomorphism ρ0,
and f(Γ) ⊂ G0(K((t))) is a Zariski dense subgroup which lies in G0(K[[t]]).
Reduction (mod t) commutes with ρ0. Thus, the Zariski-closure Ḡ of f̄(Γ)
in GLn over K is contained in ρ0(G). The Zariski closure G of f(Γ) in GLn

over K((t)) is ρ0(G)×K K((t)).
We conclude that there is an injective homomorphism of algebraic groups

over K((t)), Ḡ×KK((t)) → G. By Proposition 4.4, the injective homomor-
phism of algebraic groups Ḡ

cr ×K K((t)) → Gcr = G is compatible with ρ̄cr

and ρ up to semisimplification. The theorem follows.

Theorem 4.7. If G2 is a degeneration of G1 and ρi denotes the inclusion
of Gi in GLn, then there exists a field L such that after extending scalars to
L, there exists an injective homomorphism Gcr

2 → Gcr
1 compatible with ρcri .

Proof. As there exists a finite chain of prime ideals maximal among
all chains connecting P1 and P2, without loss of generality, we may and
do assume that there is no prime ideal intermediate between P1 and P2.
Replacing A by the localization of A/P1 at P2/P1 and Γ by its image in
GLn((A/P1)P2/P1

), we may assume without loss of generality that A is a
1-dimensional local domain, P1 = 0, and P2 is a maximal ideal.

Let Ã denote the normalization of A. The morphism Spec Ã → Spec A
is birational and finite [34, Tag 0BXR], so its image is closed and contains

the generic point of Spec A. Therefore, there exists a prime ideal P̃ 2 of Ã
lying over P2. Replacing A by Ã and P2 by P̃ 2, we may assume that A is
a DVR. Replacing A by its completion at P2, we may assume that it is a
complete DVR, P1 is the zero-ideal, and P2 is the maximal ideal. The fields
K1 and K2 are respectively the fraction field and the residue field of A. By
Cohen’s classification of complete equicharacteristic regular local rings [14,
Theorem 15], we have isomorphisms A ∼= K2[[t]], and K1

∼= K2((t)).
By the previous theorem, there exists L such that Gcr

2 ×K2L is isomorphic
to a closed subgroup of Gcr

1 ×K1 L, compatibly with Gcr
i → GLn, so the

theorem follows.

If H1 and H2 are closed subgroups of GLn over K we write H1 ≺GLn H2

if and only if there exists an extension L/K and an injective homomorphism
Hcr

1 ×K L ↪→ Hcr
2 ×K L compatible with the given n-dimensional representa-

tions of H1×K L and H2×K L. If H2 can degenerate to H1 as subgroups of
GLn, then H1 ≺ H2. If H2 and H1 are subgroups of a semisimple group G,
we write H1 ≺ H2 if and only if H1 ≺GLn H2 for all faithful representations
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G ↪→ GLn. If K is algebraically closed, this implies that Hcr
1 is isomorphic

to a closed subgroup of Hcr
2 over K itself.

Our strategy for constructing strongly dense free subgroups of G over a
transcendental extension K of a global field K0 is to find special semisimple
subgroups H1, . . . ,Hr of G and homomorphisms ρi : Γ → Hi(K0) which are
strongly dense thanks to Corollary 3.3. We then construct a curve of homo-
morphisms ρ : Γ → G(A) which specializes to ρ1, . . . , ρr at different points
of the curve Spec A. The Zariski closure H of ρ(∆) for any non-abelian free
subgroup of Γ then satisfies Hi ≺ H for all i, thanks to Theorem 4.7. The
goal of the next section is to find choices of Hi for which these conditions
imply H = G.

5. Special Subgroups

In this section, we gather some results about subgroups of simple algebraic
groups. Throughout this section, we always assume K is algebraically closed
and let p be the characteristic of K when it is non-zero.

Definition 5.1. We say a closed subgroup H of a linear algebraic group G
is special if it is the image of a homomorphism SLp1 × · · · × SLpm → G for
some sequence of primes p1, . . . , pm. We say it is very special if we can take
m = 1 and p1 = 2.

Note that if K contains a global field K0, every K-group of the form
SLp1 × · · · × SLpm over K is obtained from a product of almost abelian
simple algebraic groups of the form SL1(D1)× · · · × SL1(Dm) for some K0-
central division algebras D1, . . . , Dm. Moreover we may assume that each
Di ramifies over some place that no other Dj ramifies over.

Definition 5.2. A collection {H1, . . . ,Hk} of special subgroups of G is gen-
erating if the only subgroup H of G satisfying Hi ≺ H for all i is G itself.

Note that if G has a generating collection of special (resp. very special)
subgroups, then the same is true for all groups isogenous to G. Indeed,
it is true for the universal covering group G̃ of G since groups of the form
SLp1 × · · ·×SLpm are simply connected, so every homomorphism SLp1 × · · ·×
SLpm → G lifts to SLp1 × · · ·×SLpm → G̃. It is clearly true for any quotient
of a group for which it is true.

Lemma 5.3. Let k and n be positive integers with k < n. Then there exists
a partition π of n such that no part has a prime factor greater than 3, and
k is not a sum of any subset of the parts of π.

Proof. Let n be the smallest integer for which the statement fails. As n
cannot be of the form 2a3b, we may assume n ≥ 5. Let m denote any integer
of the form 2a3b which lies in (n/2, n). Thus, m ≤ n, and n −m < m. If
k < n − m or k > n − m but k ̸= m, then by assumption, there exists a
partition π′ of n−m such that no part of π′ has a prime factor greater than
3, and k is not a sum of parts of π′. If π is the partition of n obtained by
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adding the part m to π′, then no part of π has a prime factor > 3, and k is
not a sum of parts of π, contrary to assumption.

Therefore, it suffices to prove that there are at least two different values
of m ∈ (n/2, n), m1 and m2, neither of which has a prime factor greater
than 3. We can take m1 to be the smallest power of 2 greater than n/2 and
m2 to be 3 times the smallest power of 2 greater than n/6.

Proposition 5.4. Let n be a positive integer and K a field not of character-
istic 2. For any positive integer k < n, there exists a very special subgroup H
of SLn defined over K such that the restriction of the natural representation
of SLn to H has no k-dimensional subrepresentation.

Proof. If K is of characteristic 0, we may take H to be the image of SL2

under the symmetric (n− 1)st power map. We therefore assume that p > 2.
By Lemma 5.3, there exists a partition n = π1+π2+ · · ·+πr, where each

πi is of the form 2ai3bi for non-negative integers ai and bi and k is not a
sum of any subsequence of terms in the sequence π1, . . . , πr. Let V2 and V3
denote, respectively, the representation space of the natural representation
of SL2 and its symmetric square, which is irreducible since p ≥ 3. Let

Wi = V2 ⊗ V
(p)
2 ⊗ · · · ⊗ V

(pai−1)
2 ⊗ V3 ⊗ V

(p)
3 ⊗ · · · ⊗ V

(pbi−1)
3 ,

where SL2(K) → GL(V (q)) denotes the composition of the q-Frobenius on
SL2 with the representation SL2 → GL(V ). Thus Wi is an irreducible
representation of SL2 of degree πi = 2ai3bi . The direct sum of the Wi

is therefore a semisimple determinant 1 representation of SL2 with no k-
dimensional subrepresentation.

Lemma 5.5. Let n be a positive integer and K a field. There exists a special
subgroup H of SLn such that the restriction of the natural representation of
SLn to H is irreducible.

Proof. Let n = pe11 · · · pell , let

H =
l∏︂

i=1

SLei
pi ,

and embed H in SLn via the external tensor product of the natural repre-
sentation of the SLpi factors.

We shall also need a special case of a result of McLaughlin [28].

Proposition 5.6. Suppose that n ≥ 2, and H is a semisimple subgroup
of G = GLn acting irreducibly on the natural representation V of G. If
H contains a subgroup H1

∼= SL2 such that the restriction of V to H1 is
V n−2
0 ⊕ V1, then H = Spn or H = SLn.
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Proposition 5.7. Let K be a field and G = Sp2r a symplectic group over K.
If char K = 3, we further assume r ≥ 3. Then there exist special subgroups
H1 and H2 of G such that for all k in [1, 2r− 1], there exists i such that the
restriction of the natural representation of G to Hi has no k-dimensional
Hi-invariant subspace. If char K = 0, H1 alone suffices, and we may take
it to be very special.

Proof. Let Vi denote the symmetric ith power representation of SL2. If K
has characteristic 0 or characteristic ≥ 2r, then we do not need H2; we may
take H1 ⊂ GL2r to be the image of SL2 under the representation V2r−1. As
V2r−1 is irreducible and symplectic, H1 may be taken to be a subgroup of
Sp2r. We therefore assume char K = p, where 2 ≤ p ≤ 2r − 1.

If r = pe11 · · · pell , then
∏︁

i SL
ei
pi embeds in SLr by the tensor product of

natural representations, and thence into Sp2r. Defining H1 to be the image
of this representation, the restriction of the natural representation of G to
H1 is the direct sum of two irreducible factors of dimension r. We may
therefore assume, henceforth, that k = r.

If char K = 2, then tensor products of distinct Frobenius twists of V1
give irreducible self-dual representations of SL2 of every degree in the set
{1, 2, 4, 8, . . .} and, in particular, one whose degree lies in [r+1, 2r]. Adding
a trivial representation of suitable degree, we obtain a self-dual representa-
tion V of degree 2r which has no invariant k-dimensional subspace. Since
char K = 2, the image H1 of SL2 in this representation can be taken to be
in Sp2n. We may therefore assume p ≥ 3. Since we are excluding the case
(p, r) = (3, 2), we may assume r ≥ 3.

We divide into cases.

Case r ̸= 8. We know V1 is irreducible and symplectic of degree 2, V2
is irreducible and orthogonal of degree 3, and the tensor product of two
distinct Frobenius-twists of V1 is irreducible and orthogonal of degree 4. By
tensoring suitable Frobenius twists of these three representations, we can
therefore find an irreducible symplectic representation of SL2 of any degree
of the form 22e+13f . Our assumptions on r guarantee there exists a number
of this form in the interval [r + 1, 2r]. Therefore, there exists a symplectic,
irreducible representation of SL2 whose degree lies in this interval. The
direct sum of this irreducible representation with a trivial representation of
suitable degree is then a symplectic representation of SL2 of degree 2r, and
defining H2 to be the image of SL2 in this representation, the proposition
follows in this case.

Case r = 8, p ≥ 5. Let W denote the adjoint representation of SL3, which
is orthogonal and irreducible. Then V1 ⊠W is a 16-dimensional irreducible
symplectic representation of SL2×SL3, so we may take H2 to be the image
of this representation. (In fact, in this case, we do not need H1.)

Case r = 8, p = 3. Let W denote the semisimplification of the adjoint
representation of SL3, which is orthogonal and the direct sum of a trivial 1-
dimensional representation and an irreducible 7-dimensional representation.
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Then V1 ⊠ W is a 16-dimensional symplectic representation of SL2×SL3

which decomposes into irreducible factors of degree 2 and 14, and we let H2

denote the image of this representation.

Proposition 5.8. Let K be a field not of characteristic 2 and G = SO2r+1,
r ≥ 3. Then there exist special subgroups H1, H2, H3 of G such that for all k
in [1, 2r], there exists i such that the restriction of the natural representation
of G to Hi has no k-dimensional Hi-invariant subspace. If char K = 0, H1

alone suffices, and we may take it to be very special.

Proof. If K has characteristic 0 or characteristic ≥ 2r + 1, then we do
not need H2 or H3. We may take H1 ⊂ GL2r+1 to be the image of SL2

in the representation V2r. As V2r is irreducible and orthogonal, H1 may be
taken to be a subgroup of SO2r+1. We therefore assume char K = p, where
3 ≤ p ≤ 2r.

If r = pe11 · · · pell , then
∏︁

i SL
ei
pi embeds in SLr by the tensor product of

natural representations, and thence into SO2r ⊂ SO2r+1. Defining H1 to
be the image of this representation in SO2r+1, the restriction of the natural
representation of G to H1 is the direct sum of a 1-dimensional trivial factor
and two irreducible factors of dimension r. We may therefore assume, hence-
forth, that k ∈ {1, r, r+1, 2r}. There is a special subgroup of SO2r+1 of the

form H2 = SOe
3×SOf

4 , where 3e + 4f = 2r + 1, and no composition factor
of the restriction of the natural representation of G to H2 has dimension 1,
so we may assume that k ∈ {r, r + 1}. It therefore suffices to find H3 such
that the restriction of the natural representation to H3 has an irreducible
factor of degree ≥ r + 2.

If r = 3 and p = 3, we let H3 be the image of SL3 under the (irreducible,
orthogonal) quotient of the adjoint representation by its 1-dimensional triv-
ial subrepresentation. If r = 3 and p ≥ 5, we let H3 denote the image of
SL2 under V4, which is, again, irreducible and orthogonal.

If r ≥ 4, then there exists an integer of the form 3e4f in the interval
[r + 2, 2r + 1]. Indeed, we take the smallest integer in the set

{9 · 4f | f ∈ N} ∪ {12 · 4f | f ∈ N} ∪ {16 · 4f | f ∈ N} ∪ {27 · 4f | f ∈ N}
which exceeds r+1. We can therefore find an irreducible, orthogonal repre-
sentation of SL2 by tensoring together e suitable Frobenius twists of V2 and
f suitable twists of V1. Adding a trivial factor of suitable dimension, we ob-
tain an orthogonal representation which has no subrepresentation of degree
r or r + 1; we take H3 to be the image of SL2 under such a representation.

Proposition 5.9. Let K be a field and G = SO2r, r ≥ 4. Then there exist
special subgroups H1 and H2 of G such that for all k in [1, 2r − 1], there
exists i such that the restriction of the natural representation of G to Hi has
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no k-dimensional Hi-invariant subspace. If char K = 0, we may take H1

and H2 to be very special.

Proof. If char K = 0 or if char K = p is at least 2r − 1, then V2r−2

is irreducible and orthogonal, and it maps SL2 to SO2r−1 and therefore to
SO2r. The restriction of the natural representation of SO2r to the image
H1 of this homomorphism decomposes as the sum of a 1-dimensional trivial
representation and an irreducible representation of dimension 2r − 1. Let
H2 denote the image of SL2 under the representation V2 ⊕ V2r−4. The only
dimensions of non-trivial invariant subspaces of H2 are 3 and 2r − 3. We
may therefore assume that 2 ≤ p ≤ 2r − 2.

If r = pe11 · · · pell , then
∏︁

i SL
ei
pi embeds in SLr by the tensor product of

natural representations, and thence into SO2r. Defining H1 to be the image
of this representation in SO2r, the restriction of the natural representation
of G to H1 is the direct sum of two irreducible factors of dimension r. We
may therefore assume, henceforth, that k = r.

If char K = 2, there exists 2e ∈ [r + 1, 2r], with e ≥ 2. Taking a tensor
product of e Frobenius twists of the natural representation of SL2, we obtain
an irreducible, orthogonal representation of SL2 of degree 2e and therefore
an orthogonal representation of SL2 of dimension 2r with no r-dimensional
inveriant subspaces.

If p ≥ 3, we use the construction of H3 for SO2r−1 in Proposition 5.8,
and define H2 for SO2r to be the image of this group under the embedding
SO2r−1 ⊂ SO2r.

Theorem 5.10. Let G be a simple algebraic group over an algebraically
closed field K.

(1) Except in the case that G is of type C2 and char K = 3, G contains
a finite generating set of special subgroups.

(2) If G = SLn and char K ̸= 2, then G has a very special generating
set.

(3) If G is an orthogonal or symplectic group and char K = 0, then G
has a very special generating set.

(4) We can choose one element Hi of a generating set so that Hi×Hi ̸≺
G.

Proof. As the statement does not depend on isogeny class, we assume
G is simply connected, except for orthogonal types, where we assume G
is a special orthogonal group. In each case, we give a finite set of special
subgroups Hi such that the only subgroup H of G satisfying Hi ≺ H for
all i is G itself. The Hi are special and therefore semisimple, so if H is a
reductive and Hi ≺ H for all i, then the same is true of the derived group
of H◦, so if H is reductive, we may assume it is semisimple.

We consider each of the possible types:

Case Ar, r ≥ 1. By Lemma 5.5 and in view of Corollary 4.3, there exists a
special subgroup H1 ⊂ G = SLr+1 such that that any subgroup H ⊂ G with
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H1 ≺ H acts irreducibly on the natural representation V , so it is reductive
and may therefore be assumed to be semisimple. If r = 1, this implies
H = SL2, so we may assume r ≥ 2. If r ∈ {2k − 1, 2k}, let H2 = SLk

2 with
the standard embedding to G. By Theorem 4.7, the rank of any subgroup
H such that H2 ≺ H is at least k.

Let H̃ denote the simply connected covering group of H and

H̃ = L1 × · · · × Ll,

where the Li are simple. If ri denotes the rank of Li, then r1 + · · ·+ rl ≥ k.
As V is the exterior tensor product of almost faithful representations of the
Hi,

r + 1 ≥ (r1 + 1) · · · (rl + 1).

The last two conditions imply that either l = 1, or that l = 2 and r1 = 1,
r2 = k − 1. If l = 1, H is simple and must be SOr+1 or Spr+1 (cf. [30,
Theorem 5.1 and Cor. 5.2] or [25]). If l = 2 and r1 = 1, the first factor of H
is SL2 with the natural module. So dimV is even and r = 2k − 1. Also the
second factor has rank k − 1 with an irrep of dimension k, so must be SLk

with its natural module. However H2 = Ak
1 does not embed in SL2×SLk,

unless k = 2. Therefore r2 = 1, r = 3, and after extension of scalars,
H = SO4.

Let H3 = SL3, embedded in SLr+1 by any representation which is not
self-dual. Then there is no homomorphism SL3 → SOr+1 or SL3 → Spr+1

consistent with the embeddings of H3, SOr+1, and Spr+1 in SLr+1, so the
theorem holds in this case.

Case Br, r ≥ 3, char K ̸= 2. Let H1, H2, and H3 be as in Proposition 5.8,
and let H4 = SLr

2, which embeds as a subgroup of G = SO2r+1 since G

is always of the form SO3×SO
r−1
2

4 or SO5×SO
r−2
2

4 . By Proposition 5.8,
any group H satisfying Hi ≺ H for all i ∈ {1, 2, 3} acts irreducibly on the
natural representation of G, so it is reductive and we may therefore assume
it is semisimple. As H4 ≺ H, H must have rank r. From the classification
of equal rank semisimple subgroups of simple groups, this implies H = G.

Case Cr, r ≥ 2, char K ̸= 3 if r = 2. Let H1 and H2 be as in Proposi-
tion 5.7, and let H3 = SLr

2, embedded as a subgroup of G = Sp2r in the ob-
vious way. By Proposition 5.7, any group H satisyfing H1 ≺ H and H2 ≺ H
acts irreducibly on the natural representation of G, so H is reductive and
can be assumed semisimple. As H3 ≺ H, H is of rank r. If char K ̸= 2, then
the classification of equal rank subgroups of simple groups implies H = G. If
char K = 2, there is an additional possibility: H = SO2r ⊂ Sp2r. However,
SO2r ⊂ Sp2r does not contain a subgroup for which the restriction of the
natural representation of Sp2r decomposes into r irreducible 2-dimensional
factors, so this possibility is ruled out.

Case Dr, r ≥ 4. Let H1 and H2 be as in Proposition 5.9. If r is even, let

H3 = SO
r/2
4 , embedded as a subgroup of G = SO2r in the obvious way; if
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r is odd, let H3 = SO
(r−1)/2
4 . By Proposition 5.9, any group H satisfying

H1 ≺ H and H2 ≺ H acts irreducibly on the natural representation of G,
so we may assume H is semisimple of rank ≥ r − 1. If H is of rank r, then
H = G follows from the classification of equal rank subgroups, We may
therefore assume H is of rank r − 1, which means r is odd and therefore at
least 5.

If the universal covering group H̃ has simple factors of ranks r1 ≥ · · · ≥ rl,
then

r1 + · · ·+ rl = r − 1

and

(2r1) · · · (2rl) ≤ 2r,

since the minimum dimension of a self-dual representation of a simple group
of rank ri is 2ri. The only solutions for these two condition for l ≥ 2 are
(r1, r2) = (2, 1) (for l = 2) and r1 = r2 = r3 = 1 (for l = 3). However, in
neither case is n ≥ 5. Therefore H is simple, but a simple group of rank
r − 1 cannot have a self-dual representation of dimension 2r for r ≥ 5.

Case G exceptional. Suppose H1 and H2 are special subgroups of G with
the following properties. The group H1 is a maximal proper connected sub-
group of G which is semisimple, of rank equal to rkG, and not isomorphic to
a subgroup of any maximal proper connected subgroup of G except conju-
gates of itself, while the group H2 is not isomorphic to any subgroup of H1.
If some proper subgroup H of G satisfies H1 ≺ H, then H1 is isomorphic
to a quotient of H◦. Therefore, the semisimple rank of H◦ must equal rkG,
and by [26, Corollary 2 (ii)], that implies that H◦ is semisimple, so H◦ is
conjugate to H1. However, H2 is semisimple and does not embed in H1, so
we cannot have H2 ≺ H.

Using [26, Table 10.3], we find such pairs (H1, H2) in all cases except
E7. For E6, take H1 a subgroup of type A3

2 and H2 a subgroup of type
A1 × A4 contained in a maximal subgroup of type A1 × A5. For E8, take
H1 a subgroup of type A8

1 and H2 a subgroup of type A4
2. For F4, take H1

of type A2
2 and H2 of type A4

1 (contained in a maximal subgroup of type
D4). For G2, take H1 of type A2

1 and H2 of type A2. Except for case F4,
the dimension of H2 is greater than that of H1, so there is no embedding of
H2 in H1. For F4, there is no embedding of a group of type A4

1 in a group
of type A2

2 because there is no embedding of a group of type A2
1 in a group

of type A2.
For E7, we proceed somewhat differently, letting H1 denote a special

subgroup of E7 of type A
7
1 (contained in a maximal subgroup of type A1×D6)

and lettingH2 be a special subgroup of type A2×A4 (contained in a maximal
subgroup of type A2 × A5). Suppose a proper subgroup H of G satisfies
H1 ≺ H and H2 ≺ H. Without loss of generality, we may assume H is
connected. LetM be a maximal proper subgroup of G containing H1. Then
M contains the rank 7 semisimple group H1, so it must be of rank 7 and
therefore, by [26, Table 10.3], must be a group whose identity component is
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semisimple of type A1 ×D6, A7, A2 × A5, A
3
1 ×D4, or A

7
1. However, only

a group of type A1 ×D6, A
3
1 ×D4, or A

7
1 can contain a group of type A7

1,
and no group of any of these types can contain a subgroup of type A2 ×A4.
This finishes the proof of part (1).

For part (2), we first use Proposition 5.4 to prove Hi ≺ H for all i
implies H◦ acts irreducibly on the natural representation of GLn. We may
therefore assume n ≥ 3. To the list of Hi, we add two additional very
special subgroups of SLn, namely the image H ′ of SL2 under the symplectic
representation V n−2

0 ⊕ V1 and the image H ′′ of SL2 under the orthogonal

representation V n−3
0 ⊕ V2. Proposition 5.6 then proves that H must be Spn

with its natural representation or all of SLn. The Spn can is ruled out by
H ′′ ̸≺ Spn.

For each case in part (3), we use very special subgroups associated to two
different representations of SL2. For type Br, we use the representations
V2r and V 2

0 ⊕ V2r−2 to define very special subgroups H ′ and H ′′ of SO2r+1.
Thus H ′ is the principal SL2. which is known to be a maximal subgroup of
SO2r+1 except when r = 3 when it is contained in the maximal subgroup
G2 of SO7. In general H ′′ ̸≺ H ′, and for r = 3, H ′′ ̸≺ G2, so in either case
the statement of (3) holds. For type Cr, we use the representations V2r−1

(which gives the principal SL2 in Sp2r) and V2r−3 ⊕ V1. Since the principal
SL2 is always maximal for symplectic groups, (3) holds. For type Dr, we
use the representations V0 ⊕ V2r−2, which gives the principal SL2, which we
denote H ′, and V2 ⊕ V2r−4, which gives another very special subgroup, H ′′.
Now, H ′ is contained in SO2r−1 be in no other group intermediate between
H ′ and SO2r, while H

′′ ̸≺ SO2r−1.
Part (4) holds because in each of the cases above except for case Ar when

r is even, one of the Hi has rank greater than half the rank of G. For the
remaining case, we use the fact that SL2k+1 does not contain any subgroup
isogenous to A2k

1 .

6. Main Theorems

In this section, we prove the main theorems of the paper. We begin with
a proposition.

Proposition 6.1. Let Ki, 1 ≤ i ≤ k, be any finite separable extensions of
an infinite field K, and let G be any connected linear algebraic group over

K. For every element x = (x1, . . . , xk) ∈
∏︁k

i=1G(Ki), there exists a finitely
generated K-domain A with fraction field isomorphic to K(t) as K-algebra

such that x lies in the image of G(A) →
∏︁k

i=1G(Ki).

Proof. By the theorem of the primitive element, each Ki is isomorphic as
K-algebra to K[t]/mi, where, as K is infinite, the mi can be chosen to be
pairwise distinct maximal ideals. Fix for each Ki an element xi ∈ G(Ki).
Our goal is to find a polynomial Q(t) ∈ K[t] not in any mi and an element
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x ∈ G(K[t, 1/Q(t)]) which reduces to xi under reduction (mod mi) for all
1 ≤ i ≤ k.

As G is a connected linear algebraic group over K, it is rational as a
K-variety. Let U ⊂ G denote a non-empty open K-subvariety of G which is
isomorphic to an open subvariety of An. As K is infinite, G(K) is Zariski-
dense in G, so there exists a translate of U by an element of G(K) which
contains all the closed points of G in {x1, . . . , xk}, so without loss of gen-
erality, G has this property. We fix an open immersion ι : U → An over
K.

By the Chinese Remainder Theorem, the natural homomorphism K[t] →∏︁
iK[t]/mi is surjective, so there exist elements A1(t), . . . , An(t) ∈ K[t] such

that Aj(t) (mod mi) gives the jth coordinate of ι(xi). In other words, the
n-tuples (A1(t), . . . , An(t)) defines a morphism ξ : A1 → An which maps the
closed point associated to mi to ι(xi) for all i. Thus ξ−1(ι(U)) is an open
subset of A1. Its coordinate ring is therefore of the form A = K[t, 1/Q(t)],
and the restriction of ξ gives a morphism Spec A → U , proving the propo-
sition.

We remark that it follows immediately that every finitely generated free

subgroup of
∏︁k

i=1G(Ki) lies in the image of G(A) for some choice of A.
We can now finish the proofs of Theorems 1.1 and 1.2. Let K be a global

field. By Corollary 3.3, for every split simple algebraic group G over K,
and every special subgroup H of G, H(K) contains a strongly dense free
subgroup isomorphic to F2. We first assume that G is not of type C2 if
char K = 3. By Theorem 5.10, there exist almost abelian algebraic groups
H1, . . . ,Hs over K such that {(H1)K̄ , . . . , (Hs)K̄} is a generating set for GK̄ .

By Lemma 3.2, we may choose injective homomorphisms fi : F2 → Hi(K)
with strongly dense images fi(F2) = Γi ⊂ Hi(K) ⊂ G(K̄) for 1 ≤ i ≤ s.

By Proposition 6.1, there exists a finitely generated K-domain A with
maximal ideals m1, . . . ,ms and a homomorphism F2 → G(A) which special-
izes (mod mi) to fi for i = 1, . . . , s. Moreover, we may assume the fraction
field of A is K(t). Thus, for every non-abelian subgroup ∆ ⊂ F2, fi(∆)
has Zariski-closure Hi. The Zariski closure of the image of ∆ in G(K(t))
degenerates to each of the Hi, so by Theorem 4.7, it must be all of G, as
claimed.

The same method works for Sp4 when char K = 3, except that instead
of a generating set of special subgroups of Sp4, we have a generating set
consisting of the image H1 of SL2×SL2 in Sp4 and the derived group H2

of the stabilizer of a line in the natural representation. By [11, Appendix
D], H2 contains a strongly dense free subgroup F2, and we define L, A,
fi, and so on, as before. Since H1 is a maximal connected subgroup of G,
any connected subgroup H which can degenerate to H1 is either H1 or G,
and H1 cannot degenerate to H2 because H1 has an invariant 2-dimensional
subspace while H2 does not. Thus, if G is simple then G(K(t)) contains a
strongly dense free subgroup.
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Now consider the general case when G is semisimple. There is no harm in
assuming that G is simply connected (or has trivial center) and so is a direct
product. By Goursat’s lemma, we can assume that all simple factors are of
the same type. So say G = J × . . .× J⏞ ⏟⏟ ⏞

k

with J simple. By Theorem 5.10,

JK̄ has a generating set {(H1)K̄ , . . . , (Hs)K̄}, and we may assume that J
cannot degenerate to any group isomorphic to H1 × H1. In fact, for each
i ∈ {1, . . . , s} and each j ∈ {1, . . . , k} we define an almost abelian K-
subgroup Hi,j of J such that (Hi,j)K̄ is isomorphic to (Hi)K̄ and such that
each of the division algebras associated to any Hi,j is ramified over some
prime of K which none of the others is ramified over.

By Theorem 5.10 (4), we may assume that JK̄ does not have any sub-
group isomorphic to (H1)K̄ × (H1)K̄ . We fix for each i, j a homomorphism

fi,j : F2 → Hi,j(K) ⊂ J(K̄), and choose A, m1, . . . ,ms, and f̃ j : F2 → J(A)

which reduces to fi,j modulo mi. Thus each f̃ j(F2) is Zariski-dense in

J(K(t)). Defining f̃ = (f̃1, . . . , f̃k) : F2 → Jk(K(t)), it follows that for all

non-abelian subgroups ∆ of F2, the Zariski closure of f̃(∆) maps surjectively

to each factor J . By Goursat’s lemma to prove that f̃(∆) is Zariski-dense,
it suffices to prove that it is not contained in the graph of any isomorphism
between any two factors of J .

We may therefore assume that k = 2 and for some ∆ ⊂ F2, f̃(∆) has
Zariski closure isomorphic to J . However the Zariski-closure of its (mod m1)
reduction (f1,1, f1,2)(∆) in J × J is H1,1 ×H1,2 since it maps onto H1,1 and
H1,2, which are non-isomorphic simple algebraic groups. This is impossible
since JK̄ does not contain a subgroup isomorphic to (H1,1)K̄ × (H1,2)K̄ .

Since every transcendental field of characteristic 0 contains a subfield
isomorphic to Q(t), taking K = Q, this gives the first part of Theorem 1.1.
Since every extension of Fp of transcendence degree ≥ 2 contains a field
isomorphic to Fp(s, t), taking K = Fp(s) gives the first part of Theorem 1.2.

To prove the second part of both theorems (the density of pairs gener-
ating a strongly dense subgroup), observe that this follows easily from the
existence part. Indeed, if F is a strongly dense subgroup, then the set of
non-commuting pairs (x, y) ∈ F ×F is itself Zariski-dense in G×G. This is
because for each x ∈ F \ {1} it contains {x} × (F \ CF (x)), whose Zariski-
closure is {x} ×G.

7. Strongly Dense Subgroups in Affine Groups

Almost all the results about strongly dense subgroups have been in semisim-
ple groups. Suppose that G is not semisimple. When can G contain a
strongly dense free nonabelian subgroup Γ?

We note:

Lemma 7.1. Suppose that an algebraic group G over an algebraically closed
field k contains a strongly dense nonabelian free subgroup Γ. Then G can be
topologically generated by 2 elements, G is connected, and G is perfect.
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Proof. As Γ contains rank 2 free subgroups which are Zariski-dense, the
first assertion holds. Suppose that G is not perfect. Then the Zariski closure
of Γ′ is contained in G′ whence Γ′ is not Zariski-dense. If G is not connected,
then G◦ ∩ Γ is not Zariski-dense in G.

In particular, this implies that G/Ru(G) is semisimple. We can always
replace G by G/Φ(G) where Φ(G) is the Frattini subgroup of G and so
assume that Ru(G) is a completely reducible G-module. The condition that
G is 2-generated imposes a limit on the multiplicities of the composition
factors in Ru(G) (in terms of dimension and cohomology). We do note that:

Lemma 7.2. Suppose that Ru(G) is a simple G-module and k is not alge-
braic over a finite field. Then G is 2-generated (topologically).

This follows easily from the fact that

dimH1(G/Ru(G), Ru(G)) < dimRu(G)

(which is an old result from [3] for finite groups and the proof for algebraic
groups is much easier and also follows from the same inequality for finite
groups of Lie type).

We ask whether any connected perfect algebraic group over an alge-
braically closed field that is topologically generated by two elements contains
a strongly dense subgroup.

Here we show that certain affine groups do have this property. We
could extend this but content ourselves with considering the affine groups
ASLn(K) = V.SL(V ) with dimV = n > 1.

Theorem 7.3. Let K = Q(t) or Fp(s, t). Let G = ASLn(K). Then G
contains strongly dense free subgroups.

Proof. If n = 2, this is proved in [11, Appendix D] where K is any field
not algebraic over a finite field. So assume that n > 2. We now choose
elements x, y ∈ ASLn(Q[t]) or ASLn(Fp(s)[t]) that specialize to strongly
dense subgroups of H1, . . . ,Hr with Hi ≤ SLn(K̄) as in the proof of the
main theorems for SLn.

Let H0 be a 2-generated free strongly dense subgroup of ASL2(K) natu-
rally embedded in ASLn(K). We pick x, y that also specialize to a strongly
dense subgroup of H0. Let S = ⟨x, y⟩ and let T be any nonabelian subgroup
of S. As we argued in the proof of our main result, we see that the Zariski
closure is either G or is a complement to V = Ru(G).

The rational cohomology group H1(SLn, V ) = 0 by [2] since if δ denotes
the half sum of positive roots of SLn and ϖ1 is the highest weight of V ,
the weights −δ and ϖ1 − δ are not in the same Weyl group orbit (mod
p). Thus, T is contained a complement to V in G if and only if T fixes
a nonzero vector in the n + 1 dimensional representation of G (we embed
G = SLn+1(K) contained in the stabilizer of a hyperplane). Note that this is
a closed condition (this is equivalent to commuting with a rank 1 idempotent
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whose kernel is the given hyperplane—the set of such idempotents is the set
of conjugates of a single such idempotent by V ). Since H0 commutes with
no such idempotent, it follows that T does not either and so the Zariski
closure of T is G.

8. Nonfree Strongly Dense Subgroups

In this section, we give examples of finitely generated groups which are
not free but can nevertheless be embedded in groups of the form G(K) as
strongly dense subgroups in the sense of Definition 1.3.

Recall that a group H is called residually free if for every nontrivial ele-
ment h ∈ H, there exists a free quotient J of H such that the image of h in
J is nontrivial.

We now show that the methods of [10] and this paper can be used to
prove that a large class of groups (including surface groups of genus at least
2) have strongly dense embeddings.

Theorem 8.1. Let Γ be a finitely generated group satisfying the following
conditions:

(i) Hom(Γ, G) is an irreducible variety for every simply connected sim-
ple algebraic group G.

(ii) Γ has trivial center and is residually free.

If K is an algebraically closed field of infinite transcendence degree and char-
acteristic p ≥ 0 and G is a semisimple algebraic group over K, then there
exist strongly dense embeddings of Γ into G(K).

Since Γ has trivial center, it suffices to prove the theorem in the simply
connected case, so we assume henceforth that G is simply connected. We
do not need infinite transcendence degree to make the argument work, but
the degree needed with this argument grows linearly with dimG.

Let Σg be the fundamental group of a Riemann surface of genus g. It is
well known that Hom(Σg, G) is an irreducible variety for any simply con-
nected simple algebraic group G. This is shown by Simpson [32, Thm. 11.1]
for the SLn case (see also [5]) and by Liebeck and Shalev [27, Cor. 1.11(ii)]
for the general case (note that they only claim the irreducibility of the
top dimensional component which is of dimension (2g − 1) dimG, but since
Hom(Σg, G) is the preimage of the identity by an algebraic morphism, each
component must be top dimensional). It is also well known that Σg, g ≥ 2,
is residually free (cf. [9, Cor. 2.2]) and so:

Corollary 8.2. There exist strongly dense embeddings of Σg, g ≥ 2 into
G(K) for K an algebraically closed field of infinite transcendence degree in
any characteristic and G any semisimple group over K.

We remark that Long, Reid, and Wolff [29] use a similar strategy to show
that generic Hitchin representations are strongly dense.

We begin with a lemma:
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Lemma 8.3. Let G be a simply connected semisimple algebraic group over
an algebraically closed field K. There exists a countable collection of proper
closed subvarieties Zi of G × G, each defined over the prime subfield, such
that ∪iZi is the set of all (g1, g2) ∈ Zi, such that group ⟨g1, g2⟩ is not Zariski-
dense in G.

Proof. We first assume that G is simple and simply connected. Let k be
the algebraic closure of the prime field. By [19, Thm. 11.7], there exists
a finite set of irreducible rational G-modules (defined over k) so that no
positive dimensional closed subgroup of G acts irreducibly on each of those
modules. The set of pairs acting reducibly for each module is a proper closed
subvariety.

Now consider the proper subvarieties Xm = {(g1, g2) ∈ G×G||⟨g1, g2⟩| ≤
m}. These are defined over the prime field. The result now follows in this
case by taking the Zi to be the finite set of subvarieties given by the modules
together with the countably many subvarieties Xm.

If G is simply connected but not simple, then G = G1 × · · · × GN for
some simply connected simple groups Gi, and every maximal subgroup of G
is either the pull-back of a maximal subgroup of some Gi or the pull-back
of the graph of a surjective endomorphism between the adjoint quotients of
two factors, Gi and Gj . We have already dealt with the first class of sub-
groups. Up to the action of G, the maximal diagonal subgroups correspond
to compositions of outer automorphisms and Frobenius endomorphisms and
in particular there are only countably many such and each is defined over a
finite extension of the prime field giving rise to countably many conjugacy
classes of maximal closed diagonal subgroups Di. For each Di, we consider
the subvariety which is the closure of ∪g∈G(Di × Di)

g. Clearly these are
proper subvarieties (as generic elements are not contained in any diagonal
subgroup).

One can also show that the complement of the union of the subvarieties
above is dense as long as K is not algebraic over a finite field (if K is
uncountable, this is clear). An alternate proof of the previous result can
be obtained by noting that there are only countably many maximal proper
closed subgroups (maximal in the category of closed subgroups) and they
are all defined over the algebraic closure of the prime field. In characteristic
0, one already knows that the set of generating pairs is a nonempty open
subset (see [10, Theorem 4.1]).

We can now deduce Theorem 8.1 from the analogous result on free groups.

Proof. By condition (i), Hom(Γ, G) cannot be written as a countable union
of proper closed subvarieties. So it is enough to prove that given any pair
γ1, γ2 of non-commuting elements in Γ, and for each closed subvariety Zi

from Lemma 8.3, the closed subvariety Wi,γ1,γ2 of Hom(Γ, G) made of those
representations ρ such that the pair (ρ(γ1), ρ(γ2)) belongs to Zi is proper. By
[10], there is a strongly dense free subgroup in G given say by some injective
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homomorphism π : F2 → G. By condition (ii) there is a homomorphism
ϕ : Γ → F2 such that ϕ([γ1, γ2]) ̸= 1. The representation ρ := π ◦ ϕ is not
in Wi,γ1,γ2 , because ⟨ρ(γ1), ρ(γ2)⟩ is Zariski-dense. So Wi,γ1,γ2 is proper as
desired.

We can also extend this result (essentially via the proof of [10] for free
groups) to finitely generated groups Γ such that all representation varieties
are irreducible and satisfy the Borel property (i.e. word maps are dominant
– see [8]). This argument works aside from the case of groups involving C2

in characteristic 3 (just as the proof in [10] did – that case was handled in
[11]).

To give another application of Theorem 8.1, we introduce the following
terminology. A word in Fd is (N, l)-friable if it is a justaposition of at least
N non-empty words of length ≤ l in pairwise distinct variables. Recall that
by the Baumslag double of a word w = w(x1, . . . , xd) ∈ Fd, we mean the
one-relator group on 2d-generators

⟨x1, . . . , xd, y1, . . . , yd | w(x1, . . . , xd)w(y1, . . . , yd)−1⟩.

Theorem 8.4. For all l there exists N such that if w ∈ Fd is (N, l)-friable,
and Γ is the Baumslag double of w, then for every semisimple group G over
an algebraically closed field of infinite transcendence degree, G(K) contains
a strongly dense subgroup isomorphic to Γ.

Proof. Condition (i) holds if N is large enough compared to l. By [24,
Theorem 5(ii)], if N is large enough in terms of l,

|Hom(Γ, H)| = (1 + o(1))|H|d−1

for finite simple groups H. However, the character estimate for groups of
Lie type used in the proof, namely [18, Thm 1.4] and [17], are both proved,
in those papers, in the quasisimple case, and therefore also for groups of the
form H̃ ∼= G(Fq), where G is simple and simply connected.

By Lang-Weil [21], letting q → ∞, it follows that in positive characteris-
tic Hom(Γ, G) is geometrically irreducible and of dimension (d − 1) dimG.
Therefore, the same is true in characteristic 0.

As long as N > 1, no (N, l)-friable word is a non-trivial power of an-
other word, so Γ is residually free [4]. Therefore, the theorem follows from
Theorem 8.1.

Up to this point, the results of this section require that the transcendence
degree of K is large enough in terms of the dimension of G. However, it
is also possible to use the methods of sections 3–6 of this paper to prove
certain dimG-independent results.

Theorem 8.5. Let K be a transcendental algebraically closed extension of
Q. Let G be a classical group over K and Γ be a finitely generated group
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with Hom(Γ, G) irreducible and which admits a strongly dense embedding in
SL2(Q̄). Then Γ admits a strongly dense embedding in G(K).

Proof. Without loss of generality, we may assume that G comes from a
split group (which we also denote G) defined over Q.

In view of Theorem 5.10 (2) and (3), there exists a very special generating
set {Hi} for G and a finite collection of representations fi : Γ → Hi(Q̄) ⊂
SLn(Q̄) such that for every non-abelian subgroup ∆ of Γ, fi(∆) is Zariski-
dense in Hi(K). The fi define points on the variety Hom(Γ, G), which is
irreducible.

For any finite set S of points on an irreducible quasi-projective variety V ,
there exists an irreducible curve containing S. Indeed, one can blow up the
points in S, embed the resulting variety Ṽ in some projective space, and
use Bertini’s theorem to choose a linear subspace of codimension dimV − 1
intersecting Ṽ in an irreducible curve whose image in V contains S. Ap-
plying this to the points on V = Hom(Γ, G) corresponding to the fi, we
obtain an irreducible affine curve with coordinate ring A. The universal G-
representation of Γ over V specializes to a homomorphism Γ → G(A) which
further specializes to each of the fi and is therefore injective. If K0 is the
field of fractions of A, as the {Hi} form a generating set, Γ → G(K0) is
strongly dense. However, K0 is of transcendence degree 1, so it embeds in
K.

Corollary 8.6. If K be a transcendental algebraically closed extension of
Q and G is a classical group over K, then for each g ≥ 2, G(K) contains a
strongly dense subgroup isomorphic to a surface group of genus g.

Proof. Every Riemann surface of genus g ≥ 2 can be realized as a quo-
tient of the upper half-plane by a subgroup of PSL2(R) isomorphic to the
surface group Γ. It is also well known that the injective homomorphism
Γ → PSL2(R) lifts to a (necessarily injective) homomorphism Γ → SL2(R)
(see, e.g., [1] for a short argument). The subset of Hom(Γ,SL2(R)) such
that the map Γ → PSL2(R) is injective with discrete image is a non-empty
open subset of Hom(Γ,SL2(R)) ([37]). Therefore, there exists an injective
homomorphism ϕ : Γ → SL2(Q̄). Its image is necessarily strongly dense,
because proper algebraic subgroups of SL2 are virtually solvable and Γ has
no non-abelian virtually solvable subgroup. So we may apply the previous
theorem.

We remark that, at least when G = SLn, the group of G-representations
of a surface group is rational [5], so one might hope to find a rational curve
containing the points corresponding to the fi. If this can be done, we can
dispense with the assumption that K is algebraically closed.

Theorem 8.7. Let p > 2 be a prime and n, g ≥ 2 integers. Let K be an
algebraically closed field of transcendence degree 10 over Fp. Then SLn(K)
has a strongly dense subgroup isomorphic to the surface group of genus g.



STRONGLY DENSE FREE SUBGROUPS II 25

Proof. It suffices to prove the theorem for g = 2. Let Γ = Σ2, and let A
denote the coordinate ring of the affine variety Hom(Γ,SL2). This variety is
irreducible. The coordinate ring A of this variety is of dimension 9. Let L
be the fraction field of A, and let ϕ : Γ → SL2(L) denote the composition of
the universal SL2-representation of Γ over A with the embedding SL2(A) ⊂
SL2(L).

For 1 ̸= γ ∈ Γ, then there exists a homomorphism Γ → Fd sending
γ ↦→ γ̄ ̸= 1, and there exists a homomorphism Fd → SL2(K) which is
injective. Therefore, the image of γ in SL2(L) is not 1, so ϕ is injective.

If ∆ ⊂ Γ is a non-abelian subgroup, we would like to prove that ϕ(∆) is
Zariski-dense in SL2(L). If ∆ is a non-abelian subgroup of Γ and ∆1 is a
subgroup of finite index, then ∆1 is either a surface group or a non-abelian
free group, so the commutator subgroup of its commutator subgroup is non-
trivial. If γ is a non-trivial element in this group, then ϕ(γ) ̸= 1, so ϕ(∆1)
cannot be contained in a Borel subgroup of SL2(K̄). By classification of
closed subgroups of SL2, every proper subgroup has a finite index subgroup
whose second commutator is trivial. Therefore, ϕ(∆) is indeed Zariski-dense
in SL2.

Now we proceed as in the proof of Theorem 8.6. using part (2) of Theo-
rem 5.10 to show that SLn has a very special generating set and then using
the connectedness of Hom(Γ,SLn) in positive characteristic to deduce that
for an algebraically closed field of transcendence degree 10 over Fp, there is
a strongly dense subgroup isomorphic to Γ and therefore a strongly dense
subgroup isomorphic to Σg for each g ≥ 2.

With a little more work, we can use the quotient of Hom(Γ, SL2) by the
action of SL2 to reduce the transcendence degree to 7. In [15], it is proved
that for p ≥ 5, there are faithful representations of Γ in PGL2 over fields
of transcendence degree 2. It seems possible that one could prove the same
result for SL2 and use this to reduce transcendence degree to 3.
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