STRONGLY DENSE FREE SUBGROUPS OF SEMISIMPLE
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ABSTRACT. It was shown in [I0] that that there exist strongly dense free
subgroups in any semisimple algebraic group over a large enough field.
These are nonabelian free subgroups all of whose subgroups are either
cyclic or Zariski-dense. Here we show that the same is true for as long
as the transcendence degree of the field is at least 1 in characteristic 0
and transcendence degree at least 2 in positive characteristic.
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1. INTRODUCTION

There is a long history regarding free subgroups of linear groups, in which
J. Tits played a prominent role with his celebrated alternative [36]: every
finitely generated linear group either contains a non-abelian free subgroup
or a solvable subgroup of finite index. We consider here a somewhat stronger
property. If G is a semisimple algebraic group over a field K, then a strongly
dense free subgroup of G over K is a nonabelian free subgroup I' of G(K)
such that every nonabelian subgroup A of I" is Zariski-dense over K in G
(meaning that there is no proper closed K-subgroup H over G such that
ACHK)CGK).)
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It was shown in [I0} 11] that if G is a semisimple algebraic group over an
algebraically closed field K of sufficiently large transcendence degree over
the prime field (the degree depending upon dim ), then G always contains
a strongly dense subgroup. We gave applications to the Banach-Hausdorff-
Tarski paradox and to generation properties for finite simple groups of Lie
type of bounded rank and also used this to study Cayley graph expanders
associated to finite simple groups of Lie type.

In this note, we show the existence of such subgroups over much smaller
fields. In particular, we prove:

Theorem 1.1. Let K be a transcendental extension of Q and G a split
semisimple algebraic group over K. Then G contains a strongly dense free
subgroup over K. In fact, the set of pairs (a,b) € G(K) x G(K) generating
a strongly dense free subgroup is Zariski-dense in G x G.

Theorem 1.2. Let K be an extension of F,, of transcendence degree > 2 and
G a split semisimple algebraic group over K. Then G contains a strongly
dense free subgroup over K. In fact, the set of pairs (a,b) € G(K) x G(K)
generating a strongly dense free subgroup is Zariski-dense in G X G.

Letting L = K(t) with K a global field, we produce d-generated free
subgroups I' of G(A), where A is a finitely generated K-subalgebra of L, so
that if we reduce modulo certain maximal ideals m; of A, we get strongly
dense free subgroups of the K;-points of predetermined special subgroups
H; of G, where K; = A/m;. These H; are images in G of products of groups
of the form SL;(D; ), where each D, ; is a central division algebra of prime
degree over K;. These SLq(D; ;) are special because all of their proper closed
subgroups over K; are close to being abelian, and it is this property that
enables us to prove strong density. Then using some algebraic geometry
and algebraic group theory, we see that I', regarded as a subgroup of G(L),
must be free and strongly dense in G. The strategy is not so dissimilar from
that of [I0] where degenerations of certain maximal rank subgroups of G
were studied. However, a key feature of the proof in [10] was the use of the
result of Borel [6] that word maps on algebraic groups are dominant (see
also [23]). This is not used in our proof of the existence of free strongly
dense subgroups, which uses the properties of special subgroups instead. A
major advantage of the new strategy is that it lets us work over fields of
lower transcendence degree.

A key technical ingredient, which may be of independent interest, is The-
orem [4.7] relating the Zariski closure of the generic image of a family of
representations of a group I' to the Zariski closure of a member of the fam-
ily.

We can also prove strong density results for certain non-free groups.
Definition 1.3. A nonabelian subgroup I' of a semisimple algebraic group
G over K is strongly dense (over K ) if every nonabelian subgroup of T' is
Zariski-dense in G over K.
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As an illustration of the definition, we prove that in a number of situations,
G(K) contains strongly dense surface groups.

Theorem 1.4. Let ¥4,g9 > 2 be the fundamental group of a compact ori-
entable surface of genus g and G a semisimple algebraic group over an al-
gebraically closed field K. Then there are strongly dense embeddings of 3,
in G over K if any of the following conditions holds:

1. K has infinite transcendence degree over its prime field.

2. K is transcendental over Q and G is a classical group.

3. K is of characteristic p > 3 and is of transcendence degree > 10
over ), and G is a special linear group.

We also prove the existence of dense (or strongly dense) embeddings of
other finitely generated groups I'' in G(K) under certain assumptions on T,
G and K. See Theorems [R.1] and [R.5

2. REPRESENTATION VARIETIES

Throughout this section, we fix a linear algebraic group G' = Spec B over
a field Ky. If I' is a d-generated group, we define 1 to be the functor from
Ky-algebras A to sets given by

A+ Hom(T, G(A)).

When I is the free group Fy, the functor Fr is represented by the affine
Ko-scheme G¢ = Spec B®?, and evaluation at any element ~ in I" defines a
morphism e, of Kp-schemes G% — G. The fiber of e, over the identity of G
defines a closed subscheme of G% associated to an ideal I, in the coordinate
ring B®?. If I' = F;/Nr, we define

Ir=>Y 1,

YENT

We define Cp = B®4 /Ir, so Spec Cr is a closed subscheme of G?. For
every Ko-algebra A, an element of Fr(A) corresponds to a homomorphism
Hom(I', G(A)), i.e., a homomorphism Fy — G(A) which restricts to the
identity at each v € Np. Equivalently, it is an element of G?%(A) which
maps by e, to the identity, i.e., an element of Hompg,(Spec A, G) whose
composition with e, is the morphism Spec A — G which factors through the
identity map Spec K — G. This means that Spec A — G¢ factors through
Spec B®d/I,Y for all v € Ir, or, equivalently, a morphism Spec A — Spec Cr.
Thus Fr is representable by the affine scheme Spec Cr, which we call the
representation scheme.

Let Ar denote the quotient of Cr by its nilradical. If we restrict to K-
algebras A with radical (0), we have

HOHIKO (Cp, A) = HOH]KO (AF, A)
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We define Spec Ar to be the representation variety of I' (where G and K
are understood). In particular, the identity map on Ar defines an element
of Fr(Ar), which we call the universal representation.

This representation variety is irreducible if and only if Ar is an integral do-
main. If K is any field extension of Ar, the universal representation defines a
homomorphism I' — G(K') which corresponds to a map from Spec K to the
representation variety whose image is the generic point. Various conditions
on I'-representations in G determine closed subsets of the representation va-
riety defined over Kj; unless such a condition holds for all representations,
it does not hold for I' — G(K) of the kind we are discussing. Therefore, if K
is any algebraically closed field of transcendence degree > dim Spec Ar over
Ky, there exists a homomorphism I' — G(K) satisfying no proper closed
condition. This can be useful, for example, in proving that there exists an
injective homomorphism from I" to G(K).

3. SOME GROUPS OVER GLOBAL FIELDS

We first point out the following easy result (see also [16, Prop. 4.1]).

Lemma 3.1. Let K be any field, p a prime, D a central division algebra of
degree p over K, and G = SLi(D) the inner form of SLy, over K associated
to D. Then every proper K-subgroup of positive dimension of G is contained
in the normalizer of a maximal torus of G.

Proof. Let H denote a proper connected subgroup of G. As G(K) C D*,
it contains no non-trivial unipotent elements, so the same must be true for
H. In particular, H is reductive. If S denotes the derived group of H, it is
semisimple of dimension less than p? — 1 and therefore of rank r < p—1. Let
T denote a maximal torus of S defined over K. Let K® denote a separable
closure of K, and X = Z" the character group of 7. Then T determines a
continuous homomorphism Gal(K*®/K) — Aut(X) = GL,(Z) whose image I
is finite. There are no elements of order p in I since the minimal polynomial
of a primitive pth root of unity has degree p — 1 > r. Thus T splits over
a Galois extension L/K such that Gal(L/K) = I is of prime to p order.
Therefore the class of D does not lie in the kernel of Br(K) — Br(L), and
Dy := D ®g L is a central division algebra over K.

Thus SL;(Dy) is an algebraic group over L containing a non-trivial split
torus 17, i.e., an isotropic semisimple group. It follows that SL;(Dy) con-
tains non-trivial unipotents [33 3.4 (iii)], which is absurd since Dy, has no
non-trivial nilpotents.

]

In fact over a global field, groups of type A,, with m+1 prime are the only
simple algebraic groups that have a form with the above property (called
almost abelian). See [16] for more about this.
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Lemma 3.2. Let K be a global field and D+, ..., D,, K-central division alge-
bras of prime degrees p1, . . ., pm respectively such that SL1(D1), ..., SLi(Dy,)
are pairwise non-isomorphic. Then

G(K) = Gl(K) X e X Gm(K) = SLl(Dl) X o+ X SLl(Dm)
contains a strongly dense free subgroup.

Proof. By the Tits alternative, there exist elements x;,y; € SL1(D;) which
generate a free subgroup Fh. Let I' = ((x1,...,Zm), (Y1,---,Ym)). Since
x1 and y; satisfy no word relation, the same is true for (z1,...,x,) and
(Y1, --,Ym), so I is isomorphic to F». Let A C I' be a non-abelian subgroup.
To show that A is Zariski-dense in G, by Goursat’s lemma and the fact that
the G; are simple as algebraic groups and pairwise non-isomorphic, it suffices
to prove that the projection of A on each factor G; is Zariski-dense.

Let H; denote the Zariski closure of the image of A in G;. Every proper
subgroup of G; is contained in the normalizer of a maximal torus, so we may
assume H; normalizes T;, but as A is non-abelian, it is a free group on > 2
generators and therefore not contained in the normalizer of a torus.

]

Corollary 3.3. With K and p; as above, there exists a finite separable
extension L/K such that SLy, x --- x SLy, =~ contains a strongly dense free
subgroup over L.

Proof. Let L be a finite separable extension of K’ which splits all the
SLi(D;). O

4. DEGENERATIONS

In this section, we introduce a variant of the notion of degeneration intro-
duced in [I0]. Let Ky be a field, A a Ky algebra, and n a positive integer.
Let P, and P, denote prime ideals of A such that P, C P», and let K; de-
note the field of fractions of A/P;. Let I' be a finitely generated subgroup
of GL,(A) and let G and G denote the Zariski closures over K and Ky
respectively, of the images of I' in GL,, (K1) and GL, (K3) respectively.

Definition 4.1. In this situation, we say Ga is a degeneration of G; or G
can degenerate to Ga.

Note that if G can degenerate to G2, then Gf can degenerate to G5. In-
deed I maps to G1 (K1) x G2(K32), and the inverse image of G{(K1) x G5(K2)
is of finite index in I". For ¢ = 1,2, replacing I' by this finitely generated
subgroup replaces G; by a finite index subgroup of G and therefore with
Gy itself.

Proposition 4.2. Let P, C P, C A, K;, I' C GL,,(A) a finitely generated
group, and G; be as above. Let X be a projective scheme over A endowed
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with an action of (GLy)a defined over A. If (G1)g; has a fived point on
X7z, then (G2)g; has a fized point on Xz

Proof. Let I' = (v1,...,74). The embedding of T in GL,,(A) defines a
section of (GL,)% — Spec A. The image is therefore closed in (GL,)%. Let
Y denote the inverse image of X, diagonally embedded in X%*!, under the
morphism (GL,)%4 x X — X9*1 given by

(91,194, %) = (912, ..., ga-),
and let Z be the image of Y under the projection map from (GL,)% x X
to (GL,,)%. As X is complete, the projection map is proper and therefore
closed, so Z is a closed subset of Spec A. As (Gl)[T1 has a fixed point on
XE? Z contains P;. As P, lies in the closure of Pj, it contains P, as well,

so choosing a Ko-point of Y which lies over Py, (G2)%; has a fixed point on
X7 O
K>

This has the following consequence:

Corollary 4.3. With notations as above, if Gy fizes a k-dimensional sub-
space of Ky, then Ga fizes a k-dimensional subspace of Ko .

Proof. This follows from the previous result using the fact that the Grass-
mannian variety of d-dimensional subspaces is a complete variety. ]

As K; and K> are both extensions of Ky, we have char K; = char K>,
so we can embed both fields as subfields of a common algebraically closed
field, and it then makes sense to ask whether G2 is conjugate (in GL,)
to a subgroup of Gi. In general, this is not the case. For instance, if
A = C[t], P = (0), P, = (t), and I' is the (infinite cyclic) subgroup of
GL2(A) generated by <é 1 —1Ft)’ then G1 2 G, and G2 = G,.

For any linear algebraic group G, we define G* to be the (connected and
reductive) quotient of the identity component G° by its unipotent radical
Rad,(G°). Every homomorphism of algebraic groups ¢: G — H over an
algebraically closed field K determines a homomorphism ¢ : G° — H. As
U := ¢(Rad, G°) C H® is connected and unipotent, it is contained in
the unipotent radical of a canonically defined parabolic subgroup P C H
[20, §30], so ¥(G°) C P. Letting P = M N denote a Levi decomposition,
U C N, so 9 induces a well-defined homomorphism G — M. As Levi
decomposition is unique up to conjugation [20, Theorem 30.2], composition
of ¥ with M — H gives a morphism ¢ : G — H, which is well-defined
up to conjugation. If G° N ker ¢ is connected and unipotent then the same
is true of ker), so ¢ is injective.

Lemma 4.4. Let G and H be linear algebraic groups over an algebraically
closed field K and ¢: G — H and p: H — GL, homomorphisms defined
over K. Then the representations of G defined by p™ o ¢ and (p o ¢)*
have isomorphic semisimplifications.
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Note that the condition on semisimplifications just means that every ir-
reducible representation of G has the same multiplicity as a constituent of
the two given representations.

Proof. Tt suffices to prove that the characteristic polynomials of p o (g")
and (p o ¢)"(¢g") are the same for all g € G“(K). Let g € G°(K) map
to g“. Writing ¢ (g) = mn € M(K)N(K) = P(K) C H(K), we have
g =

We denote by N and P the inverse images of N and P respectively in
H°. Let h € H°(K) map to m, so ¢(g) = hu for some u € N(K). We claim
that p(h) and p(hu) have the same characteristic polynomial.

Indeed, p(]v ) is a connected unipotent subgroup of GL,, so there exists
a parabolic subgroup Q of GL,, such that p(N) C Rad,(Q) and p(P) C Q.
Thus, p(u) € Rad,(Q)(K) and p(h) € Q(K). So, indeed p(h) and p(h)p(u)
have the same characteristic polynomial. L]

If p1: G1 - GL, and p2: Go — GL, are defined over K, for a mor-
phism ¢: G{' — GS' to be compatible with p; means p§ o ¢ and p§" define
representations of G{" which have isomorphic semisimplifications.

Lemma 4.5. Let T be a group and fi, fo: I' — GL,(K) homomorphisms
defining representations whose semisimplifications are isomorphic. Let Gy
and Gy denote the Zariski closure of f1(I') and fo(T') respectively and p1,
pa the inclusion morphisms from G1 and Ga to GL,. Then there exists an
isomorphism between G{* and G compatible with p§*.

Proof. Passing to a finite index normal subgroup of I', we may assume that
G and G4 are connected. As the maps p; are injective, the same is true for
Py

For all g € T let g; denote the image of fij(g) in G{*(K). Then p§*(g;) has
the same characteristic polynomial as f;(g;), which is therefore the same
for : = 1 and ¢ = 2. Let G13 denote the Zariski closure of I' under the
diagonal map to G{'(K) x G§'(K). There are two morphisms from G2
to characteristic polynomials, one via p{" and one via p5', and they must
coincide.

We claim that G2 is the diagonal of an isomorphism between GY" and
GS'. Otherwise, there exists a non-trivial normal subgroup H of, say, G{"
such that H x {1} C G2, and H maps under p{" to the closed subvariety of
unipotent elements. This is impossible, so H gives an isomorphism between
G{" and G compatible with the p§".

]

Theorem 4.6. Let K be a field,

f: T = GLa(K[[t]) © GLn(K((2)))
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a representation of a group T', and f: T — GL,(K) the reduction of f
(mod t). Let G (resp. G) denote the Zariski closure in GL, over K((t))
(resp. K) of f(I') (resp. f(I')), and let p (resp. p) denote the inclusion
G — GL,, as a morphism of algebraic groups over K((t)) (resp. K ). Then
there exists a finite extension L of K((t)) and an injective homomorphism
G xg L — G& Xk (1)) L compatible with p™ X g ((4)) L and p™ x g L.

Proof. Replacing I with a finite index subgroup, we may assume without
loss of generality that G and G are connected.

Let Vi C Vo C --- C Vi = K((t))™ denote a flag of K((t))-spaces preserved
by f(I') and such that f(I') acts irreducibly on each Vjy1/Vj. Let A; =
Vi N K[[t]]", so that f(I') preserves each A; and Aj1/A; is a free K[[t]]-
module of rank dim Vj1/V;. We may therefore fix a K[[t]]-free complement
M1 to Ajin Aj 1. We have a surjective homomorphism from the stabilizer
of the flag V' in GL,,(K[[t]]) to H§:1 Autgiyy Mj, and a section of this latter
group whose image consists of K [[t]]-linear maps preserving the direct sum
decomposition given by the M;. Replacing f by the composition with these
two homomorphisms, we obtain a semisimplification of f which still lands
in GL,,(K][[t]]) and such that f(g) has the same characteristic polynomial
as f(g) for all g € T'. Therefore, without loss of generality, we may assume
f is semisimple.

By [31, Chap. 2, §2], every finite extension of K((t)) is complete with
respect to the unique extension of the ¢t-adic valuation on K ((t)). Each such
extension is therefore of the form K'((t')), where K C K', K[[t]] C K'[[!']],
and ¢ is a non-unit in K'[[t']]. As every semisimple group splits over a finite
extension, we may assume that G is split over K ((¢)).

Next, we claim that f(I") is a bounded subgroup of G(K((t))) in the sense
of Bruhat-Tits [I3 4.2.19]. Indeed, we can fix a finite set of generators of
the coordinate ring of G. As p is a closed immersion, each generator lifts to
an element of the coordinate ring of GL,,. As f(I') is bounded in the GL,
sense, it is bounded in the G sense as well. By [12] 3.3.1], it stabilizes the
centroid of some facet of the Bruhat-Tits building B(G/K((t))).

By [22], 2.4], replacing K ((t)) by a finite extension, we may assume that
f(I') stabilizes a hyperspecial vertex of B(G/K((t))). By [13 4.6.22], there
exists a split semisimple group Gy over K and an isomorphism ¢ from G
to Go xx K((t)) such that «(f(I')) C Go(K][[t]]). By [35] there exists a
homomorphism pg: Go — GL,, of algebraic groups over K whose extension
of scalars to K((t)), via ¢, defines the same representation as p. Explicitly,
this means there exists g € GLy, (K ((t))) such that

(po xx K((t))) o = Int(g) o p
as K ((t))-morphisms G — GL,,. Thus,

(po xx K((1))) 0 e(f(D)) = g~ f(D)g.



STRONGLY DENSE FREE SUBGROUPS II 9

By the Brauer-Nesbitt theorem, the (mod t) reductions of f(I') and
g 'f(I")g have the same semisimplification. By Lemma without loss
of generality we may assume g = 1.

Replacing f by to f, we have therefore reduced to the situation that G is
a semisimple group over K embedded in GL, by the K-homomorphism pg,
and f(I') C Go(K((t))) is a Zariski dense subgroup which lies in Go(K[[t]]).
Reduction (mod t) commutes with pg. Thus, the Zariski-closure G of f(T')
in GL,, over K is contained in po(G). The Zariski closure G of f(I') in GL,
over K((t)) is po(G) xx K((t)).

We conclude that there is an injective homomorphism of algebraic groups
over K((t)), G xx K((t)) — G. By Proposition the injective homomor-
phism of algebraic groups G xx K((t)) — G = G is compatible with p
and p up to semisimplification. The theorem follows.

O

Theorem 4.7. If G2 is a degeneration of G1 and p; denotes the inclusion
of G; in GL,,, then there exists a field L such that after extending scalars to
L, there exists an injective homomorphism G5 — G compatible with p§".

Proof. As there exists a finite chain of prime ideals maximal among
all chains connecting P; and P», without loss of generality, we may and
do assume that there is no prime ideal intermediate between P; and P».
Replacing A by the localization of A/P; at P»/P; and I' by its image in
GL,((A/P1)p,/p,), we may assume without loss of generality that A is a
1-dimensional local domain, P, = 0, and P, is a maximal ideal.

Let A denote the normalization of A. The morphism Spec A — Spec A
is birational and finite [34, Tag 0BXR], so its image is closed and contains
the generic point of Spec A. Therefore, there exists a prime ideal Py of A
lying over P,. Replacing A by A and P, by Ps, we may assume that A is
a DVR. Replacing A by its completion at P», we may assume that it is a
complete DVR, P; is the zero-ideal, and P» is the maximal ideal. The fields
K, and K5 are respectively the fraction field and the residue field of A. By
Cohen’s classification of complete equicharacteristic regular local rings [14,
Theorem 15], we have isomorphisms A = Ks[[t]], and K; = Ka((t)).

By the previous theorem, there exists L such that G X g, L is isomorphic
to a closed subgroup of GY{" X, L, compatibly with G{* — GL,, so the
theorem follows. J

If H; and H» are closed subgroups of GL,, over K we write Hy <qr, H2
if and only if there exists an extension L/K and an injective homomorphism
HY" x g L — HS$' X ¢ L compatible with the given n-dimensional representa-
tions of H1 X L and Hy X i L. If Hy can degenerate to Hy as subgroups of
GL,, then Hy < Hs. If Hy and H; are subgroups of a semisimple group G,
we write H; < Hs if and only if Hy <qr,,, H» for all faithful representations
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G — GL,. If K is algebraically closed, this implies that H{" is isomorphic
to a closed subgroup of H5' over K itself.

Our strategy for constructing strongly dense free subgroups of G over a
transcendental extension K of a global field Ky is to find special semisimple
subgroups Hi, ..., H, of G and homomorphisms p;: I' — H;(K() which are
strongly dense thanks to Corollary We then construct a curve of homo-
morphisms p: I' — G(A) which specializes to pi, ..., p, at different points
of the curve Spec A. The Zariski closure H of p(A) for any non-abelian free
subgroup of I' then satisfies H; < H for all 4, thanks to Theorem [£.7 The
goal of the next section is to find choices of H; for which these conditions
imply H = G.

5. SPECIAL SUBGROUPS

In this section, we gather some results about subgroups of simple algebraic
groups. Throughout this section, we always assume K is algebraically closed
and let p be the characteristic of K when it is non-zero.

Definition 5.1. We say a closed subgroup H of a linear algebraic group G
is special if it is the image of a homomorphism SLy, X --- x SL,, ~— G for
some sequence of primes pi,...,Pm. We say it is very special if we can take
m =1 and p; = 2.

Note that if K contains a global field Ky, every K-group of the form
SL,, x--- x SLy,, over K is obtained from a product of almost abelian
simple algebraic groups of the form SL; (D7) x - -+ x SLy1(D,,) for some K-
central division algebras D1, ..., Dy,,. Moreover we may assume that each
D; ramifies over some place that no other D; ramifies over.

Definition 5.2. A collection {Hj, ..., Hy} of special subgroups of G is gen-
erating if the only subgroup H of G satisfying H; < H for all i is G itself.

Note that if G has a generating collection of special (resp. very special)
subgroups, then the same is true for all groups isogenous to G. Indeed,
it is true for the universal covering group G of G since groups of the form
SL,, x ---xSL,,, are simply connected, so every homomorphism SL;,, x ---x
SL,,, — G lifts to SL,, x - -- x SL,,, — G. Tt is clearly true for any quotient
of a group for which it is true.

Lemma 5.3. Let k and n be positive integers with k < n. Then there exists
a partition ™ of n such that no part has a prime factor greater than 3, and
k is not a sum of any subset of the parts of m.

Proof. Let n be the smallest integer for which the statement fails. As n
cannot be of the form 2%3°, we may assume n > 5. Let m denote any integer
of the form 223" which lies in (n/2,n). Thus, m < n, and n —m < m. If
k<n—mork >n—m but k # m, then by assumption, there exists a
partition 7’ of n —m such that no part of 7’ has a prime factor greater than
3, and k is not a sum of parts of 7. If 7 is the partition of n obtained by
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adding the part m to «’, then no part of m has a prime factor > 3, and k is
not a sum of parts of 7, contrary to assumption.

Therefore, it suffices to prove that there are at least two different values
of m € (n/2,n), m; and may, neither of which has a prime factor greater
than 3. We can take m; to be the smallest power of 2 greater than n/2 and
my to be 3 times the smallest power of 2 greater than n/6. L]

Proposition 5.4. Let n be a positive integer and K a field not of character-
istic 2. For any positive integer k < n, there exists a very spectal subgroup H
of SL,, defined over K such that the restriction of the natural representation
of SL,, to H has no k-dimensional subrepresentation.

Proof. 1f K is of characteristic 0, we may take H to be the image of SLo
under the symmetric (n — 1)st power map. We therefore assume that p > 2.

By Lemma there exists a partition n = my 4+ w9 + - - - + 7., where each
7; is of the form 2%3% for non-negative integers a; and b; and k is not a
sum of any subsequence of terms in the sequence my,..., .. Let V5 and V3
denote, respectively, the representation space of the natural representation
of SLo and its symmetric square, which is irreducible since p > 3. Let

Wi=1hoVP e oV eV e oV ),

where SLy(K) — GL(V(®) denotes the composition of the g-Frobenius on
SLy with the representation SLy, — GL(V). Thus W; is an irreducible
representation of SLo of degree m; = 20i3bi  The direct sum of the W;
is therefore a semisimple determinant 1 representation of SLo with no k-
dimensional subrepresentation. L]

Lemma 5.5. Let n be a positive integer and K a field. There exists a special
subgroup H of SL,, such that the restriction of the natural representation of
SL,, to H 1is irreducible.

Proof. Let n =p{'---p/', let

l
H = [[sL3:
=1

and embed H in SL,, via the external tensor product of the natural repre-
sentation of the SL,,, factors. 0

We shall also need a special case of a result of McLaughlin [28].

Proposition 5.6. Suppose that n > 2, and H is a semisimple subgroup
of G = GL, acting irreducibly on the natural representation V of G. If
H contains a subgroup Hy =2 SLo such that the restriction of V' to Hyp is
VO’%2 & Vi, then H = Sp,, or H = SL,,.
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Proposition 5.7. Let K be a field and G = Sp,y,. a symplectic group over K.
If char K = 3, we further assume r > 3. Then there exist special subgroups
Hy and Hs of G such that for all k in [1,2r — 1], there exists i such that the
restriction of the natural representation of G to H; has no k-dimensional
H;-invariant subspace. If char K = 0, Hy alone suffices, and we may take
it to be very special.

Proof. Let V; denote the symmetric ith power representation of SLy. If K
has characteristic 0 or characteristic > 2r, then we do not need Hs; we may
take H; C GLo, to be the image of SLo under the representation Va,._1. As
Vo,_1 is irreducible and symplectic, H; may be taken to be a subgroup of
Sps,.. We therefore assume char K = p, where 2 < p < 2r — 1.

If r = p{*---py’, then [, SLj! embeds in SL;, by the tensor product of
natural representations, and thence into Sp,,.. Defining H; to be the image
of this representation, the restriction of the natural representation of G to
Hy is the direct sum of two irreducible factors of dimension r. We may
therefore assume, henceforth, that & = r.

If char K = 2, then tensor products of distinct Frobenius twists of V;
give irreducible self-dual representations of SLo of every degree in the set
{1,2,4,8,...} and, in particular, one whose degree lies in [r+1,2r]. Adding
a trivial representation of suitable degree, we obtain a self-dual representa-
tion V' of degree 2r which has no invariant k-dimensional subspace. Since
char K = 2, the image H; of SLs in this representation can be taken to be
in Sp,,,. We may therefore assume p > 3. Since we are excluding the case
(p,r) = (3,2), we may assume r > 3.

We divide into cases.

Case r # 8. We know Vj is irreducible and symplectic of degree 2, V5
is irreducible and orthogonal of degree 3, and the tensor product of two
distinct Frobenius-twists of V; is irreducible and orthogonal of degree 4. By
tensoring suitable Frobenius twists of these three representations, we can
therefore find an irreducible symplectic representation of SLo of any degree
of the form 22¢t13/. Our assumptions on 7 guarantee there exists a number
of this form in the interval [r + 1,2r|. Therefore, there exists a symplectic,
irreducible representation of SLo whose degree lies in this interval. The
direct sum of this irreducible representation with a trivial representation of
suitable degree is then a symplectic representation of SLo of degree 2r, and
defining Hy to be the image of SLs in this representation, the proposition
follows in this case.

Case r = 8, p > 5. Let W denote the adjoint representation of SL3, which
is orthogonal and irreducible. Then V3 X W is a 16-dimensional irreducible
symplectic representation of SLy x SL3, so we may take Hs to be the image
of this representation. (In fact, in this case, we do not need H;.)

Case r = 8, p = 3. Let W denote the semisimplification of the adjoint
representation of SL3, which is orthogonal and the direct sum of a trivial 1-
dimensional representation and an irreducible 7-dimensional representation.
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Then Vi K W is a 16-dimensional symplectic representation of SLo x SLg3
which decomposes into irreducible factors of degree 2 and 14, and we let Ho
denote the image of this representation.

O

Proposition 5.8. Let K be a field not of characteristic 2 and G = SOa,41,
r > 3. Then there exist special subgroups H1, Ho, H3 of G such that for all k
in [1,2r], there exists i such that the restriction of the natural representation
of G to H; has no k-dimensional H;-invariant subspace. If char K =0, H;
alone suffices, and we may take it to be very special.

Proof. If K has characteristic 0 or characteristic > 2r 4 1, then we do
not need Hy or Hs. We may take Hy C GLo,11 to be the image of SLo
in the representation Va,.. As Vb, is irreducible and orthogonal, H1 may be
taken to be a subgroup of SOg,4+1. We therefore assume char K = p, where
3<p<2r.

If r = p{*---pf’, then [, SL;i embeds in SL, by the tensor product of
natural representations, and thence into SOg, C SOg,41. Defining H; to
be the image of this representation in SOs,. 1, the restriction of the natural
representation of GG to Hi is the direct sum of a 1-dimensional trivial factor
and two irreducible factors of dimension r. We may therefore assume, hence-
forth, that k € {1,r,r+1,2r}. There is a special subgroup of SO9,41 of the
form Hy = SO% x SO{, where 3e + 4f = 2r + 1, and no composition factor
of the restriction of the natural representation of G to Hy has dimension 1,
so we may assume that k € {r,r + 1}. It therefore suffices to find Hj such
that the restriction of the natural representation to H3 has an irreducible
factor of degree > r + 2.

If r =3 and p = 3, we let H3 be the image of SL3 under the (irreducible,
orthogonal) quotient of the adjoint representation by its 1-dimensional triv-
ial subrepresentation. If r = 3 and p > 5, we let Hs denote the image of
SLo under Vj, which is, again, irreducible and orthogonal.

If r > 4, then there exists an integer of the form 347 in the interval
[+ 2,2r + 1]. Indeed, we take the smallest integer in the set

{9-4/ | feNyu{12-47 | feN}U{16-4/ | fe NYU{27-4/ | f e N}

which exceeds r + 1. We can therefore find an irreducible, orthogonal repre-
sentation of SLy by tensoring together e suitable Frobenius twists of V5 and
f suitable twists of V;. Adding a trivial factor of suitable dimension, we ob-
tain an orthogonal representation which has no subrepresentation of degree
r or r + 1; we take H3 to be the image of SLy under such a representation.

]

Proposition 5.9. Let K be o field and G = SOs,, r > 4. Then there exist
special subgroups Hy and Hy of G such that for all k in [1,2r — 1], there
exists i such that the restriction of the natural representation of G to H; has
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no k-dimensional H;-invariant subspace. If char K = 0, we may take H
and Hy to be very special.

Proof. If char K = 0 or if char K = p is at least 2r — 1, then Vo, o
is irreducible and orthogonal, and it maps SLo to SOs9,_1 and therefore to
SOs,.. The restriction of the natural representation of SOs, to the image
H; of this homomorphism decomposes as the sum of a 1-dimensional trivial
representation and an irreducible representation of dimension 2r — 1. Let
H, denote the image of SLy under the representation Vo @ Va,._4. The only
dimensions of non-trivial invariant subspaces of Hs are 3 and 2r — 3. We
may therefore assume that 2 < p < 2r — 2.

If r = pi*---pj', then [, SLj: embeds in SL; by the tensor product of
natural representations, and thence into SOs,.. Defining H; to be the image
of this representation in SOs,, the restriction of the natural representation
of GG to H; is the direct sum of two irreducible factors of dimension r. We
may therefore assume, henceforth, that k = r.

If char K = 2, there exists 2° € [r + 1,2r], with e > 2. Taking a tensor
product of e Frobenius twists of the natural representation of SLo, we obtain
an irreducible, orthogonal representation of SLy of degree 2¢ and therefore
an orthogonal representation of SLy of dimension 2r with no r-dimensional
inveriant subspaces.

If p > 3, we use the construction of Hs for SOs,._1 in Proposition [5.8
and define Hs for SOg, to be the image of this group under the embedding
SOQr_l C SOQT. J

Theorem 5.10. Let G be a simple algebraic group over an algebraically
closed field K.

(1) Ezcept in the case that G is of type Cy and char K = 3, G contains
a finite generating set of special subgroups.

(2) If G = SL,, and char K # 2, then G has a very special generating
set.

(3) If G is an orthogonal or symplectic group and char K = 0, then G
has a very special generating set.

(4) We can choose one element H; of a generating set so that H; x H; 4
G.

Proof.  As the statement does not depend on isogeny class, we assume
G is simply connected, except for orthogonal types, where we assume G
is a special orthogonal group. In each case, we give a finite set of special
subgroups H; such that the only subgroup H of G satisfying H; < H for
all 7 is G itself. The H; are special and therefore semisimple, so if H is a
reductive and H; < H for all 4, then the same is true of the derived group
of H®, so if H is reductive, we may assume it is semisimple.
We consider each of the possible types:

Case A,, r > 1. By Lemma [5.5] and in view of Corollary there exists a
special subgroup H; C G = SL, 1 such that that any subgroup H C G with
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Hy < H acts irreducibly on the natural representation V, so it is reductive
and may therefore be assumed to be semisimple. If » = 1, this implies
H = SLy, so we may assume r > 2. If 7 € {2k — 1,2k}, let Hy = SLX with
the standard embedding to G. By Theorem [4.7] the rank of any subgroup
H such that Hy < H is at least k.

Let H denote the simply connected covering group of H and

ﬁ:L1X"'XLl,

where the L; are simple. If r; denotes the rank of L;, then r{ +---+ 1, > k.
As V is the exterior tensor product of almost faithful representations of the
H’L7

r+1>(rp+1)---(r+1).

The last two conditions imply that either [ = 1, or that [ = 2 and r; = 1,
ro =k —1. If | =1, H is simple and must be SO, or Sp,; (cf. [30,
Theorem 5.1 and Cor. 5.2] or [25]). If I = 2 and r; = 1, the first factor of H
is SLo with the natural module. So dimV is even and r = 2k — 1. Also the
second factor has rank k — 1 with an irrep of dimension k, so must be SLy
with its natural module. However Hy = A¥ does not embed in SLg x SLy,
unless k = 2. Therefore ro = 1, r = 3, and after extension of scalars,
H = S0,.

Let Hs = SLj3, embedded in SL,;1 by any representation which is not
self-dual. Then there is no homomorphism SL3 — SO;41 or SL3 — Sp,.;;
consistent with the embeddings of H3, SO,;1, and Sp,.,; in SL;11, so the
theorem holds in this case.

Case B, r > 3, char K # 2. Let Hy, Ho, and Hs be as in Proposition
and let Hy, = SL5, which embeds as a subgroup of G = S0O9,41 since G

is always of the form SOj3 x SO4 or SO5 X SO4 . By Proposition
any group H satisfying H; < H for all i € {1,2,3} acts irreducibly on the
natural representation of GG, so it is reductive and we may therefore assume
it is semisimple. As Hy < H, H must have rank r. From the classification
of equal rank semisimple subgroups of simple groups, this implies H = G.

Case C,, r > 2, char K # 3 if r = 2. Let Hy and Hs be as in Proposi-
tion and let H3z = SLj, embedded as a subgroup of G' = Sp,,. in the ob-
vious way. By Proposition[5.7], any group H satisyfing Hy < H and Hy < H
acts irreducibly on the natural representation of G, so H is reductive and
can be assumed semisimple. As H3 < H, H is of rank r. If char K # 2, then
the classification of equal rank subgroups of simple groups implies H = G. If
char K = 2, there is an additional possibility: H = SOg, C Sp,,. However,
SOg2, C Sp,, does not contain a subgroup for which the restriction of the
natural representation of Sp,y, decomposes into r irreducible 2-dimensional
factors, so this possibility is ruled out.

Case D,, r > 4. Let H; and Hy be as in Proposition If r is even, let
H; = SOZ/ 2, embedded as a subgroup of G = SOs, in the obvious way; if
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r is odd, let Hs = SOir_l)/z. By Proposition any group H satisfying
Hy < H and Hy < H acts irreducibly on the natural representation of G,
so we may assume H is semisimple of rank > r — 1. If H is of rank r, then
H = G follows from the classification of equal rank subgroups, We may
therefore assume H is of rank r — 1, which means r is odd and therefore at
least 5. ~

If the universal covering group H has simple factors of ranks ry > -+ > 7y,
then

4+ +r=r—1
and
(2r1)---(2r) < 2r,

since the minimum dimension of a self-dual representation of a simple group
of rank r; is 2r;. The only solutions for these two condition for [ > 2 are
(ri,m2) = (2,1) (for Il = 2) and r; = rg = r3 = 1 (for [ = 3). However, in
neither case is n > 5. Therefore H is simple, but a simple group of rank
r — 1 cannot have a self-dual representation of dimension 2r for r > 5.

Case G exceptional. Suppose H; and Hs are special subgroups of G with
the following properties. The group H; is a maximal proper connected sub-
group of G which is semisimple, of rank equal to rk G, and not isomorphic to
a subgroup of any maximal proper connected subgroup of G except conju-
gates of itself, while the group H» is not isomorphic to any subgroup of Hj.
If some proper subgroup H of G satisfies Hy < H, then H; is isomorphic
to a quotient of H°. Therefore, the semisimple rank of H° must equal rk G,
and by [26, Corollary 2 (ii)], that implies that H° is semisimple, so H® is
conjugate to Hi. However, Hy is semisimple and does not embed in Hi, so
we cannot have Hy < H.

Using [26 Table 10.3], we find such pairs (Hy, H2) in all cases except
E;. For Eg, take Hj a subgroup of type A3 and Hs a subgroup of type
Ay x A4 contained in a maximal subgroup of type A; x As. For Eg, take
H; a subgroup of type A} and Hj a subgroup of type A3. For Fy, take H
of type A% and Hy of type A} (contained in a maximal subgroup of type
Dy). For Gy, take Hy of type A? and Hy of type As. Except for case Fy,
the dimension of Hs is greater than that of Hy, so there is no embedding of
Hy in Hy. For Fy, there is no embedding of a group of type A} in a group
of type A3 because there is no embedding of a group of type A? in a group
of type As.

For E;, we proceed somewhat differently, letting H; denote a special
subgroup of E; of type A] (contained in a maximal subgroup of type A1 x Dg)
and letting Hy be a special subgroup of type As x A4 (contained in a maximal
subgroup of type Ay X As). Suppose a proper subgroup H of G satisfies
H; < H and Hy < H. Without loss of generality, we may assume H is
connected. Let M be a maximal proper subgroup of G containing H;. Then
M contains the rank 7 semisimple group Hi, so it must be of rank 7 and
therefore, by [26, Table 10.3], must be a group whose identity component is
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semisimple of type A; x Dg, A7, Ay x As, A} x Dy, or A]. However, only
a group of type Ay x Dg, A3 x Dy, or A] can contain a group of type AJ,
and no group of any of these types can contain a subgroup of type As x Ay4.
This finishes the proof of part (1).

For part (2), we first use Proposition to prove H; < H for all i
implies H® acts irreducibly on the natural representation of GL,,. We may
therefore assume n > 3. To the list of H;, we add two additional very
special subgroups of SL,,, namely the image H' of SLy under the symplectic
representation VJ“2 @ V7 and the image H” of SLs under the orthogonal
representation VO"_3 ¢ V5. Proposition then proves that H must be Sp,,
with its natural representation or all of SL,,. The Sp,, can is ruled out by
H" £ Sp,,.

For each case in part (3), we use very special subgroups associated to two
different representations of SLo. For type B,, we use the representations
Vo and V2 @ Va,_g to define very special subgroups H' and H” of SOg;41.
Thus H’ is the principal SLo. which is known to be a maximal subgroup of
SOg,+1 except when r = 3 when it is contained in the maximal subgroup
Gg of SO7. In general H” 4 H', and for r = 3, H"” £ G5, so in either case
the statement of (3) holds. For type C,, we use the representations Va,_1
(which gives the principal SLg in Spy,.) and Va,_3 @ Vj. Since the principal
SLo is always maximal for symplectic groups, (3) holds. For type D,, we
use the representations Vj @ Va,._o, which gives the principal SLo, which we
denote H', and Vo @ Va,._4, which gives another very special subgroup, H”.
Now, H’ is contained in SOs,_; be in no other group intermediate between
H' and SOg,, while H"” £ SOg,_1.

Part (4) holds because in each of the cases above except for case A, when
r is even, one of the H; has rank greater than half the rank of G. For the
remaining case, we use the fact that SLogy1 does not contain any subgroup
isogenous to A2~ 0

6. MAIN THEOREMS

In this section, we prove the main theorems of the paper. We begin with
a proposition.

Proposition 6.1. Let K;,1 < i < k, be any finite separable extensions of
an infinite field K, and let G be any connected linear algebraic group over
K. For every element x = (x1,...,%k) € Hle G(K;), there exists a finitely
generated K-domain A with fraction field isomorphic to K(t) as K-algebra
such that x lies in the image of G(A) — Hle G(K;).

Proof. By the theorem of the primitive element, each K; is isomorphic as
K-algebra to K|t]/m;, where, as K is infinite, the m; can be chosen to be
pairwise distinct maximal ideals. Fix for each K; an element x; € G(K;).
Our goal is to find a polynomial Q(t) € K[t] not in any m; and an element
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x € G(K|[t,1/Q(t)]) which reduces to x; under reduction (mod m;) for all
1<i<k.

As G is a connected linear algebraic group over K, it is rational as a
K-variety. Let U C G denote a non-empty open K-subvariety of G which is
isomorphic to an open subvariety of A”. As K is infinite, G(K) is Zariski-
dense in G, so there exists a translate of U by an element of G(K') which
contains all the closed points of G in {x1,..., 2}, so without loss of gen-
erality, G has this property. We fix an open immersion ¢: U — A" over
K.

By the Chinese Remainder Theorem, the natural homomorphism K[t] —
[1; K[t]/m; is surjective, so there exist elements A;(t),. .., A, (t) € K[t] such
that A;(t) (mod m;) gives the jth coordinate of ¢(z;). In other words, the
n-tuples (A1 (t),..., A, (t)) defines a morphism &: A — A™ which maps the
closed point associated to m; to «(z;) for all 5. Thus ¢~1(4(U)) is an open
subset of Al. Its coordinate ring is therefore of the form A = K[t, 1/Q(t)],
and the restriction of ¢ gives a morphism Spec A — U, proving the propo-
sition. U

We remark that it follows immediately that every finitely generated free
subgroup of Hle G(K;) lies in the image of G(A) for some choice of A.

We can now finish the proofs of Theorems and Let K be a global
field. By Corollary for every split simple algebraic group G over K,
and every special subgroup H of G, H(K) contains a strongly dense free
subgroup isomorphic to F». We first assume that G is not of type Cy if
char K = 3. By Theorem there exist almost abelian algebraic groups
Hy,...,Hsover K such that {(H1)g,...,(Hs) i} is a generating set for G .

By Lemma/[3.2] we may choose injective homomorphisms f;: F» — H;(K)
with strongly dense images f;(F») =Ty C H;(K) C G(K) for 1 <i < s.

By Proposition there exists a finitely generated K-domain A with
maximal ideals my, ..., ms; and a homomorphism F, — G(A) which special-
izes (mod my;) to f; fori =1,...,s. Moreover, we may assume the fraction
field of A is K(t). Thus, for every non-abelian subgroup A C Fs, fi(A)
has Zariski-closure H;. The Zariski closure of the image of A in G(K(t))
degenerates to each of the H;, so by Theorem [£.7] it must be all of G, as
claimed.

The same method works for Sp, when char K = 3, except that instead
of a generating set of special subgroups of Sp,, we have a generating set
consisting of the image H; of SLy x SLy in Sp, and the derived group Hj
of the stabilizer of a line in the natural representation. By [I1, Appendix
D], Hsy contains a strongly dense free subgroup Fb, and we define L, A,
fi, and so on, as before. Since H; is a maximal connected subgroup of G,
any connected subgroup H which can degenerate to H; is either H; or G,
and H; cannot degenerate to Ho because H; has an invariant 2-dimensional
subspace while Hy does not. Thus, if G is simple then G(K(t)) contains a
strongly dense free subgroup.
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Now consider the general case when G is semisimple. There is no harm in
assuming that G is simply connected (or has trivial center) and so is a direct
product. By Goursat’s lemma, we can assume that all simple factors are of
the same type. So say G = J x ... x J with J simple. By Theorem [5.10],

~—_——

k
Ji has a generating set {(H1)g,...,(Hs)i}, and we may assume that J
cannot degenerate to any group isomorphic to H; x Hjy. In fact, for each
i € {1,...,s} and each j € {1,...,k} we define an almost abelian K-
subgroup H; ; of J such that (H; ;) is isomorphic to (H;)g and such that
each of the division algebras associated to any H;; is ramified over some
prime of K which none of the others is ramified over.

By Theorem (4), we may assume that Jz does not have any sub-
group isomorphic to (Hy) i x (H1)g. We fix for each 7, j a homomorphism
fij: F» — H; ;(K) C J(K), and choose 4, my,...,ms, and fj: Fy — J(A)
which reduces to f;; modulo m;. Thus each }j(F2> is Zariski-dense in
J(K(t)). Defining f = (fy,...,fr): Fa — JF¥(K(t)), it follows that for all
non-abelian subgroups A of Fs, the Zariski closure of f(A) maps surjectively
to each factor J. By Goursat’s lemma to prove that f(A) is Zariski-dense,
it suffices to prove that it is not contained in the graph of any isomorphism
between any two factors of J. .

We may therefore assume that £ = 2 and for some A C Fy, f(A) has
Zariski closure isomorphic to J. However the Zariski-closure of its (mod my)
reduction (f1.1, f12)(A) in J x J is Hy; x Hj 2 since it maps onto H;; and
Hi 2, which are non-isomorphic simple algebraic groups. This is impossible
since Ji does not contain a subgroup isomorphic to (H11)x % (Hi2) -

Since every transcendental field of characteristic 0 contains a subfield
isomorphic to Q(¢), taking K = Q, this gives the first part of Theorem
Since every extension of IF,, of transcendence degree > 2 contains a field
isomorphic to Fy(s, t), taking K = F,(s) gives the first part of Theorem

To prove the second part of both theorems (the density of pairs gener-
ating a strongly dense subgroup), observe that this follows easily from the
existence part. Indeed, if F' is a strongly dense subgroup, then the set of
non-commuting pairs (x,y) € F x F' is itself Zariski-dense in G x G. This is
because for each z € F'\ {1} it contains {z} x (F'\ Cp(z)), whose Zariski-
closure is {z} x G.

7. STRONGLY DENSE SUBGROUPS IN AFFINE GROUPS

Almost all the results about strongly dense subgroups have been in semisim-
ple groups. Suppose that G is not semisimple. When can G contain a
strongly dense free nonabelian subgroup I'?

We note:

Lemma 7.1. Suppose that an algebraic group G over an algebraically closed
field k contains a strongly dense nonabelian free subgroup I'. Then G can be
topologically generated by 2 elements, G is connected, and G s perfect.
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Proof. As I contains rank 2 free subgroups which are Zariski-dense, the
first assertion holds. Suppose that GG is not perfect. Then the Zariski closure
of I is contained in G’ whence I is not Zariski-dense. If G is not connected,
then G° N T is not Zariski-dense in G. O

In particular, this implies that G/R,(G) is semisimple. We can always
replace G by G/®(G) where ®(G) is the Frattini subgroup of G and so
assume that R, (G) is a completely reducible G-module. The condition that
G is 2-generated imposes a limit on the multiplicities of the composition
factors in R, (G) (in terms of dimension and cohomology). We do note that:

Lemma 7.2. Suppose that R, (G) is a simple G-module and k is not alge-
braic over a finite field. Then G is 2-generated (topologically).

This follows easily from the fact that
dim H'(G/R,(G), R, (@)) < dim R, (G)

(which is an old result from [3] for finite groups and the proof for algebraic
groups is much easier and also follows from the same inequality for finite
groups of Lie type).

We ask whether any connected perfect algebraic group over an alge-
braically closed field that is topologically generated by two elements contains
a strongly dense subgroup.

Here we show that certain affine groups do have this property. We
could extend this but content ourselves with considering the affine groups
ASL,(K) = V.SL(V) with dimV =n > 1.

Theorem 7.3. Let K = Q(t) or Fy(s,t). Let G = ASL,(K). Then G
contains strongly dense free subgroups.

Proof. 1If n = 2, this is proved in [I1, Appendix D] where K is any field
not algebraic over a finite field. So assume that n > 2. We now choose
elements z,y € ASL,(Q[t]) or ASL,(F,(s)[t]) that specialize to strongly
dense subgroups of Hi,...,H, with H; < SL,(K) as in the proof of the
main theorems for SL,,.

Let Hy be a 2-generated free strongly dense subgroup of ASLs(K) natu-
rally embedded in ASL, (K). We pick z,y that also specialize to a strongly
dense subgroup of Hy. Let S = (x,y) and let T be any nonabelian subgroup
of S. As we argued in the proof of our main result, we see that the Zariski
closure is either G or is a complement to V = R, (G).

The rational cohomology group H'(SL,,V) = 0 by [2] since if § denotes
the half sum of positive roots of SL, and w; is the highest weight of V,
the weights —0 and w; — ¢ are not in the same Weyl group orbit (mod
p). Thus, T is contained a complement to V' in G if and only if T fixes
a nonzero vector in the n 4+ 1 dimensional representation of G (we embed
G = SL,11(K) contained in the stabilizer of a hyperplane). Note that this is
a closed condition (this is equivalent to commuting with a rank 1 idempotent
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whose kernel is the given hyperplane—the set of such idempotents is the set
of conjugates of a single such idempotent by V). Since Hy commutes with
no such idempotent, it follows that 1" does not either and so the Zariski
closure of T is G. ]

8. NONFREE STRONGLY DENSE SUBGROUPS

In this section, we give examples of finitely generated groups which are
not free but can nevertheless be embedded in groups of the form G(K) as
strongly dense subgroups in the sense of Definition [1.3

Recall that a group H is called residually free if for every nontrivial ele-
ment h € H, there exists a free quotient J of H such that the image of h in
J is nontrivial.

We now show that the methods of [I0] and this paper can be used to
prove that a large class of groups (including surface groups of genus at least
2) have strongly dense embeddings.

Theorem 8.1. Let I' be a finitely generated group satisfying the following
conditions:

(i) Hom(T', G) is an irreducible variety for every simply connected sim-
ple algebraic group G.
(ii) T has trivial center and is residually free.

If K is an algebraically closed field of infinite transcendence degree and char-
acteristic p > 0 and G is a semisimple algebraic group over K, then there
exist strongly dense embeddings of T into G(K).

Since I' has trivial center, it suffices to prove the theorem in the simply
connected case, so we assume henceforth that G is simply connected. We
do not need infinite transcendence degree to make the argument work, but
the degree needed with this argument grows linearly with dim G.

Let ¥, be the fundamental group of a Riemann surface of genus g. It is
well known that Hom(X,, G) is an irreducible variety for any simply con-
nected simple algebraic group G. This is shown by Simpson [32, Thm. 11.1]
for the SL,, case (see also [5]) and by Liebeck and Shalev [27, Cor. 1.11(ii)]
for the general case (note that they only claim the irreducibility of the
top dimensional component which is of dimension (2¢g — 1) dim G, but since
Hom(X,, G) is the preimage of the identity by an algebraic morphism, each
component must be top dimensional). It is also well known that ¥4, g > 2,
is residually free (cf. [9, Cor. 2.2]) and so:

Corollary 8.2. There exist strongly dense embeddings of ¥4,9 > 2 into
G(K) for K an algebraically closed field of infinite transcendence degree in
any characteristic and G any semisimple group over K.

We remark that Long, Reid, and Wolff [29] use a similar strategy to show
that generic Hitchin representations are strongly dense.
We begin with a lemma:
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Lemma 8.3. Let G be a simply connected semisimple algebraic group over
an algebraically closed field K. There exists a countable collection of proper
closed subvarieties Z; of G x G, each defined over the prime subfield, such
that U; Z; is the set of all (g1, 92) € Z;, such that group (g1, g2) is not Zariski-
dense in G.

Proof. We first assume that G is simple and simply connected. Let k be
the algebraic closure of the prime field. By [19, Thm. 11.7], there exists
a finite set of irreducible rational G-modules (defined over k) so that no
positive dimensional closed subgroup of G acts irreducibly on each of those
modules. The set of pairs acting reducibly for each module is a proper closed
subvariety.

Now consider the proper subvarieties X,, = {(91,92) € G x G||{g1, 92)| <
m}. These are defined over the prime field. The result now follows in this
case by taking the Z; to be the finite set of subvarieties given by the modules
together with the countably many subvarieties X,,.

If G is simply connected but not simple, then G = G; X --- x Gy for
some simply connected simple groups G;, and every maximal subgroup of G
is either the pull-back of a maximal subgroup of some G; or the pull-back
of the graph of a surjective endomorphism between the adjoint quotients of
two factors, G; and Gj. We have already dealt with the first class of sub-
groups. Up to the action of GG, the maximal diagonal subgroups correspond
to compositions of outer automorphisms and Frobenius endomorphisms and
in particular there are only countably many such and each is defined over a
finite extension of the prime field giving rise to countably many conjugacy
classes of maximal closed diagonal subgroups D;. For each D;, we consider
the subvariety which is the closure of Ugeq(D; x D;)9. Clearly these are
proper subvarieties (as generic elements are not contained in any diagonal
subgroup). O

One can also show that the complement of the union of the subvarieties
above is dense as long as K is not algebraic over a finite field (if K is
uncountable, this is clear). An alternate proof of the previous result can
be obtained by noting that there are only countably many maximal proper
closed subgroups (maximal in the category of closed subgroups) and they
are all defined over the algebraic closure of the prime field. In characteristic
0, one already knows that the set of generating pairs is a nonempty open
subset (see [10, Theorem 4.1]).

We can now deduce Theorem [8.1] from the analogous result on free groups.

Proof. By condition (i), Hom(I", G) cannot be written as a countable union
of proper closed subvarieties. So it is enough to prove that given any pair
v1,7Y2 of non-commuting elements in I',; and for each closed subvariety Z;
from Lemma 8.3, the closed subvariety W; , 4, of Hom(I', G) made of those
representations p such that the pair (p(y1), p(72)) belongs to Z; is proper. By
[10], there is a strongly dense free subgroup in G given say by some injective
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homomorphism 7 : F, — G. By condition (ii) there is a homomorphism
¢ : I' — F5 such that ¢([y1,72]) # 1. The representation p := 7 o ¢ is not
in Wi, ., because (p(71), p(72)) is Zariski-dense. So Wj ., -, is proper as
desired. O

We can also extend this result (essentially via the proof of [10] for free
groups) to finitely generated groups I' such that all representation varieties
are irreducible and satisfy the Borel property (i.e. word maps are dominant
—see [8]). This argument works aside from the case of groups involving Cy
in characteristic 3 (just as the proof in [10] did — that case was handled in
i11)).

To give another application of Theorem [8.1] we introduce the following
terminology. A word in Fy is (N,1)-friable if it is a justaposition of at least
N non-empty words of length <[ in pairwise distinct variables. Recall that
by the Baumslag double of a word w = w(x1,...,zq) € Fy, we mean the
one-relator group on 2d-generators

<.Z'1, ey Ty Y1, -5 Yd | ’w((lfl, o 7'rd)w(y17 cee 7yd)71>~

Theorem 8.4. For alll there exists N such that if w € Fy is (N,1)-friable,
and I" is the Baumslag double of w, then for every semisimple group G over
an algebraically closed field of infinite transcendence degree, G(K) contains
a strongly dense subgroup isomorphic to I'.

Proof.  Condition (i) holds if N is large enough compared to [. By [24]
Theorem 5(ii)], if N is large enough in terms of [,

| Hom(T, H)| = (1+ o(1))| H|*!

for finite simple groups H. However, the character estimate for groups of
Lie type used in the proof, namely [I8, Thm 1.4] and [I7], are both proved,
in those papers, in the quasisimple case, and therefore also for groups of the
form H =~ G(F q¢), where G is simple and simply connected.

By Lang-Weil [21], letting ¢ — oo, it follows that in positive characteris-
tic Hom(T', G) is geometrically irreducible and of dimension (d — 1) dim G.
Therefore, the same is true in characteristic 0.

As long as N > 1, no (N,l)-friable word is a non-trivial power of an-
other word, so I is residually free [4]. Therefore, the theorem follows from
Theorem

O

Up to this point, the results of this section require that the transcendence
degree of K is large enough in terms of the dimension of G. However, it
is also possible to use the methods of sections 3—6 of this paper to prove
certain dim G-independent results.

Theorem 8.5. Let K be a transcendental algebraically closed extension of
Q. Let G be a classical group over K and I" be a finitely generated group
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with Hom(T', G) irreducible and which admits a strongly dense embedding in

SL2(Q). Then T' admits a strongly dense embedding in G(K).

Proof. Without loss of generality, we may assume that G comes from a
split group (which we also denote G) defined over Q.
In view of Theorem (2) and (3), there exists a very special generating

set {H;} for G and a finite collection of representations f;: I' — H;(Q) C
SL,(Q) such that for every non-abelian subgroup A of I', fi(A) is Zariski-
dense in H;(K). The f; define points on the variety Hom(T', G), which is
irreducible.

For any finite set S of points on an irreducible quasi-projective variety V,
there exists an irreducible curve containing S. Indeed, one can blow up the
points in S, embed the resulting variety V in some projective space, and
use Bertini’s theorem to choose a linear subspace of codimension dimV — 1
intersecting V in an irreducible curve whose image in V contains S. Ap-
plying this to the points on V' = Hom(I', G) corresponding to the f;, we
obtain an irreducible affine curve with coordinate ring A. The universal G-
representation of I" over V' specializes to a homomorphism I' — G(A) which
further specializes to each of the f; and is therefore injective. If Ky is the
field of fractions of A, as the {H;} form a generating set, I' — G(Kj) is
strongly dense. However, K| is of transcendence degree 1, so it embeds in
K. ]

Corollary 8.6. If K be a transcendental algebraically closed extension of
Q and G is a classical group over K, then for each g > 2, G(K) contains a
strongly dense subgroup isomorphic to a surface group of genus g.

Proof. Every Riemann surface of genus g > 2 can be realized as a quo-
tient of the upper half-plane by a subgroup of PSLy(R) isomorphic to the
surface group I'. It is also well known that the injective homomorphism
I' — PSLy(R) lifts to a (necessarily injective) homomorphism I"' — SLa(RR)
(see, e.g., [1] for a short argument). The subset of Hom(I",SLy(R)) such
that the map I' — PSLy(R) is injective with discrete image is a non-empty
open subset of Hom(T",SLa(R)) ([37]). Therefore, there exists an injective
homomorphism ¢: I' — SL2(Q). Its image is necessarily strongly dense,
because proper algebraic subgroups of SLy are virtually solvable and I' has
no non-abelian virtually solvable subgroup. So we may apply the previous
theorem. UJ

We remark that, at least when G = SL,,, the group of G-representations
of a surface group is rational [5], so one might hope to find a rational curve
containing the points corresponding to the f;. If this can be done, we can
dispense with the assumption that K is algebraically closed.

Theorem 8.7. Let p > 2 be a prime and n,g > 2 integers. Let K be an
algebraically closed field of transcendence degree 10 over F,. Then SL, (K)
has a strongly dense subgroup isomorphic to the surface group of genus g.
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Proof. Tt suffices to prove the theorem for ¢ = 2. Let I' = ¥, and let A
denote the coordinate ring of the affine variety Hom(T', SLy). This variety is
irreducible. The coordinate ring A of this variety is of dimension 9. Let L
be the fraction field of A, and let ¢: I' — SLa(L) denote the composition of
the universal SLa-representation of I' over A with the embedding SLa(A) C
SLa(L).

For 1 # v € T, then there exists a homomorphism I" — Fj sending
v — 7 # 1, and there exists a homomorphism F; — SLg(K) which is
injective. Therefore, the image of v in SLy(L) is not 1, so ¢ is injective.

If A C T is a non-abelian subgroup, we would like to prove that ¢(A) is
Zariski-dense in SLo(L). If A is a non-abelian subgroup of I and A; is a
subgroup of finite index, then A; is either a surface group or a non-abelian
free group, so the commutator subgroup of its commutator subgroup is non-
trivial. If 7 is a non-trivial element in this group, then ¢(v) # 1, so ¢(A1)
cannot be contained in a Borel subgroup of SLy(K). By classification of
closed subgroups of SLo, every proper subgroup has a finite index subgroup
whose second commutator is trivial. Therefore, ¢(A) is indeed Zariski-dense
in SLs.

Now we proceed as in the proof of Theorem using part (2) of Theo-
rem to show that SL,, has a very special generating set and then using
the connectedness of Hom(T", SL,,) in positive characteristic to deduce that
for an algebraically closed field of transcendence degree 10 over F,,, there is
a strongly dense subgroup isomorphic to I' and therefore a strongly dense
subgroup isomorphic to X, for each g > 2. ]

With a little more work, we can use the quotient of Hom(I', SLy) by the
action of SLg to reduce the transcendence degree to 7. In [I5], it is proved
that for p > 5, there are faithful representations of I' in PGLy over fields
of transcendence degree 2. It seems possible that one could prove the same
result for SLy and use this to reduce transcendence degree to 3.
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