UNIFORM CHARACTER BOUNDS FOR FINITE CLASSICAL GROUPS

MICHAEL LARSEN AND PHAM HUU TIEP

ABSTRACT. For every finite quasisimple group of Lie type G, every irreducible character x of G,
and every element g of G, we give an exponential upper bound for the character ratio |x(g)|/x(1)
with exponent linear in log g |g€|, or, equivalently, in the ratio of the support of g to the rank of
G. We give several applications, including a proof of Thompson’s conjecture for all sufficiently large
simple symplectic groups, orthogonal groups in characteristic 2, and some other infinite families of
orthogonal and unitary groups.
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1. INTRODUCTION

Let G be a finite group, g an element of GG, and x an irreducible character of G. As x(g) is
a sum of x(1) roots of unity, |x(g)] < x(1), and when g lies in the center of G, no better upper
bound is possible. The goal of this paper is to provide a good bound for |x(g)| in terms of x(1) and
] g%| over the whole range of character degrees and conjugacy class sizes, which applies to all finite
quasisimple groups G of Lie type, (i.e. G = [G,G] and G/Z(G) is a finite simple group of Lie type).
Our main result is the following:
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Theorem A. There exists an absolute constant ¢ > 0 such that for all finite quasisimple groups G
of Lie type, irreducible characters x of G, and elements g € G, we have

191

(1.1) x(g)] < x(1)'~Reler

There are already many bounds for irreducible character values in the literature. For groups of
Lie type, Gluck [Gl] bounded the character ratio |x(g)|/|x(1)| away from 1 for all non-central g. For
classical groups of Lie type, one can say more for almost all elements. We define the support supp(g)
of an element g € GLn(I_Fq) to be the codimension of the eigenspace of g of maximal dimension.
This leads naturally to a definition for the support of an element g of a classical finite group of Lie
type; namely, we lift g to an element of its central extension which lies in GL,,. In [LaSTI], the
character ratio is shown to go to 0 as supp(g) — oo. The papers [GLTIl [GLT2] give exponential

log |g%|

character bounds, i.e., upper bounds of the form x(1)* as long as Tog G

is close enough to 1.

G
The exponents in these bounds go to 0 as 11(; gg ‘gG” — 1, so in this regime, the bounds are better
*

than those of Theorem [Al A bound of type (1.1]) is given in for many classes of elements,
and this has been further extended in [TT], yielding in particular optimal bounds for semisimple
elements, whose centralizer is a proper Levi subgroup. Furthermore, good character bounds for the
exceptional groups of Lie type, which all have bounded rank, are provided in [LiT].

The strength of our paper is that it gives an exponential bound covering all elements and all
characters. This is particularly valuable for applications involving the Frobenius formula, where
the most difficult cases cannot be excluded. We also note that, up to a multiplicative constant, the
exponent in the bound |x(g)/x(1)] < x(1)~¢8icl 19°1 in Theorem E is optimal; see Examples
and Lemma [5.8) Furthermore, the constant ¢ is made explicit in the proof.

We remark that there has been a parallel effort to obtain exponential bounds for irreducible
character values of symmetric (and alternating) groups; see, for instance, [FLL [Rol, [MS] @, LaShil,
[LifM].

Previous character bounds have seen a wide variety of interesting applications. They play an
important role in the proof of Ore’s conjecture [LOSTI], versions of Waring’s problem for finite
simple groups [LaSTTl [LaST2], covering number computations for conjugacy classes [LiSh2], and
estimates for the number of points of representation varieties over finite fields [LiSh4]. Additional
applications are described in Liebeck’s survey article [Li].

We present several applications illustrating the power of the new bounds. Thompson’s conjecture
[AH] asserts that for every finite simple group G, there exists a conjugacy class S such that S% = G.
Ellers and Gordeev [EG] made substantial progress on this conjecture, leaving open the case of
groups of Lie type with ¢ < 8; also, they completely settled the case of groups of type A,. In this
paper, we give an asymptotic treatment of the case C,. Likewise, we treat D, and 2D, either in
characteristic 2 or in odd characteristic, where ¢ satisfies a suitable condition (mod 4). That is,
we show that Thompson’s conjecture holds for all but finitely many such groups; see Theorem
With finitely many exceptions, all that now remains are certain unitary groups with ¢ < 7 as well
as odd-dimensional orthogonal groups and certain even-dimensional orthogonal groups over F3 and
F5. We also prove that various regular semisimple conjugacy classes S in G = SL,(q) or SU,(q),
including all classes with irreducible characteristic polynomial, have the property that S? includes
all elements of G whose support is larger than an absolute constant.

The mixing time for a random walk on a Cayley graph given by a conjugacy class S has been an
object of study since the celebrated work of Diaconis and Shahshani [DS]. For finite simple groups of

Lie type, Liebeck and Shalev [LiSh2, Corollary 1.14] gave the upper bound O(llzg; ||§||)' In Theorem
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log |G|
log |S]

we improve this to the optimal asymptotic, O( ), settling conjectures of Lubotzky [Lul,

p.179] and of Shalev [Shl 4.3] in the affirmative.
Each non-trivial character x of a finite group G determines a McKay graph on the vertices Irr(G).
Liebeck, Shalev, and Tiep [LiSTI, Conjecture 1] conjectured that the diameter of this graph is

O(lzzgig‘)) for all finite simple groups. We prove this conjecture, as well as a related conjecture of
Gill [Gi] concerning products of irreducible complex characters, for all finite simple groups of Lie
type, see Theorems and We also extend results of Fulman [Fu] to determine the asymptotic
of the convergence rate (to the stationary distribution) for random walks on McKay graphs for any
simple group of Lie type, see Theorem

The non-commutative Waring problem has received considerable attention recently, see e.g.
[LaSh2, LaST1L IGLOST, [LaST2]. In particular, [GLOST), Theorem 4] states that there is a function
f 1 Z>1 — Z>1 such that if N > 1 is an integer with at most k prime factors, the power word map
(z,y) — xNy" is surjective on any alternating group A,, with n > f(k), and on any simple group of
Lie type of rank n > f(k), excluding types A and ?A. In [GLOST], it is asked whether the theorem
extends to the excluded cases. In Theorem [8.10, we prove that it does.

If G is a simple algebraic group over any algebraically closed field K and S, ..., .S, are conjugacy
classes of G, then multiplication defines a morphism of varieties X := S x--- x S;, = G. We prove
that if dim X is at least an absolute constant multiple of dim G, then this morphism is flat, meaning,
in this situation, that the fibers of the morphism all have the same dimension, dim X — dim G, see
Theorem [R.111

Our strategy for proving the main theorem reverses the usual order of things. Instead of using
character estimates to prove mixing theorems, we use mixing theorems to prove character estimates.
More precisely, we use probability-theoretic methods to show that if Ug is the uniform distribution
on a very small conjugacy class S, the probability that a sample from the iterated convolution U gib
lands in a small conjugacy class is very low. We do this in two stages, first to obtain (with probability
close to one), an element whose support is larger than a constant multiple of the dimension n of the
natural representation of GG, and then to obtain an element whose conjugacy class is large enough
that the estimates of [GLT1l [GLT2|] apply.

The paper is organized as follows. In section 2, we prove basic combinatorial estimates. In section
3, we translate these into the probability-theoretic results necessary to bootstrap from elements of
large support (satisfying a linear lower bound in rank(G)) to elements of small centralizer (satisfying
an exponential upper bound in |G| which can be taken as small as we wish). The bootstrapping
argument is carried out in sections 4 and 5 and produces a uniform exponential character bound in
terms of the support, Theorem|[5.5] In section 6, we compare two notions of smallness for a conjugacy
class given by support and by class size, and this allows us to deduce Theorem [A] from Theorem
The applications to squares of conjugacy classes are given in section 7, and we conclude, in
section 8, with the applications to mixing time, McKay graph diameter and products of irreducible
complex characters, power word maps on simple groups, and flatness of product morphisms.

2. COUNTING LEMMAS

The key result in this section is Proposition which given a classical group G acting on a
vector space V', a subspace U C V, a fixed element of G, a fixed integer b, and a fixed polynomial
P(z) € Fylz], bounds above the number of different ways it can happen that P evaluated at a
product of b conjugates g*!,...,¢g" of g annihilates U. When this occurs, for each basis vector
u; of U, we can track all the vectors appearing along the way in computing P(g™ --- g™ )u; and
count tuples encoding all that intermediate information. We use this to estimate the size of the
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projection to (x1,...,xp). To accomplish this, we need various estimates for orbit sizes for classical
group actions.
Let g be a power of a prime p, n € Z>3, and V = Fy. In what follows, by a classical group
G = Cl,(q) = CI(V) on V and its dimension D we specifically mean one of the following:
e G=SL(V)and D =n?—1;
e Sp(V) and D = n(n + 1)/2, if 2|n and V is endowed with a non-degenerate alternating
bilinear form (-|);
e SO(V)and D = n(n—1)/2, if p > 2 and V is endowed with a non-degenerate symmetric
bilinear form (-|);
e Q(V)and D =n(n—1)/2,if p=2|n and V is endowed with a quadratic form Q, associated
with a non-degenerate alternating bilinear form (-|-);
e SU(V) and D = (n? —1)/2, if ¢ = ¢3 is a square and V is endowed with a non-degenerate
(Fg-bilinear) Hermitian form (-|-) so that SU(V') = SU,(qo).
(See e.g. Chapter 2] for definitions and basic facts on the associated forms for finite classical
groups.) This convention ensures that ¢” > |G| > ¢”/2 (cf. Lemma 4.1(ii)]). We remark
that for unitary groups, we do not always denote the two relevant prime powers gy and ¢ = qg,
sometimes preferring ¢ and ¢?, depending on whether the emphasis is on the field of definition of the
algebraic group or on the field of definition of the natural representation. Note also that SU,,(qo)
and SU(FF}) (and sometimes Cl,(q) with specifying Cl = SU) are different names for the same
group, and the same can be said for SU,,(¢) and SU(FZQ) (and Cl,(¢?), with specifying Cl = SU).
If Vi, ..., Vi are vector spaces over a finite field F, and g; € GL(V}),...,gr € GL(Vy), we denote
by diag(gi,. .., gx) the image of (g1, ..., gr) under the homomorphism

GL(V1) x -+ x GL(V}) - GL(V1 @ - - - @ Vj).
We use the same notation for classical groups; for instance, if g; € Sp(V;), we understand diag(g1, . . ., gx)

to be an element of Sp(V; & --- & Vj).

Lemma 2.1. If k and n are positive integers and v < k is a non-negative integer, V = Fy,
and wi,...,w are linearly independent vectors in V', then the number of sequences of wvectors
V1,...,0 €V such that

dim Span(vy, ..., vg, wi, ..., wg) =k +r

(k> qrn+k2—7*2 .
r

Proof. Any such sequence (vy, ..., v;), determines an r-subset S C {1,...,k} such that s € S if and
only if

1s less than

vs & Span(vy, ..., Vs—1, Wi, ..., Wk).
We will bound the number of such sequences by first fixing S, for which we have (:f) possibilities.

Given S, there are less than ¢ possibilities for vy when s € S and ¢**" possibilities for v, for each
of the k — r indices s ¢ S. O

Lemma 2.2. Let U be a subspace of V = Fy of dimension d < (n —3)/2, and let H denote the
subgroup of all elements in G = CI(V) that act trivially on U. Then |H| < ¢P~% if Cl = SL and
|H| < ¢P~dntdd+D)/2 oiherwise.

Proof. If G = SLy(q), then
|H| _ qd(nfd)|SLn_d(q)’ < qd(nfd)wL(nfd)Qfl _ qudn'
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We will now consider the case Cl # SL and so V is endowed with G-invariant (bilinear or
Hermitian) form (-|-) (and quadratic form Q when p = 2 and Cl = Q). Let k := —1 if p > 2 and
Cl = Sp, and & := 1 otherwise, and set

W:=UnU", a:=dimW, b:=d—a.
Consider the H-invariant (partial) flag
{oycwcucwtcv.

Note that W+ = U + U™, and (:|-) induces a non-degenerate bilinear form on W+/W (of the
same kind). With respect to this induced form, U/W is a non-degenerate subspace with orthogonal
complement U~ /W. So we can find a basis

(e1,---s€as 915+, Gy P1, - oo h—24-p)
of W+, such that

U = Span(er,...,€q,01,---,g5), UT = Span(eq,...,eq, h1,-. hn_oa_p)-

0 0 0
and moreover the Gram matrix of the form induced by (-|) on W+ in this basisis [0 B 0
0 0 C

with det(B)det(C) # 0. In particular, S := Span(g1, ..., N1,---,An_2q—p) iS a non-degenerate
subspace of V. So S+ is also a non-degenerate subspace of V' of dimension 2a, which contains W as

a maximal totally singular subspace. Hence we extend (e1,...,e,) to a basis (e1,...,€eq, f1,---, fa)
of S* in which (-|-) has the Gram matrix (;} I()a) Thus the Gram matrix of (+|-) in the basis
a
(617' 3 €ay01, - 7gbvh1a~- -7hnf2afbaf17‘ . "fa)

of V is

0 0 0 I,

0 B 0 0
(2.1) 0O 0 C o

kl, 0 0 0

Consider any element h € H. Then h acts trivially on U and on V/W* = TW*, and preserves the
orthogonal complement U+ /W to U/W in W+ /W, whence we get a homomorphism

@: H — CIUL/W) = Cly_2a_s(q).
We will bound |¢(H)| and |Ker(p)|, representing each = € Ker(¢) by the matrix

I, 0 X Y
0 I 0 Z
0 0 Inoesp T
0 O 0 1,

in the chosen basis, where the matrices X, Y, Z,T over F, satisfy the conditions
(2.2) Z=0, kX +T*C=0, kY +Y*+'T*CT =0

which are obtained using the fact that x preserves (-|-) with Gram matrix (2.1]). For instance, Z = 0
because, for any v € V and u € U,

(2.3) (z(v) = vlu) = (z(v)[u) = (v]u) = (z(v)]z(uw)) = (v]u) =0,
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i.e. 2(v)—v € U*. Here, for a matrix A = (a;;) over F,, A* is interpreted as A in the case Cl = Sp,
SO, or Q and as A(®) = (g #7) in the case Cl = SU.

(a) Suppose Cl = Sp. Then 2|b and 2|n, and writing b = 2¢ and n = 2m we have

|(p(H)| < |Sp2m—2a—2c(Q)| <q

For z € Ker(y), there are g2(m=a=c) chojices for T, and, by (2.2)), for each choice of T'; X is uniquely
determined and there are ¢*(@t1/2 choices for Y. Thus |H| < ¢F, with

E:=(m—a—c)2(m—a—c)+1)+2a(m—a—c)+ala+1)/2=D —2dm+d(d—1)/2,
since D = m(2m + 1) and d = a + 2c.

(b) Suppose Cl = SU. Then

|p(H)| < |SUn_20-5(q0)| < q(n 2a—b)*~1) _ q((n72a—b)2—1)/2.
For € Ker(yp), there are ¢*"~2¢=b) choices for T, and, by (2.2)), for each choice of T', X is uniquely
determined and there are q82 = ¢%°/2 choices for Y. Thus |H| < ¢¥, with
2F := (n —2a — b)*> = 14 2a(n — 2a — b) + a® = 2D — 2kn + d°,

since D = (n? —1)/2 and d = a + b.

(¢) Suppose Cl = SO or Q. Then n — 3 > 2d = 2a + 2b, whence n — 2a — b > 3, and

’gO(H)| < |SOn—2a—b(Q)‘ < q(n—2a—b)(n—2a—b—1)/2'

For € Ker(yp), there are ¢*("~2¢=b) choices for T, and, by (2.2)), for each choice of T', X is uniquely
determined and, if p > 2 then there are at most ¢*(¢~1/2 choices for Y, so
(24) ]Ker(gp)] < qa(n—Za—b)+a(a—1)/2‘

We want to show that also holds when p = 2. Indeed, suppose p = 2. Then the number of
elements in Ker(p) that correspond to the same 7' is the number of elements in Ker(p) that have
T = 0. In addition to (2.2)) which gives ¥ +Y =0, i.e. Y = (y;;) is symmetric, any such element
must satisfy

(2'5) Q(f]) = Q( ( fj + Zyuez = f] +yj; + Q Zymez

(m—a—c)(2(m—a—c)+1) )

Since p = 2, every scalar z € [, has a unique square root in [F,, and hence the map

VQ:V = Fq, v— +/Q(v)
is well-defined. Furthermore, /Q is F,-linear on Span(ey,...,e,), so we may assume that Q(e;) =
.= Q(ea—1) = 0, and Q(e,) = 0 or Q(e,) = 1. In the former case, (2.5)) yields y;; = 0, whence
Y has zero main diagonal and so the number of such Y is ¢®*~1/2 and thus (2.4) holds. In the
latter case, (2.5) yields y;; = ygj when j < a, and yaq + Y2, = 0, i.e. Yaq = 0 or 1. Thus, when T is

fixed, there are (at most) 2¢*(¢~1/2 choices for x € Ker(p). Next, writing n — 2a — b =: 2¢, we can
00 ... 01
. .10 0 ... 1 O
choose (hi,...,ha.) so that the Gram matrix C' is . Then
10 ... 00

Q(hj) = Q(z(hy)) = Q(h; + sz‘jei) = Q(hy) + Q(Z zijei) = Q(hy) + 2y,
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and so z,; = 0. On the other hand, X =T'C by (2.2, hence
0 =14 = (TC)aj = tact1-ja

for 1 < j < 2¢. These relations show that there are at most ¢(@~D(=20=b) chojces for T, and, for

each choice of T, X is uniquely determined and there are at most 2¢*(@~1/2 choices for Y. Since
q" 2270 > 2. ([2.4) holds in this case as well.
Thus we always have |H| < ¢¥, with

2E:=(n—2a—0b)(n—2a—b—1)+2a(n—2a—>b)+ala—1)=2D —2kn+d(d+ 1),
since D =n(n—1)/2 and d = a + b. O

Lemma 2.3. Let k € Z>1 and let q be any prime power. Suppose that either K = F’; 18 endowed with
a nonzero alternating bilinear form (-|-), or a quadratic form Q associated to a nonzero symmetric
bilinear form (-|-), or q is a square and K = F} is endowed with a nonzero Hermitian form (-|-). Let
K=+ denote the radical of (-|-), and let v € K ~ K*. Then the set Q(v) of the vectors u € K ~ K+
with (v|v) = (ul|u), respectively, Q(v) = Q(u), (v|v) = (u|u), has cardinality > ¢"~2.

Proof. (a) First we consider the case (:|-) is non-degenerate, i.e. K+ = 0. The bound on |Q(v)] is
obvious if k¥ < 2, so we may assume k > 3. Let G denote the full isometry group of (+|-), respectively

of Q, (+]-). By Witt’s lemma Proposition 2.1.6], Q(v) is just the orbit v of v. In the symplectic
case, we have

[0 =K~ {0} = ¢" —1>¢"".

In the odd-dimensional orthogonal case, we have 2 { ¢ and k = 2m + 1 for some m > 1. Then
G = GOgni1 (q) has one orbit of isotropic vectors of length ¢*™ — 1, (¢ — 1)/2 orbits of anisotropic
vectors of length ¢""(¢"™ — 1) each, and (¢ — 1)/2 orbits of anisotropic vectors of length ¢ (¢ + 1)
each, see e.g. [KI[] §4.1], and any of these lengths is at least ¢>™~!.

In the even-dimensional orthogonal case, we have k = 2m with m > 2. Then G = GO3,,(q) for
some £ = +. If 2 ¢, then G has one orbit of isotropic vectors of length (¢™ —¢)(¢"™ ' +¢), (¢—1)/2
orbits of anisotropic vectors of length (¢™ — €)(¢™ ! + 1) each, and (¢ — 1)/2 orbits of anisotropic
vectors of length (¢™ — )(¢™ ! + 1) each, again see e.g. [KIL[] §4.1], and any of these lengths is
larger than ¢®™~2. If 2|q, then G has one orbit of isotropic vectors of length (¢ —)(¢" ! +¢), and
q — 1 orbits of anisotropic vectors of length ¢™ 1(¢™ — ¢) each, and any of these lengths is larger
than ¢?™ 2.

In the unitary case, we have ¢ = ¢3. With ¢ := —1, G = GUk(gqo) has one orbit of isotropic
vectors of length (gf — 5”‘3)((]]5*1 +¢"), and gg — 1 orbits of anisotropic vectors of length q’g*l(q(’f — k)
each, again see e.g. §4.1], and any of these lengths is larger than qgk_2 =gkl

(b) Now we consider the case the radical K+ of (-|-) has dimension a > 1 over F,. Then (:|})
induces a non-degenerate form on K /K= of dimension k —a > 1. If we are in the orthogonal case
with 2|g, assume in addition that Q is identically zero on K L. Then note that all the ¢® vectors in
the coset v + K+ belongs to Q(v). Applying (a) to K/K=*, we see that [Q(v)| > ¢"¥=972¢% = ¢F~2.

Assume now that we are in the orthogonal case with 2|¢ but Q is not identically zero on V+. As
mentioned in the proof of Lemma VQ Vit = [F, is F4-linear and nonzero, hence surjective.
Fixing w € V' with Q(w) = 1, we see that each coset u+ (w)p, with u € K\ K* contains a unique
point in Q(v). Tt follows that |Q(v)| = (¢* — ¢*)/q > ¢ 2. O
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Lemma 2.4. Let U be a subspace of V. = Fy of dimension d < (n —3)/2, and let H denote the
subgroup of all elements in G = CI(V) that act trivially on U. For anyv € V \ U, the H-orbit v
has length |v7 | = ¢* — ¢% > ¢"/2 if Cl = SL and |[v¥| > ¢"~%2 otherwise.

Proof. By assumption, codimU > (n + 3)/2 > 2. Hence, in the case Cl = SL, H acts transitively
on V \ U, which has cardinality ¢" — |U| > ¢"/2.

We will now consider the case Cl # SL and so V' is endowed with a non-degenerate G-invariant
(bilinear or Hermitian) form (-|-) (and quadratic form Q when p = 2 and Cl = Q). In particular, we
consider the orthogonal complement U~ of dimension n — d and fix a basis (ug,...,ug) of U. We
claim that || is the number N of vectors v/ = v +u € V such that

(2.6) uwe U, v4u ¢ U, and the subspaces (U, v)g,, (U, v')p, are isometric.

Indeed, if v/ = h(v) for some h € H, then u := v —v € U+ by , v' ¢ U, and h induces an
isometry between (U, v)r, and (U,v')p,. Conversely, suppose v' = v + u satisfies , and let G
denote the full isometry group of V. By Witt’s lemma, there exists g € G that maps u; — u; and
v — v. We also note that the proof of Lemma shows that we can put U in a non-degenerate
(with respect to (+|-)) subspace W of V' dimension < 2d. (Indeed, in the notation introduced prior to
we can take W = (U, f1, ..., fa)r, of dimension d+a < 2d.) The same claim applied to (U, v)r,
allows us to put this subspace in a non-degenerate subspace W of dimension < 2(d+1) <n—1. In
particular, dim W+ > 1. In fact, in the cases where Cl = Sp, or 2|q and Cl = Q, we have 2|n and so
2(d + 1) < n — 2, whence dim W+ > 2. This condition on dim W+ ensures that G = GGy, where
Gy consists of the elements of G that act trivially on W (and so is isomorphic to the full isometry
group of W+). Hence we can write g = hy with h € G and y € Gy, and observe that h € G still
maps u; + u;, v+ v'. Thus h € H, and v’ = h(v) € v,
Next we consider the case

velU+U,
so that v = vg 4+ vy with vy € U and v; €e UX U = K ~ K+, where K :=U+ and K- =UNU*
is the radical of the restriction of (-|-) to K. Then

0] = 19Q(v1)]

with Q(v1) defined in Lemma Indeed, for any u € U+, we have v +u ¢ U if and only if
v1 +u € K ~ K+, furthermore,

(W']v") — (v|v) = (vo + v1 + u|vy + v1 +u) — (vo + vi|ve +v1) = (v1 + ulvy +u) — (vi|v),
and, in the presence of Q,
Q(v") —Q(v) = Qvo +v1 +u) — Q(vo+v1) = Qo) +Q(v1 +u) — Q(vo) — Q(v1) = Q(v1 +u) — Q(v1).

Thus the map u — v; + u is a bijection between the set of vectors u satisfying (2.6) and Q(vq).
Hence [v7| = |Q(v1)| > ¢~ 972 by Lemma and we are done in this case.

From now on, we may assume that
v¢ U+ UL,

in which case v +u ¢ U for any u € UL. So |[v*] is just the number N of vectors u such that

(2.7) u € UL and the subspaces (U, ), (U, V)R, are isometric.

(a) Let Cl = Sp. Then (2.7) is equivalent to u € U*. It follows that [vf| = |U+| = ¢"~4.
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(b) Assume Cl = SU. Then is equivalent to u € U+ and (v|v) = (v + u|v + u), i.e.
(2.8) (v]w) + (ulv) + (uu) = 0.

Thus we need to count the number N of solutions u € U+ for (2.8).
By Witt’s lemma, we can find a basis (e1,...,€em,91,...,9x) of UL, with k,m >0 and k +m =

n — d, such that the Gram matrix of (:|-) on U+ in this basis is <8 IZ) Let a; := (e;v) and
bj := (gj|v). Since v ¢ U = (U+)*,
(2.9) (a1, .. am,b1,...,bg) # (0,0,...,0).
Writing w =3, wie; + >, y;9; with z;,y; € Fy, amounts to
(2.10) 0= Z y?DH + Z(aziai + (zia:)®) + Z(yjbj + (y;b;)%).
j i j

Note that, for any c € Fg,, the equation 9% = ¢ has at least one solution in F,. Hence, if £ > 1,
for any choice of (z1,...,Zm,y2,...,yr) we have at least one choice of y; to fulfill . It follows
that N > ¢mtF=1 = ¢"=4=1 Assume k = 0. Then we may assume by that a; # 0. Then,
for any ¢ € [y, the equation z1a; + (z1a1)% = c has go solutions in F,. Hence, for any choice of
(x2,...,Tm) we have at least one choice of x; to fulfill , and thus N > g™~ = ¢gn—4-1,

(c) Consider the case Cl = SO and p > 2. Then (2.7) is equivalent to v € U+ and (v|v) =
(v + ulv +u), ie.

(2.11) Q(u) + (uv) =0,

where Q(u) := (u|u)/2. Thus we need to count the number N of solutions v € U+ for ([2.11)).
By Witt’s lemma, we can find a basis (e1,...,em,91,...,9x) of UL, with k,m >0 and k +m =

n — d, such that the Gram matrix of (-|-) on U~ in this basis is <8 g), moreover, if k > 3, or if

k = 2 and Span(g1, g2) is of type +, then we can choose to have

E = diag<<(1) (1)> ,diag(es, . .. ,z—:k)>

for some e; € F. Let a; := (e;|v) and bj := (gj|v). Since v ¢ U = (U+)+, [2.9) holds; also write
u=7y e+ Zj yj9; with z;,y; € Fg and w := Zj e;.
Now, if m > 1 and, say a; # 0, then (2.11)) amounts to

a1x1 + Zaiﬂfi + Q(w) + (wlv) = 0.

i>2
For every choice of (2, ..., Zm,y1,...,yx) we have a unique choice of z; to fulfill this equation, and
so N = ¢mtF=1 = gn=d=1 Assume now that a; = ... = a,, = 0; hence k > 1 by (2.9). If k > 3, or

k = 2 but Span(g1, g2) is of type +, then our choice of E transforms ({2.11)) into
0=y12+ Y el + > ysbs.
Jj=3 J
Note that, for any ¢ € Fy, the equation y1y2 + b1y1 + bay2 = ¢, which is equivalent to
(y1 + b2)(y2 + b1) = ¢+ bibo,

has at least ¢ — 1 solutions in F, (one for each choice of yo # —b1), whence N > (¢ — 1)q
(¢ — 1)¢g"%2. If £ < 2, then we can choose y; = ... = yx = 0 and z; arbitrarily, yielding

m+k—2 _
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N > ¢™ > ¢" %72, (A more careful analysis shows that N = (¢—1)¢™ if k =1, and N = (¢ +1)¢g™

if k = 2, using the transitivity of GO; (q) on vectors y € Span(gi, g2) of given Q(y) € Fy.)

(d) Finally, let Cl = Q and p = 2. Then (2.7)) is equivalent to v € U+ and Q(v) = Q(v + u), i.e.
u € Ut satisfies (2.11]). Thus we need to count the number N of solutions u € U+ for ([2.11).
By Witt’s lemma, we can find a basis (e1,...,em, g1, ..., gox) of UL, with k,m > 0, and 2k +m =

0 0 O
n — d, such that the Gram matrix of (:|-) on U+ in this basisis [0 0 I |. Let
0 Iy O

a; := (eilv), bj = (g;|v), ci = Q(e), d; == Q(g;)-

Since v ¢ U = (U+)*, holds; also write u =}, mie; + 32, Y;95, i, y; € Fq, and w =3, y;g;.
Then amounts to
Z(aimi + cw?) + Q(w) + (wlv) = 0.
(2

(d1) Suppose k > 2, or k =1 but Span(g;, g2) is of type +. Then we can choose (g1, ..., gax) SO
that d; = Q(g1) = 0. Then, for any ¢ € F,, the equation y1yx+1 + b1y1 + bkt1Yk+1 + dk+1yi+1 =c
has at least ¢ — 1 solutions in F, (one for each choice of yj+1 # b1). In this case, for every choice
of (x1,...,Zm,y; | 7 # 1,k + 1) we have at least ¢ — 1 choices of (y1,yx+1) to fulfill , and so
N > (q _ l)qm+2k72 > qn7d72'

(d2) If, for instance, a; = 0 but ¢; # 0, or a1 # 0 but ¢; = 0, then for any ¢ € F, the equation
clx% +aj21 = c has a unique solution in F,. In this case, for every choice of (z2,...,Zm,y1,. .., Y2x)
we have at a unique choice of z1 to fulfill , and so N = ¢mt2k-1 = gn—d-1,

(d3) Suppose k = 1 but Span(gi, g2) is of type —. If, say, c; = Q(e1) # 0, then, replacing g; by
g1 + e1/y/c1 we get Q(g1) = 0, and so Span(gi, g2) is now of type + and we can finish as in (d1).
Otherwise we have ¢; = 0 for all i. Now, if, say a; # 0, then we can argue as in (d2). If a; = 0 for
all 4, then by choosing 31 = y2 = 0 but x1, ..., z,, arbitrarily, we get N > ¢ = ¢"%2.

(d4) Tt remains to consider the case k = 0. Then +/Q is F,-linear on U+ = Span(ey, ..., ), 50

we can choose (eq,...,ey) such that ¢; = ... = ¢,,—1 = 0. Now, if a; # 0 for some 1 <7 <m — 1,
then we can argue as in (d2). Otherwise we have a3 = ... = a;—1 = 0. Choosing x,,, = 0 but
T1,...,Tm_1 arbitrarily, we get N > g™~ 1 = ¢" 91 O

Proposition 2.5. Let n > 5, m < n, and k < (n — 1)/4 be positive integers and r a non-negative
integer. Let V =Ty, G = GL(V) or CI(V), and let g be an element of G with supp(g) > n —m.
Let

v =(v1,...,0) and W = (wi,...,wg)
denote two sequences of linearly independent vectors of V', and suppose
r = dim Span(vy, ..., vk, w1, ..., wg) — k.
Let
Gy w = {1‘ eq | a:_lgzz:(wi) =y, 1 <1< k:}
Then the number of elements in G v is at most

2rqn2 —k(n—m)—rm

if G = GL(V) or SL(V), and at most

quk(nfm)+r(kfm+1)+k(k+1)/2

if G = Cl(V') with Cl = SU, Sp, SO, or Q.
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Proof. (i) Suppose first that » = 0, so v1,...,v, and wy, ..., wy span the same subspace W of V.
Let T denote the linear transformation on W defined by w; — v;. We consider V :=V ®F, IF and
W:=W ®F, ]F as Fy[t]-modules, where t acts by g @1 and T'® 1 on these spaces respectively. The
condition !grw; = v; implies that  ® 1 induces a F,[t]-linear map from W to V.
For A € F,, let V\ and W) be the corresponding generalized eigenspaces, i.e. Ker((t —\)") on
V and W. Then
Homg ,(W,V) = [ [ Homg, (W, V).

For each A\, we choose decompositions

=

niv Wa =W,

2 3

<l

where
Vi 2 (Fg[tl/(t = N)'Fy[t]) ™, Wi = (Fg[t]/(t — X)'Fyt]) ™.
Thus,
dlm]F Homg [t](W V) ZZmln i, J)axibx;-
A g
As dim Ker(g — A) = )", ax; < m for all A, for each j > 1, we have

> “min(i, jlar; <j Y an; = jm.
i i
Furthermore, Zj)\ jbx,j =k, hence

dimﬁq HomF [t (W,V) < ZZ]mb,\] = mk.

Thus, for any # € Endy,V such that (z®1)|y € Homﬁq[t](W, V), there are at most ¢"* possibilities

for the restriction of z to W. If G = GL(V) or SL(V), then there are at most ¢("~*" possibilities
for the restriction of x to a complement to W in V. Therefore,

T 1/ n2—k(n—m
|Gy wl < {2 € Endg,V : (z @ 1) |y € Homg (W, V)}] < g™ ~F=),

which implies the proposition in the case r = 0 and G = GL(V), SL(V).

Suppose G = CI(V) # SL(V). Note that dimW =k < (n —1)/4 < (n — 3)/2. The number of
elements z € G with a fixed action on W is at most the order of the pointwise stabilizer H of
W in G, which is bounded by ¢P—kn+hk(E+1)/2 1,y Lemma Hence,

‘wa‘ < quk(nfm)Jrk(kJrl)/Q,

completing the proof of the statement in the case r = 0.

(ii) For the general statement, we use induction on k, with the obvious induction base k& = 0.
Suppose the proposition holds for k—1 > 0. Using the case r = 0 established in (i), we may assume
without loss of generality that vy ¢ Span(ws, ..., wy). Hence we can find v* € V*, a dual vector of
V', such that v*(w;) = 0 for 1 < i < k and v*(v;) = 1. For 1 <i < k, we denote ¢; := v*(v;), and
observe that replacing v; by v; — ¢;vr and w; by w; — cwy, for 1 < ¢ < k — 1 does not affect the set
G+ w. After this replacement, we now have v*(v;) =0 for 1 <7 < k—1, v*(v) = 1, and v*(w;) =0
for 1 < i < k. Hence

(2.12) v ¢ U := Span(vy, ..., 01, W1, ..., Wk).
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Let Q:=V U, and let

V/ = (U],. .. ’Uk—1)7 W/ = (wlﬂ._ . 7wk‘—1)7
H={zecG|z)=v, 1<i<k-1, z(wj)=wj, 1 <j <k}
We also note that dimU < 2k —1 < (n — 3)/2. Next, for all h € G we have that

|Gh(v),h(w) | = |GV7W ‘ :

Taking h € H, we have h(vg) € Q by (2.12). Moreover, if h,h' € H and h(vg) # h'(vg), then
Gh(v)h(w) and Gy (v (w) are disjoint subsets of Gy of the same size. It follows that

‘Gv/.w/’
2.13 Gy wl < .
(213) Gunl <05
Also set
r’ = dim Span(v1, ..., Vk_1,w1,. .., wk_1) — (k — 1).

Then (2.12)) implies that 7/ <r < ¢’ + 1.
(a) Here we consider the case G = GL(V) or SL(V). Then H acts transitively on 2 which has
cardinality at least ¢" /2. Therefore, (2.13)) implies that

|GV’,W" < 2‘GV’,W’|
QT "
The proposition now follows by induction. Indeed, by induction hypothesis and (2.14]),

| GV,W ‘ < 2T,+1 qn2 —(k=1)(n—m)—r'm—n

(2.14) |Gy w| <

— 2T'+1qn2—k(n—m)—(r’+1)m
< 27—k
since ¢ > 2.
(b) Now consider the case G = CI(V') # SL(V'). Then the induction hypothesis for £ — 1 implies
Gy wi| < qD*(k*1)(nfm)+r/(k—m)+k(k—1)/2‘

On the other hand, (2.12]) implies that dimU = k 4+ r — 1, and so Lemma yields

H‘ > qnfdimeZ _ nfkfrfl.

|v
It follows from (2.13)) that |Gy w| < ¢¥, where
E=D—-(k-1)n-m)+r'(k—m)+k(k—1)/2—(n—k—r—1)
=D—kin—m)+k(k+1)/2+7(k—m)+r—m+ 1.

q

If r =7/, then
E=D—-kin—m)+r(k—m+1)+k(k+1)/24+1—m

<D—kin—m)+r(k—m+1)+k(k+1)/2
since m > 1. If r =7’ + 1, then
E=D—-kn—m)+r(k—m+1)+k(k+1)/2+1—-k
<D—-k(n—m)+rk—m+1)+k(k+1)/2
since k > 1, and the induction step is completed. O

We denote 2~ 1gz by ¢°.
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Proposition 2.6. Let n > 5 be an integer, V := Fy, and G := GL(V) or CI(V). Let m <n be a
positive integer and let g € G be an element with supp(g) > n —m. Let a, b and d be integers such
thatk :=ad < (n—1)/4 and b > 2. Let P(x) = 3", ppa" € Fglz] be a monic polynomial of degree
<d-1. Letuy,...,uq €V be lmearly independent. Then the number of b-tuples (1, ... 1) € G°
such that P(g™ --- ¢ )u; =0 for 1 <i < a is bounded above by

qbn2+(b— 1)k24+2bk—an+1

if G = GL(V) or SL(V), and by
qu+(gb—1)k2+gbk—an
if G = Cl(V) # SL(V).

Proof. (i) For 0 < j<b—-1,1<i<a,and 0 < h <d— 1, consider all choices (w,v) of vectors

vlhj, ,’:fj € V satisfying the following conditions:
(a) For 1 <i<a, woozuz.
(b) For 0 < j <b-—2, w”Jrl vlfj.

c) For0<h<d-2, whH = th’b_l.

(
(d) For 1 <i<a, thhvi,b—l = 0.
( h

) For each j, the k = ad vectors of the form w;

i; are linearly independent.

Given such choices, we define
T'w,v,j := dim Span U{vffj, wffj} — k.
hi
For each b-tuple (rg,71,...,75—1), we would like to bound above the number of pairs (w, v) with
rwv,j =rjforj=0,1,...,b—1. To do this, we choose 0 < t < b—1 such that 7, = max(ro,...,7—1).
We first choose all the wffo. By condition (a), the values for h = 0 are determined, so there are less

than g(k—on

possibilities. By conditions (c) and (d), these choices determine vfb | for all A and 7.
Next, iteratively, for 0 < j < t, we choose wfﬁl = U” for 0 <h<d-1and1<1i<a,subject
to the condition ryw v ; = r;. By Lemma [2.1} there are at most ( )q”J”""k choices at each step. For
the remaining values of j, we work backward for t < j < b, Choosmg wh for 0 < h<d-1and

rin+k?

1 < < a, subject to the condition that ryw v ; = r;. Again, there are at most (T_)q choices at
J

each step. Therefore, the total number of choices is at most
q(k—a)n H <k ) qrjn+k2 < q(k—a)n+m+(b 1)k2 H (k > ’
. ] . T
gt N j#t N
where r :=rg + -+ + rp_1. Since
b—1 k k
< _ obk
> I =)
ro+...+7rp—1=7 J j=0 *r;=0
the number Ny of pairs (w,v) with 3 rw,v,; = r is less than

Qbkq(kfa)nJrWHbfl)k?

For given (w,v) we consider the number Ny of (2o, ...,25—1) € G® such that

(2.15) griwp; = vl Vh,i, j.
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(ii) Consider the case G = GL(V') or SL(V). By Proposition

b—1
]\]2 S H 2Tw’v,jan,k(nfm)frww’jm — 2rqbn2—bk(n7m)frm
§=0
Therefore, the number N of tuples (w, v, z1,...,xp) satisfying (2.15)) is at most
92bk+1 o qbn2+(b—1)k2—(bk—r)(b_Tln—m)—an
0<r<bk ’

As b < =, this is bounded above by qb”2+(b_1)k2+2bk_“”+1. The projection onto G® of the set of

tuples (w,v,z1,...,2) satisfying (2.15) therefore has order at most ¢ T(O-Dr*+2bk—antl wpich
proves the proposition in this case.

(iii) Now let G = CI(V') # SL(V). By Proposition

b—1
N, < H gD RO m) TR+ 1) 247w, (k=met 1) D —bh(n—m)+bk(k+1) /2 (k—m-+1).

§=0
Therefore, the number N of tuples (w, v, z1,...,xp) satisfying (2.15)) is at most

92bk oo bD—bk(n—m)+bk(k+1)/2+r(k—m+1)+(k—a)n+(b—1)k*+(b—1)rn/b_

0<r<bk

As b < I this is bounded above by qu+(gb*1)k2+%bk‘*an‘ Again projecting onto G, we obtain
the proposition in this case. O

3. PROBABILISTIC LEMMAS

The probability theory terminology used in this section and beyond can be found in a standard
text such as [Dul. Given a specified finite group G, we denote by X;, X, ... a sequence of independent
uniformly distributed random variables on G. Thus, for ¢ € G, ¢*¢ are independent uniformly
distributed random elements of the conjugacy class of g in G. We use the counting results of the
previous section to prove, roughly, that for finite classical groups the maximum eigenspace dimension
of g% ... g% almost always grows sublinearly in n, provided that supp(g) is sufficiently large and
bsupp(g) > n. We will be particularly interested in the case that supp(g) is bounded below by a
constant multiple of n as n — oo; in this regime, it is important that the probability that a large

eigenspace exists goes to zero exponentially in n?.

Proposition 3.1. Let 0 <& <1,d € Z>3, n € Z>1, G = CL(V), or G = Q(V)) when 21 q. Suppose
s € Z>1 1is such that n > s > 8d*/e if G = SL(V) and n > s > 23d?/e if G # SL(V). Then, with

b:=[n/s],
the following statement holds for any element g € G with supp(g) > s. The probability that there
exists a non-zero polynomial P(x) € Fy[z] of degree < d such that

dimKerP(g"t --- g**) > en

1s less than

3+d—=2ns
q 18d

if G = SL(V), and less than

62713
q2+d_ 31d2

if G # SL(V).
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Proof. Since the number of non-zero polynomials in F,[z] of degree < d is ¢% — 1, it suffices to prove
that for each P,

2
g_gns _
P[dim KerP(g*t .. g%%) > en] < q :Siv G = SL(V),
¢ aP G #£SL(V).

We fix P and, with a chosen below, let (Uy,...,U,) denote a random ordered a-tuple of linearly
independent vectors in V', uniformly distributed among all such a-tuples and independent of the X;.

(i) First consider the case G = SL(V). Sincen > s > 8d?/e, we have 2 < b < ne/8d*+1 < ne/7d>.
In particular,

(3.1) 2bd 4 2(b — 1)d* < 3bd® < 3ne/7 < ne/2, and 2bd < bd* < ne/7.

We also choose

en — 2bd

(3.2) a:= |, where a := -1

Note from (3.1)) that o > 2. Furthermore, ad < ad < en/4 < n/4, and so ad < (n — 1)/4. Hence
by Proposition we have

bn?4(b—1)ad?+2abd—an+1
GI°

q

P[P(g" - g*)U; =0, Vi< a] <

n2
The number of b-tuples in G is greater than gb

2_
4q)b Z qbn 3b7 S0

P[P(¢5 - ¢)U; =0, Vi < a] < g3t (0-1)ad®+2abd—an+t1,
If W is a subspace of V' of dimension > en, then

(" =1 (¢"=q¢") _ g
(" —=1)---(qn — ¢+ 1) — 4q™

aen

(3.3) P[Uy,...,U, e W] > > gfan—an=2,

Thus,

q3b+(b71)a2 d?+2abd—an+1

>P[Uy,..., U, € KerP(gxl .. .gXb)]
> Y PKaP@ g =W PUL U e W]
{W|dim W>en}
> qean—an—2 Z P[KerP(gX1 .. .gXb) _ W]
dim W>en
= F"=2P[dim Ker P(g*t - - - ¢**) > en).

We deduce that

(34) P[dlm KerP(gxl .. _gXb) > E’rl] < q3+3b+(b71)a2d2+2abd7€an'
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By (3.1)) and (3.2), the exponent in (3.4]) is bounded above by

2 9 B (en — 2bd)?
(en — 2bd)* (en — 2bd)*
<3 TR +en <3 1Pn)s +eéen
(6en/7)? B 9e2ns e2ns
<3 /s +en=3 1982 +en <3 132

since s > 8d?/e.

(ii) Now let G # SL(V). Since n > s > 23d%/e, we have 2 < b < ne/23d? + 1 < ne/22d%. In
particular,

7 7 7 ne ne
. — 2(10b — 4)d? < 22bd? Zbd < Sbd? < —.
(3.5) 2bd+ (106 )d* < 22bd” < ne, and 2bd_ 4bal = %47 < D
We also choose
7
€n—§bd
(36) a = LOZJ, Where o = m

Note from (3.5)) that o > 2. Furthermore, ad < ad < en/12 < n/4, and so ad < (n —1)/4. Hence
by Proposition [2.6] we have

bD+(3b—1)a?d*+Labd—an
GI®

P[P(f - g")U; =0, 1 <i<a] <2

bD
q bD—2b
4b 2 q

The number of b-tuples in G is greater than , where we use the bound

(V)] = [S0(V)|/2 > ¢° /4
when 2 1 g. Therefore,
P[P(gxl B -gxb)UZ- —0,1<i<d < q2b+(gb—1)a2d2+gabd—an_
Again using as above, we deduce that
q2b+(gb—1)a2d2+gabd—an > ¢#n=an=2p[dim KerP(gXl N .gxb) > en),
and so
(3.7) Pldim KerP(g! - -- %) > en] < q2+2b+(gbfl)a2d2+%abdfsan‘

Note that 16 < 10b — 4 < 10n/s + 6 < 11n/s. Hence, by (3.5) and (3.6)), the exponent in (3.7) is
bounded above by

5 6 o T (en — Ibd)? 7
2420+ (ob—1 “bd — 1) =2+2— 2 " — =
+ b+(26 Yd +(2bd en)(a—1) +2b 00— D)2 + (en de)
(en — Ibd)? (en — Ibd)?
2~ 2 7 227
St T Aw—aa TS Udnjs "
(11en/12)? 11e%ns e2ns
R S e A =2 2~
ST @ns " e ST 3
since s > 23d?/e. O

Recall that E(X) denotes the expected value of the random variable X.
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Lemma 3.2. For any finite group G, any element g € G, any irreducible character x of G, and
any positive integer b,

b
Bl )] = WL

Proof. For any h € G, the probability P[ Xio g% = h] is given by the Frobenius formula

QOEII“I“ (,0
Therefore,
1 v(9)"2(h)
E[x (s Z f > FOEE
G goEIrr(G
x(9)"

Z b 1 \G] };G X(l)b—l

by the orthonormality of irreducible characters. O

4. CHARACTER BOUNDS FOR ELEMENTS WITH LARGE SUPPORT

The main result in this section is Theorem [.4] which gives an exponential character bound at
g € G whenever supp(g) is bounded below by a fixed positive multiple of n. We use the results of the
previous section to show that, assuming n is large, a random walk on the Cayley graph of G with
respect to ¢g& almost always leads in a bounded number of steps to an element whose centralizer
order is smaller than any desired power of |G|. Using known character bounds for such elements,
we can estimate the expectation of x on such elements, and deduce an exponential upper bound for

Ix(9)!-

Lemma 4.1. For any 0 < v < 1, there ezists 0 < a < 1 such that, for any n € Z>2 and any prime
power q, if V. =Fy, g € GL(V), and

(4.1) dim Cgnq(v)(9) > an®,
then |Cgrvy(g)| > [SL(V)[*~.

Proof. We can take a = 1 — v2/4. If d denotes dim Cgna(v)(9), then d is the dimension of the
centralizer C(g) of g in the algebraic group GL;,. The finite group C(g)(F,;) = Cqrv)(g) has a
normal series, whose factors X; are unipotent groups of order ¢%, or GL,y,(¢%) with d; := m?a;,
and ), d; = d. Note that since q¥ — 1> (q—1)%q¥i=% for 1 < j < my,

m;

qdi > |GLm,.(q‘“)! — qaimi(mi—l)/Q . H(qaij _ 1) > ((] _ l)miaiqdi—miai7

j=1

and GL;,,(¢*) has Fy-rank m;a;. Since the rank of C(g) is at most n, it follows that

(4.2) ¢ > |Caroy(9)| = (¢ — 1),
and so
(4.3) |Csrvy(9)] = (g — )™ g™

Now, if n > 2/v, then, since a = 1 — v2/4 > 1 — v/2, we have
Csrvy(g)] = ¢4 = glot/mn? 5 gUmv/2v/2n® 5 G-y,
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If n < 2/v, then a = 1 —v?/4 > 1 — 1/n?, whence ({.1)) implies that g is a scalar matrix and
therefore that Cgr,y)(g9) = SL(V). O

Proposition 4.2. Let n > 2, V =Ty, and let g € GL(V) have support s := supp(g). Then

(a) (n—s)? < dim CGL(V’@FQE)(Q) <n(n—s),

(b) [Cary(9)] < ¢"%), and

(c) ¢ 2 < ]gSL(V)| < q2”5+”_52_1. If particular, \SL(V)|$/3” < ]gSL(V)| < |SL(V)\3S/”; in fact,
[SL(V)[2/2m < |gSMVI| < [SL(V) 225/ if (n,q) # (2,2), (2,3).

Proof. (a) In the case g is unipotent, the estimates were already proved in [LiShll pp. 509-510].

In the general case, we can replace V' by V ®p, F,, and let A\i,..., N\ € F; be all the distinct

eigenvalues of the semisimple part ¢ of ¢ = tu on V, with multiplicities nq,...,ny,. If V; = F;”
denotes the corresponding t-eigenspace on V' and if the unipotent part u of g acts on V; as u;, then

CaLi(y H Ceorw;

For s; := supp(u;), the largest g-eigenspace on V; has dimension n; — s;, and we may assume that
n,—8 <n—s=n; — Sj.

By the unipotent case, (n; — s;)? < dim Cgr,v;)(ui) < ni(n; — s;). Hence

(n—s)* = (n1—s1) <Z n; —Si) <d1mCGLV) <an n; — (nl—sl)Zni:n(n—s).

(b) follows from (a) by (4.2).

(¢) By [LMT, Lemma 4.1(ii)], ¢"* 2 < ISL,.(¢q)| < ¢"°~!. On the other hand, setting d :=
dim Cgrv)(g), we have g < |CSLn 9)| < qd by (4.2 . ., and (n —5)2 < d < n(n —s) by
(a). It follows that ¢"—2 < |¢Stn(9)] < q2ns+” ' -1 1 yielding the first statement.

The second statement is obvious when s = 0, and can be checked directly when n = 2. When
n>3,2ns+n—s?—1<(n?—2)(3s/n) and ns — 2 > (n? — 1)(s/3n).

The third statement is obvious when s = 0, and can be checked directly when n = 2 or s = 1.
When n >3 and s > 2, 2ns +n — s — 1 < (n? — 2)(2.5s5/n) and ns — 2 > (n? — 1)(s/2n). O

Lemma 4.3. For 1 > e >0 andn € Z>1, if V =TFy, g € GL(V), and dimKerP(g) < en for all
polynomials P(x) € Fylz] of degree < d := [1/¢], then
n25
Carv)(9)] < g™ "

Proof. Let s := supp(g) and suppose that s < n —en. Then n — s = dimKer(g — \) for some
eigenvalue A of g on V' ®p, F,. Since any Galois conjugate of X over F, is also an eigenvalue for g
with eigenspace of the same dimension n—s, the Galois orbit of A has length e <n/(n—s) < 1/e <d.
Thus A is a root of some polynomial P € F,[z] of degree e < d. Hence, by hypothesis,

n—s=dim Ker(g — \) < en,

and so s > n —en, a contradlctlon We have shown that s > n — en. By Proposition E(b this
implies that |Cgr)(g)] < g O

Now we can prove character bounds for elements with large support.
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Theorem 4.4. There exist explicit constants v > 0 and C' > 4 such that the following statement
holds for any positive integer n, any 0 < § <1, any V' =Fy for any prime power q, any G := SL(V),
SU(V), Sp(V), or Q(V) (or SO(V') or Spin(V') if q is odd), any element g € G, and any irreducible
character x € Irr(G). If s := supp(g) > max(C, fn), then

x(9)] — e

AT < (1) wTa/AT.

x(1) W
Proof. Asn > C, by taking C sufficiently large, we can guarantee that n is as large as we wish; also
we may assume that x(1) > 1. Let b := [n/s]. Also set

1 8

8o =

07 1y 9

if G = SL(V) or SU(V), and
g0 = 0.0011, §o = 0.992

otherwise. By Lemma there exist d € Z>3 and 0 < € < 1 such that for h € G, if dim KerP(h) <
en for all non-constant P(z) € Fy[z] of degree < d, then

[Cary ()| < ¢ /12, if G = SL(V) =

Carn (W) < g ", it G = SU(V) 2 SUL(a),

|Cary(h)] < gD if G = Sp(V), SO(V), V),
ICaro(R)] < ¢"/2~ D0 /2, if 24 ¢ and G = Spin(V'),

SLn(q),
SU
(4.4)

(with the convention that in the spin case, h is the image of h in Q(V) and P(h) is replaced by
P(h); this ensures |Cg(h)| < ¢/271%0 in the spin case). Indeed, we can take
e =1/4000, d = [¢71] = 4000, C > 224,

and have
q(n/2—1)280/2 > q(n/2—1)220—1 > ana'

The centralizer bound (4.4) implies by |[GLT1, Theorem 1.5] and [GLT2, Theorem 1.4] that

(4.5) Ix(R)] < x(1)%
If G = SL(V), by Proposition choosing C' > 8d? /e and « > 0 sufficiently small so that

€2n8

(4.6) 3+d-— 182 < —ns,

we then have ,
P[|Cqr, (" -+ g™ > ¢ 1] < g
If G # SL(V), by Proposition choosing C' > 23d? /¢ and v > 0 sufficiently small so that

(4.7) 9 4d— 2 —yns,

we then have

when G = SU(V),
P[|CorLan (g - g)| > g2 e0] < gmms
when G = Sp(V'), SO(V), or Q(V), and

P[|Car) (@ - 7%)| = ¢/2 V%0 /2] < g=ms
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when 21 ¢ and G = Spin(V). Indeed, by taking C' > 23d? /e and 0 < y < £2/32d?, we have

e2ns S e2ns S C2e? B 52942 > d+3
312~ "7 99242 T 99242~ 992

when d > 3, ensuring (4.6)) and (4.7).
By (4.5) applied to h = g*1 - ¢*, this implies that

Pllx(g™ - g*)| > x(1)%] < ¢

Thus,

(4.8) ’E[X(gxl - 'gx”)]\ < E[|X(gxl .. ,gXb)H < X(l)éo + x(1)g™ ™.
On the other hand,

(4'9) E[X(gxl ce gxb)] — X(g)b/x(l)bfl

by Lemma [3.2]

Now assume that s = supp(g) > pn. Then
b=[n/s| < [1/B].

As x(1) < |G)'V? < ¢"/%, we have ¢~ < x(1)=27%/" Without loss of generality, we may assume
v < (1—10p)/2 =0.004, so
_ 2vs

X(1)% < x()' =
For n > 9, the minimal degree for a non-trivial character of G is at least 2"/2 [LaSe], so we have
x(1)=78/" < 2778/2 If C is sufficiently large (say C' > 2/v), this is at most 1/2, so when x(1) > 1,

(1) <X

It now follows from (4.8) and (4.9)) that

x(9)] < x(D)'77 < x(1)' w7,
as stated. Moreover, our proof shows that one can take

. e 1 o— 64d* _ 9141012
32d?  213.1012 g2
although this choice is not optimal. O

[GLTT, Theorem 1.5] and [GLT2, Theorem 1.3] produced the character bound |x(1)|® for any
element ¢ in a classical group G with |Cg(g)| < |G|%, but only for certain positive constants € < 1.
Our next result generalizes this to arbitrary constants 0 < e < 1:

Theorem 4.5. For any 0 < € < 1, there exists a constant 0 < § < 1 such that the following
statement holds. For any n € Z>9, any prime power q, any quasisimple classical group

G = SLu(q), SUn(a), Span(9), 2 (a), Sping (q)
any element g € G, and any irreducible character x € Irr(G), if |Ca(g)| < |G|F we have

X(9)] < x(1)°.
Proof. (a) First suppose that |Cg(h)| < |H|® for some element h of H := SU(V), Sp(V), SO(V),
or (V). Here V is Fe, F2", F7, and F respectively for SU,(q), Spa,(q), SOn(q), and Q,(q)
respectively. Then H < L := SL(V) and |H| > |L|*/?. Since
[H|-[CL(h)]

L 2 [HOL(R)] = =g
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we have
LI

[H|/ICu(R)| — [H['~

Next, suppose that 2 t ¢ and |Cg(h)| < |H|® for some element h of H = Spin(V). Then H
projects onto H := Q(V) < L = SL(V), sending h to h, and |Cg(h)| < |Cy(h)| < |H|?. As above,
we still have |H| > |L|'/3. Hence the above argument yields |Cp,(h)| < |L|2+€)/3.

(b) Now set v :=1—¢ if G = SL(V), and v := (1 — ¢)/3 otherwise. By the observations in (a),
we have |Cgp1)(g)] < [SL(V)|'™", with the convention that g is replaced by its image in (V) in
the case G = Spin(V). By Lemma there exists some 0 < « < 1 such that

dimp, Cgnav)(g) < an®.

ICr(h)] <

< ’L‘(2+a)/3.
s >

On the other hand, g has an eigenspace of dimension n—son V =V ®F, F, for s := supp(g), hence
dimp, Cgua(v)(9) = diqu CEnd(V) (9) > (n—s)%

It follows that s > n(1 — /a). Now we can apply Theorem (i), with 8 := 1 — \/a, and take
d > ~B/[1/B] when s > C. If s < C, then n is bounded, and the result of Gluck [Gl] implies the
statement in this case. O

5. FURTHER BOOTSTRAPPING AND UNIFORM CHARACTER BOUNDS

In this section, we prove Theorem an exponential upper bound for |x(g)| with exponent

linear in %, with an explicit, though very small, coefficient. If supp(g) is greater than any given
positive constant multiple of n, we already have this by the results of section 4, so what is needed is
a second bootstrapping argument to go from elements of small support to elements whose support
satisfies a linear lower bound. It may be useful for the reader to keep in mind the case that g
is a transvection. Here we want that the support of the product of b random transvections, with

probability very close to 1, grows linearly with b for b < n; this is given by Proposition

Lemma 5.1. Let V be a finite dimensional vector space over a field F, g,h € End(V), and let
A € F. Then the following statements hold.

(i) codim Ker(gh — A\u) < codim Ker(g — \) + codim Ker(h — p).

(ii) supp(gh) < supp(g) + supp(h).
Proof. (i) Let A :=Ker(g— \) and B := Ker(h — u). As A+ B CV, we have

dim(AN B) > dim(A) + dim(B) — dim(V') = dim(V) — codim(A) — codim(B).

Since AN B C Ker(gh — Au), the statement follows.

(ii) Now choose A, i1 so that codim Ker(g — A\) = supp(g) and codim Ker(h — p) = supp(h). Since
supp(gh) < codim Ker(gh — Au), the statement follows from (i). O

In the next statement, we identify V* ® V with End(V') for any finite dimensional vector space
over a field F, and A € F with A - Idy .

Proposition 5.2. Let V' be an n-dimensional vector space over a field F and b and k positive
integers. Let x1,...,xy be elements of GL(V) and vy, ...,vx € V and ¢1, ..., ¢k linearly independent
vectors in V. and V* respectively. Let 0 # \ € F be a scalar and let

k
T::)\+Z¢j®vj
j=1
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be regarded as an element of End(V). For 1 < i < band 1 < j < k, let w;; = x; ' (vj) and
i o= x;l(qu). For1<s<b, let

A :=dimSpan(w;; |1 <i<s,1<j<k), By:=dimSpan(¢;; | s <i<b,1<j<k).
Then the rank of T™ ---T% — \° is at least

b
Z max(0, Ay — As_1 + By — Boy1 — k).
s=1

Proof. It suffices to find vectors us; € V and ws; € V* indexed by
1<s<b, 1<t<max(0,As — As_1+ Bs — Bsy1 — k)
such that
b—1 : 1oyl
(T ... 7% _ \b _ AT (L) = (s, 1),
(5-1) W't ((T T A )(us’t)) N { 0, if s > s and (¢',t') # (s,t).

Indeed, this guarantees that, with respect to the lexicographic ordering on the two bases, the pairing
(w|v) := w((T® - T% — \b)(v)) induced by between the span of the wy p and the span of the
Al_bu&t is unitriangular in terms of these bases, hence perfect.

To achieve this, we construct vectors us; € V' and w,s; € V* with the following properties:

(a) For s < i, 1; j(usy) = 0.
(b) For s > i, ws(w; ;) = 0.
(c) For all s, t, and t/, ws ((T7 — X)(usy)) = Oppr-

To accomplish this goal, for each s, let
Wy := Span(ws 1, ..., Ws k), Ys:=Span(Ys1,...,¢Ysk)-
For 1 < s,s" < b, we define
Wiss) = Ws+ Wepi + -+ Wy, Yoo =Vs+ Vs +--+ ¥y,

with the convention that, if s > s’ we have Wis,o1 = Vs, = {0}
As
dim W, /(W5 N W11 ) = dim Wg 4/ Ws11 ) = Bs — Bsy1,

there exists a (Bs — Bgy1)-dimensional subspace Us C V' such that v; ;(Us) = 0 whenever i > s but
for u € Uy, 1, j(u) = 0 for all j implies u = 0. Thus the operator

k k
T% — \ = Z$;1(¢j) ®xy ' (v)) = Zlﬁs,j ® Ws,j
j=1

j=1
annihilates every element of V killed by Wy, maps V to Wy, and maps U, injectively to Wy, and so
(5.2) Ker(T* — \)NnU, = {0}.
Let W! C Wy denote a subspace (of dimension A; — As_1) complementary in Wy to W[Ls_l] N W,
and let
Ul:={ueUs|(T% — \)(u) € W.}.

Then the dimension ¢g of U, satisfies

cs > dimUs +dim W, — dim Wy = Bs — Bg1 + Ag — Ag_1 — k.

Let (us,1,-..,usc,) denote any basis of U. Condition (a) holds for all vectors in Us and therefore
for the ug ;.
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Next, for each s we choose ws 1, . . ., ws ¢, satisfying condition (c) and annihilating W[, ,_j (guaran-
teeing condition (b)). We can do this because the conditions on ws; are that we ((T% —X)(us)) =1
and w,; annihilates

(5.3) (T = N)(Span(us 1, - -+, Ust—1, Us i1, -+ Us,e,)) + Wi s—1]-

Thus, it suffices to show that (7% —\)(us ) does not belong to the vector space (5.3). As the vectors
Us 1, .., Usc, form a basis of U[, by (5.2)), the latter condition holds since (7% — X)(U) C W/ meets
Wi s—1] in {0} by definition of W.

We claim that for s +1 < s’ < b+ 1, we have
(5.4) TEs ... % (Us,t) _ )‘b+1_S,US,t,

by descending induction on s’. The statement is trivially true for s’ = b+1 (since T%s' - - - T** means
Idy). If (5.4) holds for s’ + 1, then

k
TTs! ... T (us,t) — sz/(/\b—s’uS’t) _ Ab+1_5lus’t + )\b—s’ Zwy,j (us,t)ws,j — )\b-ﬁ-l—s/u&t’
j=1
where the last equality follows from condition (a).
Applying T*s to both sides of (5.4 with s’ = s+ 1, we obtain

(5.5) To TP+ TP (g ) = AT (ug ).
Next, we claim that for 1 <14 < s, we have
(5.6) TP T (ugy) € AT (ugy) + Wi s_1)-

Indeed, this is trivial when ¢ = s. If holds for i + 1, then there exists w € W;; 1 ;1) so that
THTE TP (ugy) = T (AT (ug) + w)

€ XTI (ugy) + Aw + Wy C AT (ugy) + Wi 51

By and the ¢ = 1 case of , we obtain
T T (usy) = AP T (ust) € AT (ust) + Wit s

= NPT (g ) + AT = M) (us) + Wi s-)-

Subtracting )\busyt and applying wy  to both sides with s > s, condition (b) implies
Wy (T -+ T™ — XY (ug 1)) = N7 wgr o (T — N) (ust)).

If s’ = s, this is A’"16,,» by condition (c), and if s’ > s, it is zero by condition (b), yielding as
desired. 0

Proposition 5.3. Let V. = Fy, b > 2 and k positive integers with bk < n/2, and let vq,..., v
be linearly independent vectors in V. Let Xi,...,Xp be uniform independent random variables on
G = ClV). Then we have
. . . 2bk ¢?k(=n/6) (] = SL,
P[dlm Span(X;(vj) |1 <i<b,1<j<k)< T] < { M-n12) O] 2 SL.
Proof. Consider the bk-term sequence of random vectors
Xl(’l)l), e ,Xl(’l)k),XQ(’Ul), . ,Xg(’l)k), e ,Xb(vl), . ,Xb(’l)k).
First we bound from the above the probability P;; that X;(v;) lies in the span

Sij = Span(Xy(5'),1 <i' <i,1 <j <k, Xi(v),1 <I1<j—1)
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of the preceding vectors, conditioning on all the vectors preceding X;(v;) in the sequence. Since
v1,...,V are linearly independent, this conditional probability is 0 if ¢ = 1. Next, let ¢ > 2, and let
H denote the subgroup of all the elements in G that fix each of vq,...,v;—1 (in particular, H = G
if j =1). By Lemmal[2.4 applied tod = j — 1 (so that d < k—1 <n/4—1 < (n—3)/2), H acts on

Q:=V ~ Span(vy,...,vj-1)

with orbits 1 = w{{, ..., = wl each of length at least
I — qn - qul, Cl= SL:
Tl =g, Cl#£SL

We want to count the number of g € G, with g(v1),...,g(vj—1) all fixed, and with g(v;) € S;;. Fix
such a ¢, and consider any such ¢’. Then h := ¢g~'¢’ € H, and so it sends v; € Q to some w € €
with 1 <t <s. With w fixed, the number of possibilities for h is at most |[Stabg(w;)|. Hence, with
t fixed, the number of possibilities for such ¢’ is at most
H|- QNS
92015y - [Stabis ()| = 1] - 10,1351/ > 205l

As we condition on all the vectors preceding X;(v;), it follows that

L [H]- 90 S| _ 1S3l
P, <— - < =2
Y= H| ; L - L

Note that dim S;; < k(i — 1) + j — 1. Hence, conditioning on the sequence of previous vectors, the
probability P;; that X;(v;) lies in their span S;; is at most

E(i—1)+j—1 . .
q ~ — < qu(z—l)—l—g—l—n S qbk—n
=
when Cl = SL, and at most
E(i—1)+j—1
q (ln_;_]l < Mi-D+2i-n (b k-n
q

when Cl # SL, regardless of what the previous vectors are.
We also note that, since b > 2 and bk < n/2, (b+1)k < 3bk/2 < 3n/4. Therefore, the probability
that there exist  terms X;(v;) in this sequence belonging to the span of previous terms is less than

bk I AN
( >qr(bk )§< )q /2
T T
bk -n bk —rn
< >qr((b+1)k )S( >q /4
r T

when Cl # SL. In particular, the probability that » > bk/3 is less than

when Cl = SL, and less than

bk

Z (bk> qfrn/2n < Qbk’qukn/ﬁlﬁ < qbk(lfn/Gn)
r=lbk/3] N
with kK = 1 when Cl = SL and x = 2 when Cl # SL. g

Proposition 5.4. If n is a sufficiently large positive integer, V. =Fy, g € G := Cl(V), then there
exists a positive integer b such that

b-supp(g) < n,
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and if X1, ..., Xy are i.i.d. uniform random variables on G, then

—n?/20 (] = SL
Plsupp(¢”t --- g%*) < n/9] < { 1 ’
Proof. If supp(g) > n/6, we can take b = 1. Hence, without loss of generality, we may assume k :=
supp(g) < n/6, and hence we may choose b € Z>2 so that n/3 < bk < n/2. Let X be an eigenvalue
of g such that k = codimKer(g — \), and choose linearly independent vectors vi,...,vx € V and
vi,...,v; € V* such that

k
g=XA+ Z v ® vj.
j=1
By Lemma [5.1[i), codim Ker(g*1 - -- g%t — A?) < bk < n/2. Thus Ker(g*' - -- g%¢ — Ab) is the largest
eigenspace for ¢*1 --- ¢*¢, and so supp(¢*! - - - g**) = codim Ker(g*1 - - - g% — \b).
Again define k := 1 if G = SL(V) and k := 2 if G # SL(V'). By Proposition the probability
that dim Span(X;(v;)) or dim Span(X;(v})) is < 2bk/3 is at most

2qbk(1fn/6f-e) < 2qn(17n/6/$)/3 < q7n2/20/$

if n is sufficiently large. On the other hand, by Proposition if

2bk
dim Span(X;(v;)), dim Span(X;(v;)) > R
then
b
codim Ker(gx1 .- -gxb - )\b) > Z max (0, As — As—1 + Bs — Bsy1 — k)
s=1
b
> Z(As - As—l + Bs - Bs+l - k)
s=1
:Ab—A0+Bl—Bb+1—bk
2bk  2bk
> — — bk
3 + 3
bk _ n
= > _,
379
Hence the proposition follows. O

Now we can prove one of the main results of the paper, giving a uniform exponential character
bound in terms of the support.

Theorem 5.5. There exists an explicit constant o > 0 such that the following statement holds for
any positive integer n > 3, any V = Fy for any prime power q, any G := SL(V'), SU(V), Sp(V),
or V) (or SO(V) or Spin(V) if q is odd), any g € G, and any irreducible character x € Irr(G):

’X(g)| —ao-supp(g)/n
W <x(1) W/n.

Proof. First we apply Theorem to obtain the positive constants C' and +. By [LaST1l, Theorem
1.2.1],

1x(9)] < q*\/SUpW/481'
x(1)
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Therefore, by choosing ¢ > 0 small enough, say o < 1/(241-(9C)3/?) we may ignore the cases where
n < 9C (or if x(1) = 1): if s := supp(g) < n < 9C, then x(1) < |G|'/2 < ¢"*/2, hence

X(l)as/n < qcrns/Q < q\/§/481‘
Henceforth we may assume that n > max(9C, 9) and x(1) > 1; in particular, x(1) > 2"/3 by [LaSd].

Now, if s := supp(g) > n/9, then s > C, and so we are done by Theorem taking 5 := 1/9
and o < +/9; in particular,

(5.7) X(g)] < x(1)! 775
Consider the case 1 < s < n/9 and apply Proposition to get 2 < b <n/s and that
Plsupp(g** -+ g**) < n/9] < ¢~ /2",

with k = 1 if G = SL(V) and k = 2 if G # SL(V). By the previous bound (5.7 for elements with
support > n/9, this implies that

Plx(g" g )] 2 x ()] < g <)
since x(1) < |G|Y/2 < ¢"*/2. Thus,
Bl (g - g )| < E[Ix(g - g )] < x(1)' 775 4 x (1) 710,
Since x(1) > ¢"/3 > 23¢ by [LaSe], by choosing o > 0 small enough, we then have
(5.8) [EX(g* - )| < x5 4 x ()10 < (1)
It now follows from and that

x(9)] < x(D)'7F < x()'
as stated. In fact, our proof shows that we can take

. 1 v
oco=mn| ——-,— |,
241 - (9C)3/27 82
which is 1/(6507 - 22! . 10'®) > 7-1072? for our chosen C and . O

As a consequence of Theorem we can prove the following linear refinement of [LaST1l The-
orem 1.2.1]:

Corollary 5.6. There exists an absolute constant v > 0 such that the following statement holds.
For any n € Z>2, any prime power q, any quasisimple classical group

G = SLn(q), SUn(4), Span(a), 2 (a), Spiny (a),
any g € G, and any x € Irr(G) of degree x(1) > 1, we have

|X(g)| < qf'y-supp(g)'
x(1)

Proof. By [LaST1, Theorem 1.2.1],

x(9)]/x(1) < g~ VUPpo)/ast,
Hence, by choosing v < 1/1443 we may ignore the cases where supp(g) < 9, in particular if
n < 9. Assume now that n > 10, which implies x(1) > ¢™3 by [LaSe]. Hence Theorem
yields |x(g)/x(1)| < ¢~?%/3, and we are done by taking

v = min(1/1443,0/3),
which is 1/(19521 - 22! - 10'8) > 2. 1072? for our chosen o. O
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We conclude this section with the following examples, which show that the exponent o -supp(g)/n
in Theorem is optimal (up to the constant o).

Example 5.7. Consider G = SL,(2), n > 3, and the unique irreducible character 7 of degree
2" — 2 of GG, so that 2- 15 + 7 is the permutation character of G' acting on the point set of V = F3.

Suppose 2 < s < n — 1. Choose £ e IE‘Q of order 2° — 1 and g € SL,(2) that is conjugate to
dlag( ,1,6,¢ ,...,52 ) over Fy. Then supp(g) = s, 7(1) = 2" — 2, and 7(g) = 2% — 2,
whence |T( )/T(1)| = T( )=$/" If s = 1, we can choose g to be a transvection, for which we have

s/n

supp(g) =1, 7(g9) = 2"7" — 2, and so again [7(g)/7(1)| = 7(1)~
More generally, we have

Lemma 5.8. Let G = Cl,(q) be a simple classical group with n > 7. If |G| is large enough,
and if g € G has support s = supp(g) < n — 2, then there is a non-trivial x € Irr(G) such that

x(9)/x(1)] = x (1) 7%/
Proof. The statement is obvious for s = 0, so we assume 1 < s < n—2. Choosing G of large enough
order, we have 7 . e (c) x(1)79%5 < 1 by [LiSh3, Corollary 1.3]. Assume to the contrary that

Ix(9)] < x(1)*79/" for all y € Irr(G). Choosing k := |(n—2)/s] we have ks <n—2 < (k+1)s—1,
and so
6ks — 2.55n > 3.45ks — 2.55s — 2.55 > 6.95 — 2.555 — 2.55 > 0

if k>2 If k=1, then s > (n—1)/2, and so 6ks > 3n — 3 > 2.556n since n > 7. Hence, for any
x € G we have

x(9)*x(2)] x(9)"] 1 055
SR GRS SR g S R (o
la#x€lrr(G) la#x€lrr(G) la#x€lrr(G) 1g#x€lrr(G)

and thus every element x € G is a product of k conjugates of g and so has supp(z) < ks < n—2 by
Lemma (ii). But this is a contradiction since G always contains elements of support n — 1. [

6. SUPPORT VS. CLASS SIZE, AND PROOF OF THEOREM [A]

In this section, we deduce Theorem [A] from Theorem The main difficulty is to bound
conjugacy class sizes |g©| in terms of the support supp(g) for all classical groups G < GL(V).
To do this, we need an analogue of Proposition (c) for all classical groups. There are results of
Liebeck-Shalev [LiShi] and Liebeck-Schul-Shalev [LSS| which are very much in this spirit. However,
we develop them from scratch because we want somewhat greater generality (not just the simple
groups) and also because we do not want implicit constants. For any finite group X, let P(X) denote
the smallest index of any proper subgroup of X. Lower bounds for P(X), X a finite classical groups,
are listed in [KIL, Table 5.2.A]. First we deal with unitary groups.

Proposition 6.1. Let n > 3, (n,q0) # (3,2), V = IFZQ, and let g € GU(V) have support s :=
0
supp(g). Then
[SU(V)*2" < |g%" V)] < [SU(V)*/m.

Proof. Let q := g3, so that V = [Fy. Let d denote the dimension of the centralizer C(g) of g in the
algebraic group GL,. Then d is bounded above and below in Proposition ( ). The finite group
Ccu(v)(g) has a normal series, Whose factors X; are unipotent groups of order q0 , or GLy, (qg")
with 2|a;, or GUy, (¢5?), with d; := m?a;, and Y, d; = d. By [LMT, Lemma 4.1(iv)],

m2a m2a N (_1)] 3 m2a
(6.1) 6" < 1GUm(a)l = a5 - [T(1 = ) < Sa6™"
j=1 90
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also, 3/2 < 206 < ¢8-¢) and q82_1‘5 < |SU(V)| < q82_1. Now we can follow the proof of Proposition
4.2(b), (c), but increasing the upper bound for Cgy1)(g) by g0 and decreasing the lower bound
by (o +1)/(g0 — 1) < 3 < ¢}%, going down from Cauv)(9) to Csy(v)(g). It follows that

—0.6n—2 SU(V 2ns+n—s>+0.6
qgs n §|g ()|§q0nsns )

Now, the statement can be checked directly for s = 0 and for SU3(5). If (n,q) # (3,5) and s < 2,
then

9% = PSU(V)) > g > [SU(V)[*/*".
If s = 1, we also have [g5V(V)| < ¢3"~1 < |SU(V)|3/™. n all other cases,

3
ns —0.6n —2 > 2i(n2 —1), 2ns+n—s>+0.6 < —S(n2 —1.5),
n n

proving the statement. O

Let J; denote the Jordan block of size i € Z>; and with eigenvalue 1. Then the Jordan canonical
form of any unipotent element « in GL(V') can be written as @;>1.J;", meaning it contains n; € Z>g
blocks J; for each ¢ > 1. Sometimes we will re-order the blocks into the form @ii;:l‘]mk with
mi>mo > ...>my > 1.

Lemma 6.2. In the above notation, for any unipotent element uw € GL(V') we have

t
(6.2) Z in? + 2 Z ining = Z(2/~cmk —mg).
i i<j k=1

Proof. We induct on the number r > 1 of distinct sizes of Jordan blocks of w. Suppose r = 1, i.e.
un~ JS, t=s,and m; = ... =mg = m. Then the left-hand-size of the formula is ms?, and the
right-hand-side is m >_;_;(2k — 1) = ms?.

We suppose the formula holds for » > 1, and prove it for  + 1. We can present u as diag(v, J3,),

where v = Jp, @ Ty @ ... B Iy U= Ty @Iy .. D Iy, and myy1 = ... = myys = m. Then,
replacing v by u increases the left-hand-side of (6.2)) by ms? +2 Y ism MSN; = ms? +2mst, whereas
the right-hand-side grows by Z?SH m(2k — 1) = m((t + 5)? — t2) = m(s® + 2st). O

Lemma 6.3. Let g be an odd prime power, V = Fy be endowed with a non-degenerate, symplectic
or orthogonal, bilinear form, and let G = Sp(V),irespectz'velyL GO(V), denote the corresponding

isometry group of the form. Extend the form to V :=V ®r, Fy, and let G = Sp(V'), respectively

GO(V). Let g = ®;J" € G be a unipotent element with s = supp(g), and let D(g) := dim Cg(g).
Then the following statements hold.

(a) If G = Sp(V), then

(n—s)

L < pg) < MR S i<

If G = GO(V) then

TZ—SQ—TI n—s)”—n nmn—s

2li 4:2ti,n; >0
(b) If G =Sp(V), then
(1= 1/q)"2q" =2 < |Cq(g)| < g/,
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If G = GO(V), then
( 1/q)n/2 ((n—s)2—n)/2 < ’CG( >‘ < q(n(nfs)+n/3)/2.

Proof. (a) We will follow in part the proof of [LiShl, Lemma 3.4(ii)] and note that s =, (i —

n =Y, in;, so that n —s =), n;. Suppose G = Sp(V'). By [LiSe, Theorem 3.1(iii)],
(6.3) Z in? + Z inin; + = Z ng.
i<j 21

Note that

(6.4) Zm —{—ZZMLmJ an —|—Zz—1n —G—QZ i— 1)ngn;.

7 1<J 1<J
Hence 2D(g) > Y, in? + 23 i ining > >, ni)2 = (n — s)%. Next,
s(n—s)+n= (Z(z — 1)n;) an + Zm,
>szln +2Z nmj+Zni+Zini
1<j 1:243 1:2]3

>2Dg(g) — (n —s)* + Zz’ni,
i:2li

implying the statement for Sp(V').
Suppose now that G = GO(V). By [LiSe, Theorem 3.1(iii)],

(6.5) D(g) = Zm —i—Zznm] an

i<j z‘;2ﬁ

Using (6.4), we obtain

29

1)774,

2D(g) > an —i—Zz—ln —an_ Zn, +an—n1 n—s)2+2ni—n1.

1:243 2|i 2|i

Next, again using (6.4, we have

s(n—s) = (Z(z— 1)n;) (an)
>Zz—1 n; —1—22 (1—1) nm]

1<J

=2Dg(g) — (n—s)* + Zni,
i:24i

implying the statement for GO(V).

(b) Suppose G = Sp(V). By [LiSe, Theorem 7.1(ii)], |Ca(g)| is a polynomial in ¢ of degree D(g),

and

ICa(g)l =" - [] 1P (@) - [ 1GOZ: (9)

2t 2[i
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for suitable D’ and &; = + (note that 2|n; when 21 ). Note that
(g — 1)m/2qmimTD/2=m/2 < |Sp_(q)] < gmmFD/2
(6.6) 2q — D2l gnm=D/2-lmi2) < GOk (g) < (q+1) m(m D2 m =2,
- m - 2qm(m 1)/ m # 2.
In our case, ¢ > 3,50 2(¢q+1)/g <gq,and > ,n;/2 = (n—s)/2 < n/2. It follows that
(1—1/q)"?¢P9 = (¢ — 1)"?¢PW—"/2 < |Culg)| < g2 1+Pl)

Together with (a), this implies the statement for Sp(V').
Suppose now that G = GO(V). By [LiSe, Theorem 7.1(iii)], |Cx(g)| is a polynomial in ¢ of

degree D(g), and
[Caly PrTT1sen, @1 - [] 1605 (g
2|i 2ti
for suitable D’ and &; = £ (note that 2|n; when 2|i). Using (6.6), we get
(1—1/q)"?¢P9) = (¢ — 1)"2¢PW=2 <|Cu(g)| < A9,

where A := Hmﬁ a;, with o; = 2 if n; # 2 and a; = 2(q¢ + 1)/q if n; = 2. In particular, a; < q2nil3,
and so A < qzw /3 Since ny < >-;ni < n, together with (a) this implies the statement for
GO(V). O

In what follows, by supp(g) for g € Spin},(¢q) we mean the support of its image in € (¢q). Also,
the notation GL7,(q) means GL(Fg") when € = + and GU(F73) when e = —.

Proposition 6.4. Let q be an odd prime power, V. = K¢ be endowed with a non-degenerate, sym-
plectic or orthogonal, bilinear form, and let G = Sp(V'), respectively, SO(V), Q(V'), or Spin(V).
Let g € G be any element with s = supp(g). Then the following statements hold.
(a) If 2|n and G = Sp(V'), then
q(n—s)2/2—0.2n < |CG(9)| < qn(n—s)/2+0.5n‘
In particular, if 2n > 4, then |G[35/™ > |¢%| > |G|*/?".
(b) If n >3 and Q(V) < G < GO(V), then
q(nfs)2/270.7n71.3 < |Cq(g)| < qn(nfs)/2+n/6.

In particular, if n > 7 and G = SO(V), QV), or Spin(V), then |G|?/™ > |g%| > |G|*/3".

Proof. Write g = gssu, with ges the semisimple part and v the unipotent part. Then g preserves the
orthogonal decomposition

V=neWhe (eliv),
into non-degenerate subspaces V; of dimension dim V; = n;, where gss acts as 1 on V;, —1 on Vs,
and

t+2 t+2
gSS H CGmI gss = I(Vi) x I VQ X H GLE’ al)
=3

where I = Sp or GO, ¢; = j:, m;,a; € Z>1, and mia; = n;/2. Let u; denote the image of u in
I(V;) when i < 2, and in GL} (¢%) when i > 2, and let d; denote the dimension of its kernel U;
on V; when ¢ < 2, on IF"Zi when ¢ > 2 and ¢; = 4, and on Fmi when 7 > 2 and ¢; = —. Then the

subspaces U; ® IF are the distinct eigenspaces for g on V' ®1F q; in particular,
(6.7) n —s = maxd;
(2
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Furthermore,
t+2

(6.8) Crv)(9) = C6, 1 (00) (W) = [ T Cimius (90e) (1):
=1

(a) Consider the case G = Sp(V'). By (4.2)) (and (6.1))), Proposition (a), and Lemma [6.3](ii),

[Canspvi) (9] = 1CCqngyv; () (ui)| is bounded below by (1 —1/g)"i/2q%/?. Since ¢** > 3°4 >

1/(1 —1/q) and n > n;, by (6.7)-(6.8) we get |[Ca(g)| > q"=)*/2-02n On the other hand, by
(6.1)), Proposition (b), and Lemma b), |Censpvi)(9)] = |CCGmSp(Vi)(QSS)(ui)| is bounded from
the above by ¢("idit7i)/2 wwhen ¢ < 2, and by ¢"i%/2t0-2n when ¢ > 2, with the extra factor ¢¥-2m
accounting for ¢*2" = ¢%4miai > (3/2)™i when ¢; = —. Now n = >_,n;, so by (6.7)-(6.8) we get
|ICa(g)| < ¢"=9)/2+7/2 proving the first statement. Using

qn(n+1)/2—0.6 < (9/16)qn(n+1)/2 < ‘G| < qn(n—i-l)/Q7
(see [LMT!, Lemma 4.1(ii)]), we obtain

qns/2—0.6 ns—s2/2+40.7n

<19% < q

The second statement is obvious if s = 0. If s > 1 then ns/2 — 0.6 > (s/2n)(n(n+1)/2). If s > 2,
then ns — s2/2 4+ 0.7n < (3s/n)(n(n +1)/2 — 0.6). Finally, if s = 1, then g is a transvection (up to
a sign), hence |¢%| = (¢" — 1)/2 < |G|>/™, completing the proof of the second statement.
(b) Now we consider the orthogonal case. By (4.2) (and (6.1))), Proposition a), and Lemma
.. X /9 d2/9—m,
(11), \CGQGO(Vi)(g)] = ‘CCGOGO(Vi)(QSS)(ui)’ is bounded from below by (1 — 1/(])”1/2qdi/2 nif2

Since ¢** > 1/(1 — 1/q) and n > n;, by (6.7)-(6.8) we get [Cco(V)(g)| > q(n=)*/2-0T_ On the
other hand, by (6.1)), Proposition (b), and Lemma (b), |ICancow;)(9)] = |CCGOGO(Vi)(QSS)(ui)|
is bounded from the above by ¢"%/2+7/6 when i < 2, and by ¢"%/202% when i > 2, again with
the extra factor ¢%?" accounting for ¢%-2" = ¢%4mi% > (3/2)™i when ; = —. Now n = Y, n;, so

by (6.7)-(6.8) we get [Caor(9)l < q"("=5)/24n/6 Since [GO(V) : Q(V)] = 4, we have that
7 "?|Ccow)(9)] < |Ccow)(9)l/4 < |Ca(9)| < |Caorn(9)]

when GO(V) > G > Q(V), proving the first statement.
To prove the second statement, we may again assume s > 1, and note that

g0 < (9/32)g" D2 < (V)] < [SO(V)] = [Spin(V)] = 2i(V)]| < "D,
if n > 7, (see [LMT), Lemma 4.1(ii)]). Furthermore, if g denotes the image of g € Spin(V') in Q(V),
then |Ca)(9)| < [Cspin(v)(9)] < 2 [Ca)(9)], and so
(V)]
|CQ(V) (9)|
Hence, it suffices to prove that

(6.9)  [SO(V)['7*/" < |Caq(9)] < ICsow)(9)] < [V g0 <oV~ /2.

SO

Sl S )

When n > 8, or if n = 7 but s = 1, we have @—O.?n—lﬁ > (1—%)@ If s >3
then we also have @ + 4§ < (1 — 3%) (@ — 1.8), proving . Finally, if s < 3, then
IG*/3" < (=12 < P(GQ) < |¢%]; and if (n,s) = (7,1), then |G[>*/™ > ¢! > ¢** > |g©|, completing
the proof of the second statement. O
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Lemma 6.5. Let g be a power of 2, let n be even, let V = Fy be endowed with a non-degenerate
alternating bilinear form (-|-), respectively a quadratic form associated to (-|-), and let G = Sp(V),
respectively, GO(V'), denote the corresponding isometry group of the form(s). Extend the form to

V=V &g, Fy, and let G = Sp(V), respectively GO(V). Let g = ®;J;" € G be a unipotent element
with s = supp(g), and let D¥(g) := dim Cg(g). Then the following statements hold.
(a) If G = Sp(V), then

If G = GO(V) then

(n—5)?%—n—m " nn—s) 1
<pig Mo 1y,
4:21,n;>0

(b) If G = Sp(V), then
(1=1/q)" ¢~/ < [Cqlg)] < g"t—/>+1 3,
If G = GO(V), then
(1 — 1/Q)n/2q(n75)2/27n < ’CG(Q)‘ < qn(nfs)/2+0.8n.

Proof. (a) The conjugacy classes g% of unipotent elements in G are best represented in the form
[LiSe, (4.4)], where one decomposes the g-module V' as

(6.10) (@W (my)™) @ (9;V (2k;)™),

where b; < 2, ki > kg > -+, my > mg > -+, g acts on W(m;) as JZ , and on V(2k;) as
J(2k;), see [LiSe, Table 4.1]. We again record the Jordan canonical form of g as Y ;| Jp,,, with
myp > mo > ...>m; > 1. Then

r

D¥(g) = Z(Zmz — xv(ms)),

i=1
where the function yy is defined as follows (see [LiSe, Lemma 6.2]):
m/2, G =5Sp(V)
XV(m) = XV(m)(m) = { m/2 +1, G= GO(V)
if V(m) occurs in (6.10), and
_ _J lm=1)/2], G =5Sp(V)
xv(m) = XW(m)(m) = { [(m+1)/2], G=GO(V)
otherwise.
Suppose G = Sp(V). Then xv(m;) = m;/2 — v;, where v; = 0 if V(m;) occurs in (6.10), v; = 1
if 2|m; but V(m;) does not occur in (6.10), and v; = 1/2 if 2 { m;. It follows that

r

Dﬁ(g) = Z(Zmz — m,/2) + Z a; + v,

i=1 24m;
where v := 23" a;, with ¢ running over those m; such that 2|m; but V(m;) does not occur in (6.10j).
With ¢ written as @;J;"", we have that v < Zzu”i < %22“ in;, and Z%mi a; = %22& n;. Using
Lemma and (6.3)), we get

1 1
D¥(g) = §Zin§+2ininj+§Zni+y:D(g)+y.
i i<j 2t
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Since 0 < v < 1 2 _o|; ini, together with Lemma (a), this implies the statement for Sp(V).
Next suppose that G = GO(V). Then xv(mi) = m;/2 + p;, where v; = 1 if V(m;) occurs in
(6.10)), p; = 0 if 2|m; but V(m;) does not occur in (6.10), and p; = 1/2 if 2  m;. It follows that

T

D¥g) = (imi—mi/2) = > a;—p,
i=1 2
where p1:= 3, b;. With g written as @;J;", we have that p < Do) iy and Yoy, a; = %Z% n;.
Using Lemma and , we get
Zm +Zznm3 Zni—u:D(g)—
i<j 2ti
Since p > 0 and 2(ny +Zz\z‘ n;) < 2n; —&—22” in; < n-+nq, together with Lemma (a), this implies
the statement for GO(V).
(b) By [LiSe, Theorem 7.3(ii)], |[Cg(g)] is a polynomial in g of degree D(g), and
ICa(g) = 27" I 720, (@)| - T ISP20,(a)
2tm; 2|m;

for a suitable D’; moreover, I is either Sp or GO*, 0 < § < 1, and ¢ is the number of j such that
kj—kjq1 > 21n (6.10). In particular, (t+ d + the number of factors GO among the I,,) is at most
n/2. Using and (¢ +1)/q < 1.5 < ¢"°, we obtain

(1—1/q)"/%q""® = (g — 1)"2P"O=1/2 < |Cg(g)| < 5 PF9),
Now we can apply the estimates in (a) for D¥(g). O
Proposition 6.6. Let g be a power of 2, 2ln > 4, V = Iy be endowed with a non-degenerate
alternating bilinear form (-|-), respectively a quadratic form associated to (-|-), and let G = Sp(V),

respectively, GO(V) or Q(V). Let g € G be any element with s = supp(g). Then the following
statements hold.

(a) If G = Sp(V), then
q(n—s)2/2—0.5n < |CG(g)| < qn(n—s)/2+1.3n‘

In particular, |G35/™ > |gC| > |G|3/3".
(b) If n > 8 and Q(V) < G < GO(V), then

n—s)?/2—1.5n— n(n—s .8n
q( )?/2—1.5n—1 < |CG(Q)‘ <q ( )/2+0.8 )
In particular, if n > 8 and G = Q(V), then |G|>*/™ > |g%| > |G|*/3".

Proof. Write g = gssu, with ges the semisimple part and « the unipotent part. Then g preserves the
orthogonal decomposition

V=" (eLiv),

into non-degenerate subspaces V; of dimension dim V; = n;, where gs acts as 1 on Vi, and

t+1 t41
CI(V) Yss) H Cenr V)(gss) =1(V1) x H GLE"” (¢"),
=2 i=2

where I = Sp or GO, ¢; = £, mj,a; € Z>1, and m;a; = n;/2. Let u; denote the image of u in
I(V;) when i = 1, and in GL7 (¢%) when i > 1, and let d; denote the dimension of its kernel U;



34 MICHAEL LARSEN AND PHAM HUU TIEP

on V; when i = 1, on F?ﬁ when i > 1 and €; = +, and on IF;’;QZ_ when 7 > 1 and g; = —. Then the
subspaces U; ® [, are the distinct eigenspaces for g on V ®p, Fg; in particular,
(6.11) n—s:miaxdi
Furthermore,
t+1
(6.12) Crv(9) = CCI(V)(gss)(u) - H CCGﬂI(Vi)(QSS)(ui)’
i=1

(a) Consider the case G = Sp(V'). By (and (6.1])), Proposition [4.2(a), and Lemma [6.5(ii),
1Carsp(v)(9)] = |CCGmsp(vi>(gss)(ui)’ is bounded below by ¢%/2-"/2, Hence (6.11)—(6.12) imply
ICa(g)| > ¢™=?/2-05n On the other hand, by (6.1), Proposition (b), and Lemma (b),
|Canspvy) (9)] = |CCGﬁSp(Vi)(gSS)(ui)| is bounded from the above by ¢"%/2+1:3% when i = 1, and
by ¢"i%/210-3% when ¢ > 1, with the extra factor ¢*®" accounting for ¢0-3" = ¢0-6mie: > (3/2)m:

when ¢; = —. Now n = ", n;, so by (6.11)—(6.12) we get |Cg(g)| < ¢""=*)/2+13n proving the first
statement. Using

qn(n+1)/270.84 < (9/16)qn(n+1)/2 < ‘G’ < qn(n+1)/2,
(see [LMT| Lemma 4.1(ii)]), we obtain

ns/2—0.8n—0.84 ns—s2/2+4n

q <% <q
The second statement is obvious if s = 0. If s > 4 then ns/2 — 0.8n — 0.84 > (s/3n)(n(n +1)/2),
and if 1 < s < 3, then |G|*/3" < |G|YV/™ < ¢+t1)/2 < P(G) < |¢%|, showing |¢¥| > |G|*/3". If s > 2,
then ns — s2/2 +n < (3s/n)(n(n +1)/2 — 0.84). Finally, if s = 1, then g is a transvection, hence
9% = ¢" — 1 < |G|?/", completing the proof of the second statement.

(b) Now we consider the orthogonal case. By (and (6.1))), Proposition [4.2[a), and Lemma
(ii), ICencowy)(9)] = ‘CCGQGO(Vi)(QSS)(ui” is bounded below by (1 — 1/¢)"/2¢% /2= Hence
I_&f[) imply that |Cao(V)(g)| > ¢"=9°/2-157_ On the other hand, by (6.1), Proposition

2(b

), and Lemma Wb), |ICancowy)(9)] = ‘CCGQGO(Vi)(QSS)(ui” is bounded from the above by

=~

q"i%/2+08ni when § = 1, and by q"i%i /24030 when § > 1, again with the extra factor ¢*3" ac-
counting for ¢%3" = ¢0-6mi% > (3/2)™ when &; = —. Now n = >_.n;, so by (6.11)—(6.12) we get
|ICao)(9)] < q"n=9)/2408n Gince [GO(V) : Q(V)] = 2, we have that

[Caoy(@)l/a < [Caow)(9)]/2 < [Calg)| < [Caow)(9)]

when GO(V) > G > Q(V), proving the first statement.
To prove the second statement, we may again assume s > 1, and note that

qn(nfl)/270.84 < (9/16)qn(n71)/2 < |Q(V)‘ < qn(nfl)/Z7
if n > 8, (see [LMT| Lemma 4.1(ii)]). Hence,

ns/2—1.3n—0.84 ns—s2/2+4+2n+1

q <l9% <q
If s > 4 then ns/2 —1.3n — 0.84 > (s/3n)(n(n — 1)/2), and if 1 < s < 3, then
|G‘s/3n < ’G|l/n < q(n—l)/2 < P(G) < |gG’7

showing [g€| > |G|*/3". If s > 2, then ns — s2/242n+1 < (5s/n)(n(n—1)/2—0.84). If s = 1 then
g € GO(V) \ Q(V) (and we still have [g%] < ¢" — 1 < |G]>/™). -

Together, Propositions [4.2] [6.1} [6.4] and [6.6] imply
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Corollary 6.7. Let G be any of the following quasisimple classical groups: SLy,(q) with n > 2,
SU,(q) with n > 3, Sp,(q) with 2|n > 4, or QF(q) or Spini(q) with n > 7. Ifg € G has
s = supp(g), then |G*/** < |9 < |G/,

Proof of Theorem[A] If G is an exceptional group of Lie type, then the statement follows from the
main result |[LiT, Theorem 1]. Choosing ¢ small enough, we may assume that G is (a quotient
of) one of the groups listed in Corollary in particular, for S := ¢g© with s = supp(g) we have
s/3n <logq |S| < 5s/n. Hence the statement follows from Theorem by taking ¢ < o/5. O

In addition to Example and Lemma we offer another example showing that the term
log|g | g%| in Theorem A is optimal, up to a constant.

Example 6.8. Let G be any finite group of Lie type, g a semisimple element, and x the Steinberg
character of G. Then by [St, Theorem 15.5], |x(g)| = |Cc(g)lp, the p-part of |Cg(g)|. For instance,
if G := SL,(¢q) and g is a diagonal element with eigenvalue multiplicities ai, ..., ay,, then in the
large g limit,
n2—2 a?
|gG‘ ~ an_Zia? ~ |G| n2—1
while
ag > %2*2 a;
X(9)] = ¢=+ (%) = x(1) "=
so if Y, a? is large compared to Y, a;, then

loglg®  log|x(g)|

log |G| ~ logx(1)

7. SQUARES OF CONJUGACY CLASSES AND THOMPSON’S CONJECTURE

In this section we consider situations in which the square of a conjugacy class & can be shown to

be all or nearly all of G. The main result is Theorem [7.7, which proves Thompson’s conjecture for
various families of unitary, symplectic, and orthogonal groups. The strategy here is to choose a class
x with small centralizer and use the Frobenius formula in conjunction with character estimates to
show that every target element g lies in & - ¢. This breaks down when ¢ has very small support,
necessitating a separate analysis of such elements. If g is of the form diag(g1, I,,_x) for some small
value of k, and if z is conjugate to an element of the form diag(z1, z2), where z9 is real and g; can
be written as a product of two conjugates of 1, then ¢ lies in & - 2. By choosing z carefully,
we can hope to treat all elements of bounded support. Of course, the primary eigenvalue of an
element of small support need not be 1. Because of this difficulty, our strategy at present assumes
congruence conditions relating n and ¢ for orthogonal and unitary groups.

We remark that Ore’s conjecture, now a theorem of Liebeck, O'Brien, Shalev, and Tiep [LOST2],
plays an important role in the proof of Theorem [7.7] via Lemma [7.5

For groups of type PSL,(q), Thompson’s conjecture is already known [EG|]. Theorem shows
that there are many regular semisimple conjugacy classes in SL,,(¢) and SU,,(¢), including all those
with irreducible characteristic polynomial, for which the first part of the argument works, and =& -z¢
contains all elements whose support is greater than an absolute constant.

Lemma 7.1. Let V. = Fy with n > 117. If G := SU(V), Sp(V'), or Q(V), and g € G satisfies
ICc(g)| > |G|/, then V' admits an orthogonal decomposition Vi @ Va of non-degenerate subspaces

with dim(Vz) > 2(dim V) /3, such that g(V;) = V;, and g acts as a scalar \ on Va, with N9 =1 in
the SU-case and A\? = 1 otherwise.
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Proof. Let D = n(n+1)/2 when G = Sp(V') and D = n(n—1)/2 when G = Q(V'). As mentioned in
the proofs of Propositions and |G| > ¢P~116. Now, if g € G has support s = supp(g), then
Propositions and show that |Cg(g)| < ¢PH13n=ms/2. 1f 0 < ¢ < 1 and |Cg(g)| > |G|*5,
then D + 1.3n —ns/2 > (D — 1.16)(1 — ¢), and so

s < @—&—2.64—& ge(n+1)+2.6+@.
n n n
Taking e = 1/7, when n > 117 we then have s < n/6; in particular, the primary eigenvalue A\ of
g satisfies AX*! = 1 in the case G = SU(V) = SU,(qo), respectively A = +1 in the remaining
cases. By [LaST1, Lemma 6.3.4], V' admits a g-invariant orthogonal decomposition V; @ V5 such
that dim(V2) > n —2s > 2n/3 and ¢ acts as A on Va.

The same argument applies to the case G = SU(V), using the estimates in Proposition U

In what follows, we will fix Cl € {SU, Sp,Q} and work with CIf (¢), with the convention that, if
we choose Cl = Sp then all CI* will be Sp (regardless of €) and 2|n, and if we choose Cl = SU then
all CI° will be SU, whereas if we choose Cl = Q, then Cl° = Qf with ¢ = + and also 2|n if 2|¢. If

m < n, then CI (q) can be naturally embedded in CI (¢) via 2 — diag(z, In—m). For g € CI;, (q)
and S a normal subset of CI (¢), where either (m,e) = (n,e’) or n > m, we say S represents g
if the natural embedding of CI5,(¢) into CIZ (¢) maps g to an element of S. We say an element
reG= Cli/(q) covers g if 2@ - 2@ represents g.

Lemma 7.2. If g € CLi(q) is covered by x € ClIy),(q), where m > r, and y is any real element of
Cl3(q), then g is covered by

diag(z, y) € C1%(g) x ClE(q) < CL22_,.(q).

Proof. By assumption, g viewed as an element of Cl,,(q) is z1x2 for some conjugates x1,xs of x.
As y is real, diag(x,y) is conjugate to diag(zi,y) and diag(ze,y~'). Hence w129 is covered by
diag(x,y). O
Lemma 7.3. Let z € Cly, (q) and y € Cl (q). If Cl = Q and 2 { q, assume in addition that 2|m
and 2|n. Then diag(z,y) is conjugate to diag(y,z) in Cl3,, .., (q).

Proof. We may assume that Cl3, (¢) = CL(U), where U = &7, Span(ug;—1,u;) is an orthogonal
sum of 2-spaces, with a Witt basis (ug2;—1,ug;) and moreover Q(ug;—1) = Q(ug;) = 0 if in addition
Cl = Q and 2|q, and with Q(u2;—1) = 1, Q(ug;) = —1, (ugi—1|u2;) = 0 when Cl = Q and 2 { q. Write
Cl . (q) = CI(V) with V = @™ ,Span(vz;_1, va;) in a similar manner.

First we assume that n = 1, and either Cl = SU, Sp, or 2|¢ and Cl = Q. Then the linear

transformation
f:u1 — V1, U — V2, U3 > U], U4 > U2, U5 > U3, ...

U2m—3 =7 U2m—1, U2m +> U2m—2, V1 +> U2m—1, V2 > U2m

belongs to SU(U & V), respectively Sp(U @ V). Suppose 2|q and Cl = Q. Then f fixes the maximal
totally singular subspace Span(u1,us, ..., u2m—1,v1) of U®V, hence f € Q(UdV) by [KIL, Lemma
2.5.8].

Next suppose that n =2, 2t ¢, and Cl = Q, and consider the linear transformation

f TUp > V1, U2 > V2, U3 > V3, U4 > V4, U5 > UL, Ug > U2, U7 > U3, U > Ugy ...,
U2m—1 =2 U2m—5, U2m F7 U2m—4, U1 > U2m—3, V2 b2 U2m—2, U3 > U2m—1, V4 =2 U2m.
Clearly f € GO(U @ V), but we want to show that f € Q(U @ V). Note that

U1 — U1 = Um—3 +> Um—7 > ... — U5 — U],
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is an (m/2 4 1)-cycle, which is a product of m/2 reflections of the form

2(z|w)
Puw XX —
(w|w)
with w = w1 — vy, v] — Ugm—3, ..., us — u1, each of norm Q(w) = 2. The same holds for the sequence

starting at ug. The two sequences starting at us and uy each give us a product of m/2 reflections
of the form p,, with Q(w) = —2. Thus f is a product of 2m reflections, whence det(f) = 1, and its
spinor norm is the class of 2" (—2)™, a square since 2|m. Hence f € Q(U @ V) in this case as well.

The above f moves v, va, respectively v, ..., vq, to the front of uy, ..., us,,. In the general case
of any n, a sequence of such transformations moves vy, ..., vs, to the front of uq, ..., us;,, and thus
conjugates diag(z,y) to diag(y, z). O

Lemma 7.4. Suppose r,m,n € Zx>1, and moreover 2|m and 2|n if Cl = Q and 2 1 q. If the elements
g1,---, 9k € C12(q) are all covered by a real element x € Cl, (q) and the elements hy, ..., h; € le(q)
are all covered by a real element y € Cl;n(q), then the g; and h; are all covered by the real element

diag(wvy) S Clg—m-l—Qn(Q)'
Proof. The assumptions and Lemma [7.3] imply that the elements
21 = dlag(x,y), R2 = dia‘g(xﬁyil)? z3 = dlag(y,x), 24 = dla‘g(y7 xil)
are all in the same conjugacy class C. Conjugating z; and zo by elements in Cl;m(q) x Is, and

multiplying together, we see that every diag(g;, Iam2n—r) belongs to C2. Conjugating z3 and z4 by
elements in I, x Cl3, (¢) and multiplying, we see that every diag(h;, Iomt2n—s) lies in C2. O

Lemma 7.5. For every positive integer r > 1, every element g € C1(q) is covered by a real element
in Clj (q), where max(6,r) < 2m < r+ 3, and 2|m if Cl=Q and 21 q.

Proof. Embedding C1%(q) in C13, (q) and replacing g by diag(g, I5) for a suitable s, we may assume
that g € Clj, (q) with m as specified. (Note that for the case of ., we take m = r/2 + 1.)
By [LOST2, Theorem 1], every g in Cl3, (q) is a commutator zyz~'y~!. By Lemma z =
diag(x,z~1) € CIf (q) is conjugate to diag(z~!,x) = 27!, and thus z is real. Conjugating z~* by
diag(y, Io;m) we see that z is also conjugate to t := diag(yz—ty~ !, z). It follows that diag(g, Io;) = 2t
lies in the square of the conjugacy class of z. O

Lemma 7.6. For all positive integers k and prime powers q, there exists a positive integer r and
a real element x € Cl;r(q), both depending on k and q, such that x covers every element of Cli*(q)
for all integers | € [1,k] and oo = +.

Proof. Let N denote the sum of the conjugacy class numbers of all Clj*(¢) with 1 < [ < k and
a = £. By Lemma each such class g; is covered by a real class z; in Climi(q). The statement

now follows from Lemma by taking r = 2 Ef\;l m; and x := diag(z1,...,TN). O

In the next theorem, we remark that the congruence conditions on ¢ ensure that the central
extension of G which lies in GL,,,(F(,) has a large enough center that every element of G of small
support can be represented by an n x n matrix for which the primary eigenvalue is 1, as needed for
(7.7). In particular, when n and ¢ are odd we have no results about €2,(q) because the center of
SO, (q) is trivial, and we do not know how to show that elements of small support with principal
eigenvalue —1 lie in S2.

Theorem 7.7. Let q be a prime power and let G € {PSU,(q),PSp,(q),PQ(¢)}. Suppose that
(¢ + 1)|n in the SU-case, and that, if 2 t q then 2|n and ¢ = (—1)"4=VD/* in the Q-case. If n is
sufficiently large, then there exists a conjugacy class S in G such that S? = G.
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Proof. (a) Ellers and Gordeev [EGL, Table 1] already proved Thompson’s conjecture for simple
classical groups when ¢ > 8. Hence it suffices to prove the theorem for ¢ < 7 and n > 117 sufficiently
large. For consistency with the CIS(q) notation, in the PSU-case, we write Cl,(¢?) = SU,(q),
F := F,p, and V := F"; otherwise, Cl,(q) is Sp,(q) or QE(q), F := Fy, and V := F". Replacing
G by G = CI(V), it suffices to prove that there exists a real conjugacy class S in G such that S?
contains a scalar multiple of every non-central element g € G.

(b) By Lemma if g € G satisfies |Cg(g)| > |G|%7, then V admits an orthogonal decomposition
Vi @ Vo with dim(V2) > 2dim(V)/3, such that g(V;) = V;, and g acts as a scalar A\ on Vs, with
A+l = 1 in the SU-case and A\?> = 1 otherwise. By Theorem if |Ca(g)| < |G|%7, then there
exists 0 > 0, independent of V, such that

(7.1) x(9)] < x(1)'7°
for every irreducible character of G. By [GLT2, Theorem 1.3], there exists a > 0 (depending on §)
such that if z € G satisfies |Cg(x)| < |G|, then

(7.2) x(@)] < x(1)"?

for all irreducible characters x. By the Frobenius formula, g € G lies in x

(z)*x(9)
(7.3) XEVXA9) .
xe%%a) x(1)

By [LiSh3, Theorem 1.2], 37y . crv(q) x(1)7%/3 — 0 when n — oco. Hence, if n is large enough and
both ([7.1)) and ([7.2]) hold, then

G.2Gif

) X@’X@] _
x#la x(1)
implying . We fix B > 0 such that if x satisfies and g satisfies , then dim(V') > B
implies g € 2¢ - 2C.
(c) For any sufficiently large integer d, if V' has an orthogonal decomposition V3 & Vj, and
xr = diag(zs, z4) € Cl(V3) x Cl(Vy) < Cl(V) = G,

where dim(V3) > ddim(Vy) and the characteristic polynomial of z3 has no irreducible factors of
degree < d, then

(7.4) [Ca(2)| < [Carw) ()| < |G|
Indeed, suppose d > 4« and n = dim(V') is sufficiently large such that

n<z - ;) > 1.3,
The assumptions imply that any eigenspace of x has dimension at most
dim(Vy) 4+ dim(V3)/d < 2dim(V3)/d < 2n/d,
hence s := supp(z) > n — 2n/d. By Propositions and
ICa(z)] < qn(nfs)/2+1.3n < qnz/d+1.3n < qan2/4 < |G
in the non-SU cases. In the SU-case we argue similarly, using Proposition [6.1] Fix such a d.

(d) We now fix a non-degenerate space W over F of dimension > d, unitary if G = SU(V),
symplectic if G = Sp(V'), and quadratic of type + if G = Q(V) = QF(q), and a real semisimple
element h € C1(W) whose characteristic polynomial has no irreducible factors over F of degree less
than d. (For instance, SUy4(q) and its subgroup Spy,(q) contain a semisimple element of order
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(¢ +1)/ ged(2,q — 1) as does Q,(g); moreover, such an element is real by [TZ2, Proposition 3.1].
Next, Q;(q) > Q5,(q) x ,,(q) contains a semisimple element of order (¢¢+ 1)/ gcd(2, ¢ — 1), which
is again real by [TZ2, Proposition 3.1].)

Next, we fix some integer

(7.5) k > max(B,dim(W))
and apply Lemma to find a non-degenerate space Vy over F, unitary if G = SU(V'), symplectic

if G = Sp(V), and quadratic if G = Q(V'), and a real element y;, € C1(V}) such that y; covers every
element in le(ﬂF\), 1 <1< k. By Lemma if yi, is replaced by diag(yk, z) for any real element
z in any CI7(|F|), it still has the above covering property. We may therefore assume that dim(Vj)
lies in any desired congruence class modulo dim (W), and that Vj is also of type € when G = Q¢ (q).

Suppose that n is sufficiently large. Then we can write n = dim(V') = dim(Vp) + N dim(W), with
N sufficiently large, and that V is isometric to Vo @ W,

We claim that if Vj and y, are fixed as above, N > ddim(Vp)/ dim(W) is sufficiently large,

V=VvoeWeWe --aoW,
N

and
oy = diag(yg, b b, ..., h) € CL(Vp) x CLW)N < C(V) = G,
N

then for every g € Cl(V), subject to the hypothesis on (n,q,¢) (which guarantees that Z(G) = Cy
in the case of Sp/Q with 2 { ¢ and Z(G) = Cy41 in the case G = SU(V)), zg lies in (zy)¢ - (zn)¢
for some z € Z(G).

Let fx(g) denote the maximum dimension of Vo where
(7.6) V=Viel

is a g-stable orthogonal splitting and g acts as a scalar A on Vs, with A9T! = 1 in the SU-case and
A = £1 otherwise; and let f(g) = maxy f1(g).
To prove the claim in general, we divide into three cases.

(1) f(g) > dim(V) — k.

In this case, we may assume dim(V2) > 4 in the decomposition for some eigenvalue A.
Hence, in the case G = Q(V), g is centralized by elements u in any chosen (V2)-coset in GO(V3).
Likewise, in the case G = SU(V'), g is centralized by elements u in any chosen SU(V2)-coset in
GU(V3). Conjugating g using elements in Sp(V'), GU(V), or GO(V), and then by suitable elements
like u in the case G = SU(V') or Q(V), and replacing g by zg for a suitable z € Z(G) if necessary,
we may assume that

(7.7) g = diag(gl,ff(g)) S CI(VI) X CI(VQ) < CI(V)
As dim V] <k, ¢1 is covered by ¥, so as h is real, Lemma implies ¢ belongs to (zx) - (zn)°.

(d2) f(g) < 2dim(V)/3.
This condition implies (7.1)) for g by the argument of (b). The choice of N guarantees that
ddim(Vp) < N dim(W), hence (7.4 holds for xy. Now we deduce (7.2) for zx, which implies
G

g€ (xn)? - (zn)

(d3) dim(V) — k > f(g) > 2dim(V)/3.
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Recall n = dim(V'). When N is large enough, we have 2f(g) —n > n/3 > dim(Vp). Let ¢ denote
the largest integer such that
(7.8) e :=dim(Vp) + tdim(W) < 2f(g) — n.
By the choice of t, e > 2f(g) — n — dim(W). Hence
e—(3f(g) —2n) >n— f(g) —dim(W) > k — dim(W) > 0
by and (d3). Together with , this implies that

n;egf(g)_e<2(n3—e)

Arguing as in part (d1) we may assume that f(g) = f1(g) and that
g9 = diag(Tgim(ve)+tdim(w), 91) € CL(Vo @ W) x CLWN 1) < CI(V).
Note that xy is conjugate to both
diag (yk, hy - b by, ) € CI(Vo) x CLW)E x CLW)N=t < CI(V)
t N—t

(7.9)

and
diag(y, ', Rt R Ay h) € CL(V)) x CUW)E x CUW)N—F < CL(V).
t N—t
Conjugating each element by an element of the form
(Idim(Vo)+tdim(W)7v) € Cl(% S3) Wt) X CI(W)N_t < CI(V)’
it suffices to prove that g; is contained in the square of the conjugacy class in CL(W "N ~1) of
x = diag(h, .. .,h).
——
N—t

By the choice of h, inequality (7.4]) holds for z’, which implies (7.2)) for 2’. The construction of g
shows that fi(g1) = fi(g) —e = f(g) — e, and dim(WN~t) =n —¢, so

1 2
3 dim(WN) < fi(q1) < 3 dim(WN-1)

by (7.9). It follows that f(g1) = f1(g1) < 2dim(WN=*)/3, and so g; satisfies (7.1)). As
dim(WhN ) =n—e>n—(2f(g9) —n) > 2(n— f(g)) >2k > B
by (7.8), it follows that g1 is in the square of the conjugacy class of 2/, completing the proof. [

Theorem 7.8. For all A > 0, there exists B > 0 such that the following statement holds for all
n € Z>1 and all prime powers q. If G = SL: (q) for some e = £ and the characteristic polynomial of
a semisimple element x € G factors, over Fy if e = + and over Fp2 if € = —, into pairwise distinct
irreducible polynomials Py, ..., P of degrees deg P; > n/A for all i, then x© - 2 contains every
element g € G of support > B. In particular, the square of the conjugacy class of a Singer element
in SLy(q) covers all elements g € SLy,(q) for which supp(g) exceeds an absolute constant value.

Proof. Since the support of an element of G := GLZ (¢) is at most n, by enlarging B, we are free to
make n > A as large as we wish. Also note that k < A.
Note that the element z is regular semisimple, and 7" := Cg(z) is a maximal torus, so of order

at most (¢ + 1)". Moreover, the image of 7" under the determinant map is the same as of G. Hence
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the conjugacy class of z in G is the same as its class in G. Let g € G. To show that g € 2 - €, it
suffices to prove that
27
Z x(z)*x(9) £0.

1
XETrr(G) X( )
27

As det(g) = det(x) = 1, for every character x of degree 1 we have x(z) = x(z)*x(g) = 1. Therefore,
it suffices to prove that

(7.10) Z \x(:c)|(21|3<(g)| <q-—e.
{xelr(@)[x(1)>1} X
For any fixed ¢ > 0, choosing B sufficiently large, the contribution of characters y satisfying
x(1) > " to is 0(1). Indeed, consider any such character x and any irreducible constituent
Y of x|@. Since G/G = Cy_., by Clifford’s theorem we have x|¢ = ¢1+. ..+, where 1 =1, ...,y
are distinct G-conjugates of 1, and t|(¢ — ). By Theorem

[$ilg) < (1) 7P = (x(1) /1) =P,
and so |x(g)] < t(x(1)/t)'=7B/". As x(1) > (¢ + 1)? > 2, we obtain

IX(9)/x(1)| < x(1)77B/2 < g=eoBn/2,

Since |T'| < (g + 1)™ < ¢**, it follows that the contribution of all these characters to (7.10) is at
most
q—saBn/2Z|X($)’2 < q—schn/2’T| < q2n(1—saB/4)
X

which is o(1) when B is large enough.

Any irreducible character x of G belongs to the rational Lusztig series labeled by a semisimple
element s in the dual group which can be identified with G. Consider the case s ¢ Z(G). Then L :=
C:(s) is a proper Levi subgroup of G. Hence y = +R%(¢) is Lusztig induced from an irreducible
character ¢ of L, see [DM) Theorem 13.25]. We claim that either x(z) = 0 or x(1) > g /AL,
Indeed, assume that x(z) # 0. As x is regular semisimple, the Steinberg characters Stg of G and
Sty, of L take values 1 at z. Applying [DM, Proposition 9.6] we have

0 # x(x) = £(Stg; - x)(2) = £Ind (Stz - 9) (),
and so z is contained in a conjugate of L. If L = GLE(¢?) with ab = n, then b > 1 as s ¢ Z(G), and so
x(1) > ¢"*/4=2 by [GLTT, Lemma 5.8]. Thus we may assume L is of type GLE (¢™)x...xGLE (¢%)

with r > 2 and each m;a; is a sum of some n;’s; in particular, m;a; > n/A. Using [GLTI, Lemma
5.1(vi)], we then have x(1) > [G : L]y > g m=m) /g > qn2/A2—1.

It remains therefore to consider the case s € Z(G), i.e. x is a unipotent character times a linear
character, so on g and z, it can be treated as a unipotent character (but each such character occurs
q— ¢ times). Each unipotent character y is associated to a partition A\(y) of n, and the value of x at
the regular semisimple element x is given, up to a sign, by the value at the permutation = € S,,, which
is a product of k cycles of length ny, ..., ng, of the irreducible character of S,, associated to A(),
see e.g. [LM, Proposition 3.3]. As 7 consists of k cycles, by [LaSh2, Theorem 7.2], |x(z)| < 2¢~1k!,
which is bounded in terms of A.

Note that x has level j = n — A; by [GLTT, Theorem 3.9]. If A; < n/2, then x(1) > ¢"*/42 by
IGLTTl, Theorem 1.2(ii)], and, as before, the contribution of all such unipotent characters to the left
hand side of is 0(1). Hence it remains to consider the characters x with A\; > n/2; any such
unipotent character is irreducible over G, see [GLT1), Corollary 8.6]. For any fixed positive value of
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Jj =n—A1 <n/2, the number of partitions of n with largest part A\; is p(n — A1) (where p(-) is the
partition function), and the degree of the associated unipotent character is at least ¢’ (n=3)=1 » ¢ni/3
by [GLTT, Theorem 1.2(i)]. For these characters x, supp(g) > B implies by Theorem [5 [5.5 that

[X(9)1/x(1) < gb with go := q”%/%. Note that 352 1/(Qo—1)<ZJ 140" /(a0 = 1) < /(a0 —2),

and so
(7 2
St

j1q0 (IO_Q/

which is o(1) when B is large enough. Hence, the contribution of these characters to ([7.10]) is less
than 28 1k!(e!/ (@2 — 1)(q — ) = o(q — €), and the theorem follows. O

Since this paper was written, Theorem has been generalized: see [LTT, Theorem 1.1].

8. FURTHER APPLICATIONS

8.1. Mixing time of random walks on Cayley graphs. Recall that the mixing time of a
probability distribution P on a finite group G is the smallest integer n such that ||P*" —Ug|/1 < 1/e,
where Ug denotes the uniform distribution on G. The mixing time of a generating set S of G means
the mixing time of the uniform distribution Ug on S. The theorem of Diaconis and Shahshahani
[DS] asserts that for the set of transpositions of S,,, the mixing time is asymptotic to %f”. By
comparison, every element in S,, is the product of at most n — 1 transpositions.

For any constants C| and Cy there exists € > 0 so that if n is sufficiently large and S is any
conjugacy class in S, of permutations fixing all but C; points, a random product of less than Cyn
elements has probability greater than 1/2 of fixing more than en elements. Thus the mixing time
for conjugacy classes of bounded support is superlinear in n, implying that for symmetric and
alternating groups, the maximum ratio of mixing time over covering number for conjugacy classes
goes to oo.

In this section, we show that the situation is different for finite simple groups of Lie type. Liebeck
and Shalev proved [LiSh2, Corollary 1.2] that if G is such a group and S is a conjugacy class of G,
then the diameter of the Cayley graph I'(G, S) is less than C' llii ||§|| , where C'is an absolute constant.
Note that this bound is optimal up to a constant factor.

In this subsection, we prove the same result, though with a different constant, for mixing time.
(The special example of transvections in SLy(¢) was handled by Hildebrand [Hil; furthermore, the
case of semisimple classes whose centralizer is a Levi subgroup is treated in [BLST), Theorem 1.12].)

This improves on the previously known upper bound O(log2 ‘g') [LiSh2| Corollary 1.14], and proves
a conjecture of Shalev [Shl 4.3]. It also resolves a conjecture made by Lubotzky in [Lu, p.179],
stating that, if G is a finite simple group (of Lie type) and S is a non-trivial conjugacy class of
G, then the mixing time of the Cayley graph I'(G,S) is linearly bounded above in terms of the

diameter of I'(G, 5).

Theorem 8.1. There exists an absolute constant C' such that if S = g% is any non-trivial conjugacy
class in a finite simple group G of Lie type, then the mixing time of the random walk on the Cayley
graph T'(G, S) is less than C' 112?‘2“ )

Proof. Let ¢ denote the constant in Theorem We choose C' > 26/c + 1, so N > crieslel

log [S]
26 log |G|
clog|S] ?

implies N > whence
log |5|

“log|G]
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By Theorem this implies |x(g)| < X(l)lng\?, so

()N < x(1)N .

To prove the theorem, it suffices to prove that for all € G, the probability that the product of
N ii.d. random variables with distribution Ug gives x is within 1/e|G| of 1/|G|. By the Frobenius
formula, this probability is

x(9)Vx(z)
‘ XEIrr (G) X(l)
By [FG, Theorem 1.1], |Irr(G)| < 27.2¢", if G is of Lie type of rank r defined over F,, and x(1) > ¢"/3
by [LaSe] when 1¢ 75 X € Irr(G). Now,

Z |X N 1 Z 24|X)]\)7|26 < Z (1) < — [Irr(G)| -

vAlo Ao VAo mitlig X (1)
This is less than

27.2¢ _ 272
g8 T 128
In fact, given any € > 0, we have 27.2/¢"" < ¢, except possibly for a finite number of possibilities

for (g,r). This proves Lubotzky’s conjecture [Lul p. 179] (since, as noted above, the diameter of
I'(G,S) is of the same magnitude as (log |G|)/(log |S|). O

Proposition 8.2. There exists an absolute constant C"" > 0 such that if S is a non-trivial conjugacy
class in a finite simple group G of Lie type, then the mizing time of the random walk on the Cayley

graph T(G, S) is greater than C"'51¢]

log|S] -
Proof. Since ll?)i ||§|| is bounded in bounded rank, we may assume without loss of generality that the
. . . . . . log |G|
rank of G is as large as we wish, in particular that G is classical. By Corollary ﬂ Tog[S] = Ssupp(@

so it suffices to prove that the mixing time for I'(G, S) is greater than m := J , where S = ¢©.

n
LZSLJpp(g)
Every element in S™ has support < msupp(g) < n/2 by Lemma Therefore, the characteristic
polynomial of each such element has at least n/2 irreducible factors. By [LaSh3, Proposition 3.4],

the proportion of elements of G satisfying this property is o(1), so
1
HU;&” —Ugli=2-0(1) > o
O

Theorem and Proposition imply that the diameter and the mixing time of I'(G, S) are
linearly bounded in terms of one another, and so are of the same magnitude, for all non-trivial
conjugacy classes S in all simple groups of Lie type G; and they have the same magnitude as
rank(G) /supp(g), as shown by Corollary

8.2. McKay graphs and products of irreducible characters. Let G be any finite group, Irr(G)
the set of irreducible characters, and x a complex character of G. Recall [LiST1] that the McKay
graph M(G, x) associated to y is the directed graph on vertex set Irr(G) such that there is an edge
from x1 to xo if and only if x9 is a constituent of yx;. This graph is connected if and only if x
is faithful [Bul Chapter XV, Theorem IV]. One also considers random walks on M(G, x), starting
from any vertex a € Irr(G) and with the transition probability from vertex x; to vertex ys equal
o (xx1,x2)c - x2(1)/x(1)x1(1) (proportional to the dimension of the xo-homogeneous component
in a representation affording xx1), see [Ful §1].
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For groups of Lie type, we now settle in the affirmative a question of Liebeck, Shalev, and Tiep
[LiSTT, Conjecture 1] (note that the case of alternating groups is handled in [LiST2, Theorem 2]).
In fact, we prove a slightly stronger result, in which, by x*(1) we mean the sum of degrees of distinct
irreducible constituents of a character y. As discussed in [LiST1], this upper bound on the diameter
is optimal.

Theorem 8.3. There exists an absolute constant v such that for every finite simple group G and

every faithful (not necessarily irreducible) character x of G, the diameter of the McKay graph of x

1s less than ’yllogm(;l)

Proof. Let x1 be an irreducible constituent of largest degree of x. If G is of Lie type, then the
results of [FG] and [LaSe] imply that x1(1) > k(G)Y/5. Tt follows that x1(1) < x*(1) < x1(1)7. If
G = A, then for n sufficiently large, [LiSh4, Theorem 1.1(i)] implies that the number of distinct
irreducible characters of G' of degree < x1(1) is less than y1(1)?, so the same inequalities hold.
Thus in all cases log x*(1) and log x1(1) are of the same magnitude. Hence it suffices to prove the
conjecture in the case x is irreducible.

The theorem is known for alternating groups [LiST2, Theorem 2] and for Lie-type groups of
bounded rank r Theorem 2], so without loss of generality, we may assume r > 9 and G is
classical. Choose v = 7/c+1, where ¢ is defined as in Theorem . Let x1 and x2 denote irreducible
characters of a finite simple group G of classical type. Let

No— [7. log |G| —‘ < log |G|

¢ logx(1) log [x(1)|"
Then,
1
0N 1 xe)a |G’Zx 9%(9) = G > 1IN xa(9)x%a(9),
geG S=¢gGCcqG

where the last sum is taken over conjugacy classes S = ¢©. To prove this is non-zero, it suffices to
prove

> ISIx@IN xa@)Ix2(9)] < x (DN xa (Dxa2(1).
S=g9#{1}
As |xi(g9)] < x1(1), it suffices to prove that

x(9)]
S| < 1.
S:g%{l} ( x(1) )

By Theorem [Al and since N > (7/c)(log |G|)/(log x(1)), it suffices to prove

o toals| 1
D ISk e = S op <t

S#{1} S#{1}
Clearly,
Z 1 - k(G)
S IS8~ ming.gy S8
By [FG, Theorem 1.1], [Irr(G)| < 27.2¢". Now, |S| is the degree of a permutation representation of
G, so by [KILJ, Table 5.2.A], this is greater than ¢", so |S|® > ¢%" > 32¢". O

Random walks on some McKay graphs defined for S,, and GL,,(q) are studied in [Ful, Theorems
4.1, 5.1]. The following result determines the asymptotic of the convergence rate (to the stationary
distribution) of random walks on general McKay graphs for simple groups of Lie type.



UNIFORM CHARACTER BOUNDS FOR FINITE CLASSICAL GROUPS 45

Theorem 8.4. There exist absolute constants C1 > Cy > 0 such that the following statements hold
for any non-trivial irreducible character x of any finite simple group G of Lie type. The convergence
rate of the random walk on the McKay graph of x starting from any vertex a € Irr(G) is less than

log |G| log\G| .
1 logx(1)” log x(1 if o =lg.

and more than Cy

This means that in any sequence of examples, the difference in total variation, between the
stationary probability distribution and the distribution obtained from any initial state after at least
Ch ILOggiﬁ') steps, goes to 0, while the total variation difference after at most CQlog |(pl|) steps remains

bounded away from 0.

Proof. Let K é denote the probability measure given by taking [ steps from the starting vertex
a € Irr(G), and let m denote the stationary distribution, which is known to be the Plancherel

measure 7(8) = 3(1)2/|G], see [Fu, §2]. If

1
IP-@Qll=5 > [P(B)-Q®)
Belrr(G)

denotes the total variation distance between two probabilistic measures P and @ on Irr(G), then
[Ful Lemmas 2.1, 3.1] shows that

X(2) 21, oy () 2
217 A NS it b | i
S:xc#{l} X(l) Ol(]_)
Clearly, |a(x)| < a(1). Applying Theorem A and choosing | > (4/c)log|G|/log x(1), we obtain
(@) /x (1) < x(1) #8151 = |§|78 "and so

e D D
S=zCG#{1}
which is less than 1/¢" if G is of rank r over F,, as shown in the proof of Theorem
For the lower bound, for any I < (1/4) loglGl|),
character 3 of degree > |G|'/* (e.g. the Steinberg character), and thus K{G (8) = 0. Taking Co

small enough, we may assume that the rank r of G is large enough, so that |Trr(G)| < 27.2¢" < |G|Y/3.
For such [ and G, now we have

2 1/2
1)=|GJH/4 ’G| (<G4 < 1

we see that y! cannot contain any irreducible

0

The next result generalizes Theorem and proves a conjecture of Gill [Gi]. Note that the case
G = PSL,(q) or PSU,(q), with ¢ large enough compared to n, was handled in [LiST2, Theorem
3(ii)]; on the other hand, the case of alternating groups is still open.

Theorem 8.5. There exists an absolute constant & such that for all finite simple groups of Lie

type G and all non-trivial x1,X2, - - -, Xm € Irr(G), if x1(1)x2(1) ... xm(1) > |G|®, then x1X2 - .. Xm
contains every irreducible character of G.

Proof. Suppose G has bounded rank r < [. Taking § > 24512, we see that the condition []/%; x;(1) >
|G|° implies that m > 49012, since |x;(1)| < |G|Y/2. Tt follows from [LiST2, Theorem 3(i)] that
[T~ xi contains Irr(G).
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Hence we may assume that » > 9 and G is classical. Choose § > 7/c. For any 6 € Irr(G), we

have
[Tt = g XM w@io = > s

geG i S=¢¢CG i

where the last sum is taken over conjugacy classes S = g&. To prove this is non-zero, it suffices to

prove

> ST @bl < TTame)
S=g9#{1} i i

As |0(g)] < 6(1), it suffices to prove that

ERER 'X?% <1
S=gG#{1} i
By Theoremwe have |x;(g)/x:(1)] < xi(1 )_Clog\G\ 151 hence
S sITTO < 3 i) e
S=gG#A{1} i il S#A{1} i
Since [T, xi(1) > |G|°, we now have
Xi
> |SH‘X‘ < > ISI-1SI 65<27<1

S=gOA{1}y i i SA{1} S#l}
the last inequality already established in the proof of Theorem [8.3] O

The next result proves [LiST2, Conjecture 4] for simple groups of Lie type.

Corollary 8.6. There exists an absolute constant &' such that for all finite simple groups of Lie
type G of rank r and all non-trivial x1,x2, .-, Xm € Irr(G), if m > §'r, then x1Xx2...Xm contains
every irreducible character of G.

Proof. Take § = 12§, with 0 the constant in Theorem |8 . Since xi(1) > ¢'/3 by [LaSe] and

|G| < ¢*" if G is defined over F,, we have [, x:(1) > gi2or*/3 > |G|°. Hence the statement
follows from Theorem [8.5] O

Taking x1 = ... = xm = x in Corollary we obtain the following consequence, which was
proved in [LiST1), Theorem 3] for ¢ large enough compared to n (but with a much smaller constant).

Corollary 8.7. There exists an absolute constant &' such that for all finite simple groups PSLy,(q)
and PSU,(q) and all non-trivial x € Irr(G), if m > §'(n — 1), then x™ contains every irreducible
character of G.

8.3. Power word maps on simple groups. Recall that GL}(q) denotes GL(FFy) if ¢ = + and
GU(IFZQ) if e = —, and similarly for SLf (¢) and PSL{ (¢). The notion of the level [(x) of a character

x of GL (¢) and SL; (¢) was introduced in [GLTIl Definitions 1, 2]. The following result gives
a somewhat better bound than |[GLT1, Theorem 1.6(iii), (iv)], which is needed in Theorem
below.

Proposition 8.8. Let g be any prime power, n > 1, G = GUy(q) or SU,(q), and x € Irr(G).

(1) If l(x) < /n—3/4—1/2, then |x(g)| < 1.93x(1)' =1/ for all g € G \ Z(G).
(ii) If I(x) < \/n/2 — 1, then |x(g)| < 1.93x(1)max(1=1/2100):1=supp(9)/n) for all g € G.
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Proof. We follow the proof of [GLT1, Theorem 1.6(iii), (iv)], and assume first that j := [(x) > 3.
Using [GLT1), Lemma 5.1(iii)] we see that

IGU;(o)l/¢" < (q+ 1)(¢® = 1)(¢® + 1) /¢° < 1.266.

Hence we can use [GLTT, (8.18)] with the improved bound |S| < 1.266¢7" for S := GU;(q), which
leads to the improved upper bound 0.747¢™~17 for || (q”(jfl) + 16.52qj2+j—1q"(j*2)), and obtain

¢"(1—0.747¢"7) _ 0.906¢" 1.747¢(=1i
> . x(9)| < ——=——
[STa (1) Sla X9 < —gam

if x = D¢, for a € Irr(S) in the notation of [GLTT), Theorem 1.1].
Suppose j = 2, and let x = D¢ for a € Irr(S) and k := n — supp(g). In the notation of [GLTI]
§8.3], N’ =1, s0 D/, (1) < ¢*v/2 in [GLTI, (8.17)], and instead of [GLTT, (8.18)] we now have

7" —15)(¢" + ¢*V2) @ +1S1(¢" + ¢*V?2)
Sla@m 0 XIS g

Also, |S| = |GUa(q)| < 1.125¢%, hence |S|(¢" + ¢>v/2) is less than 0.588¢%"~2 when n > 7 and less
than 0.588¢"" when n > 10. Now we can repeat the rest of the proof of [GLTT, Theorem 1.6(iii),
(iv)] verbatim to obtain the result for j > 2.

The estimates are trivial if j = 0 or if g € Z(G), i.e. k:=n —supp(g) = 0. If j = 1, then, as
shown in the proof |[GLTT Theorem 1.6(iii)], we have x(1) > (¢" — ¢)/(¢ + 1), and

T ol = { o T k< (n-1)/2
g+1 XY 2¢" +q)/(qg+1) < L9 (D), k> n/2,

Ix(1)] =

(8.1) x(1) =

Ix(g)] <

yielding the result. 0

Proposition 8.9. There exists an integer N > 1 such that the following statement holds for any
prime power q, any integer n > N, any integer a with n/3 < a < 2n/3, and any ¢ = +. If
G = SL;(q) and s,t € G are regular semisimple elements belonging to mazimal tori T of type
Ton—a and To of type Thi1,n—a—1, then s¢ . tC contains every non-central element g € G, except
possibly when ¢ = 2 and g is a scalar multiple of a transvection.

Proof. Let x € Irr(G) be such that x(s)x(t) # 0. As shown in the proof of [GLOST, Proposition
8.4], x is a unipotent character x* labeled by a partition A - n, and |x(s)x(t)| < 16. The choices
for \ are listed in [LaSTT, Corollary 3.1.3]: either A = (n — j,19) with 0 < j < n — 1, or its largest
part A\; satisfies n — A\; > min(a,n —a) — 1 > n/3 — 1, and there are at most 4an < 8n?/3 of them.

Since g ¢ Z(G), we have that supp(g) > 1. Note that I(x) = n — A; by [GLTIl Theorem 3.9].
Next, by [GLTT, Theorem 1.3], if [(x) > ng := \/n/5, then x(1) > ¢"(»~"0)=3_ Hence, applying
Theorem [5.5 we now have

._ X (s)x(t)x(9)] 16 - 8n*/3 n?
Xy = Z X(l) < qa(no(nfno)f?;)/n O( )

- 2V /6
x€Irr(G), 1(x)=no
Choosing N large enough, we have that ¥; < 0.01.

Now we look at x with x(s)x(t) # 0 and [(x) < ng. By the above considerations, x = X(”_j’lj)
with 0 < j = [(x) < no < n/3. The Murnaghan-Nakayama rule applied to x(s), x(t) and the hook
partition (n — j,17) shows that |x(s)x(t)| = 1, see [LaST1l, Proposition 3.1.1, Corollary 3.1.2]. On
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the other hand, since [(x) < no, [GLT1, Theorem 1.6(ii)] and Proposition [8.§[ii) apply to x (when
N is large enough) and yield |x(g)| < 1.93x(1)*~/™. We also have by [LMT, Lemma 4.1] that

n—1 i i
(8.2) X(n—j,lj)(l) — P2 Hiz.nfj(q e')

(g —€)
In particular, when N is large enough, x(1)'/" > ¢Z=1/49 and so

S gHmiH /22,

_ X(x(Ox(9)] _ o~ 1.93 = 1.93¢H4
Yp 1= Z T = Z m < Z T
x€E€Irr(G), 1<I(x)<no
If ¢ > 3, then Y9 < 0.99 and so X1 + Yo < 1, showing g € sG 6.

From now on we assume ¢ = 2. If ¢ is semisimple, then g € s& -t by [GT), Lemma 5.1]. Hence
we may assume that supp(g) > 2. First we note that

J=1 J=1

_ XXX _ g~ 193 ¢~ 193214
Ny = > 0 < Z S < Z 5 <0.25.
x€Irr(G), 4<I(x)<no j=4 j=4

Next we bound |x(g)/x(1)| for 1 < j < 3. If j = 1, then x(1) > (2" —2)/3 and |x(g)| < (2""2+4)/3
by [TZ1, Lemma 4.1], hence |x(g)|/x(1) < 0.26 when N is large enough. For j = 2, (8.1]) implies
Ix(g)|/x(1) < (1.1)¢~* < 0.07 when N is large enough. When j = 3, x(1) > ¢*"~® by (8.2), and so
Ix(9)/x(1)] < 1.93x(1)~"/" < (1.1)(1.93)¢® < 0.27 (when N is large enough) by [GLTT, Theorem
1.6(ii)] and Proposition ii). It follows that

Z Ix(s)x(t)x(9)]

1
1lag#x€lr(G) X( )
again showing g € s& - t&. O

< X1+ 23+0.26 +0.07 + 0.27 = 0.86,

Now we can answer an open question raised in [GLOST] and prove the following result, which
strengthens Theorems 4 and 5 of [GLOST]. As shown in [GLOST| Example 8.10], the statement
does not hold for simple groups of Lie-type of bounded rank.

Theorem 8.10. There exists a function f : Z>1 — Z>1 such that the following statement holds.
For any integer k > 1 and any integer N > 1 with at most k distinct prime divisors, the power
word map (z,y) — Ny is surjective on any alternating group A, with n > f(k) and any simple
classical group of rank r > f(k).

Proof. Fix any k > 1. By [GLOST), Theorem 4], it suffices to prove the theorem for any finite
classical group S = PSL{ (q) with n sufficiently large. Recall [Zs] that if m > 7, then (e¢)"™ — 1
admits a primitive prime divisor ¢,,, that is a prime divisor which is coprime to HZ’;_ll((eq)l -1).
Choosing n > 12k 4+ 24, we can find k + 1 integers a;, 1 <1i < k + 1, such that

(8.3) n/3<a; <ag<...<agpr1 <n/2, a1 —a; > 2 for all .

Then, for each i, we can find a regular semisimple element s; € G := SL (q) of order 4,0,
belonging to a maximal torus of type Ty, n—q; and a regular semisimple element ¢; € G of order
lo;41€n—q;—1 belonging to a maximal torus of type Ty, 4+1,n—q;—1. Condition ensures that
ged([si| - |til, sj] - |tj|) = 1 whenever ¢ # j. Since N has most k distinct prime factors, it follows
that N is coprime to |s;,| - |t;,| for some ig and so both s;, and t;, are N*" powers in G.

Now assume n is sufficiently large and consider any g € G N\ Z(G). If ¢ > 3, or if ¢ = 2 but g is
not a scalar multiple of a transvection, then g belongs to siGO ~tl-c(*; by Proposition and so it is a
product of two N*® powers. Suppose now that ¢ = 2 and g is a transvection. Since n > 12k + 24,
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we can find k + 1 odd integers 9 < n; < mng < ... < ngt1 < n. By [GLOST| Theorem 2.1], for each
i, g embedded in SL;, (¢) is a product u;v; where |u;| = £, and |v;| = £, 1. Arguing as above, we
see that N is coprime to |ujy| - [vj,| for some jo, hence g = uj,vj, is again a product of two NI
powers. O

8.4. Fibers of product morphisms on semisimple algebraic groups. Our character estimates
have consequences for the geometry of semisimple algebraic groups in all characteristics, of which
the following result is a sample.

Theorem 8.11. There exists a constant C with the following property. Let K be an algebraically
closed field and G a simple algebraic group over K. Let Sy,...,S; be conjugacy classes in G, and
X =8 x---x 8. IfdimX > CdimG, then the multiplication morphism pug: X — G is flat.

Proof. As conjugacy classes are non-singular varieties, X and G are both non-singular, so by miracle
flatness, the theorem is equivalent to the statement that for all g € G(K), ux'(g) has dimension
dim X — dimG.

If Q denotes the simply connected cover of G, S@ = 5; Xg Q, X =119, and fig: X — Q
denotes the product morphism, then the natural morphisms 7 : Q — G and 7x: X — X are finite
and surjective. If g € G(K), then

o= U @@,
geng' (9)
and
dim7x (7' (9)) = dim i~ (g).
We may therefore reduce to the case that G is simply connected.

Next, we assume that K is algebraic over [, for some prime p. If Gj denotes the split, simply
connected simple algebraic group over F;, with the same Dynkin diagram as G, then G xp, K is
isomorphic to G. We fix an isomorphism. Via this isomorphism, all varieties S; are defined over
some common finite extension F, of Fy,.

Fixing ¢, we define G := Gy(Fy), S; =S, ;(F ) X := 51 X --- x S, and the multiplication map
fig: X — G. It suffices to prove that for § € G, fig ( ) has O(q¥mX-dimG) elements, where the
implicit constant depends on G and the S; but not on g.

Let Z denote the center of G, and G := G/Z Let S;, X, and u denote the counterparts for G to
S;, X, and it. Then

w i) = Y wx(i (@),
{3€GImc(9)=g}
so it suffices to prove that u~'(g) = O(¢HimX—dimG)
Now,
) ={(s1,.--,81) € X | s1---51, = 1}.

Writing S; = xiG, we have

_ x(z1) ( K)X(9)
|7~ L( Z .
xEIrr(G)

We claim that each S; is a union of O(1) conjugacy classes in G, where the implicit constant does
not depend on S; or ¢q. This follows from the analogous claim for G-conjugacy classes in S;. To
prove this, con81der the subvariety W of Gy x G, consisting of commuting pairs (g, g,). The fiber

W of this variety over §; € Go(Fy) is the centralizer of g, in Gy. By [EGAIV], Corollaire 9.7.9],
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the number of geometric components of the fiber is a constructible function on G, so it is bounded
above. The number of points of the algebraic group W5 over Fg is at most C(q+ 1)dlmw§1,
where C' is the number of components. Likewise, the number of points of G, over F, is at least

(g — 1)4m%. Thus, the size of the conjugacy class of §; in Gy(F,) is bounded below by a positive

dim G —dim w@l

constant multiple of ¢ . By the Lang-Weil estimate, the number of F,-points on the

conjugacy class of g; in the algebraic group Gy is at least (1 — 0(1))qdimg0_dimw§1. This gives an
upper bound on the number of G(F,)-conjugacy classes in S; and therefore an upper bound on the
number of G-conjugacy classes in .S;.

We may therefore pick representatives z; of each S; and prove that the number of k-tuples

(s1,...,8k) such that s; - - - s = 1 and each s; is conjugate in G to z; is O(|X|/|G|). By Theorem[A]

Ix(@1) - x(@r)x(9)] 2 ZizyloglSil
< sG] .
N < x(1) €
As log|Si| = (dim S;) log g + O(1), we have

k
> log|Si| = (dim X)log g + O(1),
=1
SO

- X —dimX
‘W 1(9)‘ = H(l + O(Z X(1)2 dimG T (1)))
x#1

By [LiSh3, Theorem 1.1], if dim X > Lz/h) dim G, then
X . )
= (9)l = ||G|(1 +0(1)) = O(gHmX—dmG),

where the o(1) term goes to 0 independently of the choices of conjugacy classes as ¢ — oo. This
implies the theorem for K = Fq.

For the general case, let G denote the Chevalley scheme over Z with the same Dynkin diagram
as G. Fix an isomorphism between Gx and G. Choose representatives x1,...,x; for Si,...,S in
G. Via the isomorphism, we can identify all the z; as points X; on G(A), where A is a finitely
generated Z-algebra. By [GLT2, Lemma 8.2], there exists a dense open affine subscheme Spec B
of Spec A and for each i a locally closed B-subscheme S; of Gg so that for every field F' and every
F-point of Spec B, S;F is the conjugacy class of the specialization X p.

Now consider the multiplication morphism pg: S X -+ X S — Gp. By [EGATV) Proposi-
tion 9.5.5], the set of points of Gp over which every fiber of pup has dimension dim X — dimG is
constructible and contains every point of G with finite residue field. As Gp is of finite type over B,
it is of finite type over Z and therefore Jacobson [EGA TV] Corollaire 10.4.6]; moreover, the closed
points of Gp are exactly the points with finite residue field [EGA IVl Lemme 10.4.11.1]. In a Ja-
cobson scheme, by definition, the closed points are very dense, so by [EGA IV], Proposition 10.1.2],
the only constructible subset of Gp containing all closed points is the whole set. Thus, the fiber
dimension condition holds for all fibers of up and therefore for all fibers of ux. U

We remark that, replacing the constant C' above by 2C + 1, we can prove that pg is faithfully
flat. Indeed, it suffices to prove that ug is surjective. If dim X > (2C'+1) dim G, then there exists j
such that the multiplication maps pr: X; x - - -Xj — G and vi: ljﬂ X -+ x X — G are flat and
therefore dominant. By Chevalley’s theorem, the images of px and vi are dense constructible sets.
As the intersection of two dense open subsets is non-empty, the same is true for dense constructible
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subsets, and it follows that the product of two such subsets on an algebraic group covers the whole

group.

A related result, in the case S| = ... =5}, and with the explicit constant C' = 120, was recently
proved in [LiSi, Theorem 1].
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