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Abstract. For every finite quasisimple group of Lie type G, every irreducible character χ of G,
and every element g of G, we give an exponential upper bound for the character ratio |χ(g)|/χ(1)
with exponent linear in log|G| |gG|, or, equivalently, in the ratio of the support of g to the rank of
G. We give several applications, including a proof of Thompson’s conjecture for all sufficiently large
simple symplectic groups, orthogonal groups in characteristic 2, and some other infinite families of
orthogonal and unitary groups.
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1. Introduction

Let G be a finite group, g an element of G, and χ an irreducible character of G. As χ(g) is
a sum of χ(1) roots of unity, |χ(g)| ≤ χ(1), and when g lies in the center of G, no better upper
bound is possible. The goal of this paper is to provide a good bound for |χ(g)| in terms of χ(1) and
|gG| over the whole range of character degrees and conjugacy class sizes, which applies to all finite
quasisimple groups G of Lie type, (i.e. G = [G,G] and G/Z(G) is a finite simple group of Lie type).
Our main result is the following:
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Theorem A. There exists an absolute constant c > 0 such that for all finite quasisimple groups G
of Lie type, irreducible characters χ of G, and elements g ∈ G, we have

(1.1) |χ(g)| ≤ χ(1)
1−c

log |gG|
log |G| .

There are already many bounds for irreducible character values in the literature. For groups of
Lie type, Gluck [Gl] bounded the character ratio |χ(g)|/|χ(1)| away from 1 for all non-central g. For
classical groups of Lie type, one can say more for almost all elements. We define the support supp(g)
of an element g ∈ GLn(F̄q) to be the codimension of the eigenspace of g of maximal dimension.
This leads naturally to a definition for the support of an element g of a classical finite group of Lie
type; namely, we lift g to an element of its central extension which lies in GLn. In [LaST1], the
character ratio is shown to go to 0 as supp(g) → ∞. The papers [GLT1, GLT2] give exponential

character bounds, i.e., upper bounds of the form χ(1)α as long as log |gG|
log |G| is close enough to 1.

The exponents in these bounds go to 0 as log |gG|
log |G| → 1, so in this regime, the bounds are better

than those of Theorem A. A bound of type (1.1) is given in [BLST] for many classes of elements,
and this has been further extended in [TT], yielding in particular optimal bounds for semisimple
elements, whose centralizer is a proper Levi subgroup. Furthermore, good character bounds for the
exceptional groups of Lie type, which all have bounded rank, are provided in [LiT].

The strength of our paper is that it gives an exponential bound covering all elements and all
characters. This is particularly valuable for applications involving the Frobenius formula, where
the most difficult cases cannot be excluded. We also note that, up to a multiplicative constant, the

exponent in the bound |χ(g)/χ(1)| ≤ χ(1)−c log|G| |gG| in Theorem A is optimal; see Examples 5.7,
6.8, and Lemma 5.8. Furthermore, the constant c is made explicit in the proof.

We remark that there has been a parallel effort to obtain exponential bounds for irreducible
character values of symmetric (and alternating) groups; see, for instance, [FL, Ro, MS, RŚ, LaSh1,
LifM].

Previous character bounds have seen a wide variety of interesting applications. They play an
important role in the proof of Ore’s conjecture [LOST1], versions of Waring’s problem for finite
simple groups [LaST1, LaST2], covering number computations for conjugacy classes [LiSh2], and
estimates for the number of points of representation varieties over finite fields [LiSh4]. Additional
applications are described in Liebeck’s survey article [Li].

We present several applications illustrating the power of the new bounds. Thompson’s conjecture
[AH] asserts that for every finite simple group G, there exists a conjugacy class S such that S2 = G.
Ellers and Gordeev [EG] made substantial progress on this conjecture, leaving open the case of
groups of Lie type with q ≤ 8; also, they completely settled the case of groups of type Ar. In this
paper, we give an asymptotic treatment of the case Cr. Likewise, we treat Dr and 2Dr either in
characteristic 2 or in odd characteristic, where q satisfies a suitable condition (mod 4). That is,
we show that Thompson’s conjecture holds for all but finitely many such groups; see Theorem 7.7.
With finitely many exceptions, all that now remains are certain unitary groups with q ≤ 7 as well
as odd-dimensional orthogonal groups and certain even-dimensional orthogonal groups over F3 and
F5. We also prove that various regular semisimple conjugacy classes S in G = SLn(q) or SUn(q),
including all classes with irreducible characteristic polynomial, have the property that S2 includes
all elements of G whose support is larger than an absolute constant.

The mixing time for a random walk on a Cayley graph given by a conjugacy class S has been an
object of study since the celebrated work of Diaconis and Shahshani [DS]. For finite simple groups of

Lie type, Liebeck and Shalev [LiSh2, Corollary 1.14] gave the upper bound O
(︁ log3 |G|
log2 |S|

)︁
. In Theorem
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8.1, we improve this to the optimal asymptotic, O
(︁ log |G|
log |S|

)︁
, settling conjectures of Lubotzky [Lu,

p.179] and of Shalev [Sh, 4.3] in the affirmative.
Each non-trivial character χ of a finite group G determines a McKay graph on the vertices Irr(G).

Liebeck, Shalev, and Tiep [LiST1, Conjecture 1] conjectured that the diameter of this graph is

O
(︁ log |G|
logχ(1)

)︁
for all finite simple groups. We prove this conjecture, as well as a related conjecture of

Gill [Gi] concerning products of irreducible complex characters, for all finite simple groups of Lie
type, see Theorems 8.3 and 8.5. We also extend results of Fulman [Fu] to determine the asymptotic
of the convergence rate (to the stationary distribution) for random walks on McKay graphs for any
simple group of Lie type, see Theorem 8.4.

The non-commutative Waring problem has received considerable attention recently, see e.g.
[LaSh2, LaST1, GLOST, LaST2]. In particular, [GLOST, Theorem 4] states that there is a function
f : Z≥1 → Z≥1 such that if N ≥ 1 is an integer with at most k prime factors, the power word map
(x, y) ↦→ xNyN is surjective on any alternating group An with n ≥ f(k), and on any simple group of
Lie type of rank n ≥ f(k), excluding types A and 2A. In [GLOST], it is asked whether the theorem
extends to the excluded cases. In Theorem 8.10, we prove that it does.

If G is a simple algebraic group over any algebraically closed field K and S1, . . . , Sk are conjugacy
classes of G, then multiplication defines a morphism of varieties X := S1×· · ·×Sk → G. We prove
that if dimX is at least an absolute constant multiple of dimG, then this morphism is flat, meaning,
in this situation, that the fibers of the morphism all have the same dimension, dimX − dimG, see
Theorem 8.11.

Our strategy for proving the main theorem reverses the usual order of things. Instead of using
character estimates to prove mixing theorems, we use mixing theorems to prove character estimates.
More precisely, we use probability-theoretic methods to show that if US is the uniform distribution
on a very small conjugacy class S, the probability that a sample from the iterated convolution U∗b

S
lands in a small conjugacy class is very low. We do this in two stages, first to obtain (with probability
close to one), an element whose support is larger than a constant multiple of the dimension n of the
natural representation of G, and then to obtain an element whose conjugacy class is large enough
that the estimates of [GLT1, GLT2] apply.

The paper is organized as follows. In section 2, we prove basic combinatorial estimates. In section
3, we translate these into the probability-theoretic results necessary to bootstrap from elements of
large support (satisfying a linear lower bound in rank(G)) to elements of small centralizer (satisfying
an exponential upper bound in |G| which can be taken as small as we wish). The bootstrapping
argument is carried out in sections 4 and 5 and produces a uniform exponential character bound in
terms of the support, Theorem 5.5. In section 6, we compare two notions of smallness for a conjugacy
class given by support and by class size, and this allows us to deduce Theorem A from Theorem
5.5. The applications to squares of conjugacy classes are given in section 7, and we conclude, in
section 8, with the applications to mixing time, McKay graph diameter and products of irreducible
complex characters, power word maps on simple groups, and flatness of product morphisms.

2. Counting lemmas

The key result in this section is Proposition 2.6, which given a classical group G acting on a
vector space V , a subspace U ⊂ V , a fixed element of G, a fixed integer b, and a fixed polynomial
P (x) ∈ Fq[x], bounds above the number of different ways it can happen that P evaluated at a
product of b conjugates gx1 , . . . , gxb of g annihilates U . When this occurs, for each basis vector
ui of U , we can track all the vectors appearing along the way in computing P (gxb · · · gx1)ui and
count tuples encoding all that intermediate information. We use this to estimate the size of the
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projection to (x1, . . . , xb). To accomplish this, we need various estimates for orbit sizes for classical
group actions.

Let q be a power of a prime p, n ∈ Z≥3, and V = Fn
q . In what follows, by a classical group

G = Cln(q) = Cl(V ) on V and its dimension D we specifically mean one of the following:

• G = SL(V ) and D = n2 − 1;
• Sp(V ) and D = n(n + 1)/2, if 2|n and V is endowed with a non-degenerate alternating
bilinear form (·|·);

• SO(V ) and D = n(n − 1)/2, if p > 2 and V is endowed with a non-degenerate symmetric
bilinear form (·|·);

• Ω(V ) and D = n(n−1)/2, if p = 2|n and V is endowed with a quadratic form Q, associated
with a non-degenerate alternating bilinear form (·|·);

• SU(V ) and D = (n2 − 1)/2, if q = q20 is a square and V is endowed with a non-degenerate
(Fq0-bilinear) Hermitian form (·|·) so that SU(V ) ∼= SUn(q0).

(See e.g. [KlL, Chapter 2] for definitions and basic facts on the associated forms for finite classical
groups.) This convention ensures that qD > |G| > qD/2 (cf. [LMT, Lemma 4.1(ii)]). We remark
that for unitary groups, we do not always denote the two relevant prime powers q0 and q = q20,
sometimes preferring q and q2, depending on whether the emphasis is on the field of definition of the
algebraic group or on the field of definition of the natural representation. Note also that SUn(q0)
and SU(Fn

q ) (and sometimes Cln(q) with specifying Cl = SU) are different names for the same

group, and the same can be said for SUn(q) and SU(Fn
q2) (and Cln(q

2), with specifying Cl = SU).

If V1, . . . , Vk are vector spaces over a finite field F, and g1 ∈ GL(V1), . . . , gk ∈ GL(Vk), we denote
by diag(g1, . . . , gk) the image of (g1, . . . , gk) under the homomorphism

GL(V1)× · · · ×GL(Vk) → GL(V1 ⊕ · · · ⊕ Vk).

We use the same notation for classical groups; for instance, if gi ∈ Sp(Vi), we understand diag(g1, . . . , gk)
to be an element of Sp(V1 ⊕ · · · ⊕ Vk).

Lemma 2.1. If k and n are positive integers and r ≤ k is a non-negative integer, V = Fn
q ,

and w1, . . . , wk are linearly independent vectors in V , then the number of sequences of vectors
v1, . . . , vk ∈ V such that

dimSpan(v1, . . . , vk, w1, . . . , wk) = k + r

is less than (︃
k

r

)︃
qrn+k2−r2 .

Proof. Any such sequence (v1, . . . , vk), determines an r-subset S ⊆ {1, . . . , k} such that s ∈ S if and
only if

vs ̸∈ Span(v1, . . . , vs−1, w1, . . . , wk).

We will bound the number of such sequences by first fixing S, for which we have
(︁
k
r

)︁
possibilities.

Given S, there are less than qn possibilities for vs when s ∈ S and qk+r possibilities for vs for each
of the k − r indices s /∈ S. □

Lemma 2.2. Let U be a subspace of V = Fn
q of dimension d ≤ (n − 3)/2, and let H denote the

subgroup of all elements in G = Cl(V ) that act trivially on U . Then |H| < qD−dn if Cl = SL and

|H| ≤ qD−dn+d(d+1)/2 otherwise.

Proof. If G = SLn(q), then

|H| = qd(n−d)|SLn−d(q)| < qd(n−d)+(n−d)2−1 = qD−dn.



UNIFORM CHARACTER BOUNDS FOR FINITE CLASSICAL GROUPS 5

We will now consider the case Cl ̸= SL and so V is endowed with G-invariant (bilinear or
Hermitian) form (·|·) (and quadratic form Q when p = 2 and Cl = Ω). Let κ := −1 if p > 2 and
Cl = Sp, and κ := 1 otherwise, and set

W := U ∩ U⊥, a := dimW, b := d− a.

Consider the H-invariant (partial) flag

{0} ⊆W ⊆ U ⊆W⊥ ⊆ V.

Note that W⊥ = U + U⊥, and (·|·) induces a non-degenerate bilinear form on W⊥/W (of the
same kind). With respect to this induced form, U/W is a non-degenerate subspace with orthogonal
complement U⊥/W . So we can find a basis

(e1, . . . , ea, g1, . . . , gb, h1, . . . , hn−2a−b)

of W⊥, such that

U = Span(e1, . . . , ea, g1, . . . , gb), U
⊥ = Span(e1, . . . , ea, h1, . . . , hn−2a−b).

and moreover the Gram matrix of the form induced by (·|·) on W⊥ in this basis is

⎛⎝0 0 0
0 B 0
0 0 C

⎞⎠
with det(B) det(C) ̸= 0. In particular, S := Span(g1, . . . , gb, h1, . . . , hn−2a−b) is a non-degenerate
subspace of V . So S⊥ is also a non-degenerate subspace of V of dimension 2a, which contains W as
a maximal totally singular subspace. Hence we extend (e1, . . . , ea) to a basis (e1, . . . , ea, f1, . . . , fa)

of S⊥ in which (·|·) has the Gram matrix

(︃
0 Ia
κIa 0

)︃
. Thus the Gram matrix of (·|·) in the basis

(e1, . . . , ea, g1, . . . , gb, h1, . . . , hn−2a−b, f1, . . . , fa)

of V is

(2.1)

⎛⎜⎜⎝
0 0 0 Ia
0 B 0 0
0 0 C 0
κIa 0 0 0

⎞⎟⎟⎠ .

Consider any element h ∈ H. Then h acts trivially on U and on V/W⊥ ∼=W ∗, and preserves the
orthogonal complement U⊥/W to U/W in W⊥/W , whence we get a homomorphism

φ : H → Cl(U⊥/W ) ∼= Cln−2a−b(q).

We will bound |φ(H)| and |Ker(φ)|, representing each x ∈ Ker(φ) by the matrix⎛⎜⎜⎝
Ia 0 X Y
0 Ib 0 Z
0 0 In−2a−b T
0 0 0 Ia

⎞⎟⎟⎠
in the chosen basis, where the matrices X,Y, Z, T over Fq satisfy the conditions

(2.2) Z = 0, κX + tT ∗C = 0, κY + tY ∗ + tT ∗CT = 0

which are obtained using the fact that x preserves (·|·) with Gram matrix (2.1). For instance, Z = 0
because, for any v ∈ V and u ∈ U ,

(2.3) (x(v)− v|u) = (x(v)|u)− (v|u) = (x(v)|x(u))− (v|u) = 0,
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i.e. x(v)−v ∈ U⊥. Here, for a matrix A = (aij) over Fq, A
∗ is interpreted as A in the case Cl = Sp,

SO, or Ω and as A(q0) = (aq0ij ) in the case Cl = SU.

(a) Suppose Cl = Sp. Then 2|b and 2|n, and writing b = 2c and n = 2m we have

|φ(H)| ≤ |Sp2m−2a−2c(q)| < q(m−a−c)(2(m−a−c)+1).

For x ∈ Ker(φ), there are q2a(m−a−c) choices for T , and, by (2.2), for each choice of T , X is uniquely

determined and there are qa(a+1)/2 choices for Y . Thus |H| < qE , with

E := (m− a− c)(2(m− a− c) + 1) + 2a(m− a− c) + a(a+ 1)/2 = D − 2dm+ d(d− 1)/2,

since D = m(2m+ 1) and d = a+ 2c.

(b) Suppose Cl = SU. Then

|φ(H)| ≤ |SUn−2a−b(q0)| < q
(n−2a−b)2−1)
0 = q((n−2a−b)2−1)/2.

For x ∈ Ker(φ), there are qa(n−2a−b) choices for T , and, by (2.2), for each choice of T , X is uniquely

determined and there are qa
2

0 = qa
2/2 choices for Y . Thus |H| < qE , with

2E := (n− 2a− b)2 − 1 + 2a(n− 2a− b) + a2 = 2D − 2kn+ d2,

since D = (n2 − 1)/2 and d = a+ b.

(c) Suppose Cl = SO or Ω. Then n− 3 ≥ 2d = 2a+ 2b, whence n− 2a− b ≥ 3, and

|φ(H)| ≤ |SOn−2a−b(q)| < q(n−2a−b)(n−2a−b−1)/2.

For x ∈ Ker(φ), there are qa(n−2a−b) choices for T , and, by (2.2), for each choice of T , X is uniquely

determined and, if p > 2 then there are at most qa(a−1)/2 choices for Y , so

(2.4) |Ker(φ)| ≤ qa(n−2a−b)+a(a−1)/2.

We want to show that (2.4) also holds when p = 2. Indeed, suppose p = 2. Then the number of
elements in Ker(φ) that correspond to the same T is the number of elements in Ker(φ) that have
T = 0. In addition to (2.2) which gives tY + Y = 0, i.e. Y = (yij) is symmetric, any such element
must satisfy

(2.5) Q(fj) = Q(x(fj)) = Q(fj +
∑︂
i

yijei) = Q(fj) + yjj + Q(
∑︂
i

yijei).

Since p = 2, every scalar z ∈ Fq has a unique square root in Fq, and hence the map√︁
Q : V → Fq, v ↦→

√︁
Q(v)

is well-defined. Furthermore,
√
Q is Fq-linear on Span(e1, . . . , ea), so we may assume that Q(e1) =

. . . = Q(ea−1) = 0, and Q(ea) = 0 or Q(ea) = 1. In the former case, (2.5) yields yjj = 0, whence

Y has zero main diagonal and so the number of such Y is qa(a−1)/2, and thus (2.4) holds. In the
latter case, (2.5) yields yjj = y2aj when j < a, and yaa + y2aa = 0, i.e. yaa = 0 or 1. Thus, when T is

fixed, there are (at most) 2qa(a−1)/2 choices for x ∈ Ker(φ). Next, writing n− 2a− b =: 2c, we can

choose (h1, . . . , h2c) so that the Gram matrix C is

⎛⎜⎜⎝
0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0

⎞⎟⎟⎠. Then

Q(hj) = Q(x(hj)) = Q(hj +
∑︂
i

xijei) = Q(hj) + Q(
∑︂
i

xijei) = Q(hj) + x2aj ,
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and so xaj = 0. On the other hand, X = tTC by (2.2), hence

0 = xaj =
(︁
tTC)aj = t2c+1−j,a

for 1 ≤ j ≤ 2c. These relations show that there are at most q(a−1)(n−2a−b) choices for T , and, for
each choice of T , X is uniquely determined and there are at most 2qa(a−1)/2 choices for Y . Since
qn−2a−b ≥ 2, (2.4) holds in this case as well.

Thus we always have |H| ≤ qE , with

2E := (n− 2a− b)(n− 2a− b− 1) + 2a(n− 2a− b) + a(a− 1) = 2D − 2kn+ d(d+ 1),

since D = n(n− 1)/2 and d = a+ b. □

Lemma 2.3. Let k ∈ Z≥1 and let q be any prime power. Suppose that either K = Fk
q is endowed with

a nonzero alternating bilinear form (·|·), or a quadratic form Q associated to a nonzero symmetric
bilinear form (·|·), or q is a square and K = Fk

q is endowed with a nonzero Hermitian form (·|·). Let

K⊥ denote the radical of (·|·), and let v ∈ K ∖K⊥. Then the set Ω(v) of the vectors u ∈ K ∖K⊥

with (v|v) = (u|u), respectively, Q(v) = Q(u), (v|v) = (u|u), has cardinality ≥ qk−2.

Proof. (a) First we consider the case (·|·) is non-degenerate, i.e. K⊥ = 0. The bound on |Ω(v)| is
obvious if k ≤ 2, so we may assume k ≥ 3. Let G̃ denote the full isometry group of (·|·), respectively
of Q, (·|·). By Witt’s lemma [KlL, Proposition 2.1.6], Ω(v) is just the orbit vG̃ of v. In the symplectic
case, we have

|vG̃| = |K ∖ {0}| = qk − 1 > qk−1.

In the odd-dimensional orthogonal case, we have 2 ∤ q and k = 2m + 1 for some m ≥ 1. Then

G̃ = GO2m+1(q) has one orbit of isotropic vectors of length q2m − 1, (q − 1)/2 orbits of anisotropic
vectors of length qm(qm − 1) each, and (q − 1)/2 orbits of anisotropic vectors of length qm(qm + 1)
each, see e.g. [KlL, §4.1], and any of these lengths is at least q2m−1.

In the even-dimensional orthogonal case, we have k = 2m with m ≥ 2. Then G̃ = GOε
2m(q) for

some ε = ±. If 2 ∤ q, then G̃ has one orbit of isotropic vectors of length (qm−ε)(qm−1+ε), (q−1)/2
orbits of anisotropic vectors of length (qm − ε)(qm−1 + 1) each, and (q − 1)/2 orbits of anisotropic
vectors of length (qm − ε)(qm−1 + 1) each, again see e.g. [KlL, §4.1], and any of these lengths is

larger than q2m−2. If 2|q, then G̃ has one orbit of isotropic vectors of length (qm−ε)(qm−1+ε), and
q − 1 orbits of anisotropic vectors of length qm−1(qm − ε) each, and any of these lengths is larger
than q2m−2.

In the unitary case, we have q = q20. With ε := −1, G̃ = GUk(q0) has one orbit of isotropic

vectors of length (qk0 −εk)(q
k−1
0 +εk), and q0−1 orbits of anisotropic vectors of length qk−1

0 (qk0 −εk)
each, again see e.g. [KlL, §4.1], and any of these lengths is larger than q2k−2

0 = qk−1.

(b) Now we consider the case the radical K⊥ of (·|·) has dimension a ≥ 1 over Fq. Then (·|·)
induces a non-degenerate form on K/K⊥ of dimension k − a ≥ 1. If we are in the orthogonal case
with 2|q, assume in addition that Q is identically zero on K⊥. Then note that all the qa vectors in
the coset v +K⊥ belongs to Ω(v). Applying (a) to K/K⊥, we see that |Ω(v)| ≥ qk−a−2qa = qk−2.

Assume now that we are in the orthogonal case with 2|q but Q is not identically zero on V ⊥. As
mentioned in the proof of Lemma 2.2,

√
Q : V ⊥ → Fq is Fq-linear and nonzero, hence surjective.

Fixing w ∈ V ⊥ with Q(w) = 1, we see that each coset u+ ⟨w⟩Fq with u ∈ K∖K⊥ contains a unique

point in Ω(v). It follows that |Ω(v)| = (qk − qa)/q ≥ qk−2. □
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Lemma 2.4. Let U be a subspace of V = Fn
q of dimension d ≤ (n − 3)/2, and let H denote the

subgroup of all elements in G = Cl(V ) that act trivially on U . For any v ∈ V ∖ U , the H-orbit vH

has length |vH | = qn − qd > qn/2 if Cl = SL and |vH | ≥ qn−d−2 otherwise.

Proof. By assumption, codimU ≥ (n + 3)/2 ≥ 2. Hence, in the case Cl = SL, H acts transitively
on V ∖ U , which has cardinality qn − |U | ≥ qn/2.

We will now consider the case Cl ̸= SL and so V is endowed with a non-degenerate G-invariant
(bilinear or Hermitian) form (·|·) (and quadratic form Q when p = 2 and Cl = Ω). In particular, we
consider the orthogonal complement U⊥ of dimension n − d and fix a basis (u1, . . . , ud) of U . We
claim that |vH | is the number N of vectors v′ = v + u ∈ V such that

(2.6) u ∈ U⊥, v + u /∈ U, and the subspaces ⟨U, v⟩Fq , ⟨U, v′⟩Fq are isometric.

Indeed, if v′ = h(v) for some h ∈ H, then u := v′ − v ∈ U⊥ by (2.3), v′ /∈ U , and h induces an

isometry between ⟨U, v⟩Fq and ⟨U, v′⟩Fq . Conversely, suppose v′ = v + u satisfies (2.6), and let G̃

denote the full isometry group of V . By Witt’s lemma, there exists g ∈ G̃ that maps ui ↦→ ui and
v ↦→ v′. We also note that the proof of Lemma 2.1 shows that we can put U in a non-degenerate
(with respect to (·|·)) subspaceW of V dimension ≤ 2d. (Indeed, in the notation introduced prior to
(2.1) we can takeW = ⟨U, f1, . . . , fa⟩Fq of dimension d+a ≤ 2d.) The same claim applied to ⟨U, v⟩Fq

allows us to put this subspace in a non-degenerate subspace W of dimension ≤ 2(d+1) ≤ n− 1. In
particular, dimW⊥ ≥ 1. In fact, in the cases where Cl = Sp, or 2|q and Cl = Ω, we have 2|n and so

2(d+ 1) ≤ n− 2, whence dimW⊥ ≥ 2. This condition on dimW⊥ ensures that G̃ = GG̃W , where

G̃W consists of the elements of G̃ that act trivially on W (and so is isomorphic to the full isometry

group of W⊥). Hence we can write g = hy with h ∈ G and y ∈ G̃W , and observe that h ∈ G still
maps ui ↦→ ui, v ↦→ v′. Thus h ∈ H, and v′ = h(v) ∈ vH .

Next we consider the case

v ∈ U + U⊥,

so that v = v0 + v1 with v0 ∈ U and v1 ∈ U⊥ ∖ U = K ∖K⊥, where K := U⊥ and K⊥ = U ∩ U⊥

is the radical of the restriction of (·|·) to K. Then

|vH | = |Ω(v1)|

with Ω(v1) defined in Lemma 2.3. Indeed, for any u ∈ U⊥, we have v + u /∈ U if and only if
v1 + u ∈ K ∖K⊥, furthermore,

(v′|v′)− (v|v) = (v0 + v1 + u|v0 + v1 + u)− (v0 + v1|v0 + v1) = (v1 + u|v1 + u)− (v1|v1),

and, in the presence of Q,

Q(v′)−Q(v) = Q(v0+v1+u)−Q(v0+v1) = Q(v0)+Q(v1+u)−Q(v0)−Q(v1) = Q(v1+u)−Q(v1).

Thus the map u ↦→ v1 + u is a bijection between the set of vectors u satisfying (2.6) and Ω(v1).
Hence |vH | = |Ω(v1)| ≥ qn−d−2 by Lemma 2.3, and we are done in this case.

From now on, we may assume that

v /∈ U + U⊥,

in which case v + u /∈ U for any u ∈ U⊥. So |vH | is just the number N of vectors u such that

(2.7) u ∈ U⊥ and the subspaces ⟨U, v⟩Fq , ⟨U, v′⟩Fq are isometric.

(a) Let Cl = Sp. Then (2.7) is equivalent to u ∈ U⊥. It follows that |vH | = |U⊥| = qn−d.
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(b) Assume Cl = SU. Then (2.7) is equivalent to u ∈ U⊥ and (v|v) = (v + u|v + u), i.e.

(2.8) (v|u) + (u|v) + (u|u) = 0.

Thus we need to count the number N of solutions u ∈ U⊥ for (2.8).
By Witt’s lemma, we can find a basis (e1, . . . , em, g1, . . . , gk) of U

⊥, with k,m ≥ 0 and k +m =

n − d, such that the Gram matrix of (·|·) on U⊥ in this basis is

(︃
0 0
0 Ik

)︃
. Let ai := (ei|v) and

bj := (gj |v). Since v /∈ U = (U⊥)⊥,

(2.9) (a1, . . . , am, b1, . . . , bk) ̸= (0, 0, . . . , 0).

Writing u =
∑︁

i xiei +
∑︁

j yjgj with xi, yj ∈ Fq, (2.8) amounts to

(2.10) 0 =
∑︂
j

yq0+1
j +

∑︂
i

(︁
xiai + (xiai)

q0
)︁
+
∑︂
j

(︁
yjbj + (yjbj)

q0
)︁
.

Note that, for any c ∈ Fq0 , the equation xq0+1 = c has at least one solution in Fq. Hence, if k ≥ 1,
for any choice of (x1, . . . , xm, y2, . . . , yk) we have at least one choice of y1 to fulfill (2.10). It follows
that N ≥ qm+k−1 = qn−d−1. Assume k = 0. Then we may assume by (2.9) that a1 ̸= 0. Then,
for any c ∈ Fq0 , the equation x1a1 + (x1a1)

q0 = c has q0 solutions in Fq. Hence, for any choice of

(x2, . . . , xm) we have at least one choice of x1 to fulfill (2.10), and thus N ≥ qm−1 = qn−d−1.

(c) Consider the case Cl = SO and p > 2. Then (2.7) is equivalent to u ∈ U⊥ and (v|v) =
(v + u|v + u), i.e.

(2.11) Q(u) + (u|v) = 0,

where Q(u) := (u|u)/2. Thus we need to count the number N of solutions u ∈ U⊥ for (2.11).
By Witt’s lemma, we can find a basis (e1, . . . , em, g1, . . . , gk) of U

⊥, with k,m ≥ 0 and k +m =

n − d, such that the Gram matrix of (·|·) on U⊥ in this basis is

(︃
0 0
0 E

)︃
; moreover, if k ≥ 3, or if

k = 2 and Span(g1, g2) is of type +, then we can choose to have

E = diag

(︃(︃
0 1
1 0

)︃
,diag(ε3, . . . , εk)

)︃
for some εj ∈ F×

q . Let ai := (ei|v) and bj := (gj |v). Since v /∈ U = (U⊥)⊥, (2.9) holds; also write
u =

∑︁
i xiei +

∑︁
j yjgj with xi, yj ∈ Fq and w :=

∑︁
j ej .

Now, if m ≥ 1 and, say a1 ̸= 0, then (2.11) amounts to

a1x1 +
∑︂
i≥2

aixi + Q(w) + (w|v) = 0.

For every choice of (x2, . . . , xm, y1, . . . , yk) we have a unique choice of x1 to fulfill this equation, and
so N = qm+k−1 = qn−d−1. Assume now that a1 = . . . = am = 0; hence k ≥ 1 by (2.9). If k ≥ 3, or
k = 2 but Span(g1, g2) is of type +, then our choice of E transforms (2.11) into

0 = y1y2 +
∑︂
j≥3

yjε
2
j +

∑︂
j

yjbj .

Note that, for any c ∈ Fq, the equation y1y2 + b1y1 + b2y2 = c, which is equivalent to

(y1 + b2)(y2 + b1) = c+ b1b2,

has at least q − 1 solutions in Fq (one for each choice of y2 ̸= −b1), whence N ≥ (q − 1)qm+k−2 =

(q − 1)qn−d−2. If k ≤ 2, then we can choose y1 = . . . = yk = 0 and xi arbitrarily, yielding
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N ≥ qm ≥ qn−d−2. (A more careful analysis shows that N = (q− 1)qm if k = 1, and N = (q+1)qm

if k = 2, using the transitivity of GO−
2 (q) on vectors y ∈ Span(g1, g2) of given Q(y) ∈ F×

q .)

(d) Finally, let Cl = Ω and p = 2. Then (2.7) is equivalent to u ∈ U⊥ and Q(v) = Q(v + u), i.e.
u ∈ U⊥ satisfies (2.11). Thus we need to count the number N of solutions u ∈ U⊥ for (2.11).

By Witt’s lemma, we can find a basis (e1, . . . , em, g1, . . . , g2k) of U
⊥, with k,m ≥ 0, and 2k+m =

n− d, such that the Gram matrix of (·|·) on U⊥ in this basis is

⎛⎝0 0 0
0 0 Ik
0 Ik 0

⎞⎠. Let

ai := (ei|v), bj := (gj |v), ci := Q(ei), dj := Q(gj).

Since v /∈ U = (U⊥)⊥, (2.9) holds; also write u =
∑︁

i xiei +
∑︁

j yjgj , xi, yj ∈ Fq, and w :=
∑︁

j yjgj .

Then (2.11) amounts to ∑︂
i

(︁
aixi + cix

2
i

)︁
+ Q(w) + (w|v) = 0.

(d1) Suppose k ≥ 2, or k = 1 but Span(g1, g2) is of type +. Then we can choose (g1, . . . , g2k) so
that d1 = Q(g1) = 0. Then, for any c ∈ Fq, the equation y1yk+1 + b1y1 + bk+1yk+1 + dk+1y

2
k+1 = c

has at least q − 1 solutions in Fq (one for each choice of yk+1 ̸= b1). In this case, for every choice
of (x1, . . . , xm, yj | j ̸= 1, k + 1) we have at least q − 1 choices of (y1, yk+1) to fulfill (2.11), and so

N ≥ (q − 1)qm+2k−2 ≥ qn−d−2.
(d2) If, for instance, a1 = 0 but c1 ̸= 0, or a1 ̸= 0 but c1 = 0, then for any c ∈ Fq the equation

c1x
2
1+a1x1 = c has a unique solution in Fq. In this case, for every choice of (x2, . . . , xm, y1, . . . , y2k)

we have at a unique choice of x1 to fulfill (2.11), and so N = qm+2k−1 = qn−d−1.
(d3) Suppose k = 1 but Span(g1, g2) is of type −. If, say, c1 = Q(e1) ̸= 0, then, replacing g1 by

g1 + e1/
√
c1 we get Q(g1) = 0, and so Span(g1, g2) is now of type + and we can finish as in (d1).

Otherwise we have ci = 0 for all i. Now, if, say a1 ̸= 0, then we can argue as in (d2). If ai = 0 for
all i, then by choosing y1 = y2 = 0 but x1, . . . , xm arbitrarily, we get N ≥ qm = qn−d−2.

(d4) It remains to consider the case k = 0. Then
√
Q is Fq-linear on U

⊥ = Span(e1, . . . , em), so
we can choose (e1, . . . , em) such that c1 = . . . = cm−1 = 0. Now, if ai ̸= 0 for some 1 ≤ i ≤ m− 1,
then we can argue as in (d2). Otherwise we have a1 = . . . = am−1 = 0. Choosing xm = 0 but
x1, . . . , xm−1 arbitrarily, we get N ≥ qm−1 = qn−d−1. □

Proposition 2.5. Let n ≥ 5, m < n, and k ≤ (n− 1)/4 be positive integers and r a non-negative
integer. Let V = Fn

q , G = GL(V ) or Cl(V ), and let g be an element of G with supp(g) ≥ n −m.
Let

v = (v1, . . . , vk) and w = (w1, . . . , wk)

denote two sequences of linearly independent vectors of V , and suppose

r = dimSpan(v1, . . . , vk, w1, . . . , wk)− k.

Let

Gv,w :=
{︁
x ∈ G | x−1gx(wi) = vi, 1 ≤ i ≤ k

}︁
.

Then the number of elements in Gv,w is at most

2rqn
2−k(n−m)−rm

if G = GL(V ) or SL(V ), and at most

qD−k(n−m)+r(k−m+1)+k(k+1)/2

if G = Cl(V ) with Cl = SU, Sp, SO, or Ω.
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Proof. (i) Suppose first that r = 0, so v1, . . . , vk and w1, . . . , wk span the same subspace W of V .
Let T denote the linear transformation on W defined by wi ↦→ vi. We consider V := V ⊗Fq Fq and

W :=W ⊗Fq Fq as Fq[t]-modules, where t acts by g⊗ 1 and T ⊗ 1 on these spaces respectively. The

condition x−1gxwi = vi implies that x⊗ 1 induces a Fq[t]-linear map from W to V .

For λ ∈ Fq, let V λ and W λ be the corresponding generalized eigenspaces, i.e. Ker((t − λ)n) on

V and W . Then

HomFq [t]
(W,V ) =

∏︂
λ

HomFq
(W λ, V λ).

For each λ, we choose decompositions

V λ =
⨁︂
i

V λ,i, W λ =
⨁︂
i

W λ,i,

where

V λ,i
∼= (Fq[t]/(t− λ)iFq[t])

aλ,i , W λ,i
∼= (Fq[t]/(t− λ)iFq[t])

bλ,i .

Thus,

dimFq
HomFq [t]

(W,V ) =
∑︂
λ

∑︂
i,j

min(i, j)aλ,ibλ,j .

As dim Ker(g − λ) =
∑︁

i aλ,i ≤ m for all λ, for each j ≥ 1, we have∑︂
i

min(i, j)aλ,i ≤ j
∑︂
i

aλ,i = jm.

Furthermore,
∑︁

j,λ jbλ,j = k, hence

dimFq
HomFq [t]

(W,V ) ≤
∑︂
λ

∑︂
j

jmbλ,j = mk.

Thus, for any x ∈ EndFqV such that (x⊗1)|W ∈ HomFq [t]
(W,V ), there are at most qmk possibilities

for the restriction of x to W . If G = GL(V ) or SL(V ), then there are at most q(n−k)n possibilities
for the restriction of x to a complement to W in V . Therefore,

|Gv,w| ≤ |{x ∈ EndFqV : (x⊗ 1)|W ∈ HomFq [t]
(W,V )}| ≤ qn

2−k(n−m),

which implies the proposition in the case r = 0 and G = GL(V ), SL(V ).
Suppose G = Cl(V ) ̸= SL(V ). Note that dimW = k ≤ (n − 1)/4 ≤ (n − 3)/2. The number of

elements x ∈ Gv,w with a fixed action on W is at most the order of the pointwise stabilizer H of

W in G, which is bounded by qD−kn+k(k+1)/2 by Lemma 2.2. Hence,

|Gv,w| ≤ qD−k(n−m)+k(k+1)/2,

completing the proof of the statement in the case r = 0.

(ii) For the general statement, we use induction on k, with the obvious induction base k = 0.
Suppose the proposition holds for k−1 ≥ 0. Using the case r = 0 established in (i), we may assume
without loss of generality that vk ̸∈ Span(w1, . . . , wk). Hence we can find v∗ ∈ V ∗, a dual vector of
V , such that v∗(wi) = 0 for 1 ≤ i ≤ k and v∗(vk) = 1. For 1 ≤ i < k, we denote ci := v∗(vi), and
observe that replacing vi by vi − civk and wi by wi − ciwk for 1 ≤ i ≤ k − 1 does not affect the set
Gv,w. After this replacement, we now have v∗(vi) = 0 for 1 ≤ i ≤ k− 1, v∗(vk) = 1, and v∗(wi) = 0
for 1 ≤ i ≤ k. Hence

(2.12) vk /∈ U := Span(v1, . . . , vk−1, w1, . . . , wk).
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Let Ω := V ∖ U , and let

v′ := (v1, . . . , vk−1), w
′ := (w1, . . . , wk−1),

H := {x ∈ G | x(vi) = vi, 1 ≤ i ≤ k − 1, x(wj) = wj , 1 ≤ j ≤ k}.

We also note that dimU ≤ 2k − 1 ≤ (n− 3)/2. Next, for all h ∈ G we have that

|Gh(v),h(w)| = |Gv,w|.

Taking h ∈ H, we have h(vk) ∈ Ω by (2.12). Moreover, if h, h′ ∈ H and h(vk) ̸= h′(vk), then
Gh(v),h(w) and Gh′(v),h′(w) are disjoint subsets of Gv′,w′ of the same size. It follows that

(2.13) |Gv,w| ≤
|Gv′,w′ |
|vH |

.

Also set

r′ := dimSpan(v1, . . . , vk−1, w1, . . . , wk−1)− (k − 1).

Then (2.12) implies that r′ ≤ r ≤ r′ + 1.

(a) Here we consider the case G = GL(V ) or SL(V ). Then H acts transitively on Ω which has
cardinality at least qn/2. Therefore, (2.13) implies that

(2.14) |Gv,w| ≤
|Gv′,w′ |
|Ω|

≤
2|Gv′,w′ |

qn
.

The proposition now follows by induction. Indeed, by induction hypothesis and (2.14),

|Gv,w| ≤ 2r
′+1qn

2−(k−1)(n−m)−r′m−n

= 2r
′+1qn

2−k(n−m)−(r′+1)m

≤ 2rqn
2−k(n−m)−rm

since qm ≥ 2.

(b) Now consider the case G = Cl(V ) ̸= SL(V ). Then the induction hypothesis for k − 1 implies

|Gv′,w′ | ≤ qD−(k−1)(n−m)+r′(k−m)+k(k−1)/2.

On the other hand, (2.12) implies that dimU = k + r − 1, and so Lemma 2.4 yields

|vH | ≥ qn−dimU−2 = qn−k−r−1.

It follows from (2.13) that |Gv,w| ≤ qE , where

E = D − (k − 1)(n−m) + r′(k −m) + k(k − 1)/2− (n− k − r − 1)

= D − k(n−m) + k(k + 1)/2 + r′(k −m) + r −m+ 1.

If r = r′, then
E = D − k(n−m) + r(k −m+ 1) + k(k + 1)/2 + 1−m

≤ D − k(n−m) + r(k −m+ 1) + k(k + 1)/2

since m ≥ 1. If r = r′ + 1, then

E = D − k(n−m) + r(k −m+ 1) + k(k + 1)/2 + 1− k

≤ D − k(n−m) + r(k −m+ 1) + k(k + 1)/2

since k ≥ 1, and the induction step is completed. □

We denote x−1gx by gx.
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Proposition 2.6. Let n ≥ 5 be an integer, V := Fn
q , and G := GL(V ) or Cl(V ). Let m < n be a

positive integer and let g ∈ G be an element with supp(g) ≥ n−m. Let a, b and d be integers such
that k := ad ≤ (n−1)/4 and b ≥ n

n−m . Let P (x) =
∑︁

h phx
h ∈ Fq[x] be a monic polynomial of degree

≤ d− 1. Let u1, . . . , ua ∈ V be linearly independent. Then the number of b-tuples (x1, . . . , xb) ∈ Gb

such that P (gxb · · · gx1)ui = 0 for 1 ≤ i ≤ a is bounded above by

qbn
2+(b−1)k2+2bk−an+1

if G = GL(V ) or SL(V ), and by

qbD+( 5
2
b−1)k2+ 7

2
bk−an

if G = Cl(V ) ̸= SL(V ).

Proof. (i) For 0 ≤ j ≤ b − 1, 1 ≤ i ≤ a, and 0 ≤ h ≤ d − 1, consider all choices (w,v) of vectors
vhi,j , w

h
i,j ∈ V satisfying the following conditions:

(a) For 1 ≤ i ≤ a, w0
i,0 = ui.

(b) For 0 ≤ j ≤ b− 2, wh
i,j+1 = vhi,j .

(c) For 0 ≤ h ≤ d− 2, wh+1
i,0 = vhi,b−1.

(d) For 1 ≤ i ≤ a,
∑︁

h phv
h
i,b−1 = 0.

(e) For each j, the k = ad vectors of the form wh
i,j are linearly independent.

Given such choices, we define

rw,v,j := dimSpan
⋃︂
h,i

{vhi,j , wh
i,j} − k.

For each b-tuple (r0, r1, . . . , rb−1), we would like to bound above the number of pairs (w,v) with
rw,v,j = rj for j = 0, 1, . . . , b−1. To do this, we choose 0 ≤ t ≤ b−1 such that rt = max(r0, . . . , rb−1).

We first choose all the wh
i,0. By condition (a), the values for h = 0 are determined, so there are less

than q(k−a)n possibilities. By conditions (c) and (d), these choices determine vhi,b−1 for all h and i.

Next, iteratively, for 0 ≤ j < t, we choose wh
i,j+1 = vhi,j for 0 ≤ h ≤ d− 1 and 1 ≤ i ≤ a, subject

to the condition rw,v,j = rj . By Lemma 2.1, there are at most
(︁
k
rj

)︁
qrjn+k2 choices at each step. For

the remaining values of j, we work backward for t < j < b, choosing wh
i,j for 0 ≤ h ≤ d − 1 and

1 ≤ i ≤ a, subject to the condition that rw,v,j = rj . Again, there are at most
(︁
k
rj

)︁
qrjn+k2 choices at

each step. Therefore, the total number of choices is at most

q(k−a)n
∏︂
j ̸=t

(︃
k

rj

)︃
qrjn+k2 ≤ q(k−a)n+

(b−1)rn
b

+(b−1)k2
∏︂
j ̸=t

(︃
k

rj

)︃
,

where r := r0 + · · ·+ rb−1. Since∑︂
r0+...+rb−1=r

∏︂
j

(︃
k

rj

)︃
≤

b−1∏︂
j=0

(︃ k∑︂
rj=0

(︃
k

rj

)︃)︃
= 2bk,

the number N1 of pairs (w,v) with
∑︁

j rw,v,j = r is less than

2bkq(k−a)n+
(b−1)rn

b
+(b−1)k2 .

For given (w,v) we consider the number N2 of (x0, . . . , xb−1) ∈ Gb such that

(2.15) gxjwh
i,j = vhi,j ∀h, i, j.
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(ii) Consider the case G = GL(V ) or SL(V ). By Proposition 2.5,

N2 ≤
b−1∏︂
j=0

2rw,v,jqn
2−k(n−m)−rw,v,jm = 2rqbn

2−bk(n−m)−rm.

Therefore, the number N of tuples (w,v, x1, . . . , xb) satisfying (2.15) is at most

22bk+1 max
0≤r≤bk

qbn
2+(b−1)k2−(bk−r)( b−1

b
n−m)−an.

As b ≤ n
n−m , this is bounded above by qbn

2+(b−1)k2+2bk−an+1. The projection onto Gb of the set of

tuples (w,v, x1, . . . , xb) satisfying (2.15) therefore has order at most qbn
2+(b−1)k2+2bk−an+1, which

proves the proposition in this case.

(iii) Now let G = Cl(V ) ̸= SL(V ). By Proposition 2.5,

N2 ≤
b−1∏︂
j=0

qD−k(n−m)+k(k+1)/2+rw,v,j(k−m+1) = qbD−bk(n−m)+bk(k+1)/2+r(k−m+1).

Therefore, the number N of tuples (w,v, x1, . . . , xb) satisfying (2.15) is at most

22bk max
0≤r≤bk

qbD−bk(n−m)+bk(k+1)/2+r(k−m+1)+(k−a)n+(b−1)k2+(b−1)rn/b.

As b ≤ n
n−m , this is bounded above by qbD+( 5

2
b−1)k2+ 7

2
bk−an. Again projecting onto Gb, we obtain

the proposition in this case. □

3. Probabilistic lemmas

The probability theory terminology used in this section and beyond can be found in a standard
text such as [Du]. Given a specified finite groupG, we denote by X1,X2, . . . a sequence of independent
uniformly distributed random variables on G. Thus, for g ∈ G, gXi are independent uniformly
distributed random elements of the conjugacy class of g in G. We use the counting results of the
previous section to prove, roughly, that for finite classical groups the maximum eigenspace dimension
of gX1 · · · gXb almost always grows sublinearly in n, provided that supp(g) is sufficiently large and
b supp(g) ≥ n. We will be particularly interested in the case that supp(g) is bounded below by a
constant multiple of n as n → ∞; in this regime, it is important that the probability that a large
eigenspace exists goes to zero exponentially in n2.

Proposition 3.1. Let 0 < ε < 1, d ∈ Z≥2, n ∈ Z≥1, G = Cl(V ), or G = Ω(V ) when 2 ∤ q. Suppose
s ∈ Z≥1 is such that n > s ≥ 8d2/ε if G = SL(V ) and n > s ≥ 23d2/ε if G ̸= SL(V ). Then, with

b := ⌈n/s⌉,
the following statement holds for any element g ∈ G with supp(g) ≥ s. The probability that there
exists a non-zero polynomial P (x) ∈ Fq[x] of degree < d such that

dimKerP (gX1 · · · gXb) ≥ εn

is less than

q3+d− ε2ns
18d2

if G = SL(V ), and less than

q2+d− ε2ns
31d2

if G ̸= SL(V ).
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Proof. Since the number of non-zero polynomials in Fq[x] of degree < d is qd−1, it suffices to prove
that for each P ,

P[dimKerP (gX1 · · · gXb) ≥ εn] ≤

⎧⎨⎩ q3−
ε2ns
18d2 , G = SL(V ),

q2−
ε2ns
31d2 , G ̸= SL(V ).

We fix P and, with a chosen below, let (U1, . . . ,Ua) denote a random ordered a-tuple of linearly
independent vectors in V , uniformly distributed among all such a-tuples and independent of the Xi.

(i) First consider the caseG = SL(V ). Since n > s ≥ 8d2/ε, we have 2 ≤ b < nε/8d2+1 ≤ nε/7d2.
In particular,

(3.1) 2bd+ 2(b− 1)d2 < 3bd2 < 3nε/7 < nε/2, and 2bd ≤ bd2 ≤ nε/7.

We also choose

(3.2) a := ⌊α⌋, where α :=
εn− 2bd

2(b− 1)d2
.

Note from (3.1) that α > 2. Furthermore, ad ≤ αd < εn/4 < n/4, and so ad ≤ (n − 1)/4. Hence
by Proposition 2.6 we have

P[P (gX1 · · · gXb)Ui = 0, ∀ i ≤ a] ≤ qbn
2+(b−1)a2d2+2abd−an+1

|G|b
.

The number of b-tuples in G is greater than qbn
2

(4q)b
≥ qbn

2−3b, so

P[P (gX1 · · · gXb)Ui = 0, ∀ i ≤ a] ≤ q3b+(b−1)a2d2+2abd−an+1.

If W is a subspace of V of dimension ≥ εn, then

(3.3) P[U1, . . . ,Ua ∈W ] ≥ (qεn − 1) · · · (qεn − qa−1)

(qn − 1) · · · (qn − qa−1)
≥ qaεn

4qan
≥ qεan−an−2.

Thus,

q3b+(b−1)a2d2+2abd−an+1

≥ P[U1, . . . ,Ua ∈ KerP (gX1 · · · gXb)]

≥
∑︂

{W |dimW≥εn}

P[KerP (gX1 · · · gXb) =W ] P[U1, . . . ,Ua ∈W ]

≥ qεan−an−2
∑︂

dimW≥εn

P[KerP (gX1 · · · gXb) =W ]

= qεan−an−2P[dimKerP (gX1 · · · gXb) ≥ εn].

We deduce that

(3.4) P[dimKerP (gX1 · · · gXb) ≥ εn] ≤ q3+3b+(b−1)a2d2+2abd−εan.
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By (3.1) and (3.2), the exponent in (3.4) is bounded above by

3 + 3b+ (b− 1)d2α2 + (2bd− εn)(α− 1) = 3 + 3b− (εn− 2bd)2

4(b− 1)d2
+ (εn− 2bd)

< 3− (εn− 2bd)2

4(b− 1)d2
+ εn < 3− (εn− 2bd)2

4d2n/s
+ εn

< 3− (6εn/7)2

4d2n/s
+ εn = 3− 9ε2ns

49d2
+ εn < 3− ε2ns

18d2
,

since s ≥ 8d2/ε.

(ii) Now let G ̸= SL(V ). Since n > s ≥ 23d2/ε, we have 2 ≤ b < nε/23d2 + 1 ≤ nε/22d2. In
particular,

(3.5)
7

2
bd+ 2(10b− 4)d2 < 22bd2 < nε, and

7

2
bd ≤ 7

4
bd2 ≤ nε

22 · 4/7
<
nε

12
.

We also choose

(3.6) a := ⌊α⌋, where α :=
εn− 7

2bd

(10b− 4)d2
.

Note from (3.5) that α > 2. Furthermore, ad ≤ αd < εn/12 < n/4, and so ad ≤ (n− 1)/4. Hence
by Proposition 2.6 we have

P[P (gX1 · · · gXb)Ui = 0, 1 ≤ i ≤ a] ≤ qbD+( 5
2
b−1)a2d2+ 7

2
abd−an

|G|b
.

The number of b-tuples in G is greater than qbD

4b
≥ qbD−2b, where we use the bound

|Ω(V )| = |SO(V )|/2 > qD/4

when 2 ∤ q. Therefore,

P[P (gX1 · · · gXb)Ui = 0, 1 ≤ i ≤ a] ≤ q2b+( 5
2
b−1)a2d2+ 7

2
abd−an.

Again using (3.3) as above, we deduce that

q2b+( 5
2
b−1)a2d2+ 7

2
abd−an ≥ qεan−an−2P[dimKerP (gX1 · · · gXb) ≥ εn],

and so

(3.7) P[dimKerP (gX1 · · · gXb) ≥ εn] ≤ q2+2b+( 5
2
b−1)a2d2+ 7

2
abd−εan.

Note that 16 ≤ 10b − 4 < 10n/s + 6 < 11n/s. Hence, by (3.5) and (3.6), the exponent in (3.7) is
bounded above by

2 + 2b+ (
5

2
b− 1)d2α2 + (

7

2
bd− εn)(α− 1) = 2 + 2b−

(εn− 7
2bd)

2

(10b− 4)d2
+ (εn− 7

2
bd)

< 2−
(εn− 7

2bd)
2

(10b− 4)d2
+ εn < 2−

(εn− 7
2bd)

2

11d2n/s
+ εn

< 2− (11εn/12)2

11d2n/s
+ εn = 2− 11ε2ns

144d2
+ εn < 2− ε2ns

31d2
,

since s ≥ 23d2/ε. □

Recall that E(X) denotes the expected value of the random variable X.
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Lemma 3.2. For any finite group G, any element g ∈ G, any irreducible character χ of G, and
any positive integer b,

E[χ(gX1 · · · gXb)] =
χ(g)b

χ(1)b−1
.

Proof. For any h ∈ G, the probability P[gX1 · · · gXb = h] is given by the Frobenius formula

1

|G|
∑︂

φ∈Irr(G)

φ(g)bφ(h)

φ(1)b−1
.

Therefore,

E[χ(gX1 · · · gXb)] =
∑︂
h∈G

χ(h)
1

|G|
∑︂

φ∈Irr(G)

φ(g)bφ(h)

φ(1)b−1

=
∑︂

φ∈Irr(G)

φ(g)b

φ(1)b−1

1

|G|
∑︂
h∈G

χ(h)φ(h) =
χ(g)b

χ(1)b−1

by the orthonormality of irreducible characters. □

4. Character bounds for elements with large support

The main result in this section is Theorem 4.4, which gives an exponential character bound at
g ∈ G whenever supp(g) is bounded below by a fixed positive multiple of n. We use the results of the
previous section to show that, assuming n is large, a random walk on the Cayley graph of G with
respect to gG almost always leads in a bounded number of steps to an element whose centralizer
order is smaller than any desired power of |G|. Using known character bounds for such elements,
we can estimate the expectation of χ on such elements, and deduce an exponential upper bound for
|χ(g)|.

Lemma 4.1. For any 0 < ν < 1, there exists 0 < α < 1 such that, for any n ∈ Z≥2 and any prime
power q, if V = Fn

q , g ∈ GL(V ), and

(4.1) dimCEnd(V )(g) ≥ αn2,

then |CSL(V )(g)| > |SL(V )|1−ν .

Proof. We can take α = 1 − ν2/4. If d denotes dimCEnd(V )(g), then d is the dimension of the
centralizer C(g) of g in the algebraic group GLn. The finite group C(g)(Fq) = CGL(V )(g) has a

normal series, whose factors Xi are unipotent groups of order qdi , or GLmi(q
ai) with di := m2

i ai,
and

∑︁
i di = d. Note that since qaij − 1 ≥ (q − 1)aiqaij−ai for 1 ≤ j ≤ mi,

qdi ≥ |GLmi(q
ai)| = qaimi(mi−1)/2 ·

mi∏︂
j=1

(qaij − 1) ≥ (q − 1)miaiqdi−miai ,

and GLmi(q
ai) has Fq-rank miai. Since the rank of C(g) is at most n, it follows that

(4.2) qd ≥ |CGL(V )(g)| ≥ (q − 1)nqd−n,

and so

(4.3) |CSL(V )(g)| ≥ (q − 1)n−1qd−n.

Now, if n ≥ 2/ν, then, since α = 1− ν2/4 > 1− ν/2, we have

|CSL(V )(g)| ≥ qd−n ≥ q(α−1/n)n2
> q(1−ν/2−ν/2)n2

> |G|1−ν .
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If n < 2/ν, then α = 1 − ν2/4 > 1 − 1/n2, whence (4.1) implies that g is a scalar matrix and
therefore that CSL(V )(g) = SL(V ). □

Proposition 4.2. Let n ≥ 2, V = Fn
q , and let g ∈ GL(V ) have support s := supp(g). Then

(a) (n− s)2 ≤ dimCGL(V⊗FqFq)
(g) ≤ n(n− s),

(b) |CGL(V )(g)| ≤ qn(n−s), and

(c) qns−2 ≤ |gSL(V )| ≤ q2ns+n−s2−1. If particular, |SL(V )|s/3n ≤ |gSL(V )| ≤ |SL(V )|3s/n; in fact,

|SL(V )|s/2n ≤ |gSL(V )| ≤ |SL(V )|2.5s/n if (n, q) ̸= (2, 2), (2, 3).

Proof. (a) In the case g is unipotent, the estimates were already proved in [LiSh1, pp. 509–510].

In the general case, we can replace V by V ⊗Fq Fq, and let λ1, . . . , λm ∈ F×
q be all the distinct

eigenvalues of the semisimple part t of g = tu on V , with multiplicities n1, . . . , nm. If Vi = Fni

q

denotes the corresponding t-eigenspace on V and if the unipotent part u of g acts on Vi as ui, then

CGL(V )(g) =

m∏︂
i=1

CGL(Vi)(ui).

For si := supp(ui), the largest g-eigenspace on Vi has dimension ni − si, and we may assume that

ni − si ≤ n− s = n1 − s1.

By the unipotent case, (ni − si)
2 ≤ dimCGL(Vi)(ui) ≤ ni(ni − si). Hence

(n−s)2 = (n1−s1)2 ≤
∑︂
i

(ni−si)2 ≤ dimCGL(V )(g) ≤
∑︂
i

ni(ni−si) ≤ (n1−s1)
∑︂
i

ni = n(n−s).

(b) follows from (a) by (4.2).

(c) By [LMT, Lemma 4.1(ii)], qn
2−2 < |SLn(q)| < qn

2−1. On the other hand, setting d :=
dimCGL(V )(g), we have qd−n ≤ |CSLn(q)(g)| ≤ qd by (4.2)–(4.3), and (n − s)2 ≤ d ≤ n(n − s) by

(a). It follows that qns−2 ≤ |gSLn(q)| ≤ q2ns+n−s2−1, yielding the first statement.
The second statement is obvious when s = 0, and can be checked directly when n = 2. When

n ≥ 3, 2ns+ n− s2 − 1 ≤ (n2 − 2)(3s/n) and ns− 2 ≥ (n2 − 1)(s/3n).
The third statement is obvious when s = 0, and can be checked directly when n = 2 or s = 1.

When n ≥ 3 and s ≥ 2, 2ns+ n− s2 − 1 ≤ (n2 − 2)(2.5s/n) and ns− 2 ≥ (n2 − 1)(s/2n). □

Lemma 4.3. For 1 ≥ ε > 0 and n ∈ Z≥1, if V = Fn
q , g ∈ GL(V ), and dimKerP (g) ≤ εn for all

polynomials P (x) ∈ Fq[x] of degree < d := ⌈1/ε⌉, then

|CGL(V )(g)| ≤ qn
2ε.

Proof. Let s := supp(g) and suppose that s < n − εn. Then n − s = dimKer(g − λ) for some
eigenvalue λ of g on V ⊗Fq Fq. Since any Galois conjugate of λ over Fq is also an eigenvalue for g
with eigenspace of the same dimension n−s, the Galois orbit of λ has length e ≤ n/(n−s) < 1/ε ≤ d.
Thus λ is a root of some polynomial P ∈ Fq[x] of degree e < d. Hence, by hypothesis,

n− s = dim Ker(g − λ) ≤ εn,

and so s ≥ n − εn, a contradiction. We have shown that s ≥ n − εn. By Proposition 4.2(b), this

implies that |CGL(V )(g)| ≤ qn
2ε. □

Now we can prove character bounds for elements with large support.
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Theorem 4.4. There exist explicit constants γ > 0 and C ≥ 4 such that the following statement
holds for any positive integer n, any 0 < β < 1, any V = Fn

q for any prime power q, any G := SL(V ),
SU(V ), Sp(V ), or Ω(V ) (or SO(V ) or Spin(V ) if q is odd), any element g ∈ G, and any irreducible
character χ ∈ Irr(G). If s := supp(g) ≥ max(C, βn), then

|χ(g)|
χ(1)

≤ χ(1)
− γs

n·⌈1/β⌉ .

Proof. As n ≥ C, by taking C sufficiently large, we can guarantee that n is as large as we wish; also
we may assume that χ(1) > 1. Let b := ⌈n/s⌉. Also set

ε0 =
1

12
, δ0 =

8

9

if G = SL(V ) or SU(V ), and
ε0 = 0.0011, δ0 = 0.992

otherwise. By Lemma 4.3, there exist d ∈ Z≥3 and 0 < ε < 1 such that for h ∈ G, if dimKerP (h) ≤
εn for all non-constant P (x) ∈ Fq[x] of degree < d, then

(4.4)

|CGL(V )(h)| ≤ qn
2/12, if G = SL(V ) ∼= SLn(q),

|CGL(V )(h)| ≤ q
n2/12
0 , if G = SU(V ) ∼= SUn(q0),

|CGL(V )(h)| ≤ q(n/2−1)2ε0 , if G = Sp(V ), SO(V ), Ω(V ),

|CGL(V )(h̄)| ≤ q(n/2−1)2ε0/2, if 2 ∤ q and G = Spin(V ),

(with the convention that in the spin case, h̄ is the image of h in Ω(V ) and P (h) is replaced by

P (h̄); this ensures |CG(h)| ≤ q(n/2−1)2ε0 in the spin case). Indeed, we can take

ε = 1/4000, d = ⌈ε−1⌉ = 4000, C ≥ 224,

and have
q(n/2−1)2ε0/2 ≥ q(n/2−1)2ε0−1 > qn

2ε.

The centralizer bound (4.4) implies by [GLT1, Theorem 1.5] and [GLT2, Theorem 1.4] that

(4.5) |χ(h)| ≤ χ(1)δ0 .

If G = SL(V ), by Proposition 3.1, choosing C ≥ 8d2/ε and γ > 0 sufficiently small so that

(4.6) 3 + d− ε2ns

18d2
< −γns,

we then have
P
[︁
|CGLn(q)(g

X1 · · · gXb)| ≥ qn
2/12

]︁
< q−γns.

If G ̸= SL(V ), by Proposition 3.1, choosing C ≥ 23d2/ε and γ > 0 sufficiently small so that

(4.7) 2 + d− ε2ns

31d2
< −γns,

we then have

P
[︁
|CGL(V )(g

X1 · · · gXb)| ≥ q
n2/12
0

]︁
< q−γns

when G = SU(V ),

P
[︁
|CGL(V )(g

X1 · · · gXb)| ≥ q(n/2−1)2ε0
]︁
< q−γns

when G = Sp(V ), SO(V ), or Ω(V ), and

P
[︁
|CGL(V )(ḡ

X1 · · · ḡXb)| ≥ q(n/2−1)2ε0/2
]︁
< q−γns
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when 2 ∤ q and G = Spin(V ). Indeed, by taking C ≥ 23d2/ε and 0 < γ ≤ ε2/32d2, we have

ε2ns

31d2
− γns ≥ ε2ns

992d2
≥ C2ε2

992d2
=

529d2

992
≥ d+ 3

when d ≥ 3, ensuring (4.6) and (4.7).
By (4.5) applied to h = gX1 · · · gXb , this implies that

P
[︁
|χ(gX1 · · · gXb)| ≥ χ(1)δ0

]︁
< q−γns.

Thus,

(4.8)
⃓⃓
E[χ(gX1 · · · gXb)]

⃓⃓
≤ E

[︁
|χ(gX1 · · · gXb)|

]︁
≤ χ(1)δ0 + χ(1)q−γns.

On the other hand,

(4.9) E[χ(gX1 · · · gXb)] = χ(g)b/χ(1)b−1

by Lemma 3.2.

Now assume that s = supp(g) ≥ βn. Then

b = ⌈n/s⌉ ≤ ⌈1/β⌉.

As χ(1) < |G|1/2 < qn
2/2, we have q−γns ≤ χ(1)−2γs/n. Without loss of generality, we may assume

γ ≤ (1− δ0)/2 = 0.004, so

χ(1)δ0 ≤ χ(1)1−
2γs
n .

For n ≥ 9, the minimal degree for a non-trivial character of G is at least 2n/2 [LaSe], so we have

χ(1)−γs/n ≤ 2−γs/2. If C is sufficiently large (say C ≥ 2/γ), this is at most 1/2, so when χ(1) > 1,

2χ(1)1−
2γs
n ≤ χ(1)1−

γs
n .

It now follows from (4.8) and (4.9) that

|χ(g)| ≤ χ(1)1−
γs
nb ≤ χ(1)

1− γs
n⌈1/β⌉ ,

as stated. Moreover, our proof shows that one can take

γ =
ε2

32d2
=

1

213 · 1012
, C =

64d2

ε2
= 214 · 1012,

although this choice is not optimal. □

[GLT1, Theorem 1.5] and [GLT2, Theorem 1.3] produced the character bound |χ(1)|δ for any
element g in a classical group G with |CG(g)| ≤ |G|ε, but only for certain positive constants ε < 1.
Our next result generalizes this to arbitrary constants 0 < ε < 1:

Theorem 4.5. For any 0 < ε < 1, there exists a constant 0 < δ < 1 such that the following
statement holds. For any n ∈ Z≥2, any prime power q, any quasisimple classical group

G = SLn(q), SUn(q), Sp2n(q), Ω±
n (q), Spin±n (q)

any element g ∈ G, and any irreducible character χ ∈ Irr(G), if |CG(g)| ≤ |G|ε we have

|χ(g)| ≤ χ(1)δ.

Proof. (a) First suppose that |CH(h)| ≤ |H|ε for some element h of H := SU(V ), Sp(V ), SO(V ),
or Ω(V ). Here V is Fn

q2 , F2n
q , Fn

q , and Fn
q respectively for SUn(q), Sp2n(q), SOn(q), and Ωn(q)

respectively. Then H ≤ L := SL(V ) and |H| > |L|1/3. Since

|L| ≥ |HCL(h)| =
|H| · |CL(h)|

|CH(h)|
,
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we have

|CL(h)| ≤
|L|

|H|/|CH(h)|
≤ |L|

|H|1−ε
≤ |L|(2+ε)/3.

Next, suppose that 2 ∤ q and |CH(h)| ≤ |H|ε for some element h of H = Spin(V ). Then H
projects onto H̄ := Ω(V ) ≤ L = SL(V ), sending h to h̄, and |CH̄(h̄)| ≤ |CH(h)| ≤ |H|ε. As above,
we still have |H| > |L|1/3. Hence the above argument yields |CL(h̄)| ≤ |L|(2+ε)/3.

(b) Now set ν := 1− ε if G = SL(V ), and ν := (1− ε)/3 otherwise. By the observations in (a),
we have |CSL(V )(g)| ≤ |SL(V )|1−ν , with the convention that g is replaced by its image in Ω(V ) in
the case G = Spin(V ). By Lemma 4.1, there exists some 0 < α < 1 such that

dimFq CEnd(V )(g) ≤ αn2.

On the other hand, g has an eigenspace of dimension n− s on V = V ⊗Fq Fq for s := supp(g), hence

dimFq CEnd(V )(g) = dimFq
CEnd(V )(g) ≥ (n− s)2.

It follows that s ≥ n(1 −
√
α). Now we can apply Theorem 4.4(i), with β := 1 −

√
α, and take

δ ≥ γβ/⌈1/β⌉ when s ≥ C. If s < C, then n is bounded, and the result of Gluck [Gl] implies the
statement in this case. □

5. Further bootstrapping and uniform character bounds

In this section, we prove Theorem 5.5, an exponential upper bound for |χ(g)| with exponent

linear in supp(g)
n , with an explicit, though very small, coefficient. If supp(g) is greater than any given

positive constant multiple of n, we already have this by the results of section 4, so what is needed is
a second bootstrapping argument to go from elements of small support to elements whose support
satisfies a linear lower bound. It may be useful for the reader to keep in mind the case that g
is a transvection. Here we want that the support of the product of b random transvections, with
probability very close to 1, grows linearly with b for b < n; this is given by Proposition 5.4.

Lemma 5.1. Let V be a finite dimensional vector space over a field F, g, h ∈ End(V ), and let
λ, µ ∈ F. Then the following statements hold.

(i) codimKer(gh− λµ) ≤ codimKer(g − λ) + codimKer(h− µ).
(ii) supp(gh) ≤ supp(g) + supp(h).

Proof. (i) Let A := Ker(g − λ) and B := Ker(h− µ). As A+B ⊆ V , we have

dim(A ∩B) ≥ dim(A) + dim(B)− dim(V ) = dim(V )− codim(A)− codim(B).

Since A ∩B ⊆ Ker(gh− λµ), the statement follows.

(ii) Now choose λ, µ so that codimKer(g − λ) = supp(g) and codimKer(h− µ) = supp(h). Since
supp(gh) ≤ codimKer(gh− λµ), the statement follows from (i). □

In the next statement, we identify V ∗ ⊗ V with End(V ) for any finite dimensional vector space
over a field F, and λ ∈ F with λ · IdV .

Proposition 5.2. Let V be an n-dimensional vector space over a field F and b and k positive
integers. Let x1, . . . , xb be elements of GL(V ) and v1, . . . , vk ∈ V and ϕ1, . . . , ϕk linearly independent
vectors in V and V ∗ respectively. Let 0 ̸= λ ∈ F be a scalar and let

T := λ+

k∑︂
j=1

ϕj ⊗ vj
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be regarded as an element of End(V ). For 1 ≤ i ≤ b and 1 ≤ j ≤ k, let wi,j := x−1
i (vj) and

ψi,j := x−1
i (ϕj). For 1 ≤ s ≤ b, let

As := dimSpan(wi,j | 1 ≤ i ≤ s, 1 ≤ j ≤ k), Bs := dimSpan(ψi,j | s ≤ i ≤ b, 1 ≤ j ≤ k).

Then the rank of T x1 · · ·T xb − λb is at least

b∑︂
s=1

max(0, As −As−1 +Bs −Bs+1 − k).

Proof. It suffices to find vectors us,t ∈ V and ωs,t ∈ V ∗ indexed by

1 ≤ s ≤ b, 1 ≤ t ≤ max(0, As −As−1 +Bs −Bs+1 − k)

such that

(5.1) ωs′,t′
(︁
(T x1 · · ·T xb − λb)(us,t)

)︁
=

{︃
λb−1, if (s′, t′) = (s, t),
0, if s′ ≥ s and (s′, t′) ̸= (s, t).

Indeed, this guarantees that, with respect to the lexicographic ordering on the two bases, the pairing
⟨ω|v⟩ := ω((T x1 · · ·T xb −λb)(v)) induced by (5.1) between the span of the ωs′,t′ and the span of the

λ1−bus,t is unitriangular in terms of these bases, hence perfect.
To achieve this, we construct vectors us,t ∈ V and ωs,t ∈ V ∗ with the following properties:

(a) For s < i, ψi,j(us,t) = 0.
(b) For s > i, ωs,t(wi,j) = 0.
(c) For all s, t, and t′, ωs,t((T

xs − λ)(us,t′)) = δt,t′ .

To accomplish this goal, for each s, let

Ws := Span(ws,1, . . . , ws,k), Ψs := Span(ψs,1, . . . , ψs,k).

For 1 ≤ s, s′ ≤ b, we define

W[s,s′] :=Ws +Ws+1 + · · ·+Ws′ , Ψ[s,s′] := Ψs +Ψs+1 + · · ·+Ψs′ ,

with the convention that, if s > s′ we have W[s,s′] = Ψ[s,s′] = {0}.
As

dimΨs/(Ψs ∩Ψ[s+1,b]) = dimΨ[s,b]/Ψ[s+1,b] = Bs −Bs+1,

there exists a (Bs −Bs+1)-dimensional subspace Us ⊆ V such that ψi,j(Us) = 0 whenever i > s but
for u ∈ Us, ψs,j(u) = 0 for all j implies u = 0. Thus the operator

T xs − λ =

k∑︂
j=1

x−1
s (ϕj)⊗ x−1

s (vj) =

k∑︂
j=1

ψs,j ⊗ ws,j

annihilates every element of V killed by Ψs, maps V to Ws, and maps Us injectively to Ws, and so

(5.2) Ker(T xs − λ) ∩ Us = {0}.
Let W ′

s ⊆Ws denote a subspace (of dimension As −As−1) complementary in Ws to W[1,s−1] ∩Ws,
and let

U ′
s := {u ∈ Us | (T xs − λ)(u) ∈W ′

s}.
Then the dimension cs of U ′

s satisfies

cs ≥ dimUs + dimW ′
s − dimWs = Bs −Bs+1 +As −As−1 − k.

Let (us,1, . . . , us,cs) denote any basis of U ′
s. Condition (a) holds for all vectors in Us and therefore

for the us,t.
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Next, for each s we choose ωs,1, . . . , ωs,cs satisfying condition (c) and annihilatingW[1,s−1] (guaran-
teeing condition (b)). We can do this because the conditions on ωs,t are that ωs,t((T

xs−λ)(us,t)) = 1
and ωs,t annihilates

(5.3) (T xs − λ)(Span(us,1, . . . , us,t−1, us,t+1, . . . , us,cs)) +W[1,s−1].

Thus, it suffices to show that (T xs−λ)(us,t) does not belong to the vector space (5.3). As the vectors
us,1, . . . , us,cs form a basis of U ′

s, by (5.2), the latter condition holds since (T xs −λ)(U ′
s) ⊆W ′

s meets
W[1,s−1] in {0} by definition of W ′

s.
We claim that for s+ 1 ≤ s′ ≤ b+ 1, we have

(5.4) T xs′ · · ·T xb(us,t) = λb+1−s′us,t,

by descending induction on s′. The statement is trivially true for s′ = b+1 (since T xs′ · · ·T xb means
IdV ). If (5.4) holds for s

′ + 1, then

T xs′ · · ·T xb(us,t) = T xs′ (λb−s′us,t) = λb+1−s′us,t + λb−s′
k∑︂

j=1

ψs′,j(us,t)ws,j = λb+1−s′us,t,

where the last equality follows from condition (a).
Applying T xs to both sides of (5.4) with s′ = s+ 1, we obtain

(5.5) T xsT xs+1 · · ·T xb(us,t) = λb−sT xs(us,t).

Next, we claim that for 1 ≤ i ≤ s, we have

(5.6) T xiT xi+1 · · ·T xs(us,t) ∈ λs−iT xs(us,t) +W[i,s−1].

Indeed, this is trivial when i = s. If (5.6) holds for i+ 1, then there exists w ∈W[i+1,s−1] so that

T xiT xi+1 · · ·T xs(us,t) = T xi(λs−i−1T xs(us,t) + w)

∈ λs−iT xs(us,t) + λw +Wi ⊂ λs−iT xs(us,t) +W[i,s−1].

By (5.5) and the i = 1 case of (5.6), we obtain

T x1 · · ·T xb(us,t) = λb−sT x1 · · ·T xs(us,t) ∈ λb−1T xs(us,t) +W[1,s−1]

= λbT xs(us,t) + λb−1(T xs − λ)(us,t) +W[1,s−1].

Subtracting λbus,t and applying ωs′,t′ to both sides with s′ ≥ s, condition (b) implies

ωs′,t′((T
x1 · · ·T xb − λb)(us,t)) = λb−1ωs′,t′

(︁
(T xs − λ)(us,t)

)︁
.

If s′ = s, this is λb−1δt,t′ by condition (c), and if s′ > s, it is zero by condition (b), yielding (5.1) as
desired. □

Proposition 5.3. Let V = Fn
q , b ≥ 2 and k positive integers with bk ≤ n/2, and let v1, . . . , vk

be linearly independent vectors in V . Let X1, . . . ,Xb be uniform independent random variables on
G = Cl(V ). Then we have

P
[︁
dimSpan(Xi(vj) | 1 ≤ i ≤ b, 1 ≤ j ≤ k) ≤ 2bk

3

]︁
<

{︃
qbk(1−n/6), Cl = SL,

qbk(1−n/12), Cl ̸= SL.

Proof. Consider the bk-term sequence of random vectors

X1(v1), . . . ,X1(vk),X2(v1), . . . ,X2(vk), . . . ,Xb(v1), . . . ,Xb(vk).

First we bound from the above the probability Pij that Xi(vj) lies in the span

Sij := Span(Xi′(j
′), 1 ≤ i′ < i, 1 ≤ j′ ≤ k, Xi(vl), 1 ≤ l ≤ j − 1)
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of the preceding vectors, conditioning on all the vectors preceding Xi(vj) in the sequence. Since
v1, . . . , vk are linearly independent, this conditional probability is 0 if i = 1. Next, let i ≥ 2, and let
H denote the subgroup of all the elements in G that fix each of v1, . . . , vj−1 (in particular, H = G
if j = 1). By Lemma 2.4 applied to d = j − 1 (so that d ≤ k− 1 ≤ n/4− 1 ≤ (n− 3)/2), H acts on

Ω := V ∖ Span(v1, . . . , vj−1)

with orbits Ω1 = wH
1 , . . . ,Ωs = wH

s , each of length at least

L :=

{︃
qn − qj−1, Cl = SL,
qn−d−2 = qn−j−1, Cl ̸= SL.

We want to count the number of g ∈ G, with g(v1), . . . , g(vj−1) all fixed, and with g(vj) ∈ Sij . Fix
such a g, and consider any such g′. Then h := g−1g′ ∈ H, and so it sends vj ∈ Ω to some w ∈ Ωt

with 1 ≤ t ≤ s. With w fixed, the number of possibilities for h is at most |StabH(wt)|. Hence, with
t fixed, the number of possibilities for such g′ is at most

|Ωt ∩ Sij | · |StabH(wt)| = |H| · |Ωt ∩ Sij |/|Ωt| ≥
|H| · |Ωt ∩ Sij |

L
.

As we condition on all the vectors preceding Xi(vj), it follows that

Pij ≤
1

|H|
·

s∑︂
t=1

|H| · |Ωt ∩ Sij |
L

≤ |Sij |
L

.

Note that dimSij ≤ k(i− 1) + j − 1. Hence, conditioning on the sequence of previous vectors, the
probability Pij that Xi(vj) lies in their span Sij is at most

qk(i−1)+j−1

qn − qj−1
< 2qk(i−1)+j−1−n ≤ qbk−n

when Cl = SL, and at most

qk(i−1)+j−1

qn−j−1
< qk(i−1)+2j−n ≤ q(b+1)k−n

when Cl ̸= SL, regardless of what the previous vectors are.
We also note that, since b ≥ 2 and bk ≤ n/2, (b+1)k ≤ 3bk/2 ≤ 3n/4. Therefore, the probability

that there exist r terms Xi(vj) in this sequence belonging to the span of previous terms is less than(︃
bk

r

)︃
qr(bk−n) ≤

(︃
bk

r

)︃
q−rn/2

when Cl = SL, and less than (︃
bk

r

)︃
qr((b+1)k−n) ≤

(︃
bk

r

)︃
q−rn/4

when Cl ̸= SL. In particular, the probability that r ≥ bk/3 is less than

bk∑︂
r=⌈bk/3⌉

(︃
bk

r

)︃
q−rn/2κ < 2bkq−bkn/6κ < qbk(1−n/6κ)

with κ = 1 when Cl = SL and κ = 2 when Cl ̸= SL. □

Proposition 5.4. If n is a sufficiently large positive integer, V = Fn
q , g ∈ G := Cl(V ), then there

exists a positive integer b such that

b · supp(g) ≤ n,
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and if X1, . . . ,Xb are i.i.d. uniform random variables on G, then

P[supp(gX1 · · · gXb) < n/9] <

{︃
q−n2/20, Cl = SL

q−n2/40, Cl ̸= SL.

Proof. If supp(g) ≥ n/6, we can take b = 1. Hence, without loss of generality, we may assume k :=
supp(g) < n/6, and hence we may choose b ∈ Z≥2 so that n/3 ≤ bk < n/2. Let λ be an eigenvalue
of g such that k = codimKer(g − λ), and choose linearly independent vectors v1, . . . , vk ∈ V and
v∗1, . . . , v

∗
k ∈ V ∗ such that

g = λ+
k∑︂

j=1

v∗j ⊗ vj .

By Lemma 5.1(i), codimKer(gX1 · · · gXb − λb) ≤ bk < n/2. Thus Ker(gX1 · · · gXb − λb) is the largest
eigenspace for gX1 · · · gXb , and so supp(gX1 · · · gXb) = codimKer(gX1 · · · gXb − λb).

Again define κ := 1 if G = SL(V ) and κ := 2 if G ̸= SL(V ). By Proposition 5.3, the probability
that dimSpan(Xi(vj)) or dimSpan(Xi(v

∗
j )) is ≤ 2bk/3 is at most

2qbk(1−n/6κ) ≤ 2qn(1−n/6κ)/3 ≤ q−n2/20κ

if n is sufficiently large. On the other hand, by Proposition 5.2, if

dimSpan(Xi(vj)), dimSpan(Xi(v
∗
j )) >

2bk

3
,

then

codimKer(gX1 · · · gXb − λb) ≥
b∑︂

s=1

max(0, As −As−1 +Bs −Bs+1 − k)

≥
b∑︂

s=1

(As −As−1 +Bs −Bs+1 − k)

= Ab −A0 +B1 −Bb+1 − bk

>
2bk

3
+

2bk

3
− bk

=
bk

3
≥ n

9
.

Hence the proposition follows. □

Now we can prove one of the main results of the paper, giving a uniform exponential character
bound in terms of the support.

Theorem 5.5. There exists an explicit constant σ > 0 such that the following statement holds for
any positive integer n ≥ 3, any V = Fn

q for any prime power q, any G := SL(V ), SU(V ), Sp(V ),
or Ω(V ) (or SO(V ) or Spin(V ) if q is odd), any g ∈ G, and any irreducible character χ ∈ Irr(G):

|χ(g)|
χ(1)

≤ χ(1)−σ·supp(g)/n.

Proof. First we apply Theorem 4.4 to obtain the positive constants C and γ. By [LaST1, Theorem
1.2.1],

|χ(g)|
χ(1)

≤ q−
√

supp(g)/481.
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Therefore, by choosing σ > 0 small enough, say σ ≤ 1/(241 ·(9C)3/2) we may ignore the cases where

n < 9C (or if χ(1) = 1): if s := supp(g) ≤ n < 9C, then χ(1) ≤ |G|1/2 ≤ qn
2/2, hence

χ(1)σs/n ≤ qσns/2 < q
√
s/481.

Henceforth we may assume that n ≥ max(9C, 9) and χ(1) > 1; in particular, χ(1) > 2n/3 by [LaSe].
Now, if s := supp(g) ≥ n/9, then s ≥ C, and so we are done by Theorem 4.4, taking β := 1/9

and σ ≤ γ/9; in particular,

(5.7) |χ(g)| ≤ χ(1)1−γ/81.

Consider the case 1 ≤ s < n/9 and apply Proposition 5.4 to get 2 ≤ b ≤ n/s and that

P[supp(gX1 · · · gXb) < n/9] < q−n2/20κ,

with κ = 1 if G = SL(V ) and κ = 2 if G ̸= SL(V ). By the previous bound (5.7) for elements with
support ≥ n/9, this implies that

P
[︁
|χ(gX1 · · · gXb)| ≥ χ(1)1−γ/81

]︁
< q−n2/20κ < χ(1)−1/10κ

since χ(1) ≤ |G|1/2 < qn
2/2. Thus,⃓⃓

E[χ(gX1 · · · gXb)]
⃓⃓
≤ E

[︁
|χ(gX1 · · · gXb)|

]︁
≤ χ(1)1−γ/81 + χ(1)1−1/10κ.

Since χ(1) ≥ qn/3 ≥ 23C by [LaSe], by choosing σ > 0 small enough, we then have

(5.8)
⃓⃓
E[χ(gX1 · · · gXb)]

⃓⃓
≤ χ(1)1−γ/81 + χ(1)1−1/10κ ≤ χ(1)1−σ.

It now follows from (4.9) and (5.8) that

|χ(g)| ≤ χ(1)1−
σ
b ≤ χ(1)1−

σs
n ,

as stated. In fact, our proof shows that we can take

σ = min

(︃
1

241 · (9C)3/2
,
γ

82

)︃
,

which is 1/(6507 · 221 · 1018) > 7 · 10−29 for our chosen C and γ. □

As a consequence of Theorem 5.5, we can prove the following linear refinement of [LaST1, The-
orem 1.2.1]:

Corollary 5.6. There exists an absolute constant γ > 0 such that the following statement holds.
For any n ∈ Z≥2, any prime power q, any quasisimple classical group

G = SLn(q), SUn(q), Sp2n(q), Ω±
n (q), Spin±n (q),

any g ∈ G, and any χ ∈ Irr(G) of degree χ(1) > 1, we have

|χ(g)|
χ(1)

≤ q−γ·supp(g).

Proof. By [LaST1, Theorem 1.2.1],

|χ(g)|/χ(1) ≤ q−
√

supp(g)/481.

Hence, by choosing γ ≤ 1/1443 we may ignore the cases where supp(g) ≤ 9, in particular if

n ≤ 9. Assume now that n ≥ 10, which implies χ(1) ≥ qn/3 by [LaSe]. Hence Theorem 5.5

yields |χ(g)/χ(1)| ≤ q−σs/3, and we are done by taking

γ = min(1/1443, σ/3),

which is 1/(19521 · 221 · 1018) > 2 · 10−29 for our chosen σ. □
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We conclude this section with the following examples, which show that the exponent σ ·supp(g)/n
in Theorem 5.5, is optimal (up to the constant σ).

Example 5.7. Consider G = SLn(2), n ≥ 3, and the unique irreducible character τ of degree
2n − 2 of G, so that 2 · 1G + τ is the permutation character of G acting on the point set of V = Fn

2 .

Suppose 2 ≤ s ≤ n − 1. Choose ξ ∈ F×
2 of order 2s − 1 and g ∈ SLn(2) that is conjugate to

diag
(︁
1, . . . , 1, ξ, ξ2, . . . , ξ2

s−1)︁
over F2. Then supp(g) = s, τ(1) = 2n − 2, and τ(g) = 2n−s − 2,

whence |τ(g)/τ(1)| ≈ τ(1)−s/n. If s = 1, we can choose g to be a transvection, for which we have

supp(g) = 1, τ(g) = 2n−1 − 2, and so again |τ(g)/τ(1)| ≈ τ(1)−s/n.

More generally, we have

Lemma 5.8. Let G = Cln(q) be a simple classical group with n ≥ 7. If |G| is large enough,
and if g ∈ G has support s = supp(g) ≤ n − 2, then there is a non-trivial χ ∈ Irr(G) such that

|χ(g)/χ(1)| ≥ χ(1)−6s/n.

Proof. The statement is obvious for s = 0, so we assume 1 ≤ s ≤ n−2. Choosing G of large enough
order, we have

∑︁
1G ̸=χ∈Irr(G) χ(1)

−0.55 < 1 by [LiSh3, Corollary 1.3]. Assume to the contrary that

|χ(g)| ≤ χ(1)1−6s/n for all χ ∈ Irr(G). Choosing k := ⌊(n−2)/s⌋ we have ks ≤ n−2 ≤ (k+1)s−1,
and so

6ks− 2.55n ≥ 3.45ks− 2.55s− 2.55 ≥ 6.9s− 2.55s− 2.55 > 0

if k ≥ 2. If k = 1, then s ≥ (n − 1)/2, and so 6ks ≥ 3n − 3 ≥ 2.55n since n ≥ 7. Hence, for any
x ∈ G we have∑︂
1G ̸=χ∈Irr(G)

|χ(g)kχ̄(x)|
χ(1)k−1

≤
∑︂

1G ̸=χ∈Irr(G)

|χ(g)k|
χ(1)k−2

≤
∑︂

1G ̸=χ∈Irr(G)

1

χ(1)6ks/n−2
≤

∑︂
1G ̸=χ∈Irr(G)

χ(1)−0.55 < 1,

and thus every element x ∈ G is a product of k conjugates of g and so has supp(x) ≤ ks ≤ n− 2 by
Lemma 5.1(ii). But this is a contradiction since G always contains elements of support n− 1. □

6. Support vs. class size, and proof of Theorem A

In this section, we deduce Theorem A from Theorem 5.5. The main difficulty is to bound
conjugacy class sizes |gG| in terms of the support supp(g) for all classical groups G ≤ GL(V ).
To do this, we need an analogue of Proposition 4.2(c) for all classical groups. There are results of
Liebeck-Shalev [LiSh1] and Liebeck-Schul-Shalev [LSS] which are very much in this spirit. However,
we develop them from scratch because we want somewhat greater generality (not just the simple
groups) and also because we do not want implicit constants. For any finite groupX, let P (X) denote
the smallest index of any proper subgroup of X. Lower bounds for P (X), X a finite classical groups,
are listed in [KlL, Table 5.2.A]. First we deal with unitary groups.

Proposition 6.1. Let n ≥ 3, (n, q0) ̸= (3, 2), V = Fn
q20
, and let g ∈ GU(V ) have support s :=

supp(g). Then

|SU(V )|s/2n ≤ |gSU(V )| ≤ |SU(V )|3s/n.
Proof. Let q := q20, so that V = Fn

q . Let d denote the dimension of the centralizer C(g) of g in the
algebraic group GLn. Then d is bounded above and below in Proposition 4.2(a). The finite group

CGU(V )(g) has a normal series, whose factors Xi are unipotent groups of order qdi0 , or GLmi(q
ai
0 )

with 2|ai, or GUmi(q
ai
0 ), with di := m2

i ai, and
∑︁

i di = d. By [LMT, Lemma 4.1(iv)],

(6.1) qm
2a

0 ≤ |GUm(qa0)| = qm
2a

0 ·
m∏︂
j=1

(︁
1− (−1)j

qaj0

)︁
≤ 3

2
qm

2a
0 ;
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also, 3/2 < 20.6 ≤ q0.60 , and qn
2−1.5

0 < |SU(V )| < qn
2−1

0 . Now we can follow the proof of Proposition
4.2(b), (c), but increasing the upper bound for CSU(V )(g) by q

0.6n
0 and decreasing the lower bound

by (q0 + 1)/(q0 − 1) ≤ 3 < q1.60 , going down from CGU(V )(g) to CSU(V )(g). It follows that

qns−0.6n−2
0 ≤ |gSU(V )| ≤ q2ns+n−s2+0.6

0 .

Now, the statement can be checked directly for s = 0 and for SU3(5). If (n, q) ̸= (3, 5) and s ≤ 2,
then

|gSU(V )| ≥ P (SU(V )) > qn0 > |SU(V )|s/2n.
If s = 1, we also have |gSU(V )| < q2n−1

0 < |SU(V )|3/n. In all other cases,

ns− 0.6n− 2 ≥ s

2n
(n2 − 1), 2ns+ n− s2 + 0.6 ≤ 3s

n
(n2 − 1.5),

proving the statement. □

Let Ji denote the Jordan block of size i ∈ Z≥1 and with eigenvalue 1. Then the Jordan canonical
form of any unipotent element u in GL(V ) can be written as ⊕i≥1J

ni
i , meaning it contains ni ∈ Z≥0

blocks Ji for each i ≥ 1. Sometimes we will re-order the blocks into the form ⊕t
k=1Jmk

with
m1 ≥ m2 ≥ . . . ≥ mt ≥ 1.

Lemma 6.2. In the above notation, for any unipotent element u ∈ GL(V ) we have

(6.2)
∑︂
i

in2i + 2
∑︂
i<j

ininj =

t∑︂
k=1

(2kmk −mk).

Proof. We induct on the number r ≥ 1 of distinct sizes of Jordan blocks of u. Suppose r = 1, i.e.
u ∼ Js

m, t = s, and m1 = . . . = ms = m. Then the left-hand-size of the formula is ms2, and the
right-hand-side is m

∑︁s
k=1(2k − 1) = ms2.

We suppose the formula holds for r ≥ 1, and prove it for r+1. We can present u as diag(v, Js
m),

where v = Jm1 ⊕ Jm2 ⊕ . . .⊕ Jmt , u = Jm1 ⊕ Jm2 ⊕ . . .⊕ Jmt+s , and mt+1 = . . . = mt+s = m. Then,
replacing v by u increases the left-hand-side of (6.2) by ms2+2

∑︁
i>mmsni = ms2+2mst, whereas

the right-hand-side grows by
∑︁t+s

k=t+1m(2k − 1) = m((t+ s)2 − t2) = m(s2 + 2st). □

Lemma 6.3. Let q be an odd prime power, V = Fn
q be endowed with a non-degenerate, symplectic

or orthogonal, bilinear form, and let G = Sp(V ), respectively, GO(V ), denote the corresponding
isometry group of the form. Extend the form to V := V ⊗Fq Fq, and let G = Sp(V ), respectively

GO(V ). Let g = ⊕iJ
ni
i ∈ G be a unipotent element with s = supp(g), and let D(g) := dimCG(g).

Then the following statements hold.

(a) If G = Sp(V ), then

(n− s)2

2
≤ D(g) ≤ n(n− s) + n

2
− 1

2

∑︂
i:2|i

ini ≤
n(n− s) + n

2
−

∑︂
i:2|i,ni>0

1.

If G = GO(V ) then

(n− s)2 − n1
2

+
1

2

∑︂
2|i

ni ≤
(n− s)2 − n1

2
≤ D(g) ≤ n(n− s)

2
− 1

2

∑︂
i:2∤i,ni>0

ni

(b) If G = Sp(V ), then

(1− 1/q)n/2q(n−s)2/2 ≤ |CG(g)| ≤ q(n(n−s)+n)/2.
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If G = GO(V ), then

(1− 1/q)n/2q((n−s)2−n)/2 ≤ |CG(g)| ≤ q(n(n−s)+n/3)/2.

Proof. (a) We will follow in part the proof of [LiSh1, Lemma 3.4(ii)] and note that s =
∑︁

i(i− 1)ni,
n =

∑︁
i ini, so that n− s =

∑︁
i ni. Suppose G = Sp(V ). By [LiSe, Theorem 3.1(iii)],

(6.3) D(g) =
1

2

∑︂
i

in2i +
∑︂
i<j

ininj +
1

2

∑︂
i:2∤i

ni.

Note that

(6.4)
∑︂
i

in2i + 2
∑︂
i<j

ininj =
(︁∑︂

i

ni
)︁2

+
∑︂
i

(i− 1)n2i + 2
∑︂
i<j

(i− 1)ninj .

Hence 2D(g) ≥
∑︁

i in
2
i + 2

∑︁
i<j ininj ≥

(︁∑︁
i ni

)︁2
= (n− s)2. Next,

s(n− s) + n =
(︁∑︂

i

(i− 1)ni
)︁(︁∑︂

i

ni
)︁
+
∑︂
i

ini

≥
∑︂
i

(i− 1)n2i + 2
∑︂
i<j

(i− 1)ninj +
∑︂
i:2∤i

ni +
∑︂
i:2|i

ini

≥ 2DG(g)− (n− s)2 +
∑︂
i:2|i

ini,

implying the statement for Sp(V ).
Suppose now that G = GO(V ). By [LiSe, Theorem 3.1(iii)],

(6.5) D(g) =
1

2

∑︂
i

in2i +
∑︂
i<j

ininj −
1

2

∑︂
i:2∤i

ni.

Using (6.4), we obtain

2D(g) ≥
(︁∑︂

i

ni
)︁2

+
∑︂
i

(i− 1)n2i −
∑︂
i:2∤i

ni ≥
(︁∑︂

i

ni
)︁2

+
∑︂
2|i

ni − n1 = (n− s)2 +
∑︂
2|i

ni − n1.

Next, again using (6.4), we have

s(n− s) =
(︁∑︂

i

(i− 1)ni
)︁(︁∑︂

i

ni
)︁

≥
∑︂
i

(i− 1)n2i + 2
∑︂
i<j

(i− 1)ninj

= 2DG(g)− (n− s)2 +
∑︂
i:2∤i

ni,

implying the statement for GO(V ).

(b) Suppose G = Sp(V ). By [LiSe, Theorem 7.1(ii)], |CG(g)| is a polynomial in q of degree D(g),
and

|CG(g)| = qD
′ ·

∏︂
2∤i

|Spni
(q)| ·

∏︂
2|i

|GOεi
ni
(q)|
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for suitable D′ and εi = ± (note that 2|ni when 2 ∤ i). Note that

(6.6)

(q − 1)m/2qm(m+1)/2−m/2 < |Spm(q)| < qm(m+1)/2,

2(q − 1)⌊m/2⌋qm(m−1)/2−⌊m/2⌋ ≤ |GO±
m(q)| ≤

{︄
2(q+1)

q qm(m−1)/2, m = 2,

2qm(m−1)/2, m ̸= 2.

In our case, q ≥ 3, so 2(q + 1)/q < q, and
∑︁

i ni/2 = (n− s)/2 ≤ n/2. It follows that

(1− 1/q)n/2qD(g) = (q − 1)n/2qD(g)−n/2 ≤ |CG(g)| < q
∑︁

2|i 1+D(g),

Together with (a), this implies the statement for Sp(V ).
Suppose now that G = GO(V ). By [LiSe, Theorem 7.1(iii)], |CG(g)| is a polynomial in q of

degree D(g), and

|CG(g)| = qD
′ ·

∏︂
2|i

|Spni
(q)| ·

∏︂
2∤i

|GOεi
ni
(q)|

for suitable D′ and εi = ± (note that 2|ni when 2|i). Using (6.6), we get

(1− 1/q)n/2qD(g) = (q − 1)n/2qD(g)−n/2 ≤ |CG(g)| < AqD(g),

where A :=
∏︁

i:2∤i αi, with αi = 2 if ni ̸= 2 and αi = 2(q + 1)/q if ni = 2. In particular, αi < q2ni/3,

and so A ≤ q
∑︁

2∤i 2ni/3. Since n1 ≤
∑︁

i ni ≤ n, together with (a) this implies the statement for
GO(V ). □

In what follows, by supp(g) for g ∈ Spinεn(q) we mean the support of its image in Ωε
n(q). Also,

the notation GLε
m(q) means GL(Fm

q ) when ε = + and GU(Fm
q2) when ε = −.

Proposition 6.4. Let q be an odd prime power, V = Fn
q be endowed with a non-degenerate, sym-

plectic or orthogonal, bilinear form, and let G = Sp(V ), respectively, SO(V ), Ω(V ), or Spin(V ).
Let g ∈ G be any element with s = supp(g). Then the following statements hold.

(a) If 2|n and G = Sp(V ), then

q(n−s)2/2−0.2n ≤ |CG(g)| ≤ qn(n−s)/2+0.5n.

In particular, if 2|n ≥ 4, then |G|3s/n ≥ |gG| ≥ |G|s/2n.
(b) If n ≥ 3 and Ω(V ) ≤ G ≤ GO(V ), then

q(n−s)2/2−0.7n−1.3 ≤ |CG(g)| ≤ qn(n−s)/2+n/6.

In particular, if n ≥ 7 and G = SO(V ), Ω(V ), or Spin(V ), then |G|3s/n ≥ |gG| ≥ |G|s/3n.

Proof. Write g = gssu, with gss the semisimple part and u the unipotent part. Then g preserves the
orthogonal decomposition

V = V1 ⊕ V2 ⊕
(︁
⊕t+2

i=3Vi
)︁
,

into non-degenerate subspaces Vi of dimension dimVi = ni, where gss acts as 1 on V1, −1 on V2,
and

CI(V )(gss) =

t+2∏︂
i=1

CG∩I(Vi)(gss) = I(V1)× I(V2)×
t+2∏︂
i=3

GLεi
mi

(qai),

where I = Sp or GO, εi = ±, mi, ai ∈ Z≥1, and miai = ni/2. Let ui denote the image of u in
I(Vi) when i ≤ 2, and in GLεi

mi
(qai) when i > 2, and let di denote the dimension of its kernel Ui

on Vi when i ≤ 2, on Fmi
qai when i > 2 and εi = +, and on Fmi

q2ai
when i > 2 and εi = −. Then the

subspaces Ui ⊗ Fq are the distinct eigenspaces for g on V ⊗Fq Fq; in particular,

(6.7) n− s = max
i
di
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Furthermore,

(6.8) CI(V )(g) = CCI(V )(gss)(u) =
t+2∏︂
i=1

CCG∩I(Vi)
(gss)(ui).

(a) Consider the case G = Sp(V ). By (4.2) (and (6.1)), Proposition 4.2(a), and Lemma 6.3(ii),

|CG∩Sp(Vi)(g)| = |CCG∩Sp(Vi)
(gss)(ui)| is bounded below by (1 − 1/q)ni/2qd

2
i /2. Since q0.4 ≥ 30.4 >

1/(1 − 1/q) and n ≥ ni, by (6.7)–(6.8) we get |CG(g)| > q(n−s)2/2−0.2n. On the other hand, by
(6.1), Proposition 4.2(b), and Lemma 6.3(b), |CG∩Sp(Vi)(g)| = |CCG∩Sp(Vi)

(gss)(ui)| is bounded from

the above by q(nidi+ni)/2 when i ≤ 2, and by qnidi/2+0.2ni when i > 2, with the extra factor q0.2ni

accounting for q0.2ni = q0.4miai ≥ (3/2)mi when εi = −. Now n =
∑︁

i ni, so by (6.7)–(6.8) we get

|CG(g)| < qn(n−s)/2+n/2, proving the first statement. Using

qn(n+1)/2−0.6 < (9/16)qn(n+1)/2 < |G| < qn(n+1)/2,

(see [LMT, Lemma 4.1(ii)]), we obtain

qns/2−0.6 < |gG| < qns−s2/2+0.7n.

The second statement is obvious if s = 0. If s ≥ 1 then ns/2− 0.6 ≥ (s/2n)(n(n+ 1)/2). If s ≥ 2,
then ns− s2/2 + 0.7n ≤ (3s/n)(n(n+ 1)/2− 0.6). Finally, if s = 1, then g is a transvection (up to

a sign), hence |gG| = (qn − 1)/2 < |G|3/n, completing the proof of the second statement.

(b) Now we consider the orthogonal case. By (4.2) (and (6.1)), Proposition 4.2(a), and Lemma

6.3(ii), |CG∩GO(Vi)(g)| = |CCG∩GO(Vi)
(gss)(ui)| is bounded from below by (1 − 1/q)ni/2qd

2
i /2−ni/2.

Since q0.4 > 1/(1 − 1/q) and n ≥ ni, by (6.7)–(6.8) we get |CGO(V )(g)| > q(n−s)2/2−0.7n. On the
other hand, by (6.1), Proposition 4.2(b), and Lemma 6.3(b), |CG∩GO(Vi)(g)| = |CCG∩GO(Vi)

(gss)(ui)|
is bounded from the above by qnidi/2+ni/6 when i ≤ 2, and by qnidi/2+0.2ni when i > 2, again with
the extra factor q0.2ni accounting for q0.2ni = q0.4miai ≥ (3/2)mi when εi = −. Now n =

∑︁
i ni, so

by (6.7)–(6.8) we get |CGO(V )(g)| < qn(n−s)/2+n/6. Since [GO(V ) : Ω(V )] = 4, we have that

q−1.3|CGO(V )(g)| < |CGO(V )(g)|/4 ≤ |CG(g)| ≤ |CGO(V )(g)|

when GO(V ) ≥ G ≥ Ω(V ), proving the first statement.
To prove the second statement, we may again assume s ≥ 1, and note that

qn(n−1)/2−1.16 < (9/32)qn(n−1)/2 < |Ω(V )| < |SO(V )| = |Spin(V )| = 2|Ω(V )| < qn(n−1)/2,

if n ≥ 7, (see [LMT, Lemma 4.1(ii)]). Furthermore, if ḡ denotes the image of g ∈ Spin(V ) in Ω(V ),
then |CΩ(V )(ḡ)| ≤ |CSpin(V )(g)| ≤ 2 · |CΩ(V )(ḡ)|, and so

|Ω(V )|
|CΩ(V )(g)|

≤ |gSpin(V )| ≤ |SO(V )|
|CΩ(V )(g)|

.

Hence, it suffices to prove that

(6.9) |SO(V )|1−3s/n ≤ |CΩ(V )(g)| ≤ |CSO(V )(g)| ≤ |Ω(V )|1−s/3n · q−0.64 < |Ω(V )|1−s/3n/2.

When n ≥ 8, or if n = 7 but s = 1, we have (n−s)2

2 − 0.7n − 1.3 ≥
(︁
1 − 3s

n

)︁n(n−1)
2 . If s ≥ 3

then we also have n(n−s)
2 + n

6 ≤
(︁
1 − s

3n

)︁(︁n(n−1)
2 − 1.8

)︁
, proving (6.9). Finally, if s ≤ 3, then

|G|s/3n ≤ q(n−1)/2 < P (G) ≤ |gG|; and if (n, s) = (7, 1), then |G|3s/n > q17 > q2n > |gG|, completing
the proof of the second statement. □
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Lemma 6.5. Let q be a power of 2, let n be even, let V = Fn
q be endowed with a non-degenerate

alternating bilinear form (·|·), respectively a quadratic form associated to (·|·), and let G = Sp(V ),
respectively, GO(V ), denote the corresponding isometry group of the form(s). Extend the form to
V := V ⊗Fq Fq, and let G = Sp(V ), respectively GO(V ). Let g = ⊕iJ

ni
i ∈ G be a unipotent element

with s = supp(g), and let D♯(g) := dimCG(g). Then the following statements hold.

(a) If G = Sp(V ), then
(n− s)2

2
≤ D♯(g) ≤ n(n− s) + n

2
.

If G = GO(V ) then

(n− s)2 − n− n1
2

≤ D♯(g) ≤ n(n− s)

2
− 1

2

∑︂
i:2∤i,ni>0

ni

(b) If G = Sp(V ), then

(1− 1/q)n/2q(n−s)2/2 ≤ |CG(g)| ≤ qn(n−s)/2+1.3n.

If G = GO(V ), then

(1− 1/q)n/2q(n−s)2/2−n ≤ |CG(g)| ≤ qn(n−s)/2+0.8n.

Proof. (a) The conjugacy classes gG of unipotent elements in G are best represented in the form
[LiSe, (4.4)], where one decomposes the g-module V as

(6.10)
(︁
⊕iW (mi)

ai
)︁
⊕
(︁
⊕jV (2kj)

bj
)︁
,

where bj ≤ 2, k1 > k2 > · · · , m1 > m2 > · · · , g acts on W (mi) as J2
mi

, and on V (2kj) as
J(2kj), see [LiSe, Table 4.1]. We again record the Jordan canonical form of g as

∑︁r
i=1 Jmi , with

m1 ≥ m2 ≥ . . . ≥ mr ≥ 1. Then

D♯(g) =
r∑︂

i=1

(︁
imi − χV (mi)

)︁
,

where the function χV is defined as follows (see [LiSe, Lemma 6.2]):

χV (m) = χV (m)(m) =

{︃
m/2, G = Sp(V )
m/2 + 1, G = GO(V )

if V (m) occurs in (6.10), and

χV (m) = χW (m)(m) =

{︃
⌊(m− 1)/2⌋, G = Sp(V )
⌊(m+ 1)/2⌋, G = GO(V )

otherwise.
Suppose G = Sp(V ). Then χV (mi) = mi/2 − νi, where νi = 0 if V (mi) occurs in (6.10), νi = 1

if 2|mi but V (mi) does not occur in (6.10), and νi = 1/2 if 2 ∤ mi. It follows that

D♯(g) =
r∑︂

i=1

(imi −mi/2) +
∑︂
2∤mi

ai + ν,

where ν := 2
∑︁

i ai, with i running over those mi such that 2|mi but V (mi) does not occur in (6.10).

With g written as ⊕iJ
ni
i , we have that ν ≤

∑︁
2|i ni ≤

1
2

∑︁
2|i ini, and

∑︁
2∤mi

ai =
1
2

∑︁
2∤i ni. Using

Lemma 6.2 and (6.3), we get

D♯(g) =
1

2

∑︂
i

in2i +
∑︂
i<j

ininj +
1

2

∑︂
2∤i

ni + ν = D(g) + ν.
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Since 0 ≤ ν ≤ 1
2

∑︁
2|i ini, together with Lemma 6.3(a), this implies the statement for Sp(V ).

Next suppose that G = GO(V ). Then χV (mi) = mi/2 + µi, where νi = 1 if V (mi) occurs in
(6.10), µi = 0 if 2|mi but V (mi) does not occur in (6.10), and µi = 1/2 if 2 ∤ mi. It follows that

D♯(g) =
r∑︂

i=1

(imi −mi/2)−
∑︂
2∤mi

ai − µ,

where µ :=
∑︁

j bj . With g written as ⊕iJ
ni
i , we have that µ ≤

∑︁
2|i ni, and

∑︁
2∤mi

ai =
1
2

∑︁
2∤i ni.

Using Lemma 6.2 and (6.5), we get

D♯(g) =
1

2

∑︂
i

in2i +
∑︂
i<j

ininj −
1

2

∑︂
2∤i

ni − µ = D(g)− µ.

Since µ ≥ 0 and 2(n1+
∑︁

2|i ni) ≤ 2n1+
∑︁

2|i ini ≤ n+n1, together with Lemma 6.3(a), this implies

the statement for GO(V ).

(b) By [LiSe, Theorem 7.3(ii)], |CG(g)| is a polynomial in q of degree D♯(g), and

|CG(g)| = 2t+δqD
′ ·

∏︂
2∤mi

|I2ai(q)| ·
∏︂
2|mi

|Sp2ai(q)|

for a suitable D′; moreover, I is either Sp or GO±, 0 ≤ δ ≤ 1, and t is the number of j such that
kj − kj+1 ≥ 2 in (6.10). In particular, (t+ δ+the number of factors GO among the I2ai) is at most
n/2. Using (6.6) and (q + 1)/q ≤ 1.5 < q0.6, we obtain

(1− 1/q)n/2qD
♯(g) = (q − 1)n/2qD

♯(g)−n/2 ≤ |CG(g)| < q0.8n+D♯(g),

Now we can apply the estimates in (a) for D♯(g). □

Proposition 6.6. Let q be a power of 2, 2|n ≥ 4, V = Fn
q be endowed with a non-degenerate

alternating bilinear form (·|·), respectively a quadratic form associated to (·|·), and let G = Sp(V ),
respectively, GO(V ) or Ω(V ). Let g ∈ G be any element with s = supp(g). Then the following
statements hold.

(a) If G = Sp(V ), then

q(n−s)2/2−0.5n ≤ |CG(g)| ≤ qn(n−s)/2+1.3n.

In particular, |G|3s/n ≥ |gG| ≥ |G|s/3n.
(b) If n ≥ 8 and Ω(V ) ≤ G ≤ GO(V ), then

q(n−s)2/2−1.5n−1 ≤ |CG(g)| ≤ qn(n−s)/2+0.8n.

In particular, if n ≥ 8 and G = Ω(V ), then |G|5s/n ≥ |gG| ≥ |G|s/3n.

Proof. Write g = gssu, with gss the semisimple part and u the unipotent part. Then g preserves the
orthogonal decomposition

V = V1 ⊕
(︁
⊕t+1

i=2Vi
)︁
,

into non-degenerate subspaces Vi of dimension dimVi = ni, where gss acts as 1 on V1, and

CI(V )(gss) =
t+1∏︂
i=2

CG∩I(Vi)(gss) = I(V1)×
t+1∏︂
i=2

GLεi
mi

(qai),

where I = Sp or GO, εi = ±, mi, ai ∈ Z≥1, and miai = ni/2. Let ui denote the image of u in
I(Vi) when i = 1, and in GLεi

mi
(qai) when i > 1, and let di denote the dimension of its kernel Ui
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on Vi when i = 1, on Fmi
qai when i > 1 and εi = +, and on Fmi

q2ai
when i > 1 and εi = −. Then the

subspaces Ui ⊗ Fq are the distinct eigenspaces for g on V ⊗Fq Fq; in particular,

(6.11) n− s = max
i
di

Furthermore,

(6.12) CI(V )(g) = CCI(V )(gss)(u) =
t+1∏︂
i=1

CCG∩I(Vi)
(gss)(ui).

(a) Consider the case G = Sp(V ). By (4.2) (and (6.1)), Proposition 4.2(a), and Lemma 6.5(ii),

|CG∩Sp(Vi)(g)| = |CCG∩Sp(Vi)
(gss)(ui)| is bounded below by qd

2
i /2−ni/2. Hence (6.11)–(6.12) imply

|CG(g)| > q(n−s)2/2−0.5n. On the other hand, by (6.1), Proposition 4.2(b), and Lemma 6.5(b),

|CG∩Sp(Vi)(g)| = |CCG∩Sp(Vi)
(gss)(ui)| is bounded from the above by qnidi/2+1.3ni when i = 1, and

by qnidi/2+0.3ni when i > 1, with the extra factor q0.3ni accounting for q0.3ni = q0.6miai > (3/2)mi

when εi = −. Now n =
∑︁

i ni, so by (6.11)–(6.12) we get |CG(g)| < qn(n−s)/2+1.3n, proving the first
statement. Using

qn(n+1)/2−0.84 < (9/16)qn(n+1)/2 < |G| < qn(n+1)/2,

(see [LMT, Lemma 4.1(ii)]), we obtain

qns/2−0.8n−0.84 < |gG| < qns−s2/2+n.

The second statement is obvious if s = 0. If s ≥ 4 then ns/2 − 0.8n − 0.84 ≥ (s/3n)(n(n + 1)/2),

and if 1 ≤ s ≤ 3, then |G|s/3n ≤ |G|1/n < q(n+1)/2 < P (G) ≤ |gG|, showing |gG| ≥ |G|s/3n. If s ≥ 2,
then ns − s2/2 + n ≤ (3s/n)(n(n + 1)/2 − 0.84). Finally, if s = 1, then g is a transvection, hence

|gG| = qn − 1 < |G|3/n, completing the proof of the second statement.

(b) Now we consider the orthogonal case. By (4.2) (and (6.1)), Proposition 4.2(a), and Lemma

6.5(ii), |CG∩GO(Vi)(g)| = |CCG∩GO(Vi)
(gss)(ui)| is bounded below by (1 − 1/q)ni/2qd

2
i /2−1.5ni . Hence

(6.11)–(6.12) imply that |CGO(V )(g)| > q(n−s)2/2−1.5n. On the other hand, by (6.1), Proposition
4.2(b), and Lemma 6.5(b), |CG∩GO(Vi)(g)| = |CCG∩GO(Vi)

(gss)(ui)| is bounded from the above by

qnidi/2+0.8ni when i = 1, and by qnidi/2+0.3ni when i > 1, again with the extra factor q0.3ni ac-
counting for q0.3ni = q0.6miai > (3/2)mi when εi = −. Now n =

∑︁
i ni, so by (6.11)–(6.12) we get

|CGO(V )(g)| < qn(n−s)/2+0.8n. Since [GO(V ) : Ω(V )] = 2, we have that

|CGO(V )(g)|/q ≤ |CGO(V )(g)|/2 ≤ |CG(g)| ≤ |CGO(V )(g)|
when GO(V ) ≥ G ≥ Ω(V ), proving the first statement.

To prove the second statement, we may again assume s ≥ 1, and note that

qn(n−1)/2−0.84 < (9/16)qn(n−1)/2 < |Ω(V )| < qn(n−1)/2,

if n ≥ 8, (see [LMT, Lemma 4.1(ii)]). Hence,

qns/2−1.3n−0.84 < |gG| < qns−s2/2+2n+1.

If s ≥ 4 then ns/2− 1.3n− 0.84 ≥ (s/3n)(n(n− 1)/2), and if 1 ≤ s ≤ 3, then

|G|s/3n ≤ |G|1/n < q(n−1)/2 < P (G) ≤ |gG|,

showing |gG| ≥ |G|s/3n. If s ≥ 2, then ns− s2/2+2n+1 ≤ (5s/n)(n(n− 1)/2− 0.84). If s = 1 then

g ∈ GO(V )∖ Ω(V ) (and we still have |gG| ≤ qn − 1 < |G|3/n). □

Together, Propositions 4.2, 6.1, 6.4, and 6.6 imply
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Corollary 6.7. Let G be any of the following quasisimple classical groups: SLn(q) with n ≥ 2,
SUn(q) with n ≥ 3, Spn(q) with 2|n ≥ 4, or Ω±

n (q) or Spin±n (q) with n ≥ 7. If g ∈ G has

s = supp(g), then |G|s/3n ≤ |gG| ≤ |G|5s/n.

Proof of Theorem A. If G is an exceptional group of Lie type, then the statement follows from the
main result [LiT, Theorem 1]. Choosing c small enough, we may assume that G is (a quotient
of) one of the groups listed in Corollary 6.7; in particular, for S := gG with s = supp(g) we have
s/3n ≤ log|G| |S| ≤ 5s/n. Hence the statement follows from Theorem 5.5, by taking c ≤ σ/5. □

In addition to Example 5.7 and Lemma 5.8, we offer another example showing that the term
log|G| |gG| in Theorem A is optimal, up to a constant.

Example 6.8. Let G be any finite group of Lie type, g a semisimple element, and χ the Steinberg
character of G. Then by [St, Theorem 15.5], |χ(g)| = |CG(g)|p, the p-part of |CG(g)|. For instance,
if G := SLn(q) and g is a diagonal element with eigenvalue multiplicities a1, . . . , am, then in the
large q limit,

|gG| ∼ qn
2−

∑︁
i a

2
i ∼ |G|

n2−
∑︁

a2i
n2−1

while

|χ(g)| = q
∑︁

i (
ai
2 ) = χ(1)

∑︁
i a

2
i−

∑︁
ai

n2−n ,

so if
∑︁

i a
2
i is large compared to

∑︁
i ai, then

1− log |gG|
log |G|

≈ log |χ(g)|
logχ(1)

.

7. Squares of conjugacy classes and Thompson’s conjecture

In this section we consider situations in which the square of a conjugacy class xG can be shown to
be all or nearly all of G. The main result is Theorem 7.7, which proves Thompson’s conjecture for
various families of unitary, symplectic, and orthogonal groups. The strategy here is to choose a class
x with small centralizer and use the Frobenius formula in conjunction with character estimates to
show that every target element g lies in xG · xG. This breaks down when g has very small support,
necessitating a separate analysis of such elements. If g is of the form diag(g1, In−k) for some small
value of k, and if x is conjugate to an element of the form diag(x1, x2), where x2 is real and g1 can
be written as a product of two conjugates of x1, then g lies in xG · xG. By choosing x carefully,
we can hope to treat all elements of bounded support. Of course, the primary eigenvalue of an
element of small support need not be 1. Because of this difficulty, our strategy at present assumes
congruence conditions relating n and q for orthogonal and unitary groups.

We remark that Ore’s conjecture, now a theorem of Liebeck, O’Brien, Shalev, and Tiep [LOST2],
plays an important role in the proof of Theorem 7.7, via Lemma 7.5.

For groups of type PSLn(q), Thompson’s conjecture is already known [EG]. Theorem 7.8 shows
that there are many regular semisimple conjugacy classes in SLn(q) and SUn(q), including all those
with irreducible characteristic polynomial, for which the first part of the argument works, and xG·xG
contains all elements whose support is greater than an absolute constant.

Lemma 7.1. Let V = Fn
q with n ≥ 117. If G := SU(V ), Sp(V ), or Ω(V ), and g ∈ G satisfies

|CG(g)| ≥ |G|6/7, then V admits an orthogonal decomposition V1 ⊕ V2 of non-degenerate subspaces
with dim(V2) > 2(dimV )/3, such that g(Vi) = Vi, and g acts as a scalar λ on V2, with λ

q+1 = 1 in
the SU-case and λ2 = 1 otherwise.
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Proof. Let D = n(n+1)/2 when G = Sp(V ) and D = n(n−1)/2 when G = Ω(V ). As mentioned in
the proofs of Propositions 6.4 and 6.6, |G| > qD−1.16. Now, if g ∈ G has support s = supp(g), then
Propositions 6.4 and 6.6 show that |CG(g)| ≤ qD+1.3n−ns/2. If 0 < ε < 1 and |CG(g)| ≥ |G|1−ε,
then D + 1.3n− ns/2 ≥ (D − 1.16)(1− ε), and so

s <
2εD

n
+ 2.6 +

2.32

n
≤ ε(n+ 1) + 2.6 +

2.32

n
.

Taking ε = 1/7, when n ≥ 117 we then have s < n/6; in particular, the primary eigenvalue λ of
g satisfies λq0+1 = 1 in the case G = SU(V ) ∼= SUn(q0), respectively λ = ±1 in the remaining
cases. By [LaST1, Lemma 6.3.4], V admits a g-invariant orthogonal decomposition V1 ⊕ V2 such
that dim(V2) ≥ n− 2s > 2n/3 and g acts as λ on V2.

The same argument applies to the case G = SU(V ), using the estimates in Proposition 6.1. □

In what follows, we will fix Cl ∈ {SU,Sp,Ω} and work with Clεn(q), with the convention that, if
we choose Cl = Sp then all Clε will be Sp (regardless of ε) and 2|n, and if we choose Cl = SU then
all Clε will be SU, whereas if we choose Cl = Ω, then Clε = Ωε with ε = ± and also 2|n if 2|q. If

m < n, then Clεm(q) can be naturally embedded in Clε
′
n (q) via x ↦→ diag

(︁
x, In−m

)︁
. For g ∈ Clεm(q)

and S a normal subset of Clε
′
n (q), where either (m, ε) = (n, ε′) or n > m, we say S represents g

if the natural embedding of Clεm(q) into Clε
′
n (q) maps g to an element of S. We say an element

x ∈ G = Clε
′
n (q) covers g if xG · xG represents g.

Lemma 7.2. If g ∈ Clεr(q) is covered by x ∈ Clαm(q), where m ≥ r, and y is any real element of

Clβn(q), then g is covered by

diag(x, y) ∈ Clαm(q)× Clβn(q) < Clαβm+n(q).

Proof. By assumption, g viewed as an element of Clm(q) is x1x2 for some conjugates x1, x2 of x.
As y is real, diag(x, y) is conjugate to diag(x1, y) and diag(x2, y

−1). Hence x1x2 is covered by
diag(x, y). □

Lemma 7.3. Let x ∈ Cl+2m(q) and y ∈ Cl+2n(q). If Cl = Ω and 2 ∤ q, assume in addition that 2|m
and 2|n. Then diag(x, y) is conjugate to diag(y, x) in Cl+2m+2n(q).

Proof. We may assume that Cl+2m(q) = Cl(U), where U = ⊕m
i=1Span(u2i−1, u2i) is an orthogonal

sum of 2-spaces, with a Witt basis (u2i−1, u2i) and moreover Q(u2i−1) = Q(u2i) = 0 if in addition
Cl = Ω and 2|q, and with Q(u2i−1) = 1, Q(u2i) = −1, (u2i−1|u2i) = 0 when Cl = Ω and 2 ∤ q. Write
Cl+2n(q) = Cl(V ) with V = ⊕n

i=1Span(v2i−1, v2i) in a similar manner.
First we assume that n = 1, and either Cl = SU, Sp, or 2|q and Cl = Ω. Then the linear

transformation
f : u1 ↦→ v1, u2 ↦→ v2, u3 ↦→ u1, u4 ↦→ u2, u5 ↦→ u3, . . .

u2m−3 ↦→ u2m−1, u2m ↦→ u2m−2, v1 ↦→ u2m−1, v2 ↦→ u2m

belongs to SU(U ⊕V ), respectively Sp(U ⊕V ). Suppose 2|q and Cl = Ω. Then f fixes the maximal
totally singular subspace Span(u1, u3, . . . , u2m−1, v1) of U⊕V , hence f ∈ Ω(U⊕V ) by [KlL, Lemma
2.5.8].

Next suppose that n = 2, 2 ∤ q, and Cl = Ω, and consider the linear transformation

f : u1 ↦→ v1, u2 ↦→ v2, u3 ↦→ v3, u4 ↦→ v4, u5 ↦→ u1, u6 ↦→ u2, u7 ↦→ u3, u8 ↦→ u4, . . . ,

u2m−1 ↦→ u2m−5, u2m ↦→ u2m−4, v1 ↦→ u2m−3, v2 ↦→ u2m−2, v3 ↦→ u2m−1, v4 ↦→ u2m.

Clearly f ∈ GO(U ⊕ V ), but we want to show that f ∈ Ω(U ⊕ V ). Note that

u1 ↦→ v1 ↦→ u2m−3 ↦→ u2m−7 ↦→ . . . ↦→ u5 ↦→ u1,
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is an (m/2 + 1)-cycle, which is a product of m/2 reflections of the form

ρw : x ↦→ x− 2(x|w)
(w|w)

w

with w = u1− v1, v1−u2m−3, . . . , u5−u1, each of norm Q(w) = 2. The same holds for the sequence
starting at u3. The two sequences starting at u2 and u4 each give us a product of m/2 reflections
of the form ρw with Q(w) = −2. Thus f is a product of 2m reflections, whence det(f) = 1, and its
spinor norm is the class of 2m(−2)m, a square since 2|m. Hence f ∈ Ω(U ⊕ V ) in this case as well.

The above f moves v1, v2, respectively v1, . . . , v4, to the front of u1, . . . , u2m. In the general case
of any n, a sequence of such transformations moves v1, . . . , v2n to the front of u1, . . . , u2m, and thus
conjugates diag(x, y) to diag(y, x). □

Lemma 7.4. Suppose r,m, n ∈ Z≥1, and moreover 2|m and 2|n if Cl = Ω and 2 ∤ q. If the elements

g1, . . . , gk ∈ Clαr (q) are all covered by a real element x ∈ Cl+2m(q) and the elements h1, . . . , hl ∈ Clβs (q)
are all covered by a real element y ∈ Cl+2n(q), then the gi and hj are all covered by the real element
diag(x, y) ∈ Cl+2m+2n(q).

Proof. The assumptions and Lemma 7.3 imply that the elements

z1 := diag(x, y), z2 := diag(x, y−1), z3 := diag(y, x), z4 := diag(y, x−1)

are all in the same conjugacy class C. Conjugating z1 and z2 by elements in Cl+2m(q) × I2n and
multiplying together, we see that every diag(gi, I2m+2n−r) belongs to C

2. Conjugating z3 and z4 by
elements in I2m × Cl+2n(q) and multiplying, we see that every diag(hj , I2m+2n−s) lies in C

2. □

Lemma 7.5. For every positive integer r ≥ 1, every element g ∈ Clαr (q) is covered by a real element
in Cl+4m(q), where max(6, r) ≤ 2m ≤ r + 3, and 2|m if Cl = Ω and 2 ∤ q.

Proof. Embedding Clαr (q) in Cl+2m(q) and replacing g by diag(g, Is) for a suitable s, we may assume
that g ∈ Cl+2m(q) with m as specified. (Note that for the case of Ω−

r , we take m = r/2 + 1.)
By [LOST2, Theorem 1], every g in Cl+2m(q) is a commutator xyx−1y−1. By Lemma 7.3, z :=
diag(x, x−1) ∈ Cl+4m(q) is conjugate to diag(x−1, x) = z−1, and thus z is real. Conjugating z−1 by
diag(y, I2m) we see that z is also conjugate to t := diag(yx−1y−1, x). It follows that diag(g, I2m) = zt
lies in the square of the conjugacy class of z. □

Lemma 7.6. For all positive integers k and prime powers q, there exists a positive integer r and
a real element x ∈ Cl+2r(q), both depending on k and q, such that x covers every element of Clαl (q)
for all integers l ∈ [1, k] and α = ±.

Proof. Let N denote the sum of the conjugacy class numbers of all Clαl (q) with 1 ≤ l ≤ k and
α = ±. By Lemma 7.5, each such class gi is covered by a real class xi in Cl+4mi

(q). The statement

now follows from Lemma 7.4, by taking r = 2
∑︁N

i=1mi and x := diag(x1, . . . , xN ). □

In the next theorem, we remark that the congruence conditions on q ensure that the central
extension of G which lies in GLn(F̄q) has a large enough center that every element of G of small
support can be represented by an n×n matrix for which the primary eigenvalue is 1, as needed for
(7.7). In particular, when n and q are odd we have no results about Ωn(q) because the center of
SOn(q) is trivial, and we do not know how to show that elements of small support with principal
eigenvalue −1 lie in S2.

Theorem 7.7. Let q be a prime power and let G ∈ {PSUn(q),PSpn(q),PΩ
ε
n(q)}. Suppose that

(q + 1)|n in the SU-case, and that, if 2 ∤ q then 2|n and ε = (−1)n(q−1)/4 in the Ω-case. If n is
sufficiently large, then there exists a conjugacy class S in G such that S2 = G.
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Proof. (a) Ellers and Gordeev [EG, Table 1] already proved Thompson’s conjecture for simple
classical groups when q ≥ 8. Hence it suffices to prove the theorem for q ≤ 7 and n ≥ 117 sufficiently
large. For consistency with the Clεn(q) notation, in the PSU-case, we write Cln(q

2) = SUn(q),
F := Fq2 , and V := Fn; otherwise, Cln(q) is Spn(q) or Ω±

n (q), F := Fq, and V := Fn. Replacing

G by G = Cl(V ), it suffices to prove that there exists a real conjugacy class S in G such that S2

contains a scalar multiple of every non-central element g ∈ G.

(b) By Lemma 7.1, if g ∈ G satisfies |CG(g)| ≥ |G|6/7, then V admits an orthogonal decomposition
V1 ⊕ V2 with dim(V2) > 2 dim(V )/3, such that g(Vi) = Vi, and g acts as a scalar λ on V2, with

λq+1 = 1 in the SU-case and λ2 = 1 otherwise. By Theorem 4.5, if |CG(g)| ≤ |G|6/7, then there
exists δ > 0, independent of V , such that

(7.1) |χ(g)| ≤ χ(1)1−δ

for every irreducible character of G. By [GLT2, Theorem 1.3], there exists α > 0 (depending on δ)
such that if x ∈ G satisfies |CG(x)| ≤ |G|α, then

(7.2) |χ(x)| ≤ χ(1)δ/3

for all irreducible characters χ. By the Frobenius formula, g ∈ G lies in xG · xG if

(7.3)
∑︂

χ∈Irr(G)

χ(x)2χ̄(g)

χ(1)
> 0.

By [LiSh3, Theorem 1.2],
∑︁

1G ̸=χ∈Irr(G) χ(1)
−δ/3 → 0 when n→ ∞. Hence, if n is large enough and

both (7.1) and (7.2) hold, then ∑︂
χ ̸=1G

|χ(x)2χ̄(g)|
χ(1)

< 1,

implying (7.3) . We fix B > 0 such that if x satisfies (7.2) and g satisfies (7.1), then dim(V ) ≥ B
implies g ∈ xG · xG.

(c) For any sufficiently large integer d, if V has an orthogonal decomposition V3 ⊕ V4, and

x = diag(x3, x4) ∈ Cl(V3)× Cl(V4) < Cl(V ) = G,

where dim(V3) > d dim(V4) and the characteristic polynomial of x3 has no irreducible factors of
degree < d, then

(7.4) |CG(x)| ≤ |CGL(V )(x)| < |G|α.
Indeed, suppose d > 4α and n = dim(V ) is sufficiently large such that

n

(︃
α

4
− 1

d

)︃
> 1.3.

The assumptions imply that any eigenspace of x has dimension at most

dim(V4) + dim(V3)/d < 2 dim(V3)/d ≤ 2n/d,

hence s := supp(x) ≥ n− 2n/d. By Propositions 6.4 and 6.6,

|CG(x)| ≤ qn(n−s)/2+1.3n ≤ qn
2/d+1.3n < qαn

2/4 < |G|α

in the non-SU cases. In the SU-case we argue similarly, using Proposition 6.1. Fix such a d.

(d) We now fix a non-degenerate space W over F of dimension ≥ d, unitary if G = SU(V ),
symplectic if G = Sp(V ), and quadratic of type + if G = Ω(V ) ∼= Ωε

n(q), and a real semisimple
element h ∈ Cl(W ) whose characteristic polynomial has no irreducible factors over F of degree less
than d. (For instance, SU4d(q) and its subgroup Sp4d(q) contain a semisimple element of order
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(q2d + 1)/ gcd(2, q− 1) as does Ω−
4d(q); moreover, such an element is real by [TZ2, Proposition 3.1].

Next, Ω+
4d(q) > Ω−

2d(q)×Ω−
2d(q) contains a semisimple element of order (qd+1)/ gcd(2, q−1), which

is again real by [TZ2, Proposition 3.1].)
Next, we fix some integer

(7.5) k > max(B, dim(W ))

and apply Lemma 7.6 to find a non-degenerate space V0 over F, unitary if G = SU(V ), symplectic
if G = Sp(V ), and quadratic if G = Ω(V ), and a real element yk ∈ Cl(V0) such that yk covers every

element in Clβl (|F|), 1 ≤ l ≤ k. By Lemma 7.2, if yk is replaced by diag(yk, z) for any real element
z in any Clγs (|F|), it still has the above covering property. We may therefore assume that dim(V0)
lies in any desired congruence class modulo dim(W ), and that V0 is also of type ε when G = Ωε

n(q).
Suppose that n is sufficiently large. Then we can write n = dim(V ) = dim(V0)+N dim(W ), with

N sufficiently large, and that V is isometric to V0 ⊕WN .

We claim that if V0 and yk are fixed as above, N > d dim(V0)/ dim(W ) is sufficiently large,

V := V0 ⊕W ⊕W ⊕ · · · ⊕W⏞ ⏟⏟ ⏞
N

,

and

xN := diag
(︁
yk, h, h, . . . , h⏞ ⏟⏟ ⏞

N

)︁
∈ Cl(V0)× Cl(W )N < Cl(V ) = G,

then for every g ∈ Cl(V ), subject to the hypothesis on (n, q, ε) (which guarantees that Z(G) ∼= C2

in the case of Sp/Ω with 2 ∤ q and Z(G) ∼= Cq+1 in the case G = SU(V )), zg lies in (xN )G · (xN )G

for some z ∈ Z(G).

Let fλ(g) denote the maximum dimension of V2 where

(7.6) V = V1 ⊕ V2

is a g-stable orthogonal splitting and g acts as a scalar λ on V2, with λ
q+1 = 1 in the SU-case and

λ = ±1 otherwise; and let f(g) = maxλ fλ(g).
To prove the claim in general, we divide into three cases.

(d1) f(g) ≥ dim(V )− k.
In this case, we may assume dim(V2) ≥ 4 in the decomposition (7.6) for some eigenvalue λ.

Hence, in the case G = Ω(V ), g is centralized by elements u in any chosen Ω(V2)-coset in GO(V2).
Likewise, in the case G = SU(V ), g is centralized by elements u in any chosen SU(V2)-coset in
GU(V2). Conjugating g using elements in Sp(V ), GU(V ), or GO(V ), and then by suitable elements
like u in the case G = SU(V ) or Ω(V ), and replacing g by zg for a suitable z ∈ Z(G) if necessary,
we may assume that

(7.7) g = diag(g1, If(g)) ∈ Cl(V1)× Cl(V2) < Cl(V ).

As dimV1 ≤ k, g1 is covered by yk, so as h is real, Lemma 7.2 implies g belongs to (xN )G · (xN )G.

(d2) f(g) ≤ 2 dim(V )/3.
This condition implies (7.1) for g by the argument of (b). The choice of N guarantees that

ddim(V0) < N dim(W ), hence (7.4) holds for xN . Now we deduce (7.2) for xN , which implies
g ∈ (xN )G · (xN )G.

(d3) dim(V )− k > f(g) > 2 dim(V )/3.
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Recall n = dim(V ). When N is large enough, we have 2f(g)− n > n/3 > dim(V0). Let t denote
the largest integer such that

(7.8) e := dim(V0) + t dim(W ) ≤ 2f(g)− n.

By the choice of t, e > 2f(g)− n− dim(W ). Hence

e− (3f(g)− 2n) > n− f(g)− dim(W ) > k − dim(W ) > 0

by (7.5) and (d3). Together with (7.8), this implies that

(7.9)
n− e

2
≤ f(g)− e <

2(n− e)

3
.

Arguing as in part (d1) we may assume that f(g) = f1(g) and that

g = diag(Idim(V0)+t dim(W ), g1) ∈ Cl(V0 ⊕W t)× Cl(WN−t) < Cl(V ).

Note that xN is conjugate to both

diag
(︁
yk, h, . . . , h⏞ ⏟⏟ ⏞

t

, h, . . . , h⏞ ⏟⏟ ⏞
N−t

)︁
∈ Cl(V0)× Cl(W )t × Cl(W )N−t < Cl(V )

and

diag
(︁
y−1
k , h−1, . . . , h−1⏞ ⏟⏟ ⏞

t

, h, . . . , h⏞ ⏟⏟ ⏞
N−t

) ∈ Cl(V0)× Cl(W )t × Cl(W )N−t < Cl(V ).

Conjugating each element by an element of the form

(Idim(V0)+tdim(W ), v) ∈ Cl(V0 ⊕W t)× Cl(W )N−t < Cl(V ),

it suffices to prove that g1 is contained in the square of the conjugacy class in Cl(WN−t) of

x′ := diag
(︁
h, . . . , h⏞ ⏟⏟ ⏞

N−t

)︁
.

By the choice of h, inequality (7.4) holds for x′, which implies (7.2) for x′. The construction of g1
shows that f1(g1) = f1(g)− e = f(g)− e, and dim(WN−t) = n− e, so

1

2
dim(WN−t) ≤ f1(g1) <

2

3
dim(WN−t)

by (7.9). It follows that f(g1) = f1(g1) < 2 dim(WN−t)/3, and so g1 satisfies (7.1). As

dim(WN−t) = n− e ≥ n− (2f(g)− n) ≥ 2(n− f(g)) > 2k > B

by (7.8), it follows that g1 is in the square of the conjugacy class of x′, completing the proof. □

Theorem 7.8. For all A > 0, there exists B > 0 such that the following statement holds for all
n ∈ Z≥1 and all prime powers q. If G = SLε

n(q) for some ε = ± and the characteristic polynomial of
a semisimple element x ∈ G factors, over Fq if ε = + and over Fq2 if ε = −, into pairwise distinct

irreducible polynomials P1, . . . , Pk of degrees degPi ≥ n/A for all i, then xG · xG contains every
element g ∈ G of support ≥ B. In particular, the square of the conjugacy class of a Singer element
in SLn(q) covers all elements g ∈ SLn(q) for which supp(g) exceeds an absolute constant value.

Proof. Since the support of an element of G̃ := GLε
n(q) is at most n, by enlarging B, we are free to

make n ≥ A as large as we wish. Also note that k ≤ A.
Note that the element x is regular semisimple, and T := CG̃(x) is a maximal torus, so of order

at most (q+1)n. Moreover, the image of T under the determinant map is the same as of G̃. Hence
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the conjugacy class of x in G is the same as its class in G̃. Let g ∈ G. To show that g ∈ xG · xG, it
suffices to prove that ∑︂

χ∈Irr(G̃)

χ(x)2χ̄(g)

χ(1)
̸= 0.

As det(g) = det(x) = 1, for every character χ of degree 1 we have χ(x) = χ(x)2χ̄(g) = 1. Therefore,
it suffices to prove that

(7.10)
∑︂

{χ∈Irr(G̃)|χ(1)>1}

|χ(x)|2|χ(g)|
χ(1)

< q − ε.

For any fixed ϵ > 0, choosing B sufficiently large, the contribution of characters χ satisfying

χ(1) ≥ qϵn
2
to (7.10) is o(1). Indeed, consider any such character χ and any irreducible constituent

ψ of χ|G. Since G̃/G ∼= Cq−ε, by Clifford’s theorem we have χ|G = ψ1+. . .+ψt, where ψ1 = ψ, . . . , ψt

are distinct G̃-conjugates of ψ, and t|(q − ε). By Theorem 5.5,

|ψi(g)| ≤ ψi(1)
1−σB/n = (χ(1)/t)1−σB/n,

and so |χ(g)| ≤ t(χ(1)/t)1−σB/n. As χ(1) ≥ (q + 1)2 ≥ t2, we obtain

|χ(g)/χ(1)| ≤ χ(1)−σB/2n ≤ q−εσBn/2.

Since |T | ≤ (q + 1)n < q2n, it follows that the contribution of all these characters to (7.10) is at
most

q−εσBn/2
∑︂
χ

|χ(x)|2 ≤ q−εσBn/2|T | < q2n(1−εσB/4)

which is o(1) when B is large enough.

Any irreducible character χ of G̃ belongs to the rational Lusztig series labeled by a semisimple
element s in the dual group which can be identified with G̃. Consider the case s /∈ Z(G̃). Then L :=

CG̃(s) is a proper Levi subgroup of G̃. Hence χ = ±RG
L (φ) is Lusztig induced from an irreducible

character φ of L, see [DM, Theorem 13.25]. We claim that either χ(x) = 0 or χ(1) ≥ qn
2/A2−1.

Indeed, assume that χ(x) ̸= 0. As x is regular semisimple, the Steinberg characters StG̃ of G̃ and
StL of L take values ±1 at x. Applying [DM, Proposition 9.6] we have

0 ̸= χ(x) = ±(StG̃ · χ)(x) = ±IndGL (StL · φ)(x),

and so x is contained in a conjugate of L. If L = GL±
a (q

b) with ab = n, then b > 1 as s /∈ Z(G̃), and so

χ(1) ≥ qn
2/4−2 by [GLT1, Lemma 5.8]. Thus we may assume L is of type GL±

m1
(qa1)×. . .×GL±

mr
(qar)

with r ≥ 2 and each miai is a sum of some nj ’s; in particular, miai ≥ n/A. Using [GLT1, Lemma

5.1(vi)], we then have χ(1) ≥ [G : L]p′ ≥ qm1(n−m1)/2 ≥ qn
2/A2−1.

It remains therefore to consider the case s ∈ Z(G̃), i.e. χ is a unipotent character times a linear
character, so on g and x, it can be treated as a unipotent character (but each such character occurs
q−ε times). Each unipotent character χ is associated to a partition λ(χ) of n, and the value of χ at
the regular semisimple element x is given, up to a sign, by the value at the permutation π ∈ Sn, which
is a product of k cycles of length n1, . . . , nk, of the irreducible character of Sn associated to λ(χ),
see e.g. [LM, Proposition 3.3]. As π consists of k cycles, by [LaSh2, Theorem 7.2], |χ(x)| ≤ 2k−1k!,
which is bounded in terms of A.

Note that χ has level j = n − λ1 by [GLT1, Theorem 3.9]. If λ1 ≤ n/2, then χ(1) ≥ qn
2/4−2 by

[GLT1, Theorem 1.2(ii)], and, as before, the contribution of all such unipotent characters to the left
hand side of (7.10) is o(1). Hence it remains to consider the characters χ with λ1 > n/2; any such
unipotent character is irreducible over G, see [GLT1, Corollary 8.6]. For any fixed positive value of
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j = n− λ1 < n/2, the number of partitions of n with largest part λ1 is p(n− λ1) (where p(·) is the
partition function), and the degree of the associated unipotent character is at least qj(n−j)−1 > qnj/3

by [GLT1, Theorem 1.2(i)]. For these characters χ, supp(g) ≥ B implies by Theorem 5.5 that

|χ(g)|/χ(1) < qj0 with q0 := qσB/3. Note that
∑︁∞

j=1 1/(q
j
0 − 1) <

∑︁∞
j=1 q

−j+1
0 /(q0 − 1) < 1/(q0 − 2),

and so
∞∑︂
j=1

p(j)

qj0
<

∞∑︂
j=1

2j

qj0
=

2

q0 − 2
,

which is o(1) when B is large enough. Hence, the contribution of these characters to (7.10) is less

than 2k−1k!(e1/(q0−2) − 1)(q − ε) = o(q − ε), and the theorem follows. □

Since this paper was written, Theorem 7.8 has been generalized: see [LTT, Theorem 1.1].

8. Further applications

8.1. Mixing time of random walks on Cayley graphs. Recall that the mixing time of a
probability distribution P on a finite group G is the smallest integer n such that ∥P ∗n−UG∥1 < 1/e,
where UG denotes the uniform distribution on G. The mixing time of a generating set S of G means
the mixing time of the uniform distribution US on S. The theorem of Diaconis and Shahshahani
[DS] asserts that for the set of transpositions of Sn, the mixing time is asymptotic to n logn

2 . By
comparison, every element in Sn is the product of at most n− 1 transpositions.

For any constants C1 and C2 there exists ϵ > 0 so that if n is sufficiently large and S is any
conjugacy class in Sn of permutations fixing all but C1 points, a random product of less than C2n
elements has probability greater than 1/2 of fixing more than ϵn elements. Thus the mixing time
for conjugacy classes of bounded support is superlinear in n, implying that for symmetric and
alternating groups, the maximum ratio of mixing time over covering number for conjugacy classes
goes to ∞.

In this section, we show that the situation is different for finite simple groups of Lie type. Liebeck
and Shalev proved [LiSh2, Corollary 1.2] that if G is such a group and S is a conjugacy class of G,

then the diameter of the Cayley graph Γ(G,S) is less than C log |G|
log |S| , where C is an absolute constant.

Note that this bound is optimal up to a constant factor.
In this subsection, we prove the same result, though with a different constant, for mixing time.

(The special example of transvections in SLn(q) was handled by Hildebrand [Hi]; furthermore, the
case of semisimple classes whose centralizer is a Levi subgroup is treated in [BLST, Theorem 1.12].)

This improves on the previously known upper bound O
(︁ log3 |G|
log2 |S|

)︁
[LiSh2, Corollary 1.14], and proves

a conjecture of Shalev [Sh, 4.3]. It also resolves a conjecture made by Lubotzky in [Lu, p.179],
stating that, if G is a finite simple group (of Lie type) and S is a non-trivial conjugacy class of
G, then the mixing time of the Cayley graph Γ(G,S) is linearly bounded above in terms of the
diameter of Γ(G,S).

Theorem 8.1. There exists an absolute constant C ′ such that if S = gG is any non-trivial conjugacy
class in a finite simple group G of Lie type, then the mixing time of the random walk on the Cayley

graph Γ(G,S) is less than C ′ log |G|
log |S| .

Proof. Let c denote the constant in Theorem A. We choose C ′ > 26/c + 1, so N ≥ C ′ log |G|
log |S| − 1

implies N ≥ 26 log |G|
c log |S| , whence

c
log |S|
log |G|

>
26

N
.
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By Theorem A, this implies |χ(g)| ≤ χ(1)1−
26
N , so

|χ(g)|N ≤ χ(1)N−26.

To prove the theorem, it suffices to prove that for all x ∈ G, the probability that the product of
N i.i.d. random variables with distribution US gives x is within 1/e|G| of 1/|G|. By the Frobenius
formula, this probability is

1

|G|
∑︂

χ∈Irr(G)

χ(g)N χ̄(x)

χ(1)N−1
.

By [FG, Theorem 1.1], |Irr(G)| ≤ 27.2qr, if G is of Lie type of rank r defined over Fq, and χ(1) > qr/3

by [LaSe] when 1G ̸= χ ∈ Irr(G). Now,∑︂
χ ̸=1G

|χ(g)N χ̄(x)|
χ(1)N−1

≤
∑︂
χ ̸=1G

χ(1)−24 |χ(g)|N

χ(1)N−26
≤

∑︂
χ ̸=1G

χ(1)−24 ≤ |Irr(G)|
minχ ̸=1G χ(1)

24
.

This is less than
27.2qr

q8r
≤ 27.2

128
<

1

e
.

In fact, given any ε > 0, we have 27.2/q7r < ε, except possibly for a finite number of possibilities
for (q, r). This proves Lubotzky’s conjecture [Lu, p. 179] (since, as noted above, the diameter of
Γ(G,S) is of the same magnitude as (log |G|)/(log |S|). □

Proposition 8.2. There exists an absolute constant C ′′ > 0 such that if S is a non-trivial conjugacy
class in a finite simple group G of Lie type, then the mixing time of the random walk on the Cayley

graph Γ(G,S) is greater than C ′′ log |G|
log |S| .

Proof. Since log |G|
log |S| is bounded in bounded rank, we may assume without loss of generality that the

rank of G is as large as we wish, in particular that G is classical. By Corollary 6.7, log |G|
log |S| ≤

n
5supp(g) ,

so it suffices to prove that the mixing time for Γ(G,S) is greater thanm :=
⌊︁

n
2supp(g)

⌋︁
, where S = gG.

Every element in Sm has support ≤ msupp(g) ≤ n/2 by Lemma 5.1. Therefore, the characteristic
polynomial of each such element has at least n/2 irreducible factors. By [LaSh3, Proposition 3.4],
the proportion of elements of G satisfying this property is o(1), so

∥U∗m
gG − UG∥1 = 2− o(1) >

1

e
.

□

Theorem 8.1 and Proposition 8.2 imply that the diameter and the mixing time of Γ(G,S) are
linearly bounded in terms of one another, and so are of the same magnitude, for all non-trivial
conjugacy classes S in all simple groups of Lie type G; and they have the same magnitude as
rank(G)/supp(g), as shown by Corollary 6.7.

8.2. McKay graphs and products of irreducible characters. LetG be any finite group, Irr(G)
the set of irreducible characters, and χ a complex character of G. Recall [LiST1] that the McKay
graph M(G,χ) associated to χ is the directed graph on vertex set Irr(G) such that there is an edge
from χ1 to χ2 if and only if χ2 is a constituent of χχ1. This graph is connected if and only if χ
is faithful [Bu, Chapter XV, Theorem IV]. One also considers random walks on M(G,χ), starting
from any vertex α ∈ Irr(G) and with the transition probability from vertex χ1 to vertex χ2 equal
to ⟨χχ1, χ2⟩G · χ2(1)/χ(1)χ1(1) (proportional to the dimension of the χ2-homogeneous component
in a representation affording χχ1), see [Fu, §1].
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For groups of Lie type, we now settle in the affirmative a question of Liebeck, Shalev, and Tiep
[LiST1, Conjecture 1] (note that the case of alternating groups is handled in [LiST2, Theorem 2]).
In fact, we prove a slightly stronger result, in which, by χ∗(1) we mean the sum of degrees of distinct
irreducible constituents of a character χ. As discussed in [LiST1], this upper bound on the diameter
is optimal.

Theorem 8.3. There exists an absolute constant γ such that for every finite simple group G and
every faithful (not necessarily irreducible) character χ of G, the diameter of the McKay graph of χ

is less than γ log |G|
logχ∗(1) .

Proof. Let χ1 be an irreducible constituent of largest degree of χ. If G is of Lie type, then the
results of [FG] and [LaSe] imply that χ1(1) ≥ k(G)1/6. It follows that χ1(1) ≤ χ∗(1) ≤ χ1(1)

7. If
G = An, then for n sufficiently large, [LiSh4, Theorem 1.1(i)] implies that the number of distinct
irreducible characters of G of degree ≤ χ1(1) is less than χ1(1)

2, so the same inequalities hold.
Thus in all cases logχ∗(1) and logχ1(1) are of the same magnitude. Hence it suffices to prove the
conjecture in the case χ is irreducible.

The theorem is known for alternating groups [LiST2, Theorem 2] and for Lie-type groups of
bounded rank r [LiST1, Theorem 2], so without loss of generality, we may assume r ≥ 9 and G is
classical. Choose γ = 7/c+1, where c is defined as in Theorem A. Let χ1 and χ2 denote irreducible
characters of a finite simple group G of classical type. Let

N :=

⌈︃
7

c
· log |G|
logχ(1)

⌉︃
≤ γ

log |G|
log |χ(1)|

.

Then,

⟨χNχ1, χ2⟩G =
1

|G|
∑︂
g∈G

χ(g)Nχ1(g)χ2(g) =
1

|G|
∑︂

S=gG⊂G

|S|χ(g)Nχ1(g)χ2(g),

where the last sum is taken over conjugacy classes S = gG. To prove this is non-zero, it suffices to
prove ∑︂

S=gG ̸={1}

|S||χ(g)|N |χ1(g)||χ2(g)| < χ(1)Nχ1(1)χ2(1).

As |χi(g)| ≤ χ1(1), it suffices to prove that∑︂
S=gG ̸={1}

|S|
(︂ |χ(g)|
χ(1)

)︂N
< 1.

By Theorem A and since N ≥ (7/c)(log |G|)/(logχ(1)), it suffices to prove∑︂
S ̸={1}

|S|χ(1)−7
log |S|
logχ(1) =

∑︂
S ̸={1}

1

|S|6
< 1.

Clearly, ∑︂
S ̸={1}

1

|S|6
<

k(G)

minS ̸={1} |S|6
.

By [FG, Theorem 1.1], |Irr(G)| ≤ 27.2qr. Now, |S| is the degree of a permutation representation of
G, so by [KlL, Table 5.2.A], this is greater than qr, so |S|6 > q6r > 32qr. □

Random walks on some McKay graphs defined for Sn and GLn(q) are studied in [Fu, Theorems
4.1, 5.1]. The following result determines the asymptotic of the convergence rate (to the stationary
distribution) of random walks on general McKay graphs for simple groups of Lie type.
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Theorem 8.4. There exist absolute constants C1 > C2 > 0 such that the following statements hold
for any non-trivial irreducible character χ of any finite simple group G of Lie type. The convergence
rate of the random walk on the McKay graph of χ starting from any vertex α ∈ Irr(G) is less than

C1
log |G|
logχ(1) , and more than C2

log |G|
logχ(1) if α = 1G.

This means that in any sequence of examples, the difference in total variation, between the
stationary probability distribution and the distribution obtained from any initial state after at least

C1
log |G|
logχ(1) steps, goes to 0, while the total variation difference after at most C2

log |G|
logχ(1) steps remains

bounded away from 0.

Proof. Let K l
α denote the probability measure given by taking l steps from the starting vertex

α ∈ Irr(G), and let π denote the stationary distribution, which is known to be the Plancherel
measure π(β) = β(1)2/|G|, see [Fu, §2]. If

∥P −Q∥ =
1

2

∑︂
β∈Irr(G)

|P (β)−Q(β)|

denotes the total variation distance between two probabilistic measures P and Q on Irr(G), then
[Fu, Lemmas 2.1, 3.1] shows that

4∥K l
α − π∥2 ≤

∑︂
S=xG ̸={1}

⃓⃓χ(x)
χ(1)

⃓⃓2l|S|⃓⃓α(x)
α(1)

⃓⃓2
.

Clearly, |α(x)| ≤ α(1). Applying Theorem A and choosing l ≥ (4/c) log |G|/ logχ(1), we obtain

|χ(x)/χ(1)|2l ≤ χ(1)−8 logχ(1) |S| = |S|−8, and so

4∥K l
α − π∥2 ≤

∑︂
S=xG ̸={1}

1

|S|7
,

which is less than 1/qr if G is of rank r over Fq, as shown in the proof of Theorem 8.3.

For the lower bound, for any l < (1/4) log |G|
logχ(1) , we see that χl cannot contain any irreducible

character β of degree ≥ |G|1/4 (e.g. the Steinberg character), and thus K l
1G

(β) = 0. Taking C2

small enough, we may assume that the rank r ofG is large enough, so that |Irr(G)| ≤ 27.2qr ≤ |G|1/3.
For such l and G, now we have

2∥K l
1G

− π∥ ≥
∑︂

β(1)≥|G|1/4

β(1)2

|G|
= 1−

∑︂
γ(1)<|G|1/4

γ(1)2

|G|
> 1− |G|1/2|Irr(G)|

|G|
≥ 1− |G|−1/6 > 2/3.

□

The next result generalizes Theorem 8.3 and proves a conjecture of Gill [Gi]. Note that the case
G = PSLn(q) or PSUn(q), with q large enough compared to n, was handled in [LiST2, Theorem
3(ii)]; on the other hand, the case of alternating groups is still open.

Theorem 8.5. There exists an absolute constant δ such that for all finite simple groups of Lie
type G and all non-trivial χ1, χ2, . . . , χm ∈ Irr(G), if χ1(1)χ2(1) . . . χm(1) ≥ |G|δ, then χ1χ2 . . . χm

contains every irreducible character of G.

Proof. Suppose G has bounded rank r ≤ l. Taking δ ≥ 245l2, we see that the condition
∏︁m

i=1 χi(1) ≥
|G|δ implies that m ≥ 490l2, since |χi(1)| ≤ |G|1/2. It follows from [LiST2, Theorem 3(i)] that∏︁m

i=1 χi contains Irr(G).
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Hence we may assume that r ≥ 9 and G is classical. Choose δ ≥ 7/c. For any θ ∈ Irr(G), we
have

⟨
m∏︂
i=1

χi, θ⟩G =
1

|G|
∑︂
g∈G

∏︂
i

χi(g)θ(g) =
1

|G|
∑︂

S=gG⊂G

|S|
∏︂
i

χi(g)θ(g),

where the last sum is taken over conjugacy classes S = gG. To prove this is non-zero, it suffices to
prove ∑︂

S=gG ̸={1}

|S||
∏︂
i

χi(g)||θ(g)| <
∏︂
i

χi(1)θ(1).

As |θ(g)| ≤ θ(1), it suffices to prove that∑︂
S=gG ̸={1}

|S|
∏︂
i

|χi(g)|
χi(1)

< 1.

By Theorem A we have |χi(g)/χi(1)| ≤ χi(1)
−c log|G| |S|, hence∑︂

S=gG ̸={1}

|S|
∏︂
i

|χi(g)|
χi(1)

≤
∑︂

S ̸={1}

|S|
(︁∏︂

i

χi(1)
)︁−c log|G| |S|.

Since
∏︁

i χi(1) ≥ |G|δ, we now have∑︂
S=gG ̸={1}

|S|
∏︂
i

|χi(g)|
χi(1)

≤
∑︂

S ̸={1}

|S| · |S|−cδ ≤
∑︂

S ̸={1}

1

|S|6
< 1,

the last inequality already established in the proof of Theorem 8.3. □

The next result proves [LiST2, Conjecture 4] for simple groups of Lie type.

Corollary 8.6. There exists an absolute constant δ′ such that for all finite simple groups of Lie
type G of rank r and all non-trivial χ1, χ2, . . . , χm ∈ Irr(G), if m ≥ δ′r, then χ1χ2 . . . χm contains
every irreducible character of G.

Proof. Take δ′ = 12δ, with δ the constant in Theorem 8.5. Since χi(1) ≥ qr/3 by [LaSe] and

|G| ≤ q4r
2
if G is defined over Fq, we have

∏︁m
i=1 χi(1) ≥ q12δr

2/3 ≥ |G|δ. Hence the statement
follows from Theorem 8.5. □

Taking χ1 = . . . = χm = χ in Corollary 8.6, we obtain the following consequence, which was
proved in [LiST1, Theorem 3] for q large enough compared to n (but with a much smaller constant).

Corollary 8.7. There exists an absolute constant δ′ such that for all finite simple groups PSLn(q)
and PSUn(q) and all non-trivial χ ∈ Irr(G), if m ≥ δ′(n − 1), then χm contains every irreducible
character of G.

8.3. Power word maps on simple groups. Recall that GLε
n(q) denotes GL(Fn

q ) if ε = + and
GU(Fn

q2) if ε = −, and similarly for SLε
n(q) and PSLε

n(q). The notion of the level l(χ) of a character

χ of GLε
n(q) and SLε

n(q) was introduced in [GLT1, Definitions 1, 2]. The following result gives
a somewhat better bound than [GLT1, Theorem 1.6(iii), (iv)], which is needed in Theorem 8.10
below.

Proposition 8.8. Let q be any prime power, n ≥ 1, G = GUn(q) or SUn(q), and χ ∈ Irr(G).

(i) If l(χ) ≤
√︁
n− 3/4− 1/2, then |χ(g)| < 1.93χ(1)1−1/n for all g ∈ G∖ Z(G).

(ii) If l(χ) ≤
√︁
n/2− 1, then |χ(g)| < 1.93χ(1)max(1−1/2l(χ),1−supp(g)/n) for all g ∈ G.
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Proof. We follow the proof of [GLT1, Theorem 1.6(iii), (iv)], and assume first that j := l(χ) ≥ 3.
Using [GLT1, Lemma 5.1(iii)] we see that

|GUj(q)|/qj
2 ≤ (q + 1)(q2 − 1)(q3 + 1)/q6 < 1.266.

Hence we can use [GLT1, (8.18)] with the improved bound |S| < 1.266qj
2
for S := GUj(q), which

leads to the improved upper bound 0.747q(n−1)j for |S|
(︁
qn(j−1)+

√︁
16.52qj2+j−1qn(j−2)

)︁
, and obtain

|χ(1)| ≥ qnj(1− 0.747q−j)

|S|α(1)
>

0.906qnj

|S|α(1)
, |χ(g)| < 1.747q(n−1)j

|S|α(1)

if χ = D◦
α for α ∈ Irr(S) in the notation of [GLT1, Theorem 1.1].

Suppose j = 2, and let χ = D◦
α for α ∈ Irr(S) and k := n − supp(g). In the notation of [GLT1,

§8.3], N ′ = 1, so D′
α(1) ≤ q2

√
2 in [GLT1, (8.17)], and instead of [GLT1, (8.18)] we now have

(8.1) χ(1) ≥ q2n − |S|(qn + q2
√
2)

|S|/α(1)
, |χ(g)| ≤ q2k + |S|(qn + q2

√
2)

|S|/α(1)
.

Also, |S| = |GU2(q)| ≤ 1.125q4, hence |S|(qn + q2
√
2) is less than 0.588q2n−2 when n ≥ 7 and less

than 0.588q1.5n when n ≥ 10. Now we can repeat the rest of the proof of [GLT1, Theorem 1.6(iii),
(iv)] verbatim to obtain the result for j ≥ 2.

The estimates are trivial if j = 0 or if g ∈ Z(G), i.e. k := n − supp(g) = 0. If j = 1, then, as
shown in the proof [GLT1, Theorem 1.6(iii)], we have χ(1) ≥ (qn − q)/(q + 1), and

|χ(g)| ≤ qn−1 + q

q + 1
, |χ(g)| ≤

{︃
qk < 1.93χ(1)1/2, k ≤ (n− 1)/2,

(2qk + q)/(q + 1) < 1.93χ(1)k/n, k ≥ n/2,

yielding the result. □

Proposition 8.9. There exists an integer N ≥ 1 such that the following statement holds for any
prime power q, any integer n ≥ N , any integer a with n/3 ≤ a ≤ 2n/3, and any ε = ±. If
G = SLε

n(q) and s, t ∈ G are regular semisimple elements belonging to maximal tori T1 of type
Ta,n−a and T2 of type Ta+1,n−a−1, then sG · tG contains every non-central element g ∈ G, except
possibly when q = 2 and g is a scalar multiple of a transvection.

Proof. Let χ ∈ Irr(G) be such that χ(s)χ(t) ̸= 0. As shown in the proof of [GLOST, Proposition
8.4], χ is a unipotent character χλ labeled by a partition λ ⊢ n, and |χ(s)χ(t)| ≤ 16. The choices
for λ are listed in [LaST1, Corollary 3.1.3]: either λ = (n− j, 1j) with 0 ≤ j ≤ n− 1, or its largest
part λ1 satisfies n− λ1 ≥ min(a, n− a)− 1 ≥ n/3− 1, and there are at most 4an ≤ 8n2/3 of them.

Since g /∈ Z(G), we have that supp(g) ≥ 1. Note that l(χ) = n − λ1 by [GLT1, Theorem 3.9].

Next, by [GLT1, Theorem 1.3], if l(χ) ≥ n0 :=
√
n/5, then χ(1) > qn0(n−n0)−3. Hence, applying

Theorem 5.5 we now have

Σ1 :=
∑︂

χ∈Irr(G), l(χ)≥n0

|χ(s)χ(t)χ̄(g)|
χ(1)

≤ 16 · 8n2/3
qσ(n0(n−n0)−3)/n

= O
(︁ n2

2
√
n/6

)︁
.

Choosing N large enough, we have that Σ1 ≤ 0.01.

Now we look at χ with χ(s)χ(t) ̸= 0 and l(χ) < n0. By the above considerations, χ = χ(n−j,1j)

with 0 ≤ j = l(χ) < n0 < n/3. The Murnaghan-Nakayama rule applied to χ(s), χ(t) and the hook
partition (n− j, 1j) shows that |χ(s)χ(t)| = 1, see [LaST1, Proposition 3.1.1, Corollary 3.1.2]. On
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the other hand, since l(χ) < n0, [GLT1, Theorem 1.6(ii)] and Proposition 8.8(ii) apply to χ (when

N is large enough) and yield |χ(g)| < 1.93χ(1)1−1/n. We also have by [LMT, Lemma 4.1] that

(8.2) χ(n−j,1j)(1) = qj(j+1)/2

∏︁n−1
i=n−j(q

i − εi)∏︁j
i=1(q

i − εi)
> qnj−j(j+1)/2−2.

In particular, when N is large enough, χ(1)1/n > qj−1/49, and so

Σ2 :=
∑︂

χ∈Irr(G), 1≤l(χ)<n0

|χ(s)χ(t)χ̄(g)|
χ(1)

≤
n0∑︂
j=1

1.93

qj−1/49
<

∞∑︂
j=1

1.93q1/49

qj
.

If q ≥ 3, then Σ2 < 0.99 and so Σ1 +Σ2 < 1, showing g ∈ sG · tG.
From now on we assume q = 2. If g is semisimple, then g ∈ sG · tG by [GT, Lemma 5.1]. Hence

we may assume that supp(g) ≥ 2. First we note that

Σ3 :=
∑︂

χ∈Irr(G), 4≤l(χ)<n0

|χ(s)χ(t)χ̄(g)|
χ(1)

≤
n0∑︂
j=4

1.93

2j−1/49
<

∞∑︂
j=4

1.93 · 21/49

2j
< 0.25.

Next we bound |χ(g)/χ(1)| for 1 ≤ j ≤ 3. If j = 1, then χ(1) ≥ (2n−2)/3 and |χ(g)| ≤ (2n−2+4)/3
by [TZ1, Lemma 4.1], hence |χ(g)|/χ(1) < 0.26 when N is large enough. For j = 2, (8.1) implies
|χ(g)|/χ(1) < (1.1)q−4 < 0.07 when N is large enough. When j = 3, χ(1) > q3n−8 by (8.2), and so

|χ(g)/χ(1)| < 1.93χ(1)−1/n < (1.1)(1.93)q−3 < 0.27 (when N is large enough) by [GLT1, Theorem
1.6(ii)] and Proposition 8.8(ii). It follows that∑︂

1G ̸=χ∈Irr(G)

|χ(s)χ(t)χ̄(g)|
χ(1)

≤ Σ1 +Σ3 + 0.26 + 0.07 + 0.27 = 0.86,

again showing g ∈ sG · tG. □

Now we can answer an open question raised in [GLOST] and prove the following result, which
strengthens Theorems 4 and 5 of [GLOST]. As shown in [GLOST, Example 8.10], the statement
does not hold for simple groups of Lie-type of bounded rank.

Theorem 8.10. There exists a function f : Z≥1 → Z≥1 such that the following statement holds.
For any integer k ≥ 1 and any integer N ≥ 1 with at most k distinct prime divisors, the power
word map (x, y) ↦→ xNyN is surjective on any alternating group An with n ≥ f(k) and any simple
classical group of rank r ≥ f(k).

Proof. Fix any k ≥ 1. By [GLOST, Theorem 4], it suffices to prove the theorem for any finite
classical group S = PSLε

n(q) with n sufficiently large. Recall [Zs] that if m ≥ 7, then (εq)m − 1

admits a primitive prime divisor ℓm, that is a prime divisor which is coprime to
∏︁m−1

i=1 ((εq)i − 1).
Choosing n ≥ 12k + 24, we can find k + 1 integers ai, 1 ≤ i ≤ k + 1, such that

(8.3) n/3 ≤ a1 < a2 < . . . < ak+1 < n/2, ai+1 − ai ≥ 2 for all i.

Then, for each i, we can find a regular semisimple element si ∈ G := SLε
n(q) of order ℓaiℓn−ai

belonging to a maximal torus of type Tai,n−ai and a regular semisimple element ti ∈ G of order
ℓai+1ℓn−ai−1 belonging to a maximal torus of type Tai+1,n−ai−1. Condition (8.3) ensures that
gcd(|si| · |ti|, |sj | · |tj |) = 1 whenever i ̸= j. Since N has most k distinct prime factors, it follows

that N is coprime to |si0 | · |ti0 | for some i0 and so both si0 and ti0 are N th powers in G.
Now assume n is sufficiently large and consider any g ∈ G∖ Z(G). If q ≥ 3, or if q = 2 but g is

not a scalar multiple of a transvection, then g belongs to sGi0 · t
G
i0

by Proposition 8.9, and so it is a

product of two N th powers. Suppose now that q = 2 and g is a transvection. Since n ≥ 12k + 24,
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we can find k + 1 odd integers 9 ≤ n1 < n2 < . . . < nk+1 < n. By [GLOST, Theorem 2.1], for each
i, g embedded in SLε

ni
(q) is a product uivi where |ui| = ℓni and |vi| = ℓni−1. Arguing as above, we

see that N is coprime to |uj0 | · |vj0 | for some j0, hence g = uj0vj0 is again a product of two N th

powers. □

8.4. Fibers of product morphisms on semisimple algebraic groups. Our character estimates
have consequences for the geometry of semisimple algebraic groups in all characteristics, of which
the following result is a sample.

Theorem 8.11. There exists a constant C with the following property. Let K be an algebraically
closed field and G a simple algebraic group over K. Let S1, . . . , Sk be conjugacy classes in G, and
X := S1 × · · · × Sk. If dimX ≥ C dimG, then the multiplication morphism µK : X → G is flat.

Proof. As conjugacy classes are non-singular varieties, X and G are both non-singular, so by miracle
flatness, the theorem is equivalent to the statement that for all g ∈ G(K), µ−1

K (g) has dimension
dimX − dimG.

If G̃ denotes the simply connected cover of G, S̃i := Si ×G G̃, X̃ :=
∏︁

i Si, and µ̃K : X̃ → G̃

denotes the product morphism, then the natural morphisms πG : G̃→ G and πX : X̃ → X are finite
and surjective. If g ∈ G(K), then

µ−1(g) =
⋃︂

g̃∈π−1
G (g)

πX(µ̃−1(g̃)),

and

dimπX(µ̃−1
K (g̃)) = dim µ̃−1(g̃).

We may therefore reduce to the case that G is simply connected.
Next, we assume that K is algebraic over Fp for some prime p. If G0 denotes the split, simply

connected simple algebraic group over Fp with the same Dynkin diagram as G, then G0 ×Fp K is
isomorphic to G. We fix an isomorphism. Via this isomorphism, all varieties Si are defined over
some common finite extension Fq of Fp.

Fixing q, we define G̃ := G0(Fq), S̃i := Si(Fq), X̃ := S̃1 × · · · × S̃k, and the multiplication map

µ̃q : X̃ → G̃. It suffices to prove that for g̃ ∈ G̃, µ̃−1
q (g̃) has O(qdimX−dimG) elements, where the

implicit constant depends on G and the Si but not on q.

Let Z denote the center of G̃, and G := G̃/Z. Let Si, X, and µ denote the counterparts for G to

S̃i, X̃, and µ̃. Then

µ−1(g) =
∑︂

{g̃∈G̃|πG(g̃)=g}

πX(µ̃−1
q (g̃)),

so it suffices to prove that µ−1(g) = O(qdimX−dimG).
Now,

π−1(g) = {(s1, . . . , sk) ∈ X | s1 · · · sk = 1}.
Writing Si = xGi , we have

|π−1(g)| = |X|
|G|

∑︂
χ∈Irr(G)

χ(x1) · · ·χ(xk)χ̄(g)
χ(1)k−1

.

We claim that each S̃i is a union of O(1) conjugacy classes in G, where the implicit constant does

not depend on Si or q. This follows from the analogous claim for G̃-conjugacy classes in S̃i. To
prove this, consider the subvariety W of G0 ×G0 consisting of commuting pairs (g̃1, g̃2). The fiber
W g̃1

of this variety over g̃1 ∈ G0(Fq) is the centralizer of g̃1 in G0. By [EGA IV, Corollaire 9.7.9],
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the number of geometric components of the fiber is a constructible function on G0, so it is bounded

above. The number of points of the algebraic group W g̃1
over Fq is at most C(q + 1)dimW g̃1 ,

where C is the number of components. Likewise, the number of points of G0 over Fq is at least

(q − 1)dimG0 . Thus, the size of the conjugacy class of g̃1 in G0(Fq) is bounded below by a positive

constant multiple of qdimG0−dimW g̃1 . By the Lang-Weil estimate, the number of Fq-points on the

conjugacy class of g̃1 in the algebraic group G0 is at least (1− o(1))qdimG0−dimW g̃1 . This gives an
upper bound on the number of G(Fq)-conjugacy classes in Si and therefore an upper bound on the
number of G-conjugacy classes in Si.

We may therefore pick representatives xi of each Si and prove that the number of k-tuples
(s1, . . . , sk) such that s1 · · · sk = 1 and each si is conjugate in G to xi is O(|X|/|G|). By Theorem A,

|χ(x1) · · ·χ(xk)χ̄(g)|
χ(1)k−1

≤ χ(1)
2−c

∑︁k
i=1 log |Si|
log |G| .

As log |Si| = (dimSi) log q +O(1), we have

k∑︂
i=1

log |Si| = (dimX) log q +O(1),

so

|π−1(g)| = |X|
|G|

(︂
1 +O

(︁∑︂
χ ̸=1

χ(1)
2−cdimX

dimG
+o(1))︁)︂

.

By [LiSh3, Theorem 1.1], if dimX > 2+(2/h)
c dimG, then

|π−1(g)| = |X|
|G|

(1 + o(1)) = O(qdimX−dimG),

where the o(1) term goes to 0 independently of the choices of conjugacy classes as q → ∞. This
implies the theorem for K ∼= F̄q.

For the general case, let G denote the Chevalley scheme over Z with the same Dynkin diagram
as G. Fix an isomorphism between GK and G. Choose representatives x1, . . . , xk for S1, . . . , Sk in
G. Via the isomorphism, we can identify all the xi as points Xi on G(A), where A is a finitely
generated Z-algebra. By [GLT2, Lemma 8.2], there exists a dense open affine subscheme SpecB
of SpecA and for each i a locally closed B-subscheme Si of GB so that for every field F and every
F -point of SpecB, SiF is the conjugacy class of the specialization XiF .

Now consider the multiplication morphism µB : S1 × · · · × Sk → GB. By [EGA IV, Proposi-
tion 9.5.5], the set of points of GB over which every fiber of µB has dimension dimX − dimG is
constructible and contains every point of GB with finite residue field. As GB is of finite type over B,
it is of finite type over Z and therefore Jacobson [EGA IV, Corollaire 10.4.6]; moreover, the closed
points of GB are exactly the points with finite residue field [EGA IV, Lemme 10.4.11.1]. In a Ja-
cobson scheme, by definition, the closed points are very dense, so by [EGA IV, Proposition 10.1.2],
the only constructible subset of GB containing all closed points is the whole set. Thus, the fiber
dimension condition holds for all fibers of µB and therefore for all fibers of µK . □

We remark that, replacing the constant C above by 2C + 1, we can prove that µK is faithfully
flat. Indeed, it suffices to prove that µK is surjective. If dimX > (2C+1) dimG, then there exists j
such that the multiplication maps µK : X1×· · ·Xj → G and νK : Xj+1×· · ·×Xk → G are flat and
therefore dominant. By Chevalley’s theorem, the images of µK and νK are dense constructible sets.
As the intersection of two dense open subsets is non-empty, the same is true for dense constructible
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subsets, and it follows that the product of two such subsets on an algebraic group covers the whole
group.

A related result, in the case S1 = . . . = Sk and with the explicit constant C = 120, was recently
proved in [LiSi, Theorem 1].
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