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Abstract

This review spotlights the role of atomic-level modeling in research on metal-organic frameworks
(MOFs), especially the key methodologies of density functional theory (DFT), Monte Carlo (MC)
simulations, and molecular dynamics (MD) simulations. We discuss how periodic and cluster-
based DFT calculations can provide novel insights into MOF properties, with a focus on predicting
structural transformations, understanding thermodynamic properties and catalysis, and
providing information or properties that are fed into classical simulations such as force fields or
partial charges. We also describe classical simulation methods, highlighting force field selection,
databases of MOFs for high-throughput screening, and the synergistic nature of MC and MD
simulations. By predicting equilibrium thermodynamic and dynamic properties, these methods
offer a wide perspective on MOF behavior and mechanisms. Additionally, we discuss the
incorporation of machine learning (ML) techniques into quantum and classical simulations. These
methods can enhance accuracy, expedite simulation setup, reduce computational costs, as well
as predict key parameters, optimize geometries, and estimate MOF stability. By charting the
growth and promise of computational research in the MOF field, we aim to provide insights and
recommendations to facilitate the incorporation of computational modeling more broadly into
MOF research.



1. Introduction

Reticular materials, such as metal-organic frameworks (MOFs) and covalent organic
frameworks (COFs), have attracted significant attention over the past two decades due to their
exceptional properties and diverse applications. These materials are characterized by their highly
ordered porous structures, which can be precisely tailored to suit a wide range of applications,
including gas storage [1-4], separation [5], and catalysis [6—9]. The field has seen considerable
progress since the early years of the 21 century, with various research groups reporting the
synthesis of unique materials. It is worth noting that the study of 3-dimensional coordination
polymers dates back to the early 20%" century, with the well-known example of Prussian blue [10],
but it was only in the late 1990s that such materials were synthesized with permanent porosity.
In 2013 the International Union of Pure and Applied Chemistry (IUPAC) provided
recommendations on the terminology that should be used in reticular chemistry research and
defined a MOF as a coordination network with organic ligands containing potential voids [11].

In this review, we explore the role of molecular modeling in MOF-related research, with
a supplementary focus on how machine learning can augment traditional modeling techniques.
By highlighting both the strengths and limitations of these approaches, we hope to inspire new
avenues of research and development in this exciting area of materials science. Through the
presentation of examples, we showcase the application of molecular modeling methods to tackle
significant challenges in this field. In doing so, we aim to shed some light on the understanding
of molecular modeling and machine learning techniques that can be used in MOF research,
particularly for early-stage researchers and experimentalists who are seeking to enhance their
grasp of these computational methodologies. Through relevant examples, we demonstrate the
role of these techniques in addressing critical challenges and as a complementary tool to
experiment in the discovery of new MOFs for particular applications.

The organization of this review is as follows: We begin with a historical perspective on the
synthesis and modeling of MOFs, setting the context for the remainder of the discussion. Next,
we delve into density functional theory (DFT) and highlight several of its applications in studying
MOFs. Subsequently, we explore how machine learning techniques can aid in executing DFT. We
then shift our focus to classical methods, specifically molecular dynamics (MD) and Monte Carlo
(MC) simulations, to examine thermodynamic and transport phenomena in MOFs, such as
adsorption and diffusion. The review also provides some remarks on simulation choices for
classical methods. Further, we explore the integration of machine learning techniques to
enhance these classical methods. Finally, we conclude with a synthesis of the insights gained and
a projection of future directions in the field.

2. Historical Overview
2.1 Historical Review of the Development and Synthesis of MOFs

In 1989, Hoskins and Robson pioneered the concept of creating solid, hybrid polymeric
materials by interlinking metallic centers with tetrahedral or octahedral valency using rod-like
organic linkers connectors, suggesting the potential for unique structures and large
interconnected cavities [12]. In a noteworthy development in 1997, the group of Susumu



Kitagawa introduced a framework with gas-adsorption capabilities at ambient temperature [13].
The properties of this framework allow it to be included in the modern definition of MOF. It is
best described as a tongue-and-groove (bilayer) configuration, with the chemical formula
{{M2(4,4'-bpy)3(NO3)4a] - x H20}» (M=Co, x=4; Ni, x=4; Zn, x=2, bpy=bipyridine). This structure is
assembled from M(NOs); and 4,4’-bpy units. The pore sizes of the dehydrated sample are
approximately 3 to 6 A. This material showed the ability to reversibly adsorb CHa, N2, and O, as
one of the earliest examples in the new era of nanoporous materials. The first occurrence of the
term “metal-organic framework” in the literature was in a 1995 paper by Omar Yaghi and Hailian
Li [14]. In 1999, this same team reported the synthesis of MOF-5 (also known as IRMOF-1), which
swiftly became one of the most extensively studied MOF structures [15]. In a follow-up paper,
Yaghi and his colleagues introduced the concept of isoreticular chemistry, allowing the systematic
expansion of MOF structural design space through varying the organic linkers and the
connectivity of inorganic nodes [16]. This was a landmark in the design and synthesis of new
MOFs with customizable properties. Today, there are thousands of MOFs that have been
reported in the literature, with more than 14,000 frameworks deposited in the Computation-
Ready, Experimental (CoRE) MOF database [17,18] (a more detailed discussion on the CoORE MOF
database and other pivotal databases in the MOF research community is provided in Section
4.3.1). We discuss a few well-known MOFs from a historical perspective, as shown in Figure 1.

Cu-BTC, also known as HKUST-1 or MOF-199, was reported in 1999 by Chui et al. at the
Hong Kong University of Science and Technology (HKUST) [19]. This framework was presented as
a material with high surface area and exceptional gas adsorption properties, making it a widely
studied material for various applications, including gas storage and separation. Synthesis of
another important framework, Mg-MOF-74 (also known as CPO-27-Mg) [20], focused research
attention on the concept of an open metal site (OMS), which is a coordinatively unsaturated
metal node in a MOF that is accessible to guest molecules. OMS enable enhanced chemical
interactions that can significantly influence the adsorption of various gases, including those with
dipolar, quadrupolar, and other distinct molecular characteristics. These sites can also serve as
catalysts. The magnesium OMS in Mg-MOF-74 demonstrates a notable contribution to the high
gas adsorption capacities of this framework, particularly for quadrupolar carbon dioxide (CO,)
and other gas molecules that can engage in strong chemical interactions. Moreover, the MOF-74
structure offers the flexibility to incorporate diverse transition metals, enabling the fine-tuning
of its adsorption and catalytic properties and making this a platform material for many
investigations. Similar to IRMOF-1, isoreticular versions of MOF-74 have been synthesized by
increasing the linker size. As a result, a MOF boasting some of the largest pore sizes ever recorded
(exceeding 70 A) was successfully synthesized [21].
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Figure 1. Timeline highlighting some milestones in the synthesis of new MOFs, featuring their
respective discovery years.

The discovery of MIL-53 (MIL = Materials Institute Lavoisier), reported by Gérard Férey
and his team in 2002 [22], marked a significant milestone by extending MOF chemistry to include
trivalent Cr'"" metal ions. In 2004, they showed that the isoreticular Al"" variant of this MOF
exhibits framework flexibility in response to external stimuli [23]. MIL-53 along with its
isoreticular but less flexible counterpart, MIL-47(V'"V) [24] shows the ability to undergo reversible
structural transitions, often referred to as breathing behavior, in response to changes in
temperature, pressure, or the presence of guest molecules. The breathing behavior of MIL-53 is
attributed to the rotation of its organic linkers, which changes the steric hindrance in its structure
and allows the framework to adopt two distinct phases: a narrow-pore phase (MIL-53(np)) and a
large-pore phase (MIL-53(lp)). The transition between these phases is accompanied by significant
changes in the unit cell volume from 890 to 1430 A [25].

Another important class of MOFs are the zeolitic imidazolate frameworks (ZIFs) which
share structural similarities with zeolites and were introduced in 2006 by Huang et al. [26].
Whereas zeolites are built from Si-O-Si linkages with a bond angle of about 145°, ZIFs are built
from M-Im-M linkages, where M is typically a metal cation in the 2* oxidation state and Im is a
derivative of an imidazolate anion, which serves as a linker (imidazolate, methylimidazolate,
nitroimidazolate, etc.). In 2006, Yaghi and his collaborators reported the synthesis of a set of 12
ZIFs with various zeolitic topologies [27]. ZIF-8, an extensively studied ZIF structure,
demonstrated exceptional chemical stability (7 days in boiling water; 24 h in agueous sodium
hydroxide at 100°C) and thermal stability (up to 550°C, in N2 atmosphere). ZIF-8's stability,
combined with its high surface area and tunable chemistry, has led to its extensive study for gas
storage and separation applications. ZIF-8 is also considered a flexible MOF due to the gate-
opening phenomenon it undergoes. In this deformation, imidazolate linkers of a 6-member ring
rotate and increase the pore-limiting diameter (PLD) when exposed to the flow of adsorbate (N3)
[28] and external hydrostatic pressure (1.5 GPa) [29].



Another subgroup of materials with high stability are Zr-MOFs, which are distinguished
by the presence of Zrs0s metal nodes within their structures. The first synthesized framework
from this group, UiO-66, was reported in 2008 by Lillerud and co-workers at the University of
Oslo, Norway, which inspired its name (UiO = Universitetet i Oslo) [30]. This MOF is composed of
12-connected zirconium oxide nodes connected by 1,4-benzene-dicarboxylate (BDC) linkers. Due
to its high thermal (540°C, in N, atmosphere) and chemical stability (water and acid stability),
UiO-66 and its derivatives have been extensively studied for various applications, including gas
storage, separation, catalysis, and sensing. The discovery of UiO-66 as the 1t member of the Zr-
MOF family has had a substantial impact on the development of new frameworks, making it an
important milestone in the history of these materials. Another widely studied Zr-MOF, NU-1000,
was synthesized in 2013 by Omar Farha and Joseph Hupp at Northwestern University (NU) [31].
It contains 1-dimensional channel-like hexagonal mesopores and trigonal micropores and, like
most of the Zr-MOFs, it shows high thermal and water stability. Unlike UiO-66, the metal node in
NU-1000 is connected by 8 linkers, leaving 4 Lewis acid sites accessible. This results in various
versions of this framework that differ by a chemical modulator attached to the node (such as
aquo-hydroxo pairs, formate, acetate, trifluoroacetate, metal atoms, and oxides, etc.) which can
significantly alter its properties (such as level of hydrophilicity or catalytic activity) [32]. The
chemically labile nature of the node makes it also an interesting candidate as a catalyst for many
important reactions, such as the decomposition of nerve agents [33]. Another important Zr-MOF,
MOF-808, was reported in 2014 by the Yaghi group [34]. It has 6-connected nodes and has been
shown as a promising candidate for water adsorption (e.g., for water harvesting applications) due
to its relatively high uptake at low relative humidity [34]. The final Zr-MOF discussed here is PCN-
222 and was synthesized by Hong-Cai Zhou at Texas A&M University in 2012 [35]. This is a
mesoporous MOF, isoreticular with NU-1000, that displays biomimetic catalytic activity. The
catalytically active site is a Fe-porphyrin complex, which is incorporated into the linker situated
on the inner wall of an open channel with a 37 A diameter. The material demonstrates good
activity for oxidizing various substrates. The combination of a high density of catalytic centers,
ultra-large open channels (for MOF standards), and exceptional chemical stability of PCN-222(Fe)
indicate great potential for creating MOF-based platforms for enzyme-mimicking catalysis.

The group of Stefan Kaskel from the Dresden University of Technology (DUT) contributed
to the field of reticular materials chemistry with a range of frameworks. Particularly interesting
is DUT-49 (synthesized in 2012), which demonstrates the peculiar phenomenon of negative gas
adsorption (NGA) [36,37], a rare behavior in which the adsorbed gas amount decreases with
increasing pressure under certain conditions. This unusual property is attributed to a structural
change in the MOF, which involves a transition between two different pore sizes and is induced
by strong adsorbent-adsorbate interactions.

MOFs are renowned for their exceptionally high surface areas (SA), which can exceed that
of other porous materials such as zeolites and activated carbons. MOF-5, introduced in 1999, has
a surface area of 3500 m?/g [38]. NU-110, a MOF synthesized in 2012 held the record for the
highest surface area material (7140 m?/g) [39] until 2018 when it was surpassed by DUT-60 (7800

m?/g) [40].



More recently, the MOF CALF-20 has attracted much attention. While the initial patent
application was filed in 2014, the material was comprehensively characterized in terms of
structure and properties by Shimizu and co-workers from the University of Calgary in Canada in
2021 [41]. CALF-20is a promising MOF for post-combustion CO; capture, as it meets the essential
criteria for an ideal adsorbent, such as high CO, adsorption capacity, fast kinetics, high CO;
selectivity, and stability under various conditions. Unlike many MOFs, CALF-20 can tolerate
ambient moisture or steam, and its synthesis is cost-effective and scalable, using commercially
available components and environmentally friendly solvents.

2.2 Historical Review of Molecular Modeling for MOFs

Throughout the history of MOFs, molecular modeling has played an important role in
advancing our understanding of these materials (Figure 2). Computational methods have helped
researchers predict the properties of MOFs, such as their adsorption capabilities or catalytic
activity. These predictions have informed the design and synthesis of new materials, accelerating
the discovery of novel structures with improved performance. Molecular modeling has also
facilitated our understanding of the underlying mechanisms behind unique phenomena in MOFs,
such as their remarkable structural flexibility and tunable pore environments. Over the years,
numerous molecular modeling techniques have been employed to study reticular materials,
including density functional theory (DFT), ab initio molecular dynamics (AIMD), and methods
based on classical mechanics and statistical mechanics such as molecular dynamics (MD) and
Monte Carlo (MC) simulations. These approaches have been instrumental in elucidating the
structural and dynamic properties of MOFs and their interactions with various guest molecules.
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Figure 2. Trends in the utilization of various modeling techniques within the MOF field: a
guantitative analysis based on publication count from Google Scholar (numbers represent
publications per year). The data was extracted with an academic paper word occurrence tool
[42].

The first articles reporting adsorption simulations in MOFs emerged in the early 2000s. In
2001 Kawakami et al. [43] utilized multiscale modeling, incorporating force fields and DFT, to
explore the adsorption of magnetic and nonmagnetic species in a ZnBDC MOF. The authors
highlighted the potential of nanoporous crystalline materials, such as MOFs, to serve as
frameworks for controlling the distribution and orientation of absorbed molecular species due to
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their highly ordered structure. In 2003, the group of Alexander Neimark investigated argon
adsorption in HKUST-1 using the grand canonical Monte Carlo (GCMC) method and reported an
excellent agreement of the simulated and experimental adsorption isotherms [44]. They were
able to identify preferential adsorption sites in the pores of the MOF based on the simulation
snapshots. This highlights a crucial objective of molecular modeling: to complement
experimental techniques by offering atomistic-level insights into phenomena that would
otherwise be challenging through experimental methods alone. The use of extensive quantum-
chemistry calculations in MOF-related research was featured in a significant study published in
2004 [45], where Sagara et al. used periodic DFT to optimize and derive partial charges for
IRMOF-1 for subsequent GCMC adsorption simulations of H,. Fragments of MOFs were also
selected to study the interaction energy of the framework with hydrogen molecules at the MP2
level of theory.

Diren et al. investigated the applicability of materials from the IRMOF family for methane
storage using MC simulations [46] and proposed new, in-silico-designed isoreticular MOFs which
maximized predicted methane uptake, demonstrating the effectiveness of simulations in guiding
material design for various storage applications and paving the way for hypothetical MOF design.
In another early study, Sarkisov et al. used molecular simulation to understand the properties of
IRMOF-1 by exploring the adsorption and diffusion of methane, normal alkanes, cyclohexane,
and benzene in this material [47]. Both studies underscore the usefulness of molecular
simulations in understanding the properties of MOFs and guiding the design of new materials for
adsorption applications, such as methane storage and separation processes. The diffusion of light
gases (Ar, CHa, CO2, N2, H2) in IRMOF-1 was also studied by the group of David Sholl [48]. The
results supported the idea that MOF diffusion coefficients are similar to those in zeolites,
implying that experimental techniques used for zeolites should also be applicable to MOFs.

In 2009, Keskin and Sholl reported one of the first computational screening studies
performed on eight frameworks aimed at finding MOF membranes for gas separation (CO2/CHa,
CHa/H,, COs/H2) [49]. This number is modest when compared with the articles published
nowadays that report simulation results for many hundreds or even thousands of structures.
However, this early work laid the groundwork for contemporary large-scale screening
simulations. In 2011, Wilmer et al. presented an extensive screening study on over 130,000
hypothetical MOFs [50]. They developed a computational approach to generate potential MOFs
using a library of building blocks derived from known MOF structures. The attributes of each
MOF, including pore-size distribution, surface area, and methane-storage capacity, were
calculated. The study led to the identification of over 300 hypothetical MOFs with a predicted
methane storage capacity superior to any known material and uncovered important structure-
property relationships in the process. The large amount of data generated in such screening
studies, together with the development of machine learning (ML) methods, has opened new
opportunities for their application in the study of MOFs. The early work from Tom Woo
demonstrated that by using machine learning with structural descriptors it is possible to quickly
identify high-performing MOFs for CO; capture, reducing the need for compute-intensive
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screening and making the exploration of vast search spaces feasible for various applications [51].
The basics of machine learning methods and their applications to the discovery and design of
porous materials have been discussed in several excellent reviews (e.g., ref. [52]).



3. First-principles computational methods applied to reticular materials

DFT is a computational method for approximating the solutions to the Schrédinger
equation, the fundamental equation of quantum mechanics. For a given arrangement of atoms,
DFT allows for the calculation of the energy, enabling the search for configurations that minimize
the energy, as well as the identification of saddle points (energy barriers) on the potential energy
surface. The method can provide information on the electronic structure of atoms, molecules,
and materials (Figure 3). DFT is rooted in the Hohenberg-Kohn theorems [53], which establish
that the ground-state properties of a many-electron system are uniquely determined by its
electron density. Thus, in contrast to methods such as Hartree-Fock and its derivatives which
require solving the Schrodinger equation for a multitude of interacting electrons, DFT simplifies
the computational task significantly by considering the energy of the system to be a functional of
the electron density alone. An essential development in the practical application of DFT is the
Kohn-Sham equations [54]. Introduced by Walter Kohn and Lu Jeu Sham, these equations present
a method for converting the complex many-body problem into a set of single-particle equations.
In the Kohn-Sham approach, the many-electron system is represented as a system of non-
interacting electrons (an auxiliary system) that have the same ground state electron density as
the actual system. Each electron in this auxiliary system moves in an effective potential,
consisting of the classical electrostatic potential due to the nuclei and the other electrons, but
this effective potential only considers the other electrons in a mean-field sense. In addition, the
electrons experience what is known as the exchange-correlation potential, which encompasses
the complex effects of electron-electron interactions. Unfortunately, this exchange-correlation
functional is not known exactly, and approximations must be made. Solving these equations
yields a set of Kohn-Sham orbitals and their energies, which provide valuable information about
the electronic structure of the system.

When using DFT, the user must make several crucial decisions related to the
approximations that will be made. Firstly, the user must choose an appropriate exchange-
correlation functional. There are many families of functionals, including local density
approximations (LDA), generalized gradient approximations (GGA), and hybrid functionals, each
with its strengths and weaknesses, computational cost, and applicability to certain problems.
Secondly, the user must select a basis set, which is a set of functions used to expand the Kohn-
Sham orbitals. Choosing a basis set is a trade-off between computational cost and accuracy.
Larger basis sets provide more accurate results but at a higher computational cost [55]. We refer
the interested reader to standard textbooks on DFT for further detail [56,57].
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Figure 3. Applications of DFT calculations in the field of MOFs.

DFT has proven to be a valuable computational tool for studying a wide range of materials,
including reticular materials such as MOFs. In practice, DFT calculations can be performed using
two main approaches: plane wave basis functions and localized orbital basis sets. The plane wave
approach represents the wavefunction and orbitals as a superposition of periodic plane waves,
which is naturally suitable for studying periodic systems. Historically, it was applied to such
systems as metals, semiconductors, or metal oxides and was most popular among physicists to
study the structural and electronic properties of materials. On the other hand, the localized
orbital approach employs a set of atom-centered basis functions (such as Gaussian or Slater
functions) which are finite in extent and localized around atomic nuclei. This approach is more
appropriate for non-periodic systems and was usually applied by computational chemists to
study the properties of molecules [55]. Each of these two DFT approaches has its own strengths
and limitations, depending on the nature of the system being studied and the specific scientific
guestions being addressed. MOFs, being periodic crystals but composed of discrete metal nodes
and linkers, may be considered a kind of hybrid between molecular systems and classical period
solids. Thus, both methods have been successfully applied in computational studies of MOFs.
Figure 3 provides an overview of how DFT calculations within both approaches can be helpful in
calculations and simulations for studying the use of MOFs in energy-related applications.

3.1 Geometry optimization

Often the first task in understanding a system is to obtain its lowest energy geometry.
This can also be useful in preparing MOF structure for further simulations (either quantum
mechanical or classical). Thus, optimizing the geometry of a MOF structure is often done by
minimization of the energy and/or forces using DFT. While it is difficult to suggest the exchange-
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correlation (XC) functional that guarantees the highest accuracy, some groups have reported
benchmark analysis based on a comparison of some structural properties derived from DFT
calculations, such as lattice parameters, bond lengths, angles, and dihedrals in comparison to
experimental data [58,59]. The authors emphasized that while no single XC functional
consistently outperformed others, the selection of a functional should take into account the
specific characteristics of the MOFs (such as flexibility) under study. They also strongly
emphasized the importance of including long-range dispersion interactions in DFT calculations,
either through empirical corrections (Grimme methods [60-63], available in most periodic and
cluster DFT codes or the Tkatchenko-Sheffler method [64]) or non-local van der Waals density
functionals (vdW-DF) [65—69]. Including dispersion interactions is needed to predict the correct
structural phase for some flexible frameworks such as MIL-53 or ZIF-4. A summary of the
discussed results is presented in Figure 4.
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Figure 4. Accuracy of density functionals in predicting lattice parameters of MOFs. Data taken
from references [59] and [58]. MAD is the mean absolute deviation of the lattice parameters.

Flexibility in MOFs is related to collective lattice vibrations, known as phonons. Phonons
extend the notion of local vibrational modes and provide insight into structural deformations. By
analyzing phonons, one can anticipate how the material will react to temperature changes. The
vibrations of the atoms in the lattice can contribute to structural changes or even the collapse of
the MOF structure under certain conditions. Understanding phonon behavior in MOFs can help
analyze or design materials with desired mechanical properties such as gate-opening [70-74],
breathing [75,76], structural stability [77], and negative thermal expansion [78]. Phonon modes
can also affect diffusion of gases in the pores through collective motions of the atoms in
bottlenecks in the pore structure [79].

3.2 Energetic landscape of flexible MOFs
Calculations of energy-volume relations can provide valuable insights into the structural

deformations of MOFs, particularly when they incorporate information related to external
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stimuli. These calculations enable a deeper understanding of MOF response to various conditions
including temperature, pressure, and presence of guest molecules. Energy-volume relations
describe the dependence of a material's energy on its volume, reflecting the interplay between
internal forces and structural changes. By analyzing these relations in MOFs, it is possible to gain
insight into (i) elastic properties such as bulk modulus, shear modulus, and Young's modulus,
which are essential for predicting and optimizing MOF mechanical stability and resilience under
different conditions [80,81]; (ii) structural transitions through discovery and description of
various phases, such as breathing in MIL-53 [82—84], negative thermal expansion in DUT-49 [85],
pore opening transformation in JUK-8 [84,86], and contraction in CUK-1 [87].

In many cases, the energy-volume profile describes the Helmholtz free energy F with
contributions from vibrational internal energy and vibrational entropy:

F(T, V) = EDFT(V) + Evib (Tr V) - TSvib (T’ V),

where Eppr is the DFT energy (with dispersion contribution), E,;;, is the vibrational internal
energy (or harmonic phonon energy), S,;p is the vibrational entropy, and T and V represent
temperature and volume, respectively. All contributions can be derived directly from the phonon
partition function which can be obtained using frequencies of phonon modes [88] and applied to
calculate the thermal dependency of the minimum-energy volume of a framework through the
guasi-harmonic approximation [89]. Figure 5 illustrates the energy versus volume relationships
for three MOFs (MIL-53, DUT-49, and JUK-8), thereby shedding light on the structural phase
transitions they undergo in response to varying external stimuli. In the case of MIL-53, a breathing
transition is induced by temperature changes, stabilizing the structure in the np phase at lower
temperatures (global minimum on the red curve), and transitioning to the Ip phase as
temperatures rise (global minimum on the blue curve). DUT-49 exhibits NGA where, due to
interactions with guest molecules, the system contracts, transitioning from the open phase when
empty (minimum of the red curve) to the closed phase when the number of guest molecule
exceeds some threshold (minimum of the blue curve). JUK-8 undergoes a pore opening transition
from a closed phase (minimum on the red curve) to an open phase (global minimum on the blue
curve) when exposed to a specific pressure from guest molecules. These examples underscore
the usefulness of energy vs. volume relations in the analysis of structural phase transitions in
MOFs.
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Figure 5. Schematic free energy profiles that explain structural phase transitions: breathing in
MIL-53, NGA in DUT-49, and pore-opening in JUK-8. The red lines represent free energy without
the contribution of any stimulus (temperature, pressure, chemical potential); the blue lines
represent the free energy under the influence of temperature (MIL-53, narrow to large pore
transition), number of guest molecules present in the pores (DUT-49, large to contracted pore
transition), and pressure of adsorbate (JUK-8, formation of new stable phase). Data taken from
references: [82,84,85].

3.3 Interactions of MOFs with guest molecules

DFT methods have proven to be valuable tools in examining the interactions of guest
molecules with MOFs, especially when there are strong and specific chemical interactions beyond
weak physisorption. As highlighted in the introduction, MOFs with ZreOs nodes are promising
materials for many potential applications including carbon capture and water harvesting, and
interactions of these molecules with zirconium nodes exhibit interesting and sometimes
unexpected behavior. Grissom et al. studied this problem by performing systematic infrared
spectroscopic studies, which together with DFT calculations [90] showed that CO; adsorption in
UiO-66 involves two main binding processes: hydrogen bonding with ps-OH groups inside the
tetrahedral pores and through more typical dispersive interactions. The enthalpy of adsorption
for hydrogen-bonded and dispersion-stabilized CO; species was found to be -38.0 and -30.2
kJ/mol, respectively. This example highlights how comparing calculated and measured infrared
frequencies can be a useful method to validate computationally predicted host-guest
interactions. The authors showed that different adsorption modes are related to different
frequencies of CO, asymmetric stretching mode, with stronger interaction associated with larger
redshift relative to bulk CO, (10 and 14 cm™ for dispersion-stabilized and bonding with ps-OH
groups, respectively). This can be explained by the effect of charge transfer between the CO;
oxygen atom and the adsorbent, causing a weakening of the C-O bond and reducing the
associated vibrational frequency (in the harmonic approximation the energy is a linear function
of the frequency). Potential binding of CO; on open metal sites in Zr-MOFs associated with
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missing linker defects was also predicted by DFT calculations, with an even higher adsorption
enthalpy of -57 kJ/mol.

In a related study, Rayder et al. examined CO; adsorption on the 6-connected Zr node of
MOF-808 [91]. They discovered that changing the modulator attached to the node can induce
monodentate binding, deviating from the usual bidentate binding (Figure 6). Monodentate
binding opens up a Zr site for possible CO, chemisorption. The frequency shift of the stretching
mode of chemisorbed CO,, as calculated using DFT, aligned well with the experimental results.
Tan et al. highlighted a similar phenomenon [92] and based on the observation of a significant
infrared band in the 1700-1650 cm™ range of experimental spectra, they proposed a new
perspective on defect termination in the MOF UiO-66. With periodic DFT calculations, they
suggested the presence of unidentate COO™ groups from the formate modulators stabilized by H-
bonding with a terminal water molecule. Contrary to the assumption that modulator COO" groups
bind tightly with two Zr sites via bidentate coordination, it was shown that water readily inserts
and breaks one of the Zr-O-C bonds, forming a detectable C=0 absorption band above 1650 cm”
1. The high catalytic activity observed in defective UiO-66 may be attributed to its ability to easily
add and remove water molecules.

Vibrational frequencies calculated by DFT may show systematic deviations from
experimental values, and this is typically addressed through the application of an empirical
scaling factor. One way to obtain the scaling factor is to take the ratio of a well-known, relevant
experimental frequency (like the bulk CO; stretching mode at 2349 cm) to the calculated DFT
value. Alternatively, one can consider using a database of scaling factors developed by the group
of Donald Truhlar [93,94] (note that there are different scaling factors for comparing infrared
frequencies with experiment and for thermochemistry).

CO, stretching mode (bulk phase)
v=2349cm™?!

-0

physisorption chemisorption
v=2340cm™! v=2335cm™!

Av=—14cm™1

Figure 6. Change of CO; stretching mode frequency calculated by DFT for MOF-808.
Comparison of calculated and measured frequencies provided an explanation of the adsorption
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mechanism observed in experimental infrared spectroscopy. The frequencies taken from the
reference [91]. Carbon atoms are brown, hydrogen white, oxygen red, zirconium green.

The evaluation of interaction energies typically necessitates the calculation of both the
enthalpy and free energy associated with the process. They are typically obtained from thermal
energies and entropies. The contributions from low frequencies introduce significant noise when
applying the rigid-rotor harmonic approximation (as the vibrational entropy asymptotically
reaches infinity when frequencies approach 0). To overcome this limitation, a quasi-rigid-rotor-
harmonic-approximation (quasi-RRHO) was proposed by Stefan Grimme, in which, for the
frequencies lower than the selected cutoff (usually between 50 and 150 cm™), the entropy is
calculated as the combination of vibrational and rotational entropies [95]. For systems containing
more than 300 atoms, this approach can change the free energies up to 15 kJ/mol. Similar
improvement is observed when the quasi-RRHO approximation is applied in adsorption enthalpy
calculations [96], which are of great interest in the MOF simulation community. Moreover, when
using an implicit solvent model or considering various configurations of reacting species, it is
crucial to also account for solvation and configurational entropies [95,97]. GoodVibes is a
versatile Python tool that calculates thermochemical data from quantum chemistry calculations,
accounting for all the issues described in this paragraph. With automated features, it saves
researchers time, incorporates valuable corrections, and prevents human errors in analyzing
large numbers of output files [98].

3.4 Catalysis

DFT has emerged as a powerful tool for studying and predicting the catalytic behavior of
MOFs, as well as unraveling the intricate structure-property relationships that underlie catalytic
processes. In a typical application, the researcher postulates a set of reaction intermediates and
tries to optimize their geometries using DFT. Then saddle points connecting the intermediates
are located to provide the transition states and the energy barriers for the proposed reaction
mechanism. For example, Figure 7 shows a simple reaction pathway for the MOF-catalyzed
hydrolysis of the chemical warfare agent simulant DMNP, as well as the uncatalyzed reaction
[99]. The free energy diagram illustrates that the barrier for the MOF-catalyzed reaction
associated with the transition state TSz (measured as the free energy difference between TS; and
the intermediate 1) is significantly lower that of the uncatalyzed reaction (measured as the free
energy difference between TS; and R). Additionally, the reaction free energy diagram shows that
in the distorted node, the 1% transition state TSi (related to the dehydration of the node) is not
present due to prior thermal activation. Spectroscopic properties, such as IR spectra can also be
calculated for the intermediates as in Figure 6 for comparison with experiment. Transition states
can be calculated with saddle-point searching methods such as nudged elastic band (NEB) [100—
102], dimer method [103,104] or Berny algorithm [105].
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Figure 7. Free energy diagram for reaction pathway of DMINP hydrolysis using two types of Zr
clusters in NU-1000 MOF, compared to the uncatalyzed scenario. Figure recreated based on the
data from reference [99]. R — reactant, TS — transition state, |, — intermediate state, P — product.

This approach has allowed researchers to optimize MOF-based catalysts for a wide variety
of energy and environmental applications, including hydrocarbon activation, toxic substance
degradation, CO; reduction, and cross-coupling reactions. To fine-tune the catalytic performance
of MOFs, DFT calculations have been utilized to investigate two crucial aspects in the design of
MOF catalysts. The first aspect is the active site engineering, which typically involves tuning the
coordinatively unsaturated metal sites and their coordination environment on the metal nodes.
For example, previous studies have leveraged both the plane wave [106—113] and localized
orbital [109,114-117] approaches to explore the optimal combination of the metal site and its
surrounding ligands for enhanced C-H bond activation. The second aspect is tailoring the
surrounding pore structure [118], especially the pore surface functionality and size. Well-defined
pore structures in MOFs can induce a confinement effect that restricts the movement and
orientation of guest molecules within the confined space, altering their electronic and chemical
environment, and thereby significantly enhancing catalytic activity and selectivity.

Compared with the plane wave approach, the localized orbital approach is more
commonly used for engineering the active sites of MOF catalysts due to its higher computational
efficiency, particularly in the search for transition state structures to calculate energy barriers in
a catalytic process. However, the cluster approach does not include information on the
surrounding pore structure and the resulting confinement effects, which can result in significant
errors in the calculation of reactant and product binding energies, particularly in MOFs with
smaller pores. For instance, in our recent study [119] on the hydrolysis of a nerve agent using Ti-
MFU-4l, disregarding such confinement effects resulted in a 72 kJ/mol underestimation of the
binding energy of the nerve agent on the reaction center, underscoring the plane wave
approach's comparative advantage in estimating the confinement effect in MOFs [119].
Additionally, the localized orbital approach typically employs cluster models truncated from
periodic models, which can result in ground spin states that are inconsistent with that in periodic
models, particularly for MOFs with antiferromagnetic transition metal pairs [120]. In addition to
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these two approaches, the QM/MM (quantum mechanics/molecular mechanics) approach is an
attractive strategy to model MOF catalysts. This approach treats the reaction center using
guantum mechanics methods like DFT, while the remaining parts are treated using classical
molecular mechanics methods, providing a reasonable compromise between accuracy and
efficiency [121,122]. It is surprising that QM/MM is not used more frequently in modeling MOF
catalytic processes.

There are several other factors that should be carefully considered when performing DFT
calculations for MOF catalysts. First, the choice of exchange-correlation functional can
significantly impact the accuracy of DFT calculations. Some widely used functionals include the
GGA functionals like PBE, hybrid functionals like B3LYP, TPSSh, and PBEO, and the family of
functionals developed by the group of Truhlar, such as M06-L, M06-2X, and MN15. It is a good
practice to test multiple functionals using experimental or high-accuracy computational data as
benchmarks to identify the most suitable functionals for specific applications. Second, the
Hubbard +U correction [123] for transition metals is typically necessary for the plane wave
approach to account for strong on-site electron-electron interactions not well-described by
standard DFT exchange-correlation functionals [124,125]. The U value is typically determined by
benchmarking against experimental measurements or employing higher-accuracy computational
data to ensure an accurate representation of the properties of interest. Third, similar to the case
of flexibility, the van der Waals interactions can play an important role in MOF catalysis systems,
requiring accurate treatment using dispersion-corrected DFT methods described above. Finally,
the effects of solvents or co-catalysts on performance in MOF catalysis systems need to be
considered, which can be achieved using implicit solvation models like the polarizable continuum
model (PCM), explicit solvent simulations, or a combination of the two [126]. It is always highly
recommended to consult the relevant literature to determine the standard computational
methods for the systems of interest.

3.5 Generation of force field parameters

Beyond predicting reaction intermediates and transition states and analyzing the
formation and breaking of chemical bonds, DFT calculations can also be employed to generate
force fields for both molecules and frameworks, enhancing the understanding and prediction of
adsorption behavior in complex systems and facilitating classical adsorption simulations such as
GCMC. QuickFF is a user-friendly method for generating force fields based on DFT calculations
with a strong focus on MOFs [127]. QuickFF input data consists of ab-initio equilibrium
geometries and a Hessian (it is used in vibrational frequency calculations) of smaller building units
(linkers and metal nodes), and it uses simple mathematical expressions to represent the
interatomic potential. The protocol was shown to be effective on a large set of organic molecules
and MOFs, like MIL-53(Al) and MOF-5, generating accurate force fields for their periodic
structures. This accuracy was confirmed based on the precision of molecule geometries, the unit
cells of the MOF structures, and the vibrational frequencies. Notably, QuickFF is designed for
parametrizing intra-molecular and intra-framework interactions, such as bonds, angles, and
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torsions, rather than long-range interactions like van der Waals or Coulomb. QuickFF has been
implemented as an accessible Python code and is conveniently available online. QuickFF was
recently updated to be able to use periodic ab-initio input data, and an extension to the energy
expression was developed, including anharmonic bond and bend contributions together with the
cross terms [128]. QuickFF was successfully used in a wide range of applications, including the
analysis of phase transitions in COFs [129], the mechanical stability of UiO-66 [130], contraction
of CUK-1 [131], and thermal expansion in a large group of MOFs [131].

Ab-initio methods are commonly used in generating partial atomic charges for use in
classical simulations. There are two general approaches for generating partial charges from DFT:
electrostatic potential fitting and electron density partitioning. Here, we highlight two methods
that are commonly applied in MOF studies: density-derived electrostatic and chemical (DDEC)
[132-136] charges and repeating electrostatic potential extracted atomic (REPEAT) charges
[137]. DDEC is a density partitioning method that allows for the determination of atomic partial
charges, optimizes them to be chemically meaningful, and reproduces the electrostatic potential
far from the high electron density region (far from the atoms, i.e., in the pores of MOFs). This
method achieves this by optimizing atomic electron density distributions to resemble reference
states and to be close to spherically symmetric around the atoms. DDEC accounts for different
types of charge transfer, such as ionic bonding, covalent bonding, charge compensation, and
dielectric screening, making it versatile and applicable to a wide range of materials. The REPEAT
method is a simple and robust approach to derive charges in periodic systems based on fitting to
the electrostatic potential generated by the electron density. It addresses the issue of the ill-
defined offset in the electrostatic potential within periodic electronic structure calculations. This
method can be applied to both molecular and periodic systems, providing physically reasonable
and consistent charges. REPEAT charges show stability concerning variations in van der Waals
radii and in electrostatic potential grid point density, and are particularly useful for simulating
nanoporous materials like MOFs, offering a straightforward and automatable approach to
deriving charges for periodic systems. In a benchmark analysis of various empirical and electron-
density-based charges performed by Liu and Luan [138], the authors used DDEC charges as a gold
standard method emphasizing their transferability and consistency. Importantly, both DDEC and
REPEAT methods are implemented in such a way that they can work with a variety of DFT
software and both plane-wave and localized basis sets.

3.6 Machine learning tools to facilitate DFT calculations

As demonstrated above, DFT methods have garnered considerable interest due to their
ability to analyze various phenomena in the MOF field, as well as aiding in the prediction of critical
features for subsequent classical simulations (see below). This popularity is due to DFT's
appealing balance between computational cost and accuracy in comparison to the more
resource-demanding yet accurate correlated wavefunction theory. However, up until now, there
has been no universally accurate density functional discovered, resulting in some degree of
uncertainty in the quality of data produced by DFT. Duan et al. developed a density functional
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recommender approach [139] for selecting the best approximations to improve computational
chemistry accuracy. The method uses neural networks together with transfer learning and was
trained on a set of 300 transition metal complexes that are reasonably representative of MOF
materials. The recommendation is provided based on the vertical spin splitting energy (energy
between the high and low spin states of the complex) as a reference and was trained with data
generated by (DLPNOQ)-CCSD(T) theory [140] that serves as a gold standard in modern
computational chemistry. The recommender outperforms conventional methods and can be
applied to various systems and computational methods. The recommender can be used
alongside traditional high-throughput screening workflows without extra computational cost.

MACHINE LEARNING TO ENHANCE DFT CALCULATIONS

4 AY4 Y4 N
Structure optimization Spin and oxidation Heat capacity
monitoring state guess calculations

w g "

Geometry based
calculations

g \ S

Figure 8. Examples of machine learning methods that can enhance DFT calculations: geometry
optimization monitoring to discard meaningless structures, spin state and oxidation state
recommender, and geometry-based heat capacity calculations.

The same group developed an ML model that can predict ground-state spin states in
metal complexes [141]. Remarkably, the model predicts the spin states only based on the
structure. The authors used over 2000 experimentally characterized Fe(ll)/Fe(lll) complexes and
employed a B3LYP-trained artificial neural network (ANN) to predict spin-state-dependent metal-
ligand bond lengths and classify experimental ground-state spins based on agreement with the
ANN predictions. This approach offers a promising alternative to the conventional energy-based
spin-state assignment using electronic structure theory, with the low computational cost of a
machine learning model. Jablonka et al. developed an ML model (oxiMACHINE) for predicting
oxidation states in MOFs [142,143]. Their machine-learning model was trained on chemist-
assigned oxidation states from the Cambridge Structural Database to automatically assign
oxidation states to metal ions in MOFs. By considering only the immediate local environment
around a metal center, the model is robust against experimental uncertainties such as incorrect
protonation, unbound solvents, or changes in bond length. The method demonstrates good
accuracy and was able to detect incorrect assignments in the Cambridge Structural Database. As
MOFs garner increasing interest across various scientific fields, this method may prove especially
beneficial for researchers working with these materials who may not possess a strong chemical
intuition.
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Furthermore, ML methods can facilitate geometry optimization tasks in high-throughput
screening studies. Duan et al. introduced a dynamic classifier that monitors geometry
optimization in real-time and terminates unproductive calculations [144]. This convolutional
neural network model uses incremental information from DFT geometry optimization and
generalizes well across various chemical spaces. By incorporating uncertainty quantification, the
dynamic classifier can save more than half of the computational resources that would have been
wasted on failed calculations, demonstrating its transferability and potential for catalyst design.

[llustrative of the potential of machine learning in the field of MOFs is the work by
Moosavi et al., who employed a gradient-boosted ML model to predict heat capacity in MOFs
[145]. Despite a training set of just over 230 MOF structures, the model demonstrated impressive
accuracy with a root mean squared error below 3%. This study unveiled considerable variability
in the heat capacity of MOFs, contradicting the common assumption of a constant value for most
MOFs. Historically, researchers assumed a constant heat capacity for most MOFs when doing
process level modeling due to a lack of data. However, this innovative model revealed that MOF
heat capacities can vary between 0.4 and 1.2 J/g/K. This finding has significant implications for
high-throughput screening studies, particularly when evaluating processes that involve heating
or cooling of MOFs, where this contribution to the total heat must be considered, such as in
adsorption cooling. Furthermore, this successful approach aligns with other achievements in the
realm of ML applications for MOFs, such as predicting band gaps [146] or the bulk modulus [147].
Such accomplishments underscore the versatility and broad potential of ML in advancing MOF
research (Figure 8).
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4. Classical methods for modeling MOFs

For systems with a large number of atoms, DFT and other quantum mechanical methods
can become infeasible due to the high computational costs involved. As an alternative, force-
field-based simulation methods using models based on classical (versus quantum) mechanics and
statistical mechanics are often employed to calculate thermodynamic and transport properties
in MOFs, such as adsorption isotherms and the diffusion coefficients of guest molecules (Figure
9). In these methods, the energies and forces within the system are determined by classical
potentials that describe interatomic interactions, rather than by solving the Kohn-Sham
equations. In this section, we discuss two widely used simulation techniques: MD and grand
canonical Monte Carlo (GCMC) simulations, with a focus on their applications to MOFs. We also
explain some choices that are required to setup these simulations and review current advances
in the field where machine learning is applied to assist and enhance the workflow of classical
simulations.

CLASSICAL METHODS
t MOLECULAR DYNAMICS MONTE CARLO
Molecular diffusion Molecular adsorption
(diffusion coefficient) Molecular adsorption and (adsorption isotherms,
diffusion in flexible frameworks adsorption sites)
Structural dynamics of MOFs (hybrid simulations) ]
(vibrations and phase transitions) Heats of adsorption
(host-guest interactions)
Thermodynamic properties of MOFs e ]
(free energy, entropy, heat capacity) Selectivity in mixture adsorption

Figure 9. Schematic representation of problems that can be addressed by MD, MC, or both
methods.

4.1 Monte Carlo simulations

Monte Carlo is a computational technique for calculating the thermodynamic properties
of molecular or materials systems by sampling configurations of the system based on their
probability distribution under certain thermodynamic conditions. By averaging over the
configurations, thermodynamic properties can be calculated such as the number of adsorbate
molecules in the system at equilibrium, heats of adsorption, virials, and heat capacities of the
adsorbed phase. For MOF-related applications, gas adsorption is the central property of interest,
and grand canonical Monte Carlo (GCMC) [148,149] or Gibbs ensemble Monte Carlo (GEMC)
[150] simulations are naturally suited to serve the purpose. For instance, to simulate pure
methane adsorption in a MOF [46], the following steps are typically implemented in GCMC:

1. Setthe chemical potential of methane (equivalently, the bulk phase pressure or fugacity),
the number of unit cells of the MOF to be considered in the simulations (at least twice
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the interaction cutoff value to avoid self-interactions), and the system temperature.
Generate an initial configuration of the system to start the simulation.

2. Pick an MC move randomly from a pool of possible moves such as insertion, deletion,
translation, or rotation (note: the rotation move is specifically used for non-spherical
molecules, which might have different orientations within the simulation box) of a
molecule. The insertion or deletion moves ensure that the adsorbed phase reaches
chemical equilibrium with the bulk phase, i.e., chemical potentials in both phases are
equal. The translation and rotation moves ensure that the adsorbed phase reaches
thermal equilibrium.

3. Either accept or reject the attempted MC move based on the change in the system energy
and the Metropolis acceptance rule [151,152].

4. Repeat steps 2 and 3 until the number of methane molecules (and the energy) in the
system fluctuates around a constant value. The system is now equilibrated.

5. Continue steps 2 and 3 and calculate properties of interest by averaging over the
configurations.

Figure 10 shows an example of three simulated isotherms of different types in MOFs.
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Figure 10. Simulated adsorption isotherms of different types: argon in IRMOF-1 at 78 K (type |),

water in MOF-LA2-1 at 298 (type V), and nitrogen in MOF-200 at 77 K (type IV). Data taken from

references: [153—155]. Isotherms are shown on the left with a linear pressure scale and on the

right with a logarithmic pressure scale. Note the advantages of a logarithmic pressure scale for
distinguishing differences in the low-pressure data.

In GCMC, the bulk phase (outside the MOF) is implicitly described by an equation of state
(EOS) that relates the imposed chemical potential (or fugacity) with the bulk temperature and
pressure (and composition if a mixture is simulated). In the simplest approach, the ideal gas EOS
is applied, and the bulk phase fugacity equals the pressure. Alternatively, other EOS can be used,
with the cubic Peng-Robinson EOS being one of the most common [156]. This EOS is
parameterized using the critical parameters (temperature and pressure) and acentric factor of
the fluid, which can be determined computationally for specific molecule models or taken from
experimental data if there is good agreement between the model and experiment.
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In comparison, GEMC uses two simulation boxes, both with periodic boundary conditions
(as also used in the adsorbed phase box in GCMC): the first box models the adsorbed phase with
the framework structure, and the second box explicitly models the bulk phase. The system
temperature, pressure, and total number of molecules (sum of a number of molecules in both
boxes) are set constant for the simulation. If the framework structure is assumed to be rigid, the
volume of the adsorbed phase box is fixed, while the volume of the bulk phase box is allowed to
expand or shrink to maintain the pre-defined pressure. During the simulation, in addition to the
translation moves of molecules within each simulation box, molecules are also transferred
between the two boxes. Such a transfer move is analogous to the insertion or deletion moves in
the GCMC scheme. Again, MC moves are repeated until the system reaches equilibrium.

GCMC, predominantly utilized for gas adsorption, can be applied for simulations in open
systems allowing exchange of molecules with an implicit bulk reservoir, thus speeding up the
simulations. On the other hand, GEMC, originally tailored for phase equilibria simulation (vapor-
liquid coexistence curve), demands an explicit simulation of both phases, either gas and liquid or
bulk and adsorbed phases in adsorption simulations. For more technical details of MC
simulations, we refer the readers to Refs. [152,157,158].

Currently, a number of MC simulation packages are publicly available for modeling gas
and liquid adsorption in MOFs [157]. In general, the software can be divided into two categories:
CPU-based packages and GPU-based packages. CPU-based packages can use a serial or parallel
implementation within a CPU framework. Several prominent options for CPU-based MC
simulations are RASPA [159], DL_MONTE [160], Cassandra [161], and Towhee [162]. GPU-based
packages are designed to maximize the parallelization capability of GPU machines. This requires
special implementation of conventional MC algorithms, such as distributing energy calculations
to multiple cores on the GPU. GOMC [163] is an open-source MC simulation package that utilizes
the parallelization power of GPU machines to accelerate multiple types of MC simulations. In
addition to differences in their design framework, these MC packages also differ in their
capabilities for performing certain statistical samplings and MC moves.

4.2 Molecular dynamics simulations

MD simulations predict the time evolution of the positions and velocities of individual
atoms in a system by integrating Newton’s equations of motion. Therefore, unlike the MC
method, MD simulations can be used to extract dynamic information from the system. According
to the ergodic hypothesis, over a long period of time, an MD simulation should lead to the same
sampling of the phase space as an MC simulation at equilibrium. The dynamic nature makes MD
simulations particularly useful for predicting transport properties, such as diffusion coefficients
and relevant non-equilibrium phenomena where a pressure, temperature, or concentration
gradient is present in the system [158].

There are several open-source packages for conducting MD simulations. Some of the
commonly used examples include LAMMPS [164], NAMD [165], GROMACS [166], RASPA [159],
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HOOMD-blue [167], and DL_POLY [160]. The first three can take advantage of CPU parallelization
with GPU acceleration. While NAMD is primarily applied in biological systems, LAMMPS and
GROMACS are quite often used in MD simulations involving MOFs. Prior to an MD simulation of
adsorbate molecules in a MOF, it is advisable to randomly distribute the molecules in the pore
and perform an initial equilibration with a simple NVT-MC algorithm to avoid unphysically high
forces in the system caused by overlap of the atoms. Such an initialization can be performed with
any MC software such as RASPA. Alternatively, the energy of the guest molecules can be
minimized via a geometry optimization algorithm. The simulated system should be equilibrated
prior to the proper MD simulation (so-called production run). Equilibration is the process of
allowing the system to reach a stable state before starting the production run, where data is
collected for analysis. During equilibration, the system's properties, such as temperature, energy,
pressure, or volume, should reach an equilibrium state where they fluctuate around their average
values without any significant increase or decrease over a longer time scale. The number of
equilibration steps needed to achieve this state can depend on factors such as the complexity of
the system, the interactions between particles, and the initial conditions. Monitoring the
system's properties (energy, temperature, pressure) during these equilibration steps allows one
to determine when the system has reached a state of equilibrium. It is important to note that
there is no fixed number of equilibration steps that applies universally to all systems. Determining
the appropriate equilibration time often requires careful analysis and judgment based on the
specific characteristics of the system being simulated. Following the equilibration procedure, the
MD production run can be conducted for sampling the thermodynamic and transport properties
of the system. The length of the simulation usually depends on the properties of interest. For
instance, to calculate the self-diffusion coefficient of adsorbate molecules, the mean squared
displacement needs to be proportional to time, and hence, the simulation should be continued
until this requirement is satisfied. The time autocorrelation function of a specific variable can be
another property that is monitored for adequate sampling. An autocorrelation function usually
decreases from its initial value, which is one, to zero during a long enough MD simulation
(relaxation time or correlation time). Therefore, for a proper sampling, the length of the MD
simulation should be much longer than this relaxation time, and to reduce uncertainty, the
sampling should be started after the relaxation time [56]. While it is possible to design MC moves
to sample configurations of the solid framework, MD simulation is more natural and convenient
to model the flexibility of the framework. Coupled with MC simulations, the hybrid MC/MD
algorithm has been used to simulate gas adsorption in flexible frameworks [168].

Here we highlight several important applications of MD simulations to study phenomena
in MOFs. These include simulations of molecular diffusion in complex pore landscape and
calculations of the thermal conductivity.

4.2.1 Diffusion
Various diffusion coefficients, including the self-diffusion coefficient (also known as the

self-diffusivity), are among the important physical parameters that can be calculated using MD
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simulations. To calculate the self-diffusion coefficient of adsorbate molecules in MOFs, the mean
squared displacement (MSD) of each molecule is tracked during the MD simulation, and the self-
diffusivity can be calculated from the Einstein equation [152,158]:

N
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where d is the dimensionality of the system (1,2 or 3), t is time, N is the number of molecules,
and ; is the position vector of the [-th molecule. While the equation above includes an average
over the different molecules in the system, a good practice is to further increase the statistics
and include an average over all possible time intervals 7:
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In this equation, n represents the number of timesteps in the simulation, effectively defining the
simulation's length. The first summation accounts for the number of molecules in the system, the
second for the average over multiple time intervals 7, and the third ensures consideration of all
possible time origins for the MSD calculations for a given 7 (see Figure 11 for details). The shortest
possible time interval is the same as the time step At chosen for the simulations; however, for
practical considerations, often a slightly larger interval is selected as the shortest one. The largest

interval is the total simulation time.n — i + 1isthe total number of summation terms of a given

time interval used in averaging over multiple time origins. Note that Ds should be calculated for
the range in which the MSD is proportional to the time interval [169]. Complete details for
calculating the self-diffusivity of adsorbate molecules are provided by Sharp et al. [170]. For a
simulation of a bulk fluid, the number of degrees of freedom (DOF) is typically given by 3N-3,
where 3 degrees are subtracted to account for the conservation of momentum of the center of
mass of the system. However, when performing molecular dynamics (MD) simulations with an
external field (such as a rigid framework or implementing a temperature or pressure control
algorithm), this conservation is no longer valid, and the number of DOF becomes 3N. This
distinction becomes important when considering temperature calculations in MD simulations, as
it can impact the accuracy in calculating certain properties, like diffusion coefficients, particularly
in systems with a low number of particles (less than 50). Xu et al. [171] provide examples that
specifically tackle this concern, offering solutions for some of the commonly used MD codes.
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Figure 11. The time interval () is depicted over stored MD configurations. Foreacht =i - At
(i = 1 to n), squared displacements are calculated and averaged to calculate the MSD at that i -
T.

Several studies have been performed to determine the self-diffusivities of diverse
adsorbate molecules in MOFs [170,172]. For instance, Bukowski and Snurr studied the effect of
topology in 38 MOFs on the diffusion of alkanes [173]. The most interesting aspect of their work
is the clear demonstration that MOF topology — the arrangement and interconnectivity of pores
—significantly affects the diffusivity of guest molecules such as propane and isobutane, with their
self-diffusion coefficients spanning more than two orders of magnitude across different Zrs MOF
topologies. This reveals that slight changes in the internal structure of MOFs can dramatically
alter their physical characteristics, demonstrating the tunability of MOFs. Moreover, the
observation that the node connectivity influences the propane diffusivities more than the MOF
pore limiting diameter, especially at low loading, illustrates how complex these materials can be.
This complexity offers a wide spectrum of potential applications, but also hints at the challenges
faced in designing and optimizing MOFs for specific uses.

Experimental screening of MOFs to gain physical and chemical insights into the
connection between MOF structure and adsorbate diffusion is challenging, but with increasing
computer speed, it is now possible to use simulation to provide such insights. For example, the
diffusivities of the chemical warfare agent (CWA) simulant dimethyl methyl phosphonate
(DMMP) were calculated for 776 hypothetical MOFs with Zr nodes and different pore sizes [174].
The data were analyzed using machine learning, which revealed that the node-node minimum
distance, gravimetric surface area, volume fraction of nodes, and MOF density were the most
important parameters for predicting the self-diffusivity of DMMP in these MOFs. It was found
that the same model could be used to predict the diffusivity of sarin in the same structures.

4.2.2 Thermal conductivity

The thermal conductivity (k) is another physical property that can be calculated for MOFs using
equilibrium NVE MD simulations by analyzing an autocorrelation function:

%
KkpT?
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0

where V is the volume of the system, kg is the Boltzmann constant, T is temperature, J is the heat
flux vector, and the angular brackets denote an ensemble average. J can be calculated as:
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where r;, Ej, vi are the position vector, energy, and velocity of the i-th atom, respectively
[152,175-177]. This calculation requires that MOF framework flexibility is taken into account. As
an example, the thermal conductivity of IRMOF-1 has been studied using MD simulations
between 200 K and 400 K [178]. MD simulations were performed on variously sized systems
comprising 1, 8, and 27 unit cells. The findings pointed to a specious correlation between thermal
conductivity and simulation system size. This underscores the need for a sufficiently large system
size to minimize potential errors associated with smaller systems. The size and shape of the pores
of a MOF together with the presence of adsorbed molecules can also influence the thermal
conductivity. In a study that concentrated on idealized MOFs, it was found that the thermal
conductivity of MOFs with small pores decreased in the presence of the adsorbed gas molecules
[179]. However, the presence of adsorbed gas molecules did not affect the thermal conductivity
of MOFs with large pores.

High-throughput calculations were performed by Islamov et al. to calculate the thermal
conductivities of 10,194 hypothetical MOFs [180]. The results showed that MOFs with four-
connected metal nodes, small pores, and high density have higher thermal conductivities and
that MOFs with extremely large pores are characterized by ultra-low thermal conductivities. In
addition, the influence of porous crystal flexibility (pore expansion, as a model for MOF breathing
transition) on thermal conductivity has been studied in the presence of adsorbed gas [181]. The
thermal conductivity was calculated for a range of structures from the completely closed to fully
open form. The study concluded that thermal conductivity shifts only in accordance with the
direction of crystal expansion, irrespective of adsorbed gas presence. Interestingly, this change
in thermal conductivity is less noticeable when guest molecules are present.

4.3 Models for classical molecular simulations

Best practices in general for performing classical MD and MC simulations have been
extensively discussed in other places [152,182]. In the field of MOFs, two components are
particularly important for an accurate and high-quality simulation: the MOF structure and the
force field that describes the guest-host, guest-guest, and intra-host interactions. In this
subsection, we discuss best practices for the preparation of MOF structures and the selection of
suitable force fields.

4.3.1 Crystal structures

One of the most significant challenges in classical simulations of MOFs and the
phenomena occurring within their pores is the accurate representation of their structure. The
MOF structure for molecular simulations can be either obtained from single-crystal X-ray
diffraction (XRD) experiments or constructed in silico. If an experimentally resolved crystal
structure is available, this is usually the best approach. Since MOFs are crystalline materials, this
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sounds straightforward, but there are several challenges in practice. First, hydrogen atom
positions cannot be obtained directly from XRD, and hydrogen atoms are usually added using
crystallographic software. Placing the missing hydrogen atoms on an aromatic ring is
straightforward, but automated software may struggle to make the correct assignment of
whether an oxygen atom is part of a hydroxyl group or a bound water molecule. For example,
the proton topology on the 8-connected ZrsOs nodes of MOFs like NU-1000 cannot be
determined from diffraction experiments. In this case, DFT calculations were used to identify the
most stable configuration [183], and this configuration has subsequently been used in molecular
simulations. Another challenge is that crystal structures may contain partial occupancies and
other forms of disorder, which must be “cleaned” before the structure can be used for
simulations. The presence of solvent molecules within the crystal structure of MOFs presents a
significant challenge. During adsorption experiments, these molecules may be eliminated in the
activation process. Ideally, an adsorption simulation should mirror these experimental conditions
accurately, which implies the removal of these solvent molecules. However, confirming that each
solvent molecule has indeed been eliminated during the experiments can be complex.
Furthermore, extracting these solvent molecules can trigger pore collapse in MOFs, especially
those with large mesopores. Consequently, relying on "cleaned" structures in simulations might
not always accurately reflect the real activated material.

Databases of MOF structures from experiments have been constructed in the past few
years to facilitate molecular simulations and high-throughput materials discoveries, as listed in
Table 1. Experimental MOF structures curated in these databases usually undergo semi-
automated processes. It is important to note, however, that while these processes aim to clean
the disorder and remove unwanted solvent molecules, their effectiveness is not absolute. There
may be instances where mis-bonded or isolated atoms remain. As an example, Chen and Manz
[184] found it necessary to propose extra procedures to clean structures from the 2019 CoRE
MOF database [17] with such issues. Hence, users of these databases should be aware of these
limitations.

Alternatively, MOF structures can be constructed on the computer from their constituent
nodes and linkers using available construction algorithms, such as AuToGraFS [185], ToBaCCo
[186,187], TOBASCCO [188], and PORMAKE [189]. These construction algorithms typically map
the building blocks (nodes and linkers) on to a topological blueprint, and building blocks are
connected through pre-defined connection points. The constructed structures are usually
optimized using either a classical force field, such as the Universal Force Field (UFF) [190] or DFT
before they are fed into the simulation workflow. Due to the unique combinatorial nature of MOF
structures, the computational construction method opens the door to the generation of an
infinite number of hypothetical MOF structures. This paradigm naturally fits in with a high-
throughput screening workflow and has accelerated materials discovery at an unprecedented
speed.

Table 1. Summary of representative large MOF databases.
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Database Year | Structure Number of | Features
type structures
hMOF-Wilmer [191] 2012 | Hypothetical 137,953 Hypothetical structures for
high-throughput materials
discovery

CoRE MOF 2014 [18] 2014 | Experimental | 5,109 Curated and cleaned
experimental structures
ready for molecular
simulations

ToBaCCo [186] 2017 | Hypothetical 13,511 MOF structures with
enhanced diversity in
topology and pore size

CSD MOF subset [192] | 2017 | Experimental | 69,666 Reported to be the most
complete collection of
experimental MOF structures,
actively updated

MTV-MOFs [193] 2017 | Hypothetical | ~10,000 Multivariate MOFs with
mixed linkers and functional
groups

BW-DB [194] 2019 | Hypothetical 325,000 Database for accelerating the

discovery and optimization of
materials for carbon capture

CoRE MOF 2019 [17] 2019 | Experimental | 14,845 Update of 2014 CoRE MOF
database
hMOF-Lan [195] 2019 | Hypothetical | 303,991 MOF structures with diverse

channel types and enhanced
topology distribution
hMOF-Majumdar [196] | 2021 | Hypothetical | ~ 20,000 MOF structures with
enhanced structure diversity

QMOF [146] 2021 | Hybrid 14,000 DFT-optimized MOF
structures
hMOF-Nandy [197] 2023 | Hypothetical | ~ 50,000 MOF structures with

enhanced thermal and
activation stability

4.3.2 Classical force fields for adsorption simulations

Most classical force fields are composed of a set of equations describing interatomic
interactions such as bond stretching, bond angle bending, dihedral angles, and non-bonded
interactions. The force field also includes the parameters in these equations. The non-bonded
interactions include attractive dispersive (van der Waals) and repulsive interactions (often
modeled with a Lennard-Jones potential between all pairs of non-bonded atoms) and long-range
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Coulombic interactions (often modeled by placing point charges on the atoms). For more details
and the inner workings of force fields in molecular simulations, we refer readers to Refs [56,198].

One of the difficulties in developing a force field for MOF simulations is the enormous
chemical diversity of these materials and the wide range of potential applications. Ideally, a good
force field is both transferable and accurate. There are two main approaches for developing a
force field. In the first, the parameters are fitted against DFT or other quantum mechanical
calculations such as MP2 or CCSD. In this approach, the parametrization process involves
determining the parameters of the force field that minimize the difference between the energies
and forces predicted by the force field and those calculated using quantum mechanical methods.
Often, the fit is performed using a set of molecules and configurations that is representative of
the system of interest. This process can be complex and time-consuming, as it involves iterative
optimization of many parameters. Another aspect to consider is that while this approach can lead
to high accuracy for the systems that the force field was trained on, its transferability - that is, its
ability to accurately predict the properties of systems that are not in the fitting set - is not always
guaranteed. Ensuring transferability is a major challenge in force field development, requiring
careful design of the functional form of the force field and the selection of the training set. In the
second approach, the force field is fitted so that the results match some reference experimental
data such as adsorption isotherms and heats of adsorption. A challenge for this approach is that
there may be differences in reported experimental data for a given system due to different
materials synthesis and activation strategies applied. Another issue is that most simulations of
adsorption in MOFs to date have assumed a rigid framework structure. If the MOF exhibits
significant flexibility and the MOF is assumed rigid in the simulations, then fitting the force field
to match experiment will likely lead to an unreliable force field.

In practice, force fields in the MOF field are often not assembled “from scratch” but by
starting with existing force fields. The most common approach is to employ a “generic” force field
for the adsorbent (i.e., a force field that was not developed specifically for MOFs) alongside a
force field for the adsorbate taken from previous work on bulk fluids. Simulations of vapor-liquid
equilibrium, including coexistence curves and saturation pressures, serve as a rigorous
assessment of the accuracy of fluid force fields. Therefore, we strongly recommend the use of
force fields that have been tested to predict these quantities in good agreement with experiment.
An exemplar of such a force field is the Transferable Potentials for Phase Equilibria (TraPPE) [199].
Often, the UFF [190] or a combination of Dreiding [200] and UFF is used for the framework. This
could include equations and parameters for treating MOF flexibility or simply taking the Lennard-
Jones parameters from these force fields and using them for the MOF atoms, which are held fixed
at their crystallographic coordinates. Vandenbrande et al. [201] performed a benchmark analysis
of the accuracy of predicting methane uptake in Zr MOFs with both generic force fields (UFF and
combination of UFF and Dreiding). They compared them to three more sophisticated force fields:
MM3-MBIS [202], SAPTFF [203,204], and MEDFF [205], the latter two of which are purely ab initio
derived. They concluded that at moderate pressure, the generic force fields are reasonable and
can be used to predict quantities such as the working capacity close to saturation pressure.
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Recently, an online adsorption database, MOFX-DB [206], was constructed to facilitate the use
and reproducibility of simulated gas adsorption data in nanoporous materials. MOFX-DB contains
simulated adsorption isotherm data for more than 160,000 MOF and zeolite structures. All
necessary simulation input files are also available in the database to enhance the reproducibility
of data. The simulated data in MOFX-DB can help validate force fields parameters against
experimental data in a holistic manner.

Partial charges on the atoms can have a strong influence on the predicted properties and
behavior of the system. For the adsorbate atoms, the partial charges are usually taken from the
force field used for the adsorbate (e.g., TraPPE). However, partial charges for framework atoms
are usually calculated for each MOF as needed. As described in Section 3.5, framework charges
are often obtained from DFT. There are, however, a wide range of empirical methods that can be
used to calculate these charges much faster than DFT. One of the first empirical methods
developed for determining partial charges was the charge equilibration (QEq) method [207]. It is
designed to compute partial charges of atoms within a molecule, utilizing the molecular
geometry and three atomic properties. These properties are the ionization potential, which
signifies the energy required to remove the outermost valence electron, the electron affinity,
indicating the energy variation associated with the addition of an extra electron, and the atomic
radius. These parameters can either be derived from experimental findings or calculated through
ab initio methods. Many developments of this method were reported in the literature, including
extended (EQEq), which improved the accuracy of metal cation charges (with the intention to
apply in MOFs) [208], and the MOF electrostatic-potential-optimized charge (MEPO-QEq)
scheme, in which the parameters (electronegativity and chemical hardness) were trained based
on DFT calculations for a group of 543 MOFs [209]. Ongari et al. performed a benchmark analysis
of Qeq and its derivatives, revealing specific issues related to atom types and input parameters
in the assessment of 2338 MOFs [210]. Their study highlighted that Qeq methods have not shown
significant improvement in accuracy over time. Since these methods are not computationally
expensive, they can be used in high-throughput screening studies, although it is suggested to re-
test the top-performing candidates with simulations based on partial charges from DFT.

In classical simulations of adsorption in MOFs, another important factor that can
significantly influence the outcomes, is the tail correction. It is a mathematical formula applied
to compensate for the truncation of long-range interactions in the system. The tail correction and
the chosen cutoff radius - the limit beyond which interparticle interactions are neglected - can
substantially affect simulation results. If a force field has been designed with specific cutoff radii
and with the consideration of the tail corrections, these parameters should always be used to
ensure the reliability of the results. Jablonka et al. demonstrated that the homogeneous tail
corrections tend to yield results that are less affected by the cutoff radius, making them a
preferable option [211]. This conclusion is consistent across a wide range of structures tested,
including zeolites, metal-organic frameworks, and covalent organic frameworks (see Figure 12
for details). Furthermore, since there is no universal cutoff value for the potential, the study
recommends the application of tail corrections in modeling gas adsorption in microporous
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materials. This is proposed to facilitate a more consistent and reliable comparison of results
derived from different simulation studies. Note, however, that there are certain force fields that
were optimized without tail corrections, and for these models, the application of tail corrections
may not be advisable [212]. Regardless of the choice, all details of the simulation — including the
cutoff distance and whether or not tail corrections were applied — should be reported in
publications reporting simulation results to ensure reproducibility.
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Figure 12. Impact of the application of the tail correction on the absolute error in deliverable
capacities of methane in porous materials (ADC = DC(r,) — DC(rC =24 A)). Figure
reproduced with permission from the ACS [211]. Further permission requests related to this
figure should be directed to the ACS.

The lack of universal intramolecular force fields for MOFs is the main challenge for
considering flexible frameworks in MD simulations. Nevertheless, there are some studies that
concentrated on the effect of framework flexibility on the diffusion of adsorbate molecules by
implementing currently available force fields such as UFFAMOF [213], AMBER [214] and CVFF
[215] or using ab initio calculations to develop force field parameters for specific MOF structures,
as discussed in Section 3.5. The modified CVFF force field was used for a flexible UiO-66(Zr) MOF
to calculate the Ds of CH4 in CO2/CH4 mixtures at different CO; loadings. Although Ds obtained by
guasi-elastic neutron scattering (QENS) was higher than the calculated Ds by a factor of 2.5, both
experimental and simulation trends were similar at a low loading of CO, [216]. The diffusion,
adsorption, and separation of various molecules in a family of ZIFs have been studied using
equilibrium MD simulations and transition state theory (TST) methods. Since ZIF frameworks,
such as ZIF-8, have relatively small pores, including framework flexibility in the simulations is
beneficial for obtaining accurate diffusion coefficients. Certain force fields established through
DFT calculations for this set of structures demonstrated good accuracy in predicting self-
diffusivities and corrected diffusivities, aligning closely with experimental findings [217-224]. In
each of these studies, some interesting physical insights about the relation between the
diffusivities and framework flexibility were described. It was shown that the substitution of metal
cation in the ZIF-8 framework, creating ZIF-67 (Zn to Co substitution), led to a notable
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enhancement in ethylene/ethane separation efficiency. The metal variation appeared to govern
the aperture size and stiffness, as confirmed by simulations [73,224]. In addition, simulation
results indicated that implementing different force field parameters led to order of magnitude
differences in diffusivities [225-227]. While these simulations offer valuable insights into the
behavior of flexible MOFs, the significant disparities in diffusivities depending on the choice of
force field parameters underscore that current simulation methods may not fully capture the
complex interplay of framework flexibility and diffusive behavior, necessitating further
refinement and validation of these models. Yang and Sholl studied the importance of framework
flexibility on the diffusivities of 12 different adsorbates with different size, shape, polarity, and
flexibility in 17 different MOFs [228]. UFFAMOF was used for flexible and rigid frameworks. In
many examples, simulations with rigid frameworks underestimated the diffusivity of molecules
in MOFs with small pores. The results demonstrated that the correlation between the flexibility
of the framework and diffusivity depends on the size of the pore and the adsorbate. When the
size difference between windows and adsorbate is greater than 4 A, the flexibility of the
framework has a small influence on the diffusion. However, the effects of diverse functional
groups, metals, and linkers on the mobility of various flexible ZIF MOFs and the diffusivity of
adsorbate molecules are complex. To address this issue, ML methods were used on 14 different
adsorbates in 72 existing and hypothetical flexible ZIFs with SOD topology [229]. The trained ML
approach uses simple, readily available input information to train predictive models that bypass
extensive computational steps and directly estimate the diffusivity of penetrants in newly
functionalized ZIF-8 variants.

The breathing behavior of some MOFs has been studied using MD simulations. For
example, the flexible MIL-47(V"V) was investigated using the CVFF force field. MD simulations
were conducted at 300 K and at a variety of external hydrostatic pressures up to 350 MPa. The
simulation results demonstrated the phase transition in MIL-47 under diverse pressure range is
in good agreement with X-ray powder diffraction results [230]. Framework breathing was also
studied in the presence of adsorbates at different loadings [231,232]. Using NVT and NPT MD
simulations, along with GCMC simulations, the flexible IRMOF-74-V was studied with Ar as an
adsorbate, using the CVFF force field. The results successfully predicted the deformation of the
MOF, aligning with experimental adsorption and X-ray diffraction data [231]. In the second
report, MD simulations were utilized to explore the breathing behavior of the flexible MIL-53(Cr)
across a range of CO; uptakes. The predicted unit cell parameters for MIL-53(Cr) exhibited
excellent agreement with the results from in situ X-ray diffraction experiments [232].

In addition, it is worth mentioning a distinctive and transferable forcefield, VMOF, that
was developed specifically for metal-organic frameworks to accurately determine a broad range
of properties related to lattice dynamics, such as phonon spectra, thermodynamic and
mechanical properties, free energies, heat capacities and bulk moduli [233]. This approach,
tested on MOFs such as IRMOF-1, UiO-66, and MOF-74, can help facilitate high-throughput
computational screening of vibrational properties across a diverse range of MOFs.
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4.4 Machine learning methods to facilitate classical simulations

Recent advances in machine learning are providing new routes to solving some of the
most challenging problems in classical molecular simulations. In this subsection, we discuss two
recent notable ML developments for molecular simulations of MOFs, i.e., ML force fields and
using ML to obtain partial charges. These developments help tackle the traditional tradeoff
between computational expense and accuracy of the simulation. Current challenges and future
directions are also discussed.

Classical Force field Machine Learning Potential
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Figure 13. Comparison of classical force fields and machine learning potentials.

4.4.1 Machine learning force fields

The purpose of a force field is to accurately reproduce the potential energy surface of a
system (Figure 13). As described above, classical force fields can be obtained by fitting the
potential energy surface obtained from ab initio calculations to a certain functional form. The
functional form can be physically rigorous, such as the Coulombic potential, or it can be semi-
empirical, such as the 12-6 Lennard Jones potential, where the (1/r)® term was derived from
London dispersion forces, but the (1/r)? term was chosen for convenience to approximate Pauli
repulsion. Restriction to a pre-defined functional form may limit its applicability to describe
certain effects, such as possible quantum diffraction effects, many-body interactions, and
reactions, where special treatments are needed.

With the capability to approximate any functional form, ML models, such as neural
networks [234] and Gaussian Process Regression [235], have been developed to predict the
potential energy surface of a system with the accuracy of DFT but much faster. Figure 13 shows
a comparison between classical force fields and ML potentials. For a standard ML potential
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model, the general idea is that, by training the ML model with data points from quantum
mechanical calculations, the ML model is able to predict the system energy and atomic forces
with ab initio level accuracy, based on the local environment of each atom as input. ML potentials
inherently account for any quantum effects, many-body effects, and possible chemical reactions
that are encoded in the ab initio training data.

ML potentials have become prevalent in the past few years largely due to the availability
of user-friendly software and tools [234,235] and increased computational power to generate
enough ab initio training data. ML potentials for MOF systems have appeared very recently. To
accurately model molecular diffusion in flexible MOFs, Achar et al. [236] developed a hybrid
simulation scheme by applying different modeling strategies to guest-guest, guest-host, and
intra-host interactions. They developed a ML potential to describe the intra-host interactions for
UiO-66, while for guest-guest and guest-host interactions, a conventional LJ potential was
retained to reduce the computational expense. They found that this hybrid modeling scheme can
reliably account for the motion and flexibility of the MOF structure in response to the presence
of adsorbate molecules such as Xe and Ne. In their work, they applied a two-phase training
scheme, with the first stage focused on training the model to accurately predict the energy-
volume response, and with the second stage focused on generating structures at elevated
temperatures to explore more of the configurational space of the materials. Indeed, how to
efficiently generate training data for ML potential model development is still an open question.
Vandenhaute et al. [237] built an incremental learning workflow to train a ML potential for
framework materials. The workflow implements an on-the-fly training strategy for the ML
potential, with training data iteratively collected from parallelized quantum mechanical and
metadynamics simulations. The metadynamics component in the workflow helps to explore the
free energy landscape and learn the structural phase space of flexible MOFs in a more effective
manner. With only a few hundred single-point DFT evaluations per material, an accurate and
transferable ML potential based on an equivariant neural network was obtained. Similarly, guest-
host interaction energies can also be predicted by ML potential models. Yang et al. [238]
developed a deep ML model to learn the potential energy surface of guest molecules near a
framework structure. Their model takes the transformed distance between adsorbate molecules
and the framework as input features and predicts the guest-host energies with DFT level
accuracy. They validated their ML potential by comparing computed Henry’s coefficients using
the ML potential and a reference force-field fitted against the DFT data in their previous work
[239].

The development of ML potentials for MOF systems is still in its infancy. Further research
in this area is necessary to solve several outstanding challenges. For example, compared to
classical force fields where the functional forms are physically meaningful, an ML potential works
as a black box. Building an interpretable ML potential is still an ongoing goal in the field. In
addition, most of the current ML potentials use each atoms’ local environment (within a certain
cut-off) as input features. A full understanding of how the long-range interactions are accounted
for and what role they play in controlling the system properties is still lacking [240,241].

35



Regarding transferability of ML potential models across different material types, several research
groups have attempted to develop so-called foundational or universal ML potentials, such as ANI-
1 [242], MEGNet [243], M3GNet [244], and CHGNet [245]. Yu et al. [246] applied the MEGNet
model to predict the mechanical properties of defective MOFs. However, whether these
universal models can be reliably applied to MOF materials in general is still unclear. Future efforts
could be focused on systematic benchmarking of existing universal ML potentials against classical
force fields (e.g., UFFAMOF [247]), reference ab initio data, and experimental results [248]. It
would also be beneficial to develop a new universal ML potential model for MOF materials or
fine-tune existing models using MOF training data. Finally, we note that molecular simulations
using ML potentials are generally slower than those using classical force fields. However, they
are well suited for GPUs, and simulation codes that use GPUs may be very helpful in expanding
the usage of ML force fields. These efforts should allow researchers to simulate systems at larger
spatial and time scales at DFT-level accuracy.

4.4.2 Partial charges from machine learning

Partial charges, as discussed above, can be calculated through two main approaches: DFT
calculations and empirical methods. DFT, while highly accurate, tends to be time-consuming.
Empirical methods, on the other hand, are faster, but they are sometimes less accurate. ML
presents an elegant solution that has the potential to predict partial charges for MOFs with DFT-
level accuracy, yet with significantly reduced computation time. Zou et al. developed the
multilayer connectivity-based atom contribution (m-CBAC) method [249], which assigns charges
based on averaging the DDEC charges for atom types with the same connectivity pattern. It is
based on the CBAC method [250], but it is trained on a significantly larger set of MOFs (2700 vs.
43) and uses three layers of connectivity instead of one (0 — central atom, 1 — central atom and
nearest neighbors, 2 — central atom, nearest neighbors, and 2" nearest neighbors). When
assigning a charge to a target MOF atom, the system first searches for the 2"d nearest neighbor
connectivity pattern, which provides the most accurate charge assignment. If this is unavailable,
it moves to the 1%t and then the 0™ layer, which is less accurate but broadly applicable. The
method was also tested for accuracy by predicting CO2 Henry’s constants for MOFs not included
in the training set and demonstrated better accuracy compared to the EQeq method. Charges
assigned using the m-CBAC approach were discovered to closely mirror DDEC charges, as
indicated by a Pearson correlation coefficient of 0.99. The computational resources needed for
this approach are comparable to those of the EQeq method, but substantially lower than those
required for DFT calculations. Raza et al. created and trained a message passing neural network
(MPNN) to learn representations of local bonding environments within MOFs and to predict the
partial charges on the atoms of a MOF under a charge neutral constraint [251]. The crystal
structure of the MOF, represented as an undirected graph with node features encoding the
chemical elements, is directly inputted into the MPNN. The MPNN builds features of the local
bonding environments by passing information between bonded atoms. It was trained and
evaluated using 2266 MOFs with DDEC-assigned charges. The MPNN predicts the partial charges
with a mean absolute deviation from DDEC charges on the test set of 0.025, while requiring
significantly less computational time than performing electronic structure calculations to derive
the charges.
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Kanacharlapalli et al. proposed another ML method, referred to as PACMOF, for
predicting partial charges trained using a random forest algorithm based on 950 MOFs with DDEC
charges [252]. In addition to local bond environment features, they also considered elemental
properties such as ionization potential and electronegativity, which ensured good accuracy (MAD
= 0.026, correlation coefficient = 0.99). The model was validated using a different set of MOFs
comparing not only charges but also the simulated adsorption isotherms.

Partial charges, while not an experimental observable, play an important role in classical
force field descriptions of the energetic interactions in MOFs. Therefore, comparing adsorption
isotherms generated using ML-generated partial charges forms an essential part of the
evaluation and refinement of different methodologies for determining partial charges. CRAFTED
is a database of simulated isotherms that explores the impact of different force fields and charge
methods (including PACMOF and MPNN) on CO; and N3 adsorption in MOFs [253]. Burner et al.
reported REPEAT charges for about 280,000 experimental and hypothetical MOFs [254], and this
database also provides extensive and diverse training and testing data for building new ML
models for partial charge prediction.

37



5. Conclusions

This review has provided an overview of the essential role of computational research in
understanding MOF properties and phenomena by focusing on three widely used molecular
modeling methods: density functional theory, Monte Carlo simulations, and molecular dynamics
simulations. We explored the properties that can be calculated from DFT, examining the
distinctions between periodic and cluster methodologies and to which problems they can be
applied. We emphasized the importance of DFT as a standard method for conducting the initial
steps of simulations involving MOFs, such as accurate geometry optimization or generating
partial charges, for subsequent studies employing classical methods. Moreover, we discussed the
problem of framework flexibility and demonstrated how DFT can aid in predicting structural
transformations and thermodynamic properties using energy-volume relations and phonon
analysis. We also explored the potential of cluster models of metal nodes in MOFs for
understanding the nature of host-guest interactions and catalytic reactions. Additionally, we
discussed accessible and efficient methods for generating ab-initio derived force fields, which
hold significant promise for applications in classical simulations. In conclusion, DFT can be
appreciated from two distinct perspectives: as a valuable tool for conducting an initial analysis of
MOF structures prior to subsequent simulations and as a method capable of elucidating
phenomena not encompassed by classical approaches. This dual functionality highlights the
versatility and significance of DFT in the field of MOF research and its vital role in driving progress
and deepening our understanding of these remarkable materials.

For classical simulations, we discussed the importance of force field selection for
simulations of adsorption and diffusion. We highlighted the available databases of materials
suitable for high-throughput screening and addressed potential challenges that may arise. The
classical methods of MD and MC are complementary. MD is particularly useful for investigating
dynamic processes such as diffusion, conformational changes, and the response of materials to
external forces. For instance, MD simulations can predict diffusivities of various adsorbates
within the MOF, shed light on diffusion mechanisms and pathways, and monitor changes in MOF
or adsorbate structures over time. Importantly, MD simulations can account for the flexibility of
MOFs, revealing how structural fluctuations may affect properties such as stability and phase
transitions and provide insights into how MOFs deform under external stresses or during
adsorption/desorption processes. On the other hand, by employing a stochastic approach, MC
simulations can efficiently explore a wide range of configurations, making them well-suited for
adsorption simulations to predict isotherms and heats of adsorption. Together, MD and MC
simulations offer a comprehensive way to explore MOF behavior, encompassing both dynamic
and equilibrium properties. By combining the strengths of these two methods, researchers can
gain a more complete understanding of the mechanisms and phenomena occurring in MOF
structures and hence design new materials with tailored properties for various applications.

Machine learning techniques are playing an increasing role in both quantum chemical and
classical modeling, allowing high-accuracy predictions at reduced computational costs. Within
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the context of DFT, ML methods can predict oxidation and spin states. Additionally, ML
techniques can monitor geometry optimizations to ensure convergence to meaningful resulting
structures. Within the realm of classical simulations, ML methods can be employed to achieve
high-accuracy interaction models through ML force fields and by predicting ab initio quality
partial charges. Furthermore, these techniques can assist in screening databases to determine
the water and thermal stability of MOFs and can be trained to predict other properties of interest.

As MOF research continues its rapid evolution, modeling and simulation strategies need
to evolve in parallel. An important challenge is the inherent flexibility of MOFs, which is routinely
overlooked or inadequately addressed in simulations, in particular in the field of adsorption. The
importance of flexibility spans from small changes such as the lability of modulators and rotation
of polar functional groups in zirconium MOFs, which can impact the strength of adsorption of
small molecules, to the rotation of the linkers that might facilitate diffusion and packing of guest
molecules. Larger-scale structural flexibility of MOFs, exemplified by phenomena such as
breathing associated with significant volume changes, presents a challenge for standard
adsorption simulation protocols. Within these challenges naturally lie opportunities. The
immediate frontier is to integrate MOF flexibility within the simulation protocols. Classical force
fields can be refined and expanded upon to better capture these dynamics. Moreover, with the
advancement of ML techniques, there is a significant promise in developing universal ML
potentials for MOFs that can account for framework flexibility and MOF-adsorbate reactivity with
the accuracy of quantum methods. By leveraging such methodologies, and with the aid of
modern computational advancements like GPU acceleration, there is potential to achieve an
unprecedented level of accuracy in predicting MOF behavior under various conditions.

Over the past two decades, computational tools have played a pivotal role in MOF
research, facilitating the rapid development and characterization of new MOF materials for
specific applications. As we move forward, the next frontier for MOF modeling is not merely
about refining simulations but delving deeper to understand the behavior of these materials
under diverse conditions. The growing accessibility and reliability of computational methods,
from density functional theory to Monte Carlo and molecular dynamics simulations, combined
with the integration of novel ML techniques and advanced computational resources, are set to
redefine the landscape of MOF research. Through this review, we aim to ease the transition of
these computational modeling techniques into the toolkits of emerging researchers in the
exciting field of MOF research.
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