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Abstract 

This review spotlights the role of atomic-level modeling in research on metal-organic frameworks 
(MOFs), especially the key methodologies of density functional theory (DFT), Monte Carlo (MC) 
simulations, and molecular dynamics (MD) simulations. We discuss how periodic and cluster-
based DFT calculations can provide novel insights into MOF properties, with a focus on predicting 
structural transformations, understanding thermodynamic properties and catalysis, and 
providing information or properties that are fed into classical simulations such as force fields or 
partial charges. We also describe classical simulation methods, highlighting force field selection, 
databases of MOFs for high-throughput screening, and the synergistic nature of MC and MD 
simulations. By predicting equilibrium thermodynamic and dynamic properties, these methods 
offer a wide perspective on MOF behavior and mechanisms. Additionally, we discuss the 
incorporation of machine learning (ML) techniques into quantum and classical simulations. These 
methods can enhance accuracy, expedite simulation setup, reduce computational costs, as well 
as predict key parameters, optimize geometries, and estimate MOF stability. By charting the 
growth and promise of computational research in the MOF field, we aim to provide insights and 
recommendations to facilitate the incorporation of computational modeling more broadly into 
MOF research.  



 
 

2 
 

1. Introduction 

Reticular materials, such as metal-organic frameworks (MOFs) and covalent organic 
frameworks (COFs), have attracted significant attention over the past two decades due to their 
exceptional properties and diverse applications. These materials are characterized by their highly 
ordered porous structures, which can be precisely tailored to suit a wide range of applications, 
including gas storage [1–4], separation [5], and catalysis [6–9]. The field has seen considerable 
progress since the early years of the 21st century, with various research groups reporting the 
synthesis of unique materials. It is worth noting that the study of 3-dimensional coordination 
polymers dates back to the early 20th century, with the well-known example of Prussian blue [10], 
but it was only in the late 1990s that such materials were synthesized with permanent porosity. 
In 2013 the International Union of Pure and Applied Chemistry (IUPAC) provided 
recommendations on the terminology that should be used in reticular chemistry research and 
defined a MOF as a coordination network with organic ligands containing potential voids [11].  

In this review, we explore the role of molecular modeling in MOF-related research, with 
a supplementary focus on how machine learning can augment traditional modeling techniques. 
By highlighting both the strengths and limitations of these approaches, we hope to inspire new 
avenues of research and development in this exciting area of materials science. Through the 
presentation of examples, we showcase the application of molecular modeling methods to tackle 
significant challenges in this field. In doing so, we aim to shed some light on the understanding 
of molecular modeling and machine learning techniques that can be used in MOF research, 
particularly for early-stage researchers and experimentalists who are seeking to enhance their 
grasp of these computational methodologies. Through relevant examples, we demonstrate the 
role of these techniques in addressing critical challenges and as a complementary tool to 
experiment in the discovery of new MOFs for particular applications. 

The organization of this review is as follows: We begin with a historical perspective on the 
synthesis and modeling of MOFs, setting the context for the remainder of the discussion. Next, 
we delve into density functional theory (DFT) and highlight several of its applications in studying 
MOFs. Subsequently, we explore how machine learning techniques can aid in executing DFT. We 
then shift our focus to classical methods, specifically molecular dynamics (MD) and Monte Carlo 
(MC) simulations, to examine thermodynamic and transport phenomena in MOFs, such as 
adsorption and diffusion. The review also provides some remarks on simulation choices for 
classical methods. Further, we explore the integration of machine learning techniques to 
enhance these classical methods. Finally, we conclude with a synthesis of the insights gained and 
a projection of future directions in the field. 

2. Historical Overview 

2.1 Historical Review of the Development and Synthesis of MOFs 

In 1989, Hoskins and Robson pioneered the concept of creating solid, hybrid polymeric 
materials by interlinking metallic centers with tetrahedral or octahedral valency using rod-like 
organic linkers connectors, suggesting the potential for unique structures and large 
interconnected cavities [12]. In a noteworthy development in 1997, the group of Susumu 
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Kitagawa introduced a framework with gas-adsorption capabilities at ambient temperature [13]. 
The properties of this framework allow it to be included in the modern definition of MOF. It is 
best described as a tongue-and-groove (bilayer) configuration, with the chemical formula 
{[M2(4,4′-bpy)3(NO3)4] ⋅ x H2O}n (M=Co, x=4; Ni, x=4; Zn, x=2, bpy=bipyridine). This structure is 
assembled from M(NO3)2 and 4,4′-bpy units. The pore sizes of the dehydrated sample are 
approximately 3 to 6 Å. This material showed the ability to reversibly adsorb CH4, N2, and O2, as 
one of the earliest examples in the new era of nanoporous materials. The first occurrence of the 
term “metal-organic framework” in the literature was in a 1995 paper by Omar Yaghi and Hailian 
Li [14]. In 1999, this same team reported the synthesis of MOF-5 (also known as IRMOF-1), which 
swiftly became one of the most extensively studied MOF structures [15]. In a follow-up paper, 
Yaghi and his colleagues introduced the concept of isoreticular chemistry, allowing the systematic 
expansion of MOF structural design space through varying the organic linkers and the 
connectivity of inorganic nodes [16]. This was a landmark in the design and synthesis of new 
MOFs with customizable properties. Today, there are thousands of MOFs that have been 
reported in the literature, with more than 14,000 frameworks deposited in the Computation-
Ready, Experimental (CoRE) MOF database [17,18] (a more detailed discussion on the CoRE MOF 
database and other pivotal databases in the MOF research community is provided in Section 
4.3.1). We discuss a few well-known MOFs from a historical perspective, as shown in Figure 1.  

Cu-BTC, also known as HKUST-1 or MOF-199, was reported in 1999 by Chui et al. at the 
Hong Kong University of Science and Technology (HKUST) [19]. This framework was presented as 
a material with high surface area and exceptional gas adsorption properties, making it a widely 
studied material for various applications, including gas storage and separation. Synthesis of 
another important framework, Mg-MOF-74 (also known as CPO-27-Mg) [20], focused research 
attention on the concept of an open metal site (OMS), which is a coordinatively unsaturated 
metal node in a MOF that is accessible to guest molecules. OMS enable enhanced chemical 
interactions that can significantly influence the adsorption of various gases, including those with 
dipolar, quadrupolar, and other distinct molecular characteristics. These sites can also serve as 
catalysts. The magnesium OMS in Mg-MOF-74 demonstrates a notable contribution to the high 
gas adsorption capacities of this framework, particularly for quadrupolar carbon dioxide (CO2) 
and other gas molecules that can engage in strong chemical interactions. Moreover, the MOF-74 
structure offers the flexibility to incorporate diverse transition metals, enabling the fine-tuning 
of its adsorption and catalytic properties and making this a platform material for many 
investigations. Similar to IRMOF-1, isoreticular versions of MOF-74 have been synthesized by 
increasing the linker size. As a result, a MOF boasting some of the largest pore sizes ever recorded 
(exceeding 70 Å) was successfully synthesized [21].  
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Figure 1. Timeline highlighting some milestones in the synthesis of new MOFs, featuring their 
respective discovery years. 

The discovery of MIL-53 (MIL = Materials Institute Lavoisier), reported by Gérard Férey 
and his team in 2002 [22], marked a significant milestone by extending MOF chemistry to include 
trivalent CrIII metal ions. In 2004, they showed that the isoreticular AlIII variant of this MOF 
exhibits framework flexibility in response to external stimuli [23]. MIL-53 along with its 
isoreticular but less flexible counterpart, MIL-47(VIV) [24] shows the ability to undergo reversible 
structural transitions, often referred to as breathing behavior, in response to changes in 
temperature, pressure, or the presence of guest molecules. The breathing behavior of MIL-53 is 
attributed to the rotation of its organic linkers, which changes the steric hindrance in its structure 
and allows the framework to adopt two distinct phases: a narrow-pore phase (MIL-53(np)) and a 
large-pore phase (MIL-53(lp)). The transition between these phases is accompanied by significant 
changes in the unit cell volume from 890 to 1430 Å [25]. 

Another important class of MOFs are the zeolitic imidazolate frameworks (ZIFs) which 
share structural similarities with zeolites and were introduced in 2006 by Huang et al. [26]. 
Whereas zeolites are built from Si-O-Si linkages with a bond angle of about 145°, ZIFs are built 
from M-Im-M linkages, where M is typically a metal cation in the 2+ oxidation state and Im is a 
derivative of an imidazolate anion, which serves as a linker (imidazolate, methylimidazolate, 
nitroimidazolate, etc.). In 2006, Yaghi and his collaborators reported the synthesis of a set of 12 
ZIFs with various zeolitic topologies [27]. ZIF-8, an extensively studied ZIF structure, 
demonstrated exceptional chemical stability (7 days in boiling water; 24 h in aqueous sodium 
hydroxide at 100°C) and thermal stability (up to 550°C, in N2 atmosphere). ZIF-8's stability, 
combined with its high surface area and tunable chemistry, has led to its extensive study for gas 
storage and separation applications. ZIF-8 is also considered a flexible MOF due to the gate-
opening phenomenon it undergoes. In this deformation, imidazolate linkers of a 6-member ring 
rotate and increase the pore-limiting diameter (PLD) when exposed to the flow of adsorbate (N2) 
[28] and external hydrostatic pressure (1.5 GPa) [29]. 
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Another subgroup of materials with high stability are Zr-MOFs, which are distinguished 
by the presence of Zr6O8 metal nodes within their structures. The first synthesized framework 
from this group, UiO-66, was reported in 2008 by Lillerud and co-workers at the University of 
Oslo, Norway, which inspired its name (UiO = Universitetet i Oslo) [30]. This MOF is composed of 
12-connected zirconium oxide nodes connected by 1,4-benzene-dicarboxylate (BDC) linkers. Due 
to its high thermal (540°C, in N2 atmosphere) and chemical stability (water and acid stability), 
UiO-66 and its derivatives have been extensively studied for various applications, including gas 
storage, separation, catalysis, and sensing. The discovery of UiO-66 as the 1st member of the Zr-
MOF family has had a substantial impact on the development of new frameworks, making it an 
important milestone in the history of these materials. Another widely studied Zr-MOF, NU-1000, 
was synthesized in 2013 by Omar Farha and Joseph Hupp at Northwestern University (NU) [31]. 
It contains 1-dimensional channel-like hexagonal mesopores and trigonal micropores and, like 
most of the Zr-MOFs, it shows high thermal and water stability. Unlike UiO-66, the metal node in 
NU-1000 is connected by 8 linkers, leaving 4 Lewis acid sites accessible. This results in various 
versions of this framework that differ by a chemical modulator attached to the node (such as 
aquo-hydroxo pairs, formate, acetate, trifluoroacetate, metal atoms, and oxides, etc.) which can 
significantly alter its properties (such as level of hydrophilicity or catalytic activity) [32]. The 
chemically labile nature of the node makes it also an interesting candidate as a catalyst for many 
important reactions, such as the decomposition of nerve agents [33]. Another important Zr-MOF, 
MOF-808, was reported in 2014 by the Yaghi group [34]. It has 6-connected nodes and has been 
shown as a promising candidate for water adsorption (e.g., for water harvesting applications) due 
to its relatively high uptake at low relative humidity [34]. The final Zr-MOF discussed here is PCN-
222 and was synthesized by Hong-Cai Zhou at Texas A&M University in 2012 [35]. This is a 
mesoporous MOF, isoreticular with NU-1000, that displays biomimetic catalytic activity. The 
catalytically active site is a Fe-porphyrin complex, which is incorporated into the linker situated 
on the inner wall of an open channel with a 37 Å diameter. The material demonstrates good 
activity for oxidizing various substrates. The combination of a high density of catalytic centers, 
ultra-large open channels (for MOF standards), and exceptional chemical stability of PCN-222(Fe) 
indicate great potential for creating MOF-based platforms for enzyme-mimicking catalysis. 

The group of Stefan Kaskel from the Dresden University of Technology (DUT) contributed 
to the field of reticular materials chemistry with a range of frameworks. Particularly interesting 
is DUT-49 (synthesized in 2012), which demonstrates the peculiar phenomenon of negative gas 
adsorption (NGA) [36,37], a rare behavior in which the adsorbed gas amount decreases with 
increasing pressure under certain conditions. This unusual property is attributed to a structural 
change in the MOF, which involves a transition between two different pore sizes and is induced 
by strong adsorbent-adsorbate interactions. 

MOFs are renowned for their exceptionally high surface areas (SA), which can exceed that 
of other porous materials such as zeolites and activated carbons. MOF-5, introduced in 1999, has 
a surface area of 3500 m2/g [38]. NU-110, a MOF synthesized in 2012 held the record for the 
highest surface area material (7140 m2/g) [39] until 2018 when it was surpassed by DUT-60 (7800 
m2/g) [40].  
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More recently, the MOF CALF-20 has attracted much attention. While the initial patent 
application was filed in 2014, the material was comprehensively characterized in terms of 
structure and properties by Shimizu and co-workers from the University of Calgary in Canada in 
2021 [41]. CALF-20 is a promising MOF for post-combustion CO2 capture, as it meets the essential 
criteria for an ideal adsorbent, such as high CO2 adsorption capacity, fast kinetics, high CO2 
selectivity, and stability under various conditions. Unlike many MOFs, CALF-20 can tolerate 
ambient moisture or steam, and its synthesis is cost-effective and scalable, using commercially 
available components and environmentally friendly solvents. 

2.2 Historical Review of Molecular Modeling for MOFs 

Throughout the history of MOFs, molecular modeling has played an important role in 
advancing our understanding of these materials (Figure 2). Computational methods have helped 
researchers predict the properties of MOFs, such as their adsorption capabilities or catalytic 
activity. These predictions have informed the design and synthesis of new materials, accelerating 
the discovery of novel structures with improved performance. Molecular modeling has also 
facilitated our understanding of the underlying mechanisms behind unique phenomena in MOFs, 
such as their remarkable structural flexibility and tunable pore environments. Over the years, 
numerous molecular modeling techniques have been employed to study reticular materials, 
including density functional theory (DFT), ab initio molecular dynamics (AIMD), and methods 
based on classical mechanics and statistical mechanics such as molecular dynamics (MD) and 
Monte Carlo (MC) simulations. These approaches have been instrumental in elucidating the 
structural and dynamic properties of MOFs and their interactions with various guest molecules.  

 

Figure 2. Trends in the utilization of various modeling techniques within the MOF field: a 
quantitative analysis based on publication count from Google Scholar (numbers represent 

publications per year). The data was extracted with an academic paper word occurrence tool 
[42]. 

The first articles reporting adsorption simulations in MOFs emerged in the early 2000s. In 
2001 Kawakami et al. [43] utilized multiscale modeling, incorporating force fields and DFT, to 
explore the adsorption of magnetic and nonmagnetic species in a ZnBDC MOF. The authors 
highlighted the potential of nanoporous crystalline materials, such as MOFs, to serve as 
frameworks for controlling the distribution and orientation of absorbed molecular species due to 
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their highly ordered structure. In 2003, the group of Alexander Neimark investigated argon 
adsorption in HKUST-1 using the grand canonical Monte Carlo (GCMC) method and reported an 
excellent agreement of the simulated and experimental adsorption isotherms [44]. They were 
able to identify preferential adsorption sites in the pores of the MOF based on the simulation 
snapshots. This highlights a crucial objective of molecular modeling: to complement 
experimental techniques by offering atomistic-level insights into phenomena that would 
otherwise be challenging through experimental methods alone. The use of extensive quantum-
chemistry calculations in MOF-related research was featured in a significant study published in 
2004 [45], where Sagara et al. used periodic DFT to optimize and derive partial charges for 
IRMOF-1 for subsequent GCMC adsorption simulations of H2. Fragments of MOFs were also 
selected to study the interaction energy of the framework with hydrogen molecules at the MP2 
level of theory. 

Düren et al. investigated the applicability of materials from the IRMOF family for methane 
storage using MC simulations [46] and proposed new, in-silico-designed isoreticular MOFs which 
maximized predicted methane uptake, demonstrating the effectiveness of simulations in guiding 
material design for various storage applications and paving the way for hypothetical MOF design. 
In another early study, Sarkisov et al. used molecular simulation to understand the properties of 
IRMOF-1 by exploring the adsorption and diffusion of methane, normal alkanes, cyclohexane, 
and benzene in this material [47]. Both studies underscore the usefulness of molecular 
simulations in understanding the properties of MOFs and guiding the design of new materials for 
adsorption applications, such as methane storage and separation processes. The diffusion of light 
gases (Ar, CH4, CO2, N2, H2) in IRMOF-1 was also studied by the group of David Sholl [48]. The 
results supported the idea that MOF diffusion coefficients are similar to those in zeolites, 
implying that experimental techniques used for zeolites should also be applicable to MOFs.  

In 2009, Keskin and Sholl reported one of the first computational screening studies 
performed on eight frameworks aimed at finding MOF membranes for gas separation (CO2/CH4, 
CH4/H2, CO4/H2) [49]. This number is modest when compared with the articles published 
nowadays that report simulation results for many hundreds or even thousands of structures. 
However, this early work laid the groundwork for contemporary large-scale screening 
simulations. In 2011, Wilmer et al. presented an extensive screening study on over 130,000 
hypothetical MOFs [50]. They developed a computational approach to generate potential MOFs 
using a library of building blocks derived from known MOF structures. The attributes of each 
MOF, including pore-size distribution, surface area, and methane-storage capacity, were 
calculated. The study led to the identification of over 300 hypothetical MOFs with a predicted 
methane storage capacity superior to any known material and uncovered important structure-
property relationships in the process. The large amount of data generated in such screening 
studies, together with the development of machine learning (ML) methods, has opened new 
opportunities for their application in the study of MOFs. The early work from Tom Woo 
demonstrated that by using machine learning with structural descriptors it is possible to quickly 
identify high-performing MOFs for CO2 capture, reducing the need for compute-intensive 
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screening and making the exploration of vast search spaces feasible for various applications [51]. 
The basics of machine learning methods and their applications to the discovery and design of 
porous materials have been discussed in several excellent reviews (e.g., ref. [52]).  
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3. First-principles computational methods applied to reticular materials 

DFT is a computational method for approximating the solutions to the Schrödinger 
equation, the fundamental equation of quantum mechanics. For a given arrangement of atoms, 
DFT allows for the calculation of the energy, enabling the search for configurations that minimize 
the energy, as well as the identification of saddle points (energy barriers) on the potential energy 
surface. The method can provide information on the electronic structure of atoms, molecules, 
and materials (Figure 3). DFT is rooted in the Hohenberg-Kohn theorems [53], which establish 
that the ground-state properties of a many-electron system are uniquely determined by its 
electron density. Thus, in contrast to methods such as Hartree-Fock and its derivatives which 
require solving the Schrödinger equation for a multitude of interacting electrons, DFT simplifies 
the computational task significantly by considering the energy of the system to be a functional of 
the electron density alone. An essential development in the practical application of DFT is the 
Kohn-Sham equations [54]. Introduced by Walter Kohn and Lu Jeu Sham, these equations present 
a method for converting the complex many-body problem into a set of single-particle equations. 
In the Kohn-Sham approach, the many-electron system is represented as a system of non-
interacting electrons (an auxiliary system) that have the same ground state electron density as 
the actual system. Each electron in this auxiliary system moves in an effective potential, 
consisting of the classical electrostatic potential due to the nuclei and the other electrons, but 
this effective potential only considers the other electrons in a mean-field sense.  In addition, the 
electrons experience what is known as the exchange-correlation potential, which encompasses 
the complex effects of electron-electron interactions. Unfortunately, this exchange-correlation 
functional is not known exactly, and approximations must be made. Solving these equations 
yields a set of Kohn-Sham orbitals and their energies, which provide valuable information about 
the electronic structure of the system.  

When using DFT, the user must make several crucial decisions related to the 
approximations that will be made. Firstly, the user must choose an appropriate exchange-
correlation functional. There are many families of functionals, including local density 
approximations (LDA), generalized gradient approximations (GGA), and hybrid functionals, each 
with its strengths and weaknesses, computational cost, and applicability to certain problems. 
Secondly, the user must select a basis set, which is a set of functions used to expand the Kohn-
Sham orbitals. Choosing a basis set is a trade-off between computational cost and accuracy. 
Larger basis sets provide more accurate results but at a higher computational cost [55]. We refer 
the interested reader to standard textbooks on DFT for further detail [56,57]. 



 
 

10 
 

 

Figure 3. Applications of DFT calculations in the field of MOFs. 

 

DFT has proven to be a valuable computational tool for studying a wide range of materials, 
including reticular materials such as MOFs. In practice, DFT calculations can be performed using 
two main approaches: plane wave basis functions and localized orbital basis sets. The plane wave 
approach represents the wavefunction and orbitals as a superposition of periodic plane waves, 
which is naturally suitable for studying periodic systems. Historically, it was applied to such 
systems as metals, semiconductors, or metal oxides and was most popular among physicists to 
study the structural and electronic properties of materials. On the other hand, the localized 
orbital approach employs a set of atom-centered basis functions (such as Gaussian or Slater 
functions) which are finite in extent and localized around atomic nuclei. This approach is more 
appropriate for non-periodic systems and was usually applied by computational chemists to 
study the properties of molecules [55]. Each of these two DFT approaches has its own strengths 
and limitations, depending on the nature of the system being studied and the specific scientific 
questions being addressed. MOFs, being periodic crystals but composed of discrete metal nodes 
and linkers, may be considered a kind of hybrid between molecular systems and classical period 
solids. Thus, both methods have been successfully applied in computational studies of MOFs. 
Figure 3 provides an overview of how DFT calculations within both approaches can be helpful in 
calculations and simulations for studying the use of MOFs in energy-related applications.  

3.1 Geometry optimization 

Often the first task in understanding a system is to obtain its lowest energy geometry. 
This can also be useful in preparing MOF structure for further simulations (either quantum 
mechanical or classical). Thus, optimizing the geometry of a MOF structure is often done by 
minimization of the energy and/or forces using DFT. While it is difficult to suggest the exchange-
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correlation (XC) functional that guarantees the highest accuracy, some groups have reported 
benchmark analysis based on a comparison of some structural properties derived from DFT 
calculations, such as lattice parameters, bond lengths, angles, and dihedrals in comparison to 
experimental data [58,59]. The authors emphasized that while no single XC functional 
consistently outperformed others, the selection of a functional should take into account the 
specific characteristics of the MOFs (such as flexibility) under study. They also strongly 
emphasized the importance of including long-range dispersion interactions in DFT calculations, 
either through empirical corrections (Grimme methods [60–63], available in most periodic and 
cluster DFT codes or the Tkatchenko-Sheffler method [64]) or non-local van der Waals density 
functionals (vdW-DF) [65–69]. Including dispersion interactions is needed to predict the correct 
structural phase for some flexible frameworks such as MIL-53 or ZIF-4. A summary of the 
discussed results is presented in Figure 4.  

 

Figure 4. Accuracy of density functionals in predicting lattice parameters of MOFs. Data taken 
from references [59] and [58]. MAD is the mean absolute deviation of the lattice parameters. 

Flexibility in MOFs is related to collective lattice vibrations, known as phonons. Phonons 
extend the notion of local vibrational modes and provide insight into structural deformations. By 
analyzing phonons, one can anticipate how the material will react to temperature changes. The 
vibrations of the atoms in the lattice can contribute to structural changes or even the collapse of 
the MOF structure under certain conditions. Understanding phonon behavior in MOFs can help 
analyze or design materials with desired mechanical properties such as gate-opening [70–74], 
breathing [75,76], structural stability [77], and negative thermal expansion [78]. Phonon modes 
can also affect diffusion of gases in the pores through collective motions of the atoms in 
bottlenecks in the pore structure [79]. 

3.2 Energetic landscape of flexible MOFs 

Calculations of energy-volume relations can provide valuable insights into the structural 
deformations of MOFs, particularly when they incorporate information related to external 
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stimuli. These calculations enable a deeper understanding of MOF response to various conditions 
including temperature, pressure, and presence of guest molecules. Energy-volume relations 
describe the dependence of a material's energy on its volume, reflecting the interplay between 
internal forces and structural changes. By analyzing these relations in MOFs, it is possible to gain 
insight into (i) elastic properties such as bulk modulus, shear modulus, and Young's modulus, 
which are essential for predicting and optimizing MOF mechanical stability and resilience under 
different conditions [80,81]; (ii) structural transitions through discovery and description of 
various phases, such as breathing in MIL-53 [82–84], negative thermal expansion in DUT-49 [85], 
pore opening transformation in JUK-8 [84,86], and contraction in CUK-1 [87]. 

In many cases, the energy-volume profile describes the Helmholtz free energy F with 
contributions from vibrational internal energy and vibrational entropy:  

𝐹𝐹(𝑇𝑇, 𝑉𝑉) = 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷(𝑉𝑉) + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇, 𝑉𝑉) − 𝑇𝑇𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇, 𝑉𝑉), 

where 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 is the DFT energy (with dispersion contribution), 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 is the vibrational internal 
energy (or harmonic phonon energy), 𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣 is the vibrational entropy, and 𝑇𝑇 and 𝑉𝑉 represent 
temperature and volume, respectively. All contributions can be derived directly from the phonon 
partition function which can be obtained using frequencies of phonon modes [88] and applied to 
calculate the thermal dependency of the minimum-energy volume of a framework through the 
quasi-harmonic approximation [89]. Figure 5 illustrates the energy versus volume relationships 
for three MOFs (MIL-53, DUT-49, and JUK-8), thereby shedding light on the structural phase 
transitions they undergo in response to varying external stimuli. In the case of MIL-53, a breathing 
transition is induced by temperature changes, stabilizing the structure in the np phase at lower 
temperatures (global minimum on the red curve), and transitioning to the lp phase as 
temperatures rise (global minimum on the blue curve). DUT-49 exhibits NGA where, due to 
interactions with guest molecules, the system contracts, transitioning from the open phase when 
empty (minimum of the red curve) to the closed phase when the number of guest molecule 
exceeds some threshold (minimum of the blue curve). JUK-8 undergoes a pore opening transition 
from a closed phase (minimum on the red curve) to an open phase (global minimum on the blue 
curve) when exposed to a specific pressure from guest molecules. These examples underscore 
the usefulness of energy vs. volume relations in the analysis of structural phase transitions in 
MOFs. 
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Figure 5. Schematic free energy profiles that explain structural phase transitions: breathing in 
MIL-53, NGA in DUT-49, and pore-opening in JUK-8. The red lines represent free energy without 

the contribution of any stimulus (temperature, pressure, chemical potential); the blue lines 
represent the free energy under the influence of temperature (MIL-53, narrow to large pore 

transition), number of guest molecules present in the pores (DUT-49, large to contracted pore 
transition), and pressure of adsorbate (JUK-8, formation of new stable phase). Data taken from 

references: [82,84,85]. 

 3.3 Interactions of MOFs with guest molecules 

DFT methods have proven to be valuable tools in examining the interactions of guest 
molecules with MOFs, especially when there are strong and specific chemical interactions beyond 
weak physisorption. As highlighted in the introduction, MOFs with Zr6O8 nodes are promising 
materials for many potential applications including carbon capture and water harvesting, and 
interactions of these molecules with zirconium nodes exhibit interesting and sometimes 
unexpected behavior. Grissom et al. studied this problem by performing systematic infrared 
spectroscopic studies, which together with DFT calculations [90] showed that CO2 adsorption in 
UiO-66 involves two main binding processes: hydrogen bonding with μ3-OH groups inside the 
tetrahedral pores and through more typical dispersive interactions. The enthalpy of adsorption 
for hydrogen-bonded and dispersion-stabilized CO2 species was found to be -38.0 and -30.2 
kJ/mol, respectively. This example highlights how comparing calculated and measured infrared 
frequencies can be a useful method to validate computationally predicted host-guest 
interactions. The authors showed that different adsorption modes are related to different 
frequencies of CO2 asymmetric stretching mode, with stronger interaction associated with larger 
redshift relative to bulk CO2 (10 and 14 cm-1 for dispersion-stabilized and bonding with μ3-OH 
groups, respectively). This can be explained by the effect of charge transfer between the CO2 

oxygen atom and the adsorbent, causing a weakening of the C-O bond and reducing the 
associated vibrational frequency (in the harmonic approximation the energy is a linear function 
of the frequency). Potential binding of CO2 on open metal sites in Zr-MOFs associated with 
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missing linker defects was also predicted by DFT calculations, with an even higher adsorption 
enthalpy of -57 kJ/mol. 

In a related study, Rayder et al. examined CO2 adsorption on the 6-connected Zr node of 
MOF-808 [91]. They discovered that changing the modulator attached to the node can induce 
monodentate binding, deviating from the usual bidentate binding (Figure 6). Monodentate 
binding opens up a Zr site for possible CO2 chemisorption. The frequency shift of the stretching 
mode of chemisorbed CO2, as calculated using DFT, aligned well with the experimental results. 
Tan et al. highlighted a similar phenomenon [92] and based on the observation of a significant 
infrared band in the 1700-1650 cm-1 range of experimental spectra, they proposed a new 
perspective on defect termination in the MOF UiO-66. With periodic DFT calculations, they 
suggested the presence of unidentate COO- groups from the formate modulators stabilized by H-
bonding with a terminal water molecule. Contrary to the assumption that modulator COO- groups 
bind tightly with two Zr sites via bidentate coordination, it was shown that water readily inserts 
and breaks one of the Zr-O-C bonds, forming a detectable C=O absorption band above 1650 cm-

1. The high catalytic activity observed in defective UiO-66 may be attributed to its ability to easily 
add and remove water molecules.  

Vibrational frequencies calculated by DFT may show systematic deviations from 
experimental values, and this is typically addressed through the application of an empirical 
scaling factor. One way to obtain the scaling factor is to take the ratio of a well-known, relevant 
experimental frequency (like the bulk CO2 stretching mode at 2349 cm-1) to the calculated DFT 
value. Alternatively, one can consider using a database of scaling factors developed by the group 
of Donald Truhlar [93,94] (note that there are different scaling factors for comparing infrared 
frequencies with experiment and for thermochemistry). 

 

Figure 6. Change of CO2 stretching mode frequency calculated by DFT for MOF-808. 
Comparison of calculated and measured frequencies provided an explanation of the adsorption 
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mechanism observed in experimental infrared spectroscopy. The frequencies taken from the 
reference [91]. Carbon atoms are brown, hydrogen white, oxygen red, zirconium green. 

 The evaluation of interaction energies typically necessitates the calculation of both the 
enthalpy and free energy associated with the process. They are typically obtained from thermal 
energies and entropies. The contributions from low frequencies introduce significant noise when 
applying the rigid-rotor harmonic approximation (as the vibrational entropy asymptotically 
reaches infinity when frequencies approach 0). To overcome this limitation, a quasi-rigid-rotor-
harmonic-approximation (quasi-RRHO) was proposed by Stefan Grimme, in which, for the 
frequencies lower than the selected cutoff (usually between 50 and 150 cm-1), the entropy is 
calculated as the combination of vibrational and rotational entropies [95]. For systems containing 
more than 300 atoms, this approach can change the free energies up to 15 kJ/mol. Similar 
improvement is observed when the quasi-RRHO approximation is applied in adsorption enthalpy 
calculations [96], which are of great interest in the MOF simulation community. Moreover, when 
using an implicit solvent model or considering various configurations of reacting species, it is 
crucial to also account for solvation and configurational entropies [95,97]. GoodVibes is a 
versatile Python tool that calculates thermochemical data from quantum chemistry calculations, 
accounting for all the issues described in this paragraph. With automated features, it saves 
researchers time, incorporates valuable corrections, and prevents human errors in analyzing 
large numbers of output files [98]. 

 3.4 Catalysis 

DFT has emerged as a powerful tool for studying and predicting the catalytic behavior of 
MOFs, as well as unraveling the intricate structure-property relationships that underlie catalytic 
processes. In a typical application, the researcher postulates a set of reaction intermediates and 
tries to optimize their geometries using DFT. Then saddle points connecting the intermediates 
are located to provide the transition states and the energy barriers for the proposed reaction 
mechanism. For example, Figure 7 shows a simple reaction pathway for the MOF-catalyzed 
hydrolysis of the chemical warfare agent simulant DMNP, as well as the uncatalyzed reaction 
[99]. The free energy diagram illustrates that the barrier for the MOF-catalyzed reaction 
associated with the transition state TS2 (measured as the free energy difference between TS2 and 
the intermediate I1) is significantly lower that of the uncatalyzed reaction (measured as the free 
energy difference between TS2 and R). Additionally, the reaction free energy diagram shows that 
in the distorted node, the 1st transition state TS1 (related to the dehydration of the node) is not 
present due to prior thermal activation. Spectroscopic properties, such as IR spectra can also be 
calculated for the intermediates as in Figure 6 for comparison with experiment. Transition states 
can be calculated with saddle-point searching methods such as nudged elastic band (NEB) [100–
102], dimer method [103,104] or Berny algorithm [105]. 
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Figure 7. Free energy diagram for reaction pathway of DMNP hydrolysis using two types of Zr 
clusters in NU-1000 MOF, compared to the uncatalyzed scenario. Figure recreated based on the 
data from reference [99]. R – reactant, TS – transition state, In – intermediate state, P – product. 

This approach has allowed researchers to optimize MOF-based catalysts for a wide variety 
of energy and environmental applications, including hydrocarbon activation, toxic substance 
degradation, CO2 reduction, and cross-coupling reactions. To fine-tune the catalytic performance 
of MOFs, DFT calculations have been utilized to investigate two crucial aspects in the design of 
MOF catalysts. The first aspect is the active site engineering, which typically involves tuning the 
coordinatively unsaturated metal sites and their coordination environment on the metal nodes. 
For example, previous studies have leveraged both the plane wave [106–113] and localized 
orbital [109,114–117] approaches to explore the optimal combination of the metal site and its 
surrounding ligands for enhanced C−H bond activation. The second aspect is tailoring the 
surrounding pore structure [118], especially the pore surface functionality and size. Well-defined 
pore structures in MOFs can induce a confinement effect that restricts the movement and 
orientation of guest molecules within the confined space, altering their electronic and chemical 
environment, and thereby significantly enhancing catalytic activity and selectivity. 

Compared with the plane wave approach, the localized orbital approach is more 
commonly used for engineering the active sites of MOF catalysts due to its higher computational 
efficiency, particularly in the search for transition state structures to calculate energy barriers in 
a catalytic process. However, the cluster approach does not include information on the 
surrounding pore structure and the resulting confinement effects, which can result in significant 
errors in the calculation of reactant and product binding energies, particularly in MOFs with 
smaller pores. For instance, in our recent study [119] on the hydrolysis of a nerve agent using Ti-
MFU-4l, disregarding such confinement effects resulted in a 72 kJ/mol underestimation of the 
binding energy of the nerve agent on the reaction center, underscoring the plane wave 
approach's comparative advantage in estimating the confinement effect in MOFs [119]. 
Additionally, the localized orbital approach typically employs cluster models truncated from 
periodic models, which can result in ground spin states that are inconsistent with that in periodic 
models, particularly for MOFs with antiferromagnetic transition metal pairs [120]. In addition to 



 
 

17 
 

these two approaches, the QM/MM (quantum mechanics/molecular mechanics) approach is an 
attractive strategy to model MOF catalysts. This approach treats the reaction center using 
quantum mechanics methods like DFT, while the remaining parts are treated using classical 
molecular mechanics methods, providing a reasonable compromise between accuracy and 
efficiency [121,122]. It is surprising that QM/MM is not used more frequently in modeling MOF 
catalytic processes. 

There are several other factors that should be carefully considered when performing DFT 
calculations for MOF catalysts. First, the choice of exchange-correlation functional can 
significantly impact the accuracy of DFT calculations. Some widely used functionals include the 
GGA functionals like PBE, hybrid functionals like B3LYP, TPSSh, and PBE0, and the family of 
functionals developed by the group of Truhlar, such as M06-L, M06-2X, and MN15. It is a good 
practice to test multiple functionals using experimental or high-accuracy computational data as 
benchmarks to identify the most suitable functionals for specific applications. Second, the 
Hubbard +U correction [123] for transition metals is typically necessary for the plane wave 
approach to account for strong on-site electron-electron interactions not well-described by 
standard DFT exchange-correlation functionals [124,125]. The U value is typically determined by 
benchmarking against experimental measurements or employing higher-accuracy computational 
data to ensure an accurate representation of the properties of interest. Third, similar to the case 
of flexibility, the van der Waals interactions can play an important role in MOF catalysis systems, 
requiring accurate treatment using dispersion-corrected DFT methods described above. Finally, 
the effects of solvents or co-catalysts on performance in MOF catalysis systems need to be 
considered, which can be achieved using implicit solvation models like the polarizable continuum 
model (PCM), explicit solvent simulations, or a combination of the two [126]. It is always highly 
recommended to consult the relevant literature to determine the standard computational 
methods for the systems of interest. 

3.5 Generation of force field parameters 

Beyond predicting reaction intermediates and transition states and analyzing the 
formation and breaking of chemical bonds, DFT calculations can also be employed to generate 
force fields for both molecules and frameworks, enhancing the understanding and prediction of 
adsorption behavior in complex systems and facilitating classical adsorption simulations such as 
GCMC. QuickFF is a user-friendly method for generating force fields based on DFT calculations 
with a strong focus on MOFs [127]. QuickFF input data consists of ab-initio equilibrium 
geometries and a Hessian (it is used in vibrational frequency calculations) of smaller building units 
(linkers and metal nodes), and it uses simple mathematical expressions to represent the 
interatomic potential. The protocol was shown to be effective on a large set of organic molecules 
and MOFs, like MIL-53(Al) and MOF-5, generating accurate force fields for their periodic 
structures. This accuracy was confirmed based on the precision of molecule geometries, the unit 
cells of the MOF structures, and the vibrational frequencies. Notably, QuickFF is designed for 
parametrizing intra-molecular and intra-framework interactions, such as bonds, angles, and 
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torsions, rather than long-range interactions like van der Waals or Coulomb. QuickFF has been 
implemented as an accessible Python code and is conveniently available online. QuickFF was 
recently updated to be able to use periodic ab-initio input data, and an extension to the energy 
expression was developed, including anharmonic bond and bend contributions together with the 
cross terms [128]. QuickFF was successfully used in a wide range of applications, including the 
analysis of phase transitions in COFs [129], the mechanical stability of UiO-66 [130], contraction 
of CUK-1 [131], and thermal expansion in a large group of MOFs [131].  

Ab-initio methods are commonly used in generating partial atomic charges for use in 
classical simulations. There are two general approaches for generating partial charges from DFT: 
electrostatic potential fitting and electron density partitioning. Here, we highlight two methods 
that are commonly applied in MOF studies: density-derived electrostatic and chemical (DDEC) 
[132–136] charges and repeating electrostatic potential extracted atomic (REPEAT) charges 
[137]. DDEC is a density partitioning method that allows for the determination of atomic partial 
charges, optimizes them to be chemically meaningful, and reproduces the electrostatic potential 
far from the high electron density region (far from the atoms, i.e., in the pores of MOFs). This 
method achieves this by optimizing atomic electron density distributions to resemble reference 
states and to be close to spherically symmetric around the atoms. DDEC accounts for different 
types of charge transfer, such as ionic bonding, covalent bonding, charge compensation, and 
dielectric screening, making it versatile and applicable to a wide range of materials. The REPEAT 
method is a simple and robust approach to derive charges in periodic systems based on fitting to 
the electrostatic potential generated by the electron density. It addresses the issue of the ill-
defined offset in the electrostatic potential within periodic electronic structure calculations. This 
method can be applied to both molecular and periodic systems, providing physically reasonable 
and consistent charges. REPEAT charges show stability concerning variations in van der Waals 
radii and in electrostatic potential grid point density, and are particularly useful for simulating 
nanoporous materials like MOFs, offering a straightforward and automatable approach to 
deriving charges for periodic systems. In a benchmark analysis of various empirical and electron-
density-based charges performed by Liu and Luan [138], the authors used DDEC charges as a gold 
standard method emphasizing their transferability and consistency. Importantly, both DDEC and 
REPEAT methods are implemented in such a way that they can work with a variety of DFT 
software and both plane-wave and localized basis sets. 

3.6 Machine learning tools to facilitate DFT calculations 

As demonstrated above, DFT methods have garnered considerable interest due to their 
ability to analyze various phenomena in the MOF field, as well as aiding in the prediction of critical 
features for subsequent classical simulations (see below). This popularity is due to DFT's 
appealing balance between computational cost and accuracy in comparison to the more 
resource-demanding yet accurate correlated wavefunction theory. However, up until now, there 
has been no universally accurate density functional discovered, resulting in some degree of 
uncertainty in the quality of data produced by DFT. Duan et al. developed a density functional 
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recommender approach [139] for selecting the best approximations to improve computational 
chemistry accuracy. The method uses neural networks together with transfer learning and was 
trained on a set of 300 transition metal complexes that are reasonably representative of MOF 
materials. The recommendation is provided based on the vertical spin splitting energy (energy 
between the high and low spin states of the complex) as a reference and was trained with data 
generated by (DLPNO)-CCSD(T) theory [140] that serves as a gold standard in modern 
computational chemistry. The recommender outperforms conventional methods and can be 
applied to various systems and computational methods. The recommender can be used 
alongside traditional high-throughput screening workflows without extra computational cost.  

 

Figure 8. Examples of machine learning methods that can enhance DFT calculations: geometry 
optimization monitoring to discard meaningless structures, spin state and oxidation state 

recommender, and geometry-based heat capacity calculations. 
The same group developed an ML model that can predict ground-state spin states in 

metal complexes [141]. Remarkably, the model predicts the spin states only based on the 
structure. The authors used over 2000 experimentally characterized Fe(II)/Fe(III) complexes and 
employed a B3LYP-trained artificial neural network (ANN) to predict spin-state-dependent metal-
ligand bond lengths and classify experimental ground-state spins based on agreement with the 
ANN predictions. This approach offers a promising alternative to the conventional energy-based 
spin-state assignment using electronic structure theory, with the low computational cost of a 
machine learning model. Jablonka et al. developed an ML model (oxiMACHINE) for predicting 
oxidation states in MOFs [142,143]. Their machine-learning model was trained on chemist-
assigned oxidation states from the Cambridge Structural Database to automatically assign 
oxidation states to metal ions in MOFs. By considering only the immediate local environment 
around a metal center, the model is robust against experimental uncertainties such as incorrect 
protonation, unbound solvents, or changes in bond length. The method demonstrates good 
accuracy and was able to detect incorrect assignments in the Cambridge Structural Database. As 
MOFs garner increasing interest across various scientific fields, this method may prove especially 
beneficial for researchers working with these materials who may not possess a strong chemical 
intuition.  
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Furthermore, ML methods can facilitate geometry optimization tasks in high-throughput 
screening studies. Duan et al. introduced a dynamic classifier that monitors geometry 
optimization in real-time and terminates unproductive calculations [144]. This convolutional 
neural network model uses incremental information from DFT geometry optimization and 
generalizes well across various chemical spaces. By incorporating uncertainty quantification, the 
dynamic classifier can save more than half of the computational resources that would have been 
wasted on failed calculations, demonstrating its transferability and potential for catalyst design.  

Illustrative of the potential of machine learning in the field of MOFs is the work by 
Moosavi et al., who employed a gradient-boosted ML model to predict heat capacity in MOFs 
[145]. Despite a training set of just over 230 MOF structures, the model demonstrated impressive 
accuracy with a root mean squared error below 3%. This study unveiled considerable variability 
in the heat capacity of MOFs, contradicting the common assumption of a constant value for most 
MOFs. Historically, researchers assumed a constant heat capacity for most MOFs when doing 
process level modeling due to a lack of data. However, this innovative model revealed that MOF 
heat capacities can vary between 0.4 and 1.2 J/g/K. This finding has significant implications for 
high-throughput screening studies, particularly when evaluating processes that involve heating 
or cooling of MOFs, where this contribution to the total heat must be considered, such as in 
adsorption cooling. Furthermore, this successful approach aligns with other achievements in the 
realm of ML applications for MOFs, such as predicting band gaps [146] or the bulk modulus [147]. 
Such accomplishments underscore the versatility and broad potential of ML in advancing MOF 
research (Figure 8).  
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4. Classical methods for modeling MOFs 

For systems with a large number of atoms, DFT and other quantum mechanical methods 
can become infeasible due to the high computational costs involved. As an alternative, force-
field-based simulation methods using models based on classical (versus quantum) mechanics and 
statistical mechanics are often employed to calculate thermodynamic and transport properties 
in MOFs, such as adsorption isotherms and the diffusion coefficients of guest molecules (Figure 
9). In these methods, the energies and forces within the system are determined by classical 
potentials that describe interatomic interactions, rather than by solving the Kohn-Sham 
equations. In this section, we discuss two widely used simulation techniques: MD and grand 
canonical Monte Carlo (GCMC) simulations, with a focus on their applications to MOFs. We also 
explain some choices that are required to setup these simulations and review current advances 
in the field where machine learning is applied to assist and enhance the workflow of classical 
simulations.  

 

Figure 9. Schematic representation of problems that can be addressed by MD, MC, or both 
methods. 

4.1 Monte Carlo simulations 

Monte Carlo is a computational technique for calculating the thermodynamic properties 
of molecular or materials systems by sampling configurations of the system based on their 
probability distribution under certain thermodynamic conditions. By averaging over the 
configurations, thermodynamic properties can be calculated such as the number of adsorbate 
molecules in the system at equilibrium, heats of adsorption, virials, and heat capacities of the 
adsorbed phase. For MOF-related applications, gas adsorption is the central property of interest, 
and grand canonical Monte Carlo (GCMC) [148,149] or Gibbs ensemble Monte Carlo (GEMC) 
[150] simulations are naturally suited to serve the purpose. For instance, to simulate pure 
methane adsorption in a MOF [46], the following steps are typically implemented in GCMC: 

1. Set the chemical potential of methane (equivalently, the bulk phase pressure or fugacity), 
the number of unit cells of the MOF to be considered in the simulations (at least twice 
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the interaction cutoff value to avoid self-interactions), and the system temperature. 
Generate an initial configuration of the system to start the simulation. 

2. Pick an MC move randomly from a pool of possible moves such as insertion, deletion, 
translation, or rotation (note: the rotation move is specifically used for non-spherical 
molecules, which might have different orientations within the simulation box) of a 
molecule. The insertion or deletion moves ensure that the adsorbed phase reaches 
chemical equilibrium with the bulk phase, i.e., chemical potentials in both phases are 
equal. The translation and rotation moves ensure that the adsorbed phase reaches 
thermal equilibrium. 

3. Either accept or reject the attempted MC move based on the change in the system energy 
and the Metropolis acceptance rule [151,152].  

4. Repeat steps 2 and 3 until the number of methane molecules (and the energy) in the 
system fluctuates around a constant value. The system is now equilibrated. 

5. Continue steps 2 and 3 and calculate properties of interest by averaging over the 
configurations. 

Figure 10 shows an example of three simulated isotherms of different types in MOFs. 

 

Figure 10. Simulated adsorption isotherms of different types: argon in IRMOF-1 at 78 K (type I), 
water in MOF-LA2-1 at 298 (type V), and nitrogen in MOF-200 at 77 K (type IV). Data taken from 
references: [153–155]. Isotherms are shown on the left with a linear pressure scale and on the 
right with a logarithmic pressure scale. Note the advantages of a logarithmic pressure scale for 

distinguishing differences in the low-pressure data. 
In GCMC, the bulk phase (outside the MOF) is implicitly described by an equation of state 

(EOS) that relates the imposed chemical potential (or fugacity) with the bulk temperature and 
pressure (and composition if a mixture is simulated). In the simplest approach, the ideal gas EOS 
is applied, and the bulk phase fugacity equals the pressure. Alternatively, other EOS can be used, 
with the cubic Peng-Robinson EOS being one of the most common [156]. This EOS is 
parameterized using the critical parameters (temperature and pressure) and acentric factor of 
the fluid, which can be determined computationally for specific molecule models or taken from 
experimental data if there is good agreement between the model and experiment. 
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In comparison, GEMC uses two simulation boxes, both with periodic boundary conditions 
(as also used in the adsorbed phase box in GCMC): the first box models the adsorbed phase with 
the framework structure, and the second box explicitly models the bulk phase. The system 
temperature, pressure, and total number of molecules (sum of a number of molecules in both 
boxes) are set constant for the simulation. If the framework structure is assumed to be rigid, the 
volume of the adsorbed phase box is fixed, while the volume of the bulk phase box is allowed to 
expand or shrink to maintain the pre-defined pressure. During the simulation, in addition to the 
translation moves of molecules within each simulation box, molecules are also transferred 
between the two boxes. Such a transfer move is analogous to the insertion or deletion moves in 
the GCMC scheme. Again, MC moves are repeated until the system reaches equilibrium.  

GCMC, predominantly utilized for gas adsorption, can be applied for simulations in open 
systems allowing exchange of molecules with an implicit bulk reservoir, thus speeding up the 
simulations. On the other hand, GEMC, originally tailored for phase equilibria simulation (vapor-
liquid coexistence curve), demands an explicit simulation of both phases, either gas and liquid or 
bulk and adsorbed phases in adsorption simulations. For more technical details of MC 
simulations, we refer the readers to Refs. [152,157,158].  

Currently, a number of MC simulation packages are publicly available for modeling gas 
and liquid adsorption in MOFs [157]. In general, the software can be divided into two categories: 
CPU-based packages and GPU-based packages. CPU-based packages can use a serial or parallel 
implementation within a CPU framework. Several prominent options for CPU-based MC 
simulations are RASPA [159], DL_MONTE [160], Cassandra [161], and Towhee [162]. GPU-based 
packages are designed to maximize the parallelization capability of GPU machines. This requires 
special implementation of conventional MC algorithms, such as distributing energy calculations 
to multiple cores on the GPU. GOMC [163] is an open-source MC simulation package that utilizes 
the parallelization power of GPU machines to accelerate multiple types of MC simulations. In 
addition to differences in their design framework, these MC packages also differ in their 
capabilities for performing certain statistical samplings and MC moves.  

4.2 Molecular dynamics simulations 

MD simulations predict the time evolution of the positions and velocities of individual 
atoms in a system by integrating Newton’s equations of motion. Therefore, unlike the MC 
method, MD simulations can be used to extract dynamic information from the system. According 
to the ergodic hypothesis, over a long period of time, an MD simulation should lead to the same 
sampling of the phase space as an MC simulation at equilibrium. The dynamic nature makes MD 
simulations particularly useful for predicting transport properties, such as diffusion coefficients 
and relevant non-equilibrium phenomena where a pressure, temperature, or concentration 
gradient is present in the system [158]. 

There are several open-source packages for conducting MD simulations. Some of the 
commonly used examples include LAMMPS [164], NAMD [165], GROMACS [166], RASPA [159], 
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HOOMD-blue [167], and DL_POLY [160]. The first three can take advantage of CPU parallelization 
with GPU acceleration. While NAMD is primarily applied in biological systems, LAMMPS and 
GROMACS are quite often used in MD simulations involving MOFs. Prior to an MD simulation of 
adsorbate molecules in a MOF, it is advisable to randomly distribute the molecules in the pore 
and perform an initial equilibration with a simple NVT-MC algorithm to avoid unphysically high 
forces in the system caused by overlap of the atoms. Such an initialization can be performed with 
any MC software such as RASPA. Alternatively, the energy of the guest molecules can be 
minimized via a geometry optimization algorithm. The simulated system should be equilibrated 
prior to the proper MD simulation (so-called production run). Equilibration is the process of 
allowing the system to reach a stable state before starting the production run, where data is 
collected for analysis. During equilibration, the system's properties, such as temperature, energy, 
pressure, or volume, should reach an equilibrium state where they fluctuate around their average 
values without any significant increase or decrease over a longer time scale. The number of 
equilibration steps needed to achieve this state can depend on factors such as the complexity of 
the system, the interactions between particles, and the initial conditions. Monitoring the 
system's properties (energy, temperature, pressure) during these equilibration steps allows one 
to determine when the system has reached a state of equilibrium. It is important to note that 
there is no fixed number of equilibration steps that applies universally to all systems. Determining 
the appropriate equilibration time often requires careful analysis and judgment based on the 
specific characteristics of the system being simulated. Following the equilibration procedure, the 
MD production run can be conducted for sampling the thermodynamic and transport properties 
of the system. The length of the simulation usually depends on the properties of interest. For 
instance, to calculate the self-diffusion coefficient of adsorbate molecules, the mean squared 
displacement needs to be proportional to time, and hence, the simulation should be continued 
until this requirement is satisfied. The time autocorrelation function of a specific variable can be 
another property that is monitored for adequate sampling. An autocorrelation function usually 
decreases from its initial value, which is one, to zero during a long enough MD simulation 
(relaxation time or correlation time). Therefore, for a proper sampling, the length of the MD 
simulation should be much longer than this relaxation time, and to reduce uncertainty, the 
sampling should be started after the relaxation time [56]. While it is possible to design MC moves 
to sample configurations of the solid framework, MD simulation is more natural and convenient 
to model the flexibility of the framework. Coupled with MC simulations, the hybrid MC/MD 
algorithm has been used to simulate gas adsorption in flexible frameworks [168].  

Here we highlight several important applications of MD simulations to study phenomena 
in MOFs. These include simulations of molecular diffusion in complex pore landscape and 
calculations of the thermal conductivity.  

4.2.1 Diffusion 

Various diffusion coefficients, including the self-diffusion coefficient (also known as the 
self-diffusivity), are among the important physical parameters that can be calculated using MD 
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simulations. To calculate the self-diffusion coefficient of adsorbate molecules in MOFs, the mean 
squared displacement (MSD) of each molecule is tracked during the MD simulation, and the self-
diffusivity can be calculated from the Einstein equation [152,158]: 
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where 𝑑𝑑 is the dimensionality of the system (1,2 or 3), 𝑡𝑡 is time, 𝑁𝑁 is the number of molecules, 
and 𝑟𝑟𝑙𝑙 is the position vector of the 𝑙𝑙-th molecule. While the equation above includes an average 
over the different molecules in the system, a good practice is to further increase the statistics 
and include an average over all possible time intervals 𝜏𝜏: 
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In this equation, 𝑛𝑛 represents the number of timesteps in the simulation, effectively defining the 
simulation's length. The first summation accounts for the number of molecules in the system, the 
second for the average over multiple time intervals 𝜏𝜏, and the third ensures consideration of all 
possible time origins for the MSD calculations for a given 𝜏𝜏 (see Figure 11 for details). The shortest 
possible time interval is the same as the time step Δt chosen for the simulations; however, for 
practical considerations, often a slightly larger interval is selected as the shortest one. The largest 
interval is the total simulation time. 𝑛𝑛 − 𝜏𝜏

Δ𝑡𝑡
+ 1 is the total number of summation terms of a given 

time interval used in averaging over multiple time origins. Note that Ds should be calculated for 
the range in which the MSD is proportional to the time interval [169]. Complete details for 
calculating the self-diffusivity of adsorbate molecules are provided by Sharp et al. [170]. For a 
simulation of a bulk fluid, the number of degrees of freedom (DOF) is typically given by 3N-3, 
where 3 degrees are subtracted to account for the conservation of momentum of the center of 
mass of the system. However, when performing molecular dynamics (MD) simulations with an 
external field (such as a rigid framework or implementing a temperature or pressure control 
algorithm), this conservation is no longer valid, and the number of DOF becomes 3N. This 
distinction becomes important when considering temperature calculations in MD simulations, as 
it can impact the accuracy in calculating certain properties, like diffusion coefficients, particularly 
in systems with a low number of particles (less than 50). Xu et al. [171] provide examples that 
specifically tackle this concern, offering solutions for some of the commonly used MD codes. 
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Figure 11. The time interval (𝜏𝜏) is depicted over stored MD configurations. For each 𝜏𝜏 = 𝑖𝑖 ⋅ Δ𝑡𝑡 
(𝑖𝑖 = 1 to 𝑛𝑛), squared displacements are calculated and averaged to calculate the MSD at that 𝑖𝑖 ⋅

𝜏𝜏. 

Several studies have been performed to determine the self-diffusivities of diverse 
adsorbate molecules in MOFs [170,172]. For instance, Bukowski and Snurr studied the effect of 
topology in 38 MOFs on the diffusion of alkanes [173]. The most interesting aspect of their work 
is the clear demonstration that MOF topology – the arrangement and interconnectivity of pores 
– significantly affects the diffusivity of guest molecules such as propane and isobutane, with their 
self-diffusion coefficients spanning more than two orders of magnitude across different Zr6 MOF 
topologies. This reveals that slight changes in the internal structure of MOFs can dramatically 
alter their physical characteristics, demonstrating the tunability of MOFs. Moreover, the 
observation that the node connectivity influences the propane diffusivities more than the MOF 
pore limiting diameter, especially at low loading, illustrates how complex these materials can be. 
This complexity offers a wide spectrum of potential applications, but also hints at the challenges 
faced in designing and optimizing MOFs for specific uses. 

Experimental screening of MOFs to gain physical and chemical insights into the 
connection between MOF structure and adsorbate diffusion is challenging, but with increasing 
computer speed, it is now possible to use simulation to provide such insights. For example, the 
diffusivities of the chemical warfare agent (CWA) simulant dimethyl methyl phosphonate 
(DMMP) were calculated for 776 hypothetical MOFs with Zr nodes and different pore sizes [174]. 
The data were analyzed using machine learning, which revealed that the node-node minimum 
distance, gravimetric surface area, volume fraction of nodes, and MOF density were the most 
important parameters for predicting the self-diffusivity of DMMP in these MOFs. It was found 
that the same model could be used to predict the diffusivity of sarin in the same structures. 

4.2.2 Thermal conductivity 

The thermal conductivity (κ) is another physical property that can be calculated for MOFs using 
equilibrium NVE MD simulations by analyzing an autocorrelation function:  

𝜅𝜅 =
𝑉𝑉

𝑘𝑘𝐵𝐵𝑇𝑇2 � ⟨𝐉𝐉(𝑡𝑡) ⋅ 𝐉𝐉(𝑡𝑡 + 𝜏𝜏)⟩𝑑𝑑𝑑𝑑
∞

0
 

where V is the volume of the system, kB is the Boltzmann constant, T is temperature, J is the heat 
flux vector, and the angular brackets denote an ensemble average.  J can be calculated as: 



 
 

27 
 

𝐉𝐉(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑟𝑟𝑖𝑖𝐸𝐸𝑖𝑖
𝑖𝑖

= � �𝑣𝑣𝑖𝑖𝐸𝐸𝑖𝑖 + 𝑟𝑟𝑖𝑖
𝑑𝑑𝐸𝐸𝑖𝑖

𝑑𝑑𝑑𝑑
�

𝑖𝑖

 

where ri, Ei, vi are the position vector, energy, and velocity of the i-th atom, respectively 
[152,175–177]. This calculation requires that MOF framework flexibility is taken into account. As 
an example, the thermal conductivity of IRMOF-1 has been studied using MD simulations 
between 200 K and 400 K [178]. MD simulations were performed on variously sized systems 
comprising 1, 8, and 27 unit cells. The findings pointed to a specious correlation between thermal 
conductivity and simulation system size. This underscores the need for a sufficiently large system 
size to minimize potential errors associated with smaller systems.  The size and shape of the pores 
of a MOF together with the presence of adsorbed molecules can also influence the thermal 
conductivity. In a study that concentrated on idealized MOFs, it was found that the thermal 
conductivity of MOFs with small pores decreased in the presence of the adsorbed gas molecules 
[179]. However, the presence of adsorbed gas molecules did not affect the thermal conductivity 
of MOFs with large pores.  

High-throughput calculations were performed by Islamov et al. to calculate the thermal 
conductivities of 10,194 hypothetical MOFs [180]. The results showed that MOFs with four-
connected metal nodes, small pores, and high density have higher thermal conductivities and 
that MOFs with extremely large pores are characterized by ultra-low thermal conductivities. In 
addition, the influence of porous crystal flexibility (pore expansion, as a model for MOF breathing 
transition) on thermal conductivity has been studied in the presence of adsorbed gas [181]. The 
thermal conductivity was calculated for a range of structures from the completely closed to fully 
open form. The study concluded that thermal conductivity shifts only in accordance with the 
direction of crystal expansion, irrespective of adsorbed gas presence. Interestingly, this change 
in thermal conductivity is less noticeable when guest molecules are present. 

4.3 Models for classical molecular simulations 

Best practices in general for performing classical MD and MC simulations have been 
extensively discussed in other places [152,182]. In the field of MOFs, two components are 
particularly important for an accurate and high-quality simulation:  the MOF structure and the 
force field that describes the guest-host, guest-guest, and intra-host interactions. In this 
subsection, we discuss best practices for the preparation of MOF structures and the selection of 
suitable force fields. 

4.3.1 Crystal structures 

One of the most significant challenges in classical simulations of MOFs and the 
phenomena occurring within their pores is the accurate representation of their structure. The 
MOF structure for molecular simulations can be either obtained from single-crystal X-ray 
diffraction (XRD) experiments or constructed in silico. If an experimentally resolved crystal 
structure is available, this is usually the best approach. Since MOFs are crystalline materials, this 



 
 

28 
 

sounds straightforward, but there are several challenges in practice. First, hydrogen atom 
positions cannot be obtained directly from XRD, and hydrogen atoms are usually added using 
crystallographic software. Placing the missing hydrogen atoms on an aromatic ring is 
straightforward, but automated software may struggle to make the correct assignment of 
whether an oxygen atom is part of a hydroxyl group or a bound water molecule.  For example, 
the proton topology on the 8-connected Zr6O8 nodes of MOFs like NU-1000 cannot be 
determined from diffraction experiments. In this case, DFT calculations were used to identify the 
most stable configuration [183], and this configuration has subsequently been used in molecular 
simulations. Another challenge is that crystal structures may contain partial occupancies and 
other forms of disorder, which must be “cleaned” before the structure can be used for 
simulations. The presence of solvent molecules within the crystal structure of MOFs presents a 
significant challenge. During adsorption experiments, these molecules may be eliminated in the 
activation process. Ideally, an adsorption simulation should mirror these experimental conditions 
accurately, which implies the removal of these solvent molecules. However, confirming that each 
solvent molecule has indeed been eliminated during the experiments can be complex. 
Furthermore, extracting these solvent molecules can trigger pore collapse in MOFs, especially 
those with large mesopores. Consequently, relying on "cleaned" structures in simulations might 
not always accurately reflect the real activated material. 

Databases of MOF structures from experiments have been constructed in the past few 
years to facilitate molecular simulations and high-throughput materials discoveries, as listed in 
Table 1. Experimental MOF structures curated in these databases usually undergo semi-
automated processes. It is important to note, however, that while these processes aim to clean 
the disorder and remove unwanted solvent molecules, their effectiveness is not absolute. There 
may be instances where mis-bonded or isolated atoms remain. As an example, Chen and Manz 
[184] found it necessary to propose extra procedures to clean structures from the 2019 CoRE 
MOF database [17] with such issues. Hence, users of these databases should be aware of these 
limitations. 

Alternatively, MOF structures can be constructed on the computer from their constituent 
nodes and linkers using available construction algorithms, such as AuToGraFS [185], ToBaCCo 
[186,187], TOBASCCO [188], and PORMAKE [189]. These construction algorithms typically map 
the building blocks (nodes and linkers) on to a topological blueprint, and building blocks are 
connected through pre-defined connection points. The constructed structures are usually 
optimized using either a classical force field, such as the Universal Force Field (UFF) [190] or DFT 
before they are fed into the simulation workflow. Due to the unique combinatorial nature of MOF 
structures, the computational construction method opens the door to the generation of an 
infinite number of hypothetical MOF structures. This paradigm naturally fits in with a high-
throughput screening workflow and has accelerated materials discovery at an unprecedented 
speed.  

Table 1. Summary of representative large MOF databases. 
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Database Year Structure 
type 

Number of 
structures 

Features 

hMOF-Wilmer [191] 2012  Hypothetical 137,953 Hypothetical structures for 
high-throughput materials 
discovery  

CoRE MOF 2014 [18] 2014 Experimental 5,109 Curated and cleaned 
experimental structures 
ready for molecular 
simulations 

ToBaCCo [186] 2017 Hypothetical 13,511 MOF structures with 
enhanced diversity in 
topology and pore size 

CSD MOF subset [192] 2017 Experimental 69,666 Reported to be the most 
complete collection of 
experimental MOF structures, 
actively updated 

MTV-MOFs [193] 2017 Hypothetical ~10,000 Multivariate MOFs with 
mixed linkers and functional 
groups  

BW-DB [194] 2019 Hypothetical 325,000 Database for accelerating the 
discovery and optimization of 
materials for carbon capture 

CoRE MOF 2019 [17] 2019 Experimental 14,845 Update of 2014 CoRE MOF 
database 

hMOF-Lan [195] 2019 Hypothetical 303,991 MOF structures with diverse 
channel types and enhanced 
topology distribution 

hMOF-Majumdar [196] 2021 Hypothetical ~ 20,000 MOF structures with 
enhanced structure diversity  

QMOF [146] 2021 Hybrid 14,000 DFT-optimized MOF 
structures 

hMOF-Nandy [197] 2023 Hypothetical ~ 50,000 MOF structures with 
enhanced thermal and 
activation stability 

 

4.3.2 Classical force fields for adsorption simulations 

Most classical force fields are composed of a set of equations describing interatomic 
interactions such as bond stretching, bond angle bending, dihedral angles, and non-bonded 
interactions. The force field also includes the parameters in these equations. The non-bonded 
interactions include attractive dispersive (van der Waals) and repulsive interactions (often 
modeled with a Lennard-Jones potential between all pairs of non-bonded atoms) and long-range 
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Coulombic interactions (often modeled by placing point charges on the atoms). For more details 
and the inner workings of force fields in molecular simulations, we refer readers to Refs [56,198]. 

One of the difficulties in developing a force field for MOF simulations is the enormous 
chemical diversity of these materials and the wide range of potential applications. Ideally, a good 
force field is both transferable and accurate. There are two main approaches for developing a 
force field. In the first, the parameters are fitted against DFT or other quantum mechanical 
calculations such as MP2 or CCSD. In this approach, the parametrization process involves 
determining the parameters of the force field that minimize the difference between the energies 
and forces predicted by the force field and those calculated using quantum mechanical methods. 
Often, the fit is performed using a set of molecules and configurations that is representative of 
the system of interest. This process can be complex and time-consuming, as it involves iterative 
optimization of many parameters. Another aspect to consider is that while this approach can lead 
to high accuracy for the systems that the force field was trained on, its transferability - that is, its 
ability to accurately predict the properties of systems that are not in the fitting set - is not always 
guaranteed. Ensuring transferability is a major challenge in force field development, requiring 
careful design of the functional form of the force field and the selection of the training set. In the 
second approach, the force field is fitted so that the results match some reference experimental 
data such as adsorption isotherms and heats of adsorption. A challenge for this approach is that 
there may be differences in reported experimental data for a given system due to different 
materials synthesis and activation strategies applied. Another issue is that most simulations of 
adsorption in MOFs to date have assumed a rigid framework structure. If the MOF exhibits 
significant flexibility and the MOF is assumed rigid in the simulations, then fitting the force field 
to match experiment will likely lead to an unreliable force field. 

In practice, force fields in the MOF field are often not assembled “from scratch” but by 
starting with existing force fields. The most common approach is to employ a “generic” force field 
for the adsorbent (i.e., a force field that was not developed specifically for MOFs) alongside a 
force field for the adsorbate taken from previous work on bulk fluids. Simulations of vapor-liquid 
equilibrium, including coexistence curves and saturation pressures, serve as a rigorous 
assessment of the accuracy of fluid force fields. Therefore, we strongly recommend the use of 
force fields that have been tested to predict these quantities in good agreement with experiment. 
An exemplar of such a force field is the Transferable Potentials for Phase Equilibria (TraPPE) [199]. 
Often, the UFF [190] or a combination of Dreiding [200] and UFF is used for the framework. This 
could include equations and parameters for treating MOF flexibility or simply taking the Lennard-
Jones parameters from these force fields and using them for the MOF atoms, which are held fixed 
at their crystallographic coordinates. Vandenbrande et al. [201] performed a benchmark analysis 
of the accuracy of predicting methane uptake in Zr MOFs with both generic force fields (UFF and 
combination of UFF and Dreiding). They compared them to three more sophisticated force fields: 
MM3-MBIS [202], SAPTFF [203,204], and MEDFF [205], the latter two of which are purely ab initio 
derived. They concluded that at moderate pressure, the generic force fields are reasonable and 
can be used to predict quantities such as the working capacity close to saturation pressure. 
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Recently, an online adsorption database, MOFX-DB [206], was constructed to facilitate the use 
and reproducibility of simulated gas adsorption data in nanoporous materials. MOFX-DB contains 
simulated adsorption isotherm data for more than 160,000 MOF and zeolite structures. All 
necessary simulation input files are also available in the database to enhance the reproducibility 
of data. The simulated data in MOFX-DB can help validate force fields parameters against 
experimental data in a holistic manner. 

Partial charges on the atoms can have a strong influence on the predicted properties and 
behavior of the system. For the adsorbate atoms, the partial charges are usually taken from the 
force field used for the adsorbate (e.g., TraPPE). However, partial charges for framework atoms 
are usually calculated for each MOF as needed. As described in Section 3.5, framework charges 
are often obtained from DFT. There are, however, a wide range of empirical methods that can be 
used to calculate these charges much faster than DFT. One of the first empirical methods 
developed for determining partial charges was the charge equilibration (QEq) method [207]. It is 
designed to compute partial charges of atoms within a molecule, utilizing the molecular 
geometry and three atomic properties. These properties are the ionization potential, which 
signifies the energy required to remove the outermost valence electron, the electron affinity, 
indicating the energy variation associated with the addition of an extra electron, and the atomic 
radius. These parameters can either be derived from experimental findings or calculated through 
ab initio methods. Many developments of this method were reported in the literature, including 
extended (EQEq), which improved the accuracy of metal cation charges (with the intention to 
apply in MOFs) [208], and the MOF electrostatic-potential-optimized charge (MEPO-QEq) 
scheme, in which the parameters (electronegativity and chemical hardness) were trained based 
on DFT calculations for a group of 543 MOFs [209]. Ongari et al. performed a benchmark analysis 
of Qeq and its derivatives, revealing specific issues related to atom types and input parameters 
in the assessment of 2338 MOFs [210]. Their study highlighted that Qeq methods have not shown 
significant improvement in accuracy over time. Since these methods are not computationally 
expensive, they can be used in high-throughput screening studies, although it is suggested to re-
test the top-performing candidates with simulations based on partial charges from DFT. 

In classical simulations of adsorption in MOFs, another important factor that can 
significantly influence the outcomes, is the tail correction. It is a mathematical formula applied 
to compensate for the truncation of long-range interactions in the system. The tail correction and 
the chosen cutoff radius - the limit beyond which interparticle interactions are neglected - can 
substantially affect simulation results. If a force field has been designed with specific cutoff radii 
and with the consideration of the tail corrections, these parameters should always be used to 
ensure the reliability of the results. Jablonka et al. demonstrated that the homogeneous tail 
corrections tend to yield results that are less affected by the cutoff radius, making them a 
preferable option [211]. This conclusion is consistent across a wide range of structures tested, 
including zeolites, metal–organic frameworks, and covalent organic frameworks (see Figure 12 
for details). Furthermore, since there is no universal cutoff value for the potential, the study 
recommends the application of tail corrections in modeling gas adsorption in microporous 
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materials. This is proposed to facilitate a more consistent and reliable comparison of results 
derived from different simulation studies. Note, however, that there are certain force fields that 
were optimized without tail corrections, and for these models, the application of tail corrections 
may not be advisable [212]. Regardless of the choice, all details of the simulation – including the 
cutoff distance and whether or not tail corrections were applied – should be reported in 
publications reporting simulation results to ensure reproducibility. 

 

Figure 12. Impact of the application of the tail correction on the absolute error in deliverable 
capacities of methane in porous materials (𝛥𝛥𝛥𝛥𝛥𝛥 = 𝐷𝐷𝐷𝐷(𝑟𝑟𝑐𝑐) − 𝐷𝐷𝐷𝐷�𝑟𝑟𝑐𝑐 = 24 Å�). Figure 

reproduced with permission from the ACS [211]. Further permission requests related to this 
figure should be directed to the ACS. 

The lack of universal intramolecular force fields for MOFs is the main challenge for 
considering flexible frameworks in MD simulations. Nevertheless, there are some studies that 
concentrated on the effect of framework flexibility on the diffusion of adsorbate molecules by 
implementing currently available force fields such as UFF4MOF [213], AMBER [214] and CVFF 
[215] or using ab initio calculations to develop force field parameters for specific MOF structures, 
as discussed in Section 3.5. The modified CVFF force field was used for a flexible UiO-66(Zr) MOF 
to calculate the Ds of CH4 in CO2/CH4 mixtures at different CO2 loadings. Although Ds obtained by 
quasi-elastic neutron scattering (QENS) was higher than the calculated Ds by a factor of 2.5, both 
experimental and simulation trends were similar at a low loading of CO2 [216]. The diffusion, 
adsorption, and separation of various molecules in a family of ZIFs have been studied using 
equilibrium MD simulations and transition state theory (TST) methods. Since ZIF frameworks, 
such as ZIF-8, have relatively small pores, including framework flexibility in the simulations is 
beneficial for obtaining accurate diffusion coefficients. Certain force fields established through 
DFT calculations for this set of structures demonstrated good accuracy in predicting self-
diffusivities and corrected diffusivities, aligning closely with experimental findings [217–224]. In 
each of these studies, some interesting physical insights about the relation between the 
diffusivities and framework flexibility were described. It was shown that the substitution of metal 
cation in the ZIF-8 framework, creating ZIF-67 (Zn to Co substitution), led to a notable 
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enhancement in ethylene/ethane separation efficiency. The metal variation appeared to govern 
the aperture size and stiffness, as confirmed by simulations [73,224].  In addition, simulation 
results indicated that implementing different force field parameters led to order of magnitude 
differences in diffusivities [225–227]. While these simulations offer valuable insights into the 
behavior of flexible MOFs, the significant disparities in diffusivities depending on the choice of 
force field parameters underscore that current simulation methods may not fully capture the 
complex interplay of framework flexibility and diffusive behavior, necessitating further 
refinement and validation of these models.  Yang and Sholl studied the importance of framework 
flexibility on the diffusivities of 12 different adsorbates with different size, shape, polarity, and 
flexibility in 17 different MOFs [228]. UFF4MOF was used for flexible and rigid frameworks. In 
many examples, simulations with rigid frameworks underestimated the diffusivity of molecules 
in MOFs with small pores. The results demonstrated that the correlation between the flexibility 
of the framework and diffusivity depends on the size of the pore and the adsorbate. When the 
size difference between windows and adsorbate is greater than 4 Å, the flexibility of the 
framework has a small influence on the diffusion. However, the effects of diverse functional 
groups, metals, and linkers on the mobility of various flexible ZIF MOFs and the diffusivity of 
adsorbate molecules are complex. To address this issue, ML methods were used on 14 different 
adsorbates in 72 existing and hypothetical flexible ZIFs with SOD topology [229]. The trained ML 
approach uses simple, readily available input information to train predictive models that bypass 
extensive computational steps and directly estimate the diffusivity of penetrants in newly 
functionalized ZIF-8 variants. 

The breathing behavior of some MOFs has been studied using MD simulations. For 
example, the flexible MIL-47(VIV) was investigated using the CVFF force field. MD simulations 
were conducted at 300 K and at a variety of external hydrostatic pressures up to 350 MPa. The 
simulation results demonstrated the phase transition in MIL-47 under diverse pressure range is 
in good agreement with X-ray powder diffraction results [230]. Framework breathing was also 
studied in the presence of adsorbates at different loadings [231,232]. Using NVT and NPT MD 
simulations, along with GCMC simulations, the flexible IRMOF-74-V was studied with Ar as an 
adsorbate, using the CVFF force field. The results successfully predicted the deformation of the 
MOF, aligning with experimental adsorption and X-ray diffraction data [231]. In the second 
report, MD simulations were utilized to explore the breathing behavior of the flexible MIL-53(Cr) 
across a range of CO2 uptakes. The predicted unit cell parameters for MIL-53(Cr) exhibited 
excellent agreement with the results from in situ X-ray diffraction experiments [232]. 

In addition, it is worth mentioning a distinctive and transferable forcefield, VMOF, that 
was developed specifically for metal–organic frameworks to accurately determine a broad range 
of properties related to lattice dynamics, such as phonon spectra, thermodynamic and 
mechanical properties, free energies, heat capacities and bulk moduli [233]. This approach, 
tested on MOFs such as IRMOF-1, UiO-66, and MOF-74, can help facilitate high-throughput 
computational screening of vibrational properties across a diverse range of MOFs. 
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4.4 Machine learning methods to facilitate classical simulations  

 Recent advances in machine learning are providing new routes to solving some of the 
most challenging problems in classical molecular simulations. In this subsection, we discuss two 
recent notable ML developments for molecular simulations of MOFs, i.e., ML force fields and 
using ML to obtain partial charges. These developments help tackle the traditional tradeoff 
between computational expense and accuracy of the simulation. Current challenges and future 
directions are also discussed. 

 

Figure 13. Comparison of classical force fields and machine learning potentials. 

 

4.4.1 Machine learning force fields 

The purpose of a force field is to accurately reproduce the potential energy surface of a 
system (Figure 13). As described above, classical force fields can be obtained by fitting the 
potential energy surface obtained from ab initio calculations to a certain functional form. The 
functional form can be physically rigorous, such as the Coulombic potential, or it can be semi-
empirical, such as the 12-6 Lennard Jones potential, where the (1/r)6 term was derived from 
London dispersion forces, but the (1/r)12 term was chosen for convenience to approximate Pauli 
repulsion. Restriction to a pre-defined functional form may limit its applicability to describe 
certain effects, such as possible quantum diffraction effects, many-body interactions, and 
reactions, where special treatments are needed.  

With the capability to approximate any functional form, ML models, such as neural 
networks [234] and Gaussian Process Regression [235], have been developed to predict the 
potential energy surface of a system with the accuracy of DFT but much faster. Figure 13 shows 
a comparison between classical force fields and ML potentials.  For a standard ML potential 
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model, the general idea is that, by training the ML model with data points from quantum 
mechanical calculations, the ML model is able to predict the system energy and atomic forces 
with ab initio level accuracy, based on the local environment of each atom as input. ML potentials 
inherently account for any quantum effects, many-body effects, and possible chemical reactions 
that are encoded in the ab initio training data.  

ML potentials have become prevalent in the past few years largely due to the availability 
of user-friendly software and tools [234,235] and increased computational power to generate 
enough ab initio training data. ML potentials for MOF systems have appeared very recently. To 
accurately model molecular diffusion in flexible MOFs, Achar et al. [236] developed a hybrid 
simulation scheme by applying different modeling strategies to guest-guest, guest-host, and 
intra-host interactions. They developed a ML potential to describe the intra-host interactions for 
UiO-66, while for guest-guest and guest-host interactions, a conventional LJ potential was 
retained to reduce the computational expense. They found that this hybrid modeling scheme can 
reliably account for the motion and flexibility of the MOF structure in response to the presence 
of adsorbate molecules such as Xe and Ne.  In their work, they applied a two-phase training 
scheme, with the first stage focused on training the model to accurately predict the energy-
volume response, and with the second stage focused on generating structures at elevated 
temperatures to explore more of the configurational space of the materials. Indeed, how to 
efficiently generate training data for ML potential model development is still an open question. 
Vandenhaute et al. [237] built an incremental learning workflow to train a ML potential for 
framework materials. The workflow implements an on-the-fly training strategy for the ML 
potential, with training data iteratively collected from parallelized quantum mechanical and 
metadynamics simulations. The metadynamics component in the workflow helps to explore the 
free energy landscape and learn the structural phase space of flexible MOFs in a more effective 
manner. With only a few hundred single-point DFT evaluations per material, an accurate and 
transferable ML potential based on an equivariant neural network was obtained. Similarly, guest-
host interaction energies can also be predicted by ML potential models. Yang et al. [238] 
developed a deep ML model to learn the potential energy surface of guest molecules near a 
framework structure. Their model takes the transformed distance between adsorbate molecules 
and the framework as input features and predicts the guest-host energies with DFT level 
accuracy. They validated their ML potential by comparing computed Henry’s coefficients using 
the ML potential and a reference force-field fitted against the DFT data in their previous work 
[239].  

The development of ML potentials for MOF systems is still in its infancy. Further research 
in this area is necessary to solve several outstanding challenges. For example, compared to 
classical force fields where the functional forms are physically meaningful, an ML potential works 
as a black box. Building an interpretable ML potential is still an ongoing goal in the field. In 
addition, most of the current ML potentials use each atoms’ local environment (within a certain 
cut-off) as input features. A full understanding of how the long-range interactions are accounted 
for and what role they play in controlling the system properties is still lacking [240,241]. 
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Regarding transferability of ML potential models across different material types, several research 
groups have attempted to develop so-called foundational or universal ML potentials, such as ANI-
1 [242], MEGNet [243], M3GNet [244], and CHGNet [245]. Yu et al. [246] applied the MEGNet 
model to predict the mechanical properties of defective MOFs. However, whether these 
universal models can be reliably applied to MOF materials in general is still unclear. Future efforts 
could be focused on systematic benchmarking of existing universal ML potentials against classical 
force fields (e.g., UFF4MOF [247]), reference ab initio data, and experimental results [248]. It 
would also be beneficial to develop a new universal ML potential model for MOF materials or 
fine-tune existing models using MOF training data. Finally, we note that molecular simulations 
using ML potentials are generally slower than those using classical force fields. However, they 
are well suited for GPUs, and simulation codes that use GPUs may be very helpful in expanding 
the usage of ML force fields. These efforts should allow researchers to simulate systems at larger 
spatial and time scales at DFT-level accuracy. 

4.4.2 Partial charges from machine learning 

Partial charges, as discussed above, can be calculated through two main approaches: DFT 
calculations and empirical methods. DFT, while highly accurate, tends to be time-consuming. 
Empirical methods, on the other hand, are faster, but they are sometimes less accurate. ML 
presents an elegant solution that has the potential to predict partial charges for MOFs with DFT-
level accuracy, yet with significantly reduced computation time. Zou et al. developed the 
multilayer connectivity-based atom contribution (m-CBAC) method [249], which assigns charges 
based on averaging the DDEC charges for atom types with the same connectivity pattern. It is 
based on the CBAC method [250], but it is trained on a significantly larger set of MOFs (2700 vs. 
43) and uses three layers of connectivity instead of one (0 – central atom, 1 – central atom and 
nearest neighbors, 2 – central atom, nearest neighbors, and 2nd nearest neighbors). When 
assigning a charge to a target MOF atom, the system first searches for the 2nd nearest neighbor 
connectivity pattern, which provides the most accurate charge assignment. If this is unavailable, 
it moves to the 1st and then the 0th layer, which is less accurate but broadly applicable. The 
method was also tested for accuracy by predicting CO2 Henry’s constants for MOFs not included 
in the training set and demonstrated better accuracy compared to the EQeq method. Charges 
assigned using the m-CBAC approach were discovered to closely mirror DDEC charges, as 
indicated by a Pearson correlation coefficient of 0.99. The computational resources needed for 
this approach are comparable to those of the EQeq method, but substantially lower than those 
required for DFT calculations. Raza et al. created and trained a message passing neural network 
(MPNN) to learn representations of local bonding environments within MOFs and to predict the 
partial charges on the atoms of a MOF under a charge neutral constraint [251]. The crystal 
structure of the MOF, represented as an undirected graph with node features encoding the 
chemical elements, is directly inputted into the MPNN. The MPNN builds features of the local 
bonding environments by passing information between bonded atoms. It was trained and 
evaluated using 2266 MOFs with DDEC-assigned charges. The MPNN predicts the partial charges 
with a mean absolute deviation from DDEC charges on the test set of 0.025, while requiring 
significantly less computational time than performing electronic structure calculations to derive 
the charges.  
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Kanacharlapalli et al. proposed another ML method, referred to as PACMOF, for 
predicting partial charges trained using a random forest algorithm based on 950 MOFs with DDEC 
charges [252]. In addition to local bond environment features, they also considered elemental 
properties such as ionization potential and electronegativity, which ensured good accuracy (MAD 
= 0.026, correlation coefficient = 0.99). The model was validated using a different set of MOFs 
comparing not only charges but also the simulated adsorption isotherms.  

Partial charges, while not an experimental observable, play an important role in classical 
force field descriptions of the energetic interactions in MOFs. Therefore, comparing adsorption 
isotherms generated using ML-generated partial charges forms an essential part of the 
evaluation and refinement of different methodologies for determining partial charges. CRAFTED 
is a database of simulated isotherms that explores the impact of different force fields and charge 
methods (including PACMOF and MPNN) on CO2 and N2 adsorption in MOFs [253]. Burner et al. 
reported REPEAT charges for about 280,000 experimental and hypothetical MOFs [254], and this 
database also provides extensive and diverse training and testing data for building new ML 
models for partial charge prediction. 
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5. Conclusions 

This review has provided an overview of the essential role of computational research in 
understanding MOF properties and phenomena by focusing on three widely used molecular 
modeling methods: density functional theory, Monte Carlo simulations, and molecular dynamics 
simulations. We explored the properties that can be calculated from DFT, examining the 
distinctions between periodic and cluster methodologies and to which problems they can be 
applied. We emphasized the importance of DFT as a standard method for conducting the initial 
steps of simulations involving MOFs, such as accurate geometry optimization or generating 
partial charges, for subsequent studies employing classical methods. Moreover, we discussed the 
problem of framework flexibility and demonstrated how DFT can aid in predicting structural 
transformations and thermodynamic properties using energy-volume relations and phonon 
analysis. We also explored the potential of cluster models of metal nodes in MOFs for 
understanding the nature of host-guest interactions and catalytic reactions. Additionally, we 
discussed accessible and efficient methods for generating ab-initio derived force fields, which 
hold significant promise for applications in classical simulations. In conclusion, DFT can be 
appreciated from two distinct perspectives: as a valuable tool for conducting an initial analysis of 
MOF structures prior to subsequent simulations and as a method capable of elucidating 
phenomena not encompassed by classical approaches. This dual functionality highlights the 
versatility and significance of DFT in the field of MOF research and its vital role in driving progress 
and deepening our understanding of these remarkable materials.  

For classical simulations, we discussed the importance of force field selection for 
simulations of adsorption and diffusion. We highlighted the available databases of materials 
suitable for high-throughput screening and addressed potential challenges that may arise.  The 
classical methods of MD and MC are complementary. MD is particularly useful for investigating 
dynamic processes such as diffusion, conformational changes, and the response of materials to 
external forces. For instance, MD simulations can predict diffusivities of various adsorbates 
within the MOF, shed light on diffusion mechanisms and pathways, and monitor changes in MOF 
or adsorbate structures over time. Importantly, MD simulations can account for the flexibility of 
MOFs, revealing how structural fluctuations may affect properties such as stability and phase 
transitions and provide insights into how MOFs deform under external stresses or during 
adsorption/desorption processes. On the other hand, by employing a stochastic approach, MC 
simulations can efficiently explore a wide range of configurations, making them well-suited for 
adsorption simulations to predict isotherms and heats of adsorption. Together, MD and MC 
simulations offer a comprehensive way to explore MOF behavior, encompassing both dynamic 
and equilibrium properties. By combining the strengths of these two methods, researchers can 
gain a more complete understanding of the mechanisms and phenomena occurring in MOF 
structures and hence design new materials with tailored properties for various applications. 

Machine learning techniques are playing an increasing role in both quantum chemical and 
classical modeling, allowing high-accuracy predictions at reduced computational costs. Within 
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the context of DFT, ML methods can predict oxidation and spin states. Additionally, ML 
techniques can monitor geometry optimizations to ensure convergence to meaningful resulting 
structures. Within the realm of classical simulations, ML methods can be employed to achieve 
high-accuracy interaction models through ML force fields and by predicting ab initio quality 
partial charges. Furthermore, these techniques can assist in screening databases to determine 
the water and thermal stability of MOFs and can be trained to predict other properties of interest. 

As MOF research continues its rapid evolution, modeling and simulation strategies need 
to evolve in parallel. An important challenge is the inherent flexibility of MOFs, which is routinely 
overlooked or inadequately addressed in simulations, in particular in the field of adsorption. The 
importance of flexibility spans from small changes such as the lability of modulators and rotation 
of polar functional groups in zirconium MOFs, which can impact the strength of adsorption of 
small molecules, to the rotation of the linkers that might facilitate diffusion and packing of guest 
molecules. Larger-scale structural flexibility of MOFs, exemplified by phenomena such as 
breathing associated with significant volume changes, presents a challenge for standard 
adsorption simulation protocols. Within these challenges naturally lie opportunities. The 
immediate frontier is to integrate MOF flexibility within the simulation protocols. Classical force 
fields can be refined and expanded upon to better capture these dynamics. Moreover, with the 
advancement of ML techniques, there is a significant promise in developing universal ML 
potentials for MOFs that can account for framework flexibility and MOF-adsorbate reactivity with 
the accuracy of quantum methods. By leveraging such methodologies, and with the aid of 
modern computational advancements like GPU acceleration, there is potential to achieve an 
unprecedented level of accuracy in predicting MOF behavior under various conditions. 

Over the past two decades, computational tools have played a pivotal role in MOF 
research, facilitating the rapid development and characterization of new MOF materials for 
specific applications. As we move forward, the next frontier for MOF modeling is not merely 
about refining simulations but delving deeper to understand the behavior of these materials 
under diverse conditions. The growing accessibility and reliability of computational methods, 
from density functional theory to Monte Carlo and molecular dynamics simulations, combined 
with the integration of novel ML techniques and advanced computational resources, are set to 
redefine the landscape of MOF research. Through this review, we aim to ease the transition of 
these computational modeling techniques into the toolkits of emerging researchers in the 
exciting field of MOF research. 
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