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Abstract— Goals: We have recently introduced a new class of 
wearable loop sensors for joint flexion monitoring that overcomes 
limitations in the state-of-the-art. Our previous studies reported a 
proof-of-concept on a cylindrical phantom limb, under static 
scenarios and with a rigid sensor. In this work, we evaluate our 
sensors, for the first time, on human subjects, under dynamic 
scenarios, using a flexible textile-based prototype tethered to a 
network analyzer. An untethered version is also presented and 
validated on phantoms, aiming towards a fully wearable design. 
Methods: Three dynamic activities (walking, brisk walking, and 
full flexion/extension, all performed in place) are used to validate 
the tethered sensor on ten (10) adults. The untethered sensor is 
validated upon a cylindrical phantom that is bent manually at 
random speed. A calibration mechanism is developed to derive the 
sensor-measured angles. These angles are then compared to 
gold-standard angles simultaneously captured by a light detection 
and ranging (LiDAR) depth camera using root mean square error 
(RMSE) and Pearson’s correlation coefficient as metrics. Results: 
We find excellent correlation (≥ 0.981) to gold-standard angles. 
The sensor achieves an RMSE of 4.463º ± 1.266º for walking, 
5.541º ± 2.082º for brisk walking, 3.657º ± 1.815º for full 
flexion/extension activities, and 0.670º ± 0.366º for the phantom 
bending test. Conclusion: The tethered sensor achieves similar to 
slightly higher RMSE as compared to other wearable flexion 
sensors on human subjects, while the untethered version achieves 
excellent RMSE on the phantom model. Concurrently, our 
sensors are reliable over time and injury-safe, and do not obstruct 
natural movement. Our results set the ground for future 
improvements in angular resolution and for realizing fully 
wearable designs, while maintaining the abovementioned 
advantages over the state-of-the-art.  
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Index Terms—Calibration, dynamic motion capture, e-textile, 
human subject validation, loop sensors, joint flexion, wearables. 
 

Impact Statement—Motion capture in real-world 
environments has immense potential in healthcare, sports, and 
beyond. Our findings support the feasibility of a wearable sensor 
that meets both wearability and performance standards 
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I. INTRODUCTION 
ONITORING joint angles during dynamic activities of 
the human body, in real-time, and, ideally, in 

non-contrived (i.e., non-laboratory-based) settings can benefit 
several application sectors, including healthcare, sports  
performance, and robotics [1]. For instance, motion capture can 
help clinicians personalize the rehabilitation of stroke patients, 
as well as understand the effect of joint movement on 
hemophilic arthropathy [2][3]. It can also help clinicians 
monitor physical activities of patients with Parkinson’s disease 
[4]. In other cases, motion capture can help calculate injury risk 
to assist in sports therapy [5], instruct movement-based 
activities such as dancing [6], and more.  

State-of-the-art technologies used for motion capture face 
several limitations, as detailed in [7]. In brief, gold-standard 
camera-based motion capture (MoCap) systems are highly 
accurate but are costly, constrained to a fixed/confined 
environment, and require line-of-sight [8][9]. Inertial 
measurement units (IMUs) are portable/wearable but suffer 
from integration drift [10]-[12], leading to error accumulation 
with time. Potentiometer-based sensors [13][14] are bulky and 
do not conform to the size of the patient, making them 
uncomfortable to use. Finally, bending (strain-based) sensors 
[15] restrict natural movement and are limited by the number of 
cycles of use due to repeated strain.  
 To overcome these limitations in the state-of-the-art, we 
have recently reported a new class of wearable loop sensors that 
capture joint angles using transmit and receive loops placed 
across the joint [16]-[18]. The sensors operate based on 
Faraday’s law of induction where the voltage on the receiving 
loop changes as the joint flexes, and thus, the loops misalign. 
These sensors are reliable over time and injury-safe, and do not 
obstruct natural movement. A summary of our previous work is 
outlined in Table I, with a focus on monitoring knee joint 
kinematics. As seen, only proof-of-concept studies have been 
reported to date where rigid (copper-wire) loops have been 
tested on cylindrical phantom limbs under static scenarios (i.e., 
the limb is fixed at a given angle each time a measurement is 
collected) in a tethered setting.  

In this work, we take a major step forward and report 
dynamic measurements of knee joint flexion, in real-time, on  
human subjects, using flexible, textile-based loops. To cater to 
the new requirements, we also introduce: (a) a calibration 
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mechanism that helps extract joint angles from the raw sensor 
output (i.e., transmission coefficient) and (b) dedicated 
software built in-house to allow for calibration, real-time 
recording, and data processing. Without loss of generality, tests 
are conducted using the two-loop planar sensor configuration 
of [17], suitable for two-dimensional joint flexion/extension 
angle measurements. Three different activities, viz. walking, 
brisk walking, and full flexion/extension, all carried out in 
place (i.e., the subject is not physically moving from their 
original location), are utilized to test and validate the sensor on 
ten (10) healthy adults in a tethered setting (i.e., connected to a 
network analyzer). To further demonstrate the potential of 
translating this sensor into a fully wearable version, we also 
report and validate upon phantoms an untethered system.  

The rest of the paper is organized as follows. Section II 
covers materials and methods. This starts with description of 
the experimental set-up including sensor design, data collection 
and recording software, camera set-up and validation, and 
sensor calibration for the tethered system. This is followed by 
description of the actual experiment and data analysis methods. 
Detailed results for the tethered system on human subjects are 
presented in Section III. Section Ⅳ compares the system 
performance vs. the state of the art, discusses the development 
of an untethered system, and highlights clinical implications. 
Section Ⅴ concludes the paper.  

II. MATERIALS AND METHODS 
 A block diagram and a picture of the experimental setup are 
shown in Fig. 1(a). Two planar loop sensors were placed upon 
the leg (see Section II.A) and connected to a vector network 
analyzer (VNA, N5235A) via coaxial cables to record 
transmission coefficient (|S21|) data. The latter inherently 
includes flexion angle information [17]. The network analyzer 
was further connected to a laptop which recorded the |S21| data 
in real-time using our self-built recording software (see Section 
II.B). Simultaneously, a light detection and ranging (LiDAR) 
depth camera was used to capture the flexion angles for two 
purposes, i.e., (a) to provide gold-standard angles as a reference 
for comparison, and (b) to calibrate the sensor (see Section 
II.C). Data recorded from the camera was also captured in 
real-time using our self-built recording software on the laptop.  

 

 
The experimental protocol can be divided in two steps and 

involves: (a) calibration of the sensor (see Section II.D), 
followed by (b) real-time knee-flexion data collection using 
both the sensor and the camera for a given activity on a given 
subject. Details of each component of the experimental set-up 

TABLE I 
SUMMARY OF WEARABLE LOOP-BASED SENSORS 

 [16] [17] [17] [18] This 
work 

Loop 
configuration wrap-around planar planar wrap-around 

& planar planar 

Number of 
Loops 2 2 3 3 2 

Types of 
motion flexion flexion and rotation flexion 

Phantom vs. 
human  phantom (cylindrical) human 

Static vs. 
dynamic static dynamic 

Rigid vs. 
flexible 
sensor 

rigid flexible 

 

 
(a) 

 
(b) 

Fig. 1. (a) Block diagram and (b) experimental set-up including human-worn 
loop sensor connected to a network analyzer to collect |S21| data for knee 
flexion, camera collecting gold-standard flexion angles as reference for 
comparison, and data recording and calibration software on laptop. 

 
(a)                         (b) 

Fig. 2.  Loop sensor design: (a) fabricated single loop using e-thread, adapter, 
capacitor, and elastomer, and (b) sensor adhered to subject’s limb across the 
knee joint over a leg brace. 
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are discussed next, followed by the actual experiment and data 
analysis methods. 

A. Sensor Design 
Per Section I, the sensor consists of two planar loops placed 

longitudinally upon the body 8 cm above and below the knee 
joint with one acting as transmitter and the other as receiver. As 
detailed in [16], [17], the sensor consists of magnetically 
coupled transmit and receive loops and operates based on 
Faraday’s law of induction to monitor joint flexion. In brief, as 
the flexion angle changes, it leads to change in relative position 
between the loops. In turn, the transmission coefficient between 
the loops changes. Thus, the change in flexion angle is directly 
mapped to the change in transmission coefficient (or receiver 
voltage). Ultimately, monitoring the transmission coefficient 
values allows for seamless monitoring of joint angles.  

Our selection for a planar loop sensor design in this study 
was based on its tolerance to the anatomical shape and size of 
the limb, as well as its high angular resolution for flexion-only 
activities (we purposely omitted rotation monitoring in this first 
study on human subjects to reduce the complexity and potential 
sources of error) [17]. Each loop had a radius of 4 cm and was 
soldered to a 102 pF lumped capacitor to make them resonant at 
34 MHz, as per the detailed study in [16] (see Fig. 2). Each of 
the loops were sewn using LIBERATOR-40 conductive 
e-thread on a 6 cm ×10 cm piece of cotton fabric [19],[20]. An 
SMA connector was attached to each loop sensor and kept in 
place using a 3-D printed fixture and plastic screws. This 
fixture also provides support for the e-thread. It was then tied to 
the cotton fabric with non-conductive thread for increased 
durability. The fabric was finally covered in SYLGARD 184 
silicone elastomer to increase structural stability, as shown in 
Fig. 2(a). That is, the elastomer allows loops to maintain their 
circular shape and prevents deformation over the course of the 
experiment without altering the sensor performance. Since the 
sensor operates in the deep inductive regime, the presence or 
absence of this elastomer has no impact on the resulting 
performance. 

B. Data Collection and Recording Software  
As shown in Fig. 1, the VNA was connected to a laptop over 

Ethernet to facilitate the data collection process via recording 
software. The VNA was set to sweep at a single frequency of 34 
MHz and record the |S21| values while sampling at a rate of 60 
points per second with the intermediate frequency (IF) 
bandwidth set to 3 kHz. The recording software was developed 
with a web-based frontend and a REST application 
programming interface (API) backend. The frontend was 
developed using JavaScript to communicate with the backend. 
The backend was developed using Python 3.8. Flask was used 
to create the REST API, pyrealsense2 was used to capture data 
from the camera, and pyvisa was used to communicate with the 
VNA and collect |S21| data via the Standard Commands for 
Programmable Instruments (SCPI) protocol.  

C. Camera Setup and Validation 
To calibrate the sensor and for gold-standard comparison, a 

depth sensing camera was used to monitor the flexion angle of 
the limb during sensor data collection. The camera used was the 

Intel RealSense 515 LiDAR Camera which is capable of 
capturing color, depth, and infrared video data at a sampling 
rate of 30 frames per second where each frame has a resolution 
of 640×480 pixels. During data collection, the camera was 
placed on a tripod facing the limb, approximately 2 m away 
from the participant. To calculate the flexion angle, three 
retroreflective markers were placed on the leg to form the 
vertices of a triangle, as shown in Fig. 1(b). For each frame, the 
3-dimensional (3-D) coordinates of each marker were captured 
by applying thresholding to the infrared image channel to 
obtain 2-D coordinates, and transformed to 3-D coordinates 
using the depth channel. Given these coordinates, the angle of 
the triangle that corresponds to the flexion angle of the limb 
(say 𝜃𝜃), was calculated in a numerically stable manner using a 
modified version of Heron’s formula found in Eq. 1, where 𝑎𝑎, 
𝑏𝑏, and 𝑐𝑐 are the side lengths of a triangle calculated by the 
Euclidean distance between marker coordinates [21]. Here, 
sides 𝑎𝑎 and 𝑏𝑏 are swapped such that 𝑎𝑎 ≥ 𝑏𝑏. 

𝜃𝜃(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
�(𝑎𝑎 − 𝑏𝑏) + 𝑐𝑐� ∗ 𝜇𝜇(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)

�𝑎𝑎 + (𝑏𝑏 + 𝑐𝑐)� ∗ �(𝑎𝑎 − 𝑐𝑐) + 𝑏𝑏�
 (1) 

 
(a) 

 
(b) 

Fig. 3.  Gold standard camera validation against goniometer (a) set-up, and (b) 
results. 
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where 

𝜇𝜇(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = �
𝑐𝑐 − (𝑎𝑎 − 𝑏𝑏) 𝑖𝑖𝑖𝑖 𝑏𝑏 ≥ 𝑐𝑐 ≥ 0
𝑏𝑏 − (𝑎𝑎 − 𝑐𝑐) 𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑏𝑏 ≥ 0

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (2) 

To validate the accuracy of the approach, the flexion angle of 
a phantom limb (Styrofoam limb as used in [18]) was 
simultaneously measured by the camera and a goniometer 
(standard clinical device to measure knee flexion angle). This 
set-up, pictured in Fig. 3(a), uses the metal goniometer to set 
the limb to a desired angle. Concurrently, the camera and 
aforementioned approach were used to capture the 
corresponding flexion angle. Measurements were taken in 
increments of 10º statically. The root mean squared error 
(RMSE) between the angles measured by the camera and the 
angles measured by the goniometer was 0.322º. The results of 
this validation process can be seen in Fig. 3(b). This validated 
the camera to be used for gold-standard comparison purposes 
and calibration during experiments. 

D. Sensor Calibration 
Sensor calibration is required to convert |S21| data collected 

from the sensor to corresponding flexion angles. This enables 
us to obtain flexion angle as the output from the sensor in 
real-time, as desired. To do this, the participant needs to just 
perform full flexion and extension while |S21| data from the 
sensor and flexion angles from the camera are collected in 
real-time, simultaneously. One example of such temporally 
aligned raw data is shown in Fig. 4(a). Note that |S21| and 
camera data do not overlap due to non-linearity in the 
characteristic curve (|S21| vs. flexion angle) of the sensor [17]. 
This results in the calibration data seen in Fig. 4(b). As the 
camera’s sampling rate is half that of the network analyzer, the 
flexion angle data was always linearly interpolated to have the 
same sampling rate as the network analyzer. Since the 
calibration curve should be monotonically increasing [16], 
th|S21| and angle data were sorted independently of each other 
after alignment. Let 𝑆𝑆 = (𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛)  be the sequence of 
sorted |S21| values gathered during calibration and let 𝐴𝐴 =
(𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛) be the sequence of sorted limb angle values 
gathered using the camera during calibration. The linear 
interpolation on the points (𝑠𝑠1,𝑎𝑎1), (𝑠𝑠2,𝑎𝑎2),⋯ (𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛) results 
in a monotonically increasing, continuous function 𝑐𝑐 ∶
[𝑠𝑠1, 𝑠𝑠𝑛𝑛] → [𝑎𝑎1,𝑎𝑎𝑛𝑛], i.e., the calibration curve depicted in Fig 
4(b). The calibration curve once obtained can be utilized for  

obtaining flexion angles from the sensor directly in real-time. 

E. Experiment 
Ten (10) adult participants were recruited to participate in 

this study. Each Participant signed the IRB consent form 
approved by the Office of Responsible Research Practices of 
the Ohio State University (Approval No.2017H0472, Date: 
08/15/2023). These subjects were selected upon no specific 
requirements, except that they were physically healthy and 
physically able to participate.  

Consent of the subjects was taken prior to experiments. 
Referring to Fig. 2, a flexible thigh and shin brace was placed 
above and below the knee joint on the right leg. The brace was 
used to limit the movement of the sensors, as well as make them 
more comfortable for the subject to wear. The sensors were 
then placed on each subject 8 cm above and below the knee and 

were fixed in location on the limb using athletic gauze. Next, 

 

 
the SMA cables were connected to the sensors. Finally, the 
camera markers were placed on the participant, and the other 
end of each cable was connected to the VNA.  

Participants were asked to perform three activities: (a) 
walking, (b) brisk walking, and (c) full flexion/extension, all in 
place (i.e., the participant is not moving from his/her original 
position). Calibration was performed based on Section II.D, 
i.e., the participant was asked to perform one or more full 
flexions and extensions that spanned their range of motion. 
During the walking activity, the participant was asked to walk  

 
(a) 

 
(b) 

Fig. 4. (a) Calibration data, and (b) calibration curve. 
 

 
(a) 

 
(b) 

Fig. 5. (a) Mean RMSE and (b) Mean correlation ρ per activity, excluding 
subjects 2 and 6.  
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in place for 60 seconds. During the brisk walking activity, the                                                              
participant was asked to walk in place briskly for 60 seconds. 
During the flexion and extension activity, the participant was 
asked to fully flex and extend their leg five times over the 
course of 15 seconds to capture the range of motion not 
captured by the walking activities. All three activities were 
performed up to five times to enable adequate statistical 
analysis on each participant. After these activities were 
performed, the sensors were taken off and put back on the 
subject. Finally, the participant was asked to perform the 
calibration process and all three activities again to help ensure 
repeatability. 

F. Experiment 
Data processing was done using Python. The knee flexion 
angles were predicted using the data captured from the sensor 
during each activity and their corresponding calibrations. These 
angles were compared to gold standard camera angles using 
two different metrics: RMSE and Pearson’s correlation 
coefficient (ρ). The RMSE measures the accuracy of the 
sensors while ρ measures the correlation of the angles obtained 
via the sensor to the gold standard angles. 

III. RESULTS  
Results for each participant and activity are shown in Table II.  
Results without participants two and six are also included 
because these subjects had high levels of RMSE due to sensor 
fabrication errors and are considered outliers. A graphical 
summary is provided in Fig. 5. As seen, the correlation 
coefficient shows very strong agreement between the sensor 
and gold standard angles across all subjects and activities. We 
see that the flexion/extension activity achieved the best RMSE. 
This is expected as the sensors are less accurate at lower flexion 
angles due to their nonlinear calibration curve (see Fig. 4(b)). 

Therefore, since the activity covers the entire range of 
motion of the knee as opposed to the other activities, the RMSE 
is expected to be lower. The walking activity achieved a better 
RMSE than the brisk walking activity. This is also in line with 
expectations as quicker movements may cause the sensors to 
move. For identical reasons, we see that the correlation 
coefficient is maximum for the flexion/extension activity, 
medium for the walking activity, and lowest for the brisk 
walking activity.   

An example of the results from the flexion/extension activity 

TABLE II 
EXPERIMENTAL RESULTS FOR FLEXION ANGLE (IN DEGREE) OBTAINED VIA LOOP SENSOR 

Subject Number Mean Walking 
RMSE 

Mean Brisk 
Walking RMSE 

Mean Flexion and 
Extension RMSE Mean Walking ρ Mean Brisk 

Walking ρ 
Mean Flexion and 

Extension ρ 
1 5.034 ± 0.518 8.590 ± 0.523 4.279 ± 0.098 0.985 ± 0.003 0.969 ± 0.001 0.994 ± 0.001 

2 3.744 ± 0.082 4.769 ± 0.843 13.449 ± 3.528 0.995 ± 0.001 0.991 ± 0.002 0.953 ± 0.010 

3 5.225 ± 0.505 3.384 ± 0.227 1.652 ± 0.471 0.985 ± 0.004 0.995 ± 0.000 0.999 ± 0.000 

4 6.985 ± 2.047 8.141 ± 0.068 7.463 ± 2.616 0.982 ± 0.005 0.977 ± 0.000 0.980 ± 0.012 

5 4.522 ± 1.430 3.816 ± 1.249 2.110 ± 0.372 0.992 ± 0.005 0.994 ± 0.003 0.999 ± 0.000 

6 7.386 ± 1.503 8.926 ± 3.598 3.902 ± 1.749 0.988 ± 0.002 0.983 ± 0.008 0.994 ± 0.004 

7 2.985 ± 0.267 5.342 ± 0.489 3.004 ± 0.327 0.996 ± 0.001 0.986 ± 0.006 0.997 ± 0.002 

8 4.523 ± 0.640 7.295 ± 2.671 2.906 ± 0.972 0.994 ± 0.001 0.951 ± 0.002 0.998 ± 0.001 

9 3.582 ± 0.391 3.054 ± 0.269 5.326 ± 1.994 0.983 ± 0.008 0.990 ± 0.003 0.994 ± 0.004 

10 2.851 ± 0.699 4.227 ± 0.369 2.518 ± 0.315 0.986 ± 0.004 0.981 ± 0.009 0.998 ± 0.001 

Average 4.684 ± 1.463 5.754 ± 2.152 4.661 ± 3.350 0.989 ± 0.005 0.982 ± 0.013 0.991 ± 0.014 

Average w/o 2,6 4.463 ± 1.266 5.541 ± 2.082 3.657 ± 1.815 0.988 ± 0.005 0.981 ± 0.014 0.995 ± 0.006 

 
TABLE III 

COMPARISON VS. STATE-OF-THE-ART WEARABLE KINEMATICS SENSORS 

Technology Lightweight Allows Natural 
Motion Seamless Reliable over 

Time 
Resistant to 

Wear-and-tear RMSE (In Degree) 

Potentiometer Sensor [22] No No No Yes Yes 3.35 ± 1.24 (walking) 
3.64 ± 1.27 (running) 

Rotary Position Sensor [23] No No No Yes Yes 3.0 ± 1.4 (1 gait) 

IMU Sensor [24] Yes Yes No No Yes 4.3 ± 0.7 (walking) 

Strain Sensor [25] Yes No Yes No No 1.2 ± 0.87 (walking) 

Optical Fiber Sensor [26] Yes No No Yes Yes 5.3 ± 1.13 (gait) 

Capacitive Bending Sensor 
[27] Yes No Yes Yes No 5.8 ± 1.2  

(on phantom) 

Proposed Tethered Sensor No Yes Yes Yes Yes 4.684 ± 1.463 (walking) 
5.754 ± 2.152 (brisk walking) 

Proposed Untethered 
Sensor Yes Yes Yes Yes Yes 0.670 ± 0.366  

(on phantom) 
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can be seen in Fig. 6. Flexion angles obtained using the sensor 
and camera show an excellent match. We see increased error at 
lower angles which is expected due to the lower dynamic range 
of the sensor at these angles. 

To examine repeatability, we observed the mean absolute 
difference in RMSE between the first and second trials per 
activity for each subject. For the walking activity, we observed 
a mean absolute difference in RMSE of 1.670º. For the brisk 
walking activity, we observed a mean absolute difference of 
1.604º. Finally, for the flexion and extension activity, we 
observed a mean absolute difference of 1.705º. This indicates 
the sensors are resilient to being repeatedly taken off and put 
back on and, therefore, are reliable. In addition, we notice 
improved accuracy of the sensors over the course of the 
experiment. The sensors were built with iteratively better 
quality due to practicing the fabrication procedure. It is 
expected that if the experiment were reconducted, we would 
observe even better results. 

IV. DISCUSSION 

A. Comparison with State-of-the-Art Kinematics Sensors 
As seen in Table III, compared to the previous work done on 

monitoring knee flexion, we achieve similar to slightly higher 
RMSE values. Specifically, a potentiometer-based approach 
achieved a 3.35º ± 1.24º RMSE for a walking activity and a 
3.64º ± 1.27º RMSE for a running activity [22]. A 
rotary-position-sensor-based method achieved a 3.0º ± 1.4º 
accuracy for a walking activity [23]. Another study using an 
IMU achieved a walking RMSE of 4.3º ± 0.7º and a running 
RMSE of 7.1º ± 5.4º [24]. Strain sensors show even better 
results of measuring knee flexion of 1.2°± 0.87º RMSE [25]. 
Optical fiber sensors have shown to achieve a 5.3° ± 1.13° 
RMSE during walking [26], while capacitive bending sensors 
have shown to achieve a RMSE 5.8º ± 1.2º during robotic arm 
bending tests [27]. Although other approaches may achieve 
slightly better results, they are bulky, restrict movement, suffer 
from drift, or are prone to wear and tear. Our proposed sensor 
solves most of these issues while still maintaining a reasonable 
accuracy. Notably, in the following section, we reconcile the 
translation to an untethered, fully wearable version, with a 
0.670º ± 0.366º RMSE during phantom bending test. 

B. Translation to an Untethered Sensor 
Though this proof-of-concept study utilizes a network 

analyzer to evaluate the kinematics sensor, the end goal is for 
the sensor to be fully wireless. In this untethered approach, the 
system would require a transmitting (Tx) board to generate a 34 
MHz signal at the desired power level, the loop sensors of Fig. 
1, and a receiving (Rx) board to detect the received power level.   

As an example implementation, a prototype untethered 
system was built and tested upon a phantom model. Referring 
to Fig. 7(a), the Tx board features a CMOS oscillator 
(SiT8008BC, SiTime) and a fifth order Chebyshev low-pass 
filter with a 40 MHz cutoff frequency. It was designed to 
generate an RF power of Pt = 5.68 dBm at 34 MHz upon a 50 
Ωload. The Rx board features a bandpass filter operating from 
30 MHz to 40 MHz with 10 MHz bandwidth (SXBP-35N+, 
Mini-Circuits), a logarithmic amplifier (ADL5513, Analog 
Devices), and a Bluetooth Low Energy (BLE) system-on-chip 

 

 
with an internal 12-bit analog to digital converter 
(CYBLE-012011-00, Infineon). It was designed to detect the 
received RF power (Pr), convert the power level to voltage level  
(Vr), and transmit the voltage data to a remote computer via 
Bluetooth. With the relationship of flexion angle vs. Vr known 
through calibration, we can recover real-time flexion angles 
from the collected voltage data. In this first, proof-of-concept 

 
Fig. 7. (a) Block diagram of the proposed untethered sensor. LPF: low-pass 
filter, BPF: band-pass filter, LA: logarithmic amplifier, ADC: analog-to-digital 
converter, BLE: Bluetooth low energy. PC: personal computer. (b)-(c) Test 
system for untethered flexion angle detection. 

 
Fig. 8. Experimental results for the untethered sensor system: (a) Calibration 
curves, and (b) an example recording of received voltage (solid red), angle 
estimated by the sensor (solid blue), and angle provided by the camera (dashed 
yellow).  
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implementation, the footprint of the Tx and Rx boards is 45 
mm×32 mm and, 50 mm×40 mm respectively. 

The testing setup for the untethered sensor system is shown 
in Fig. 7(b) and (c). Per studies [28], the leg was emulated as an 
8-cm diameter Styrofoam cylinder with a 3D-printed joint used 
to mimic knee flexion. We note that since biological tissues are 
non-magnetic, there is no need to include tissue-mimicking 
materials in the experiment. The loops of Fig. 1 were 
conformally placed on the phantom and connected to the Tx 
and Rx boards, respectively. To collect calibration data as well 
as “gold standard” angles to compare against, we utilized an 
Intel RealSense 515 LiDAR Camera and placed three markers  
on the two halves of the phantom and the joint, respectively.  

For calibration, we performed slow flexion from 0º to 90º 
followed by several fast flexion and extension movements over 
a duration of 60 sec. The purpose of the fast flexion and 
extension was to align the camera and sensor timestamps and 
ensure accuracy. Calibration was performed three times for 
repeatability purposes. Results are shown in Fig. 8(a), 
confirming repeatability as well as the expected monotonic 
relationship between voltage and flexion angle. 

Following calibration, we performed manual flexion and 
extension of the phantom limb at random speed, over a duration 
of 80 sec. We used the initial and final 10 sec to align the 
camera and sensor timestamps and the remaining 60 sec for 
data analysis. Testing was performed five times for the same 
reasons as outlined in Section II.E. An example trial is shown in 
Fig. 8(b). Here, voltage data are plotted as a function of time 
(solid red), alongside a comparison between the estimated 
angle from the untethered sensor system (solid blue) and the 
“gold-standard” angle provided by the camera (dashed yellow). 
As seen, the estimated angle is in great agreement with the 
“gold-standard” angle. To quantify performance, Table IV 
summarizes the RMSE and Pearson’s correlation coefficient (ρ) 
between the estimated angle and “gold-standard” angle for each 
trail. As seen, the sensor achieves outstanding accuracy with an 
average RMSE of 0.670º and an average ρ of 0.99966.  

Having validated the feasibility and accuracy of a fully 
wearable sensor system, in the future, we will further 
miniaturize the Tx and Rx boards, test on human subjects, and 
optimize the circuit and sensor design accordingly.  

C. Clinical Implications 
As mentioned in Section I, wearable kinematics sensors have 

great clinical potential for applications as diverse as prevention 
[29], rehabilitation [30][31], and training [31]. Here, we 

highlight two example applications that we envision our 
sensors to be utilized in, namely in the fields of:   
1) Anterior Cruciate Ligament Reconstruction (ACLR). 
Though ACLR surgery improves daily function for individuals 
with ACL injury, 43% of patients exhibit impaired knee motion   
[32][33] and 33% suffer a second ACL injury after 
return-to-play [34][35]. Knee motion sets the stage for safe 
progression after ACLR [36]. However, there is currently no 
technology capable of remote, high-fidelity collection of knee 
kinematics during real-world activities. Our sensor aims to fill 
this gap.  
2) Mild Traumatic Brain Injury (mTBI). Athletes recovering 
from an initial mTBI are known to be at high risk of subsequent 
mTBI [37][38]. Kinematics impairments are viewed as one of 
the major reasons for such subsequent injuries [37][39]. 
However, this relationship is still ambiguous due to the 
inability of current technologies to measure joint kinematics 
during on-field athletic activities [37][38][40][41]. Our sensor 
aims to fill this gap. 

V. CONCLUSION 
This work explored the dynamic motion capture capability of 

a recently reported class of wearable loop sensors that 
overcome limitations in the state-of-the-art. We demonstrated 
real-time dynamic motion capture capability of the sensor using 
a wearable prototype, provided a calibration mechanism, and 
provided software for the same. The sensor was validated on 
ten (10) human subjects for three (3) different types of 
activities. An RMSE as low as 3.657º was observed, averaged 
across non-outlier subjects. This is similar to slightly higher as 
compared to other wearable flexion sensors. Concurrently, the 
sensors are not confined to contrived environments, are reliable 
over time and injury-safe, and do not obstruct natural 
movement. In a major step forward, we further demonstrated 
proof-of-concept results for wireless boards used to replace the 
tethered network analyzer setup. An average RMSE of 0.670º 
was observed upon tissue-emulating phantoms, confirming 
feasibility for a fully wearable sensor system. 

In the future, we will test the fully wearable sensor system on 
human subjects and improve upon the sensors’ RMSE by 
further optimizing the design and adopting artificial 
intelligence techniques to remove fabric drift errors. 
Ultimately, this sensor can be deployed in numerous settings 
(clinical, sports, virtual reality, robotics, and more) for 
real-time motion monitoring, anywhere and anytime. 
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TABLE IV 
EXPERIMENTAL RESULTS FOR FLEXION ANGLE (IN DEGREE) OBTAINED VIA 

THE UNTETHERED LOOP SENSOR SYSTEM 

Trial Number RMSE (In Degree) ρ 
1 0.373 0.9999 
2 1.025 0.9994 
3 0.618 0.9997 
4 0.495 0.9998 
5 0.842 0.9995 

Average 0.670 ± 0.366 0.99966±0.00026 
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