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Wearable Loop Sensors for Knee Flexion Monitoring:
Dynamic Measurements on Human Subjects
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Abstract— Goals: We have recently introduced a new class of
wearable loop sensors for joint flexion monitoring that overcomes
limitations in the state-of-the-art. Our previous studies reported a
proof-of-concept on a cylindrical phantom limb, under static
scenarios and with a rigid sensor. In this work, we evaluate our
sensors, for the first time, on human subjects, under dynamic
scenarios, using a flexible textile-based prototype tethered to a
network analyzer. An untethered version is also presented and
validated on phantoms, aiming towards a fully wearable design.
Methods: Three dynamic activities (walking, brisk walking, and
full flexion/extension, all performed in place) are used to validate
the tethered sensor on ten (10) adults. The untethered sensor is
validated upon a cylindrical phantom that is bent manually at
random speed. A calibration mechanism is developed to derive the
sensor-measured angles. These angles are then compared to
gold-standard angles simultaneously captured by a light detection
and ranging (LiDAR) depth camera using root mean square error
(RMSE) and Pearson’s correlation coefficient as metrics. Results:
We find excellent correlation (> 0.981) to gold-standard angles.
The sensor achieves an RMSE of 4.463° = 1.266° for walking,
5.541° = 2.082° for brisk walking, 3.657° + 1.815° for full
flexion/extension activities, and 0.670° £ 0.366° for the phantom
bending test. Conclusion: The tethered sensor achieves similar to
slightly higher RMSE as compared to other wearable flexion
sensors on human subjects, while the untethered version achieves
excellent RMSE on the phantom model. Concurrently, our
sensors are reliable over time and injury-safe, and do not obstruct
natural movement. Our results set the ground for future
improvements in angular resolution and for realizing fully
wearable designs, while maintaining the abovementioned
advantages over the state-of-the-art.
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Index Terms—Calibration, dynamic motion capture, e-textile,

human subject validation, loop sensors, joint flexion, wearables.

Impact  Statement—Motion capture in  real-world
environments has immense potential in healthcare, sports, and
beyond. Our findings support the feasibility of a wearable sensor
that meets both wearability and performance standards
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I. INTRODUCTION

ONITORING joint angles during dynamic activities of

the human body, in real-time, and, ideally, in
non-contrived (i.e., non-laboratory-based) settings can benefit
several application sectors, including healthcare, sports
performance, and robotics [1]. For instance, motion capture can
help clinicians personalize the rehabilitation of stroke patients,
as well as understand the effect of joint movement on
hemophilic arthropathy [2][3]. It can also help clinicians
monitor physical activities of patients with Parkinson’s disease
[4]. In other cases, motion capture can help calculate injury risk
to assist in sports therapy [5], instruct movement-based
activities such as dancing [6], and more.

State-of-the-art technologies used for motion capture face
several limitations, as detailed in [7]. In brief, gold-standard
camera-based motion capture (MoCap) systems are highly
accurate but are costly, constrained to a fixed/confined
environment, and require line-of-sight [8][9]. Inertial
measurement units (IMUs) are portable/wearable but suffer
from integration drift [10]-[12], leading to error accumulation
with time. Potentiometer-based sensors [13][14] are bulky and
do not conform to the size of the patient, making them
uncomfortable to use. Finally, bending (strain-based) sensors
[15] restrict natural movement and are limited by the number of
cycles of use due to repeated strain.

To overcome these limitations in the state-of-the-art, we
have recently reported a new class of wearable loop sensors that
capture joint angles using transmit and receive loops placed
across the joint [16]-[18]. The sensors operate based on
Faraday’s law of induction where the voltage on the receiving
loop changes as the joint flexes, and thus, the loops misalign.
These sensors are reliable over time and injury-safe, and do not
obstruct natural movement. A summary of our previous work is
outlined in Table I, with a focus on monitoring knee joint
kinematics. As seen, only proof-of-concept studies have been
reported to date where rigid (copper-wire) loops have been
tested on cylindrical phantom limbs under static scenarios (i.e.,
the limb is fixed at a given angle each time a measurement is
collected) in a tethered setting.

In this work, we take a major step forward and report
dynamic measurements of knee joint flexion, in real-time, on
human subjects, using flexible, textile-based loops. To cater to
the new requirements, we also introduce: (a) a calibration
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mechanism that helps extract joint angles from the raw sensor
output (i.e., transmission coefficient) and (b) dedicated
software built in-house to allow for calibration, real-time
recording, and data processing. Without loss of generality, tests
are conducted using the two-loop planar sensor configuration
of [17], suitable for two-dimensional joint flexion/extension
angle measurements. Three different activities, viz. walking,
brisk walking, and full flexion/extension, all carried out in
place (i.e., the subject is not physically moving from their
original location), are utilized to test and validate the sensor on
ten (10) healthy adults in a tethered setting (i.e., connected to a
network analyzer). To further demonstrate the potential of
translating this sensor into a fully wearable version, we also
report and validate upon phantoms an untethered system.

The rest of the paper is organized as follows. Section II
covers materials and methods. This starts with description of
the experimental set-up including sensor design, data collection
and recording software, camera set-up and validation, and
sensor calibration for the tethered system. This is followed by
description of the actual experiment and data analysis methods.
Detailed results for the tethered system on human subjects are
presented in Section IIl. Section IV compares the system
performance vs. the state of the art, discusses the development
of an untethered system, and highlights clinical implications.
Section V concludes the paper.

II. MATERIALS AND METHODS

A block diagram and a picture of the experimental setup are
shown in Fig. 1(a). Two planar loop sensors were placed upon
the leg (see Section II.A) and connected to a vector network
analyzer (VNA, NS5235A) via coaxial cables to record
transmission coefficient (|S,i|) data. The latter inherently
includes flexion angle information [17]. The network analyzer
was further connected to a laptop which recorded the |S,i| data
in real-time using our self-built recording software (see Section
I1.B). Simultaneously, a light detection and ranging (LiDAR)
depth camera was used to capture the flexion angles for two
purposes, i.e., (a) to provide gold-standard angles as a reference
for comparison, and (b) to calibrate the sensor (see Section
I1.C). Data recorded from the camera was also captured in
real-time using our self-built recording software on the laptop.

Software

Camera

(b)
Fig. 1. (a) Block diagram and (b) experimental set-up including human-worn
loop sensor connected to a network analyzer to collect |S,;| data for knee
flexion, camera collecting gold-standard flexion angles as reference for
comparison, and data recording and calibration software on laptop.

Leg Brace
Adapter for 5

E-Thread

Loops on
subject

Capacitor

(b)

Fig. 2. Loop sensor design: (a) fabricated single loop using e-thread, adapter,
capacitor, and elastomer, and (b) sensor adhered to subject’s limb across the
knee joint over a leg brace.

The experimental protocol can be divided in two steps and
involves: (a) calibration of the sensor (see Section IL.D),
followed by (b) real-time knee-flexion data collection using
both the sensor and the camera for a given activity on a given
subject. Details of each component of the experimental set-up
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are discussed next, followed by the actual experiment and data
analysis methods.

A. Sensor Design

Per Section I, the sensor consists of two planar loops placed
longitudinally upon the body 8 cm above and below the knee
joint with one acting as transmitter and the other as receiver. As
detailed in [16], [17], the sensor consists of magnetically
coupled transmit and receive loops and operates based on
Faraday’s law of induction to monitor joint flexion. In brief, as
the flexion angle changes, it leads to change in relative position
between the loops. In turn, the transmission coefficient between
the loops changes. Thus, the change in flexion angle is directly
mapped to the change in transmission coefficient (or receiver
voltage). Ultimately, monitoring the transmission coefficient
values allows for seamless monitoring of joint angles.

Our selection for a planar loop sensor design in this study
was based on its tolerance to the anatomical shape and size of
the limb, as well as its high angular resolution for flexion-only
activities (we purposely omitted rotation monitoring in this first
study on human subjects to reduce the complexity and potential
sources of error) [17]. Each loop had a radius of 4 cm and was
soldered to a 102 pF lumped capacitor to make them resonant at
34 MHz, as per the detailed study in [16] (see Fig. 2). Each of
the loops were sewn using LIBERATOR-40 conductive
e-thread on a 6 cm %10 cm piece of cotton fabric [19],[20]. An
SMA connector was attached to each loop sensor and kept in
place using a 3-D printed fixture and plastic screws. This
fixture also provides support for the e-thread. It was then tied to
the cotton fabric with non-conductive thread for increased
durability. The fabric was finally covered in SYLGARD 184
silicone elastomer to increase structural stability, as shown in
Fig. 2(a). That is, the elastomer allows loops to maintain their
circular shape and prevents deformation over the course of the
experiment without altering the sensor performance. Since the
sensor operates in the deep inductive regime, the presence or
absence of this elastomer has no impact on the resulting
performance.

B. Data Collection and Recording Software

As shown in Fig. 1, the VNA was connected to a laptop over
Ethernet to facilitate the data collection process via recording
software. The VNA was set to sweep at a single frequency of 34
MHz and record the |S»;| values while sampling at a rate of 60
points per second with the intermediate frequency (IF)
bandwidth set to 3 kHz. The recording software was developed
with a web-based frontend and a REST application
programming interface (API) backend. The frontend was
developed using JavaScript to communicate with the backend.
The backend was developed using Python 3.8. Flask was used
to create the REST API, pyrealsense2 was used to capture data
from the camera, and pyvisa was used to communicate with the
VNA and collect |Sy| data via the Standard Commands for
Programmable Instruments (SCPI) protocol.

C. Camera Setup and Validation

To calibrate the sensor and for gold-standard comparison, a
depth sensing camera was used to monitor the flexion angle of
the limb during sensor data collection. The camera used was the
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Fig. 3. Gold standard camera validation against goniometer (a) set-up, and (b)
results.

Intel RealSense 515 LiDAR Camera which is capable of
capturing color, depth, and infrared video data at a sampling
rate of 30 frames per second where each frame has a resolution
of 640x480 pixels. During data collection, the camera was
placed on a tripod facing the limb, approximately 2 m away
from the participant. To calculate the flexion angle, three
retroreflective markers were placed on the leg to form the
vertices of a triangle, as shown in Fig. 1(b). For each frame, the
3-dimensional (3-D) coordinates of each marker were captured
by applying thresholding to the infrared image channel to
obtain 2-D coordinates, and transformed to 3-D coordinates
using the depth channel. Given these coordinates, the angle of
the triangle that corresponds to the flexion angle of the limb
(say ), was calculated in a numerically stable manner using a
modified version of Heron’s formula found in Eq. 1, where a,
b, and c are the side lengths of a triangle calculated by the
Euclidean distance between marker coordinates [21]. Here,
sides a and b are swapped such that a > b.

(a=b)+c)*ulab,c)
(a+ B +0)*((a=c)+b)

0(a,b,c) = tan‘l\/ ®
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where were fixed in location on the limb using athletic gauze. Next,
c—(a—Db) ifbzc=0
wab,c)=4 b—(a—c) ifc>b=0 ) — |82l
invalid triangle else Camera Angle

To validate the accuracy of the approach, the flexion angle of
a phantom limb (Styrofoam limb as used in [18]) was
simultaneously measured by the camera and a goniometer
(standard clinical device to measure knee flexion angle). This
set-up, pictured in Fig. 3(a), uses the metal goniometer to set
the limb to a desired angle. Concurrently, the camera and
aforementioned approach were wused to capture the
corresponding flexion angle. Measurements were taken in
increments of 10° statically. The root mean squared error
(RMSE) between the angles measured by the camera and the
angles measured by the goniometer was 0.322°. The results of
this validation process can be seen in Fig. 3(b). This validated
the camera to be used for gold-standard comparison purposes
and calibration during experiments.

D. Sensor Calibration

Sensor calibration is required to convert |Sy;| data collected
from the sensor to corresponding flexion angles. This enables
us to obtain flexion angle as the output from the sensor in
real-time, as desired. To do this, the participant needs to just
perform full flexion and extension while |Sy;| data from the
sensor and flexion angles from the camera are collected in
real-time, simultaneously. One example of such temporally
aligned raw data is shown in Fig. 4(a). Note that |S,| and
camera data do not overlap due to non-linearity in the
characteristic curve (|Szi| vs. flexion angle) of the sensor [17].
This results in the calibration data seen in Fig. 4(b). As the
camera’s sampling rate is half that of the network analyzer, the
flexion angle data was always linearly interpolated to have the
same sampling rate as the network analyzer. Since the
calibration curve should be monotonically increasing [16],
th|S»i| and angle data were sorted independently of each other
after alignment. Let S = (sy,S,,**,5,) be the sequence of
sorted |Szi| values gathered during calibration and let A =
(a4, ay,+,a,) be the sequence of sorted limb angle values
gathered using the camera during calibration. The linear
interpolation on the points (sq, a;), (S5, a3), (S, @) results
in a monotonically increasing, continuous function c :
[s1,sn] = [a1, ], i.e., the calibration curve depicted in Fig
4(b). The calibration curve once obtained can be utilized for

obtaining flexion angles from the sensor directly in real-time.

E. Experiment

Ten (10) adult participants were recruited to participate in
this study. Each Participant signed the IRB consent form
approved by the Office of Responsible Research Practices of
the Ohio State University (Approval No.2017H0472, Date:
08/15/2023). These subjects were selected upon no specific
requirements, except that they were physically healthy and
physically able to participate.

Consent of the subjects was taken prior to experiments.
Referring to Fig. 2, a flexible thigh and shin brace was placed
above and below the knee joint on the right leg. The brace was
used to limit the movement of the sensors, as well as make them
more comfortable for the subject to wear. The sensors were
then placed on each subject 8 cm above and below the knee and
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Fig. 4. (a) Calibration data, and (b) calibration curve.
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Fig. 5. (a) Mean RMSE and (b) Mean correlation p per activity, excluding

subjects 2 and 6.

the SMA cables were connected to the sensors. Finally, the
camera markers were placed on the participant, and the other
end of each cable was connected to the VNA.

Participants were asked to perform three activities: (a)
walking, (b) brisk walking, and (c) full flexion/extension, all in
place (i.e., the participant is not moving from his/her original
position). Calibration was performed based on Section I1.D,
i.e., the participant was asked to perform one or more full
flexions and extensions that spanned their range of motion.
During the walking activity, the participant was asked to walk
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TABLEII
EXPERIMENTAL RESULTS FOR FLEXION ANGLE (IN DEGREE) OBTAINED VIA LOOP SENSOR
Subiect Number Mean Walking Mean Brisk Mean Flexion and Mean Walkin Mean Brisk Mean Flexion and
) RMSE Walking RMSE Extension RMSE £p Walking p Extension p
1 5.034+£0.518 8.590 +0.523 4.279 +0.098 0.985+0.003 0.969 £ 0.001 0.994 £ 0.001
2 3.744 £ 0.082 4.769 +0.843 13.449 +3.528 0.995+0.001 0.991 +0.002 0.953 +£0.010
3 5.225+0.505 3.384+0.227 1.652 £0.471 0.985 +0.004 0.995 £ 0.000 0.999 +0.000
4 6.985 +£2.047 8.141 + 0.068 7.463 £2.616 0.982 £ 0.005 0.977 +0.000 0.980+0.012
5 4.522 +£1.430 3.816 +1.249 2.110+0.372 0.992 £ 0.005 0.994 £ 0.003 0.999 +0.000
6 7.386 +1.503 8.926 + 3.598 3.902 +1.749 0.988 £ 0.002 0.983 £0.008 0.994 £ 0.004
7 2.985+0.267 5.342 +0.489 3.004 £ 0.327 0.996 + 0.001 0.986 £ 0.006 0.997 +0.002
8 4.523 +£0.640 7.295+2.671 2.906 +0.972 0.994 + 0.001 0.951 +£0.002 0.998 +0.001
9 3.582+0.391 3.054 +£0.269 5.326+1.994 0.983 £0.008 0.990 + 0.003 0.994 £ 0.004
10 2.851+0.699 4.227+0.369 2.518+0.315 0.986 +0.004 0.981 +0.009 0.998 £0.001
Average 4.684 £ 1.463 5.754 £2.152 4.661 + 3.350 0.989 £ 0.005 0.982 +£0.013 0.991 +£0.014
Average w/o 2,6 4.463 £ 1.266 5.541 +2.082 3.657 = 1.815 0.988 + 0.005 0.981 +0.014 0.995 +0.006
TABLE III
COMPARISON VS. STATE-OF-THE-ART WEARABLE KINEMATICS SENSORS
. . Allows Natural Reliable over Resistant to
Technology Lightweight Motion Seamless Time Wear-and-tear RMSE (In Degree)
. 3.35 £ 1.24 (walking)
Potentiometer Sensor [22] No No No Yes Yes 3.64 + 127 (running)
Rotary Position Sensor [23] No No No Yes Yes 3.0+ 1.4 (1 gait)
IMU Sensor [24] Yes Yes No No Yes 4.3 +£0.7 (walking)
Strain Sensor [25] Yes No Yes No No 1.2 £0.87 (walking)
Optical Fiber Sensor [26] Yes No No Yes Yes 5.3 £ 1.13 (gait)
Capacitive Bending Sensor 58+1.2
27] Yes No Yes Yes No (on phantom)
4.684 £+ 1.463 (walking)
Proposed Tethered Sensor No Yes Yes Yes Yes 5.754 + 2.152 (brisk walking)
Proposed Untethered Yes Yes Yes Yes Yes 0.670 £ 0.366

Sensor

(on phantom)

in place for 60 seconds. During the brisk walking activity, the
participant was asked to walk in place briskly for 60 seconds.
During the flexion and extension activity, the participant was
asked to fully flex and extend their leg five times over the
course of 15 seconds to capture the range of motion not
captured by the walking activities. All three activities were
performed up to five times to enable adequate statistical
analysis on each participant. After these activities were
performed, the sensors were taken off and put back on the
subject. Finally, the participant was asked to perform the
calibration process and all three activities again to help ensure
repeatability.

F. Experiment

Data processing was done using Python. The knee flexion
angles were predicted using the data captured from the sensor
during each activity and their corresponding calibrations. These
angles were compared to gold standard camera angles using
two different metrics: RMSE and Pearson’s correlation
coefficient (p). The RMSE measures the accuracy of the
sensors while p measures the correlation of the angles obtained
via the sensor to the gold standard angles.

III. RESULTS

Results for each participant and activity are shown in Table II.
Results without participants two and six are also included
because these subjects had high levels of RMSE due to sensor
fabrication errors and are considered outliers. A graphical
summary is provided in Fig. 5. As seen, the correlation
coefficient shows very strong agreement between the sensor
and gold standard angles across all subjects and activities. We
see that the flexion/extension activity achieved the best RMSE.
This is expected as the sensors are less accurate at lower flexion
angles due to their nonlinear calibration curve (see Fig. 4(b)).

Therefore, since the activity covers the entire range of
motion of the knee as opposed to the other activities, the RMSE
is expected to be lower. The walking activity achieved a better
RMSE than the brisk walking activity. This is also in line with
expectations as quicker movements may cause the sensors to
move. For identical reasons, we see that the correlation
coefficient is maximum for the flexion/extension activity,
medium for the walking activity, and lowest for the brisk
walking activity.

An example of the results from the flexion/extension activity
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can be seen in Fig. 6. Flexion angles obtained using the sensor [ TxBoard | [ LoopSensors | | Rx Board |

and camera show an excellent match. We see increased error at
lower angles which is expected due to the lower dynamic range
of the sensor at these angles.

To examine repeatability, we observed the mean absolute
difference in RMSE between the first and second trials per
activity for each subject. For the walking activity, we observed
a mean absolute difference in RMSE of 1.670°. For the brisk
walking activity, we observed a mean absolute difference of
1.604°. Finally, for the flexion and extension activity, we
observed a mean absolute difference of 1.705°. This indicates
the sensors are resilient to being repeatedly taken off and put
back on and, therefore, are reliable. In addition, we notice
improved accuracy of the sensors over the course of the
experiment. The sensors were built with iteratively better
quality due to practicing the fabrication procedure. It is
expected that if the experiment were reconducted, we would
observe even better results.

IV. DISCUSSION

A. Comparison with State-of-the-Art Kinematics Sensors

As seen in Table III, compared to the previous work done on
monitoring knee flexion, we achieve similar to slightly higher
RMSE values. Specifically, a potentiometer-based approach
achieved a 3.35° + 1.24° RMSE for a walking activity and a
3.64° + 1.27° RMSE for a running activity [22]. A
rotary-position-sensor-based method achieved a 3.0° + 1.4°
accuracy for a walking activity [23]. Another study using an
IMU achieved a walking RMSE of 4.3° £ 0.7° and a running
RMSE of 7.1° £ 5.4° [24]. Strain sensors show even better
results of measuring knee flexion of 1.2°+ 0.87° RMSE [25].
Optical fiber sensors have shown to achieve a 5.3° £ 1.13°
RMSE during walking [26], while capacitive bending sensors
have shown to achieve a RMSE 5.8° + 1.2° during robotic arm
bending tests [27]. Although other approaches may achieve
slightly better results, they are bulky, restrict movement, suffer
from drift, or are prone to wear and tear. Our proposed sensor
solves most of these issues while still maintaining a reasonable
accuracy. Notably, in the following section, we reconcile the
translation to an untethered, fully wearable version, with a
0.670° = 0.366° RMSE during phantom bending test.

B. Translation to an Untethered Sensor

Though this proof-of-concept study utilizes a network
analyzer to evaluate the kinematics sensor, the end goal is for
the sensor to be fully wireless. In this untethered approach, the
system would require a transmitting (Tx) board to generate a 34
MHz signal at the desired power level, the loop sensors of Fig.
1, and a receiving (Rx) board to detect the received power level.

As an example implementation, a prototype untethered
system was built and tested upon a phantom model. Referring
to Fig. 7(a), the Tx board features a CMOS oscillator
(SiT8008BC, SiTime) and a fifth order Chebyshev low-pass
filter with a 40 MHz cutoff frequency. It was designed to
generate an RF power of Py = 5.68 dBm at 34 MHz upon a 50
Qload. The Rx board features a bandpass filter operating from
30 MHz to 40 MHz with 10 MHz bandwidth (SXBP-35N,,
Mini-Circuits), a logarithmic amplifier (ADL5513, Analog
Devices), and a Bluetooth Low Energy (BLE) system-on-chip

Sensors

Movable
Phantom

:.r Fixed/

Phantom

(b) (©)

Fig. 7. (a) Block diagram of the proposed untethered sensor. LPF: low-pass
filter, BPF: band-pass filter, LA: logarithmic amplifier, ADC: analog-to-digital
converter, BLE: Bluetooth low energy. PC: personal computer. (b)-(c) Test
system for untethered flexion angle detection.
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Fig. 8. Experimental results for the untethered sensor system: (a) Calibration
curves, and (b) an example recording of received voltage (solid red), angle
estimated by the sensor (solid blue), and angle provided by the camera (dashed
yellow).

with an internal 12-bit analog to digital converter
(CYBLE-012011-00, Infineon). It was designed to detect the
received RF power (P;), convert the power level to voltage level
(V), and transmit the voltage data to a remote computer via
Bluetooth. With the relationship of flexion angle vs. V, known
through calibration, we can recover real-time flexion angles
from the collected voltage data. In this first, proof-of-concept
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TABLE IV
EXPERIMENTAL RESULTS FOR FLEXION ANGLE (IN DEGREE) OBTAINED VIA
THE UNTETHERED LOOP SENSOR SYSTEM

Trial Number RMSE (In Degree) p
1 0.373 0.9999
2 1.025 0.9994
3 0.618 0.9997
4 0.495 0.9998
5 0.842 0.9995
Average 0.670 £ 0.366 0.99966:0.00026

implementation, the footprint of the Tx and Rx boards is 45
mmx32 mm and, 50 mmx>40 mm respectively.

The testing setup for the untethered sensor system is shown
in Fig. 7(b) and (c). Per studies [28], the leg was emulated as an
8-cm diameter Styrofoam cylinder with a 3D-printed joint used
to mimic knee flexion. We note that since biological tissues are
non-magnetic, there is no need to include tissue-mimicking
materials in the experiment. The loops of Fig. 1 were
conformally placed on the phantom and connected to the Tx
and Rx boards, respectively. To collect calibration data as well
as “gold standard” angles to compare against, we utilized an
Intel RealSense 515 LiDAR Camera and placed three markers
on the two halves of the phantom and the joint, respectively.

For calibration, we performed slow flexion from 0° to 90°
followed by several fast flexion and extension movements over
a duration of 60 sec. The purpose of the fast flexion and
extension was to align the camera and sensor timestamps and
ensure accuracy. Calibration was performed three times for
repeatability purposes. Results are shown in Fig. 8(a),
confirming repeatability as well as the expected monotonic
relationship between voltage and flexion angle.

Following calibration, we performed manual flexion and
extension of the phantom limb at random speed, over a duration
of 80 sec. We used the initial and final 10 sec to align the
camera and sensor timestamps and the remaining 60 sec for
data analysis. Testing was performed five times for the same
reasons as outlined in Section II.LE. An example trial is shown in
Fig. 8(b). Here, voltage data are plotted as a function of time
(solid red), alongside a comparison between the estimated
angle from the untethered sensor system (solid blue) and the
“gold-standard” angle provided by the camera (dashed yellow).
As seen, the estimated angle is in great agreement with the
“gold-standard” angle. To quantify performance, Table IV
summarizes the RMSE and Pearson’s correlation coefficient (p)
between the estimated angle and “gold-standard” angle for each
trail. As seen, the sensor achieves outstanding accuracy with an
average RMSE of 0.670° and an average p of 0.99966.

Having validated the feasibility and accuracy of a fully
wearable sensor system, in the future, we will further
miniaturize the Tx and Rx boards, test on human subjects, and
optimize the circuit and sensor design accordingly.

C. Clinical Implications

As mentioned in Section I, wearable kinematics sensors have
great clinical potential for applications as diverse as prevention
[29], rehabilitation [30][31], and training [31]. Here, we

highlight two example applications that we envision our
sensors to be utilized in, namely in the fields of:

1) Anterior Cruciate Ligament Reconstruction (ACLR).
Though ACLR surgery improves daily function for individuals
with ACL injury, 43% of patients exhibit impaired knee motion
[32][33] and 33% suffer a second ACL injury after
return-to-play [34][35]. Knee motion sets the stage for safe
progression after ACLR [36]. However, there is currently no
technology capable of remote, high-fidelity collection of knee
kinematics during real-world activities. Our sensor aims to fill
this gap.

2) Mild Traumatic Brain Injury (mTBI). Athletes recovering
from an initial mTBI are known to be at high risk of subsequent
mTBI [37][38]. Kinematics impairments are viewed as one of
the major reasons for such subsequent injuries [37][39].
However, this relationship is still ambiguous due to the
inability of current technologies to measure joint kinematics
during on-field athletic activities [37][38][40][41]. Our sensor
aims to fill this gap.

V. CONCLUSION

This work explored the dynamic motion capture capability of
a recently reported class of wearable loop sensors that
overcome limitations in the state-of-the-art. We demonstrated
real-time dynamic motion capture capability of the sensor using
a wearable prototype, provided a calibration mechanism, and
provided software for the same. The sensor was validated on
ten (10) human subjects for three (3) different types of
activities. An RMSE as low as 3.657° was observed, averaged
across non-outlier subjects. This is similar to slightly higher as
compared to other wearable flexion sensors. Concurrently, the
sensors are not confined to contrived environments, are reliable
over time and injury-safe, and do not obstruct natural
movement. In a major step forward, we further demonstrated
proof-of-concept results for wireless boards used to replace the
tethered network analyzer setup. An average RMSE of 0.670°
was observed upon tissue-emulating phantoms, confirming
feasibility for a fully wearable sensor system.

In the future, we will test the fully wearable sensor system on
human subjects and improve upon the sensors’ RMSE by
further optimizing the design and adopting artificial
intelligence techniques to remove fabric drift errors.
Ultimately, this sensor can be deployed in numerous settings
(clinical, sports, virtual reality, robotics, and more) for
real-time motion monitoring, anywhere and anytime.
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