
A Global Semianalytic Model of the First Stars and Galaxies Including Dark Matter Halo
Merger Histories

Colton R. Feathers , Mihir Kulkarni , Eli Visbal , and Ryan Hazlett
University of Toledo, Department of Physics and Astronomy and Ritter Astrophysical Research Center, 2801 W. Bancroft Street, Toledo, OH 43606, USA;

colton.feathers@rockets.utoledo.edu, mihir.kulkarni@utoledo.edu, elijah.visbal@utoledo.edu, ryan.hazlett@rockets.utoledo.edu
Received 2023 June 12; revised 2023 November 30; accepted 2023 December 4; published 2024 February 7

Abstract

We present a new self-consistent semianalytic model of the first stars and galaxies to explore the high-redshift
(z� 15) Population III (PopIII) and metal-enriched star formation histories. Our model includes the detailed
merger history of dark matter halos generated with Monte Carlo merger trees. We calibrate the minimum halo mass
for PopIII star formation from recent hydrodynamical cosmological simulations that simultaneously include the
baryon–dark matter streaming velocity, Lyman–Werner (LW) feedback, and molecular hydrogen self-shielding.
We find an overall increase in the resulting star formation rate density (SFRD) compared to calibrations based on
previous simulations (e.g., the PopIII SFRD is over an order of magnitude higher at z= 35−15). We evaluate the
effect of the halo-to-halo scatter in this critical mass and find that it increases the PopIII stellar mass density by a
factor ∼1.5 at z� 15. Additionally, we assess the impact of various semianalytic/analytic prescriptions for halo
assembly and star formation previously adopted in the literature. For example, we find that models assuming
smooth halo growth computed via abundance matching predict SFRDs similar to the merger tree model for our
fiducial model parameters, but that they may underestimate the PopIII SFRD in cases of strong LW feedback.
Finally, we simulate subvolumes of the Universe with our model both to quantify the reduction in total star
formation in numerical simulations due to a lack of density fluctuations on spatial scales larger than the simulation
box, and to determine spatial fluctuations in SFRD due to the diversity in halo abundances and merger histories.

Unified Astronomy Thesaurus concepts: Cosmology (343); Population III stars (1285); Galaxy formation (595)

1. Introduction

Theoretical calculations based on the standard model of
cosmology predict that the first stars began illuminating the
Universe within the first ∼100 Myr that followed the Big Bang.
Simulations indicate these stars, categorized as Population III
(PopIII) stars, formed from primordial metal-free gas within
dark matter (DM) “minihalos” (Mvir= 105–106 Me), with
much higher masses (M* = 10–1000 Me) than metal-enriched
stars (for a recent review, see Klessen & Glover 2023). Thus,
the first PopIII stars likely had stellar lifetimes of only a few
megayears (Schaerer 2002). Following their short lives, they
injected metal-enriched material into their surroundings via
supernova (SN) winds, resulting in the formation of Population
II (PopII) stars (see, e.g., Smith et al. 2015) and ultimately the
first galaxies.

While there are currently no confirmed detections of PopIII
stars, a variety of upcoming observations have the potential to
constrain their abundance and properties (e.g., the PopIII initial
mass function (IMF)). For example, the recently launched
James Webb Space Telescope (JWST) may observe pair-
instability SNe (Whalen et al. 2013; Hartwig et al. 2018a) from
PopIII stars with initial masses ∼140–250 Me. If large clusters
of PopIII stars form in so-called PopIII galaxies (e.g., due to
inefficient mixing of metals), they may be directly observable
with JWST (Visbal et al. 2017; Kulkarni et al. 2019; Sarmento
et al. 2019; Vikaeus et al. 2022). We note that large PopIII
starbursts detectable with JWST have recently been predicted

to occur in alternative DM scenarios that suppress small-scale
structure, such as “fuzzy DM” (e.g., Hu et al. 2000; Hui et al.
2017; Ferreira 2021; Kulkarni et al. 2022). While PopIII stars
currently remain elusive, JWST has already observed metal-
enriched galaxies out to very high redshifts (e.g., Naidu et al.
2022; Finkelstein et al. 2023; Labbé et al. 2023). The properties
of low-mass galaxies may even depend on the characteristics of
PopIII stars due to the hierarchical nature of structure formation
in the Lambda cold dark matter (ΛCDM) model (e.g., Abe et al.
2021).
Another promising route to constrain the properties of the

first stars and galaxies is to measure their impact on the thermal
and ionization properties of the intergalactic medium. For
example, the optical depth due to electron scattering of the
cosmic microwave background has been used to put upper
limits on the efficiency of PopIII star formation (e.g., Haiman
& Holder 2003; Shull & Venkatesan 2008; Ahn et al. 2012;
Visbal et al. 2015a; Miranda et al. 2017). Additionally, the
cosmological 21 cm signal is sensitive to the properties of early
star formation. This is true both for global experiments such as
EDGES (Bowman et al. 2018) and LEDA (Price et al. 2018), as
well as those aiming to measure 3D spatial fluctuations, such as
HERA (DeBoer et al. 2017) and the Square Kilometre Array
(Mellema et al. 2013). Additional observational probes of
PopIII stars include gamma-ray bursts (Bromm & Loeb 2007;
Burlon et al. 2016; Kinugawa et al. 2019), line-intensity
mapping of the 1640 Å He II recombination line (Visbal et al.
2015b; Parsons et al. 2022), and studying extremely metal-poor
stars in the local Universe that could have been formed from
the SN ejecta of PopIII stars (“stellar archeology;” e.g., Frebel
& Norris 2015; Hartwig et al. 2015, 2018b; Magg et al. 2018).
The measurements described above require accurate theor-

etical models of early star and galaxy formation both to suggest
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optimal observing strategies and interpret the results. Previous
modeling efforts have taken many forms, from large-scale
cosmological hydrodynamic simulations (e.g., Xu et al. 2013;
Jaacks et al. 2018) to analytic calculations for quick predictions
of global properties (e.g Haiman & Bryan 2006; Wyithe &
Cen 2007; Trenti & Stiavelli 2009; Visbal et al. 2015a;
Furlanetto & Mirocha 2022). While hydrodynamical cosmolo-
gical simulations, such as the Renaissance Simulations
(Xu et al. 2013, 2014; Ahn et al. 2015; O’Shea et al. 2015; Xu
et al. 2016; Smith et al. 2018), include most of the physical
processes relevant to early star formation, such as radiative,
mechanical, and chemical feedback, they are very numerically
expensive (e.g., ∼107 CPU hours per realization in the case of
Renaissance). While these simulations follow the physics with
high fidelity, they still typically involve free parameters in
subgrid prescriptions (e.g., the minimum metallicity for PopII
star formation or the PopIII IMF), and are too costly to explore
the parameter space in detail.

Semianalytic models of the first stars and galaxies represent
an alternate approach that can be used to survey the uncertain
parameter space rapidly, while accurately following the
hierarchical assembly of DM structure (e.g., Trenti &
Stiavelli 2009; Crosby et al. 2013; Valiante et al. 2016; Yung
et al. 2019a). The DM “backbone” can be computed either
through cosmological N-body simulations or analytic Monte
Carlo (MC) methods based on the Extended Press–Schechter
(EPS) formalism (Press & Schechter 1974; Bond et al. 1991).
Star formation and astrophysical feedback is then implemented
on top of this structure using analytic techniques, allowing for
rapid simulation across cosmological volumes and large
redshift ranges while still including most of the important
physics (see Magg et al. 2018; Mebane et al. 2018; Visbal et al.
2018; Liu & Bromm 2020; Visbal et al. 2020, for examples).

In this paper, we present a new global high-redshift (z� 15)
semianalytic model of the first stars and galaxies. The main
new features of this model are that it includes complete DM
halo merger histories (from MC methods) and is calibrated to
state-of-the-art hydrodynamical cosmological simulations of
the critical halo mass for PopIII star formation (Kulkarni et al.
2021). We utilize our model to make updated predictions of the
high-redshift PopIII and metal-enriched star formation rate
densities (SFRDs) and to test the impact of various physical
effects/parameters (e.g., the baryon–DM streaming velocity).
Given that our model incorporates a fully detailed DM halo
merger history, we are also able to test the effect of
approximations that have been adopted previously in literature
to estimate the SFRD, such as smooth merger histories
determined by halo abundance matching (e.g., Furlanetto
et al. 2017; Mebane et al. 2018) and simple integrals of the
halo mass function (e.g., Visbal et al. 2015a; Muñoz et al.
2022; Muñoz 2023). Finally, we use our model to simulate
subregions of the Universe with different volumes, accounting
for the Poisson fluctuations in the number of halos and their
diverse merger histories. This allows us to estimate the impact
of merger history on 3D spatial fluctuations of the PopIII and
metal-enriched SFRDs relevant to future predictions of the
cosmological 21 cm signal. It also allows us to show the impact
on the SFRDs predicted by numerical simulations of finite box
size that effectively ignore density fluctuations on spatial scales
larger than the simulation box.

The remainder of this paper is structured as follows. In
Section 2, we contextualize our new model by reviewing

previous works in the literature. In Section 3, we discuss the
details of our fiducial model and the physical processes
included. The results of this work are divided into Sections 4,
5, and 6. Section 4 presents the main results of our fiducial
model, and details the impact of various modeling fits and
parameters on the global SFRD. Section 5 focuses on the
impact of modeling choices for the DM halo evolution and the
prescription for determining PopII star formation. Here we also
check the accuracy of previous assumptions made in the
literature regarding the effects of halo assembly on predicted
SFRDs. In Section 6 we simulate finite, physically representative
volumes of the Universe using our fiducial model. We compare
our fiducial SFRDs with those previously published in the
literature in Section 7. Finally, in Section 8 we summarize and
discuss our results and explore future research. Unless otherwise
stated, all distances are in comoving units. Throughout this work,
we use a ΛCDM cosmology, consistent with Planck Collabora-
tion et al. (2020) and with the parameters Ωm= 0.32, ΩΛ= 0.68,
Ωb= 0.049, and h= 0.67.

2. Previous Works

In this section, we briefly review semianalytic works in the
literature to provide context for our new model. The general
approach in semianalytic modeling of galaxy evolution is to
generate DM halo merger trees, either with MC methods or
cosmological N-body simulations, and then apply analytic
prescriptions for star formation and astrophysical feedback
processes. This has been widely used to model galaxies at
lower redshifts than those explored here (for a review see
Somerville & Davé 2015). It has also been used to study high-
redshift galaxies and reionization, but without including PopIII
stars (e.g., Mutch et al. 2016; Poole et al. 2016; Yung et al.
2019b, 2020a, 2020b, 2021, 2022).
Described in detail in Section 3, we have adopted this

framework to develop a global model of the first PopIII stars
and early galaxies that includes a full DM halo merger history,
incorporates self-consistent Lyman–Werner (LW) feedback
(Haiman et al. 1997, 2000; Machacek et al. 2001; O’Shea &
Norman 2008; Ahn et al. 2009), and is calibrated to recent
hydrodynamical simulations. Most of the previous merger-
tree–based semianalytic modeling of the first stars has been
utilized to study the assembly of individual halos, rather than
the global quantities on which we focus. This includes the
formation of high-redshift supermassive black holes in rare
high-mass halos (e.g., Valiante et al. 2016; Lupi et al. 2021;
Trinca et al. 2022) as well as Milky Way–like halos to make
predictions for stellar archeology (e.g., Ishiyama et al. 2016; de
Bennassuti et al. 2017; Graziani et al. 2017; Griffen et al. 2018;
Magg et al. 2018). We note that there have been previous
global merger-tree–based models related to ours. In Magg et al.
(2016), the PopIII SFRD was the focus; this is updated here
with newly simulated critical halo masses for PopIII star
formation (Kulkarni et al. 2021). More recently, Trinca et al.
(2022) utilized EPS merger trees to study black hole and PopIII
star formation, but this work focused on lower redshifts than
what are explored here. We also note that toward the
completion of this work, Ventura et al. (2023) and Trinca
et al. (2023) presented similar global models of the first stars
and galaxies. Their respective focuses were on the predicted
21 cm signal and UV luminosity functions, whereas we utilize
our model to explore the impact of various physical effects and
modeling techniques on the PopIII and metal-enriched SFRDs.
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An additional novel aspect of our work is that we use our
model to understand the behavior of various subvolumes of the
Universe as a step toward accurate modeling of the 3D spatial
fluctuations of high-redshift star formation.

Several recent semianalytic works have included 3D spatial
information from N-body simulations (in addition to merger
trees) to model the effects of ionization feedback and “external”
metal-enrichment between neighboring halos (e.g., Sarmento
et al. 2019; Liu & Bromm 2020; Visbal et al. 2020; Hartwig
et al. 2022). This is complementary to the work presented here.
Although our fiducial model cannot properly include 3D
feedback (since MC EPS methods are used to generate the
merger trees), it has been found that 3D feedback does not have
a significant impact on the SFRDs at z 15 (Visbal et al.
2020), which is when we have decided to stop our models
presented below. With our semianalytic framework, we are
able to rapidly explore much larger volumes than what is
possible when N-body simulations are used.

In addition to these semianalytic methods, analytic works
have been used to model the global abundances of the first stars
and galaxies. These include what we refer to as “smooth
accretion models” where halo growth histories are approxi-
mated using abundance matching of the halo mass function
(Furlanetto et al. 2017; Mebane et al. 2018, 2020). A number of
previous works have also estimated the SFRDs of PopIII and
metal-enriched stars via analytic integration of the halo mass
function (e.g., Visbal et al. 2015a; Muñoz et al. 2022;
Muñoz 2023). We use our model below to test the impact
that these approximations related to halo assembly have on the
global star formation history.

We also note that our new model relates to large-scale
seminumerical models which have been used to predict the
high-redshift 21 cm signal (Mesinger et al. 2011; McQuinn &
O’Leary 2012; Visbal et al. 2012; Fialkov et al. 2013; Fialkov
& Barkana 2014; Kaur et al. 2022; Magg et al. 2022). These
models simulate vast cosmological volumes (e.g., boxes
∼1 Gpc across) with individual resolution elements that are a
few megaparsecs across. Within these volume elements, the
local SFRD is typically computed with integrals of the halo
mass function (e.g., Jaacks et al. 2018), though recent work has
been calibrated with merger-tree–based semianalytic models
(Magg et al. 2022). Utilizing our model to simulate variations
within individual subvolumes (as we present in Section 6) can
lay the groundwork to improve future subgrid prescriptions
within large-scale seminumerical models.

3. Fiducial Semianalytic Model

In this section, we introduce our fiducial semianalytic model
whose purpose is to determine the evolution of the global
SFRD self-consistently (along with other aspects of early star
formation such as the scatter in the SFRDs within subvolumes
of the Universe) given some input DM halo model, star
formation prescription, and parameter values. We note that the
efficiency of this framework allows each realization to be
completed in ∼75 minutes on a single CPU. Our fiducial
modeling parameters are summarized in Table 1 and described
in more detail below.

3.1. DM Halo Merger History

Our model uses MC merger trees based on EPS formalism
(Press & Schechter 1974; Bond et al. 1991) to model DM halo
growth. We generate merger trees following the prescription in
Lacey & Cole (1993), which assumes binary mergers of DM
halos at each redshift step, separated by Δz. For a given final
halo mass and redshift, the merger history is modeled by
iteratively stepping back through time, determining the first
progenitor halo mass via the EPS mass-weighted progenitor
function, and setting the second progenitor halo mass such that
the sum of the two progenitors is equal to the merged
descendent halo mass. This is done for each halo by solving
Equation (5) of Visbal et al. (2014) for M1s , the rms density
fluctuation on a scale corresponding to mass M1,

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( )

( )
x D z z D z

1

2 erf

1 1
. 1M M

2 crit
1

2 2

1 0
s s

d
= +

+ D
-

-

Here, M0s is the rms density fluctuation for the scale
corresponding to the present halo mass, δcrit= 1.686 is the
critical overdensity in linear perturbation theory, D(z) is the
linear growth factor, and x is a randomly drawn value between
0 and 1. From M1s we determine the progenitor halo mass, M1,
and the merging halo progenitor mass, M2=M0–M1. This
process is repeated at each step back through cosmic time until
a halo falls below the resolution halo mass, Mres, after which no
further progenitors are modeled. To account for any statistically
rare merger histories, we generate multiple merger trees for
each halo mass bin whose masses are set at the end of the
simulation, z= 15.
In our fiducial model we use 36 logarithmically spaced mass

bins from 105.6 to 109.1 Me, finding this mass range to be
sufficiently converged for estimating the global SFRD between

Table 1
Parameters and Fiducial Values Adopted in Our Framework for Modeling the Global SFRD

Parameter Description Fiducial Value Reference

σvbc Relative baryon–DM streaming velocity 30 km s−1 Tseliakhovich & Hirata (2010)
ηIII # of LW photons per PopIII baryon 65,000 Schaerer (2002)
ηII # of LW photons per PopII baryon 4000 Samui et al. (2007)
MH2 Molecular hydrogen cooling mass ( )( )

( )
M J v, z J v

z20 LW bc
1

21

,LW bca+ Kulkarni et al. (2021)

Ma Atomic hydrogen cooling mass ( )M5.4 10 z7 1

11

1.5
´ + - Visbal et al. (2020)

MIII,new PopIII formation mass 200 Me Skinner & Wise (2020)
tdelay Delay time before PopII star formation 10 Myr Jeon et al. (2014)
fII Enriched star formation efficiency (SFE) 0.0025 See Section 3.2.3 in main text

SNh SN ejection efficiency ( )5.23 v

14.46 km s

2
esc

1´
-

-
Sassano et al. (2021)
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z= 15 and 35. These precise mass values have little physical
motivation; we simply find that adding halo mass bins above
109.1 Me only affects the results at the earliest redshifts
(z 42), and that the critical mass for PopIII star formation is
higher than 105.6 Me at z= 15 in all reported runs, indicating
lower mass bins would not contribute to the resulting SFRDs.
We also varied the number of halo mass bins and found that
our fiducial number of bins yields SFRD values that converge
to within 10% on average between z= 15 and 35. Within each
mass bin we generate 10 merger trees each initialized at z= 15,
finding this number of trees to be the most reasonable trade-off
between the required computation time and the statistical noise
in our resulting SFRDs. We adopt a resolution halo mass of
M 5 10res

4= ´ Me for our merger trees, a threshold well
below typical values of Mcrit so that no early star formation is
missed. We run our models from z= 60 to 15, with redshift
steps of Δz= 0.05. Overall, we find the results of our work to
be sufficiently converged for predicting the globally averaged
SFRD over the redshift range z= 15–35.

3.2. Star Formation

Here we discuss the methods used to determine the
formation of both PopIII and PopII stellar mass within
merger-tree halos. Note that we do not track individual stars
in our model, and so any PopII and PopIII stellar masses
discussed are total mass values. We focus mainly on the high-
redshift transition from PopIII to PopII and leave any analysis
of the transition from PopII to Population I for future work.

3.2.1. Critical Mass and PopIII Star Formation

We use a simple “instantaneous” prescription for PopIII star
formation in our fiducial model. A given halo without previous
star formation will undergo a single episode of pristine star
formation, creating a constant stellar mass ofMIII,new= 200Me
immediately after it surpasses the critical mass for star
formation, Mcrit. This is roughly consistent with the average
PopIII stellar mass found within halos by Skinner & Wise
(2020; see their Figure 8), and approximately corresponds to a
constant PopIII star formation efficiency (SFE) of fIII= 0.0001
for a halo of mass 106.1Me.

The critical mass is a global threshold for PopIII star
formation, determined at each time step by finding the smaller
of the atomic and molecular hydrogen cooling halo masses, i.e.,

( ) ( )M M Mmin , . 2crit a H2=

Since the gas within early DM halos is pristine, molecular
hydrogen (H2) is initially the most efficient gas coolant. As star
formation proceeds, the resulting radiative feedback dissociates
H2 molecules, effectively raising the halo virial temperature
and therefore MH2. For halos with virial temperatures
Tvir 104 K, atomic hydrogen cooling becomes the more
efficient mode of halo cooling, and so we adopt our atomic
cooling mass from Visbal et al. (2020),

⎛
⎝

⎞
⎠

( )M M
z

5.4 10
1

11
. 3a

7
1.5

= ´
+ -

This mass is based on the threshold found in hydrodynamic
cosmological simulations, with precise values from Fernandez
et al. (2014). The H2 cooling mass used in our fiducial model is
adopted from the hydrodynamical simulations of Kulkarni et al.

(2021), which are the first (along with Schauer et al. 2021) to
include a dependency on both the relative baryon–DM
streaming velocity, vbc, and the LW radiation background
intensity, JLW (also see Nebrin et al. 2023). They also consider
an improved treatment of H2 self-shielding, ultimately leading
to an analytic fitting function that is well calibrated to the
hydrodyamical simulations,

⎛
⎝

⎞
⎠

( ) ( )
( )

M M J v
z

,
1

21
. 4

J v

H z20 LW bc

,

2

LW bc

=
+ a

Here, the critical mass at z= 20, Mz20, and the power-law
index, α, are both functions of the LW background intensity
and baryon–DM streaming velocity (see Kulkarni et al. 2021
for the best-fit values of these parameters to the simulations).
At each time step, our semianalytic model determines which
halos have masses above Mcrit and forms MIII,new within each.
In Section 4.1, we compare the results of our fiducial model,

with MH2 determined by Equation (4), to a previous model of
MH2 based on the simulations of Machacek et al. (2001; also see
Greif et al. 2011; Stacy et al. 2011; Fialkov et al. 2012). This
molecular mass fit, or variations thereof, has commonly been
used in simulations of early star formation throughout the
literature. Here we implement the form used in Visbal et al.
(2014) which includes a dependence on the redshift,

⎛
⎝

⎞
⎠

( ( ) ) ( )M
z

J2.5 10
1

26
1 6.96 4 . 5H

5
1.5

LW
0.47

2 p= ´
+

+
-

The key difference between this and our fiducial equation for
MH2 is that the fit presented in Kulkarni et al. (2021) includes
the effects of H2 self-shielding and a stronger relative baryon–
DM streaming velocity dependence. Fitting functions based on
previous simulations, including those of Machacek et al.
(2001), either do not include vbc, or assumed that the LW
intensity and vbc were independent modeling processes and
their effects on Mcrit were multiplicative (Fialkov et al. 2012).
As shown by Kulkarni et al. (2021), their effects on Mcrit are
not multiplicative, hence our choice of this MH2 fit for our
fiducial model.

3.2.2. Delay Time for Enriched Star Formation

A key parameter of our semianalytic model is the delay time
between the formation of PopIII and metal-enriched PopII
stars, tdelay. This delay period is a result of the radiative and SN
feedback from the first stars which heats and ejects gas from
within the hosting minihalos. Once the halo gas reservoir
recollects and cools once more, the enriched material begins
forming PopII stars (Chiaki et al. 2013; Jeon et al. 2014; Chiaki
et al. 2017). We choose tdelay= 10 Myr for our fiducial model,
and explore the impact of different tdelay values on the resulting
SFRDs in Section 4.4.

3.2.3. PopII Star Formation

We assume that once PopIII stars form in a halo and the
delay time has elapsed, it begins forming metal-enriched PopII
stars. For PopII star formation, we adopt the system
of differential equations described in Furlanetto & Mirocha
(2022) that simultaneously determines the gas and stellar masses
of a given halo through a simplified “bathtub” model (e.g.,
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Bouché et al. 2010; Davé et al. 2012; Dekel & Mandelker 2014),

( )
*M

f

t
M , 6,II

II

ff
gas=

( ) ( )  
*M M M 1 . 7gas acc ,II SNh= - +

Here, *M ,II is the halo PopII star formation rate (SFR), fII is the
PopII SFE per halo freefall time, tff, which we assume to be
10% of the Hubble time (i.e., tff= 0.1 tH), Mgas represents the
time derivative of the halo gas mass, Macc is the mass accretion
rate of the halo, and SNh is the SN ejection efficiency (described
in more detail below). By analytically solving these differential
equations at each time step, we obtain the gas and stellar
masses of each halo, and determine the gas mass ejected
through SNe by subtracting these two masses from the initial
total baryonic mass of the halo. This prescription forms stars
such that a fraction of the total halo gas mass, fII, is converted
into stellar mass over one halo freefall time, allowing isolated
DM halos to continue forming PopII stars as long as there is
gas within them.

While we note that there is large uncertainty in the SFE of
unobserved low-mass galaxies at very high redshifts (z 15),
we have aimed to select a realistic value for our fiducial choice
of fII= 0.0025. When combined with the SN feedback
prescription described below, we find that this choice of fII
leads to an SFRD consistent with Visbal et al. (2018), which
was calibrated to observations of z∼ 6 UV galaxy luminosity
functions (Bouwens et al. 2015). In a related upcoming study
(R. Hazlett et al. 2024, in preparation), we have created a
model of PopII star formation directly calibrated to the
Renaissance simulations. We find that this calibration yields
PopII SFRDs that agree to within a factor of two at z 32 with
those predicted in our fiducial model presented here.

At each time step, we determine the PopII and PopIII SFRs
for each merger tree by dividing any new stellar mass formed
by the length of the time step. We average the SFRs of all
merger trees in each mass bin, and weight each average by the
corresponding halo mass bin number density, ni, as determined
from the Sheth–Tormen halo mass function (Sheth & Tor-
men 1999) at the bin center, i.e.,

( )n
dn

dM
dM. 8i

m

m

l

u

ò=

Here, dn/dM is the Sheth–Tormen halo mass function and ni is
the number density of halos at z= 15 in mass bin i, respectively
bounded by upper and lower halo masses mu and ml. For the
remainder of this paper, all DM halo mass bin number densities
are the z= 15 values unless otherwise stated. The weighted
averages of all mass bins are then summed to give the global
PopII and PopIII SFRD values for that redshift step, i.e.,

( ) ( )
*z n MSFRD . 9

i
i i,totå= á ñ

Here, *M ,tot is the total SFR of every halo at redshift z within a
merger tree in mass bin i. We average the total SFRs of all
merger trees in mass bin i to get 

*M i,totá ñ which we then weight
by ni and sum across all mass bins.

3.3. Feedback Processes

Our semianalytical framework also includes various crucial
feedback processes that impact the global SFRD evolution. In
this subsection, we will discuss the auxiliary features and
physical feedback processes of our fiducial model and how
they affect early star formation.

3.3.1. LW Background Intensity

LW feedback must be considered in any semianalytic model
of early star formation. As the first stars begin to shine and emit
radiation, photons in the energy range ELW= 11.2–13.6 eV
freely stream out up to a horizon of ∼100 Mpc and into other
DM halos, dissociating H2 molecules within them (Haiman
et al. 1997, 2000; Machacek et al. 2001; O’Shea & Nor-
man 2008; Ahn et al. 2009). In our fiducial model, we self-
consistently determine the LW background intensity at each
time step in units of 10−21 erg s−1 cm−2 Hz−1 sr−1 using the
JLW calculation from Visbal et al. (2020),

( ) ( ) ( ) ( )
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c z
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Here,  ( )zLW ¢ is the mean LW emissivity, tH is the Hubble time,
and ( )f z z,LW ¢ is the attenuation of the LW flux from z¢ to z as
LW photons redshift into Lyman series lines and are absorbed
(Haiman et al. 1997). We approximate this LW attenuation
using Equation (22) in Ahn et al. (2009), and determine  ( )zLW ¢
by summing the contributions of both stellar populations.
We assume the number of LW photons produced per stellar

baryon to be ηIII= 65,000 for PopIII stars (Schaerer 2002), and
ηII= 4000 for metal-enriched stars (Samui et al. 2007;
Incatasciato et al. 2023). We set these to be equal to the
number of ionizing photons produced per stellar baryon for
simplicity, and also note that our assumed value of ηIII may be
an overestimate, but we have found that the PopII SFRD
quickly dominates the LW background in all runs, and varying
ηIII only changes the PopIII SFRD by a few percent. An
increase in JLW results in an increase in both Mz20 and α in
Equation (4), giving a larger MH2 for Equation (2). Increased
LW radiation intensity therefore results in an overall increase to
the critical mass for PopIII star formation, suppressing further
star formation.
In our model, we do not consider the effects of X-ray

feedback on PopIII star formation. We note that Hegde &
Furlanetto (2023) recently found that the X-ray background is
not a dominant effect for PopIII star formation in minihalos at
the redshifts considered in this work (z> 15; also see Ricotti &
Ostriker 2004; Ricotti 2016).

3.3.2. Relative Baryon–DM Streaming Velocity

Another important parameter in modeling early star formation
is the relative streaming velocity between baryons and DM
(Tseliakhovich & Hirata 2010; Greif et al. 2011; Tseliakhovich
et al. 2011; Stacy et al. 2012; Fialkov et al. 2013). At cosmic
recombination, photons decoupled from the baryonic matter
which was then free to interact gravitationally. DM density
perturbations, however, could grow under the influence of
gravity before this. As a result, we are left with a Maxwell–
Boltzmann distribution of relative baryon–DM streaming
velocities with an rms value of σvbc= 30 km s−1 at
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recombination, which decreases with redshift as vbc(z)= vbc,0
((1+ z)/1100). This relative motion is roughly constant over
scales ∼3 Mpc, and is crucial for modeling early star formation
because the DM halos are unable to capture and cool the high-
speed gas streaming by them efficiently. An increase in
streaming velocity leads to a decrease in the amount of gas
bound to halos and delays halo gas cooling, thus leading to an
overall increase in Mcrit. The value of this velocity is commonly
referred to in terms of σvbc, and while we explore the impact of
various σvbc values below, we adopt a fiducial global streaming
velocity of vbc= 1σvbc= 30 km s−1.

3.3.3. Feedback from SNe

A fraction of the gas mass within a given halo will be ejected
by the star formation and SNe occurring at a given time step.
The gas mass ejected by PopII SNe is determined by the SN
ejection efficiency of the halo, SNh . In this work, we follow a
similar prescription for determining SNh to the one presented in
Sassano et al. (2021),

 ( )E R

v

2
, 11SN

SN SN SN

esc
2

h =

where ESN is the average energy per PopII SN, SN is an
efficiency parameter, RSN is the rate of SNe per solar mass, and
vesc is the escape velocity of the halo, which we assume to be
the halo circular velocity determined by Equation (25) of
Barkana & Loeb (2001). We note that the circular and escape
velocities at a halo’s virial radius differ by a factor of 2 ,
however the effect that SN ejection has on the global SFRD is
comparatively low (i.e., removing all SN feedback results in a
∼30% increase to the z= 15 PopII SFRD), and since we do not
assume a preferred radius for SN ejection from our DM halos,
we adopt the circular velocity for simplicity. We adopt values
of E 10SN

51= erg and SN= 0.0016 from Wise et al. (2012).
RSN is determined by dividing the SN energy per solar
mass, ESN,M , by ESN. Adopting a value of E MSN, =
6.8 1048´ erg M 1- (Wise et al. 2012) gives us RSN =

M0.0068 1- . The numerator of Equation (11) can then be
described in terms of velocity, and so we normalize this
expression for a halo at z= 20 with a mass equal to
the atomic cooling mass (Equation (3)). This gives
us ( )v5.23 14.46 km sSN esc

1 2h = ´ - - .
The ejected gas mass, Mej, is determined at each time step by

subtracting the final stellar and gas masses within the halo from
its initial total baryonic mass. Mej is then removed from the
available halo gas mass until it is reintroduced for future star
formation after one freefall time, which we have assumed to be
10% of the Hubble time at the moment of ejection.

4. Results. I. Fiducial Model

In this section we present the global SFRDs of our fiducial
model. We illustrate the effects of a new critical mass model
(Equation (4)) that more accurately considers the effects of LW
feedback, vbc, and H2 self-shielding, as well as the impact of
halo-to-halo scatter on Mcrit. We also assess the impact that
various physical processes and parameter value choices have
on the results. Unless otherwise stated, all SFRD values plotted
throughout this work have been smoothed postsimulation with
a running average over Δz= 1. We also provide analytic fits

for a sample of the LW backgrounds that result from this
research in Appendix.

4.1. Critical Mass Model

Figure 1 shows the SFRDs and corresponding critical masses
resulting from both our fiducial model with Mcrit based on the
new simulations of Kulkarni et al. (2021), and those resulting
from the Visbal et al. (2020) adaptation of the commonly used
critical mass model consistent with the simulations of
Machacek et al. (2001), Greif et al. (2011), and Stacy et al.
(2012) in which the effects of H2 self-shielding are not
considered. This “no self-shielding”Mcrit model stems from the
work of Fialkov et al. (2012), which updated the critical mass
threshold from Machacek et al. (2001) to include more
sophisticated treatments for vbc dependence (also see Equation
(3) of Visbal et al. 2020 and the accompanying text for more
information on including LW and vbc dependences). However,
since recent works have revised the critical mass threshold for
PopIII star formation to include the effects of H2 self-shielding
(e.g., Kulkarni et al. 2021; Schauer et al. 2021; Nebrin et al.
2023), we refer to this earlier Mcrit as the “no self-shielding”
critical mass model for the remainder of this paper.
The left set of plots is for a global streaming velocity of

1σvbc. Here we see that our fiducial critical mass is a factor of a
few lower than the no self-shielding model throughout, falling
to a factor ∼six times lower at z∼ 15. This lower Mcrit leads to
earlier star formation and an overall larger number of star-
forming halos in the fiducial model. We thus find a PopIII
SFRD that is over an order of magnitude higher than the no
self-shielding PopIII SFRD throughout most of the redshifts
shown. The fiducial PopII SFRD is also consistently higher
than the one given by the no self-shielding Mcrit, but this
difference falls from an order of magnitude at z= 35 to a factor
of two times the no self-shielding PopII SFRD at z= 15.
The right set of plots in Figure 1 show the results for no

baryon–DM streaming. Here we see a somewhat smaller
difference in the SFRDs. At z= 35, our fiducial model gives
SFRD values that are factors of 30 and 8 times higher than the
no self-shielding values for PopIII and PopII, respectively. The
final PopII SFRD of the fiducial model is only 30% higher than
the no self-shielding case, whereas the final PopIII SFRD is a
factor ∼two higher. Here, the effects that cause the differences
in the 1σvbc case are reduced because the critical masses fall
within a factor of five to one another throughout, owing to the
stronger vbc dependence in the no self-shielding model.

4.2. Critical Mass Scatter

In our fiducial model we assume Mcrit to be a global constant
at each time step; we now consider the impact of scatter on
Mcrit(z), which effectively gives each DM halo an individual
critical mass threshold for PopIII star formation, Mcrit,halo. To
account for variations in halo mass assembly and geometry
more accurately, Kulkarni et al. (2021) quantified this scatter in
terms of JLW and vbc, which we may implement via,

( ) ( ) ( )M M Rlog log . 1210 crit,halo 10 crit= +

Here, the value of R is determined for each DM halo after every
halo freefall time by randomly drawing from a Gaussian
distribution centered on zero and with a standard deviation of
σ= 0.15. The Mcrit scatter values reported in Figure 7 of
Kulkarni et al. (2021) represent the difference between the 25th
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and 75th percentiles of the critical masses, equivalent to 1.34σ.
For a streaming velocity of 1σvbc, this value ranges from 0.15 to
0.3, and we adopt the value 0.2, roughly corresponding an LW
background intensity of JLW= 1× 10−21 erg s−1 cm−2 Hz−1 sr−1.
Although we self-consistently determine JLW at each time step, its
values at z 30 are comparable to unity, and so we conservatively
adopt σ= 0.15 (;0.2/1.34) for the standard deviation of our
distribution. (for more information, see Figure 7 of Kulkarni et al.
2021).

We illustrate the impact of this relative scatter on Mcrit in
Figure 2. The solid lines in the top panel show the stellar mass
densities (SMDs) for both PopII and PopIII as determined by
our fiducial model. The SMDs of 10 simulations including Mcrit

scatter are shown in light gray for each stellar population, and
the averages of these 10 SMDs are represented by the
corresponding dashed lines. We choose to show the SMDs in
Figure 2 rather than the SFRDs to show more clearly the
impact that Mcrit scatter has on the star formation resulting from
our semianalytic model.

We see from the bottom panel of Figure 2 that introducing
Mcrit scatter increases the PopIII SMD by a factor ∼two at early
times (z 30). Below z∼ 30, the average PopIII SMD with
scatter maintains a roughly 50% increase over the no-scatter

case. This increase is due to halos drawing low random R
values for Equation (12), resulting in halo critical masses lower
than the global mean value and earlier star formation than
without scatter. The average PopII SMD with scatter is also
increased by a factor ∼two at the highest redshifts shown,
before tapering off and coming into agreement with the no-
scatter SMD at the percent level by z= 15. PopIII star
formation relies solely on a halo overcoming Mcrit, and halos
are much more likely to randomly draw a low enough R value
to cause earlier star formation than they are to consistently
draw high R values that keep Mcrit,halo>Mcrit. We therefore see
a consistent increase in the PopIII SMD that is not strongly
reflected by the PopII SMD since it does not depend as directly
on Mcrit.

4.3. Baryon–DM Streaming

In Figure 3, we present PopII and PopIII SFRDs and their
corresponding Mcrit values for global streaming velocities of
0–3σvbc (0–90 km s−1). Recall that the velocities stated are
those at recombination, which fall off with decreasing redshift.
We also show the average SFRD determined by using many
global streaming velocities ranging from 0 to 3σvbc and
weighting each by the probability of the vbc value used. The

Figure 1. The impact of different critical mass calculation methods for realizations including (left column) and not including (right column) relative baryon–DM
streaming. Top left: comparison of the PopII (blue) and PopIII (orange) SFRDs with different methods for determining Mcrit, including a global streaming velocity of
1σ = 30 km s−1. Our fiducial framework using the Kulkarni et al. (2021) Mcrit model (solid) is compared to a realization using the critical mass model from Visbal
et al. (2020), based on the simulations of Machacek et al. (2001; dashed). Top right: same as the top left, but for realizations with no global baryon–DM streaming (i.e.,
vbc = 0 km s−1). Bottom left: the value of Mcrit(z) for each method with a streaming velocity of 1σvbc. Bottom right: same as the bottom left but with no baryon–DM
streaming.
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probabilities are determined from the Maxwell–Boltzmann
distribution of vbc values found at recombination (Tseliakho-
vich & Hirata 2010; Tseliakhovich et al. 2011; Fialkov et al.
2012), and these weighted averages are shown by the dashed
purple curves in the top and middle panels of Figure 3 for the
PopII and PopIII SFRDs, respectively.

We see from the top two panels of Figure 3 that the SFRDs
of both stellar populations are increasingly suppressed with
faster streaming velocities. This is because higher vbc values
increase Mcrit, which delays any PopIII and subsequent PopII
star formation. This effect is greater for PopIII since it is
directly governed by Mcrit, whereas PopII star formation begins
after tdelay and depends on the gas mass of the host halo
thereafter. The weighted average SFRDs each agree with those
of the fiducial 1σvbc case to within 50% at z< 35, indicating
that our fiducial treatment is a reasonable representation of the
global streaming velocity. We note that the true baryon–DM
streaming velocity varies over spatial distances of a few
megaparsecs, a detail that we plan to incorporate into
future work.

4.4. Additional Parameter Variations

In this subsection, we explore the effect of various parameter
value choices on the resulting SFRDs. To show the impact of
our fiducial choices for the PopII SFE and PopIII formation
mass, we vary the values of fII and MIII,new and plot the
resulting SFRDs in the top row of Figure 4. The top left panel
shows the SFRDs for four realizations of our semianalytic
framework with PopII SFEs ranging from fII= 0.00125–0.01.
From here we see that the SFRD response is less than linearly
proportional to changes in fII. Each PopII SFRD shown falls
within a factor of four to one another at z 22, despite the
value of fII varying by a factor of eight. Any changes in the
PopIII SFRDs (z 30) are only caused by differences in the
PopII SFRDs altering the LW background intensity and thus

Mcrit. In each panel, we show the redshift at which the PopII
SFRD first surpasses the PopIII one by the corresponding
vertical black lines. We see that higher fII values cause the
PopII SFRD to first dominate over the PopIII SFRD at earlier
times, ranging from z≈ 27 for 0.5fII to z≈ 32 for 4fII.
Looking to the top right panel of Figure 4, we see the SFRDs

for three realizations with varying PopIII formation mass
values ranging from MIII,new= 100 to 800 Me, as well as a
realization with a constant PopIII SFE of fIII= 0.001, which
instantly converts a fraction fIII of a given halo’s gas mass into
PopIII stellar mass. The PopIII SFRDs with constant stellar
mass each fall within a factor of five to one another at z 30
despite MIII,new changing by a factor of eight, meaning that we
again find a less than linearly proportional response to varying
MIII,new. Using fIII instead gives slightly steeper growth in the
PopIII SFRD, but it still falls within a factor of four to the
fiducial model throughout the redshifts shown. Since the stellar
mass formed in this realization is dependent on halo gas mass,
the SFRD more strongly reflects halo mass growth over time.
As with fII, higher PopIII SFRDs experience increased LW

Figure 2. The impact of a critical mass scatter on the results of our fiducial
model. Top: the evolution of the SMD over time. The fiducial PopII (blue) and
PopIII (orange) SMDs without scatter are shown by the solid lines. The
densities for the sample of 10 runs including Mcrit scatter are plotted in gray,
and the averages of these 10 runs for both stellar populations are shown by the
corresponding dashed lines. Bottom: ratio of the average SMD including Mcrit

scatter to the fiducial model SMD for each stellar population.

Figure 3. The impact of the relative baryon–DM streaming velocity on the
global SFRD and critical mass. Top: PopII SFRDs for four models with global
streaming velocities of 0σvbc = 0 km s−1 (blue), 1σvbc = 30 km s−1 (orange),
2σvbc = 60 km s−1 (green), and 3σvbc = 90 km s−1 (red). The average PopII
SFRD is also shown (purple dashed), with each SFRD weighted by the
probabilities of the streaming velocity used, which is set by a Maxwell–
Boltzmann distribution. Middle: same as the top panel, but for the PopIII
SFRDs. Bottom: the value of Mcrit over time for each of the constant velocity
runs. The close agreement between the weighted average SFRDs and those of
the 1σvbc case justifies our fiducial streaming velocity of 30 km s−1.
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feedback, which boosts Mcrit and suppresses further star
formation. The PopII SFRDs, however, are virtually unchanged
by the varying PopIII star formation prescriptions since
enriched star formation is mainly governed by the onset of
PopIII star formation and tdelay.

The tdelay parameter represents the delay between PopIII and
metal-enriched star formation resulting from feedback asso-
ciated with star formation and SN winds. To show the impact
of this, we vary our fiducial delay time and present the resulting
global SFRDs in the bottom left panel of Figure 4. Here we see
the SFRDs of five different time delays ranging from 5 to
100Myr. Unsurprisingly, changes in tdelay mostly affect the
timing of the initial PopII star formation event. Regardless of
the length of the delay, however, enriched star formation
quickly overtakes the PopIII SFRD afterwards and gives
similar final PopII SFRD values, all agreeing to within 75%
at z= 15.

To show the effect of the SN ejection efficiency, we vary the
fiducial value of SNh in our model and present the global
SFRDs in the bottom right panel of Figure 4. Here we see that

SNh mostly affects the PopII SFRD at late times, with lower
efficiencies yielding higher PopII SFRDs overall. At redshift
15, the 0.5 SNh case is a factor ∼five higher than the10 SNh case.
The effect of SN feedback increases with time, partially due to
the redshift dependence of vesc in Equation (11) causing more
gas to escape over cosmic time.

5. Results. II. Impact of Enriched Star Formation and DM
Halo Models

In this section, we address the SFRD changes that result
from alternative methods for determining the DM halo mass
evolution and enriched star formation. We present a direct
comparison of the SFRDs resulting from MC merger trees and
smooth accretion models of DM halo evolution (as in
Furlanetto et al. 2017). We also compare the results of our
fiducial enriched star formation prescription (Equations (6) and
(7)) to those of a simpler instantaneous model of star formation
(e.g., Sun & Furlanetto 2016; Magg et al. 2018; Park et al.
2019; Magg et al. 2022). For completeness, we also include an
analytic approach reliant on halo mass function integration to
estimate the SFRD (e.g., Visbal et al. 2015b; Mashian et al.
2016; Muñoz et al. 2022; Muñoz 2023).

5.1. Descriptions of Alternative Models

Starting with our smooth accretion model of DM halo
evolution, we adopt the abundance matching model described
in Furlanetto et al. (2017),

( ∣ ) ( ∣ ) ( )n m z dm n m z dm, 13
m m

h 1 h 2
1 2

ò ò=
¥ ¥

where nh(m|zi) is the number density, nh, of halos with masses
�m at redshift zi, as determined by the Sheth–Tormen halo

Figure 4. The effect of varying key model parameters on the global PopII (blue) and PopIII (orange) SFRDs. Top left: the impact of varying the PopII SFE on the
global SFRD evolution. We vary our fiducial SFE (solid) by multiplying fII by factors of 0.5 (dotted), two (dashed), and four (dotted–dashed). The redshift at which
the PopII SFRD first dominates over the PopIII SFRD in each of these simulations is identified by the corresponding vertical black lines in all panels. Top right:
similarly, the SFRD impact of varying the PopIII formation mass, MIII,new. We multiply our fiducial MIII,new value by factors of 0.5 (dotted) and four (dotted–dashed),
and also include the SFRDs resulting from a constant PopIII SFE of fIII = 0.001 (dashed dark orange, for clarity). Bottom left: SFRDs for five different values of tdelay:
5 Myr (dotted), 10 Myr (solid, fiducial), 20 Myr (dashed), 50 Myr (dotted–dashed), and 100 Myr (dot-dotted–dashed). Bottom right: SFRDs for different SN gas
ejection efficiencies: 0.5 SNh (dotted), SNh (solid, fiducial), 2 SNh (dashed), 5 SNh (dotted–dashed), and 10 SNh (dot-dotted–dashed).
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mass function (Sheth & Tormen 1999). For a given starting
mass m1 at redshift z1, we determine the halo mass growth
history for a constant nh by solving for m2 at each subsequent
time step (see Yamaguchi et al. 2023, for a recent example).

Figure 5 shows an example smooth accretion halo mass
growth track along with a sampling of MC merger trees with
the same final halo mass. While the smooth accretion model
follows a constant cosmic number density through time for
each halo mass, MC merger trees initialize nh at z= 15 and
determine the merger history for a given halo through EPS
formalism. The two models produce halo mass evolution tracks
that differ on average by a factor ∼two at z 35 due to this
discrepancy between Sheth–Tormen and EPS formalism. We
note, however, that this discrepancy in the halo mass growth
between models is outweighed by the uncertainties in other
high-redshift astrophysical parameters implemented here, and
thus represents a viable comparison to our fiducial model. We
intend to explore alternative DM halo evolution models in
future work.

For the “instantaneous” star formation prescription, we
compare the SFRDs of our fiducial model with those
determining enriched star formation via,

( )*M f M . 14,II II, i gas,new=

Here, M*,II is the newly formed PopII stellar mass, fII, i is the
instantaneous PopII SFE, and Mgas,new is the gas mass that has
accreted into the halo over the last time step. This method uses
a fraction, fII, i, of the gas mass accreting onto the halo at a
given time step to form PopII stellar mass within it instantly.
This means that if the halo already has PopII stars, it will not
form any more PopII stellar mass until a halo with no prior
enriched star formation merges with it and introduces new gas.
In the case of two halos with previous PopII star formation
merging, no new stellar mass is formed. We include this
method into our comparison as it is implemented by
semianalytic models throughout the literature in various forms
that resemble Equation (14), using an SFE and gas mass to
introduce new stellar mass instantly (e.g., Sun & Furla-
netto 2016; Magg et al. 2018; Park et al. 2019; Magg et al.

2022). For the rest of this paper, we refer to this PopII star
formation prescription as the “instantaneous” method.
For completeness, we also consider the analytic model

detailed in Visbal et al. (2015a) to compare with the results of
our semianalytic framework. This approach determines the
SFRD by integrating the Sheth–Tormen halo mass function,
dn/dM, at each time step (also see Mashian et al. 2016; Muñoz
et al. 2022; Muñoz 2023, for other examples of this method).
Halo mass ranges are defined for both PopII and PopIII such
that the cosmic mass fraction collapsed into DM halos, Fcoll,
can be determined for stellar population i via,
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Here, Ωm is the cosmological density parameter for matter and
ρc is the critical density. In this work, we determine Fcoll at
each time step by integrating the halo mass function from
Mcrit–2.5 Mcrit for PopIII, and from 2.5 Mcrit–10

9 Me for PopII.
The time derivatives for both stellar populations, ( )dF dt icoll ,
are then calculated analytically at each step and are multiplied
by ρbfII and ΩmρcMIII,new to give the PopII and PopIII SFRDs,
respectively. To match the semianalytic SFRD values more
closely, we double the fiducial value of both the PopII SFE and
the new PopIII stellar mass in this analytic integration model,
i.e., fII= 0.005 and MIII,new= 400 Me. We also note that we
smooth the value of Fcoll,i over the previous 10 time steps
(Δz= 0.5) to avoid numerical feedback effects when determin-
ing its derivative.

5.2. Comparison of Methods

Figure 6 shows the global SFRDs by stellar population for
various combinations of DM halo model and star formation
prescription, as well as the SFRDs of the fully analytic
approach. A key takeaway of Figure 6 is that the merger trees
and smooth accretion models for DM halo evolution give
similar PopII SFRDs. For a given PopII star formation
prescription, instantaneous or via ordinary differential
equations (ODEs), the PopII SFRDs of both DM halo models
agree to within a factor of two over the redshifts shown.
We also find that the fiducial ODEs for enriched star

formation yield steeper PopII SFRD growth than the
instantaneous treatment. Calculating the total change in PopII
SFRD over the change in time shown in Figure 6 (i.e.,
* t,IIdr d ), the slopes given by the ODE prescription are steeper

than those of the instantaneous prescription by over a factor of
two, given the same DM halo model. In our fiducial
prescription, an isolated halo will form stars at a continually
decreasing rate, whereas the instantaneous model requires fresh
infalling gas, hence the shallower growth of the instantaneous
PopII SFRDs.
Looking to the right panel of Figure 6, we find that the

PopIII SFRDs of the merger trees have similar qualitative
behavior to the smooth accretion SFRDs, but are roughly
double their value over the entire redshift range shown. This is
a consequence of the discrepancy in halo number densities
between Sheth–Tormen and EPS formalism as described in
Section 5.1, causing the smooth accretion models to under-
estimate the PopIII SFRDs by a factor ∼two. We verified this
by determining the halo mass function given by our EPS
merger trees at each redshift then calculating its ratio with

Figure 5. Comparison of mass growth histories for DM halos with a final
masses of ( )M Mlog10 halo = 7.5 at z = 15. We show both the MC EPS
approach implemented in our fiducial model (gray curves) as well as the
smooth accretion method (blue curve) from Furlanetto et al. (2017), each
described in detail in Sections 3 and 5, respectively.
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respect to the Sheth–Tormen halo mass function. We then used
these ratio values to weight the SFRs of each individual halo
before calculating the SFRD, effectively constraining the halo
number densities of each mass bin to match the Sheth–Tormen
halo mass function throughout the simulation. The resulting
PopIII SFRD in Figure 6 (black) agrees with those of the
smooth accretion model to within 15% between z= 20 and 35.
At lower redshifts the “Smooth–ODE” curve decreases due to
its higher PopII SFRD and LW background (discussed further
in Section 5.3), and the Sheth–Tormen curve approaches the
fiducial SFRD values as the weighting ratios approach unity
at z= 15.

Looking to the SFRDs determined by analytic integration in
Figure 6, we see overall reasonable agreement with the SFRDs
of the semianalytic models. In fact, when compared to the
fiducial SFRDs, the analytic values agree to within a factor of
four and to within ∼65% over the redshifts shown for PopII
and PopIII, respectively. The integral PopII SFRD shows better
agreement with the instantaneous star formation models, falling
within a factor of two and to within 40% over the plotted
redshifts for the merger trees and smooth accretion models,
respectively. This agreement, however, is a result of tuning the
star formation in the analytic integration model to match the
results of our semianalytic model. We used a PopII SFE and
new PopIII stellar mass that were each twice their fiducial
value, and set the boundary between PopIII and PopII star
formation to be 2.5 Mcrit(z). Variations of these parameter
values can alter the resulting SFRDs by factors of a few. So
while it is able to give order of magnitude agreement with the
SFRDs of our semianalytic framework rapidly, purely analytic
models miss out on key astrophysics for early star formation,
and so tuning is required to match semianalytic values.

5.3. High JLW Limiting Smooth Accretion Models

In Figure 6, we see a clear downturn in the “Smooth–ODE”
PopIII SFRD at z 20 (green, right panel). Although this effect

is also seen in the fiducial PopIII SFRD (blue, same panel), it is
much more pronounced for the smooth accretion model than it
is for the merger trees. This behavior results from a limitation
of the smooth accretion model that we have discovered in cases
of high LW background intensity. To illustrate the breakdown
that smooth accretion models experience in high JLW
environments, we artificially increase the LW background by
a factor of 10 and compare the resulting SFRDs for merger
trees and smooth accretion halos in Figure 7.
The top panel of Figure 7 shows the PopII and PopIII SFRDs

for both MC merger trees and smooth accretion halo models,
given an LW background intensity an order of magnitude
higher than in our fiducial framework. The bottom panel shows
the critical mass of the smooth accretion realization on top of a
sample of the smooth accretion halo mass growth tracks used.
The green mass tracks depict halos that cross Mcrit at any single
point in the simulation, whereas the dashed purple mass tracks
do not ever cross Mcrit.
With a boosted LW background intensity, the critical mass

increases more rapidly than in our fiducial model. At z∼ 19,
the last smooth accretion track crosses Mcrit, after which no
further PopIII star formation occurs. This suggests that
smooth accretion models for DM halo mass evolution break
down in high-radiation environments, and are unable to form
stars as the growth of Mcrit outpaces the growth of the halos.
This is particularly relevant for Mcrit models with a z
dependence that scales with JLW, as in the Kulkarni et al.
(2021) model. MC merger trees, with their stochastic halo
mass growth histories, cover a wider range of halo masses at
all time steps, making the rapid growth of Mcrit a nonissue for
MC merger-tree models. Thus, the complete termination of
PopIII star formation in high LW environments represents a
limitation to semianalytic models with smooth halo mass
growth determined via cosmic number density abundance
matching.

Figure 6. Time-evolution of the global PopII (left) and PopIII (right) SFRDs for different combinations of the methods used for determining the halo merger history
and for determining PopII star formation. Models utilizing the EPS merger-tree method are denoted by “Trees” in the legend, and those utilizing the smooth accretion
method for halo mass growth (Equation (13)) are labeled “Smooth.” Models that use the fiducial set of ODEs for PopII star formation (Equations (6) and (7)) are
labeled as “ODE,” and those using the Instantaneous method (Equation (14)) are denoted by “Inst” in the legend. Also shown is the fully analytic Integral method
(purple), as described in Section 5.1 with a PopII SFE of fII = 0.005 and a new PopIII stellar mass ofMIII,new = 400Me. Finally, the black “Trees–S-T” curve uses the
fiducial ODE PopII star formation method and EPS merger trees for the DM halo evolution, but the halo mass bin number densities, ni, are weighted to match the
Sheth–Tormen halo mass function at each redshift step, as is the case for the smooth accretion models. As discussed in the main text, we find that the smooth accretion
gives similar results to the full merger-tree models. Additionally, we find that instantaneous PopII SFRDs change less rapidly with redshift than our fiducial ODE-
based prescription.
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6. Results. III. Realistic Box Volume Simulations

In addition to studying the global star formation history, we
also use our model to represent subvolumes of the Universe.
We accomplish this by building “boxes” that simulate an
ensemble of halos with realistic merger histories for a specified
volume. While we cannot model spatial information within
these boxes (e.g., the 3D positions of halos), we can compute
the variations from region-to-region due to differences in halo
number and assembly history. As mentioned above, this is
relevant to the large-scale modeling of spatial fluctuations in
the high-redshift 21 cm signal which are sourced by
fluctuations in star formation. This approach also allows us to
determine the extent to which finite simulation boxes (e.g., for
hydrodynamical cosmological simulations) systematically
underestimate the SFRD due to their lack of density
fluctuations on spatial scales larger than the simulation box.

To simulate a finite-volume box, we begin by determining
the mean number of halos in each mass bin (which are the same
as described in Section 3) at the final redshift of our simulation,
z= 15. This number is computed using the Sheth–Tormen halo
mass function with a power spectrum truncated (i.e., set to
zero) at ( )k L2 3min boxp= , corresponding to the longest
length scale in the box. This truncation is applied to
approximate the impact of boxes with density equal to the
cosmic mean as is typically assumed for numerical cosmolo-
gical simulations. We note that in future work we intend
to explore simulating similar boxes with different mean

overdensities, which could then inform the subgrid modeling
in large-scale seminumerical models of the 21 cm signal
(Visbal et al. 2012; Fialkov et al. 2013; Magg et al. 2022). We
sample the number of halos for each mass bin from a Poisson
distribution and generate the MC merger trees for each as
described in Section 3.1. Our fiducial semianalytic model is
then applied to these merger trees assuming an external LW
background, JLW(z), computed from our global fiducial model.
We present the results of our finite-volume boxes in

Figure 8. Here we show the mean PopII and PopIII SFRDs
for 10 boxes of various volumes, and compare them to the
SFRDs of our fiducial global model presented above. For boxes
smaller than 3 Mpc across, we find that removing power
associated with scales larger than the boxes results in a
systematic reduction of the PopII SFRD. The PopIII SFRD,
however, is less impacted due to it being sourced by smaller
halos (with abundance set by the power on smaller scales).
From this, we conclude that a 3 Mpc box is sufficiently large to
provide an unbiased estimate of the global star formation at
z= 15–35. One caveat is that this assumes an accurate model
of JLW (i.e., from our global fiducial semianalytic simulation)
and would not hold if the LW background were computed self-
consistently from the finite-volume box. We also note that if
the SFRD were to be dominated by more massive halos than in
our model, larger-volume boxes would be required for an
unbiased SFRD (as likely occurs at lower redshift).
In Figure 8, we also show the scatter of the PopII and PopIII

SFRDs for different box volumes. In order to prevent the
scatter from depending on our redshift step size, we assign each
PopIII star formation burst to a random time between z and
z+Δz, then smooth the results over a 3 Myr period (roughly
corresponding to a typical PopIII stellar lifetime). This process
effectively allows for star formation to proceed continuously
over time instead of at discrete redshift values which bin star
formation events into finite time spans, thereby introducing a
dependence on the bin size (i.e., Δz) into the error calculations.
As expected, the SFRDs increase with higher redshift as halos
become increasingly rare. We also note that the fluctuations in
PopIII are significantly higher, in large part due to PopIII star
formation occurring in instantaneous bursts rather than
smoothly across time as is the case for PopII in our model.
The scatter is the error one would expect in a single simulation
of the given box size. Additionally, these are the levels of
scatter one expects in subregions of large-scale seminumerical
simulations, as these works typically assume (3 Mpc)3 volume
resolution elements corresponding to the scales where vbc does
not vary spatially. We find order-unity scatter at z∼ 35 and
10% at z∼ 22.5 for the PopII SFRD. For the PopIII, we predict
order unity at z∼ 30 and a value above 20% for all our
redshifts (z> 15).
In the future, we plan to extend this analysis to overdense/

underdense regions to improve the modeling of large-scale 3D
spatial fluctuations in star formation history. We note that the
size fluctuations shown here represent lower limits because we
assume fixed SFEs (i.e., constant fII and MIII, new). In reality
these will vary from halo to halo, and vary over time for a
specific halo. In future work, we intend to calibrate the SFEs
with hydrodynamical cosmological simulations including star
formation and radiative feedback (R. Hazlett et al. 2024, in
preparation).

Figure 7. The breakdown of smooth accretion DM halo models in high LW
background intensity cases. Top: the PopII (blue) and PopIII (orange) SFRDs
for models utilizing MC merger trees (solid) and smooth accretion (dashed) for
DM halo mass evolution, and an artificially boosted LW background of 10
JLW. Bottom: the critical mass for the smooth accretion model shown in the top
panel (thick black) alongside a sample of the halo mass growth tracks used in
said model. The mass growth tracks that cross Mcrit at any point (and therefore
form PopIII stellar mass) are shown in green, and those that do not crossMcrit at
all are shown by the purple dashed lines.
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Figure 8. Top panels: the average PopII (left) and PopIII (right) SFRDs for a range of box sizes. Each curve is a 10-realization average and is denoted by the length of
one side of the box volume. The shaded regions corresponding to each curve represent the standard deviation of the 10 constituent runs. Also shown are the SFRDs of
our fiducial model (black, both panels), which is a globally averaged model and hence, a supposed upper limit for an ever increasing box size. Bottom panels: the error
on the mean for each of the PopII (left) and PopIII (right) SFRDs, i.e., the ratio of the standard deviation to the average for each corresponding curve in the top panels.

Figure 9. A comparison of the PopII (left) and PopIII (right) SFRDs found in this work with those from the literature. We show our fiducial SFRDs (thick black) and
those found using the no self-shielding critical mass model (thick gray, see Figure 1) alongside recently published SFRD histories. These SFRDs alternate between
dashed and solid curves for clarity, and are labeled alphabetically by first author surname. Note, for conciseness, Hegde & Furlanetto (2023) and Liu & Bromm (2020)
are labeled as “H&F 2023” and “L&B 2020,” respectively. We also note that not all referred works include PopII SFRD histories.
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7. Star Formation History Comparison with Other Works

We now look to previous works throughout the literature and
compare their SFRD histories to those found with our
semianalytic framework. Figure 9 shows the PopII and PopIII
SFRDs determined by our fiducial model, as well as those
using the no self-shielding critical mass (see Figure 1),
compared to several recently reported SFRDs from the
literature. These SFRDs are the results of a variety of modeling
prescriptions including semianalytic simulations (e.g., Magg
et al. 2018; Mebane et al. 2018; Visbal et al. 2018; Liu &
Bromm 2020; Visbal et al. 2020), cosmological hydrodynamic
frameworks (Jaacks et al. 2018; Sarmento et al. 2019), and
even a fully analytic model (Muñoz et al. 2022). We note that
the majority of the curves shown in Figure 9 are approxima-
tions taken from the fiducial SFRD evolution of each reference.
This was done by gathering integer redshift SFRD values from
plots in each published work, meaning that only broad trends
are captured. Exceptions include the PopII SFRD of Jaacks
et al. (2018) , which has an assumed functional form, Liu &
Bromm (2020) provided a fit for their PopIII SFRD, and the
authors of Hegde & Furlanetto (2023) kindly provided us with
raw SFRD values resulting from their fiducial framework.

In the right panel of Figure 9, we see that the majority of the
PopIII SFRDs shown fall below our fiducial SFRD; however,
many of them come into agreement when compared with our
no self-shielding Mcrit realization. The SFRDs reported by
Mebane et al. (2018), Visbal et al. (2018), Liu & Bromm
(2020), and Visbal et al. (2020) all agree with the no self-
shielding Mcrit PopIII SFRD to within a factor of a few
throughout the redshift range shown. In particular, Mebane
et al. (2018) and Visbal et al. (2018) are consistent to within a
factor of �two across the entire redshift range, despite their
respective use of smooth accretion and N-body prescriptions
for DM halo evolution. We therefore attribute the general
agreement of these semianalytic models with our no self-
shielding Mcrit PopIII SFRD to their use of the same
prescription for the critical mass (Equation (5)).

Focusing on a few particular cases in Figure 9, the PopIII
SFRD found by Hartwig et al. (2022) shows qualitative
agreement with our fiducial model at z 27, albeit a factor
∼three higher. Although they adopt a critical mass model with
H2 self-shielding (Schauer et al. 2021), their JLW is
predetermined as a function of redshift, which sets their Mcrit

to five times the threshold found in our self-consistent model at
z= 35. Once PopIII star formation begins, however, we infer
that their high SFE of fIII= 0.38 per freefall time (calibrated
from observations), paired with the limited negative feedback
of their analytic JLW(z) prescription, gave this overall higher
PopIII SFRD.

Most recently, the semianalytic model presented in Hegde &
Furlanetto (2023) has one of the steepest PopIII SFRD
evolutions shown in Figure 9. While their critical mass agrees
with our fiducial Mcrit to within a factor of a few throughout,
their star formation prescription allows for multiple generations
of PopIII stars per halo, a feature that most likely sources such
rapid growth.

The PopIII SFRDs resulting from cosmological hydrody-
namic simulations in Figure 9 (i.e., Jaacks et al. 2018;
Sarmento et al. 2019) are also significantly steeper than those
of our semianalytic framework. Since these models mainly
cover lower redshifts than what is explored here (each ending at
z∼ 7), their SFRDs at the redshifts shown in Figure 9 are likely

products of the largest halos found in the simulation. Without
resolving minihalos at higher redshifts, star formation is
confined to the few resolved DM halos that persist at such
early times, causing the SFRD to fall off more rapidly. If
unresolved minihalos were included, they likely would
supplement early star formation and carry the SFRDs at higher
redshifts to give more qualitative agreement with our model.
Now looking to the left panel of Figure 9, we see the

available corresponding PopII SFRDs which result from a
diverse range of star formation prescriptions. On top of this
diversity, PopII star formation is frequently affected by other
modeling aspects as well (such as the Mcrit model, fII, tdelay, SN
feedback, etc.), which makes diagnosing variations between the
resulting SFRDs more challenging than with PopIII. For
example, Hegde & Furlanetto (2023) determine PopII star
formation using our fiducial ODEs adopted from Furlanetto &
Mirocha (2022), yet their PopII SFRD grows more consistently
than the SFRDs resulting from our framework. This is likely a
result of their PopII SFE, which is determined at each time step
using a star formation duty cycle, unlike the constant fII value
used here. Conversely, the SFRD of Muñoz et al. (2022) is
determined via analytic integration of the halo mass function,
which, as discussed in Section 5.2, heavily depends on the halo
mass ranges over which one integrates and the SFEs used. The
PopII SFRDs given by Mebane et al. (2018), Visbal et al.
(2018, 2020), and Hartwig et al. (2022) each arise from
prescriptions similar to our instantaneous PopII star formation
model, but most likely differ in evolution as a result of varying
PopII SFEs, varying the halo gas mass used, the inclusion of
bursty star formation, and the DM halo model itself.
The SFRDs resulting from this research have extensively

shown that one’s modeling choices can significantly alter the
resulting star formation history. In particular, the right panel of
Figure 9 tells us that one must use the improved Mcrit from
Kulkarni et al. (2021) or similar works (e.g., Schauer et al.
2021; Nebrin et al. 2023) that accurately accounts for the
effects of H2 self-shielding and baryon–DM streaming. In
general, varying the SFEs of either stellar population can shift
their SFRD values up or down with time, and the longer star
formation is delayed, the steeper the SFRD growth once it
commences.

8. Conclusions and Future Work

In this paper, we presented a new global semianalytic model
of the first stars and galaxies at redshifts z� 15. Our model
includes complete DM halo merger histories (typically not
included in global star formation models at such high redshifts)
and is calibrated to the latest numerical simulations (Kulkarni
et al. 2021). Here we conclude by summarizing key results
from our study and mention directions of future work.
We found that, compared to previous calibrations in the

literature, the updated critical halo mass significantly changes
the high-redshift SFRDs (mainly due to lower MH2 values as a
consequence of molecular hydrogen self-shielding). For
instance in our fiducial model, the PopIII SFRD is increased
by more than an order of magnitude compared to the no self-
shielding critical masses based on the simulations of Machacek
et al. (2001), Greif et al. (2011), and Stacy et al. (2012). The
PopII SFRD is increased by roughly one order of magnitude at
z= 35, but falls to a factor of two disagreement by z= 15 (see
Figure 1).
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We also assessed the impact of including the scatter in MH2

due to individual differences in halo merger history and
geometry between halos from the simulations of Kulkarni et al.
(2021). Figure 2 shows that including this scatter modestly
increases the abundance of stars formed. It increased the final
PopIII SMD by a factor ∼1.5, and the final PopII SMD only
increased by ∼10% relative to the no-scatter case.

We also studied the effect that DM halo mergers have on
star formation history by comparing the SFRDs resulting
from MC merger trees to those resulting from smooth
accretion based on abundance matching, as described
in Furlanetto et al. (2017; Figure 5). For our fiducial
astrophysical parameters, we found that the resulting SFRDs
(both PopIII and PopII) each agreed to within a factor of two
from z= 18 to 31 for these DM halo models (see Figure 6).
This suggests that the merger history is likely not required to
model global SFRDs, provided one does not need an
accuracy much greater than a factor of two, but it is required
for spatial fluctuations such as those we show in Figure 8.
We note, however, that our model does not incorporate
changes in astrophysics due to mergers (e.g., an enhanced
PopII SFE following mergers), which could occur in more
sophisticated star formation models. We also point out that
in models with very high JLW (for instance if the SFE was
significantly higher than we assume), smooth accretion
models have an unphysical shutoff in primordial star
formation and a detailed treatment of the merger history
may be necessary (see Figure 7).

Additionally, we tested how the global star formation history
is affected by our PopII star formation prescription. We
compared our fiducial model, based on Equations (6) and (7)
(from Furlanetto & Mirocha 2022) to a simpler “instantaneous”
method used previously in the literature and found that the
instantaneous model leads to a shallower metal-enriched SFRD
slope throughout the simulation (see Figure 6). Our fiducial
prescription yields steeper PopII SFRDs because it allows halos
to continue forming stars in isolation, unlike the instantaneous
model which requires infalling gas at each time step (resulting
in relatively more late-time formation). The effects of this
steeper enriched SFRD manifest in the PopIII SFRD at late
times (z 25) when the increasing LW background intensity
sufficiently increases Mcrit to alter the PopIII star formation
history as well.

We also compared our fiducial merger-tree model to a simple
integration of the halo mass function based on Visbal et al.
(2015b). We found that this analytic calculation closely
reproduces the PopII SFRD in the instantaneous prescription,
and can reproduce our fiducial enriched SFRD to within a
factor ∼two. It does a more reasonable job for PopIII, agreeing
with our fiducial PopIII SFRD to within a ∼65% at the
redshifts we explored, but we again note that these SFRDs were
the result of tuning the analytic prescription to align with the
semianalytic SFRD values more closely.

We showed a comparison of the SFRDs resulting from our
semianalytic framework to those from the literature in Figure 9,
and found that one’s modeling choices can significantly alter
the resulting star formation history. In particular, we found that
the reduction of Mcrit due to the effects of H2 self-shielding and
baryon–DM streaming allows for a PopIII SFRD that is about
an order of magnitude higher than without the inclusion of such
effects. We therefore recommend the use of the critical mass
threshold from Kulkarni et al. (2021) or similar works (e.g.,

Schauer et al. 2021; Nebrin et al. 2023) that accurately accounts
for the effects of H2 self-shielding and baryon–DM streaming
for predicting global SFRD evolution.
However, since these works investigating the effects of H2

self-shielding are relatively recent, many uncertainties remain.
Although Kulkarni et al. (2021) and Schauer et al. (2021) both
utilize hydrodynamical cosmological simulations (ENZO and
AREPO, respectively) to probe various redshifts, LW back-
ground intensities, and streaming velocities to determine the
critical mass for star formation, the thresholds reported by the
two works differ by a factor a few. While differences in the
simulations used, the parameter spaces probed, and the
assumed thresholds for halo cooling/collapse may have
contributed to this, exact sources of this discrepancy remain
unclear. More recently, Nebrin et al. (2023) published their
critical mass model that builds up from halo gas physics to
include dependencies on JLW and vbc using (semi-)analytic
methods. However, despite hopes that a more analytic approach
could shed light on the discrepancy, their resulting Mcrit

seemingly falls between the two models of Kulkarni et al.
(2021) and Schauer et al. (2021). We therefore caution the
reader to take care when selecting a particular critical mass
threshold for future star formation models.
Finally, we used our model to simulate finite-volume boxes

each with their own unique set of halos and merger histories
(though not including 3D spatial positions). For boxes which
are forced to have a density equal to the cosmic mean (as is
typically done in nonzoom cosmological numerical simula-
tions), we tested how the lack of power on scales larger the
simulation box can impact estimates of the star formation
history. We found that a (3 Mpc)3 box is sufficiently large to
provide an unbiased estimate of the global star formation at
z= 15–35, provided that a reliable external LW background is
known (for analytic fits of various LW backgrounds found by
our semianalytic model, see Appendix). We also determined
the typical scatter in the PopIII/PopII SFRDs as a function of
redshift in regions of various volumes that are set to the mean
cosmic density.
In future work, we will apply our model to predict large-

scale spatial fluctuations in high-redshift star formation, which
can then be used to model the cosmological 21 cm signal. We
will extend our finite-volume box analysis presented in
Section 6 to include variations in star formation as a function
of local overdensity and baryon–DM streaming velocity in
(3Mpc)3 volume elements (as is typically done in other 21 cm
predictions; e.g., Visbal et al. 2012; Fialkov et al. 2013). We
will then explore ways to emulate our model rapidly, such that
it is possible to self-consistently determine the LW background
and associated feedback across ∼gigaparsec distance scales
while also accounting for variations in halo abundance and
merger history down to the critical halo mass for forming
PopIII stars.
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Appendix
Fits for the Global LW Background Intensity

Here we detail a sampling of analytic polynomial fits for
different LW background intensities resulting from various
realizations of our semianalytic model. The fits provided here
may be used in finite-volume models to estimate global star
formation in the redshift range z= 15–35. In the top left panel
of Figure 10, we show the JLW(z) resulting from realizations
with various MIII,new values, and one for the case of no global
baryon–DM streaming velocity (solid curves). We show the
corresponding fit to each LW background by the identically
colored dashed lines. Similarly, the top right panel shows the

JLW(z) for realizations of our semianalytic framework with
PopIII star formation determined by an SFE (as described in
Section 4.4). The ratio of the model data to the fit of each
JLW(z) is then shown in the bottom panels of Figure 10, and we
present the coefficients for each polynomial fit in Table 2. For
each realization, the coefficients A, B, C, and D describe the
LW background intensity in terms of redshift z, via the
following function,

( ( )) ( ) ( ) ( )
( )

J z A z B z C z Dlog 1 1 1 .

A1
10 LW

3 2= + + + + + +

Figure 10. Top left: global LW background intensities for various realizations of our semianalytic framework (solid) and their corresponding analytic fits (dashed).
We show the JLW(z) values for our fiducial model (black) alongside those with 0.5 MIII,new = 100 Me (red), 2 MIII,new = 400 Me (green), 4 MIII,new = 800 Me
(purple), and for the case with no baryon–DM streaming velocity (blue). Top right: same as top left, but for realizations using a PopIII SFE as described in Section 4.4
(also see Figure 4). Bottom panels: the ratios of each JLW(z) in the upper panels to the values given by their corresponding fits.

Table 2
Polynomial Coefficients Used in Equation (A1) for the JLW(z) Fits Shown in Figure 10

Realization A B C D

0.5 × MIII,new −1.6246 × 10−4 7.2219 × 10−3 −0.11836 0.93553
Fiducial Model −1.3808 × 10−4 5.2787 × 10−3 −5.5111 × 10−2 0.36564
2 × MIII,new −1.0885 × 10−4 3.3920 × 10−3 −8.1113 × 10−3 8.2743 × 10−2

4 × MIII,new −1.1377 × 10−4 4.1009 × 10−3 −2.4789 × 10−2 0.30972
vbc = 0 km s−1 −2.2360 × 10−5 −9.8214 × 10−4 7.3987 × 10−2 −0.33048
fIII = 0.0005 −1.7990 × 10−4 8.9799 × 10−3 −0.20440 2.0708
fIII = 0.001 −2.0501 × 10−4 1.0871 × 10−2 −0.23545 2.2763
fIII = 0.002 −2.2604 × 10−4 1.2679 × 10−2 −0.28003 2.7469
fIII = 0.004 −2.5241 × 10−4 1.4942 × 10−2 −0.33499 3.3205
fIII = 0.001, vbc = 0 km s−1 −5.0559 × 10−5 4.5826 × 10−4 1.1234 × 10−2 0.43310
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