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Abstract

Line-intensity mapping (IM) experiments seek to perform statistical measurements of large-scale structure with
spectral lines such as 21 cm, CO, and Lyα. A challenge in these observations is to ensure that astrophysical
foregrounds, such as galactic synchrotron emission in 21 cm measurements, are properly removed. One method
that has the potential to reduce foreground contamination is to cross correlate with a galaxy survey that overlaps
with the IM volume. However, telescopes sensitive to high-redshift galaxies typically have small field of views
compared to IM surveys. Thus, a galaxy survey for cross correlation would necessarily consist of pencil beams that
sparsely fill the IM volume. In this paper, we develop the formalism to forecast the sensitivity of cross correlations
between IM experiments and pencil-beam galaxy surveys. We find that a random distribution of pencil beams leads
to very similar overall sensitivity as a lattice spaced across the IM survey and derive a simple formula for random
configurations that agrees with the Fisher matrix formalism. We explore examples of combining high-redshift
James Webb Space Telescope (JWST) observations with both an SPHEREx-like Lyα IM survey and a 21 cm
experiment based on the Hydrogen Epoch of Reionization Array (HERA). We find that the JWST-SPHEREx case
is promising, leading to a total signal-to-noise ratio of ∼5 after 100 total hours of JWST (at z= 7). We find that
HERA is not well-suited for this approach owing to its drift-scan strategy, but that a similar experiment that can
integrate down on one field could be.

Unified Astronomy Thesaurus concepts: Cosmology (343); Reionization (1383); High-redshift galaxies (734)

1. Introduction

Some of the most exciting reionization-era signals will be

measured using surveys that span large swaths of the sky. This

includes IM efforts observing 21 cm radiation such as MWA,

LOFAR, HERA, and Square Kilometre Array (SKA; Jelić et al.

2014; Koopmans et al. 2015; DeBoer et al. 2017; Barry et al.

2022). It also includes IM with lines such Lyα, Hα, CO, and
[CII] with instruments like SPHEREx (Doré et al. 2014),

CDIM (Cooray et al. 2019), FYST (Karoumpis et al. 2022),

COMAP (Cleary et al. 2022), TIME (Sun et al. 2021), and

CONCERTO (CONCERTO Collaboration et al. 2020). These

intensity maps will often contain strong foregrounds (e.g.,

galactic synchrotron emission in the 21 cm case) and imperfect

removal of these foregrounds could masquerade as signal.
Cross correlations with a tracer of the high-redshift universe

would be the most robust way to mitigate foregrounds.

Previous studies have investigated potential cross correlations

of intensity maps with the CMB (Tashiro et al. 2010; Meerburg

et al. 2013) and wide-field narrowband Lyα emitter surveys

(Lidz et al. 2009; Sobacchi et al. 2016; Kubota et al. 2018;

Vrbanec et al. 2020; Cox et al. 2022). The signal-to-noise ratio

(S/N) in such cross correlations is often found to be small

because the line-of-sight-oriented structures that IM experi-

ments target are orthogonal to the sky-plane structures these

other surveys are generally most sensitive to. One promising

idea is to correlate the Subaru HyperSuprimeCam narrowband

Lyα emitter survey at z= 6.6 with an LOFAR 21 cm intensity

map. Forecasts are that this could provide a detectable signal
with S/N∼ 2–4 (Vrbanec et al. 2020). Another previously
explored idea is cross correlating IM surveys with other IM
surveys that map distinct lines (Visbal & Loeb 2010;
Carilli 2011; Lidz et al. 2011).
Spectroscopic galaxy surveys in the optical/near-infrared

provide excellent line-of-sight resolution and so are a natural
match for the high line-of-sight resolution of IM surveys and,
hence, for cross correlation. Unfortunately, obtaining spectro-
scopic redshifts for high-redshift sources is challenging. A
promising high-redshift spectroscopic catalog could come from
the Roman Space Telescope’s slitless spectrograph. Predictions
for the cross correlations of a dedicated survey with this
instrument and the HERA intensity map have found S/N∼ 10
(La Plante et al. 2023). The slitless spectroscopy of Roman will
not be as sensitive as spectra from the largest ground-based
optical telescopes or JWST. However, in contrast to Roman,
the small field of view (FOV) of these telescopes is poorly
matched to the wide fields of many IM surveys.
Here we consider how feasible it would be to use surveys

with narrow fields to detect cross correlations with wide fields.
Namely, we consider whether cross correlations with a large
number of pencil beams sampling across an IM survey could
yield a sufficient sensitivity to be useful for measuring or
confirming signals (i.e., to ensure proper removal of spurious
foregrounds). Calculating the S/N of such a survey is
complicated by the noncontinuous survey geometry. We
develop the framework to do this and forecast the S/N for
correlating JWST with SPHEREx and HERA. This study is
most related to Beardsley et al. (2015), who found a potentially
detectable correlation of the galaxy counts within a JWST field
and the pixel intensity of MWA and HERA maps at that
location. It is also related to previous work considering cross
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correlating between the Lyα forest and low spectral resolution
IM survey (Renard et al. 2021).

This paper is organized as follows. Section 2 presents the
formalism for cross correlations with pencil beams, reducing
complex expressions to simple formulas in the limit of random
pointings. Section 3 discusses the sensitivity specifications for
JWST spectroscopy. The sensitivity of cross correlations is
presented in Sections 4 and 5, where we first consider an
instructive noiseless case and, then, we consider the cases of
SPHEREx Lyα and HERA 21 cm measurements. We finish
with concluding thoughts. Throughout, we assume a Λ cold
dark matter cosmology with parameters consistent with Planck
Collaboration XVI (2014): Ωm= 0.32, ΩΛ= 0.68, Ωb= 0.049,
h= 0.67, σ8= 0.83, and ns= 0.96.

2. Cross-power Spectrum Sensitivity Formalism

In this section, we describe the formalism to estimate the
cross-power spectrum sensitivity for an IM survey cross
correlated with a galaxy survey comprising pencil beams.
The goal of the cross correlation could be either to remove
foregrounds or to confirm an IM power spectrum measurement
that could be contaminated with astrophysical foregrounds.
Thus, we only consider information in the cross-correlation
(i.e., we assume the auto-correlations of the signal do not
contribute to the S/N). Here we include an outline of the
formalism and the most important resulting equations. Addi-
tional details can be found in Appendices A, B, C, and D.

We begin by defining a data vector for the IM survey, I,
which includes (as separate components) both the real and
imaginary parts of each Fourier mode sampled by the IM
survey. Thus, there are two components corresponding to the
ith mode, kRe iI(˜ ( ))d and kIm iI(˜ ( ))d . The quantity Id̃ is defined
as the Fourier transform of the spatially fluctuating intensity of
the IM signal after subtracting off the mean intensity. As
discussed below, the number of modes sampled, Nk, depends
on the size and spatial resolution of the IM survey and the
length of I is 2 Nk. We only include modes with positive values
of the wavevector component parallel to the line of sight, k∥,
since the IM measurements being purely real quantities makes
these modes redundant with those having negative values of
this component (because *k kI I

˜ ( ) ˜ ( )d d= - ).
While a logical basis of measurements for IM surveys is

Fourier modes, for galaxy pencil beams, a more natural basis is
the galaxy overdensity in each pointing’s field at a given line-
of-sight wavenumber. Thus, we take the components of our
galaxy survey data vector for a combined set of pencil beams to
be the real and imaginary parts of

x x x xg d k W, , 1i j i j,
2

g , g
ˆ ( ) ( ) ( )ò d= ¢ ¢ - ¢

where x k, ig ,
ˆ ( )d ¢ is the partial Fourier transform of galaxy

overdensity (transformed only in the line-of-sight direction; see

Appendix A), j indexes the different pencil beams, Wg is the

galaxy survey window function for one pointing, and xj is the

(2D) location on the sky of the center of one pencil beam. Here

x¢ represents a 2D position on the sky and k∥,i is the

wavenumber of the mode in the line-of-sight direction. The

number of such modes is set by the line-of-sight spatial

coverage and resolution.
The window function Wg is defined to be zero outside of the

pencil-beam FOV and constant within and normalized so that

x xd W 12
g( )ò ¢ ¢ = . This integral over the window function

means that we are not retaining information on clustering on
angular scales smaller than the survey field. This approximation
is justified for narrow pencil beams with instruments such as
JWST when cross correlated with IM observations that do not
resolve angular scales smaller than the pencil beam FOV. For
galaxy surveys with wider-field instruments, like Roman, this
approximation is less justified.
The standard estimate for the minimum error of a set of

parameters, pi, (for instance, values of the cross-power
spectrum in different k-bins) is given by the Fisher matrix

C C C CF
1

2
Tr , 2ij i j

1
,

1
,[ ] ( )= - -

where C
C

i p,
i

º ¶
¶

(Tegmark et al. 1997). Here C is the

covariance matrix of the data vector d (which, in our case

would include the components of I, as well as g including each

pencil beam). Bounds on the error of pi—here the hat indicates

an estimated quantity—are given by Fi i i
1

,[ ]s - , with

measurements in cosmology often saturating this bound

because of the Gaussianity of cosmological signals.
In our application, the traditional Fisher matrix expression

(Equation (2)) would use all of the information from both the
IM and galaxy surveys. As mentioned above, this would not
estimate the sensitivity of most interest, as we want to only use
the information in cross correlation (since our aim is to mitigate
foregrounds through cross correlation or to confirm an auto-
power spectrum measurement). Appendix B presents a
derivation of the optimal quadratic estimator that only uses
cross-power information (extending the work of Vanneste et al.
2018). In this case, and assuming the parameters indexed by pi,
are the cross-power bandpowers (i.e., the mean values of the
cross-power spectrum within defined k-bins),

F W W

W W W

W G

G

1

2
1

2
, 3

ij ik kl kl lj

ij ik kl lj

1 1 1

1 1 1

[ ] [ ] ( )[ ]

([ ] [ ] [ ] ) ( )

= +

= +

- - -

- - -

where

R
C

C R C R
p

W;
1

2
Tr ; 4i

i

ij i j

Ig
II 1 gg 1 T[( ) ( ) ] ( )º

¶
¶

= - -

C R C C C R C CG
1

2
Tr . 5ij i j

II 1 gg 1 gI II 1 gg 1 gI[( ) ( ) ( ) ( ) ] ( )= - - - -

Here CIg is the covariance matrix between our IM data I and

our galaxy survey data g (which includes all pencil beams in

the survey). Similarly, the covariance of the IM data with itself

and the galaxy survey data with itself are denoted with CII and

Cgg, respectively. In Appendix B, we derive all of the elements

of these matrices. In the limit of low noise, both terms in

Equation (3) contribute nearly equally (Vanneste et al. 2018),

whereas in the more applicable case for this study of high

noise, the second term is more important.
Let us specialize to the case where the parameters are the

cross bandpowers we aim to detect; i.e., the PIg(k⊥, k∥)
estimates that fall within some range of a wavevector. In
Appendix C, we show that for this case in the limit where the
JWST fields are random in directions, the ensemble-averaged
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Fisher matrix error becomes

k

k

k
P

N

V P k k

d N W

P k1 , ,

2
, 6I g

2

m

I g
2

2
g g

2

Ig
2( ) ( )

( )

( )
( )

 



d
s

á ñ = +~
^

^

^⎛

⎝
⎜

⎞

⎠
⎟

where Nm is the number of modes in the bin around a given

wavevector (counting only the Fourier modes where k∥> 0), V

is the IM survey volume, pi is the IM power spectrum,

k g kRe ag
2 2( ) [ ( )] s = á ñ is variance of galaxy overdensity in

one pencil beam a (computed in Appendix B), d∥ is the line-of-

sight length of the surveys, Ng is the number of pencil beams,

Wg
~

is the Fourier transform of the pencil-beam window

function, and PIg is the cross-power spectrum between galaxies

and the IM survey. For notational simplicity, Equation (6) does

not indicate the wavevectors used for Nm and δPIg. For the

JWST examples presented below, we demonstrate that this

equation is an excellent approximation for the results given by

the full Fisher formalism (Equation (3)).
In the limit that the galaxy shot noise dominates on the scale

of the galaxy survey, we can further simplify Equation (6)

k k
P

N

P k

f n

P k1 ,

2

,

2
, 7

g
Ig
2

m

I

cov

Ig
2( )

¯

( )
( )

 dá ñ = +^ ^
⎜ ⎟
⎛
⎝

⎞
⎠

where fcov is the fraction of the IM field covered by JWST

pointings (see Appendix C).
There is one concerning aspect of the above equations. The
kP k N, 2Ig

2
m( ) ( )^ terms in the previous two lined equations

limit the S/N on a typical mode to be never be greater than ∼1.
This is because sample variance limits how well the cross-
power spectrum can be constrained. However, we do not care
about sample variance when asking how well cross correlations
can be detected—it is only the noise on the mode that matters,
and so in principal the S/N of detecting correlation in a single
mode can be detected can be arbitrarily large (but still one can
only have an 1( ) -accurate estimate of the power spectrum that
it was drawn from!). In practice, this distinction is not very
important, as most of the modes for the cases we consider are
noise dominated. However, the above formula can be general-
ized to the case where one only cares about detecting the cross
correlation and not constraining statically the value of the
cross-power spectrum itself. In this case, one can show that the
typical error to detect the cross correlations is approximately
the same as Equation (6) but dropping the PIg term and
subtracting off the pure sample variance term in the auto (see
Appendix D for the derivation). This results in a total S/N

equal to P PIg
2

Ig
2dá ñ on a typical mode of

k k

k
P

V P k k P k k

N d N W

, ,
,

8

Ig
2 I g

2
I
SV

g
SV 2

m
2

g g

2

( ( )[ ( )] ( )[ ( )] )

( )

( )

   



d
s s

á ñ »
-
~

^ ^

^

where now PI
SV and g

SVs just include the signal and not the

noise (where the noise is instrumental noise, uncorrelated shot

noise, and noise due to foreground interloper lines). In order to

simplify to reach Equation (8), we had to make an approx-

imation that the covariance matrix in the galaxy pointings and

the covariance matrix in the intensity mapping modes is

diagonally dominated, which is most appropriate when each

mode is still noise dominated (Appendix D). These SV terms

include correlated terms such as the part of each that traces the

cosmic density field. Noise due to foreground interloper galaxy

lines (e.g., Hα in the Lyα IM examples discussed below) must

also be included (appearing in the noise component of PI). For

the examples we show below, the total cross correlation S/N
computed using Equation (8) is very similar to the S/N of the

cross-power spectrum. However, there could be large differ-

ences in other cases of cross correlation that are less dominated

by noise (both detector and galaxy shot noise).

3. JWST Galaxy Observations

In this section, we describe our assumptions related to JWST
galaxy observations. While the formalism described above
applies to any galaxy survey comprising pencil beams, we
focus on JWST as an illustrative example. Throughout we
consider a galaxy survey consisting of Ng pencil beams, all
within the IM survey volume being cross correlated. We focus
on observations centered at z= 7 to show the utility of this
cross-correlation technique during cosmic reionization.

3.1. JWST Sensitivity

We assume that the JWST galaxies are initially detected
through Lyman-break selection in rapidly obtained snapshots
with NIRCam (although this photometric survey can in detail
be performed simultaneously with our NIRSpec observations).
Following this initial detection, we assume that spectra are
taken to estimate redshift values for each galaxy. We consider
two separate cases for estimating redshifts: one based on
detection of the Lyman-break and the other on Lyα line
detection. We begin by describing the former. The redshifted
Lyman-break for high-redshift galaxies occurs at
λobs≈ (1+ z)× 1216 Å or ≈1 μm for z≈ 7 of interest. At
this observed wavelength, we require S/N= 3 in a single
spectral bin for an accurate redshift measurement, where we
either use the instrumental resolution for the bin size or we
combine nearby spectral pixels. S/N= 3 means that roughly
95% of the time the Lyman-break is located in the correct
spectral pixel. These assumptions are intended to be a
reasonable estimate for what is achievable with JWST. We
leave a more precise analysis of JWSTʼs capabilities to
future work.
We consider two different JWST instrumental configurations

for galaxy redshift measurements and utilize the JWST exposure
time calculator (Pontoppidan et al. 2016) to estimate their
respective relevant limiting magnitudes. First, we consider using
the NIRSPEC G140M/F100LP grating. This grating has an
effective spectral resolution of 700n nº D ~ ; however, for
our analysis we take the combination of four of the actual
spectral channels to be one spectral channel (only in the Lyman-
break redshift measurements described here, not the Lyα case
described below). This reduces our effective spectrum resolu-
tion, but increases the S/N by a factor of 2. Thus, for this
configuration we assume an effective spectral resolution of

200= and find that a 10 hr exposure of an mAB,10hr= 26.8
galaxy has an S/N of 3 using the JWST exposure time
calculator. This sensitivity calculation assumes that the entire
galaxy fits within each NIRSPEC shutter, which is likely since a
shutter corresponds to a spatial extent of 1.1× 2.6 physical kpc2

at z= 7, somewhat larger than the half-light radius of each
galaxy, which HST observations find to be somewhat smaller
than 1 physical kpc, on average (Ono et al. 2013). We assume
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that S/N scales with time due to photon counting statistics,
such that our 1− σ galaxy magnitude goes as mAB,max =
m t2.5 log 10 hrAB,10hr ( )+ . For our second instrument, we
consider the NIRSpec MOS in PRISM mode, which we take to
have 30= and an S/N of 3 at mAB,10hr= 27.8 after 10 hr of
integration (the same time scaling as the previous instrument is
assumed). This represents a more sensitive but lower spectral
resolution method than the previous configuration. In all of the
examples described below, we assume that each pencil-beam
field is observed over an equal time tobs= ttotal/Ng− 20minutes.
Here we assume 20 minutes is spent for each pointing to slew
the telescope and perform instrumental overheads. Slewing the
telescope ∼1 degree (which is a typical mean separation of
pencil beams in our examples below), takes approximately ∼10
minutes.3 Finding a guide star and performing onboard script
system compilation, exposure overhead, and visit cleanup takes
an additional ∼10 minutes.4 We note that this accounting of
time is meant to be approximate, and we defer a more precise
estimate to future works.

In addition to redshift measurements via the Lyman break
just described, we also consider examples where redshifts are
obtained through detection of Lyα lines. In these cases, we
assume the high-resolution grating configuration of JWST
( 700= ). A resolution of 700= corresponds to a velocity
width of 430 km s−1, which is likely broader then the typical
(transmitted red side) Lyα line. Additionally, the bright Lyα
lines we consider have much higher flux than the continuum in
a single spectral element. In contrast to the Lyman-break case
described above where many spectral pixels constrain the
break, we assume that S/N= 5 is required for redshift
detection through the Lyα line since it likely falls in a single
pixel. The limiting Lyα luminosity that can be detected is given
by

L D f z4 1 10 , 9m
Ly ,min L

2
AB em

1 2.5AB,max( ) ( )p n= D +a
- -

where DL is the cosmological luminosity distance, fAB=

3.631× 10−20 erg s−1Hz−1 cm−2, and Δνem is the spectral width

of the ( 700= ) frequency bin in the rest frame of the galaxy.

As in the Lyman-break case, the limiting AB magnitude is

given by m m t2.5 log 10 hrAB,max AB,10hr ( )= + , but with

mAB,10hr= 25.5 due to the higher S/N requirement and not

grouping adjacent spectral pixels. As described below, we

determine the number density of galaxies above the detection

thresholds with observed Lyα luminosity functions.

3.2. Galaxy Power Spectrum

Once we specify Ng and ttotal for a hypothetical survey, the
galaxy sensitivity assumptions above provide us with the
limiting observable magnitude, mAB,max. This limiting magni-
tude is then used to determine the power spectrum of the
observed galaxies, Pg(k). We assume the power spectrum takes
the standard clustered plus shot noise form:

k kP b P z
n

,
1
, 10g g

2
m

g

( ) ¯ ( )
¯

( )= +

where Pm is the matter power spectrum, bḡ is the mean linear

bias of the galaxies, and ng¯ is the galaxies’ comoving number

density. Because our calculations are in the low-number

density, large-scale limit, this form for the power spectrum is

likely a good approximation. We use numerical values for Pm

from the publicly available code CAMB.5 In the Lyman-break

case, we obtain ng¯ by integrating the galaxy UV luminosity

function from Bouwens et al. (2021) above mAB,min. For Lyα,

we integrate the Lyα luminosity function from Itoh et al.

(2018) above LLy ,mina . We estimate bḡ by halo abundance

matching. This is accomplished by associating our observed

number density with a minimum halo mass, Mmin, via

n dM
dn

dM
, 11

M
g duty

min

¯ ( )ò=
¥



where òduty is the galaxy duty cycle and
dn

dM
is the halo mass

function, for which we use the Sheth-Tormen fit to N-body

simulations (Sheth et al. 2001). Once this minimum mass is

determined an associated mean bias is computed with

b dMb M
dn

dM
dM

dn

dM
, 12

M M
g ST

min min

¯ ( ) ( )ò ò=
¥ ¥

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where bST is the Sheth–Torman linear bias as a function of halo

mass (Sheth et al. 2001). For the Lyman-break galaxies we

assume òduty= 1, and for the Lyα we assume òduty= 0.05. The

latter yields a mean bias similar to observations of Lyα emitters

at z= 6.6 (Ouchi et al. 2018). Note that even though the duty

cycle is not mass dependent, it changes the bias because it sets

Mmin and higher Mmin than results in higher bias.
In Figure 1, we plot the number of galaxies with measured

redshifts and the corresponding bḡ as a function of the number of
JWST fields. We find that out of the three considered methods for
obtaining galaxy redshifts, Lyα detection is the most sensitive,
followed by the low-resolution Lyman-break technique, and
finally the high-resolution Lyman-break. For 100 total hours of
JWST time with the Lyα technique, we find ∼100 pointings
appears to maximize the number of detected galaxies. We point
out that this is very similar to the same area on the sky covered by
the COSMOS-Webb survey (Casey et al. 2023), which will cover
∼(90Mpc)2 or (0.6 deg)2. However, in our examples presented
below this same total area would be spread out over the larger
footprints of the respective IM surveys (e.g., (6.3 deg)2 in the case
of SPHEREx-like experiment).
In the cross-correlation sensitivity calculations performed

below, we assume a square JWST FOV is covering a distance
L= 8Mpc on each side (comoving). This corresponds to the
∼9 arcmin2 FOV of NIRSpec. Thus, the window function
appearing above and in Appendix B is given by
W k k L k Lsinc 2 sinc 2g x y
˜ ( ) ( ) ( )=^ , where kx and ky are com-
ponents of the wavevector perpendicular to the line of sight.
The comoving length covered by each pencil beam along the
line of sight, d∥, and comoving distance associated with one
frequency channel sets the available wavevector modes along
the line of sight, k∥,i. Generally, these range from k∥= 0 to
k dmax, ( p= D ) with a resolution of Δk∥= 2π/d∥.

6 Note that

3
https://jwst-docs.stsci.edu/jppom/visit-overheads-timing-model/slew-

times
4

https://jwst-docs.stsci.edu/jwst-general-support/jwst-observing-
overheads-and-time-accounting-overview/jwst-instrument-overheads

5
https://camb.info/

6
However, as discussed later, in the case of 21 cm observations, many of

these wavevectors cannot be used due to the “wedge” in k-space contaminated
by foreground removal.
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the distance corresponding to a frequency channel is given by

d
z

H z

1
obs

( )

( )
 nD » D

l +
, where H(z) is the Hubble parameter and

λobs is the observed wavelength.

4. JWST Pencil Beam-galaxy Line-intensity Cross
Correlations

4.1. IM-Galaxy Cross-power and IM Power Spectra

In order to demonstrate the utility of the cross-correlation
technique described above, we explore combining JWST
pencil-beam galaxy surveys with a sample variance-limited
(SVL) survey of galaxy-line emission and Lyα surveys with an
instrument similar to SPHEREx. We utilize the formalism in
Section 2 to estimate the sensitivity of the IM-galaxy cross-
power spectrum. We assume that this power is given by

P k b S b P k P , 13Ig I I g m cross shot( ) ¯ ( ) ( )= + -

where bI is the mean bias of the IM survey, SĪ is the mean

intensity of the IM signal, and Pcross−shot is the cross-shot noise

power spectra due to the overlapping shot noise from the two

surveys. It is zero in the limit that the IM surveys owes to much

smaller galaxies than JWST can observe. The first term is the

clustering term and thus is proportional to the matter power

spectrum, Pm. For the SVL and Lyα IM surveys, we assume

that the flux from each galaxy is proportional to its host dark

matter halo’s mass and that there is a signal from halos above a

minimum mass M M1.5 10min,I
9

= ´ , following Visbal &

McQuinn (2018). Note that for the IM surveys we consider this

minimum mass is generally smaller than the minimum

detectable halo mass detected in the JWST survey. With these

assumptions, the luminosity-weighted bias is given by

b dMb M M
dn

dM
dMM

dn

dM
, 14

M M
I ST

min,I min,I

¯ ( ) ( )ò ò=
¥ ¥

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

and the mean signal by

S dM
L M

D

dn

dM
yD

4
, 15

M L

AI 2 duty,I
2

min,I

¯ ( )
˜ ( )ò p

=
¥



where DA is the angular diameter distance, DL is the luminosity

distance, òduty,I is the duty cycle of the galaxies contributing to

the IM signal, and ỹ is the derivative of the comoving distance

with respect to the observed frequency (SĪ then has units of

spectral flux density per solid angle). We assume L(M)∝M,

but note that the constant of proportionality does not impact the

S/N in the SVL case because it appears in both the signal and

noise. Note that L(M)∝ 1/òduty,I, such that the mean IM signal

does not depend on the duty cycle. For the cross-shot power in

the SVL case, we both make the conservative assumption that

there is no cross-shot power as well as the maximal case where

the exact same galaxies detected with JWST also source the

intensity maps yielding
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Here the ratio of the duty cycles accounts for the fact that either

some of the intensity mapping galaxies do not contribute to the

galaxy detections (if òduty,I> òduty) or some of the detected

galaxies do not contribute to the intensity map (if

òduty,I< òduty). We also require the IM autocorrelation power

spectrum for our sensitivity calculations, which is given by
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and PN is the power due to detector noise (Visbal &

Loeb 2010). The duty cycle of the line emitting galaxies that

contribute to the IM signal is given by òduty,I, which we assign

values of 1 and 0.1 for our sample variance-limited and Lyα

IM survey examples, respectively. We note that the Lyα IM

duty cycle is twice as large as the duty cycle used to estimate

the clustering bias of the JWST-detected Lyα emitting

galaxies. However, this is reasonable since the duty cycle is

for different populations of galaxies; the Lyα IM signal mostly

comes from faint and abundant galaxies, which we do not

detect directly, as opposed to the brighter galaxies observed

directly with JWST. We note that throughout we have ignored

the impact of the redshift-space distortions on our power

Figure 1. The number of galaxies with redshifts detected by JWST (left) and the corresponding mean bias (right), as a function of JWST pointings, Np, observed for
100 hr (solid curves) and 30 hr (dashed curves) of total time. This includes 20 minutes of slew time and instrumental overhead for each field. We show results for our
three methods of redshift detection: low-resolution Lyman-break ( 30= ), high-resolution Lyman-break ( 200= ), and Lyα line detection.
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spectra. Given that all of the relevant biases are typically 4,

we do not expect this to strongly change our results. We also

note that this is a conservative choice in the sense that redshift-

space distortions would increase the clustering signal relative to

the noise power, increasing the S/N in the examples below.

4.2. Sample Variance-limited Examples

In this subsection, we present a series of results for an IM
survey containing negligible detector noise, which we refer to
as the SVL IM survey. These examples are intended to show
the behavior of the sensitivity with respect to number and
configuration of pencil beams and to demonstrate the accuracy
of the approximation given by Equation (6). They also estimate
that maximum S/N in this most idealized limit of no noise in
the IM survey. More realistic cases with detector noise are
explored later.

We consider the noise-free IM survey to be centered at z= 7
and to span a square FOV with comoving area of (300Mpc)2

and a depth of d∥= 150Mpc (corresponding to Δz≈ 0.5). We
assume that the angular resolution matches the size of our
8Mpc × 8Mpc JWST pencil beam FOV and the spectral
resolution matches JWST for which redshift detection mode is
being explored. In each transverse dimension, the k-space
resolution is Δkx= 2π/Lx, where Lx and Δkx are the size and
spatial resolution of the IM survey in that dimension, and the
angular wavemodes span ±π/L (where L= 8 Mpc).

We begin by examining cross correlation between the SVL
survey and 25 randomly positioned JWST pencil beams split
across 100 hr of observing time (including the 20 minutes spent
switching between each FOV). Redshifts are assumed to be
measured with the 200= Lyman-break mode of JWST. In
Figure 2, we show the S/N of the binned cross-power spectrum
as a function of wavenumber for both the full Fisher calculation
given by Equation (3) and the approximation given by
Equation (6), where for each bandpower (S/N) P P2

Ig
2

Ig
2d= á ñ.

We find that the approximation in Equation (6) matches the
Fisher matrix calculation better than ∼1% for most of the k-
bins in Figure 2, though we note the discrepancy is ∼10% in
the lowest k-bin. We find similar agreement when adding noise
for our other examples.

Next, we compare the impact of the positioning of the JWST
pencil beams within the IM field. In Figure 3, we show the S/N
of the cross-power spectrum for the extreme cases of a lattice
versus a random distribution where both are set to cover the IM
survey area spanning 300Mpc× 300Mpc. See the right panel
for visualization of these configurations. We find that the two
cases lead to similar sensitivities, with the lattices only slightly
improving the S/N at the lowest wavenumbers. The reason for
the small differences is the projection of 3D modes onto two
dimensions; if we were instead interested in 2D modes, the
lattice would certainly favor some more than others. We also
compare the case of a compact lattice. In this example, the
JWST fields are tightly packed with a spacing of 8Mpc
such that it spans spanning 40Mpc× 40Mpc of the
300Mpc× 300Mpc field. As in the previous example, we
assume 100 hr with JWST in the high-resolution Lyman-break
mode described above. We find that as expected the compact
configurations improve sensitivity on small scales by ∼3% and
decreases sensitivity on large scales, with this difference
reaching ∼50% at the smallest wavenumber we consider.
We also wish to examine how the configuration of JWST

fields impacts the sensitivity of individual modes. In Figure 4,
we show the S/N of the cross-power spectrum for one mode
perpendicular to the line of sight with varying wavelength
λ= 2π/k⊥ and grid spacing. As in the previous examples, we
assume 25 JWST fields over 100 hr, using the high-resolution
Lyman-break technique to measure galaxy redshifts. The
square grid of pointings cover a subset of the entire field until
a spacing of 75 Mpc. As expected, we find that smaller spacing
modestly increases the sensitivity to small-scale (high-k) modes
of the power spectrum and reduces the sensitivity more
significantly on large scales.
In our final test of the SVL IM survey, we explore the cross-

power spectrum sensitivity as a function of correlating with
different numbers of randomly positioned JWST fields (but
with fixed total observation time). Here we define the total S/N
as the square root of the sum of the S/N squared in all
wavevector bins. We compute the S/N with the random-field
approximation from Equation (6), as justified by the previous
results in this subsection. Operationally, we break k-space up
into a number of 2D bins spanning the magnitudes of the

Figure 2. The illustrative case of correlating JWST with an SVL IM survey (i.e., one where the instrumental noise is zero). Left panel: the S/N of the cross-power
spectrum of IM survey and Ng = 25 JWST pencil beans with 100 hr of total integration time as a function of k. We include both the S/N computed with our full Fisher
matrix calculation (Equation (3)) and the analytic approximation in Equation (6). For most of the points plotted, they agree better than ∼1%. Right panel: the value of
the cross-power spectrum and the associated error bars (computed with the Fisher matrix formalism). The units are arbitrary since the S/N does not depend on the
overall normalization of the cross-power spectrum when there is zero detector noise. The nonuniform size of the error bars with wavenumber is due to variations in the
number of modes that fall into a bandpower bin.
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wavevector, |k|, and the angles offset from the line of sight, θ
(where k ktan( ) q º ^ ). We then estimate the band cross-power
error in each k-bin by taking the inverse variance weighted
average of the error implied by Equation (6) averaged over our
|k| and θ bins.

In Figure 5, we present the total S/N on statistical
measurements of the cross-power spectrum (solid curves). As
described above, these are well approximated with
Equation (6). The blue curves assume 30 total hours of JWST
observations and the green 100 hr, and the different panels
consider the three galaxy redshift identification methods. In all
of the cases, we find that the S/N is maximized roughly when
the number of galaxies are maximized (see Figure 1). We find
that obtaining galaxy redshifts with the Lyα line has the highest

S/N, followed by the low-resolution Lyman-break technique
and then the high-resolution Lyman-break technique. In 100 hr
of integration time, S/N in the Lyα case of 10 is achieved in
the cross-power spectrum. These S/N bound what is achiev-
able in a realistic case with IM noise.
We have not included the correlations between the shot noise

of the two surveys (the “cross-shot power”) in any of the
calculations shown in Figure 5. We note that including cross-
shot noise power only makes a modest difference. For example,
in the Lyα case, the peak S/N is increased by a factor of ∼1.1
when we assume the maximal case where the shot noises of the
two surveys are perfectly correlated. In the Lyα IM survey
presented below, there is a more significant impact, due to the

large ratio of
duty

duty,I




considered.

4.3. Lyα IM with SPHEREx

In this subsection, we explore cross correlation of JWST
pencil beams with aLyα IM survey measured by an instrument
similar to SPHEREx. We focus on a case where the IM survey
is centered at z= 7 and covers an area of (1000Mpc)2 on the
sky (corresponding to the SPHEREx 40 deg2 FOV), and a
depth of d∥= 150Mpc (corresponding toΔz≈ 0.5). We follow
Visbal & McQuinn (2018) to estimate the mean signal of the
IM power spectrum.
The Lyα luminosity of a galaxy is related to its star

formation rate,
*

M , by

*L f
M

M
2 10 1

yr
erg s , 19gal

42
esc 1

1( ) ( )



= ´ -

-
-

where fesc is the fraction of ionizing photons that escape into

the intergalactic medium (IGM). This equation assumes there is

no dust absorption, such that every ionization results in 0.6

Lyα photons. It also assumes a Salpeter initial mass function

(IMF; Schaerer 2003) over a mass range of 1–100Me with

metallicity Z= 0.04; other empirically motivated PopII IMFs

result in factor of ∼2 differences. We assume that a fraction

òduty = 0.1 of halos are forming stars at any specific time and

that
*

M is proportional to halo mass, with a normalization such

Figure 3. Impact of JWST field configuration on the error of the galaxy-IM cross-power spectrum. As in Figure 2, we consider 25 JWST fields distributed within our
SVL IM survey with 100 hr of total JWST time. We consider three configurations: a “random” distribution, a lattice spread evenly across the IM survey, and a “tight”
lattice with the fields adjacent to one another and only spanning (40 Mpc)2 of the (300 Mpc)2 IM survey (see diagram in right panel; note that the size of points in this
diagram are not meant to match the 8 Mpc × 8 Mpc JWST FOV). We plot the ratio of the tight and grid errors with the random case (left panel). All calculations are
done with the full Fisher matrix formalism in Equation (3).

Figure 4. S/N of the cross-power spectrum when only including one SVL IM
Fourier mode and for different grid spacings covering a subset of the IM field.
The mode is assumed to be perpendicular to the line of sight and different
wavelengths given by λ = 2π/k⊥ are explored, although the sensitivities for
inclined modes are similar as long as the parallel wavenumber is less than k⊥.
The pencil-beam field survey consists of 25 fields arranged in a grid with
uniform spacing that varies from compact to covering the entire IM survey
(assuming 100 hr of JWST time and the high-resolution Lyman-break mode for
redshift measurement). The sensitivity computation is completed with the full
Fisher formula given in Equation (3). An S/N = 1 corresponds to the best that
is possible due to sample variance. Large-wavelength modes are best measured
by wide grid spacing, as one would expect.
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that the global star formation rate density at z= 7 is

ρ
å
= 0.015Me yr−1Mpc−3. This value is similar to

ρå= 0.02Me yr−1Mpc−3 measured by Bouwens et al. (2015)

at z≈ 6.8. We have assumed that there is no scattering of Lyα

photons by the IGM. This would be a good assumption if

reionization is nearly complete. High cosmic neutral fractions

of hydrogen scattering would suppress small-scale power

(Visbal & McQuinn 2018), but we do not expect strong

suppression at the scales we are sensitive to at z∼ 7.
We estimate the power of instrumental noise using Equation

(16) from Comaschi et al. (2016). To approximate the

SPHEREx specifications, we assume a telescope diameter

of 20 cm, a zodiacal light background intensity of

νIν= 500 nWm−2 sr−1, and an observational efficiency of

detecting a photon accounting for losses in the instrument of

ò= 0.5. We assume an integration time of 106 s. Additional

noise in the cross-power comes from foreground interloper

lines in the IM. In our example, this noise is expected to be

dominated by foreground Hα (appearing at z≈ 0.5 for our

survey at z≈ 7). Following Pullen et al. (2014; see their Figure

13), we assume that this signal has power given by

PHα= 0.04× (Mpc−1/k) nWm−2 sr−1Mpc3. This assumes that

the sources brighter than 10−17 erg s−1 cm−2 have been
identified and their contributions removed from the IM map.
This flux cut corresponds to an r-band AB magnitude of
mr≈ 26.5, which will be observable over large areas with
telescopes such as the Hyper Suprime-Cam (Pullen et al. 2014).
We consider two different methods for galaxy redshift

measurements of our JWST pencil beams (discussed in detail
above): the lower-resolution PRISM mode to detect the
Lyman-break and the high-resolution mode to detect Lyα line
emission. We assume the spectral resolution of SPHEREx is

40= , which does not have an impact on the 30=
PRISM mode Lyman-break examples (in this case, we assume
the IM spectral pixels are combined to match the PRISM
resolution), but sets the line-of-sight spatial resolution for
cross-correlation between JWST galaxies and the IM when
redshifts are obtained from Lyα lines.
In Figure 6, we show the total S/N of our Lyα IM-JWST

galaxy cross correlation as a function of JWST fields for fixed
JWST observation time (computed with Equation (6)). We
show both the conservative case without cross-shot power as
well as the maximal case given by Equation (16). We find that
when not including cross-shot power, the sensitivity of
measuring the cross correlation is approximately higher by a

Figure 5. The total S/N (defined as the square root of the S/N in our k-bins added in quadrature) on the cross-power spectrum for galaxies detected with JWST and
our SVL IM survey (computed with Equation (6)). We show the total S/N for 30 (blue curves) and 100 hr (green curves) of total JWST observation times varying the
number of randomly positioned pencil beams, Np. Results are included for each of the three ways of measuring galaxy redshifts described in Section 3: 200=
Lyman-break, 30= Lyman-break, and Lyα. The S/N is maximized for Np similar to that where the most galaxy redshifts are detected.
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factor of 2 for JWST redshifts measured with the Lyα line
compared to with the Lyman-break technique (when the cross-
shot power is included, the sensitivity difference is closer to a
factor of ∼1.5). This is mainly due to the increased number of
galaxies detected in the former. With 100 hr of JWST time, a
total S/N of ∼5 is found when redshifts are determined from
the Lyα line. We find that this maximum S/N scales as the
square root of the total JWST observation time. We also note
that if the Hα interloping lines were completely removed, the
S/N would increase roughly 10% and if, on the other hand,
their power was increased by a factor of 2, the S/N would be
degraded by ∼10%. We point out that in addition to
contamination from Hα interlopers, the aggregate continuum
emission from foreground/background sources as well as other
interloping lines must be removed. However, a detailed
treatment of this contamination/cleaning is beyond the scope
of the current work.

Because galaxy pencil-beam survey-IM cross correlations
achieve higher S/N with smaller and deeper IM surveys, we
have deviated from the planned SPHEREx specifications (by
assuming a smaller field integrated for a longer time). If we use
the SPHEREx deep noise adopted in Figure 2 of Cheng &
Chang (2022), our total S/N drops by roughly a factor of 4.

However, given the approximate nature of our JWST
sensitivity assumptions, it may be possible to detect more
galaxies than assumed here, making a reasonable S/N possible
even with less optimistic SPHEREx noise. The Lyα IM signal
could also be higher if there is a faint previously undetected
population of Lyα emitting galaxies not captured in our IM
assumptions. Additionally, targeting a slightly lower redshift of
z= 6 improves the S/N by a factor of ∼2 (here, the increase in
galaxy density is somewhat counteracted by the reduced JWST
sensitivity at shorter wavelengths and lower galaxy bias). We
emphasize that the main goal of this paper is to introduce the
pencil-beam galaxy/IM cross correlation formalism. We defer
a more precise study of the optimal S/N use cases to
future work.
In the bottom panels of Figure 6, we show the cross-power

spectrum with error bars, when the maximal cross-shot power
(Equation (16)) is included as part of the signal. We note that in
both the Lyman-break and Lyα galaxy detection cases, the
clustering component of the cross-power spectrum dominates
on large/moderate spatial scales (relative to the IM box size),
and the shot component dominates on smaller spatial scales.
The shot signal is generally more important in the Lyman-break
detection due to a larger assumed value of the duty cycle ratio

Figure 6. Top panels:the total S/N for our SPHEREx Lyα IM and JWST pencil beam example as a function of the number of JWST fields, Np, for fixed total
observing time. The left panel is for the case where JWST galaxy redshifts are determined with the Lyman break (with 30= ), and the right panel is for the Lyα
line. The solid (dotted) curves represent the S/N on the cross-power when cross-shot power is not (is) included. Bottom panels: the galaxy-Lyα cross-power spectrum
with errors for the Lyman-break (left panel) and Lyα redshift measurement case (right panel). We show errors for 100 hr of JWST time and Np = 144 (Np = 169),
which maximizes the S/N in the cross-power spectrum in the Lyman-break (Lyα) case. The solid curves represent the total cross-power spectra, while the dotted and
dashed curves represent the clustering and shot components, respectively.
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appearing in Equation (16). We note that taking a smaller
number of deeper JWST pointings, Np, increases the relative
importance of the clustering versus the shot components of the
cross-power spectrum. The difference is not dramatic, however,
because while reducing Np reduces the shot component due to
detecting fainter galaxies, it also reduces the clustering
component due to lowering the galaxy bias (see Figure 1).
We note that the shot power here is likely an overestimate.
Thus, we expect the scales where the S/N is the highest to be
dominated by the clustering power. We also note that the
impact of the cross-shot power in the SVL IM example above
is much smaller due to the higher value of the intensity
mapping duty cycle (1 versus 0.1 in the Lyα IM case).

5. 21 cm IM with HERA

In our final example, we explore cross correlation between
JWST pencil beams and the HERA 21 cm survey. To compute
the HERA sensitivity, we use the default settings of the
21cmSense code.7 HERA is a drift-scan instrument with a 9°
wide FOV, and this code assumes the projected HERA mission
sensitivity as discussed in Pober et al. (2013) and Pober et al.
(2014). This sensitivity calculation incorporates the sensitivity
loss owing to the wedge. Because we are interested in the
modes with our overlapping pencil-beam survey, which we
take as all within one FOV of HERA, we adapt 21cmSense to
provide the per mode “imaging” sensitivity. For our JWST
galaxies, we assume redshifts are determined with Lyα lines
and have a spectral resolution of 700= . The other JWST
observing modes described above have much lower S/N due to
the wedge removing low-k∥ Fourier modes and the high–k∥
modes being inaccessible in the pencil beams due to poor
resolution along the line of sight. While in principle this could
be remedied by finding Lyman-break redshifts with 700= ,
this would result in even fewer galaxy redshifts than the

200= case, which is already substantially worse than Lyα
redshifts (see Figure 1).

Following McQuinn & D’Aloisio (2018), we assume that the
21 cm power spectrum is given by the perturbation-theory
motivated form

P b R k P k20 mK 1 3 , 2021
2

1
2

eff
2 2 2

m( ) ( ) ( ) ( )= ´ -

where we take b1=−1 and Reff= 1 Mpc, numbers motivated

in McQuinn & D’Aloisio (2018) for the last half of reionzation

based on radiative transfer simulations (see their Figure 7). The

galaxy-21 cm cross-power spectrum is given by

P b b R k P k20 mK 1 3 . 21g,21 1 g eff
2 2

m
¯ ( ) ( ) ( )= ´ -

In Figure 7, the blue curves show the total S/N of the
HERA-JWST galaxy cross correlation assuming 200 hr of total
JWST time. HERAʼs drift-scan strategy is not ideal for cross
correlating with narrow fields. Instruments that point like
LOFAR and MWA can integrate longer on a field and
potentially achieve higher sensitivities. To investigate the effect
of a deeper integration, we scale down the IM noise power
spectrum by factors of 10 and 100, which could be
accomplished by 10 and 100 times longer integration times
on a field, respectively. These are shown as the green and red
curves in Figure 7. For 200 hr with JWST with the optimal
number of fields, we find total S/Ns of ∼0.7, ∼1.6, and ∼2.4

for 1×, 10×, and 100× the HERA nominal integration time,
respectively.8 We note that for these three different HERA
integration times, the S/N on the 21 cm auto-power spectrum,
including only the one FOV being cross correlated would be
2.4, 12, and 29. Thus, with a high S/N detection (e.g., ∼100)
in the 21 cm autocorrelation, we expect that JWST cross
correlation could be used to verify that foregrounds are not
strongly contaminating the signal.

6. Discussion and Conclusions

Line intensity mapping (IM) is a promising new technique to
observe the high-redshift Universe. There are a number of
ongoing and planned experiments to measure intensity maps in
lines such as HI 21 cm and Lyα, as well as [CII] and CO lines.
One challenge for these experiments is that astrophysical
foregrounds can be orders of magnitude larger than the
cosmological signal (e.g., galactic synchrotron emission in
21 cm intensity maps or Hα from lower-redshift galaxies in
high-z Lyα intensity maps). One way to ensure that residual
foregrounds are not contaminating the IM signal is through
cross correlation with galaxy surveys whose fields overlap.
However, IM surveys typically have very large FOVs (degrees
across), which are poorly matched to the small FOVs of most
telescopes that can acquire coeval high-redshift galaxies (such
as JWST). Although such a mismatch prevents a deep galaxy
survey over the entire IM survey, cross correlation is still
possible with a galaxy survey consisting of pencil beams that
cover some fraction of the IM field.
In this paper, we developed the formalism to forecast the

sensitivity of cross correlations between IM and galaxy pencil-
beam surveys. We utilized a Fisher matrix approach (adapted
from Vanneste et al. 2018) that allowed us to compute the
sensitivity of the galaxy-IM cross-power spectrum for any
configuration of pencil beams within an IM survey and found a
simple formula for the sensitivity of randomly positioned
pencil beams that agrees well with the full Fisher calculation (at
the ∼1% level for most k-bins in our examples). We found that

Figure 7. The total S/N on the cross-power spectrum for our HERA-JWST
cross correlation example with 200 JWST hours spread over Np pointings. The
blue, green, and red curves are for 1×, 10×, and 100× the HERA nominal
integration time, respectively. We note the total S/N in the auto 21 cm power
spectrum in the single FOV of HERA considered is 2.4, 12, and 29 for 1×,
10×, and 100× the HERA nominal integration time, respectively.

7
https://github.com/steven-murray/21cmSense

8
The low S/N we find for one pointing of HERA also suggests our 21 cm

signal model predicts less power than in some models.
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random placement of pencil beams generally results in
essentially the same total S/N as a lattice and that compact
configurations, which do not span the entire IM survey, can
slightly increase the S/N on small scales while sacrificing
sensitivity on large scales. Configurations that span the entire
IM survey are optimal.

Using our formalism, we explored cross correlating three
different IM surveys with JWST pencil-beam galaxy surveys at
z= 7. Our exploration included the following: an illustrative
sample variance-limited IM survey, a Lyα IM survey with an
instrument like SPHEREx, and lastly a 21 cm survey with
HERA. Additionally, we considered three different modes of
measuring redshifts with the NIRSpec multiobject
spectrograph on JWST. These included a low-resolution
( 30» ) observation of the Lyman break using NIRSpec/
PRISM, a moderate-resolution using an 700» grating but
binned to 200» , and finally a detection of Lyα lines again
using the 700» grating. We found that the Lyα line galaxy-
identification strategy has the highest S/N in cross correlation,
followed by the low-resolution measurement of the Lyman
break, with the high resolution of the Lyman break only faring
slightly worse. The latter two strategies produced a factor of ∼2
smaller S/N than the Lyα one. We found that unsurprisingly
the total S/N is highest for a survey strategy that maximizes the
number of galaxy redshifts measured across the IM survey.
This is ∼10 and ∼100 pencil beams for 30 and 100 hr of total
JWST time when determining redshifts with the Lyα line,
respectively.

In our SPHEREx–Lyα example, we found that a total S/N
of ∼5 can be achieved with 100 hr of JWST time. We found
that HERA is not very well suited to cross correlation with
JWST owing to its drift-scan strategy. Telescopes capable of
phasing in different directions like the future SKA may be
better suited to such cross correlations. These correlations
could be used to verify that residual foregrounds are not
significant contaminants in high-S/N 21 cm surveys.

Our study motivates several additional lines of inquiry. First,
our formalism can be used to forecast cross correlations
between any intensity maps and any galaxy survey that consists
of many disparate pointings. One example of the latter could be
a survey performed with the Roman Space Telescope.
However, we note that for larger FOV instruments like Roman,
it will be necessary to extend our formalism to include
positions of galaxies within each individual not-so-pencil-beam
field. Future work can also explore the effectiveness of this
technique to cross correlate intensity maps with different lines.
While HERA 21 cm and SPHEREx Lyα are wide-field
surveys, instruments targeting other lines for intensity mapping
such as CO and [C II] often have much narrower fields such
that again one could imagine these as a bunch of pencil beams.
It could also be interesting to investigate how any planned
observations for science not related to IM measurements with,
e.g., JWST could be used to measure the cross correlation with
IM experiments.
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Appendix A
Fourier Conventions

Fourier Transform:

k r rd e . A1k ri3˜( ) ( ) ( )·òd d= ¢ ¢ ¢

Inverse Fourier Transform:

r k kd e
1

2
. A2k ri

3
3( )

( )
˜( ) ( )·òd

p
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Partial Fourier transform in the z-direction only:

x xk dz z e, , , A3ik zzˆ ( ) ( ) ( ) òd d=

where x is a 2D vector perpendicular to the line of sight and z is

the spatial coordinate along the line of sight.

Appendix B
Covariance Matrices

In order to compute the covariance matrices appearing in
Equation (3), we need to determine the covariance between the
various components of our data vectors I and g. As defined in
Section 2, these components are the real and imaginary parts of
the IM Fourier modes and the partially Fourier transformed
galaxy overdensities in all of the pencil beams.
We begin with the correlations between IM Fourier modes.

Denoting the real and imaginary parts of the Fourier modes
with subscripts Re and Im, for two arbitrary wavevectors
indexed by i and j, we find

k k k k kVP 2,

B1

i j i j i j
K

iI,Re I,Re I,Im I,Im , I
˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )

( )

d d d d dá ñ = á ñ =

and

k k 0, B2i jI,Re I,Im
˜ ( ) ˜ ( ) ( )d dá ñ =

where i j
K
,d is the Kronecker delta, and V is the survey volume. This

can be derived by expressing the modes in terms of an amplitude

and phase, eiI
˜ ∣˜∣d d= f before taking the real/imaginary parts,

cosI,Re
˜ ∣˜∣ ( )d d f= and sinI,Im

˜ ∣˜∣ ( )d d f= . We have also utilized

that fact that for a finite volume survey, we can express our

definition of the power spectrum as *k k kVPi j i j
K

iI I , I
˜ ( ) ˜ ( ) ( )d d dá ñ =

(as opposed to *k k k k kP2i j
D

i j iI I
3

I
˜ ( ) ˜ ( ) ( ) ( ) ( )d d p dá ñ = - in the

infinite volume case).
Next, we derive the covariance between the galaxy over-

density in our pencil-beam survey. Using the convolution
theorem, we can write the real part of gi from Equation (1) as

k k k k x

g

d W k
1

2
, cos ,

B3

i j

i j

, ,Re

2
2

g g ,
( )

( )∣˜ ( )∣ ( · )

( )

òp
d f= ¢ ¢ ¢ ¢ - ¢~

^ ^ ^ ^

where i is the index for the component of the wavenumber

along the line of sight, and j is the index of the pencil beam

with FOV centered on xj. Here, f¢ is the phase of the mode at

k¢. Note that the imaginary part, gi j, ,Im is the same, but with

cosine switched to sine. By correlating this equation and the

real/imaginary parts of the IM Fourier modes expressed in

terms of the amplitude and phase and simplifying with
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trigonometric identities, we derive relatively simple formulae

for all of the remaining elements that appear in our covariance

matrices.
The cross-correlations between the pencil-beam galaxy

overdensities are then given by

k k k k x x

g g g g

d
d P k W

2 2
, cos ,

B4

i a j b i a j b

i j
K

i

, ,Re , ,Re , ,Im , ,Im

,

2
2

g , g
2

a b
( )

( ) ˜ ( ) ( · ( ))

( )


ò

d

p

á ñ = á ñ

= ¢ ¢ ¢ ¢ -^ ^ ^ ^

and

g g 0, B5i a j b, ,Re , ,Im ( )á ñ =

where d∥ is the length of the survey along the light on sight. We

solve this integral numerically using Fast Fourier transforms to

compute the covariance matrices in the calculations above.
Similarly, we derive the cross-correlation terms between IM

Fourier modes and pencil-beam galaxy overdensities. These are
given by

k k

k k k x

g k g k

P k W d

, ,

1

2
, cos , B6

i a j i a j

i ij

, ,Re I,Re , , ,Im I,Im ,

Ig , g a
K

˜ ( ) ˜ ( )

( ) ( ) ( · ) ( )

 

 

d d

d

á ñ = á ñ

= ~
^ ^

^ ^ ^

k

k k k x

g k

P k W d

,

1

2
, sin , B7

i a j

i ij

, ,Re I,Im ,

Ig , g a
K

˜ ( )

( ) ( ) ( · ) ( )



 

d

d

á ñ

= ~
^

^ ^ ^

and

B8

k k k k xg k P k W d,
1

2
, sin .i j i ij,a,Im I,Re , Ig , g a

K

( )

˜ ( ) ( ) ( ) ( · )  d dá ñ = -
~

^ ^ ^ ^

While we have worked with purely real quantities in our
covariance matrices to simplify the required numerical
computations, we note that very similar equations can be
derived with complex data vectors.

Appendix C
Minimum Variance Cross-power Estimator

We want to construct the minimum variance quadratic
estimator for cross correlations. We follow the calculation in
Vanneste et al. (2018) for the CMB angular cross-power
spectra, generalizing their derivation to arbitrary cross correla-
tions and to estimate arbitrary parameters. Our cross-power
covariance can be written as

C g C R p , C1T
j jgI I gI,0 ( )d d= á ñ = +

where g and δI are vectors for galaxy and intensity mapping

data sets defined in the previous appendix. The last line uses

that near some reference value for the parameter pj 0[ ] we can

approximate the covariance as linear in the parameter pj, with

Rj≡∂CgI/∂pj evaluated at pj 0[ ] and defining p p pj j j 0[ ]d º - .
A general estimator that is quadratic in our two data sets is

given by

g Ey b , C2j
T

j jI ( ) d= -

where E Cb Trj j
T
gI,0[ ]= , as this yields an unbiased estimator.

The expectation value of the estimator is given by

E C E Ry b pTr Trj j
T

j j i
T

igI[ ] [ ] dá ñ = - = . To create an unbiased

estimator for the δpi, we take linear combinations of the yj:

W E Rp y Wwhere Tr , C3i ij j ij i j
T1[ ] [ ] ( )d = º-

where we show the parameter indices explicitly and the

measurement pixel indices implicitly as matrix multiplications.

Repeated explicit indices indicate summation.
We can now compute the estimator covariance assuming

Gaussianity:

W Wp p y yCov Cov ; C4l m li mj i j
1 1[ ] [ ] [ ] [ ] ( )  d d ñ = - -

C E C E C E C Ey yCov Tr Tr . C5i j i j
T

i
T

j
T

gg II gI gI[ ] [ ] [ ] ( ) = +

We want to minimize the variance in the pl
d to find their

optimal estimators. The minimization of the variance of the Np

estimators, p pl l
d dá ñ, can be performed with gradient descent-

like algorithms. However, to make traction analytically, we
make the standard approximation that if we minimize the
variance of each of the yl individually, the estimator that results

will be near the minimum for the pj
d .9 This is partly motivated

by the expectation that, if our parameters are power spectrum
bandpowers, we expect our estimators yj are largely diagonal as
different modes are weakly correlated.
Thus, we aim now to minimize the variance of the yi, and to

avoid the trivial solution Ej= 0, we further impose the
constraint that the diagonals of our weighting kernel

E RW Trjj i i
T[ ]º are finite by adding a Lagrange multiplier (as

otherwise the minimum variance estimator that returns y 0i =
would be selected!). Thus, the minimum variance estimator is
the derivative with respect to Ei of

E Ry 2 Tr , C6i i i
T

i
2 ( [ ] ) ( ) l bá ñ - -

where the βi are unspecified constants. This yields

C E C C E C R , C7i i
T

igg II gI gI ( )l+ =

where we have used repeatedly the identity AB BTrA
T[ ]¶ =

(see Vanneste et al. 2018 for more details). An approximate

solution can be found in the applicable limit of when the noise

in the auto-power dominates:

C E C R . C8i igg II ( )l=

However, the low-noise limit in which both the g and I fields

are noiseless biased tracers of the same field also yields the

same estimator (Vanneste et al. 2018), suggesting the estimator

may be nearly optimal even beyond the high noise limit that is

assumed. We are free to choose λ= 1/2 since our estimate pi
d

as this yields an unbiased estimator (Vanneste et al. 2018; when

g= I, this gives the standard Fisher Matrix expression).
Solving Equation (C8) for Ei yields

E C R C
1

2
, C9i igg

1
II
1 ( ) » - -

and

C R C RW
1

2
Tr , C10ij i j

T
gg
1

II
1[ ] ( )= - -

9
This is the approach that leads to the standard Fisher matrix expression for

auto-power, namely C C C CF p pTrij i j
1 1[ ]= ¶ ¶ ¶ ¶- - .
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such that the variance is

p p W W W G
1

2
; C11l m ki lj ij ij

1 1[ ] [ ] ( ) ( )d dá ñ = +- -

C R C C C R C CG
1

2
Tr . C12ij i

T
j

T
gg
1

II
1

gI gg
1

II
1

gI[ ] ( )= - - - -

In the high noise, the second term in Equation (C11) (with G) is

more important. When shot noise dominates, we can treat Cgg

as diagonal, and CII is diagonal if we choose the Fourier basis.

Unlike in the main body of the paper, where we consider real

and imaginary components of modes, for notational simplicity

we deal with complex modes; we remark at the end of this

derivation how the final formulas relate to those in the

main body.
In this paper, δpi are the bandpowers of the cross such that

pl→ PIg(k⊥, k∥). Let us first treat the case where only a single
mode contributes to the bandpower estimate. Then working at
fixed k∥, since we can treat each independently, our matrices
become

C k
d

L n
2 , C13ij ij ijgg g

2 K

shot

2
g

K[ ] ( ) ⟹
¯

( )



s d d»

C kVP k, , C14k k k kII I
K[ ] [ ( )] ( ) d=¢ ^ - ¢^ ^ ^ ^

C k x ki P k dexp , , C15kgI A A Ig[ ] [ · ] ( ) ( ) = - ^ ^^

R
C

k
k x

P k
i d

,
exp . C16k

k
A

gI A

Ig
A[ ]

[ ]

( )
[ · ] ( )


º

¶

¶
= -

^
^^

^

where g g2 2 Rei A i Ag
2

,
2

,
2∣ ∣ [ ]s = á ñ = á ñ. In the top line, to

evaluate in the limit shot noise dominates, we used that

d L n2 g
2 2

g
1( ¯ )s = - , where ng¯ is the 3D number density of

galaxies and L is the transverse size of each (square) JWST

field. For notational simplicity, we do not include the FOV

window functions kWg ( )
~

^ that accompany all of the terms (one

for every g subscript in the covariances) associated with the

galaxy survey. We put these terms back in the main text,

although they are unity for modes with wavelengths much

larger than the survey field.
With these choices and simplifications, Equations (C10) and

(C12) become

W V P N d

P n f

2 2

; C17

k k k k

k k

, I
1

g
2 1

g
2

,
K

I
1

g cov ,
K

shot noise limit

i j i j

i j

, , , ,

, ,

[ ] ( )

¯ ( )

  
s d

d

=

»

- -

-

^ ^ ^ ^

^ ^

k k

k k x k k

G d VP VP

P P i

2 2

exp , C18

k k

x

i j

i j i j

, g
2 2 4

I ,
1

I ,
1

Ig , Ig , , ,

i j, ,
( ) [ ( )] [ ( )]

( ) ( ) [ · ( )] ( )



å
s

D

=

´ - -
D

-
^

-
^

-

^ ^
"

^ ^

^ ^

k kd N VP k P k2 , , , C19k ki ig
2 2 4

g
2

I ,
2

Ig ,
2

,
K

i j, ,
( ) [ ( )] ( ) ( )  s d» -

^
-

^ ^ ^

k kf n P k P k, , , C20k ki i

shot

cov
2

g
2

I ,
2

Ig ,
2

,
K

i j, ,
⟹ ¯̄ [ ( )] ( ) ( )   d^

-
^ ^ ^

where Ng is the number of pointings and fcov=NgL
2/(dxdy) is the

covering fraction of pointings. The sum over all Δx is over all

pairs of pencil-beam pointings, and the second-to-last line uses the

approximation x k ki Nexpx k ki j, , g ,
K

i j, ,
[ · ( )] dDå - - »D" ^ ^ ^ ^

.

With these simplifications, our estimate for the error on the
cross-power is

k kP V P k d N P k, 2 , , C21Ig
2

I g
2 2

g
1

Ig
2( ) ( ) ( ) ( )  d sá ñ = +^

- -
^

or assuming shot noise dominates the variance in each JWST

pointing:

k kP P k f n P k, , , C22Ig
2

I cov g
1

Ig
2( ) ( ¯ ) ( ) ( ) dá ñ = +^

-
^

a simple form we might have guessed without all of this work.

To generalize to multiple modes in a bandpower bin, error

should be summed in inverse quadrature, which, in the limit of

isotropic power spectrum, divides by square root the number of

modes in a bandpower. Because we are dealing with complex

modes, this counts both the real and imaginary component, in

contrast to the main body of the paper where we only count the

half plane of modes and write single mode expressions from

the combined constraint of both the real and imaginary

components (leading to a factor of 2 smaller variances per

mode but half the total modes). This reconciles the factor of 2

differences between the expressions here and in Section 2, and

we include the window function terms there that we have

omitted in the main text.
This estimate for the error includes sample variance

uncertainty, which is the second PIg
2 term in the previous two

equations. This term means that the S/N on a mode can never
be greater than unity. However, we do not care about sample
variance when asking how well cross correlations can be
detected, it is only the noise on the mode that matters, and so in
principal, the S/N can be arbitrarily large. In practice, this
distinction is not so important, as most of our modes are noise
dominated. The next section rederives the error in a manner
that does not include sample variance.

Appendix D
Signal-to-noise Estimate without Sample Variance

We wish to calculate the S/N without sample variance. The
S/N that cross correlations can be detected assuming Gaussian
noise and not including sample variance in the noise is

Cg gS N , D1i j ij kl k l
2

I
N 1

I( ) ( )[ ] ( ) ( )( )( )d d= -

where all indexes are summed and the covariance matrix is

given by

C g g g gij kl i j k l i j k l
N

I I I I[ ]( )( ) d d d d= á ñ - á ñá ñ

where gi indicates the ith pointing, and in this section only the

brackets only ensemble average over the noise and not over

realizations of the galaxy and intensity mapping fields. We

group (ij) and (kl) in Equation (D1), as each distinct integer pair

should be considered as one entry in the noise covariance

matrix.
To compute the covariance matrix, we do not want to

ensemble average over different realizations of the galaxy and
intensity mapping fields. Rather, since we are interested in how
well cross correlations can be detected for a given intensity
mapping and galaxy field, we only want to average over the
noise. Let us split up a field into both its signal and noise so
g g gi i i

N= á ñ + and j j jI I I
Nd d d= á ñ + , where, since we are not

ensemble averaging over pixels or modes, the 〈gi〉 and 〈δIj〉 are
particular values. Since we assume the different overdensity
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fields have uncorrelated noise 〈giδIj〉= 〈gi〉〈δIj〉, and thus

C g g g g

g g

g g C C C C

D2

ij kl i i j j k k l l

i j k l

i k jl ik j l ik jl

N N
I I

N N
I I

N

I I

II
N

gg
N

I I gg
N

II
N

[ ] ( )( )( )( )

( )

( )( ) d d d d

d d

d d

=á á ñ + á ñ + á ñ + á ñ + ñ

- á ñá ñá ñá ñ

= á ñá ñ + á ñá ñ +

where Cgg
N is the uncorrelated shot noise and CII

N the instrument

noise, although some other stochastic uncorrelated cosmologi-

cal part could also come into either. While shot noise could

correlate, the component of shot noise that does correlate we

treat as signal.
To calculate a typical S/N, we just then substitute the

expectation values

C Cg g C CS N ,i j ij kl k l ij ij kl kl
2

I
N 1

I gI
N 1

gI[ ] [ ]( )( ) ( )( )d dá ñ = á ñ á ñ =- -

where 〈S/N〉 is our notation for the “typical S/N,” we used the

definitions CgIij= 〈giδIj〉, and we mean to evaluate the

C ij kl
N 1[ ]( )( )
- with typical values for 〈gi〉 and 〈δIj〉.

The Fisher matrix is defined as the curvature of minus the
log likelihood (since we have assumed Gaussianity):

F p C

p

g C

g C

2

S N 2, D3

p p p p i j ij ij kl

k l kl p p

I gI
N

I gI
2

a b 1 2
1

1 2

( ( ))[ ]

( ( )) ( )

( ) ( )d

d

º ¶ ¶ -

´ - = ¶ ¶ á ñ

-

where here the CgIij(p) are the model covariance matrices where

p is the vector of parameters and the giδIj is the product of the

measured “pixels” in each survey. (The parameters in this case,

since we are not constraining a statistical theory in contrast to

the previous section, are likely to be the power in each

wavenumber bin.) Let us specialize to the case where the

parameters are the power spectrum of a given mode PIg(ki):

C

k
C

C

k
F

P P
Tr ; D4k k

i j

gI

Ig

N 1 gI

Ig
i j

( )
[ ]

( )
( )=

¶

¶

¶

¶
-⎡

⎣⎢
⎤
⎦⎥

R C RTr , D5N 1[ [ ] ] ( )= -

where R k xi dexpkA A[ · ] = - ^ as defined in Appendix C (also

here omitting the kWg ( )
~

^ terms that we put back in the main text).

We use the noise-only generalization of our previous

results that C 2ij ijgg
N

g
N 2 K[ ]s d= and kC VP k kij iII

N
I
N

,
K
i j

( )d= - , where

superscript “N” indicates noise-only. Furthermore,

x k ki Nexpx k ki j, , g ,
K

i j, ,
[ · ( )] dDå - - »D" ^ ^ ^ ^

. We also need a

mode amplitude to compute CN, which we take to be the average

g g 2i j ijg
N 2 K[ ]s dá ñá ñ = and k k kVP k ki j iI I I ,

K
i j

( ) ( ) ( )d d dá ñ = - . This is

an approximation that ignores the cross-power of the modes and is

strictly valid when the noise dominates over the signal. With this

approximation, the Fisher matrix becomes

k kF P P d N V2 2 ,

D6

k k k ki iI g
2

I
SV

g
SV 2 1 2

g
K

i j i j
( ( ) ( ) ( ) ( [ ] ))

( )

s s d» - -

where we note that P P PI I
SV

I
N= + and similarly

g
2

g
SV 2

g
N 2[ ] [ ]s s s= + . Noting that kP Fk kiIg

2 1
i i

( )dá ñ = - , this

matches this limit of our previous derivation with the sample

variance term subtracted off (see Equation (C22)). Putting back

the window function terms this yields Equation (8) in the

main text.
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