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Abstract

Line-intensity mapping (IM) experiments seek to perform statistical measurements of large-scale structure with
spectral lines such as 21 cm, CO, and Lya. A challenge in these observations is to ensure that astrophysical
foregrounds, such as galactic synchrotron emission in 21 cm measurements, are properly removed. One method
that has the potential to reduce foreground contamination is to cross correlate with a galaxy survey that overlaps
with the IM volume. However, telescopes sensitive to high-redshift galaxies typically have small field of views
compared to IM surveys. Thus, a galaxy survey for cross correlation would necessarily consist of pencil beams that
sparsely fill the IM volume. In this paper, we develop the formalism to forecast the sensitivity of cross correlations
between IM experiments and pencil-beam galaxy surveys. We find that a random distribution of pencil beams leads
to very similar overall sensitivity as a lattice spaced across the IM survey and derive a simple formula for random
configurations that agrees with the Fisher matrix formalism. We explore examples of combining high-redshift
James Webb Space Telescope (JWST) observations with both an SPHEREx-like Lya IM survey and a 21 cm
experiment based on the Hydrogen Epoch of Reionization Array (HERA). We find that the JWST-SPHEREX case
is promising, leading to a total signal-to-noise ratio of ~5 after 100 total hours of JWST (at z = 7). We find that
HERA is not well-suited for this approach owing to its drift-scan strategy, but that a similar experiment that can
integrate down on one field could be.
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1. Introduction

Some of the most exciting reionization-era signals will be
measured using surveys that span large swaths of the sky. This
includes IM efforts observing 21 cm radiation such as MWA,
LOFAR, HERA, and Square Kilometre Array (SKA; Jeli¢ et al.
2014; Koopmans et al. 2015; DeBoer et al. 2017; Barry et al.
2022). It also includes IM with lines such Lya, Ha, CO, and
[CI] with instruments like SPHEREx (Doré et al. 2014),
CDIM (Cooray et al. 2019), FYST (Karoumpis et al. 2022),
COMAP (Cleary et al. 2022), TIME (Sun et al. 2021), and
CONCERTO (CONCERTO Collaboration et al. 2020). These
intensity maps will often contain strong foregrounds (e.g.,
galactic synchrotron emission in the 21 cm case) and imperfect
removal of these foregrounds could masquerade as signal.

Cross correlations with a tracer of the high-redshift universe
would be the most robust way to mitigate foregrounds.
Previous studies have investigated potential cross correlations
of intensity maps with the CMB (Tashiro et al. 2010; Meerburg
et al. 2013) and wide-field narrowband Ly« emitter surveys
(Lidz et al. 2009; Sobacchi et al. 2016; Kubota et al. 2018;
Vrbanec et al. 2020; Cox et al. 2022). The signal-to-noise ratio
(S/N) in such cross correlations is often found to be small
because the line-of-sight-oriented structures that IM experi-
ments target are orthogonal to the sky-plane structures these
other surveys are generally most sensitive to. One promising
idea is to correlate the Subaru HyperSuprimeCam narrowband
Lyo emitter survey at z = 6.6 with an LOFAR 21 cm intensity
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map. Forecasts are that this could provide a detectable signal
with S/N ~2-4 (Vrbanec et al. 2020). Another previously
explored idea is cross correlating IM surveys with other IM
surveys that map distinct lines (Visbal & Loeb 2010;
Carilli 2011; Lidz et al. 2011).

Spectroscopic galaxy surveys in the optical/near-infrared
provide excellent line-of-sight resolution and so are a natural
match for the high line-of-sight resolution of IM surveys and,
hence, for cross correlation. Unfortunately, obtaining spectro-
scopic redshifts for high-redshift sources is challenging. A
promising high-redshift spectroscopic catalog could come from
the Roman Space Telescope’s slitless spectrograph. Predictions
for the cross correlations of a dedicated survey with this
instrument and the HERA intensity map have found S/N ~ 10
(La Plante et al. 2023). The slitless spectroscopy of Roman will
not be as sensitive as spectra from the largest ground-based
optical telescopes or JWST. However, in contrast to Roman,
the small field of view (FOV) of these telescopes is poorly
matched to the wide fields of many IM surveys.

Here we consider how feasible it would be to use surveys
with narrow fields to detect cross correlations with wide fields.
Namely, we consider whether cross correlations with a large
number of pencil beams sampling across an IM survey could
yield a sufficient sensitivity to be useful for measuring or
confirming signals (i.e., to ensure proper removal of spurious
foregrounds). Calculating the S/N of such a survey is
complicated by the noncontinuous survey geometry. We
develop the framework to do this and forecast the S/N for
correlating JWST with SPHEREx and HERA. This study is
most related to Beardsley et al. (2015), who found a potentially
detectable correlation of the galaxy counts within a JWST field
and the pixel intensity of MWA and HERA maps at that
location. It is also related to previous work considering cross
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correlating between the Lya forest and low spectral resolution
IM survey (Renard et al. 2021).

This paper is organized as follows. Section 2 presents the
formalism for cross correlations with pencil beams, reducing
complex expressions to simple formulas in the limit of random
pointings. Section 3 discusses the sensitivity specifications for
JWST spectroscopy. The sensitivity of cross correlations is
presented in Sections 4 and 5, where we first consider an
instructive noiseless case and, then, we consider the cases of
SPHEREx Lya and HERA 21 cm measurements. We finish
with concluding thoughts. Throughout, we assume a A cold
dark matter cosmology with parameters consistent with Planck
Collaboration XVI (2014): Q,, = 0.32, 2, = 0.68, 2, = 0.049,
h=0.67, g =0.83, and ny, = 0.96.

2. Cross-power Spectrum Sensitivity Formalism

In this section, we describe the formalism to estimate the
cross-power spectrum sensitivity for an IM survey cross
correlated with a galaxy survey comprising pencil beams.
The goal of the cross correlation could be either to remove
foregrounds or to confirm an IM power spectrum measurement
that could be contaminated with astrophysical foregrounds.
Thus, we only consider information in the cross-correlation
(i.e., we assume the auto-correlations of the signal do not
contribute to the S/N). Here we include an outline of the
formalism and the most important resulting equations. Addi-
tional details can be found in Appendices A, B, C, and D.

We begin by defining a data vector for the IM survey, I,
which includes (as separate components) both the real and
imaginary parts of each Fourier mode sampled by the IM
survey. Thus, there are two components corresponding to the
ith mode, Re(4;(k;)) and Im(6y(k;)). The quantity ¢; is defined
as the Fourier transform of the spatially fluctuating intensity of
the IM signal after subtracting off the mean intensity. As
discussed below, the number of modes sampled, N, depends
on the size and spatial resolution of the IM survey and the
length of I is 2 N;. We only include modes with positive values
of the wavevector component parallel to the line of sight, k|,
since the IM measurements being purely real quantities makes
these modes redundant with those having negative values of
this component (because 6;(k) = 6;1(—k)*).

While a logical basis of measurements for IM surveys is
Fourier modes, for galaxy pencil beams, a more natural basis is
the galaxy overdensity in each pointing’s field at a given line-
of-sight wavenumber. Thus, we take the components of our
galaxy survey data vector for a combined set of pencil beams to
be the real and imaginary parts of

G = [ kW — ), (M)

where 3g(x’ , k).;) is the partial Fourier transform of galaxy
overdensity (transformed only in the line-of-sight direction; see
Appendix A), j indexes the different pencil beams, W, is the
galaxy survey window function for one pointing, and x; is the
(2D) location on the sky of the center of one pencil beam. Here
x' represents a 2D position on the sky and kj; is the
wavenumber of the mode in the line-of-sight direction. The
number of such modes is set by the line-of-sight spatial
coverage and resolution.

The window function W, is defined to be zero outside of the
pencil-beam FOV and constant within and normalized so that
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f d’x'Wy(x") = 1. This integral over the window function
means that we are not retaining information on clustering on
angular scales smaller than the survey field. This approximation
is justified for narrow pencil beams with instruments such as
JWST when cross correlated with IM observations that do not
resolve angular scales smaller than the pencil beam FOV. For
galaxy surveys with wider-field instruments, like Roman, this
approximation is less justified.

The standard estimate for the minimum error of a set of
parameters, p;, (for instance, values of the cross-power
spectrum in different k-bins) is given by the Fisher matrix

E'j = %TI’ [C*IC,,-C*CJ], 2)

where C; = g—j (Tegmark et al. 1997). Here C is the

covariance matrix of the data vector d (which, in our case
would include the components of I, as well as g including each
pencil beam). Bounds on the error of p,—here the hat indicates

an estimated quantity—are given by o; = /[F~'];;, with
measurements in cosmology often saturating this bound
because of the Gaussianity of cosmological signals.

In our application, the traditional Fisher matrix expression
(Equation (2)) would use all of the information from both the
IM and galaxy surveys. As mentioned above, this would not
estimate the sensitivity of most interest, as we want to only use
the information in cross correlation (since our aim is to mitigate
foregrounds through cross correlation or to confirm an auto-
power spectrum measurement). Appendix B presents a
derivation of the optimal quadratic estimator that only uses
cross-power information (extending the work of Vanneste et al.
2018). In this case, and assuming the parameters indexed by p;,
are the cross-power bandpowers (i.e., the mean values of the
cross-power spectrum within defined k-bins),

1
[F 1, = E[Wil]ik(Wkl + Gu) (W1,

1
= E([Wfl]ij + W x Gu[W 1), 3)
where
Ig
R=2C w=Llnpen res R @
op; 2
1

Gy = - TrI(C") Ri(C2) 'CE(Cy Ry C2) '€ (5)

Here C'¢ is the covariance matrix between our IM data I and
our galaxy survey data g (which includes all pencil beams in
the survey). Similarly, the covariance of the IM data with itself
and the galaxy survey data with itself are denoted with C"" and
C®8, respectively. In Appendix B, we derive all of the elements
of these matrices. In the limit of low noise, both terms in
Equation (3) contribute nearly equally (Vanneste et al. 2018),
whereas in the more applicable case for this study of high
noise, the second term is more important.

Let us specialize to the case where the parameters are the
cross bandpowers we aim to detect; i.e., the Pk, k)
estimates that fall within some range of a wavevector. In
Appendix C, we show that for this case in the limit where the
JWST fields are random in directions, the ensemble-averaged
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Fisher matrix error becomes

V Pk, k) o> (k Pr(k., k)2
(6P12g> _ 1 (kL J)zag( I n ek, K|) R
N\ d? N, W, (k) 2

where N, is the number of modes in the bin around a given
wavevector (counting only the Fourier modes where kj; > 0), V
is the IM survey volume, p; is the IM power spectrum,
aé(kH) = (Re[g,(kpI?) is variance of galaxy overdensity in
one pencil beam a (computed in Appendix B), d; is the line-of-
sight length of the surveys, N, is the number of pencil beams,
‘rf\V‘; is the Fourier transform of the pencil-beam window
function, and Py is the cross-power spectrum between galaxies
and the IM survey. For notational simplicity, Equation (6) does
not indicate the wavevectors used for Ny, and 6Py, For the
JWST examples presented below, we demonstrate that this
equation is an excellent approximation for the results given by
the full Fisher formalism (Equation (3)).

In the limit that the galaxy shot noise dominates on the scale
of the galaxy survey, we can further simplify Equation (6)

Pik, k P (k. , k)2
<5P12g> _ 1(kL, k) 1g (ke k) ’
Nm\ 2f,, 7ig 2

where f.., is the fraction of the IM field covered by JWST
pointings (see Appendix C).

There is one concerning aspect of the above equations. The
Pk, kH)z/(ZNm) terms in the previous two lined equations
limit the S/N on a typical mode to be never be greater than ~1.
This is because sample variance limits how well the cross-
power spectrum can be constrained. However, we do not care
about sample variance when asking how well cross correlations
can be detected—it is only the noise on the mode that matters,
and so in principal the S/N of detecting correlation in a single
mode can be detected can be arbitrarily large (but still one can
only have an O(1)-accurate estimate of the power spectrum that
it was drawn from!). In practice, this distinction is not very
important, as most of the modes for the cases we consider are
noise dominated. However, the above formula can be general-
ized to the case where one only cares about detecting the cross
correlation and not constraining statically the value of the
cross-power spectrum itself. In this case, one can show that the
typical error to detect the cross correlations is approximately
the same as Equation (6) but dropping the Py, term and
subtracting off the pure sample variance term in the auto (see
Appendix D for the derivation). This results in a total S/N

equal to , lPé / <(5Pé) on a typical mode of

(6P2) ~ V (Pi(ke, kplog(kpP? — PPY (ke kLo (kpP)
Nuwd? Ny W, (k1)

)

b}

Ig

®)

where now PV and Ugv just include the signal and not the
noise (where the noise is instrumental noise, uncorrelated shot
noise, and noise due to foreground interloper lines). In order to
simplify to reach Equation (8), we had to make an approx-
imation that the covariance matrix in the galaxy pointings and
the covariance matrix in the intensity mapping modes is
diagonally dominated, which is most appropriate when each
mode is still noise dominated (Appendix D). These SV terms
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include correlated terms such as the part of each that traces the
cosmic density field. Noise due to foreground interloper galaxy
lines (e.g., Ha in the Lya IM examples discussed below) must
also be included (appearing in the noise component of Py). For
the examples we show below, the total cross correlation S/N
computed using Equation (8) is very similar to the S/N of the
cross-power spectrum. However, there could be large differ-
ences in other cases of cross correlation that are less dominated
by noise (both detector and galaxy shot noise).

3. JWST Galaxy Observations

In this section, we describe our assumptions related to JWST
galaxy observations. While the formalism described above
applies to any galaxy survey comprising pencil beams, we
focus on JWST as an illustrative example. Throughout we
consider a galaxy survey consisting of N, pencil beams, all
within the IM survey volume being cross correlated. We focus
on observations centered at z=7 to show the utility of this
cross-correlation technique during cosmic reionization.

3.1. JWST Sensitivity

We assume that the JWST galaxies are initially detected
through Lyman-break selection in rapidly obtained snapshots
with NIRCam (although this photometric survey can in detail
be performed simultaneously with our NIRSpec observations).
Following this initial detection, we assume that spectra are
taken to estimate redshift values for each galaxy. We consider
two separate cases for estimating redshifts: one based on
detection of the Lyman-break and the other on Lya line
detection. We begin by describing the former. The redshifted
Lyman-break  for  high-redshift — galaxies occurs at
Aobs = (1 +2) X 1216 Aor ~1 um for z~7 of interest. At
this observed wavelength, we require S/N=3 in a single
spectral bin for an accurate redshift measurement, where we
either use the instrumental resolution for the bin size or we
combine nearby spectral pixels. S/N =3 means that roughly
95% of the time the Lyman-break is located in the correct
spectral pixel. These assumptions are intended to be a
reasonable estimate for what is achievable with JWST. We
leave a more precise analysis of JWST’s capabilities to
future work.

We consider two different JWST instrumental configurations
for galaxy redshift measurements and utilize the JWST exposure
time calculator (Pontoppidan et al. 2016) to estimate their
respective relevant limiting magnitudes. First, we consider using
the NIRSPEC G140M/F100LP grating. This grating has an
effective spectral resolution of R = v/Av ~ 700; however, for
our analysis we take the combination of four of the actual
spectral channels to be one spectral channel (only in the Lyman-
break redshift measurements described here, not the Lya case
described below). This reduces our effective spectrum resolu-
tion, but increases the S/N by a factor of 2. Thus, for this
configuration we assume an effective spectral resolution of
R = 200 and find that a 10 hr exposure of an mag on = 26.8
galaxy has an S/N of 3 using the JWST exposure time
calculator. This sensitivity calculation assumes that the entire
galaxy fits within each NIRSPEC shutter, which is likely since a
shutter corresponds to a spatial extent of 1.1 x 2.6 physical kpc®
at z="7, somewhat larger than the half-light radius of each
galaxy, which HST observations find to be somewhat smaller
than 1 physical kpc, on average (Ono et al. 2013). We assume
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that S/N scales with time due to photon counting statistics,
such that our 1— o galaxy magnitude goes as mMpp max =

map.1on + 2.510g(/t/10 hr). For our second instrument, we
consider the NIRSpec MOS in PRISM mode, which we take to
have R = 30 and an S/N of 3 at map_j0n = 27.8 after 10 hr of
integration (the same time scaling as the previous instrument is
assumed). This represents a more sensitive but lower spectral
resolution method than the previous configuration. In all of the
examples described below, we assume that each pencil-beam
field is observed over an equal time f,p = fioa1/ N, — 20 minutes.
Here we assume 20 minutes is spent for each pointing to slew
the telescope and perform instrumental overheads. Slewing the
telescope ~1 degree (which is a typical mean separation of
pencil beams in our examples below), takes approximately ~10
minutes.” Finding a guide star and performing onboard script
system compilation, exposure overhead, and visit cleanup takes
an additional ~10 minutes.* We note that this accounting of
time is meant to be approximate, and we defer a more precise
estimate to future works.

In addition to redshift measurements via the Lyman break
just described, we also consider examples where redshifts are
obtained through detection of Ly« lines. In these cases, we
assume the high-resolution grating configuration of JWST
(R = 700). A resolution of R = 700 corresponds to a velocity
width of 430 kms ™', which is likely broader then the typical
(transmitted red side) Ly« line. Additionally, the bright Ly«
lines we consider have much higher flux than the continuum in
a single spectral element. In contrast to the Lyman-break case
described above where many spectral pixels constrain the
break, we assume that S/N=35 is required for redshift
detection through the Ly« line since it likely falls in a single
pixel. The limiting Lya luminosity that can be detected is given
by

Lyiya,min = 47TD]3fAB Ale (1 + 2) 110 MaBmax/2.5 )

where D is the cosmological luminosity distance, fag=
3.631 x 107 ergs ' Hz ' ecm ™2, and Avy, is the spectral width
of the (R = 700) frequency bin in the rest frame of the galaxy.
As in the Lyman-break case, the limiting AB magnitude is
given by map max = Map,10n + 2.5l0og(y/t/10 hr), but with
mag.1on = 25.5 due to the higher S/N requirement and not
grouping adjacent spectral pixels. As described below, we
determine the number density of galaxies above the detection
thresholds with observed Ly« luminosity functions.

3.2. Galaxy Power Spectrum

Once we specify Ny and fo for a hypothetical survey, the
galaxy sensitivity assumptions above provide us with the
limiting observable magnitude, map max- This limiting magni-
tude is then used to determine the power spectrum of the
observed galaxies, Py(k). We assume the power spectrum takes
the standard clustered plus shot noise form:

RO = B2 Puth, ) + —, (10)

ng

3 https:/ /jwst-docs.stsci.edu /jppom/ visit-overheads-timing-model /slew-
times

* hups: / /jwst-docs.stsci.edu/jwst-general-support/jwst-observing-
overheads-and-time-accounting-overview /jwst-instrument-overheads
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where P,, is the matter power spectrum, Eg is the mean linear
bias of the galaxies, and 7, is the galaxies’ comoving number
density. Because our calculations are in the low-number
density, large-scale limit, this form for the power spectrum is
likely a good approximation. We use numerical values for P,
from the publicly available code CAMB.’ In the Lyman-break
case, we obtain 77, by integrating the galaxy UV luminosity
function from Bouwens et al. (2021) above map min- For Lya,
we integrate the Lya luminosity function from Itoh et al.
(2018) above Liyamin. We estimate b_g by halo abundance
matching. This is accomplished by associating our observed
number density with a minimum halo mass, M;,, via

o0 dn
iy = dM— €eqyyy, 11
g ‘/;W - aMm duty ( )
where g,y is the galaxy duty cycle and :—A'; is the halo mass
function, for which we use the Sheth-Tormen fit to N-body
simulations (Sheth et al. 2001). Once this minimum mass is
determined an associated mean bias is computed with

_ o0 dn o0 dn
by = (fM deST(M)W)/(me dMW), (12)

min

where bgr is the Sheth-Torman linear bias as a function of halo
mass (Sheth et al. 2001). For the Lyman-break galaxies we
assume €qyy = 1, and for the Lya we assume €gu = 0.05. The
latter yields a mean bias similar to observations of Ly« emitters
at = 6.6 (Ouchi et al. 2018). Note that even though the duty
cycle is not mass dependent, it changes the bias because it sets
Mpin and higher My,;, than results in higher bias.

In Figure 1, we plot the number of galaxies with measured
redshifts and the corresponding b, as a function of the number of
JWST fields. We find that out of the three considered methods for
obtaining galaxy redshifts, Ly« detection is the most sensitive,
followed by the low-resolution Lyman-break technique, and
finally the high-resolution Lyman-break. For 100 total hours of
JWST time with the Lya technique, we find ~100 pointings
appears to maximize the number of detected galaxies. We point
out that this is very similar to the same area on the sky covered by
the COSMOS-Webb survey (Casey et al. 2023), which will cover
~(90 Mpc)? or (0.6 deg)®. However, in our examples presented
below this same total area would be spread out over the larger
footprints of the respective IM surveys (e.g., (6.3 deg)” in the case
of SPHEREXx-like experiment).

In the cross-correlation sensitivity calculations performed
below, we assume a square JWST FOV is covering a distance
L =8 Mpc on each side (comoving). This corresponds to the
~9 arcmin® FOV of NIRSpec. Thus, the window function
appearing above and in Appendix B is given by
W(k,), = sinc(k,L/2)sinc(k,L/2), where k, and k, are com-
ponents of the wavevector perpendicular to the line of sight.
The comoving length covered by each pencil beam along the
line of sight, d);, and comoving distance associated with one
frequency channel sets the available wavevector modes along
the line of sight, kj ;. Generally, these range from k; =0 to
kmax,| = 7/(Ad)) with a resolution of Ak = 2m/d;.° Note that

3 https: //camb.info/

However, as discussed later, in the case of 21 cm observations, many of
these wavevectors cannot be used due to the “wedge” in k-space contaminated
by foreground removal.
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Figure 1. The number of galaxies with redshifts detected by JWST (left) and the corresponding mean bias (right), as a function of JWST pointings, N, observed for
100 hr (solid curves) and 30 hr (dashed curves) of total time. This includes 20 minutes of slew time and instrumental overhead for each field. We show results for our
three methods of redshift detection: low-resolution Lyman-break (R = 30), high-resolution Lyman-break (R = 200), and Ly« line detection.

the distance corresponding to a frequency channel is given by
Ady~ %Au, where H(z) is the Hubble parameter and

Aobs 18 the observed wavelength.

4. JWST Pencil Beam-galaxy Line-intensity Cross
Correlations

4.1. IM-Galaxy Cross-power and IM Power Spectra

In order to demonstrate the utility of the cross-correlation
technique described above, we explore combining JWST
pencil-beam galaxy surveys with a sample variance-limited
(SVL) survey of galaxy-line emission and Ly« surveys with an
instrument similar to SPHEREx. We utilize the formalism in
Section 2 to estimate the sensitivity of the IM-galaxy cross-
power spectrum. We assume that this power is given by

PIg(k) = bISIbng(k) + Peross—shot» (13)

where b; is the mean bias of the IM survey, S; is the mean
intensity of the IM signal, and P oss_shot 1S the cross-shot noise
power spectra due to the overlapping shot noise from the two
surveys. It is zero in the limit that the IM surveys owes to much
smaller galaxies than JWST can observe. The first term is the
clustering term and thus is proportional to the matter power
spectrum, P,,. For the SVL and Lya IM surveys, we assume
that the flux from each galaxy is proportional to its host dark
matter halo’s mass and that there is a signal from halos above a
minimum mass Mpin; = 1.5 X 10° Mg, following Visbal &
McQuinn (2018). Note that for the IM surveys we consider this
minimum mass is generally smaller than the minimum
detectable halo mass detected in the JWST survey. With these
assumptions, the luminosity-weighted bias is given by

_ o dn 00 dn
by = dMbsr(MYMZ- amm L), (14
! (JLMmI sT(M) a%l)//(J;ﬁml dﬁl) (14

and the mean signal by

i} %0 LM) dn
S :,/‘ aM =22 o D2, 15
1 s ™M amp? auy 1=V Di (15)

where D is the angular diameter distance, Dy is the luminosity
distance, €4,y 1 18 the duty cycle of the galaxies contributing to

the IM signal, and ¥ is the derivative of the comoving distance
with respect to the observed frequency (S; then has units of
spectral flux density per solid angle). We assume L(M) x M,
but note that the constant of proportionality does not impact the
S/N in the SVL case because it appears in both the signal and
noise. Note that L(M) « 1/ €duty,1» Such that the mean IM signal
does not depend on the duty cycle. For the cross-shot power in
the SVL case, we both make the conservative assumption that
there is no cross-shot power as well as the maximal case where
the exact same galaxies detected with JWST also source the
intensity maps yielding

| Cauy o (16)

ﬁg Eduty,I

PReross—shot =

Here the ratio of the duty cycles accounts for the fact that either
some of the intensity mapping galaxies do not contribute to the
galaxy detections (if €quy,1 > €qury) Or some of the detected
galaxies do not contribute to the intensity map (f
€duty,1 < €qury). We also require the IM autocorrelation power
spectrum for our sensitivity calculations, which is given by

Pi = b2S{ Pa + Prgor + P, a17)
where
2
00 LMy _ LY dn
P sho :f am D — Eduty.I» 18
L (47rDL2y A) I (18)

and Py is the power due to detector noise (Visbal &
Loeb 2010). The duty cycle of the line emitting galaxies that
contribute to the IM signal is given by €gyuty,1» Which we assign
values of 1 and 0.1 for our sample variance-limited and Ly«
IM survey examples, respectively. We note that the Lya IM
duty cycle is twice as large as the duty cycle used to estimate
the clustering bias of the JWST-detected Lya emitting
galaxies. However, this is reasonable since the duty cycle is
for different populations of galaxies; the Lya IM signal mostly
comes from faint and abundant galaxies, which we do not
detect directly, as opposed to the brighter galaxies observed
directly with JWST. We note that throughout we have ignored
the impact of the redshift-space distortions on our power
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Figure 2. The illustrative case of correlating JWST with an SVL IM survey (i.e., one where the instrumental noise is zero). Left panel: the S/N of the cross-power
spectrum of IM survey and N, = 25 JWST pencil beans with 100 hr of total integration time as a function of k. We include both the S/N computed with our full Fisher
matrix calculation (Equation (3)) and the analytic approximation in Equation (6). For most of the points plotted, they agree better than ~1%. Right panel: the value of
the cross-power spectrum and the associated error bars (computed with the Fisher matrix formalism). The units are arbitrary since the S/N does not depend on the
overall normalization of the cross-power spectrum when there is zero detector noise. The nonuniform size of the error bars with wavenumber is due to variations in the

number of modes that fall into a bandpower bin.

spectra. Given that all of the relevant biases are typically >4,
we do not expect this to strongly change our results. We also
note that this is a conservative choice in the sense that redshift-
space distortions would increase the clustering signal relative to
the noise power, increasing the S/N in the examples below.

4.2. Sample Variance-limited Examples

In this subsection, we present a series of results for an IM
survey containing negligible detector noise, which we refer to
as the SVL IM survey. These examples are intended to show
the behavior of the sensitivity with respect to number and
configuration of pencil beams and to demonstrate the accuracy
of the approximation given by Equation (6). They also estimate
that maximum S/N in this most idealized limit of no noise in
the IM survey. More realistic cases with detector noise are
explored later.

We consider the noise-free IM survey to be centered at z =7
and to span a square FOV with comoving area of (300 Mpc)*
and a depth of d; = 150 Mpc (corresponding to Az~ 0.5). We
assume that the angular resolution matches the size of our
8Mpc x 8 Mpc JWST pencil beam FOV and the spectral
resolution matches JWST for which redshift detection mode is
being explored. In each transverse dimension, the k-space
resolution is Ak, =2x/L,, where L, and Ak, are the size and
spatial resolution of the IM survey in that dimension, and the
angular wavemodes span +7/L (where L =8 Mpc).

We begin by examining cross correlation between the SVL
survey and 25 randomly positioned JWST pencil beams split
across 100 hr of observing time (including the 20 minutes spent
switching between each FOV). Redshifts are assumed to be
measured with the R = 200 Lyman-break mode of JWST. In
Figure 2, we show the S/N of the binned cross-power spectrum
as a function of wavenumber for both the full Fisher calculation
given by Equation (3) and the approximation given by
Equation (6), where for each bandpower (S/N)? = Pé / ((5P12g>.
We find that the approximation in Equation (6) matches the
Fisher matrix calculation better than ~1% for most of the k-
bins in Figure 2, though we note the discrepancy is ~10% in
the lowest k-bin. We find similar agreement when adding noise
for our other examples.

Next, we compare the impact of the positioning of the JWST
pencil beams within the IM field. In Figure 3, we show the S/N
of the cross-power spectrum for the extreme cases of a lattice
versus a random distribution where both are set to cover the IM
survey area spanning 300 Mpc x 300 Mpc. See the right panel
for visualization of these configurations. We find that the two
cases lead to similar sensitivities, with the lattices only slightly
improving the S/N at the lowest wavenumbers. The reason for
the small differences is the projection of 3D modes onto two
dimensions; if we were instead interested in 2D modes, the
lattice would certainly favor some more than others. We also
compare the case of a compact lattice. In this example, the
JWST fields are tightly packed with a spacing of 8 Mpc
such that it spans spanning 40 Mpc x 40 Mpc of the
300 Mpc x 300 Mpc field. As in the previous example, we
assume 100 hr with JWST in the high-resolution Lyman-break
mode described above. We find that as expected the compact
configurations improve sensitivity on small scales by ~3% and
decreases sensitivity on large scales, with this difference
reaching ~50% at the smallest wavenumber we consider.

We also wish to examine how the configuration of JWST
fields impacts the sensitivity of individual modes. In Figure 4,
we show the S/N of the cross-power spectrum for one mode
perpendicular to the line of sight with varying wavelength
A=27/k, and grid spacing. As in the previous examples, we
assume 25 JWST fields over 100 hr, using the high-resolution
Lyman-break technique to measure galaxy redshifts. The
square grid of pointings cover a subset of the entire field until
a spacing of 75 Mpc. As expected, we find that smaller spacing
modestly increases the sensitivity to small-scale (high-k) modes
of the power spectrum and reduces the sensitivity more
significantly on large scales.

In our final test of the SVL IM survey, we explore the cross-
power spectrum sensitivity as a function of correlating with
different numbers of randomly positioned JWST fields (but
with fixed total observation time). Here we define the total S/N
as the square root of the sum of the S/N squared in all
wavevector bins. We compute the S/N with the random-field
approximation from Equation (6), as justified by the previous
results in this subsection. Operationally, we break k-space up
into a number of 2D bins spanning the magnitudes of the
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Figure 3. Impact of JWST field configuration on the error of the galaxy-IM cross-power spectrum. As in Figure 2, we consider 25 JWST fields distributed within our
SVL IM survey with 100 hr of total JWST time. We consider three configurations: a “random” distribution, a lattice spread evenly across the IM survey, and a “tight”
lattice with the fields adjacent to one another and only spanning (40 Mpc)? of the (300 Mpc)* IM survey (see diagram in right panel; note that the size of points in this
diagram are not meant to match the 8 Mpc x 8 Mpc JWST FOV). We plot the ratio of the tight and grid errors with the random case (left panel). All calculations are

done with the full Fisher matrix formalism in Equation (3).
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Figure 4. S/N of the cross-power spectrum when only including one SVL IM
Fourier mode and for different grid spacings covering a subset of the IM field.
The mode is assumed to be perpendicular to the line of sight and different
wavelengths given by A =27 /k, are explored, although the sensitivities for
inclined modes are similar as long as the parallel wavenumber is less than k.
The pencil-beam field survey consists of 25 fields arranged in a grid with
uniform spacing that varies from compact to covering the entire IM survey
(assuming 100 hr of JWST time and the high-resolution Lyman-break mode for
redshift measurement). The sensitivity computation is completed with the full
Fisher formula given in Equation (3). An S/N = 1 corresponds to the best that
is possible due to sample variance. Large-wavelength modes are best measured
by wide grid spacing, as one would expect.

wavevector, |k|, and the angles offset from the line of sight, 6
(where tan(d) = k. /kH)~ We then estimate the band cross-power
error in each k-bin by taking the inverse variance weighted
average of the error implied by Equation (6) averaged over our
|k| and 6 bins.

In Figure 5, we present the total S/N on statistical
measurements of the cross-power spectrum (solid curves). As
described above, these are well approximated with
Equation (6). The blue curves assume 30 total hours of JWST
observations and the green 100 hr, and the different panels
consider the three galaxy redshift identification methods. In all
of the cases, we find that the S/N is maximized roughly when
the number of galaxies are maximized (see Figure 1). We find
that obtaining galaxy redshifts with the Ly« line has the highest

S/N, followed by the low-resolution Lyman-break technique
and then the high-resolution Lyman-break technique. In 100 hr
of integration time, S/N in the Ly« case of 210 is achieved in
the cross-power spectrum. These S/N bound what is achiev-
able in a realistic case with IM noise.

We have not included the correlations between the shot noise
of the two surveys (the “cross-shot power”) in any of the
calculations shown in Figure 5. We note that including cross-
shot noise power only makes a modest difference. For example,
in the Ly« case, the peak S/N is increased by a factor of ~1.1
when we assume the maximal case where the shot noises of the
two surveys are perfectly correlated. In the Lya IM survey
presented below, there is a more significant impact, due to the
large ratio of ~* considered.

duty,I

4.3. Lya IM with SPHEREXx

In this subsection, we explore cross correlation of JWST
pencil beams with a Ly« IM survey measured by an instrument
similar to SPHEREx. We focus on a case where the IM survey
is centered at z="7 and covers an area of (1000 Mpc)® on the
sky (corresponding to the SPHEREx 40 deg” FOV), and a
depth of d}; = 150 Mpc (corresponding to Az~ 0.5). We follow
Visbal & McQuinn (2018) to estimate the mean signal of the
IM power spectrum.

The Lya luminosity of a galaxy is related to its star
formation rate, My, by

Lega = 2 x 10%(1 —fm)L ergs, (19)
Mg yr!

where f.,. is the fraction of ionizing photons that escape into
the intergalactic medium (IGM). This equation assumes there is
no dust absorption, such that every ionization results in 0.6
Lya photons. It also assumes a Salpeter initial mass function
(IMF; Schaerer 2003) over a mass range of 1-100 M., with
metallicity Z = 0.04; other empirically motivated Popll IMFs
result in factor of ~2 differences. We assume that a fraction
€auy = 0.1 of halos are forming stars at any specific time and
that My is proportional to halo mass, with a normalization such
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Figure 5. The total S/N (defined as the square root of the S/N in our k-bins added in quadrature) on the cross-power spectrum for galaxies detected with JWST and
our SVL IM survey (computed with Equation (6)). We show the total S/N for 30 (blue curves) and 100 hr (green curves) of total JWST observation times varying the
number of randomly positioned pencil beams, N,,. Results are included for each of the three ways of measuring galaxy redshifts described in Section 3: R = 200
Lyman-break, R = 30 Lyman-break, and Lya. The S/N is maximized for N, similar to that where the most galaxy redshifts are detected.

that the global star formation rate density at z=7 is
p,=0.015M_yr 'Mpc™>. This value is similar to
pr=0.02 M, yr ' Mpc > measured by Bouwens et al. (2015)
at 7~ 6.8. We have assumed that there is no scattering of Ly«
photons by the IGM. This would be a good assumption if
reionization is nearly complete. High cosmic neutral fractions
of hydrogen scattering would suppress small-scale power
(Visbal & McQuinn 2018), but we do not expect strong
suppression at the scales we are sensitive to at z~ 7.

We estimate the power of instrumental noise using Equation
(16) from Comaschi et al. (2016). To approximate the
SPHEREXx specifications, we assume a telescope diameter
of 20cm, a zodiacal light background intensity of
vl, =500 nW m 2sr !, and an observational efficiency of
detecting a photon accounting for losses in the instrument of
e=0.5. We assume an integration time of 10°s. Additional
noise in the cross-power comes from foreground interloper
lines in the IM. In our example, this noise is expected to be
dominated by foreground Hoa (appearing at z= 0.5 for our
survey at z = 7). Following Pullen et al. (2014; see their Figure
13), we assume that this signal has power given by
P, =0.04 x (Mpc_1 /k) nWm Zsr ! Mpc3. This assumes that

the sources brighter than 107" ergs 'cm > have been
identified and their contributions removed from the IM map.
This flux cut corresponds to an r-band AB magnitude of
m,~26.5, which will be observable over large areas with
telescopes such as the Hyper Suprime-Cam (Pullen et al. 2014).

We consider two different methods for galaxy redshift
measurements of our JWST pencil beams (discussed in detail
above): the lower-resolution PRISM mode to detect the
Lyman-break and the high-resolution mode to detect Ly« line
emission. We assume the spectral resolution of SPHEREX is
R = 40, which does not have an impact on the R = 30
PRISM mode Lyman-break examples (in this case, we assume
the IM spectral pixels are combined to match the PRISM
resolution), but sets the line-of-sight spatial resolution for
cross-correlation between JWST galaxies and the IM when
redshifts are obtained from Ly lines.

In Figure 6, we show the total S/N of our Lya IM-JWST
galaxy cross correlation as a function of JWST fields for fixed
JWST observation time (computed with Equation (6)). We
show both the conservative case without cross-shot power as
well as the maximal case given by Equation (16). We find that
when not including cross-shot power, the sensitivity of
measuring the cross correlation is approximately higher by a
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Figure 6. Top panels:the total S/N for our SPHEREx Lyc IM and JWST pencil beam example as a function of the number of JWST fields, N, for fixed total
observing time. The left panel is for the case where JWST galaxy redshifts are determined with the Lyman break (with R = 30), and the right panel is for the Ly
line. The solid (dotted) curves represent the S/N on the cross-power when cross-shot power is not (is) included. Bottom panels: the galaxy-Ly« cross-power spectrum
with errors for the Lyman-break (left panel) and Ly« redshift measurement case (right panel). We show errors for 100 hr of JWST time and N, = 144 (N, = 169),
which maximizes the S/N in the cross-power spectrum in the Lyman-break (Lyc) case. The solid curves represent the total cross-power spectra, while the dotted and

dashed curves represent the clustering and shot components, respectively.

factor of 2 for JWST redshifts measured with the Lya line
compared to with the Lyman-break technique (when the cross-
shot power is included, the sensitivity difference is closer to a
factor of ~1.5). This is mainly due to the increased number of
galaxies detected in the former. With 100 hr of JWST time, a
total S/N of ~5 is found when redshifts are determined from
the Ly« line. We find that this maximum S/N scales as the
square root of the total JWST observation time. We also note
that if the Ha interloping lines were completely removed, the
S/N would increase roughly 10% and if, on the other hand,
their power was increased by a factor of 2, the S/N would be
degraded by ~10%. We point out that in addition to
contamination from Ho interlopers, the aggregate continuum
emission from foreground/background sources as well as other
interloping lines must be removed. However, a detailed
treatment of this contamination/cleaning is beyond the scope
of the current work.

Because galaxy pencil-beam survey-IM cross correlations
achieve higher S/N with smaller and deeper IM surveys, we
have deviated from the planned SPHEREX specifications (by
assuming a smaller field integrated for a longer time). If we use
the SPHEREx deep noise adopted in Figure 2 of Cheng &
Chang (2022), our total S/N drops by roughly a factor of 4.

However, given the approximate nature of our JWST
sensitivity assumptions, it may be possible to detect more
galaxies than assumed here, making a reasonable S/N possible
even with less optimistic SPHEREX noise. The Lya IM signal
could also be higher if there is a faint previously undetected
population of Ly« emitting galaxies not captured in our IM
assumptions. Additionally, targeting a slightly lower redshift of
z =6 improves the S/N by a factor of ~2 (here, the increase in
galaxy density is somewhat counteracted by the reduced JWST
sensitivity at shorter wavelengths and lower galaxy bias). We
emphasize that the main goal of this paper is to introduce the
pencil-beam galaxy/IM cross correlation formalism. We defer
a more precise study of the optimal S/N use cases to
future work.

In the bottom panels of Figure 6, we show the cross-power
spectrum with error bars, when the maximal cross-shot power
(Equation (16)) is included as part of the signal. We note that in
both the Lyman-break and Lya galaxy detection cases, the
clustering component of the cross-power spectrum dominates
on large/moderate spatial scales (relative to the IM box size),
and the shot component dominates on smaller spatial scales.
The shot signal is generally more important in the Lyman-break
detection due to a larger assumed value of the duty cycle ratio
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appearing in Equation (16). We note that taking a smaller
number of deeper JWST pointings, N, increases the relative
importance of the clustering versus the shot components of the
cross-power spectrum. The difference is not dramatic, however,
because while reducing N, reduces the shot component due to
detecting fainter galaxies, it also reduces the clustering
component due to lowering the galaxy bias (see Figure 1).
We note that the shot power here is likely an overestimate.
Thus, we expect the scales where the S/N is the highest to be
dominated by the clustering power. We also note that the
impact of the cross-shot power in the SVL IM example above
is much smaller due to the higher value of the intensity
mapping duty cycle (1 versus 0.1 in the Lya IM case).

5. 21 cm IM with HERA

In our final example, we explore cross correlation between
JWST pencil beams and the HERA 21 cm survey. To compute
the HERA sensitivity, we use the default settings of the
2IcmSense code.” HERA is a drift-scan instrument with a 9°
wide FOV, and this code assumes the projected HERA mission
sensitivity as discussed in Pober et al. (2013) and Pober et al.
(2014). This sensitivity calculation incorporates the sensitivity
loss owing to the wedge. Because we are interested in the
modes with our overlapping pencil-beam survey, which we
take as all within one FOV of HERA, we adapt 2/cmSense to
provide the per mode “imaging” sensitivity. For our JWST
galaxies, we assume redshifts are determined with Ly« lines
and have a spectral resolution of R = 700. The other JWST
observing modes described above have much lower S/N due to
the wedge removing low-k; Fourier modes and the high—k;
modes being inaccessible in the pencil beams due to poor
resolution along the line of sight. While in principle this could
be remedied by finding Lyman-break redshifts with R = 700,
this would result in even fewer galaxy redshifts than the
R = 200 case, which is already substantially worse than Ly«
redshifts (see Figure 1).

Following McQuinn & D’ Aloisio (2018), we assume that the
21 cm power spectrum is given by the perturbation-theory
motivated form

Py = (20 mK)? x bi(1 — R&k?/3)*Py(k), (20)
where we take by = —1 and R = 1 Mpc, numbers motivated
in McQuinn & D’ Aloisio (2018) for the last half of reionzation
based on radiative transfer simulations (see their Figure 7). The
galaxy-21 cm cross-power spectrum is given by

Pioi = 20mK x biby(1 — R3k?/3) Pu(k). 1)

In Figure 7, the blue curves show the total S/N of the
HERA-JWST galaxy cross correlation assuming 200 hr of total
JWST time. HERA'’s drift-scan strategy is not ideal for cross
correlating with narrow fields. Instruments that point like
LOFAR and MWA can integrate longer on a field and
potentially achieve higher sensitivities. To investigate the effect
of a deeper integration, we scale down the IM noise power
spectrum by factors of 10 and 100, which could be
accomplished by 10 and 100 times longer integration times
on a field, respectively. These are shown as the green and red
curves in Figure 7. For 200 hr with JWST with the optimal
number of fields, we find total S/Ns of ~0.7, ~1.6, and ~2.4

7 https://github.com/steven-murray /21cmSense
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Figure 7. The total S/N on the cross-power spectrum for our HERA-JWST
cross correlation example with 200 JWST hours spread over N,, pointings. The
blue, green, and red curves are for 1x, 10x, and 100x the HERA nominal
integration time, respectively. We note the total S/N in the auto 21 cm power
spectrum in the single FOV of HERA considered is 2.4, 12, and 29 for 1x,
10x, and 100x the HERA nominal integration time, respectively.

for 1x, 10x, and 100x the HERA nominal integration time,
respectively.8 We note that for these three different HERA
integration times, the S/N on the 21 cm auto-power spectrum,
including only the one FOV being cross correlated would be
2.4, 12, and 29. Thus, with a high S/N detection (e.g., ~100)
in the 21 cm autocorrelation, we expect that JWST cross
correlation could be used to verify that foregrounds are not
strongly contaminating the signal.

6. Discussion and Conclusions

Line intensity mapping (IM) is a promising new technique to
observe the high-redshift Universe. There are a number of
ongoing and planned experiments to measure intensity maps in
lines such as HI 21 cm and Lya, as well as [CII] and CO lines.
One challenge for these experiments is that astrophysical
foregrounds can be orders of magnitude larger than the
cosmological signal (e.g., galactic synchrotron emission in
21 cm intensity maps or Ha from lower-redshift galaxies in
high-z Ly« intensity maps). One way to ensure that residual
foregrounds are not contaminating the IM signal is through
cross correlation with galaxy surveys whose fields overlap.
However, IM surveys typically have very large FOVs (degrees
across), which are poorly matched to the small FOVs of most
telescopes that can acquire coeval high-redshift galaxies (such
as JWST). Although such a mismatch prevents a deep galaxy
survey over the entire IM survey, cross correlation is still
possible with a galaxy survey consisting of pencil beams that
cover some fraction of the IM field.

In this paper, we developed the formalism to forecast the
sensitivity of cross correlations between IM and galaxy pencil-
beam surveys. We utilized a Fisher matrix approach (adapted
from Vanneste et al. 2018) that allowed us to compute the
sensitivity of the galaxy-IM cross-power spectrum for any
configuration of pencil beams within an IM survey and found a
simple formula for the sensitivity of randomly positioned
pencil beams that agrees well with the full Fisher calculation (at
the ~1% level for most k-bins in our examples). We found that

8 The low S/N we find for one pointing of HERA also suggests our 21 cm
signal model predicts less power than in some models.
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random placement of pencil beams generally results in
essentially the same total S/N as a lattice and that compact
configurations, which do not span the entire IM survey, can
slightly increase the S/N on small scales while sacrificing
sensitivity on large scales. Configurations that span the entire
IM survey are optimal.

Using our formalism, we explored cross correlating three
different IM surveys with JWST pencil-beam galaxy surveys at
z=". Our exploration included the following: an illustrative
sample variance-limited IM survey, a Lya IM survey with an
instrument like SPHEREX, and lastly a 21 cm survey with
HERA. Additionally, we considered three different modes of
measuring  redshifts with the NIRSpec multiobject
spectrograph on JWST. These included a low-resolution
(R = 30) observation of the Lyman break using NIRSpec/
PRISM, a moderate-resolution using an R = 700 grating but
binned to R = 200, and finally a detection of Ly« lines again
using the R ~ 700 grating. We found that the Ly« line galaxy-
identification strategy has the highest S/N in cross correlation,
followed by the low-resolution measurement of the Lyman
break, with the high resolution of the Lyman break only faring
slightly worse. The latter two strategies produced a factor of ~2
smaller S/N than the Ly« one. We found that unsurprisingly
the total S/N is highest for a survey strategy that maximizes the
number of galaxy redshifts measured across the IM survey.
This is ~10 and ~100 pencil beams for 30 and 100 hr of total
JWST time when determining redshifts with the Ly« line,
respectively.

In our SPHEREx-Ly« example, we found that a total S/N
of ~5 can be achieved with 100 hr of JWST time. We found
that HERA is not very well suited to cross correlation with
JWST owing to its drift-scan strategy. Telescopes capable of
phasing in different directions like the future SKA may be
better suited to such cross correlations. These correlations
could be used to verify that residual foregrounds are not
significant contaminants in high-S/N 21 cm surveys.

Our study motivates several additional lines of inquiry. First,
our formalism can be used to forecast cross correlations
between any intensity maps and any galaxy survey that consists
of many disparate pointings. One example of the latter could be
a survey performed with the Roman Space Telescope.
However, we note that for larger FOV instruments like Roman,
it will be necessary to extend our formalism to include
positions of galaxies within each individual not-so-pencil-beam
field. Future work can also explore the effectiveness of this
technique to cross correlate intensity maps with different lines.
While HERA 21cm and SPHEREx Lya are wide-field
surveys, instruments targeting other lines for intensity mapping
such as CO and [C1I] often have much narrower fields such
that again one could imagine these as a bunch of pencil beams.
It could also be interesting to investigate how any planned
observations for science not related to IM measurements with,
e.g., JWST could be used to measure the cross correlation with
IM experiments.
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Appendix A
Fourier Conventions

Fourier Transform:

3k) = f dFE () ek, (A1)
Inverse Fourier Transform:
1 = %
8(r) = [awsacrew A2
0= 55 &) (A2)
Partial Fourier transform in the z-direction only:
bx, k) = fdzé(x, e, (A3)

where x is a 2D vector perpendicular to the line of sight and z is
the spatial coordinate along the line of sight.

Appendix B
Covariance Matrices

In order to compute the covariance matrices appearing in
Equation (3), we need to determine the covariance between the
various components of our data vectors I and g. As defined in
Section 2, these components are the real and imaginary parts of
the IM Fourier modes and the partially Fourier transformed
galaxy overdensities in all of the pencil beams.

We begin with the correlations between IM Fourier modes.
Denoting the real and imaginary parts of the Fourier modes
with subscripts Re and Im, for two arbitrary wavevectors
indexed by i and j, we find

(b1re (ki) BrRe (k) = (O11m (i) Sr1m (k))) = 6i,jVPI(ki)/2,
(B1)

and
(61 re (ki) O11m (Kj)) = 0,

where 6,K] is the Kronecker delta, and V is the survey volume. This
can be derived by expressing the modes in terms of an amplitude
and phase, &; = |6]e’® before taking the real/imaginary parts,
b1 re = |0] cos(¢) and by 1, = |8] sin(¢). We have also utilized
that fact that for a finite volume survey, we can express our
definition of the power spectrum as {5y (k;) by kj)*) = 6,’3 VP (k;)
(as opposed to (3y(k;)d1(kj)*) = (2m)36P (k; — k;)Py(k;) in the
infinite volume case).

Next, we derive the covariance between the galaxy over-
density in our pencil-beam survey. Using the convolution
theorem, we can write the real part of g; from Equation (1) as

(B2)

8ij.Re
1
@m)?

[de W) |8y (e, Ky i)l cos(¢ — k" - x;),
(B3)

where i is the index for the component of the wavenumber
along the line of sight, and j is the index of the pencil beam
with FOV centered on x;. Here, ¢’ is the phase of the mode at
k'. Note that the imaginary part, g 1, is the same, but with
cosine switched to sine. By correlating this equation and the
real /imaginary parts of the IM Fourier modes expressed in
terms of the amplitude and phase and simplifying with
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trigonometric identities, we derive relatively simple formulae
for all of the remaining elements that appear in our covariance
matrices.

The cross-correlations between the pencil-beam galaxy
overdensities are then given by

<gi,a,Re gj,b,Re> = <gi,a,lm gj,b,lm>

6} . / L /
:2(27r)2 fd ky'Pg(ky', ki) Wy (k") cos(k” - (X, — Xb)),
(B4)
and
(8 aRre &pim) = 0, (B5)

where d), is the length of the survey along the light on sight. We
solve this integral numerically using Fast Fourier transforms to
compute the covariance matrices in the calculations above.

Similarly, we derive the cross-correlation terms between IM
Fourier modes and pencil-beam galaxy overdensities. These are
given by

(&.aRre Sire ki, k) = (&.a1m Suim (K, k)

1 ~
:EPIg(kL, ki) Wy (k) cos (k. - x3)d) 55 (B6)
<gi,a,Re Sl,lm(kJ_s kH»J)>
1 o .
= EP te (ks k) Wo (k) sin(key - x,)d) 55, B7)

and

. 1 o~ .
(8i.a1m OLre kL, K|j)) = _EPIg(kJ_s kyj,i) Wy (k) sin (ke ~xa)dH5f_-/<-.
(B3)

While we have worked with purely real quantities in our
covariance matrices to simplify the required numerical
computations, we note that very similar equations can be
derived with complex data vectors.

Appendix C
Minimum Variance Cross-power Estimator

We want to construct the minimum variance quadratic
estimator for cross correlations. We follow the calculation in
Vanneste et al. (2018) for the CMB angular cross-power
spectra, generalizing their derivation to arbitrary cross correla-
tions and to estimate arbitrary parameters. Our cross-power
covariance can be written as

Co = (g6{) = Cao + R; &p;, (C1)

where g and d; are vectors for galaxy and intensity mapping
data sets defined in the previous appendix. The last line uses
that near some reference value for the parameter [ pj]o we can
approximate the covariance as linear in the parameter p;, with
R; = 0Cy1/0p; evaluated at [p;lo and defining op; = p; — [p;lo.

A general estimator that is quadratic in our two data sets is
given by

where b; = Tr[EngTLO], as this yields an unbiased estimator.
The expectation value of the estimator is given by
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(3}) = TrlE;Cy] — b; = Tr[E;R16p,. To create an unbiased
estimator for the ép;, we take linear combinations of the )Z :
op = W15 where  W; = Tr[ER]],  (C3)
where we show the parameter indices explicitly and the
measurement pixel indices implicitly as matrix multiplications.
Repeated explicit indices indicate summation.
We can now compute the estimator covariance assuming

Gaussianity:

Cov[p,8p,1) = [W 1 (W] Cov531: (C4)
Cov[5,3;] = Tr[CoE;GE] ] + Tr[CyE CuE]].  (C5)

We want to minimize the variance in the 5;;1 to find their
optimal estimators. The minimization of the variance of the N,
estimators, <6p,5p,>, can be performed with gradient descent-
like algorithms. However, to make traction analytically, we
make the standard approximation that if we minimize the
variance of each of the ¥, individually, the estimator that results

will be near the minimum for the 512.9 This is partly motivated
by the expectation that, if our parameters are power spectrum
bandpowers, we expect our estimators y; are largely diagonal as
different modes are weakly correlated.

Thus, we aim now to minimize the variance of the ¥}, and to
avoid the trivial solution E;=0, we further impose the
constraint that the diagonals of our weighting kernel
W; = Tr[E;R/] are finite by adding a Lagrange multiplier (as
otherwise the minimum variance estimator that returns y, = 0
would be selected!). Thus, the minimum variance estimator is
the derivative with respect to E; of

(577) = 2M(Tr[ER]] — B), (C6)
where the [3; are unspecified constants. This yields
CoeE:Cy + CyE! Cy = AR;, (C7)

where we have used repeatedly the identity 04 Tr[AB] = B”
(see Vanneste et al. 2018 for more details). An approximate
solution can be found in the applicable limit of when the noise
in the auto-power dominates:

CiEiCi = AR;. (C8)

However, the low-noise limit in which both the g and I fields
are noiseless biased tracers of the same field also yields the
same estimator (Vanneste et al. 2018), suggesting the estimator
may be nearly optimal even beyond the high noise limit that is
assumed. We are free to choose A = 1/2 since our estimate 5;;,-
as this yields an unbiased estimator (Vanneste et al. 2018; when
g =1, this gives the standard Fisher Matrix expression).
Solving Equation (C8) for E; yields

E; ~ %nglRiCﬁl’ ©)
and
W, = %Tr[ng'RiCﬁleT]» (C10)

° This is the approach that leads to the standard Fisher matrix expression for
auto-power, namely F; = Tr[C~'0C /dp,C~'0C /Op;].
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such that the variance is

Erdpn) = W W11, (W, + Gy: (C11)
2
1 _ _ _ _
Gy = S Tr [Co RiCii ' CHC' R Gy ' Cy. (C12)

In the high noise, the second term in Equation (C11) (with G) is
more important. When shot noise dominates, we can treat C,,
as diagonal, and Cy; is diagonal if we choose the Fourier basis.
Unlike in the main body of the paper, where we consider real
and imaginary components of modes, for notational simplicity
we deal with complex modes; we remark at the end of this
derivation how the final formulas relate to those in the
main body.

In this paper, dp; are the bandpowers of the cross such that
pi— Pk 1, ky). Let us first treat the case where only a single
mode contributes to the bandpower estimate. Then working at
fixed kj, since we can treat each independently, our matrices
become

shot

[Coely = 20, (k)20 = 2—ﬁ5§, (C13)
g
[Culirr = [VP1(ke, k] 65 4,1 (C14)
[Colar, = expl—iky - xa]lPie(ks, k) d, (C15)
O[Catlak )
Rl = —="2 — exp[—ik, - xald). Cl16
[R]ax, Pyl k) pl—ik. - xald (C16)

where 20 = (g 4I*)/2 = (Re[g,,]*). In the top line, to
evaluate in the limit shot noise dominates, we used that
207 = d|(L?ng)~!, where 7, is the 3D number density of
galaxies and L is the transverse size of each (square) JWST
field. For notational simplicity, we do not include the FOV
window functions VAV'g(kL) that accompany all of the terms (one
for every g subscript in the covariances) associated with the
galaxy survey. We put these terms back in the main text,
although they are unity for modes with wavelengths much
larger than the survey field.

With these choices and simplifications, Equations (C10) and
(C12) become

Wik, = [V PO Qo) ! N, dff 65

shot noise limit

K

————
~ P g froy Ok ks (C17)
26k sk, = Qop) 2 [VP (k)1 [VPy (k)]
X Pro(ki)Pig(kij) > exp[—iAx - (ki; — ki pl, (CI8)
V Ax
~(Q0y) 2| Ny [VPy (kv i, kT2 Prg(kis kD*6) .k »  (C19)
=/ g [Pr(k i, kD12 Prg(ky i k6% 4 »  (C20)

shot

where N, is the number of pointings and f,, = NgL2 /(d.d,) is the
covering fraction of pointings. The sum over all Ax is over all
pairs of pencil-beam pointings, and the second-to-last line uses the
approximation ) A.exp[—iAx - (k ; — k )] = ]\{géﬁhm.

13

Visbal & McQuinn

With these simplifications, our estimate for the error on the
Cross-power is

(6PL) =V Prlke, k) 203 d >Ny ' + Pro(ke, kp?,  (C21)

or assuming shot noise dominates the variance in each JWST
pointing:

(6Pg) = Pi(ke, kp) (fooy i)™ + Pro(ke, k)2, (C22)

a simple form we might have guessed without all of this work.
To generalize to multiple modes in a bandpower bin, error
should be summed in inverse quadrature, which, in the limit of
isotropic power spectrum, divides by square root the number of
modes in a bandpower. Because we are dealing with complex
modes, this counts both the real and imaginary component, in
contrast to the main body of the paper where we only count the
half plane of modes and write single mode expressions from
the combined constraint of both the real and imaginary
components (leading to a factor of 2 smaller variances per
mode but half the total modes). This reconciles the factor of 2
differences between the expressions here and in Section 2, and
we include the window function terms there that we have
omitted in the main text.

This estimate for the error includes sample variance
uncertainty, which is the second Pé, term in the previous two
equations. This term means that the S/N on a mode can never
be greater than unity. However, we do not care about sample
variance when asking how well cross correlations can be
detected, it is only the noise on the mode that matters, and so in
principal, the S/N can be arbitrarily large. In practice, this
distinction is not so important, as most of our modes are noise
dominated. The next section rederives the error in a manner
that does not include sample variance.

Appendix D
Signal-to-noise Estimate without Sample Variance

We wish to calculate the S/N without sample variance. The
S/N that cross correlations can be detected assuming Gaussian
noise and not including sample variance in the noise is

(S/N)? = (g6 [CNG oy (81 610)-

where all indexes are summed and the covariance matrix is
given by

(D1)

[CNlipany = (8058 Ou) — (&0y) (& bn)

where g, indicates the i™ pointing, and in this section only the
brackets only ensemble average over the noise and not over
realizations of the galaxy and intensity mapping fields. We
group (ij) and (k/) in Equation (D1), as each distinct integer pair
should be considered as one entry in the noise covariance
matrix.

To compute the covariance matrix, we do not want to
ensemble average over different realizations of the galaxy and
intensity mapping fields. Rather, since we are interested in how
well cross correlations can be detected for a given intensity
mapping and galaxy field, we only want to average over the
noise. Let us split up a field into both its signal and noise so
g = (g) + g" and 6;; = (éy;) + &}, where, since we are not
ensemble averaging over pixels or modes, the (g;) and (éy;) are
particular values. Since we assume the different overdensity
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fields have uncorrelated noise (g;0y) = (g:)(y;), and thus

[CNNaan = (&) + & U6y) + 6DUg) + &) (du) + 1))
— (&) (o) (&) (Ou)
= (g) (&) CIII\}I + Cglivik (6y) (6u) + ngikqlf}l
(D2)

where Cgl\é is the uncorrelated shot noise and Cj}\ the instrument
noise, although some other stochastic uncorrelated cosmologi-
cal part could also come into either. While shot noise could
correlate, the component of shot noise that does correlate we
treat as signal.

To calculate a typical S/N, we just then substitute the
expectation values

<S/ N)? = (g6y) [CN](UI)(U) (86u) = Cgltj[CN](,jl)(kl) Coti,

where (S/N) is our notation for the “typical S/N,” we used the
definitions Cgy;; = (g:0;;), and we mean to evaluate the
[CN](’ljl)(k,) with typical values for (g;) and (dy;).

The Fisher matrix is defined as the curvature of minus the
log likelihood (since we have assumed Gaussianity):

F,p, = 0p,05,(8:6y — Cay(P)[2CN i1y
X (g6u — Cau(p)) = 0,,0,,(S/N)*/2,

where here the C,y;(p) are the model covariance matrices where
p is the vector of parameters and the g0y; is the product of the
measured “pixels” in each survey. (The parameters in this case,
since we are not constraining a statistical theory in contrast to
the previous section, are likely to be the power in each
wavenumber bin.) Let us specialize to the case where the
parameters are the power spectrum of a given mode Pyy(k)):

(D3)

Figo = Tr | ——c2_genp1 2G|, (D4)
aplg(ki) aPlg(kj)
=Tr[R[CN]"'RI, (DS)

where Ray = exp[—ik - xa] dj| as defined in Appendix C (also
here omitting the Vrf/g,(kL) terms that we put back in the main text).
We use the noise-only generalization of our previous
results that Coy; = 2[0y 28] and Cyy; = VP (k;) 8, 4, where
superscript “N” indicates noise-only. Furthermore,
Yo arXpl—ilAx - (ki ; — k)] ~ ZVgézi,kM. We also need a
mode amplitude to compute C~, which we take to be the average
(8)(g) = 2oy P56} and (6 (ki)é1(k;)) = VPi(ki) 6, _y, . This is
an approximation that ignores the cross-power of the modes and is
strictly valid when the noise dominates over the signal. With this
approximation, the Fisher matrix becomes

Frp, ~ (Prk;) Qo) — PPV (ki) Loy P AN/ V 65
(D6)
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where we note that P =PV + PN and similarly
0’2 = [USV]2 + [ag]z. Noting that (6Pj,(k;)?) = Fyiy, this
matches this limit of our previous derivation with the sample
variance term subtracted off (see Equation (C22)). Putting back
the window function terms this yields Equation (8) in the
main text.
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