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Introduction: Drought detection, spanning from early stress to severe
conditions, plays a crucial role in maintaining productivity, facilitating recovery,
and preventing plant mortality. While handheld thermal cameras have been
widely employed to track changes in leaf water content and stomatal
conductance, research on thermal image classification remains limited due
mainly to low resolution and blurry images produced by handheld cameras.

Methods: In this study, we introduce a computer vision pipeline to enhance the
significance of leaf-level thermal images across 27 distinct cotton genotypes
cultivated in a greenhouse under progressive drought conditions. Our approach
involved employing a customized software pipeline to process raw thermal
images, generating leaf masks, and extracting a range of statistically relevant
thermal features (e.g., min and max temperature, median value, quartiles, etc.).
These features were then utilized to develop machine learning algorithms
capable of assessing leaf hydration status and distinguishing between well-
watered (WW) and dry-down (DD) conditions.

Results: Two different classifiers were trained to predict the plant treatment—
random forest and multilayer perceptron neural networks—finding 75% and 78%
accuracy in the treatment prediction, respectively. Furthermore, we evaluated
the predicted versus true labels based on classic physiological indicators of
drought in plants, including volumetric soil water content, leaf water potential,
and chlorophyll a fluorescence, to provide more insights and possible
explanations about the classification outputs.

Discussion: Interestingly, mislabeled leaves mostly exhibited notable responses
in fluorescence, water uptake from the soil, and/or leaf hydration status. Our
findings emphasize the potential of Al-assisted thermal image analysis in
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enhancing the informative value of common heterogeneous datasets for
drought detection. This application suggests widening the experimental
settings to be used with deep learning models, designing future
investigations into the genotypic variation in plant drought response and
potential optimization of water management in agricultural settings.

KEYWORDS

thermal imaging, drought, plant phenotyping, machine learning, leaf classification,
artificial intelligence

Introduction

Climate change is exerting a profound impact on global crop
production, primarily driven by the escalating variability in
precipitation patterns and the increased occurrence of droughts
(IPCC, 2022). These shifts in water availability have far-reaching
consequences, affecting the productivity, quantity, and quality of all
agricultural crops, including those essential for anthropic use.

One such crop is Gossypium hirsutum L., important for its
significant contributions to fiber production, seed oil extraction,
and livestock fodder. Thriving in arid environments where water
resources are already limited, this species necessitates a substantial
volume of annual water (60-120 cm) to support its robust growth
(Wegier et al., 2016; Khan et al., 2020). With 25 million tons of fiber
produced per year and an economic impact exceeding 600 billion
dollars, cotton plays a pivotal role in supplying over 80% of the
global natural fiber demand, underscoring its critical importance to
both individuals and global economies (Townsend, 2020). In recent
years, the production of this crop has been decreasing due to more
severe weather events (Meyer et al., 2023), and projections suggest
that the world cotton production may struggle to meet the
burgeoning demand in the next decades (Li et al., 2021).
However, a silver lining is represented by the substantial genetic
diversity inherent within this species constituting an unprecedented
avenue for the selection, breeding, and cultivation of varieties that
are inherently better equipped to endure and thrive amidst
increasing climatic pressures.

Plant phenotyping consistently applies image processing (IP)
techniques (either classical or modern ones to data acquired from
visible, infrared, and hyperspectral cameras, showing the potential
to enable for non-destructive, high-throughput detection and
selection of desirable traits across different temporal and spatial
scales (Zhao et al,, 2019). Thermal imaging, also known as infrared
thermography, is a powerful and non-invasive technique that has
found widespread relevance in recent years to assess canopy
temperature and their responses to both abiotic and biotic
stressors, from salt stress, heat, and drought stress to bacterial
and fungal infections (Pineda et al., 2021). The analysis of canopy
temperatures has been connected to traditional physiological
measurements—leaf water potential, gas exchange, and
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chlorophyll a fluorescence (Cohen et al., 2005; Casari et al., 2019)
—and utilized to screen for genotypic variation across several
species (Casari et al., 2019; Bhandari et al., 2021; Ferguson et al.,
2021). The processing of thermal images usually starts by separating
the canopy impression from the background pixels that may
include soil particles and other structures. This initial pixel
exclusion process can be completed through a variety of different
approaches: manual isolation of the canopy and leaf via polygon
selection, gray scaling, image segmentation, two-means clustering,
and bimodal peak detection (Mohanty et al., 2016; Prakash et al.,
2021; Stutsel et al., 2021; Sakurai et al., 2023). Despite the utilized
methodology, the postprocessing times for the analysis of thermal
images are usually long and often affected by the low resolution of
the images (Kohin and Butler, 2004).

To cope with the constraints imposed by traditional IP
methods, over the last few years, the scientific community has
largely adopted machine learning (ML) and, particularly, deep
learning (DL) techniques to deal with data acquired by plant
phenotyping platforms or, more in general, from high-throughput
measurements (Solimani et al.,, 2023). These algorithms can also
represent a great opportunity to implement the postprocessing of
thermal images captured with handheld cameras and indeed
increase their final throughput. ML algorithms have already been
used to analyze thermal images, specifically to enhance stomatal
count, surface recognition, and crop disease classification (Cho
et al., 2018; Ferguson et al., 2021; Pignon et al., 2021; Batchuluun
etal, 2022). Three different ML algorithms, namely, random forest,
multivariate linear regression, and gradient boosting, were
previously used to correlate thermal data—acquired by thermal
IR images—to environmental drivers, such as solar radiation, air
temperature, relative humidity, and wind speed, to assess the
relationship between the stomatal conductance in crop canopies
and changes in environmental factors (Zhao et al., 2021). Another
approach consisted of two models based on variations for decision
trees used to define a relationship between the regression of thermal
indexes for droughted and well-watered scenarios of vineyard crops
(Gutierrez et al,, 2018). DL approaches have also been proposed by
developing a custom architecture based on convolutional neural
networks (CNNs) to classify five different crop diseases and defects
(e.g., blast, bacteria leaf blight, leaf folder) (Batchuluun et al., 2022).
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In that case, the model was first trained on the Paddy crop dataset
and then refined on a new empirical dataset consisting of 4,720
images. The results were further investigated by using class
activation maps to highlight the parts of the image that were
considered relevant by the network to achieve the classification
result. Finally, indexes of classification, such as the crop water stress
index (CWSI), have been computed to distinguish between
droughted and well-watered crops. Despite these significant IP
applications to thermal images and the correlations to different
physiological indicators from various crops, models that use
thermal crop response to water stress across extreme genotypes
using deep learning are scarce (Berni et al., 2009; Pratap et al., 2019).

Here, we provide an evaluation of the response of different
genotypes to different levels of water limitations, from mild to
severe drought. First, we screened a panel of 27 geographically
different genotypes (Supplementary Figure S2) in the species
Gossypium for their response to water limitation using a
handheld IR camera. These imaging data were used as the basis
to develop a hybrid IP/ML processing software pipeline, which used
IP techniques to extract the region of interest from each leaf and
then feed a statistically enhanced ML algorithm to predict the leaf
water status, as either well-watered (WW) or subjected to dry-down
(DD) at two different times during the complete water withholding
(mild and severe drought). Finally, we coupled additional leaf-level
physiological measurements, such as water potential and
chlorophyll a fluorescence to the IP/ML analysis, providing a
meaningful interpretation of the modeled results.

Materials and methods
Plant materials

A panel of 27 different genotypes was utilized for the experiment,
and all seeds were obtained from the USDA Germplasm Collection.
Genotypes originate from Australia, China, Guatemala, Mexico,
Trinidad and Tobago, and the USA, covering all four zones that have
the highest production of cotton in the world (Wendel et al, 2009).
Aside from being geographically diverse, the selected genotypes also
span a large range in leaf size, plant and leaf architecture, and coloration
(Figure 1). This extreme genotypic variation inevitably affects the
physiology of these genotypes, including their water status and their
ability to maintain leaf turgor despite water limitations (e.g., large versus
small leaves, significantly impacting transpiration rates) making the
panel of choice perfectly suited for testing our pipeline, due to expected
great variation in the thermal features of the leaves under
progressive drought.

Growth conditions

The cotton panel was grown in a greenhouse research bay of the
Plant Growth & Phenotyping Facility at the University of Wyoming
(Laramie, Wyoming, USA) for a total of 122 days from seed to seed,
planting to harvesting, during the winter of 2022-2023. The cotton
panel, 27 genotypes x 3 replicates each, was grown following a
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random block design, and the greenhouse environmental
conditions were controlled by state-of-the-art climate control
systems (Argus, British Columbia, Canada). Temperature was set
to 27°C #+ 3°C/26°C + 3°C (day/night), and relative humidity was
between 10% and 30%. Additional lighting was given by a four-
channel Heliospectra growth light system (Heliospectra AB,
Gothenburg, Sweden). The intensity of the Elixia LED channels
was set as follows: 450 nm (blue) at 500 units, 660 nm (red) at 500
units, 735 nm (far-red) at 500 units, and the white 5,700K LED
channel at 1,000 units. All intensities are reported as 0-1,000 units
corresponding to 0%-100% of max LED output as for the
Heliospectra manual. The photoperiod was 14/10 (D/N), 0600h-
0800h; the highest recorded photosynthetically active radiation
(PAR) was 1,600 umol photons m2s’!
in the middle of the canopy. Aside from the OMNI sensors from

with the sensor located

Argus, the environmental conditions were also tracked using
CR1000 Data Logger (Campbell Scientific Inc. Logan, UT, United
States) monitoring: air temperature and relative humidity
HMP45AC (VAISALA, Vantaa, Finland); PAR, LI-COR
Quantum (LI-COR, Lincoln, NE, United States); and soil
moisture, Delmhorst GB-1 (Delmhorst Instrument Co., Towaco,
NJ, United States). Sensors were spaced across the entire area
covered by canopy in the ~40-m/420-ft> greenhouse bay.

Experimental design

One seed per pot (10 quarts/11 L in volume) was sown in a
substrate made up of sand (80% v/v; Premium Play Sand, Quickrete,
Atlanta, GA), fritted clay (10% v/v; Greens Grade, Buffalo Grove,
IL), and organic soil mix (10% v/v; Miracle-Gro moisture control
Potting Mix, Marysville, OH) amended with % tablespoon of
Osmocote 16-6-12 fertilizer (Scotts, Marysville, OH). Sown seeds
were covered and placed centrally in the pot at a depth of ~% inch/
1.2 cm and covered in vermiculite to aid in the germination. Plants
were hand-watered with reverse osmosis (RO) water daily to
maintain soil field capacity and a soil water potential close to
saturation until 105 days after sowing (DAS) when all genotypes
and replicates had at least 50% of opened flowers (Figure 2). At 106
DAS, two randomly chosen replicates for each genotype were
subjected to complete water withholding for the rest of the
experiment forming the dry-down cohort of plants (DD), while
one replicate per genotype was maintained at the daily watering
regime in the well-watered (WW) cohort. All physiological
measurements occurred at two points in time, at 110 DAS (mild
drought) and 121 DAS (severe drought), after 4 and 14 days of
uninterrupted progressive drought, respectively.

Leaf-level physiological measurements

On measurement days, chlorophyll a fluorescence was
measured on two separate fully developed leaves of the mid-
canopy with a handheld fluorometer (FluorPen FP100, Photon
System Instruments, Drasov, Czech Republic). Measurements of
photosystem II efficiency were taken using a saturation pulse that

frontiersin.org


https://doi.org/10.3389/fpls.2023.1305292
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Reno et al. 10.3389/fpls.2023.1305292

FIGURE 1

In-vivo pictures of extreme genotypes in the cotton panel. Striking examples of plant architecture, leaf types, and coloration differences in the
experimental panel. Red/dark green medium size leaf for Red Dwarf Harrison (A); large, with low venation leaves in TX_180 (B); inverted margins for
the leaves of Cup Leaf (C); trilobate morphology for Gumbo leaves (D); pale green and short overall plant size for Virescent nankeen (E); and short-
overall plant size and okra-like leaves for Pronto (F). All plants were WW and imaged on the same day (70 DAS).
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FIGURE 2

Experimental design. A panel of 27 diverse genotypes of cotton was grown for a total of 122 days after sowing (DAS). All plants were watered at
saturation until 105 DAS when drought was applied as complete water withholding for a subset of plants (dry-drown). All data presented in the
manuscript were collected at 110 DAS (mild drought) and 121 DAS (severe drought).
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was applied (1,500 umol photons m 2 s™') to measure Fv/Fm or Fy
'/Fm' on dark- or light-acclimated leaves, respectively (Murchie and
Lawson, 2013). During the same measurement days, one fully
developed leaf per plant was also harvested and used to measure
leaf water potential (PMS Instrument Company, Albany, OR,
United States). Soil moisture measurements were also taken using
a HydroSense II (Campbell Scientific Inc., Logan, UT, United
States). Leaf water potential, chlorophyl a fluorescence, and soil
moisture measurements were taken over a 24-h time course during
the hours of 10:00-12:00 h, 16:00-18:00 h, and 22:00-24:00 h. After
the start of the dry-down, all physiological measurements were
taken during the hours of 04:00-06:00 h (predawn) and 11:00-13:00
h (midday).

Thermal imagery collection

Thermal images were taken using a handheld FLIR Thermal
Camera T560, 640 x 480 pixel resolution, wide angle lens f = 10
mm (FLIR Systems Inc., Wilsonville, OR, United States). Fully
developed leaves near the top of the canopy were chosen for
imaging, and one leaf per replicate plant across all genotypes and
treatment was imaged at the same time as the other leaf-level
physiological measurements. A white paper backdrop was placed
directly behind the leaf, and an image was taken holding the
camera objective facing both the leaf and backdrop to allow for a
full frontal view of the images (Figure 3). Image parameters were
set using leaf emissivity, 0.95, and with focus regulation (Buitrago
etal, 2016). A total of 648 images was made up from two images

10.3389/fpls.2023.1305292

per leaf, from three replicate plants for 27 genotypes at two times
of the day (predawn and midday) and at two drought treatments.
After initial QC, the final dataset used for the ML analysis was a
balanced dataset of 419 images between WW and DD. All
thermal images were converted to CSV format using FLIR
Thermal Studio.

Data analysis

Physiological data were processed using Excel and R 4.3.1 (R
Core Team, 2013) with packages dplyr (Wickham et al., 2023) and
tidyverse (Wickham et al, 2019). The presented graphs were
generated using the packages ggplot2 (Wickham, 2016) and
ggrepel (Slowikowski, 2023).

Hybrid IP/ML software pipeline for
thermal data

The hybrid IP/ML pipeline used in this work is summarized in
Figure S2, and it includes the following computational steps.

1. Data parsing: First, raw format data exported by the FLIR
thermal camera were parsed by a specific software routine to store the
data in an interoperable format such as comma-separated value (CSV)
files. Each one of these files held two separate representations, that is, a
thermal representation, where each pixel represented a thermal value
stored as a floating point number, and an RGB value, used for
visualization purposes.

A Delta Pine 16

B Dwarf Red Harrison

¢ Siokara L23

D Tipo Chaco

20°C 25°C

30°C

FIGURE 3

Leaf thermal variation in extreme cotton genotypes. Bright green, large leaf from Delta Pine 16 (A); red/dark green medium size leaf from Red Dwarf
Harrison (B); okra-like leaf from Siokara L23 (C), and dark green medium to large leaf from Tipo Chaco (D).
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2. Data preprocessing: After the parsing step, a preprocessing
step aimed at obtaining a high-pass-filtered version of the raw
thermal image, as well as its gradient, was performed. To this end,
the fast Fourier transform (FFT) of the raw thermal image was first
computed (Figure 4A). Then, a binary mask was computed to keep
all the FFT pixels whose value was less than the continuous
component, considered as the central, brighter, pixel (Figure 4B).
Then, the inverse transform was applied, as shown in Figure 4C.
Finally, the gradient of the filtered image was computed (Figure 4D)
and used to compute the leaf mask in the next step.

3. Leaf mask computation: The computation of the leaf mask is
performed starting from the gradient obtained during the
preprocessing step. First, the first quartile g, and the third quartile
q; of the values of the gradient image are computed. Then, the
interquartile range IQR = g3 — ¢ is the used to compute a threshold
thrg, = q; — 1.5 - IQR. Let § be the gradient image; a binary mask M
is then obtained according to the following binarization logic:

M(i,j) = {

To enhance the mask M, the morphological operations of

L if 86, j) V8Gij) < thry,

0, otherwise

dilation, hole filling, and erosion, followed by a blob analysis,
were performed, computing the connected components of the
image. The final mask M is then selected as the region with the
greatest number of contiguous pixels turned on. Some examples of

10.3389/fpls.2023.1305292

leaf masks for different genotypes are shown in Figure 5. The pixel
values in the region highlighted by the leaf masks are used to
compute thermal features. As such, the temperature values are first
statistically filtered removing the outliers, hence making the
algorithm robust to small leaf mask misalignments. Then, a set of
eight statistical thermal indicators are computed from raw thermal
values, that is, mean, standard deviation, median, 25th and 75th
percentiles, interquartile range, max, min, and temperature range.

The IP/ML software pipeline was developed and tested, and all
the AT applications were run on a machine equipped with an Intel
Core 19-11900K, 32 GB of RAM, and an Nvidia GeForce RTX 3080
GPU with 10 GB of RAM. The software was developed in Python
3.10, and the Scikit Image (Van der Walt et al,, 2014) and Scikit
Learn (Pedregosa et al., 2011) libraries were used.

Results and discussion
Statistical analyses

The first step was to use the IP preprocessing techniques (Figure
S1) to extract all the leaf masks from the raw thermal data along
with the associated features. The algorithms used at this stage are
non-parametric, meaning that they automatically tune the
parameters after a preprocessing step of each thermal image, so
that the leaf mask can be estimated (Figure 6) and the thermal

FIGURE 4

Data preprocessing details. Raw thermal image (A), a fast Fourier transform (FFT) of the raw thermal image is computed to keep all the FFT pixels
whose value is less than the continuous component, considered as the central, brighter, pixel (B), inverse transform application (C), computed

gradient of the filtered image (D) used to compute the actual leaf mask.
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Statistical comparisons of data distributions (significant). Statistical comparison using the KS test of the median (A), mean (B), and variance (C)

computed over the distributions of WW and DD leaves.

features are extracted almost in real time. This step was mandatory
for providing the baseline data to be used for the next steps of
the pipeline.

The thermal features extracted from this initial data parsing step
were then used as the basis for the ML processing software pipeline.
For this, a first exploratory analysis was performed using a two-
sample Kolmogorov-Smirnoff test on single features. This led to a
comparison between well-watered leaves and droughted ones,
aiming at identifying those features that were not sampled from
the same statistical distribution. In other words, this test allowed the
evaluation of features that were likely to be used to discriminate
between WW and DD leaves.

As no assumptions were made on the distribution for WW and
DD leaves, two non-parametric distributions were anticipated. A
comparison was performed using the median, mean, standard
deviation, range, and interquartile range of each distribution
(Figures 5, 7). Median (Figure 5A), mean (Figure 5B), and standard
deviation (Figure 5C) were statistically compared for the two
distributions, and they all showed an extremely low p-value, below
the standard threshold o = 0.05. As a consequence, the null hypothesis
stating that data come from the same distribution could be rejected for
these variables. When the data range and the interquartile range (IQR)
were statistically compared (Figures 5A, B), the p-value was not lower
than the standard threshold o, with p = 0.00764 and p = 0.0753,
respectively. Hence, in this case, the null hypothesis could not be
rejected, and we could not conclude that these quantities were drawn
from different data distributions. From this statistical evaluation, we
can assume that features related to the median, mean, and standard
deviation of the values for the thermal features of the leaves can be
effectively used to distinguish between WW and DD leaves. However,
the range of the features and the interquartile range cannot be
confidently considered during the evaluation since it cannot be
concluded whether they are drawn from different distributions.

Machine learning algorithms

A complete comparison between two different processing
software pipelines was performed. Specifically, two different

Frontiers in Plant Science

classifiers were trained to predict the plant treatment (DD or
WW), that is, random forest (RF) and multilayer perceptron
(MLP). The dataset used for the ML algorithms training, test, and
validation was composed of 419 samples, 212 of them for WW
leaves and 207 for DD leaves. Each sample is obtained by joining the
automatically computed thermal features with the respective plant
treatment (DD or WW), removing all the non-discriminating
features from the dataset. The dataset subset split strategy was as
follows: 75% of the samples (314) to compute the T subset (for the
training and test) and 25% of the samples (105) to compute the V
subset (for the validation). Each one of the ML algorithms was
inserted in a pipeline, which first scaled each feature to match a
normal distribution N(0,1), namely, a distribution with zero-
average and unitary standard deviation. A feature selection
procedure was then performed using the mutual information
criterion. Finally, the T subset was used to train and test the
classifier using a random search for hyperparameter optimization
and a K-fold cross-validation with k = 10. A summary of the results
for optimization is shown in Table 1 for both the RF and
MLP pipelines.

The resulting classification report (computed on the V subset)
for the RF classifier showed weighted average values for precision
and recall of 78% and 71%, respectively (Table 2). Overall, the
weighted accuracy on a total support of 105 leaves across all
genotypes was approximately 75%, meaning that the classifier was
incorrect in predicting 25% of the original images during validation.
Comparing the true labels of the leaves against the predicted labels
using the RF classifier, 40 WW and 38 DD leaves across all
genotypes were correctly predicted, while a total of 27 leaves were
miscategorized (Figure 8A).

The MLP classifier showed slight overall improvements: the
classifier achieved improved recall on DD leaves and precision on
WW leaves, at the cost of lower values of precision and recall for
DD and WW leaves, respectively (Table 3). However, there was an
improvement in terms of the overall accuracy, increasing to 78%. It
is important to highlight that for this second classifier, the data
support was changed, although not significantly, due to the random
generation process for the validation dataset used to ensure the
generalization properties of the classifier. The higher overall
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Thermal image

FIGURE 6

10.3389/fpls.2023.1305292

Leaf mask

Leaf mask comparison. Examples of thermal images (A) and correspondent computed masks (B).

accuracy of the MLP approach was reflected in the confusion matrix
showing that the correct predictions across all 27 genotypes
increased for both treatments (Figure 8B). Specifically, the MLP
correctly categorized a total of 82 leaves between WW (37) and DD
(45), compared with the 78 total of the RF classifier.

Both the RF and MLP classifiers resulted in an accuracy greater
than 70%, considering support data (105 leaves) pooled from 27
different genotypes for both WW and DD treatments, in mild and
severe drought, corresponding to 4 and 14 days after the beginning
of the progressive water withholding (Figure 2).

Frontiers in Plant Science

Testing the physiological soundness of the
Al analysis

Since the presented ML pipelines were built using the data from
the entire panel of Gossypium under different degrees of water
limitation, the accuracy results of the classifications can be
considered in line with previous results (Solimani et al., 2023).
The great genotypic diversity of the experimental cotton panel
inevitably caused extreme variability in leaf size, plant and leaf
architecture, and coloration (Figure 1). These diverse genotypes
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FIGURE 7

Statistical comparisons of data distributions (non-significant). Statistical comparison using the KS test of the data range (A) and interquartile range

(IQR) (B) computed over the distributions of WW and DD leaves.
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TABLE 1 Hyperparameters selected for random forest and multilayer perceptron processing software pipelines.

Processing pipeline Hyperparameter @ Value Description
K 3 Number of the most relevant features selected according to the mutual information criterion
RF pipeline (feature selection + Minimum samples 5 Minimum number of samples to determine whether a node of each tree in the decision
random forest) per leaf forest can be marked as a terminal one (i.e., a leaf)
Max depth 5 Maximum depth of each tree in the decision forest
K 7 Number of the most relevant features selected according to the mutual information criterion
Solver ADAM Optimization algorithm used during backpropagation
MLP pipeline (feature selection +
multilayer perceptron) Learning rate Constant Learn?ng rate sc}.ledu.le used during backpropagation. In this case, constant means that no
adaptive scheduling is used.
Hidden layer sizes 50 Number of neurons used in the hidden layer of the multilayer perceptron

TABLE 2 Classification report for the random forest.

Precision
DD 0.78 ‘ 0.71
ww 0.71 ‘ 0.78

have already been reported to be indeed affected by their physiology
resulting in a large spectrum of water status and drought response
(Wendel et al., 2009; Wendel et al., 2010; Sreedasyam and Schmutz,
2019). This variability was clearly visible in the range of leaf
temperatures captured already in WW conditions (Figure 3). For
instance, the Delta Pinel6 genotype showed a leaf temperature
mean almost 5°C lower than Tipo Chaco in the same WW
conditions, while two morphologically dissimilar genotypes,
namely, Dwarf Red Harrison and Siokara L23—one with dark
red/green, medium-size leaves and one with green, okra-like type
of leaves—showed very similar leaf temperatures. It is known that
leaf temperature is affected by changes in the microclimate at the
canopy level and this can be somewhat variable in greenhouse
conditions based on the spatial locations of the pots and on the time
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F1 score Weighted accuracy Support
0.74 0.75 51
0.74 0.74 54

of the day (Beverly et al, 2020). However, drawing significant
relationships between leaf temperature per se and genotypic
variation was not the scope of the current work, and the diverse
experimental panel was used as a robust testbed for the
development of the novel IP/ML software pipeline for thermal data.

To understand the misclassifications from the ML classifiers, we
more closely analyzed the environmental and the volumetric soil
water content associated with each image (Supplementary
Table $3). First, we confirmed that the applied drought
treatments caused a reduction of volumetric soil water content
(%) for the DD plants compared with the WW, and this reduction
was more evident under severe drought (Figure S4). As expected,
the 27 genotypes responded differently to the progressive drought,
with the most water-efficient genotypes like Cup Leaf, L23, and
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TABLE 3 Classification report for the multilayer perceptron.

Class Precision Recall
DD 0.74 0.87
WW 0.84 0.70

Lorinator, maintaining their leaf water potential closer to the WW
value even under drought conditions (Figure 9). When comparing
soil moisture and the efficiency of PSII from chlorophyll a
fluorescence values for a random subset from all classified images,
we found that the leaves wrongly classified by the ML pipeline also
showed an outlier behavior in either one or both traits under both
mild and severe drought conditions (Figure 10, Figure S4). For
instance, under mild drought, the mislabeled genotypes (TMI,

Weighted accuracy Support

0.80 0.79 52

0.76 0.78 53

Lorinator, and Durango) were the ones that did not significantly
decrease their soil moisture although they were sitting in the DD
cohort of the panel, most likely due to microclimate variations in
the greenhouse. The same validation with soil moisture was
revealed for mislabeled plants under severe drought as well, and it
similarly applied for plants sitting in the WW cohort, such as Tipo
Chaco that for the true label of WW resulted in a predicted label of
DD for the image pipeline (Figure 8B). While soil moisture seems to
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FIGURE 9

Leaf water potential across the 27 experimental genotypes. The distribution of leaf water potentials is observed across genotypes in both mild and
severe drought. The well-watered plants (WW) are represented in gray and the plants under dry-down (DD) in black.
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corresponding PSlI efficiency and soil moisture from all genotypes and for both mild (A) and severe drought (B).

be sufficiently explanatory for the mislabeled leaves, the efficiency of
PSII seems to be less correlated to the ML outcomes. While the
randomly chosen DD leaves in severe drought showed high PSII
efficiency, such as expected from their still relatively high soil
moisture, the mislabeled Tipo Chaco sitting in the WW cohort was
misclassified as DD by the ML pipelines even if it maintained a PSII
efficiency of 0.55 (Figure 10B). Chlorophyll a fluorescence as the
efficiency of PSII has previously been shown to follow drought
response dynamics across different species (Guadagno et al,, 2017),
and this mismatch between soil moisture value and fluorescence
might be due to a particular resistance of the photosynthetic
machinery of this specific genotype to severe drought, which is not
the focus of the presented work. This analysis of the software pipeline
outcomes indicated soil moisture as a highly possible driver of the
misclassification and the efficiency of PSII evidently being a less but
still correlated physiological trait. From the physiological ground
truthing, thermal imaging and the classifiers had lower than 25% and
22% mislabeled leaves (Supplementary Table S3) considering that the
actual label was not meaningful of the actual treatment and/or
physiological status of the plant.

Conclusions

Our work confirmed the efficiency of thermal imaging data in
detecting water limitations and the invaluable assistance of Al
analysis in increasing the throughput of handheld IR cameras
(Kamarudin and Ismail, 2022). Our results are suggestive of
increased efficiency in the postprocessing of thermal data time
even when extreme genotypic variation is present. In the utilized
experimental panel, the spectrum of thermal features for different
genotypes was in fact extremely variable even for WW samples. The
presented classification becomes more meaningful considering that
the support data for the ML application were coming from leaves
exposed to two different levels of water limitation—aside from the
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WW control—triggering a large variety of physiological interplays
across the 27 genotypes. Our leaf-level experimental approach
coupled other physiological measurements to the thermal
imaging, allowed us for further testing of the ML results. We
found that mislabeled leaves also had a significantly different
behavior in other means of plant water status such as soil water
potential and content to partly account model errors. Overall, our
study confirms that AI can be an incredible resource to optimize the
throughput of handheld thermal cameras despite genotypic
variation, extreme morphological and temperature features, and
over a large combination of G x E, allowing for more generalized
applications in water management across different geographical
agricultural scenarios. In the future, we auspicate for the
development of more targeted designs aimed to dissect the
temporal progression of water limitation across different
genotypes and its correlation with peculiar leaf venation types
and architectures. Higher accuracy in thermal image classification
will allow for the development of more complex ML pipelines,
representing an essential aid in breeding and water management
efforts,especially for globally relevant crop species like cotton.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

VR: Conceptualization, Formal analysis, Methodology,
Software, Visualization, Writing — original draft, Writing — review
& editing, Investigation. AC: Formal analysis, Methodology,
Software, Visualization, Writing - original draft, Investigation.

frontiersin.org


https://doi.org/10.3389/fpls.2023.1305292
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Rend et al.

BR: Data curation, Formal analysis, Investigation, Methodology,
Visualization, Writing - original draft. CG: Conceptualization,
Funding acquisition, Methodology, Project administration,
Resources, Supervision, Validation, Visualization, Writing -
original draft, Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This
research was supported by the National Science Foundation (NSF
Research PGR#2102120) and by the NIFA AG2PI Collaborative
(Award # 2021-70412-35233 Department of Agriculture (USDA).

Acknowledgments

We are grateful to the laboratory assistants at the University of
Wyoming, Jade Whiting, Isaiah Spiegelberg, Sarah Doyle, and Reese
Milburn for their significant contribution to the experiment, from
plant care to the leaf-level data collection, data entry, and thermal
image preprocessing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Batchuluun, G., Nam, S. H., and Park, K. R. (2022). Deep learning-based plant
classification and crop disease classification by thermal camera. J. King Saud Univ. -
Comput. Inf. Sci. 34 (10, Part B), 10474-10486. doi: 10.1016/j.jksuci.2022.11.003

Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cant "o, G., Fereres, E., and Villalobos, F.
(2009). Mapping canopy conductance and CWSI in olive orchards using high
resolution thermal remote sensing imagery. Remote Sens. Environ. 113 (11), 2380-
2388.

Beverly, D. P., Guadagno, C. R., and Ewers, B. E. (2020). Biophysically informed
imaging acquisition of plant water status. Front. Forests Global Change 3. doi: 10.3389/
ffgc.2020.589493

Bhandari, M., Xue, Q., Liu, S., Stewart, B. A., Rudd, J. C., Pokhrel, P., et al. (2021).
Thermal imaging to evaluate wheat genotypes under dryland conditions. Agrosystems
Geosciences Environ. 4 (2), €20152. doi: 10.1002/agg2.20152

Buitrago, M. F., Groen, T. A,, Hecker, C. A., and Skidmore, A. K. (2016). Changes in
thermal infrared spectra of plants caused by temperature and water stress. ISPRS J.
Photogrammetry Remote Sens. 111, 22-31. doi: 10.1016/j.isprsjprs.2015.11.003

Casari, R. A. C.N,, Paiva, D. S,, Silva, V. N. B,, Ferreira, T. M. M., Souza Junior, M. T.,
Oliveira, N. G,, et al. (2019). Using thermography to confirm genotypic variation for
drought response in maize. Int. J. Mol. Sci. 20 (9), 2273. doi: 10.3390/ijms20092273

Cho, Y., Bianchi-Berthouze, N., Marquardt, N., and Julier, S. J. (2018). “Deep thermal
imaging: proximate material type recognition in the wild through deep learning of
spatial surface temperature patterns,” in Proceedings of the 2018 CHI conference on
human factors in computing systems. 1-13, ACM.

Cohen, Y., Alchanatis, V., Meron, M., Saranga, Y., and Tsipris, J. (2005). Estimation
of leaf water potential by thermal imagery and spatial analysis*. J. Exp. Bot. 56 (417),
1843-1852. doi: 10.1093/jxb/eri174

Frontiers in Plant Science

12

10.3389/fpls.2023.1305292

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1305292/

full#supplementary-material

SUPPLEMENTARY FIGURE S1

The processing image pipeline. Building blocks of the developed pipeline
used in this work includes four computational steps: CSV parsing, pre-
process, leaf mask computing, and thermal stats computing.

SUPPLEMENTARY FIGURE S2
Genotypes included in the experimental panel. All 27 genotypes included in
the cotton experimental panel and their correspondent abbreviations used in
during the experiment.

SUPPLEMENTARY TABLE S3
Single measurements of volumetric soil water content across all
collected images.

SUPPLEMENTARY FIGURE S4

Volumetric soil water content across the 27 experimental genotypes.
Distribution of leaf water potentials are observed across genotypes in both
mild and severe drought. The well-watered plants (WW) are represented in
grey and the plants under dry down (DD) in black.

Ferguson, J. N., Fernandes, S. B., Monier, B., Miller, N. D., Allen, D., Dmitrieva, A.,
et al. (2021). Machine learning-enabled phenotyping for GWAS and TWAS of WUE
traits in 869 field-grown sorghum accessions. Plant Physiol. 187 (3), 1481-1500.
doi: 10.1093/plphys/kiab346

Guadagno, C. R,, Ewers, B. E,, Speckman, H. N., Aston, T. L., Huhn, B. ], DeVore, S.,
et al. (2017). Dead or alive? Using membrane failure and chlorophyll a fluorescence to
predict plant mortality from drought. Plant Physiol. 175 (1), 223-234. doi: 10.1104/
Pp.16.00581

Gutiérrez, S., Diago, M. P., Fernandez-Novales, J., and Tardaguila, J. (2018).
Vineyard water status assessment using on-the-go thermal imaging and machine
learning. PLoS One 13 (2), €0192037.

IPCC (2022). Climate change 2022: impacts, adaptation, and vulnerability.
contribution of working group ii to the sixth assessment report of the
intergovernmental panel on climate change. Eds. H.-O. Portner, D. C. Roberts, M.
Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegria, et al. (Cambridge, UK and New
York, NY, USA: Cambridge University Press), 3056. doi: 10.1017/9781009325844

Kamarudin, M. H., and Ismail, Z. H. (2022). IOP conf. Ser. Earth Environ. Sci. 1091,
01204.

Khan, M. A., Wahid, A., Ahmad, M., Tahir, M. T., Ahmed, M., Ahmad, S., et al.
(2020). “World cotton production and consumption: an overview,” in Cotton
Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies. Eds.
S. Ahmad and M. Hasanuzzaman (Singapore: Springer), 1-7. doi: 10.1007/978-981-15-
1472-2_1

Kohin, M., and Butler, N. R. (2004). Performance limits of uncooled VOx
microbolometer focal plane arrays. Infrared Technol. Appl. XXX 5406, 447-453.
doi: 10.1117/12.542482

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2023.1305292/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1305292/full#supplementary-material
https://doi.org/10.1016/j.jksuci.2022.11.003
https://doi.org/10.3389/ffgc.2020.589493
https://doi.org/10.3389/ffgc.2020.589493
https://doi.org/10.1002/agg2.20152
https://doi.org/10.1016/j.isprsjprs.2015.11.003
https://doi.org/10.3390/ijms20092273
https://doi.org/10.1093/jxb/eri174
https://doi.org/10.1093/plphys/kiab346
https://doi.org/10.1104/pp.16.00581
https://doi.org/10.1104/pp.16.00581
https://doi.org/10.1017/9781009325844
https://doi.org/10.1007/978-981-15-1472-2_1
https://doi.org/10.1007/978-981-15-1472-2_1
https://doi.org/10.1117/12.542482
https://doi.org/10.3389/fpls.2023.1305292
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Rend et al.

Li,N,, Yao, N,, Li, Y, Chen, J., Liu, D., Biswas, A., et al. (2021). A meta- analysis of the
possible impact of climate change on global cotton yield based on crop simulation
approaches. Agric. Syst. 193, 103221. doi: 10.1016/j.agsy.2021.103221

Meyer, L., Dew, T., Grace, M., Lanclos, K., MacDonald, S., and Soley, G. The world
and united states cotton outlook. Available at: https://www.usda.gov/sites/default/files/
documents/2023 AOF-cotton-outlook.pdf

Mohanty, S. P., Hughes, D. P, and Salathé, M. (2016). Using deep learning for image-
based plant disease detection. Front. Plant Sci. 7, 1419. doi: 10.3389/fpls.2016.01419

Murchie, E.,, and Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to
good practice and understanding some new applications. J. Exp. Bot. 64, 3983-3998.
doi: 10.1093/jxb/ert208

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825-2830.

Pignon, C. P, Fernandes, S. B., Valluru, R, Bandillo, N,, Lozano, R,, Buckler, E,, et al.
(2021). Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water
use efficiency-related genes. Plant Physiol. 187 (4), 2544-2562. doi: 10.1093/plphys/kiab395

Pineda, M., Baron, M., and Pérez-Bueno, M.-L. (2021). Thermal imaging for plant
stress detection and phenotyping. Remote Sens. 13 (1), 68. doi: 10.3390/rs13010068

Prakash, P. T., Banan, D., Paul, R. E., Feldman, M. J.,, Xie, D., Freyfogle, L., et al.
(2021). Correlation and co-localization of QTL for stomatal density, canopy
temperature, and productivity with and without drought stress in Setaria. J. Exp. Bot.
72 (13), 5024-5037. doi: 10.1093/jxb/erab166

Pratap, A., Gupta, S., Nair, R. M., Gupta, SK,, Schafleitner, R., Basu, P. S., et al. (2019).
Using plant phenomics to exploit the gains ofgenomics. Agronomy 9 (3), 126.
doi: 10.3390/agronomy9030126

R Core Team. (2013). R: A language and environment for statistical computing.

Sakurai, K., Toda, Y., Hamazaki, K., Ohmori, Y., Yamasaki, Y., Takahashi, H., et al. (2023).
Random regression for modeling soybean plant response to irrigation changes using time-
series multispectral data. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1201806

Slowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels
with ‘ggplot2’. R package version 0.9.3.

Solimani, F., Cardellicchio, A., Nitti, M., Lako, A., Dimauro, G., and Reno, V. (2023).
A systematic review of effective hardware and software factors affecting high-
throughput plant phenotyping. Information 14 (4), 214.

Sreedasyam, A., and Schmutz, J. (2019). “Dynamic transcriptional landscape of
polyploid plants,” in Plant and Animal Genome(San Deigo, CA).

Frontiers in Plant Science

13

10.3389/fpls.2023.1305292

Stutsel, B., Johansen, K., Malbéteau, Y. M., and McCabe, M. F. (2021). Detecting
plant stress using thermal and optical imagery from an unoccupied aerial vehicle. Front.
Plant Sci. 12. doi: 10.3389/fpls.2021.734944

Townsend, T. (2020). “1B - World natural fibre production and employment,” in
Handbook of Natural Fibres, 2nd ed. Eds. R. M. Kozlowski and M. Mackiewicz-
Talarczyk (Delhi: Woodhand publishing) 15-36. doi: 10.1016/B978-0-12-818398-
4.00002-5

Van der Walt, S., Schonberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,
Yager, N, et al. (2014). scikit-image: image processing in Python. Peer] 2, e453.

Wegier, A., Alavez, V., and Pifiero, D. (2016). “Cotton: traditional and modern uses,”
in Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica. Eds. R.
Lira, A. Casas and J. Blancas (New York: Springer), 439-456. doi: 10.1007/978-1-4614-
6669-7_18

Wendel, J. F., Brubaker, C., Alvares, 1., Cronn, R, and Stewart, J. M. (2009).
“Evolution and natural history of the cotton genus,” in Genetics and Genomics of
Cotton. Ed. A. H. Paterson (New York, NY: Springer US (Plant Genetics and Genomics:
Crops and Models), 3-22. doi: 10.1007/978-0-387-70810-2_1

Wendel, J. F., Brubaker, C. L., and Seelanan, T. (2010). “The origin and evolution of
gossypium,” in Physiology of Cotton. Ed. J. Stewart, et al (Dordrecht: Springer
Netherlands), 1-18. doi: 10.1007/978-90-481-3195-2_1

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York:
Springer-Verlag).

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., Frangois, R., et al.
(2019). Welcome to the tidyverse. J. Open Source Software 4, 1686. doi: 10.21105/
j0ss.01686

Wickham, H., Francois, R., Henry, L., Miiller, K., and Vaughan, D. (2023). dplyr: A
Grammar of Data Manipulation. R package version 1.1.2. Available at: https://cran.r-
project.org/web/packages/ggrepel/ggrepel.pdf

Zhao, C,, Zhang, Y., Du, J., Guo, X., Wen, W, Gu, S,, et al. (2019). Crop phenomics:
Current status and perspectives. Front. Plant Sci. 10, 714.

Zhao, L., Wang, L., Li, J., Bai, G,, Shi, Y., and Ge, Y. (2021). “Toward accurate
estimating of crop leaf stomatal conductance combining thermal IR imaging, weather
variables, and machine learning,” in Autonomous air and ground sensing systems for
agricultural optimization and phenotyping VI, vol. 11747, 98-105. Available at: https://
plantstomata.wordpress.com/2021/11/29/estimating-of-crop-leaf-stomatal-
conductance-combining-thermal-ir-imaging-weather-variables-and-machine-
learning/

frontiersin.org


https://doi.org/10.1016/j.agsy.2021.103221
https://www.usda.gov/sites/default/files/documents/2023AOF-cotton-outlook.pdf
https://www.usda.gov/sites/default/files/documents/2023AOF-cotton-outlook.pdf
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1093/jxb/ert208
https://doi.org/10.1093/plphys/kiab395
https://doi.org/10.3390/rs13010068
https://doi.org/10.1093/jxb/erab166
https://doi.org/10.3390/agronomy9030126
https://doi.org/10.3389/fpls.2023.1201806
https://doi.org/10.3389/fpls.2021.734944
https://doi.org/10.1016/B978-0-12-818398-4.00002-5
https://doi.org/10.1016/B978-0-12-818398-4.00002-5
https://doi.org/10.1007/978-1-4614-6669-7_18
https://doi.org/10.1007/978-1-4614-6669-7_18
https://doi.org/10.1007/978-0-387-70810-2_1
https://doi.org/10.1007/978-90-481-3195-2_1
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/web/packages/ggrepel/ggrepel.pdf
https://cran.r-project.org/web/packages/ggrepel/ggrepel.pdf
https://plantstomata.wordpress.com/2021/11/29/estimating-of-crop-leaf-stomatal-conductance-combining-thermal-ir-imaging-weather-variables-and-machine-learning/
https://plantstomata.wordpress.com/2021/11/29/estimating-of-crop-leaf-stomatal-conductance-combining-thermal-ir-imaging-weather-variables-and-machine-learning/
https://plantstomata.wordpress.com/2021/11/29/estimating-of-crop-leaf-stomatal-conductance-combining-thermal-ir-imaging-weather-variables-and-machine-learning/
https://plantstomata.wordpress.com/2021/11/29/estimating-of-crop-leaf-stomatal-conductance-combining-thermal-ir-imaging-weather-variables-and-machine-learning/
https://doi.org/10.3389/fpls.2023.1305292
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	AI-assisted image analysis and physiological validation for progressive drought detection in a diverse panel of Gossypium hirsutum L.
	Introduction
	Materials and methods
	Plant materials
	Growth conditions
	Experimental design
	Leaf-level physiological measurements
	Thermal imagery collection
	Data analysis
	Hybrid IP/ML software pipeline for thermal data

	Results and discussion
	Statistical analyses
	Machine learning algorithms
	Testing the physiological soundness of the AI analysis

	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


