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Introduction: Cultural eutrophication threatens numerous ecological and
economical resources of Florida's coastal ecosystems, such as beaches,
mangroves, and seagrasses. In April 2021, an infrastructure failure at the retired
Piney Point phosphorus mining retention reservoir garnered national attention, as
814 million liters of nutrient rich water were released into Tampa Bay, Florida over
10 days. The release of nitrogen and phosphorus-rich water into Tampa Bay — a
region that had been known as a restoration success story since the 1990s —
has highlighted the potential for unexpected challenges for coastal nutrient
management.

Methods: For a year after the release, we sampled bi-weekly at four sites to
monitor changes in nutrients, stable isotopes, and phytoplankton communities,
complemented with continuous monitoring by multiparameter sondes. Our
data complement the synthesis efforts of regional partners, the Tampa Bay and
Sarasota Bay Estuary Programs, to better understand the effects of anthropogenic
nutrients on estuarine health.

Results: Phytoplankton community structure indicated an initial diatom bloom
that dissipated by the end of April 2021. In the summer, the bay was dominated by
Karenia brevis, with conditions improving into the fall. To determine if there was a
unique carbon (C) and nitrogen (N) signature of the discharge water, stable isotope
values of carbon (8*C) and nitrogen (8**N) were analyzed in suspended particulate
material (SPM). The 8N values of the discharge SPM were —17.88%. + 0.76, which
is exceptionally low and was unique relative to other nutrient sources in the
region. In May and early June of 2021, all sites exhibited a decline in the 8N
values of SPM, suggesting that discharged N was incorporated into SPM after the
event. The occurrence of very low 8N values at the reference site, on the Gulf
Coast outside of the Bay, indicates that some of the discharge was transported
outside of Tampa Bay.

Discussion: This work illustrates the need for comprehensive nutrient
management strategies to assess and manage the full range of consequences
associated with anthropogenic nutrient inputs into coastal ecosystems. Ongoing
and anticipated impacts of climate change — such as increasing tropical storm
intensity, temperatures, rainfall, and sea level rise — will exacerbate this need.

phosphogypsum, stable isotopes, phytoplankton, harmful algal bloom, carbon,
nitrogen, Piney Point
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1. Introduction

Cultural eutrophication and climate change are two of the most
important threats to the health and sustainability of coastal ecosystems
around the world (Nixon, 1995; Hoegh-Guldberg and Bruno, 2010;
Doney et al,, 2012). From an algal perspective, cultural eutrophication
has elevated the potential for harmful algal blooms (HABs; Cloern,
2001; Paerl et al., 2006; Heisler et al., 2008; Glibert, 2020; Gobler,
2020). Current trends in climatic conditions are exacerbating the
challenges associated with eutrophication due to increases in
temperature, changes in rainfall patterns, and increases in the intensity
of tropical storms (Webster et al., 2005; Oneil et al., 2012; Wetz and
Yoskowitz, 2013; Glibert et al., 2014; Griffith and Gobler, 2020; Phlips
et al., 2020). One of the potential mechanisms for the combined
impacts of eutrophication and climate change is the disruption of
engineered structures associated with water treatment and retention
(Lehner et al., 2011; Beusen et al., 2015; Grill et al., 2015; Maavara
etal,, 2015). Accidental or unavoidable discharges from compromised
infrastructure can expose surrounding aquatic environments to
excessive nutrient, algal and pollutant loads that negatively affect water
quality, including elevated risks for HABs (Sin et al., 2013; Phlips et al,,
2020; Herren et al, 2021; Metcalf et al, 2021). In this study,
we examined an emergency release of water from a retired phosphorus
mining reservoir into Tampa Bay, Florida and evaluated changes in
water quality and algal populations in the Bay a year after the event.

Tampa Bay was designated as an impaired coastal waterbody in the
1980s, in part because of widespread losses of seagrasses. Subsequent
restoration efforts and targeted nutrient management strategies resulted
in successful restoration of seagrass habitats by the end of the century
(Yates et al., 2011; Greening et al., 2014; Sherwood et al., 2017; Tomasko
et al,, 2018; Beck et al., 2019; DeAngelis et al.,, 2020; Tomasko et al.,
2020). Despite these successes, nutrient management is an ongoing
challenge due to increased development, reclaimed water usage, and
septic and industrial activities adjacent to the Bay. Recently, higher
shallow water temperatures and relatively high, sustained hydrologic
inputs potentially linked to climate change drivers may also
be confounding nutrient management efforts (Tampa Bay Nitrogen
Management Consortium (TBNMC), 2022). During the 2016-2022
period, significant seagrass coverage was lost according to aerial
photography estimates (>25% decline from 2016 peak coverage,
or>11,000 acres of seagrass coverage loss; SWFWMD, unpublished
data). In addition to this recent bay-wide and regional seagrass loss,
water quality declines in the northern portion of the bay (Old Tampa
Bay) have occurred, and unexpected events, such as periodic releases of
industrial process water, have caused further management challenges
(Tampa Bay Estuary Program, 2022).

In late March 2021, an impaired liner at a decommissioned
fertilizer facility (Piney Point) prompted the emergency release of 814
million liters of process water mixed with dredge water into the Bay,
from March 30th to April 9th, 2021 (Nelson et al., 2021; Beck et al.,
2022). The discharge water was high in inorganic nutrients, specifically
ammonium and orthophosphate, prompting concerns that this pulse
of nutrients might result in increased primary productivity, including
phytoplankton, macroalgae and HABs, with adverse effects to seagrass
meadows and other coastal habitats. Initial analyses soon after the
event determined that there was a localized diatom bloom, and that
the excess nutrients within the bay may have exacerbated the
development of a red tide (Karenia brevis) bloom that was transported
into the Bay (Beck et al., 2022).
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While the initial effects of the discharge have been reported, the
long-term effects on water quality and phytoplankton community
structure have not yet been investigated. Here, we further investigate
the fate of nutrients released from Piney Point and characterize the
water quality conditions and phytoplankton community composition
for the year following the event. We hypothesized that the initial pulse
of inorganic nutrients was readily utilized by phytoplankton
communities. This likely led to internal cycling of Piney Point-derived
nutrients within the Bay, although other mechanisms, such as the
deposition of nutrients into bay sediments and transport of nutrients
outside of the bay were also likely important mechanisms influencing
the fate of nutrients discharged from the facility. To evaluate this
hypothesis, we monitored changes in water column nutrients, in situ
water quality parameters, stable isotopes of carbon (C) and nitrogen
(N) in suspended particulate material (SPM), chlorophyll a
concentrations, and phytoplankton community structure over the
course of a year after the event.

Our year-long monitoring campaign confirmed there was an
initial diatom bloom adjacent to the location of the discharge that
dissipated by the end of April 2021, as previously described in Beck
et al. (2022), and revealed that elevated diatom biomass was more
extensive than previously recognized as it extended to back bay
regions. During the summer, the site adjacent to Piney Point had high
K. brevis biomass (3mg C L"), which then declined into the fall.
We found that the stable isotope values of C and N (§"°C and 8"N) of
the discharge water SPM were-15.23%o0+0.53 and-17.88%o0+0.76,
respectively. A 8N value of-17.88%o is exceptionally low and was
unique relative to other nutrient sources in the region, likely due to
isotopic fractionation associated with ammonium assimilation within
the reservoir. In May and early June of 2021, all sites in the discharge
region exhibited a sharp decline in the 3"°N values of SPM, suggesting
that discharge N was incorporated into SPM after the event, which
may have been driven either by phytoplankton uptake of N and/or N
sorption onto particulate material in the bay. This was further
supported by concomitant declines in C:N values. After mid-June
2021, 8"N values generally returned to April 2021 values. This study
found that phytoplankton communities and water quality were altered
by the Piney Point event and that these dynamics can be influenced by
tropical storms, highlighting the synergistic effects between
disruptions of engineered structures and periodic events such as
storms, which are predicted to increase in intensity due to climate
change (Webster et al., 2005; Wetz and Yoskowitz, 2013).

2. Methods
2.1. Site description

Four sites were selected in consultation with the Tampa Bay
Estuary Program (TBEP) and the University of South Florida’s Tampa
Bay Coastal Ocean model (Chen et al., 2018, 2019). The sites included:
one site proximal to Piney Point Creek, which is connected to the
Piney Point facility via drainage canals (hereafter referred to as Piney
Point), two back bay regions that were located south of the discharge
location and forecast to have longer residence times (Bishop Harbor
and Joe Bay), and one reference site outside of the Bay (St. Joseph
Sound; Figure 1). All sites were located adjacent to TBEP seagrass
monitoring transects (Beck et al., 2022) and had depths that varied
with the tidal cycle, but generally ranged from 1-3 m. One of the back
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bay regions (Bishop Harbor) was the site of previous releases from the
Piney Point facility (Garrett et al., 2011; Switzer et al., 2011), and the
reference site was outside of the Bay, at a relatively pristine location
with healthy seagrass meadows (Tomasko et al., 2020). For this event,
emergency releases were conveyed directly into Tampa Bay in the
vicinity of Port Manatee from March 30th to April 9th 2021, while an
uncontrolled discharge to Piney Point creek occurred from March
30th to April 3rd, 2021 (Florida Department of Environmental
Protection, 2021; Figure 1).

Water samples were collected on a bi-weekly basis from April 2021
until April 2022. At each site, water samples were collected from
surface to near bottom (to avoid collection of bottom material) on a
near bi-weekly basis using a depth-integrated pole sampling method
(Phlips et al, 2010) to minimize any bias from water column
stratification. Water samples were collected for total and dissolved
nutrients, suspended particulate material (SPM), chlorophyll g, and
phytoplankton community analyses, as described below. In addition
to bi-weekly water samples, a discharge water sample was collected on
April 7th, 2021, and processed as described for other water samples.

Piney Points b

Piniey Pdint Creek*
Piney Point Facility

Port Manatee <7 s

Bishop Harbore
Joe Baye

Piney Pointe

FIGURE 1

(A) Location of the Piney Point facility and study sites within and
outside Tampa Bay. (B) Lower bay sites and their location in
relationship to Piney Point and the discharge locations. Discharges
occurred at Port Manatee from March 31st to April 9th, and at Piney
Point Creek until April 3rd. Sites are marked with yellow points,
locations of interest are marked with red points.
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An additional sample collection was conducted in October 2021 at the
southern holding pond where the initial liner tear occurred to evaluate
seasonal changes in reservoir characteristics and efforts to employ
innovative treatment technologies within the remaining wastewater
held at the facility following the emergency release. All samples were
transported on ice and either refrigerated or frozen until analyzed.

2.2. Chlorophyll a and phytoplankton
analyses

Water samples were collected and filtered for chlorophyll a
analysis in the field. Phytoplankton were filtered onto 0.7-pm
Whatman glass fiber filter and stored in a dark container at
—20°C. Chlorophyll a was solvent extracted (Sartory and Grobbelaar,
1984) and measured spectrophotometrically according to Standard
Methods (American Public Health Association, 2005).

Integrated, whole water samples were preserved on-site with
Lugol’s solution (American Public Health Association, 2005) and
analyzed microscopically for phytoplankton abundance and species
composition. General phytoplankton abundance and composition
were determined using the Utermo6hl method (Utermohl, 1958), as
described in Badylak et al. (2014). Samples preserved in Lugol’s were
settled in 19 mm diameter cylindrical chambers. Phytoplankton cells
were identified and counted at 400x and 100x with a Leica phase
contrast inverted microscope. At 400x, a minimum of 100 cells of a
single taxon and 5 grids were counted. If 100 cells were not counted
by 30 grids, up to a maximum of 100 grids were counted until 100 cells
of a single taxon were reached. At 100x, a total bottom count was
completed for taxa >30 pm in size.

Picocyanobacteria abundances were determined using a Zeiss
Axio compound microscope, using green and blue light excitation
(Fahnenstiel and Carrick, 1992; Phlips et al., 1999). Samples were
preserved with buffered glutaraldehyde. Subsamples of water were
filtered onto 0.2pm Nucleopore filters and mounted between a
microscope slide and cover slip with immersion oil and picoplankton
counted at 1000x magnification.

Count data were converted to phytoplankton biovolume, using
the closest geometric shape method (Smayda, 1978; Sun and Liu,
2003). Phytoplankton C values (as mg C L") were estimated by
applying conversion factors for different taxonomic groups to
biovolume estimates (expressed as 10°pm’mL™"): ie., 0.065 x
biovolume of diatoms, 0.22 x biovolume for cyanobacteria, and
0.16 x biovolume for dinoflagellates or other taxa (Strathmann, 1967;
Ahlgren, 1983; Sicko-Goad et al., 1984; Verity et al., 1992; Work
et al., 2005).

2.3. In situ measurements

A YSI EXO2 multiparameter sonde was deployed at each of the
four study sites on April 16th, 2021, soon after the discharge ceased
on April 9th. Deployment depth ranged from 1-3 m, depending on
the site. Sondes continuously measured salinity, optical dissolved
oxygen (DO), in situ chlorophyll, phycoerythrin (PE), fluorescent
dissolved organic matter (fDOM), specific conductivity, temperature,
pH, total dissolved solids, turbidity, and total suspended solids every
10 min. The average value for each day is reported here. Sondes were
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FIGURE 2

Chlorophyll a concentrations (ugL™) at the three lower bay sampling
sites (i.e., Bishop Harbor, Joe Bay, and Piney Point), and reference
site (i.e., St. Joseph Sound).

inspected on a bi-weekly basis, with maintenance and calibration
occurring every ~3weeks, or sooner if needed, according to the
manufacturer’s instructions. Data were downloaded from sondes
during bi-weekly sampling trips using KorEXO software. Data from
April 16th, 2021 to May 5th, 2022 were aggregated and cleaned for this
study using R version 4.1 (R Core Development Team, 2008). Values
that were out of sensor range were flagged and removed from the
dataset prior to analysis. For all parameters, approximately 1% or less
of the values were out of range, except for in situ chlorophyll where
9.8% of the values were out of range.

2.4. Dissolved and particulate samples

Water samples collected for total phosphorus (TP) and total
Kjeldahl nitrogen (TKN) were acidified to a pH of 2 in the field prior
to analysis and analyzed within 28 days according to EPA Method
365.1 and 353.2, respectively. Water samples for ammonium-N
(NH,-N) and nitrate + nitrite (NO,) analyses were 0.2 um filtered and
acidified to a pH of 2 in the field and analyzed within 28 days
according to EPA Method 350.1. Water samples for total
orthophosphate (orthoP) were not acidified and were analyzed within
48h according to EPA Method 365.1. All nutrient analyses were
certified and conducted at the University of Florida’s Analytical
Research Laboratory, a National Environmental Laboratory
Accreditation Program (NELAP) certified facility. Values below the
minimum detection limit were set to NA prior to analysis.

Suspended particulate material was collected on pre-combusted,
pre-weighed glass fiber filters (GF/F), frozen and then freeze dried.
Filters were then placed into tin capsules for elemental (total carbon
(TC) and total nitrogen (TN)) and stable isotope (§"°C, §"°N) analysis.
Elemental and stable isotope analyses were conducted at the University
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of Florida’s Stable Isotope Laboratory, using a Carlo Erba 1500 CN
elemental analyzer coupled to a Thermo Electron DeltaV Advantage
isotope ratio mass spectrometer (Carlo Erba/ThermoFisher
Scientific™, Waltham, MA, United States). Stable isotope ratios are
reported for §"°C and 8N in standard delta notation (%o) relative to
Vienna Pee Dee Belemnite (VPDB) and atmospheric N, standards,
respectively. Total carbon and TN are reported on a percent mass
basis. The C:N ratio is reported as the mass ratio, i.e., weight %TC +
weight %TN.

2.5. Data analysis

Data analysis was conducted in R version 4.1 (R Core
Development Team, 2008). Grab sample values (i.e., chlorophyll 4,
phytoplankton, elemental analysis and isotope values) were averaged
by location and month, while in situ sonde measurements were
averaged by location and day. Trends in these values were then
examined to elucidate the timing of maximum and minimum values
relative to the emergency release and Tropical Storm Elsa, as well as
variation between sites and relative to published values. Analysis
scripts are available at the following GitHub repository.!

3. Results

3.1. Chlorophyll a concentrations and total
phytoplankton biomass

Chlorophyll a concentrations were used as one of the indicators
of phytoplankton biomass. Overall temporal trends in chlorophyll a
concentrations were similar at the three lower bay sampling sites, with
concentrations mostly over 5pugL™" from April through August 2021
(Figure 2), exceeding an annual average lower bay management target
of 4.6 pgL~" (Tampa Bay Estuary Program, 2022). Peaks in chlorophyll
a during the latter period of April-August reached values up to
20pugL™" at Piney Point. After summer, chlorophyll a declined to
below 5pgL~" through the end of the study period, with a few
exceptions. By contrast, chlorophyll a concentrations at the St. Joseph
Sound reference site were consistently below 3pgL™" except for
moderately elevated concentrations in July and August of 2021,
coincident to red tide blooms that extended along the Southwest
Florida coast during this time. Lower Tampa Bay values exceeded the
2006 to 2020 long-term median chlorophyll a value of lower Tampa
Bay, which was 3.1pgL™" (min 2.3 pgL™", max 3.5ugL™"; Beck et al,,
2022), but values of the reference site were similar to the long-term
median value of the Lower Tampa Bay (3.1pugL™).

On April 7th, 2021, emergency release water was dominated by a
spherical single-celled green alga (Chlorophyta). Cell density of the
green alga was 3.4 x 10® cells L', and biomass was 2.34mg C L™,
almost an order of magnitude higher than the mean biomass for the
study period in the Piney Point nearshore basin which was 0.36mg CL™".
The discharge sample also contained several other species of

1 https://github.com/elisemorrison/PineyPoint2021
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nanophytoplankton, but the biomass contributions of these taxa were
minor, i.e., < 0.02mg C L™

The time-series of total phytoplankton biomass for the three lower
bay sampling sites (i.e., Piney Point, Bishop Harbor, and Joe Bay) from
April 9th, 2021, through May 2022 exhibited similar temporal
patterns, with elevated levels in the late Spring of 2021, with peaks
near, or over, 1.5mg C L' (Figure 3). In mid-summer, biomass levels
declined, and remained near, or below, 0.5mg C L™ through the end
of the study period in May 2022. The reference site in St. Joseph Sound
had modestly elevated total biomass in June and July, with peaks near
0.5mg C L', then remained below 0.3mg C L' for the rest of the
study period. Mean total phytoplankton biomass values for the study
period were similar across the three lower bay sampling sites, while
the reference site exhibited the lowest value - although statistically it
could not be differentiated from the Bishop Harbor or Piney Point
sites (‘Table 1).

3.2. Phytoplankton composition

The initial peaks in phytoplankton biomass at the Bishop Harbor,
Joe Bay and Piney Point sites in May 2021 were dominated by diatoms
(Figure 3). Three diatom taxa, Leptocylindrus minimus, Leptocylindrus
danicus, and Cerataulina pelagica, dominated the initial peak period
in terms of biomass (Table 2). The subsequent major peak in biomass
at the Piney Point site in June was dominated by the toxic dinoflagellate
Karenia brevis and reached 3mg C L™". The more modest peaks in
biomass at St. Joseph Sound in May and June of 2022 were dominated
by dinoflagellates, including K. brevis in June. After July 2022, the
Bishop Harbor, Joe Bay, and Piney Point sites showed variability in
dominant taxa, with periods of supremacy by all four major
phytoplankton groups, i.e., dinoflagellates, diatoms, cyanobacteria
(primarily picocyanobacteria), and “other” taxa (most prominently
nanophytoplankton, such as cryptophytes; Figure 3; Table 2).

Over the study period, mean biomass of diatoms were higher than
dinoflagellates, cyanobacteria and “other” taxa at Bishop Harbor and
Joe Bay (Table 1). At Piney Point, mean dinoflagellate and diatom
biomass was higher than cyanobacteria and “other” taxa. At St. Joseph
Sound, there were no significant differences in mean biomass of the
four phytoplankton groups. In terms of regional differences within
each phytoplankton group, mean dinoflagellate and cyanobacteria
biomass levels across all the sites were not significantly different,
despite the high mean value of dinoflagellates at the Piney Point site
(Table 1). The apparent anomalously high annual mean at Piney Point
reflects the effect of exceptionally high biomass of K. brevis in June on
the mean. Joe Bay had a significantly higher mean diatom biomass
than at St. Joseph Sound. For “other” taxa, Joe Bay had the highest
mean biomass and St. Joseph Sound had the lowest mean biomass.

To examine more specific differences in taxonomic composition
at the reference and lower study sites, a comparison was made of the
individual taxa that accounted for the top 10% of biomass observations
in the two regions, which roughly represented the Top-50 taxa
observations at the St. Joseph Sound (reference site), and the Top-150
taxa observations for the combined results from the Bishop Harbor,
Joe Bay and Piney Point sites (lower bay sites; Table 2). There were
several key similarities, including the strong representation of
cyanobacteria on both lists, and many similarities in the list of
dinoflagellate species, including the prominence of the HAB species

Frontiers in Ecology and Evolution

10.3389/fevo.2023.1144778

Karlodinium veneficum and K. brevis. These similarities fall in line
with the lack of significant differences between sites for mean values
of cyanobacteria and dinoflagellates biomass over the study period
(Table 1). By contrast, for diatoms, there was a wider range of species
and higher biomass values for the lower bay sites than the reference
site (Table 2). The Top-150 list for the lower bay sites was led by
spherical picoplanktonic cyanobacteria, other undefined small
nanoplanktonic eukaryotes and the euryhaline cosmopolitan diatom
species Skeletonema costatum, L. danicus and Rhizosolenia setigera, in
terms of frequency on the list (Table 2). In terms of highest biomass
observations, the dinoflagellate K. brevis, and the diatoms L. minimus,
L. danicus, Guinardia delicatula, Skeletonema costatum, and C. pelagica
led the Top-150 list, with peak biomass values greater than
0.40mg CL™

The Top-50 list for the St. Joseph Sound reference site was led by
spherical picoplanktonic cyanobacteria, other undefined small
nanoplanktonic eukaryotes, and the dinoflagellate Karlodinium
veneficum, in terms of frequency on the list (Table 2). for the three
primary sampling sites. In terms of highest biomass observations in
the Top-50 list for the St. Joseph Sound reference site, only K. brevis
had a peak value similar to that encountered in the Top-150 list, i.e.,
0.25mg CL™.

Another feature of the Top-50 and Top-150 lists of highest
biomass observations was the presence of known HAB species, most
of which are potential producers of toxins (Lassus et al., 2015;
Table 2). The largest number of HAB species for both lists were
dinoflagellates. K. veneficum, K. brevis, Takayama sp. and Akashiwo
sanguinea were near the top of both lists in terms of HAB species.
K. brevis had the highest peak biomass for HAB species in both lists,
with a peak of 2.71mg C L' (i.e., 3.9 million cells L") on the
Top-150 list, which represents a major bloom. The potentially toxic
filamentous nitrogen-fixing cyanobacterium Trichodesmium
erythraeum and pennate diatom Pseudo-nitzschia sp. were on both
lists. Karenia brevis was the only HAB species that reached major
levels of concern in terms of harmful impact during this
study period.

3.3. Total and dissolved nutrients

On April 6th, 2021, the water discharged from the facility was
dominated by inorganic nutrients, namely ammonium-N (210mgL™")
and orthophosphate (140mgL™"), with NO, concentrations of
0.004mgL™" (Supplementary Table 1; Beck et al,, 2022). All sites
exhibited their greatest orthoP values in April 2021, with lower orthoP
concentrations seen at sites further from the discharge site at that time
(Supplementary Tables 1, 2). OrthoP values were greater in April 2021
when compared to April 2022 for all sites. All sites also exhibited their
highest average total P values in April 2021 and had lower TP values in
April 2022 when compared to April 2021, except for the reference site
St. Joseph Sound. St. Joseph Sound had slightly lower total P values in
April 2021 (11.38 pgL™") when compared to April 2022 (13.71 pgL™).
For all sites, ammonium-N was highest in the first 5 months after the
event, and in January 2022 with concentrations peaking in June and
July of 2021 and in January 2022. Average monthly ammonium-N
values in the lower Tampa Bay sites were from 0.14 mgL™" (Piney Point
and Bishop Harbor) to 0.17mgL™" (Joe Bay). Generally, NO, was not
detectable at our sites (Supplementary Tables 1, 2).

frontiersin.org


https://doi.org/10.3389/fevo.2023.1144778
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Morrison et al.

10.3389/fevo.2023.1144778

FIGURE 3

3 3
< i Joe Ba
TP Bishop Harbor 25 | /\ y
o | |
£ 2 24 ||
§1.5- 1.5 - J‘“
£ 1 1 4
o
& 05 0.5 -
0 0 -
100% 100%
c,\°80% 80% -
§“60% 60%
€ 40% 40%
i)
0 20% 20%
0% 0% -
SETTSSTSSINNTSYY 5555555559988 8§
> Cc S5 OOat > 0 cCc o= = > c E>2DCc 5 o >0 cCc o= = > C
<£3538624328=2<83 &§3338628582883
- 3 3
. w Piney Point St. Joseph Sound
> 2.5 - y 25 - P
€ 5 3 2
& J
g1.5- | 15 -
s "1/\ T
m 0.5 s 0.5 ,
0_
100% 100%
X
°. 80%
%
© 60%
£
K] 40%
(11]
20%
i 0%_
™ T T T T ™ - ™ ™ N NN N NN TN DN DI N N I T N NN ANANWA
R I I I D I R I I I O BN
E > c s Dot >0 c o= = > c E > c 5 oo >0 c o= = > cC
2E335288285¢e2283 TE3353386285228%3

|:| K. brevis - Other Dinos |:| Diatoms
B cyano [ | Al Other

Time series of phytoplankton biomass (mg carbon L™) for the four core sites, i.e., Bishop Harbor, Joe Bay, Piney Point, and St. Joseph Sound (reference
site). Time series are divided into four phytoplankton groups, dinoflagellates (red), diatoms (yellow), cyanobacteria (blue), and all “other” taxa (green).
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3.4. In situ measurements

For in situ measurements, there were distinct differences between the
study sites. Salinity was consistently higher at the reference site, St. Joseph
Sound (lowest 27.04 psu in mid-February 2022 and highest in early June
2021 34.96 psu) relative to the lower bay sites (0.66 to 34.94 psu). Salinity
was highest at the beginning of the study period (Figure 4A), particularly
for Piney Point and Bishop Harbor, which are further into the Bay. Joe
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Bay (closer to the mouth of Tampa Bay), and St. Joseph Sound (reference
site) had increases in salinity through May and June 2021, then a decline
in salinity in June and July 2021. Joe Bay’s salinity was lowest in
mid-August 2021 (24.70 psu), and greatest in mid-June 2021 (34.94 psu).
Piney Point’s salinity was lowest in early July 2021 (16.98 psu), likely due
to Tropical storm Elsa, and greatest in early June 2021 (33.13 psu). Bishop
Harbor’s salinity dipped in October 2021 to 0.66psu, and its highest
salinity was at the end of May 2021 (34.47 psu; Figure 4A).
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TABLE 1 Mean biomass of four groups of phytoplankton (i.e.,
dinoflagellates, diatoms, cyanobacteria and all “other” taxa) at the four
sampling sites (i.e., Bishop Harbor, Joe Bay, Piney Point and St. Joseph
Sound) over the entire study period.

Phytoplankton Mean Biomass, pg carbon L
(€17e]0] ) Bishop Joe Piney St.
Harbor Bay Point  Joseph
Sound
Dinoflagellates 0.050 b 0.055b 0.168 a 0.048 a
(0.015) (0.014) (0.113) (0.013)
A A A A
Diatoms 0.192a 0.329a 0.115a 0.035a
(0.054) (0.143) (0.050) (0.018)
AB A AB B
Cyanobacteria 0.050 b 0.048 b 0.044 b 0.045a
(0.005) (0.005) (0.005) (0.008)
A A A A
Other Taxa 0.054b 0.085b | 0.039b 0.030a
(0.008) (0.010) (0.005) (0.003)
B A BC C
Total 0.347 0.516 0.366 0.159
(0.065) (0.153) (0.131) (0.027)
AB A AB B

Standard errors are shown in parentheses. The results of Duncan multiple range tests are
shown as letters associated with the mean values. Capital letters relate to statistical
differences between mean values for a phytoplankton group at each of the four sampling
sites. A comparison of mean values for total phytoplankton biomass at the four sampling
sites is shown at the bottom of the Table. Lower case letters relate to differences in mean
values for the four phytoplankton groups at each site. Mean values with the same letter
designation are not significantly different.

Dissolved oxygen (DO) was greatest at the reference site, St.
Joseph Sound, and at Piney Point, while DO was lower in the back bay
sites (Figure 4B). DO values tended to be lowest in mid- to late
summer of 2021 and were highest from December 2021 to February
2022. All sites exhibited a slight decline in DO into the summer, and
experienced increases in DO starting in October 2021, with a peak in
DO in early 2022. The lowest daily mean DO at Bishop Harbor was at
the end of September 2021 (1.52mg L") and greatest in early February
2022 (8.98mgL™"). The lowest DO at Joe Bay was in mid-June
(3.45mgL™") and highest in December 2021 (8.63 mgL™"). The lowest
DO at Piney Point was at the end of June (4.64 mgL™") and greatest in
early July 2021 (10.27 mgL™"; Figure 4B), at the time of peak K. brevis
blooms in the Bay. The lowest DO at the reference site St. Joseph
Sound was at the end of September 2021 (4.06 mgL™") and greatest in
February 2022 (9.90mgL™).

In situ chlorophyll was consistently higher when compared to
extracted chlorophyll a (described above), and was greatest at Joe Bay and
Piney Point, both of which exhibited an increase in June and July 2021. In
general, sites exhibited the greatest in situ chlorophyll values in
mid-summer 2021, during the period of peak K. brevis blooms, and lowest
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values in the late fall and winter (Figure 4C). At Bishop Harbor, in situ
chlorophyll was greatest in early September 2021 (24.99ugL™"), and lowest
in late December 2021 (0.59pgL™). At Joe Bay, the greatest in situ
chlorophyll values were in late June 2021 (36.96pgL™"), and the lowest
values were in early December 2021 (0.95ugL™"). At the Piney Point site,
the greatest in situ chlorophyll was in early July 2021 (30.21pugL™), and
the lowest values were in mid-December 2021 (2.55pgL™). At St. Joseph
Sound, the greatest in situ chlorophyll values were in mid-July 2021
(24.4pgL™), and the lowest values were in mid-October 2021 (0.03 pgL™).

Phycoerythrin (PE) was greatest at Piney Point and Joe Bay, which
had spikes in PE in June and July of 2021 (Figure 4D). Similar to in
situ chlorophyll, PE was greatest in mid-summer 2021, corresponding
with K. brevis blooms in the region, and lowest in the winter months.
At Bishop Harbor, PE was greatest in early September 2021 (15.55
relative fluorescent units [RFU]) and lowest in late November 2021
(0.63 RFU). At Joe Bay, PE was greatest in mid-June 2021 (15.81 RFU)
and lowest in early December (0.69 RFU). At Piney Point, PE was
greatest in early July (14.74 RFU) and lowest in mid-May (1.32 RFU).
At St. Joseph Sound, the greatest PE values were in mid-July (9.74
RFU), and lowest values were in mid-December (0.05 RFU).

Florescent dissolved organic matter (fDOM) was consistently
higher in the back bay sites Bishop Harbor and Joe Bay, and lowest in
the reference site, St. Joseph Sound. All lower bay sites exhibited an
increase in fDOM in late July 2021 (Supplementary Figure 1). At
Bishop Harbor the lowest value was early October 2021 (10.97 quinine
sulfate units [QSU]) and greatest in mid-August 2021 (54.54 QSU).
Joe bay was lowest in March 2022 (0.67 QSU) and highest in late July
(42.84 QSU). Piney Point was lowest in mid-April 2022 (15.11 QSU)
and greatest in mid-August 2021 (55.84 QSU). St. Joseph Sound was
lowest in mid-December 2021 (5.15 QSU) and greatest in mid-October
2021 (22.34 QSU).

Patterns of turbidity varied by region (Supplementary Figure 1).
The turbidity at Bishop Harbor was lowest in mid-August 2021 [0.31
formazin nephelometric units (FNU)] and greatest in early September
2021 (22.71 FNU), which coincided with higher in situ chlorophyll
and PE values. The turbidity at Joe Bay was lowest in late January 2022
(0.70 FNU) and greatest in mid-September 2021 (42.59 FNU). Piney
Point had the lowest turbidity in mid-August 2021 (0.41 FNU) and
greatest in late November 2021 (68.12 FNU). St. Joseph Sound had the
lowest turbidity in mid-October 2021 (0.29 FNU) and greatest in
mid-July 2021 (82.76 FNU).

3.5. Suspended particulate material

The discharge water SPM had an exceptionally depleted 8"°N value
of —17.88%0+0.76, and a 8"C value of —15.23%0+0.53. Stable isotope
values were determined with a precision of 0.05%o and 0.09%o for 8N
and 8”C, respectively. The total nitrogen (TN) of the discharge water
SPM was 2.8%+0.1, and total carbon (TC) was 11.9%+0.5, with a C:N
ratio of 4.3+0.2. The SPM of the reservoir water in October had similarly
low 8”N and 8“C values as the discharge water from April,
—19.15%0+0.05 and —13.44 %o +0.03, respectively. Differences between
the SPM from April discharge and October reservoir samples are likely
due to the fact that on-site treatment technologies were being employed
at the site since April 2021.

The greatest particulate TC values (2.88-3.77%) were seen in April
2021 for three of the four sites and then declined over the course of the
study period (Figure 5A). The only exception was Piney Point, which
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TABLE 2 List of Top-50 individual biomass observations for individual taxa over the study period at the reference site, St. Joseph Sound (top panel), and
Top-150 for the combined record for the three lower bay sites, i.e., Bishop Harbor, Joe Bay, and Piney Point (bottom panel).

Reference site — St. Joseph Sound

Frequency Biomass range Max. #Cells
Species Group Top-50 Carbon mg L 103 cells L
Cryptophyte spp. Cryptophytes 3 0.02-0.03 3,537
Spherical picocyanobacteria spp. 15 0.03-0.16 894,902
Synechococcus spp. Cyanobacteria 2 0.02-0.04 116,726
Trichodesmium erythraeum™ 1 0.05 5
Leptocylindrus danicus 3 0.04-0.08 362
Chaetoceros sp. 2 0.04-0.13 2,181
Amphora/Entomoneis sp. 2 0.02-0.11 907
Diatoms
Chaetoceros wighamii 1 0.09 15,600
Pseudo-nitzschia sp.* 1 0.04 3,265
Thalassionema bacillare 1 0.02 181
Karlodinium veneficum* 5 0.02-0.16 635
Karenia brevis* 2 0.07-0.25 355
Akashiwo sanguinea* 2 0.03-0.06 8
Takayama sp.* 1 0.06 181
Dinoflagellates
Protoperidinium brevipes 1 0.06 91
Gyrodinium pingue 1 0.03 91
Prorocentrum texanum* 1 0.03 9
Prorocentrum minimum* 1 0.02 91
Nanoplankton spp. (2p-5p) (UD) Nanophytoplankton 5 0.02-0.05 15,238
Biomass range in top-50: 0.02-0.25

Primary sites — Bishop Harbor, Joe Bay, and Piney Point

Frequency Biomass range Max. #Cells
Species Group Top-150 Carbon mg L 103 cells L
Cryptophyte spp. Cryptophytes 3 0.04-0.05 5,351
Spherical picocyanobacteria 32 0.05-0.16 894,902
Trichodesmium erythraeum* Cyanobacteria 1 0.05 5
Rhizosolenia setigera 9 0.06-0.12 2,902
Skeletonema costatum 7 0.19-0.42 29,568
Leptocylindrus danicus 7 0.08-0.73 3,325
Chaetoceros sp. 5 0.05-0.06 3,627
Dactyliosolen fragilissimus 4 0.08-0.36 3,265
Cerataulina pelagica 4 0.07-0.42 2,358
Guinardia delicatula 4 0.05-0.61 1995
Leptocylindrus minimus 3 1.05-1.95 132,393
Amphora/Entomoneis sp. 3 0.06-0.11 907
Pennate diatom sp. . 3 0.05-0.07 12,879
Bellerochea horologicalis Diatoms 2 0.04-0.05 9
Coscinodiscus sp. 1 0.14 2
Chaetoceros wighamii 1 0.09 15,600
Cyclotella choctawhatcheana 1 0.08 28,117
Thalassionema bacillare 1 0.08 605
Chaetoceros costatus 1 0.07 726
Grammatophora marina 1 0.07 181
Rhabdonema adriaticum 1 0.07 11
Chaetoceros danicus 1 0.05 605
Pseudo-nitzschia sp.* 1 0.04 3,265

(Continued)
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Primary sites — Bishop Harbor, Joe Bay, and Piney Point

Frequency Biomass range Max. #Cells
Species Group Top-150 Carbon mg L™ 103 cells L
Karlodinium veneficum* 17 0.05-0.19 726
Karenia brevis* 4 0.04-2.71 3,847
Takayama sp.* 4 0.06-0.07 302
Karenia mikimoto* 2 0.10-0.11 181
Prorocentrum rhathymum* 2 0.06-0.34 94

Dinoflagellates
Akashiwo sanguinea™ 2 0.06-0.27 31
Gymnoid sp. 2 0.06-0.09 2,720
Peridinium quinquecorne 1 0.2 181
Prorocentrum texanum* 1 0.1 29
Protoperidinium brevipes 1 0.06 91
Nanoplankton spp. (2p-5p) (UD) Nanophytoplankton 18 0.05-0.20 64,088
Biomass range in top-150: 0.04-2.72

Frequency of occurrence on the “Top” lists for each taxon are shown, along with the range of biomass values for the observations on the list, and the highest cell density observed for taxa on

the lists. Taxa* with an asterisk are species on the IOC Harmful Algal Bloom list (Lundholm et al., 2009 onwards). “UD” indicates observations without a specific species identification.

exhibited its highest TC values (2.4% *1.3) in June 2021 coinciding with
the K. brevis bloom in the bay and had its second highest TC in April
2021 (average 1.8%+0.5; max 2.6%), concurrent with the release from
the Piney Point facility. The lowest TC values at Bishop Harbor and St.
Joseph Sound site were seen in mid-July 2021 (0.2+0.02%). A similar
trend was seen in TN values, where Bishop Harbor and Joe Bay exhibited
their greatest TN values in April 2021 (0.3-0.46%) Piney Point had its
greatest particulate TN value in June 2021 (0.32%+0.10; Figure 5B).
After early July 2021, sites exhibited a decline in particulate TN, with the
exception of St. Joseph Sound, which exhibited an increase in particulate
TN in August 2021, followed by a decline.

Over the study period, the lower Tampa Bay sites showed similar
trends in C:N values, with all sites exhibiting a higher C:N value in
April 2021, with a subsequent decline in C:N to a value of ~5 in June
2021 (Figure 5C). After June 2021, C:N values of the bay sites
increased and then stabilized from July 2021 to April 2022. Patterns
in C:N were slightly different at the reference site, St. Joseph Sound,
which also had high C:N values in April 2021, and a subsequent
decrease in June 2021. However, in July 2021 there was a decline in
C:N at St. Joseph Sound, likely driven by an influx of N derived from
the surrounding watershed in association with Tropical Storm Elsa’s
passing. Values then quickly increased and plateaued, until another
decline in C:N was seen in January 2022 at St. Joseph Sound. The
lower Tampa Bay sites also exhibited a slight decrease in C:N at this
time, but to lesser degrees.

All sites exhibited similar trends from April to December 2021
for 8N in SPM (Figure 6A). Specifically, 8N values declined in all
regions in May 2021, with values as low as —11.4%o at Bishop Harbor,
and —10.8%o * 0.02 at Piney Point, while the lowest average values at
the reference site, St. Joseph Sound (—8.75%o + 10.8). and Joe Bay
(—4.28%0 +7.7), were seen in June 2021. The decline in §"°N values
may be related to mixing and/or uptake of N from the Piney Point
discharge since the SPM 8N value of the Piney Point discharge in
April 2021 was —17.88%o + 0.76. Additionally, the Bishop Harbor and
St. Joseph Sound sites had an increase in §"°N values in January 2022,
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which coincided with a drop in C:N values, possibly driven by
terrestrial inputs of N, or remineralization by macroalgae in
the region.

In April 2021, 8"C values were consistently low at all sites ranging
from —26.1+3.3 at St. Joseph Sound to —22.6%0+0.9 at Joe Bay. An
increase in 8"C values was seen in May 2021 (Figure 6B), possibly
driven by C input from SPM within the Piney Point discharge, which
had 6"C values ranging from —14.01 to —15.82%o.

4. Discussion

4.1. Initial phytoplankton response to the
discharge

Temporal trends in phytoplankton composition and biomass
offer insights into possible effects of the 2021 Piney Point discharge
event on Tampa Bay proper. Chlorophyll a concentrations in the 3
months following the discharge period were significantly higher
than the same period in the following year at all three Bay sites
proximal to the source of the discharge (i.e., Bishop Harbor, Joe Bay,
and Piney Point). At the reference site, St. Joseph Sound, outside of
Tampa Bay proper, there was no major elevation of chlorophyll a
concentrations during the 3 months directly after the discharge
period, followed by moderately elevated concentrations in July and
August of 2021, coincident with red tide blooms that extended along
the Southwest Florida coast during this time. During the 3 months
following the discharge, peak chlorophyll a values at our Tampa Bay
sites fell within a range associated with meso-eutrophic coastal
regions, i.e., > 10-20pugL™" (Hagy III et al, 2022). The latter
chlorophyll levels (~20 pg L™") are common in the northeast region
of upper Tampa Bay, which is subject to autochthonous HAB events,
including blooms of the toxic dinoflagellate Pyrodinium bahamense,
but are rare in the outer regions of the bay (Badylak et al., 2007). As
such, the chlorophyll a values seen in the three months following
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FIGURE 4
In situ measurements for daily means of (A) salinity (psu), (B) dissolved oxygen (mgL), (C) in situ chlorophyll (ugL™), and (D) phycoerythrin (relative
fluorescence units, RFU) over the course of the study. The Piney Point event (March 30th — April 9th, 2021) is denoted by the green line, the period
with maximum (> 10° cells L™) Karenia brevis cell counts (Beck et al., 2022) is shown in the red box, and the date of tropical storm Elsa (July 5th, 2021)
is shown with the vertical dashed black line. The smoothing line was generated using local polynomial regression fitting with a span of 0.175.

the discharge exceeded the long-term median and range of
chlorophyll a values in lower Tampa Bay from 2006 to 2020, which
was 3.1pugL™" and 2.3-3.5ugL™" (Beck et al., 2022), and exceeded
the annual average lower bay management target of 4.6pugL™"
(Tampa Bay Estuary Program, 2022). High chlorophyll a levels are
encountered along the southwest coast of Florida during red tides
of the toxic dinoflagellate Karenia brevis (Heil et al., 2014; Milbrandt
et al,, 2021; Phlips et al., 2023), which periodically intrude into
Tampa Bay, as observed in this study (Beck et al., 2022).

Peaks in phytoplankton biomass observed at the lower bay
sampling sites in the 2 months following the Piney Point discharge
event were dominated by euryhaline diatom species (Eppley, 1977;
Brand, 1984; Balzano et al., 2011; Karthik et al., 2017), most
prominently Leptocylindrus minimus, Leptocylindrus danicus, and
Cerataulina pelagica. The three species are commonly found in
estuaries around the world (Reynolds, 2006), and in Florida (Badylak
and Phlips, 2004; Quinlan and Phlips, 2007; Hart et al., 2015),
including Tampa Bay (Badylak et al, 2007). The euryhaline
characteristic of these species makes them competitive in estuaries
like Tampa Bay, in which salinities can range from mesohaline (i.e.,
5-18psu) to euhaline (i.e., >30 psu), as observed in the three lower
bay sites in this study. The three diatom species are also known to have
high maximum growth rates, i.e., >1.5 dbl. day™" (Stolte and Garcés,
2006; Ajani et al,, 2016). The high growth rates allow such species to
take advantage of pulses of nutrients (Litchman et al., 2007; Cermeno
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et al.,, 2011; Karthik et al., 2017; Anderson et al., 2022), such as those
observed with the Piney Point discharge, compared to many bloom-
forming dinoflagellates encountered in coastal ecosystems in Florida
(Phlips etal., 2006, 2011) which have maximum growth rates less than
1 dbl. day™" (Stolte and Garcés, 2006; Matsubara et al., 2007). This is
particularly true during cooler months of the year in Florida when
water temperatures fall within 20-25°C, which is well within the
optimal temperature range for growth of these diatom species, as
opposed to other regionally important bloom-forming cyanobacteria
and dinoflagellate species which have growth temperature optima
between 25 and 35°C (Phlips and Mitsui, 1982; Montagnes and
Franklin, 2001; Phlips et al., 2006; Anderson and Rynearson, 2020).
Another factor that can enhance the success of diatom taxa with
spines, a characteristic of the three aforementioned species, is lower
grazing loss rates (Irigoien et al., 2005). While most diatoms are not
viewed as serious HAB species, with the noted exception of toxin-
producing species of Pseudo-nitzschia (Lassus et al., 2015), major
blooms of Leptocylindrus and Cerataulina have been implicated in
mortalities, or other health issues, in fish and shellfish populations, in
relationship to physical damage, production of congestive muscilage,
or generation of hypoxic conditions (Taylor et al., 1985; Buschmann
et al,, 2006; Tanora et al., 2008; Martin and LeGresley, 2014). These
observations highlight the importance of including these types of taxa
in monitoring and management plans for impacted ecosystems such
as Tampa Bay.

frontiersin.org


https://doi.org/10.3389/fevo.2023.1144778
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

Morrison et al. 10.3389/fevo.2023.1144778

A B
Total carbon Total nitrogen
Bishop Harbor Joe Bay Bishop Harbor Joe Bay
04
3
03
2
02
1 NV S o
C
o 3
E Piney Point St Joseph Sound _.g Piney Point St Joseph Sound
f=
i —
E s g 04
'_
I 03 1 .
2 .
02 .
! - N 01 "
0
AN » % %, T %, % %, AN AN » % %, NN % % %, A
%7 9%7 Qz), é%’ éé:c’ %7 9227 %f é% Qbé %f ég” %7 N QZ’@ %7 9%7 %7 N %"
C
Carbon : Nitrogen
Bishop Harbor Joe Bay
10 W
N\/\/\/ ?
5
z
O Piney Point St Joseph Sound
b W
Y |
L]
AN %, % %, T %, % %, AN
Q%’z 92.,, Q%’; éo@ Q%b Q?%’7 90"” Q%’z é% %
FIGURE 5
Bulk measures for suspended particulate material (SPM) for each location over the study period. Values for (A) total suspended particulate carbon,
(B) total suspended particulate nitrogen, and (C) Carbon to Nitrogen (C:N) ratios are presented for each site. The Piney Point event (March 30th — April
9th, 2021) is denoted by the green line, the period with maximum (> 10° cells L™) Karenia brevis cell counts (Beck et al., 2022) is shown in the red box,
and the date of tropical storm Elsa (July 5th, 2021) is shown with the vertical dashed black line. The smoothing line was generated using local
polynomial regression fitting with a span of 0.175.

4.2. Karenia brevis bloom dynamics
post-discharge

Another noteworthy aspect of the post Piney Point discharge
period were peak biomass observations of the toxic red tide
dinoflagellate, K. brevis at the Piney Point site in June 2021. Karenia
brevis was also observed at Bishop Harbor and St. Joseph Sound
during the same general time period, at lower biomass levels. This
corroborates with Beck et al. (2022), who reported high concentrations
of K. brevis in lower and middle Tampa Bay for the weeks of June 13th
to July 18th, 2021. During the K. brevis bloom, there was an increase
in extracted and in situ chlorophyll, as well as in situ measurements of
PE. The peak biomass value for K. brevis observed at Piney Point was
2.71mg C L' (i.e., 3.85 million cells L"), which ranks it as a major
bloom of concern to the health of the estuary - including the potential
for animal mortalities, development of anoxia, and human health
issues (Kirkpatrick et al., 2004; Fleming et al., 2005; Landsberg et al.,
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2009; Heil and Muni-Morgan, 2021). During this period, extensive
fish kills were also reported in Middle and Lower Tampa Bay (Beck
etal.,2022; Florida Fish and Wildlife Conservation Commission, 2022).

K. brevis is a HAB species whose blooms initiate on the west
Florida Shelf from upwelling events and are then advected to the
nearshore through wind and currents, where they negatively affect
coastal communities, particularly on the southwest coast of Florida
between Tampa Bay and the Caloosahatchee Basin (Heil et al., 2014;
Weisberg et al., 2019). The source of K. brevis at our study sites was
likely the Gulf of Mexico, brought inshore by winds and current, and
was facilitated by high salinities and available nutrients in the bay at
that time, since K. brevis is known to be somewhat intolerant of low
salinities (i.e., <20 psu; Steidinger, 2009; Beck et al., 2022). K. brevis
blooms are a common feature along the west coast of Florida
(Steidinger, 2009; Vargo, 2009; Heil et al., 2014), and typically originate
offshore on the coastal shelf, and then are introduced to coastal
estuaries through prevailing nearshore circulation patterns (Weisberg
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horizontal green line. The Piney Point event (March 30th — April 9th, 2021) is denoted by the green line, the period with maximum (>10° cells L™!) Karenia
brevis cell counts (Beck et al,, 2022) is shown in the red box, and the date of tropical storm Elsa (July 5th, 2021) is shown with the vertical dashed black line.

et al,, 2019). High nutrient discharge from the Piney Point reservoir
was suspected to contribute to the high biomass of K. brevis observed
in the Piney Point region in June and July. Once K. brevis reaches the
nearshore, terrestrial nutrient sources may influence bloom
conditions, and several recent studies have observed positive
relationships between elevated nutrient concentrations in discharges
from local coastal watersheds and the intensity of red tide events
(Medina et al., 2020, 2022; Phlips et al., 2023). However, further
research is needed to define whether the high K. brevis biomass was
associated with autochthonous production in the region, or
allochthonous introduction of K. brevis from Tampa Bay, although
evidence suggests both occurred during this event.

4.3. Suspended particulate material
Stable isotopes of N have been utilized in Tampa Bay and other

coastal ecosystems to evaluate contributions from N sources and
investigate N cycling, and our investigation of particulate 3"°C and §"°N
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values revealed that Piney Point discharge had a unique SPM source
signature. The discharge water SPM had an exceptionally low 3N
value of —17.88%0+0.76 (n=5), and a 6"°C value of —15.23%0 +0.53
(n=5). A 8"N value of —17.88%o is unusually low and is considerably
lower than values reported for inorganic fertilizers, which can be as low
as ~ —10%o (Bateman and Kelly, 2007). In Tampa Bay, particulate and
dissolved N stable isotopes have been used to identify N sources in
stormwater runoff (Jani et al., 2020), constrain nutrient sources for
K. brevis blooms (Havens, 2004), and asses N sources within the Gulf
of Mexico (Knapp et al,, 2021), and our unusually low value makes the
8N value of Piney Point SPM unique, and much more depleted,
relative to other nutrient sources in the region. Local rainfall nitrate
(NO;") values range from —4.42 to 5.69%o, stormwater runoff §"°N-
NO;~ values range from —9.72 to 8.06%, particulate organic N values
range from —1.99 to 6.27%o, and local vegetation sources range from
—1.70 to —0.83 %o (Quercus virginia leaves), 1.55 to 1.60%o (Quercus
virginia acorns), and —1.93 to 0.68%o (Stenotaphrum secundatum grass
clippings; Jani et al., 2020). Additionally, the Piney Point SPM 3"°N
values are much lower than those reported for particulate N in the Gulf
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of Mexico (1.6-5.0%o; Knapp et al., 2021). The only available published
study that reported exceptionally low 8N values comparable to ours
was a study of seagrass meadows of Halodule uninervis in Qatar, which
documented 8'°N values as low as ~ —12.4%o, which was attributed to
undefined but localized sediment processes (Walton et al., 2016).

This unusual 8N value is likely due to the unique characteristics
of the reservoir and the water discharged from it. The discharge water
was not pure diammonium phosphate, but rather a combination of
waste derived from the production of diammonium phosphate,
seawater from dredging operations, and rainwater, which have created
unique conditions within the reservoir since it was partially filled in
2011 (Beck et al., 2022). Thus, the SPM collected from the reservoir
contained particulate material that included phytoplankton and other
microorganisms that were growing in the reservoir water, and as such,
should not be expected to have 8N values that exactly resemble
ammonium (NH,") fertilizer. Given the novel growth conditions
presented at the reservoir, it is likely that the highly depleted values
seen in the discharge water in April 2021 (—17.88%0 +0.76), and in the
reservoir water in October 2021 (—19.15%o £ 0.05), were driven by
isotope fractionation associated with ammonium transport and
assimilation within the reservoir. Differences between the April and
October 8N and nutrient values are likely from on-site treatment
technologies used since April 2021 to reduce total P and total N within
the reservoir.

Stable isotope values of 3"°N can be influenced by various isotopic
fractionation pathways which we suggest explains the extreme 3"°N
values we observed. Many phytoplankton and other microorganisms
preferentially utilize NH," rather than NO;~. When ammonium is
transported and assimilated by phytoplankton or other
microorganisms, isotopic fractionation can occur when they
preferentially utilize the light (*N) isotope and leave the heavy N
isotope behind. This process can be concentration dependent, and
when the ammonium concentration is higher, organisms discriminate
more against the heavy isotope (**N) and take up more of the lighter
(*N) isotope. This transport and assimilation of "N into their biomass
decreases the relative proportion of “N in their biomass, and
subsequently results in lower 8N values of the SPM (8" Ngpy).
We hypothesize that, under the extremely high (~210mgL™")
ammonium concentrations in the Piney Point reservoir, this isotope
fractionation occurred to such an extent that it resulted in extremely
low 8N values observed in the SPM of the reservoir.

While no laboratory studies to date have explored isotopic
fractionation associated with ammonium concentrations as high as
those in the study reservoir, Liu et al. (2015) reported the occurrence
of concentration dependent isotopic fractionation when Chlorella
vulgaris F1068 was grown in media with 4, 10 and 50mgL™"
ammonium. C. vulgaris F1068 is a member of the division
Chlorophyta, which was also the division of the dominant alga
identified in the Piney Point reservoir. While the maximum C. vulgaris
F1068 growth rate was seen at 4mgL™", this species is capable of
tolerating high (50 mgL™") concentrations of ammonium (Liu et al.,
2015). While Liu et al. (2015) did not quantify the isotope enrichment
factor (e; a measure of isotopic discrimination against heavier
isotopes) at 50mgL~", they found an € of —2.37%o when C. vulgaris
was grown at 10mgL™" ammonium, and that there was greater
discrimination against the heavy isotope when C. vulgaris was grown
under higher ammonium concentrations (Liu et al, 2015).
Concentration dependent isotopic fractionation is not solely limited
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to members of Chlorophyta, as another laboratory study found that €
values of the diatom Skeletonema significantly decreased from —7.8%o
to —27.2%o when grown on increasing concentrations of ammonium,
indicating that when ammonium concentrations are higher, N is
incorporated faster than "N, thereby depleting (lowering) the 8"°N
value of the phytoplankton and SPM (Pennock et al., 1996).

Anomalously low SPM 8"N values seen at our study sites in May
and June of 2021 suggest that there was incorporation of highly depleted
Piney Point discharge into particulate material in the region. Previous
work in Tampa Bay has suggested that K. brevis utilizes sources with low
8N values (Havens, 2004), however, the low SPM 8N values occurred
prior to the dates of the peak K. brevis bloom, suggesting that the NH,*
from the discharge water was either (1) taken up by fast growing
diatoms in May/June and incorporated into phytoplankton biomass/
SPM; or (2) NH," may have been utilized during the early stage of the
bloom, as initially low K. brevis cell counts were seen in lower Tampa
Bay as early as the week of April 18th, 2021. However, we do not have
sufficient evidence to explicitly evaluate these two scenarios.

The discharge water had a 8"°C value of —15.23%o + 0.53, which is
within the range of bacteria or C4 terrestrial organic matter (Lamb
et al., 2006). All sites exhibited a increase in §'*C values concomitant
with the decrease in "N values, suggesting that C derived from the
Piney Point discharge was also incorporated into SPM at the same
time that 8”N and C:N values declined. Interestingly, while
phytoplankton biomass was lower overall at the reference site, St.
Joseph Sound, the same trends in SPM stable isotope values were seen
in the reference site. This may be an indication of the export of
discharge C and N into regions outside of the bay, which is supported
by initial findings from Liu et al. (2021) that showed the discharge was
gradually flushed out of the bay and into adjacent coastal waters (Liu
et al, 2021). The persistence of highly depleted SPM 8"N values
approximately 50 km from the discharge site is unexpected, but other
regions distant to the discharge site, such as upper Sarasota Bay were
also likely affected by the discharged waters (Tomasko, 2023).
Additionally, we found that the reference site had elevated
orthoP values in April 2021 relative to April 2022, suggesting that
orthoP from the discharge was also transported to the reference site.

It must be emphasized that while the stable isotope values reported
here indicate a transport of discharge outside of the bay, we did not
observe large, associated shifts in chlorophyll values and phytoplankton
community structure at the reference site, suggesting that, even if the
SPM at the reference site reflects N contributions from the Piney Point
discharge, these values may not have had adverse ecological effects at
this location on the phytoplankton community. However, it should
be noted that the released nutrients may have had other fates such as
uptake into macroalgae and seagrasses, as well as deposition into bay
sediments, both of which may have important implications for the
long-term health of the Bay. For example, macroalgae blooms have
contributed to seagrass losses throughout the Bay, which have been
ongoing since before Piney Point. After Piney Point, Ulva was abundant
in Hillsborough Bay and Dapis was abundant in most of the Bay
(Tomasko, 2023), which may adversely affect seagrass meadows.
Deposition into Bay sediments may also be an important mechanism
by which nutrients from the discharge may have been removed from
the water column and stored in the sediments. This legacy nutrient
source may have implications for future water quality, as sedimentary
resuspension, and fluxes of inorganic nutrients from sediments can
provide an important source of nutrients to primary producers,
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including phytoplankton and HABs (Dixon et al., 2014). Further
investigation into macroalgae and seagrass stable isotope values and
sedimentary records from the study area will provide a more complete
picture of nutrient effects on the ecosystem.

4.4, Tropical storms and export of piney
point discharge to surrounding areas

In addition to capturing some of the effects of the Piney Point
discharge on Tampa Bay’s phytoplankton communities and particulate
material, we also detected a signal of Tropical Storm Elsa on the water
quality of different regions within the Bay. The passage of tropical
storm Elsa through the Tampa Bay area (July 5th, 2021) resulted in
approximately 8-18 cm of rain delivered to the west coast of Florida
(Cangialosi et al., 2022), and increased stream flows of the Anclote
River and Little Manatee River which are tributaries to our study area
(USGS, 2021a,b). The maximum stream flow reported for the Anclote
river (USGS monitoring location 02310000), near the reference site St.
Joseph Sound, was 954 t* s~ on July 10th, 2021, compared to 5.05ft* s™*
during pre-storm conditions on July 1st, 2021 (USGS, 2021a), and the
maximum stream flow reported for the Little Manatee River (USGS
monitoring location 02300500), closest to the lower Tampa Bay sites,
was 1,510’ s7' on July 8th compared to 43.1t* s' during pre-storm
conditions on June 28th, indicating that there were considerable
increases in stream flow rates associated with this storm event.

The increased rainfall and streamflow into the study sites was
associated with lower salinities, particularly at the lower bay sites. A
decrease in fDOM, extracted and in situ chlorophyll, as well as PE
were seen at the lower Tampa Bay sites, likely due to dilution of
terrestrial DOM, in the case of fDOM, and possibly due to flushing of
phytoplankton from the bay, in the case of chlorophyll and PE. The
effects of Tropical Storm Elsa also likely influenced particulate TC
values, as the lowest TC values (0.2 £0.02%) at Bishop Harbor and St.
Joseph Sound site were seen immediately following the storm and
likely driven by a dilution effect from freshwater inflows. We also
observed a decline in C:N values at these sites, likely driven by an
influx of N derived from the surrounding watershed associated with
the storm. Past work in the region found that after some storm events,
the concentration of all forms of N decreased, which was attributed to
a dilution effect followed by a slight increase in TN concentrations
after rainfall ceased (Jani et al., 2020). This was seen in 3 out of 4 sites
in this study following the passage of Tropical Storm Elsa, where
particulate N values exhibited an initial decrease after the storm,
followed by a slight increase at Bishop Harbor and St. Joseph Sound
sites, highlighting the important role that tropical storms play in
influencing nutrient fluxes from terrestrial systems.

In addition, the occurrence of tropical storms and hurricanes can
have interactive effects with built infrastructure, potentially resulting
in increased threats to coastal systems and changes in nutrient
regimes. For example, the capacity of the holding reservoirs at Piney
Point had decreased due to rain events and tropical storms in the years
prior to the event (Beck et al., 2022) increasing the risk of overflow or
breaching which likely contributed to the 2021 event. Closure
activities at the site are now centered on reducing the accumulation of
rainfall within the wastewater reservoir system. As tropical storms and
hurricanes are projected to increase in frequency and intensity, events
such as the Piney Point 2021 wastewater discharge emphasize the
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vulnerability of coastal infrastructure and the potential ongoing
threats these vulnerable facilities pose to coastal ecosystems.

5. Conclusion

Here we document changes in phytoplankton community
composition, water quality, and SPM in the year following the 2021
Piney Point discharge event. Soon after the discharge, elevated diatom
biomass was seen in the lower Tampa Bay sites, followed by high
biomass of the harmful algae K. brevis in the summer of 2021.
Nitrogen stable isotope values in SPM were very low in May and June
0f 2021 and were similar to 8"°N values from the discharge, suggesting
that N from the Piney Point discharge was incorporated into SPM in
the region. Low 8"°N values were also seen in the SPM samples
collected from the reference site, St. Joseph Sound, and higher
orthophosphate concentrations were seen at the site in April 2021
versus 2022, further suggesting that some of the Piney Point discharge
was exported out of Tampa Bay proper. While the stable isotope values
reported here indicate a transport of discharge outside of the bay,
chlorophyll values and phytoplankton communities did not exhibit
notable shifts at the reference site, suggesting that, even though SPM
at the reference site reflects N contributions from the Piney Point
discharge, these values may not have had adverse ecological effects at
this location, at least from a phytoplankton perspective. While onsite
treatment technologies have reduced the N and P concentrations in
the reservoir, and have reduced the risk to nearby coastal ecosystems,
the Piney Point event highlights the threat that industrial
infrastructure failures can cause along Florida’s coastlines. In addition,
these vulnerabilities should be assessed with other factors, such as
estuarine flushing rates, water residence times, climatic factors, and
storms and hurricanes, which can also influence the initiation and
persistence of HABs and the health of Florida’s coastal ecosystems
(Phlips et al., 2020; Tomasko et al., 2020). Here, the effects of Tropical
Storm Elsa showed changes in water quality in the region, and storms
such as Hurricane Ian, which passed through the region in September
2022, may also have interactive effects with the discharge-impacted
regions in the Bay. This work underscores the need for comprehensive
nutrient management strategies and convergent research to assess and
manage the full range of consequences associated with anthropogenic
nutrient inputs into coastal ecosystems. Ongoing and anticipated
impacts of accelerated climate change — such as increasing tropical
storm intensity, temperatures, rainfall, and sea level rise — will amplify
this need.
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