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ABSTRACT. The main results of the paper develop a level theory and establish strong char-
acter bounds for finite classical groups, in the case that the centralizer of the element has
small order compared to |G| in a logarithmic sense.
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1. INTRODUCTION

Let G be a finite group and y an irreducible character. For all g € G we have the trivial
bound |x(g)| < x(1), but stronger bounds typically hold, at least for most elements and for
most characters. The centralizer bound |Cg(g)|*/2, which follows immediately from Schur’s
lemma, is often much better than x(1). In particular, good bounds are most easily obtained for
elements with |Cg(g)| < |G| and characters with x(1) not too much smaller than |G|'/2. For
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symmetric groups, non-trivial bounds can be found in [LaSl RSl [Ro|; see also the references
therein.

For finite groups of Lie type, the best general result, due to Gluck [Gl], is rather weak.
It was improved for all elements whose support is bounded below in [LST) Theorem 1.2.1].
At the opposite extreme, it is well known (see, e.g., [Li (4.26.1)]) that character values on
regular semisimple elements can be bounded above by a bound depending only on the rank
of G. Recently, [BLST] and [T'T] gave new, exponential, character bounds for elements g € G
whose connected centralizers in the underlying algebraic group G are contained in proper Levi
subgroups of G. These strong character bounds, which are optimal in the case Cg(g) is a
proper Levi subgroup of G, do not however apply to elements in G with isolated semisimple
parts, including unipotent elements.

A number of applications (see e.g. [LST]) requires strong exponential character bounds for
elements of G in the case that |Cg(g)| is small compared to |G| in a logarithmic sense. In
the case of finite groups of linear and unitary type, this task was completed in [GLT]. In this
paper, we strengthen the results of |[GLT] and extend them to all groups of classical type.
Together these two papers can be regarded as giving the counterpart for groups of Lie type of
the main result of [LaS| for symmetric groups. We also note that the results of [GLT] and the
current paper are complementary to those of [BLST] and [TT], in that they cover a different
set of elements, namely all elements with small centralizer. As a result, the set of elements
not covered by our estimates is much smaller than the one not covered by [BLST] and [TT],
and this makes certain applications possible; indeed, our bounds played a key role in [LST].
Moreover, if we want exponential bounds of the form |x(g)| < x(1)!7¢, where ¢ is uniform
and the rank of G goes to infinity, then one must necessarily avoid elements with really large
centralizers. Hence, in a different (but only qualitative) sense, our results are also optimal.

The idea behind our approach is that, starting with a larger than expected value |x(g)],
we replace x by x"" for a suitable positive integer m to amplify the effect. If ™ decomposes
into a manageable number of irreducible factors, one can show that for at least one of these
factors, g violates the centralizer bound. One needs to show that if x(1) is small compared to
|G|*/? (and it is only when x(1) is small that the centralizer bound is inadequate), for suitable
values of m, the total number of irreducible factors of x™ is small.

In [GLT], we develop a theory of levels for irreducible representations for SLy,(¢) and SU,,(q).
Low dimensional representations have low level, and the tensor product of two representations
of low level decomposes into a controllable number of irreducible factors. We then restrict
any low degree character x of a symplectic or orthogonal group to a Levi subgroup of type
GL,(q) and show that the resulting character has a controllable number of irreducible factors.
We can then use results for GL,(q) to bound the number of irreducible factors in x™, and
subsequently derive the desired character bounds for all finite classical groups.

Extending [GLT], we also develop a level theory for representations of orthogonal and
symplectic groups. Note that in [GHI], [GH2] Gurevich and Howe describe a U-rank theory for
classical groups which has some parallels with our level theory. As shown in [GLT) Theorem
9.8], the U-rank is related to, but coarser than the level of irreducible characters. More
generally, our level theory allows us to prove several basic results relating the level, the
degree, and the U-rank, for classical groups not of type A (see §§3, 4).

To formulate our main results more precisely, it is convenient to start with some definitions.

Definition 1.1. Fix a constant a > 0, a prime power ¢, and an integer n > 2.



CHARACTER LEVELS AND CHARACTER BOUNDS FOR FINITE CLASSICAL GROUPS 3

(i) A (¢, n,a)-classical group is a finite group G such that the last term G(*°) of its derived
series satisfies the following two conditions.
(a) G*) is of the form G/Z where Z < Z(Q), and G is one of the following groups:

SLi(q), SUn(q), Span(a); Qen+1(q) with 24 ¢, Q3,,(q), or Q5,45(a).

(b) [G: G)] < ¢=.

(ii) Cn(q) denotes the following collection of finite groups: GL,(q), SL,(q), GU,(q), SU.(q),
SPan (@), SOL, (q), (the full orthogonal groups) GOZ (¢), and SOg,.1(g) for odd q.

(iii) C}(q) denotes the following collection of finite groups: GL,(q), SL.(q), GU,(q), SU,(q),

Span(4), 803,,(a), Sping,,(4), SO3,15(), Sping,5(q), and SOzn+1(q) and Sping, 4 (g)
for odd ¢, and their quotients by central subgroups.

Definition 1.2. (i) A classical group (with parameter n > 2) is a (g, n, a)-classical group
for some prime power ¢ and a fixed a > 0, which will be taken to be 4 henceforth.
(ii) A spin group G is a finite group of the form Spin,,, {(g), n > 3, or SpinQin(q), n > 4.

In particular, all finite simple groups S of Lie type A,_1, 2A,_1, By, Cn, Dy, and 2Dy, 41,
and the almost simple groups G with S <G < Aut(5), as well as all members of C;;(q), are
classical groups (with parameter n) in our sense.

The main theorem of this paper is the following:

Theorem 1.3. For every € > 0, there exists an effective constant 6 = 6(¢) > 0 such that
the following statement holds. If G is a classical group or a spin group and g € G satisfies

[Ca(g)l < |G|°, then
IX(9)l < x(1)°
for all x € Irr(G).

The proof given could in principle yield explicit bounds but with very bad constants. In
the range 1 > & > 4/5, we have an explicit version of this theorem with a somewhat different
proof, giving substantially better bounds, as follows:

Theorem 1.4. For every € with 4/5 < € < 1, there exists an explicit constant 6 = 6(g) > 0
such that the following statement holds. Let q be any prime power, n > 9, and let G € C(q).

Suppose that g € G satisfies |Ca(g)| < ¢"%. Then

Ix(9) < x(1)°
for all x € Irr(G).

For instance, if ¢ = 0.992, then one can take § = 0.0011.

In fact, we deduce Theorem [I.4] from Theorem which yields a slightly better constant
4, but at the price of having an extra factor 4 in the character bound.

Our next main result bounds the degree of any irreducible character of any given level
(where the level [(x) is defined below in Definition [3.2). See also Theorem [4.8] which bounds
the level of any complex character, more generally, any Brauer character in cross characteristic,
in terms of the U-rank.

Theorem 1.5. Let q be a prime power and let G be one of the following classical groups:
SPoy,(q) with 24 q and n > 1, Spy,(q) with 2|q and n > 2, or QF(q) withn > 6. Let x € Irr(G)
be of level £ = I(x). Then the following statements hold for k := | (¢ 4+ 2)/3].
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(i) If G = Spy,(q) with 21 q, then

b —1\* ny1\*
g k(k+1)/2<q > > <x(1) < <q ; ) .
(ii) If G = Spa,(q) with 2|q, then

g2k k(2k+1) ((41—21)2>k < <q2n _ 1)5'
(ili) If G = Q(q) and (n,q) # (8,2), (9,2), then

¢
_ "—1
an 2k(k+1)(q_ 1)k <x(1) < ((Iq_l ) '

Theorems [1.3| and are expected to be useful in a number of applications. They are
already used in [LST]. Theorem will be explored (elsewhere) to classify low-dimensional
cross-characteristic representations of finite orthogonal groups. Here we offer two further
applications, one on random walks, see Corollary and another on product one subvarieties
in simple algebraic groups, see Theorem [8.1

2. PRELIMINARIES

The following observation goes back (at least) to Burnside:

Lemma 2.1. |[GLT), Lemma 2.2] Let © be a generalized character of a finite group G which
takes exactly N different values ag = ©(1), ay,...,an—_1 on G. Suppose also that ©(g) # O(1)
forall1 # g € G. Then every irreducible character x of G occurs as an irreducible constituent
of ©F for some 0 < k< N —1.

Recall that, for a finite group G, the inner product [«, S]g of class functions «, 8 on G is
defined as )
[a, Bl = @ Z a(z)B().

zeG
Lemma 2.2. Let H be a subgroup of a finite group G and let X € Irr(H) be of degree 1. Then
[nd% V), IndF (N]e < Indf (1), ndf (1a)le = |[H\G/H|.

Proof. An application of Mackey’s formula. O

For any (not necessarily irreducible) character p of a finite group G, let
(2.1) a(p,G)i= Y e
x€Irr(G)

denote the sum of all multiplicities of irreducible constituents of p, where [, -] is the usual
scalar product of (complex-valued) class functions on G. Also, let

(22) A(,O, G) = Z [p7X]G
x€lrr(G), x(1)=1
denote the sum of all multiplicities of linear irreducible constituents of p. Then we have the

following elementary properties:

Lemma 2.3. Let H be a subgroup of a finite group G, and let p be a complex character of G
and ¢ be a complex character of H. Then the following inequalities hold.
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A(p,G) < a(p.G) < [p, pla

o(p,H) <o(p,G)- max ola,H),
(P ) (P ) aclrr(G), [p,a]a>0 ( )

Ap,H) <o(p,G)- max Ao, H).

aclrr(G), [p,a]a>0
(i)
o(p,G) < a(p, H) < o(p, G)[G : H]),

o(p, H) < o(Indf(¢), G) < oy, H)[G : H.

Proof. We will prove only the non-obvious ones among these inequalities. For (ii), without
any loss we may assume that p € Irr(G) and decompose p|g = >, nia;, where oy € Irr(H)
are pairwise distinct. Then

ni = [pla, ulw = [p,Indf(en)]e <

by degree consideration. Hence

H) < er < i nio‘;((ll))[G ] _ G : H].

Next, without loss we may also assume that ¢ € Irr(H) and decompose Ind%(p) = 3. m;f:,
where §; € Irr(G) are pairwise distinct. Then

i (1
~ 5 (), Ao = lo. (Bl < 201
again by degree consideration. Hence
o(Ind% (o <Zm < 2imifi1) =[G : H].

()
O

Lemma 2.4. Let G = A x H be a split extension of a normal abelian subgroup A and a
subgroup H. Then for any x € Irr(G) and any \ € Irr(H) with A(1) = 1, we have

[X|m, Alg < 1.

Proof. The statement is obvious if A < Ker(x). Assume otherwise and consider a nontrivial
irreducible constituent « of x|a. If T':= Stabg(a) = A x J, then by Clifford’s theorem

x = Ind{ (&)
for some & € Irr(T) lying above a. Note that G = T H, so applying Mackey’s formula we get
Xl = (Ind§(&)|n = Indff g (8l ram) = ndf (al,).
Next, observe that Ker(«) <17, and
T/Ker(a) = (A/Ker(a)) x J,
whence &|; is irreducible. It follows that
x| Alar = [} (&]), i = [als, Als)s <1

since A\(1) = 1. O
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Lemma 2.5. [GLT, Lemma 2.4] Let (G,Q) be either (GL,(q),q) or (GU,(q),q?), and let
V =T denote the natural module for G. Then, for any 1 < j < n, the number N; of

G-orbits on the set Q; of ordered j-tuples (vy,...,v;) with v; € V is at most 8qj2/4 in the first
case, and at most 2qj2 in the second case.

Lemma 2.6. Let V =Ty be endowed with either a non-degenerate symplectic form (-,-), or
a quadratic form @ associated with a non-degenerate symmetric bilinear form (-,-) (which is
assumed to be alternating if 2|q). Set € = —1 in the former case, and € = +1 in the latter
case. Let G = Sp(V') be the full group of isometries of (-,-) on V in the former case, and
G = GO(V) be the full group of isometries of Q in the latter case. Then, for any 1 < j < n,
the number N; of G-orbits on the set Q; of ordered j-tuples (vi,...,vj) with v; € V is less
than 6¢U+e)/2,

Proof. (i) Consider U = F} with a fixed basis (e1,...,e;). Then there is a natural bijection
between §2; and Hom(U,V): any w = (v1,...,v;) corresponds to f = f € Hom(U, V) with
f(e;) = v;. Suppose that @’ = g(w) for some g € G. Then f = gfr and Ker(fr) =
Ker(fz). Furthermore, the bilinear form (-, ) of V restricted to fz(U) and fo/(U) have
the same Gram matrices in the bases (fm(ui1),..., fo(ur)) and (for(u1),. .., for(uk)), if
(ui,...,ug) is a basis of U/ Ker(fz). Moreover, in the case G = GO(Q, V), we also have
Q(fw(ui)) = Q(for(u;)) for 1 < i < k. We will refer to this as fr and fs having the same
isometric data. For the Gram matrices in the basis (fz(u1),..., fo(ur)), there are at most
¢*k=1/2 pogsibilities in the symplectic case, as well as in the quadratic case but with 2|g, and
at most ¢*(*+t1)/2 possibilities in the quadratic case with 2 f g. Multiplying by ¢" possibilities
for Q(fw(ui)), 1 <i <k, in the quadratic case with 2|q, we see that there are at most gkk+e)/2
possible isometric data when k is fixed.

Conversely, assume that fo and fos have the same kernel W for some w,w’ € ;. Again
we fix a basis (u1,...,u) of U/W, and assume in addition that fo and f. have the same
isometric data. By Witt’s lemma [Al p. 81], there is some g € G such that ¢(fo(ui)) = for(u;)
for all 1 <i < k. Hence for = gfw and so @’ = g(w).

(i) We have shown that N; is at most the sum over & of the total number of j—k-dimensional
subspaces W in U weighted by a factor of ¢*(+9)/2 e,

J .
(2.3) N; < glttar <Z> .
=0 q

Here (z)q denotes the Gaussian binomial coefficient:

<j> _ Izo(d? —dY)
i) ol —a)
and we have used the equality (g)q = (jzi)q‘ By [LMT| Lemma 4.1(i)] we have
<j> _ Lo —d) _ oo Tzt = 1/¢ ") _ 32 -0
i)y IiZold' —a) i—o(1=1/g7t) 9
for 0 < i < j. In particular,

402 <J> < 32 i—=a/2) B2 iGra/2~-G-i+o)/2
i), 9 9
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when 0 <14 < j — 2. We will give better bounds for ¢ = j and ¢ = j — 1. First, when ¢ = j we
have _
g2 (1) = gil+ar/2,
/g
Next, when i = j — 1, (g)q =(¢ —1)/(g—1) <2¢"1, and so
G002 (T < ggitivar2
/g
It now follows from ([2.3)) that

N; < ¢ilito/2 <3+ 52 Zl)/z> < @t <3+ 32 ! > < 6g7UT/2,

—i)(j—i+ To)/2
9 = q(] i)(j—ite 9 pat qZ(Z €)/
since - - -
1 1 1
> it RO
i+e) Z 1)/2 3 ¢
= qz i+e — z i— )/ q q — q
The argument above also shows that N; > @Uuta/2 if j < n/2, as G has at least gito/2
possible isometric data, hence orbits, on linearly independent j-tuples. O

3. CHARACTER LEVEL FOR FINITE CLASSICAL GROUPS

Let A = F} be endowed with a non-degenerate, symmetric or alternating, bilinear form
(+,-), and possibly also with a quadratic form Q associated with (-,-) if 2|g. The group of
isometries of either the form (-,-) or of the quadratic form Q is a classical group on A, and
its action on the point set of A affords the permutation character

(3.1) Ta: 9= [Calg)l = q

Correspondingly, we can consider Sp(A) or GO(A), and throughout this section Sp(A) and
GO(A) will denote such a group. One can also embed such a classical group G in the unitary
group GU,(q) defined by a suitable Hermitian form on A ®p, F 2, and the restriction to G of
the reducible Weil character ¢, of GUy,(q), cf. [TZ2] §4], yields a (reducible) character

(32) <A D g (_1)”(_q)dim]}‘q Ker(gflA).

As in [LBSTI)] and [GLT], we will explore certain dual pairs G x S, where G and S are
certain finite classical groups. Given any character w of a group I' with a fixed homomorphism
G x S — I', we can decompose

dimp, Ker(g—14) )

wlaxs = Y, Da®a,
a€lrr(S)

where D,, is either zero or a G-character, and its value at any g € GG is given by the formula

(3.3) Du(9) ]S] Zw gs)a

ses
see [LBSTI) Lemma 5.5].

The quadruples (G, S,T',w) we consider in this paper are as follows. We assume 2 { ¢, and
endow A := Fg” with a non-degenerate symplectic form (-,-). Also, consider B := F;* with a
non-degenerate symmetric bilinear form (-,-). Then the formula

(a®b,d @b') = (a,a')(b, V)
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for a € A and b € B, extended by bilinearity, defines a non-degenerate symplectic form on
W :=A®p, B= Fg”m. This yields a homomorphism G x S — I' := Sp(W), where either

(a) G =Sp(A)=Spy,(q), S=GO(B)=GO%(q), or
(b) G =S0(B) =80%(q), S=Sp(A) = Spy,(q).

Next, w is one of the two reducible Weil characters wy,, and w;,, of degree ¢""™ of I' =
SPanm (@), see e.g. |[GMT, §1] for their definition.

We recall the following properties of these Weil characters w,, and w}, of Sp,,(q):

(3.4)

Proposition 3.1. Let q be an odd prime power and let wy, and w; be the two reducible Weil
characters of G := Sps,(q), with natural module A := Fg". Then the following statements
hold.

(i) For any g € G, |wn(g)]* = |w;(9)]* = 7a(g) = [Calg)l = ¢
(i) If g = 1(mod 4) then

Wn =, Wy =05, (Wa)® = (W1)? = T4, wawy, = Ca,

and if ¢ = 3(mod 4) then

dimp, Ker(g—14)

w; = Wn, (wn)Q = (w;)z = (a, wnw; = TA,

where T4 and Cz are as defined in (3.1) and (3.2).
(iii) In the situation of (3.4)(a), the restriction of w to G is w™ or W™ lw!. Furthermore,

.
the restriction of w to SO(B) is ()", where Tp denotes the permutation character of

SO(B) acting on the point set of B.

Proof. For (i), see Theorem 2.1 and Lemma 2.2 of [GMT]. Parts (ii) and (iii) were proved in
[T1], see also [MT, §5]. O

Definition 3.2. (i) Let ¢ be an odd prime power and G = Sp,,,(q). The level [(x) of an
irreducible character x € Irr(G) is defined to be the smallest non-negative integer k such
that y is an irreducible constituent of (w,, + wi)*.

(ii) Let Q(A) < G < GO(A) with A =Fy, or G = Sp(A) with A = IFZ" and 2|q. The level
[(x) of an irreducible character y € Irr(G) is defined to be the smallest non-negative
integer k such that y is an irreducible constituent of (74 4 C4)".

Lemma 3.3. Let G = SO(A) = SOF(q) if 2 1 q and G = Q(A) = QF (q) if 2lg. Then
Ca=7a on G.

Proof. Let d(g) := dimKer(g — 14) for any g € G. Also, let s denote the semisimple part of
g. First we consider the case 2 1 g. Then we can decompose the s-module A as orthogonal
sum AL & A_ @& Ap, where Ay = Ker(s —14), A_ = Ker(s+ 14), and s has no eigenvalue 1
or —1 on Ap. Since g € SO(A), dim A_ and dim Ag are both even, whence d = n(mod 2) for
d := dim A . Using the description of unipotent elements in [Cl §13.4], one can show that the
total number e of Jordan blocks of the unipotent element g|4, is congruent to d modulo 2.
Since d(g) = e, we conclude that d(g) = n(mod 2) and so 74(g9) = Ca(g) by and (3.2),
as stated. In the case 2|q we have 2|d(g) for all g € Q(A) by [GT2, Lemma 5.8(ii)], and so we
are done. 0

Lemma 3.4. The following statements hold.

(i) Let q be an odd prime power and G = Spy,(q). Then 0 < I(x) < 2n+ 1 for any
x € Irr(G).
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(ii) Let 2|q and G = Spy,,,(q). Then 0 < [(x) < m+1 for any x € Irr(G).

(iii) Let q be any prime power, A =Fy be endowed with a non-denegerate quadratic form as
above, Q(A) 9 G < GO(A), and x € Irr(G). Then 0 < l(x) < [n/2] + 1. Moreover,
0<I(x) <[n/2] if G <SO(A) when 21q and G = Q(A) when 2|q.

Proof. For (i), we apply Lemma to the character © := w, + w); of G = Sp(4). By
Proposition [3.1{(ii), ©2 = 2(14 +C4). It follows that ©(g) = 0if 2t d(g), and ©(g) = £2¢49)/2
if 2|d(g), where d(g) := dimKer(g — 14) for any g € G. Thus

O(g) € {0,42,+2q,...,+2¢" 1, 2¢"},
and moreover O(g) = O(1) = 2¢" if and only if g = 1. Hence the statement follows.

For (ii) and (iii), we apply Lemma [2.1|to the character © := 74 + (4, where A = Fy is the
natural module for G. Note that

O(g) € {0,2,2¢% 2¢%, ..., 2¢°" %, 2¢°"}
if n = 2m is even, and
O(g) € {0,2¢,2¢%, ..., 2¢°" 1, 24"}

if n =2m+ 1 is odd. Moreover, O(g) = O(1) = 2¢" if and only if g = 1. Furthermore, if we
assume G < SO(A) when 2 1 ¢ and G = Q(A) when 2|q, then O(g) = 274(g) # 0 by Lemma
B.3l Hence the statements follow. O

Abusing the language, we will say that a character « of a finite group G contains another
character 8 of G, if o — 3 is zero or a character of G. Now we can prove the following three
key lower bounds on the degree of any irreducible character of given level:

Theorem 3.5. Let G = Gy, := Spy,(q) with q a fized odd prime power. For any k € Z>1,
define

1\ *
bc(n,k) — ank(k+1)/2<q 5 > '

Suppose x € Irt(G) and x(1) < be(n, k). Then I(x) < 3(k —1).

Proof. We proceed by induction on k. If £ =1, then

x(1) <¢"He-1/2< (" - 1)/2,
hence x = 1 (see e.g. [TZ1, Theorem 1.1]) and [(x) = 0.

For the induction step, we assume k > 2. If n = 1, then

x(1) <bc(l,k) < (g—1)/2,

again forcing x = 1g and [(x) = 0. So we will assume n > 2. Consider the natural module
A= Fg” for G so that G = Sp(A), and the stabilizer P’ = Q x H of a nonzero v € A, with @
a group of extraspecial type of order ¢! and H = G,,_;. We may assume that y # 15 and
x is afforded by a CG-module X. Since Z(Q) £ Z(G), the A-eigenspace X of Z(Q) on X is
nonzero for some nontrivial linear character A of Z(Q). As shown in |[GMST), §5] and [MT)
§2], the P’-module X is isomorphic to M) ® Y, where

(a) the P'-module M), with character say p, is irreducible over Q;
(b) @ acts trivially on the P’-module Y.
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As @ is normalized by P := Stabg((v)r,) and the P-orbit of A has length (¢ —1)/2, we see

that
dim X bc(n, k)

(dim ) - (g—1D/2 " ¢ - (q—1)/2
By the induction hypothesis, if 9 is an irreducible constituent of the H-character afforded by
Y, then [(¢)) < 3(k —2). Thus ¢ is contained in (w,_1 +w;_;)**~¢ by Definition ( ). Next,
by [TZ2, Proposition 2.2(iii)] we have that (wy + w})|ps contains v + u, where Q < Ker(v )
and v|g = wyp_1 +w’_;. Tt follows that (w, + w;)3~|p contains pr3*~6 which in turns
contains u. We have shown that

[x|prs (wn + @) 5 pr]pr > 0.

This implies by Frobenius’ reciprocity that x is contained in

Indg/<((wn+w )3k 5)|p/> (wn 4 w)?k75 . IndS, (1p1).

dimY <

=bc(n—1,k—1).

Recalling that P’ = Stabg(v), we see that Ind%, (1p) is contained in the permutation character
74 of G acting on the point set of A, and the latter character is contained in (w, + w})? by
Proposition (ii). Consequently, y is contained in (wy, +w?)3*~3 ie. [(x) < 3k — 3, and the
induction step is completed. O

Theorem 3.6. Let G := Spy,(q) with ¢ =2/ and n > 2. For any k € Z>1, define

b (n, k) 1= g2k k2k+D) ( q—1) )

Suppose x € Irr(G) and x(1) < be(n, k). Then [(x) <3

Proof. (i) We proceed by induction on k. If £ =1 and n > 2, then
(¢" —1)(¢" —q)
2(g+1)
by [TZ1, Theorem 1.1], and so x = 1¢ and [(x) = 0. For the purposes of the inductive proof,

we also observe that br(1,1) = (¢ — 1)2/2g < ¢ — 1 = 2(Sp,(q)), and so the statement also
holds for n = 1.

x(1) < be(n,1) < =0(G),

(ii) For the induction step, we assume k > 2. If n = 2, then [(x) < 3 < 3(k —1) by Lemma
3.4{(ii), and so we are done. Likewise, if £ > 3 and n < 5, then [(x) < 6 < 3(k — 1) by Lemma

3.4{(ii), and we are again done. If (¢, k,n) = (2,2,<5), then
x(1) < be(n,2) =212,

and using [GAP] one can check that [(x) < 1. If (¢, k,n) = (> 4,2, 3), then

x(1) < be(3,2) = ¢*(q — 1)*/4,
and so [(x) <1 by [GT2, Theorem 6.1]. Hence, we may assume that
(3.5) n=4, (n,q) #(4,2),(52).

Consider the natural module A = Fg” for G so that G = Sp(A), with a symplectic basis
(e1,€2, ... en,y f1, fos ooy fn),

and the stabilizer P = P := Stabg(U) = Q x L of the isotropic subspace U = (e, e2)F, of

A, where |Q| = ¢*"°, Z(Q) > [Q, Q], Z(Q) elementary abelian of order ¢3, [Q, Q] elementary
abelian of order ¢, and L = GLa(q) X Spy,,_4(q), see [GT2l §3]. Moreover, each of the ¢ — 1
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non-identity elements in [@, Q] is conjugate to a (fixed) short-root element s € G, and L acts
on Irr(Z(Q)) with four orbits: {1z(q)}, O1 consisting of all ¢* — 1 nontrivial linear characters

of Z(Q)/[Q,Q], OF of length q(q? — 1)/2, and Oy of length g(q — 1)2/2.

We may assume that x # 1g and y is afforded by a CG-module X. Since [@Q, Q] £ Z(G),
there must be some ¢ = =+ such that the A-eigenspace X, of Z(Q) on X is nonzero for
some linear character A € 05 of Z(Q). We also consider P’ := Stabg(e1,e2) = Q x H with
H = 8Sp,, _4(q). In fact, we can write U+ = U @ W such that H = Sp(W), where

W= <€37€47 s 7€naf37f47 . '7fn>IFq7

Recall the linear-Weil characters pL, p2, Tt 1 <i < (g—2)/2, and the unitary- Weil characters
Qny By CGhy 1< 5 < q/2, of Spy,(q), see [GT2] Table I]. In particular,

(@-2)/2 a2
TA=2-1g+pL +p2 +2 Z Ty CA:an‘i‘Bn"i_zZC}r
i—1 i=1

As shown in [GT2, Lemma 9.2], there exists an irreducible CG-module M of G with the
following properties:

(a) M affords the character p. of degree (¢" + 1)(¢" — q)/2(q — 1) when ¢ = + and the
character ay, of degree (¢" —1)(¢" — q)/2(¢ + 1) when e = —; and

(b) the A-eigenspace M) of Z(Q) in M is a P-module with character y of degree ¢?"~*, and
furthermore, p|g is the unique irreducible character of @) that lies above the character A

of Z(Q).

It follows by Gallagher’s theorem [Is, Corollary 6.17] that some irreducible constituent of the
character of the P’-module X can be written as pu1), where @ < Ker(¢)) and ¢|g € Irr(H).
As @ is normalized by P and the P-orbit 0% of A has length at least g(q — 1)?/2, we see that

dim X b (n, k)
1) < co
v{l) < dim M), - |05 ~ ¢** - q(q —1)?/2

By the induction hypothesis applied to the character |y of H = Sp(W) = Sp,,_4(q),
() < 3(k —2). Thus v is contained in (ry + Ciw)3*~® by Definition (ii). Also, as pl. is
contained in 74 and «, is contained in (4, we also see that u is contained in (74 + Ca)|pr.

=bc(n—2,k—1).

(iii) In addition to P = Py, we also consider the parabolic subgroup
Py := Stabg({e1)r, = Q1 % L1,

with Levi subgroup L1 = Spy,,_5(q) x T1 fixing (f1)r, and T1 = Cy_1. Recall the assumption
(3.5), we then have by |[GT2, Proposition 7.4] that

(3.6) *Rfl (an) = ap—1 ® 1y, *Rgl (Bn) = Bn-1® 11, *Rgl () =71 @173,

if *Rfl denotes the Harish-Chandra restriction from G to L. Applying the same statement
to

K :=[Ly, L1] = Stabg(e1, f1) = Spg,_2(q),
we obtain
(3'7) *Rfu(anfl) =0p-2 1T117 *an (ﬁnfl) = ﬁnf2 @ 1T11a *Rfu (7—72‘1—1) = 7iz—2 ® 1Tll'

Here, L11 = Spy,,(q) x T11 = Stabg ((f2)r, is a Levi subgroup of the parabolic subgroup
P = StabK(<62>]Fq) =11 X Li1 of K and T71 = Cq_1.
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Consider any element g € Q. Since g(e1) = e1, g(ez) = ez, and g acts trivially on UL /U,
g € Q1K and furthermore g projects onto an element h € @11 under Qg — Q1 K/Q;. It
follows that g acts trivially on *Rfl 1((*R€1(Z))\ k) for any G-module Z. Hence, and
(3-7) imply that (*R¥(ay,))|m contains ay,—2. Arguing similarly with 8, and ¢, we conclude
that (*RY(Ca))|u contains (. The same arguments, but using [GT2, Proposition 7.9] show
that (*RY(74))|n contains .

(iv) The results of (i) and (iii) imply that (74 +¢4)*~°|ps contains =6, which in turns
contains . We have shown that

[X|pr, (T4 + Ca)** 70| p]pr > 0.

This implies by Frobenius’ reciprocity that x is contained in
IDdIGJ/ (((’TA + CA)gk_5) |p/> = (TA + CA)Sk_5 . IndG/(]_p/).

Recalling that P’ = Stabg(ei,es), we see that IndIGD,(l pr) is contained in the permutation
character (74)? of G acting on the point set of A x A. Consequently, y is contained in
(T4 +Ca)%¥73, ie. I(x) < 3k — 3, and the induction step is completed. O

Theorem 3.7. Let G := 5 (q) with ¢ = p! a fized power of a prime p, e = +, and n > 6.
For any k € Z>1, define

g"h R (g — DF, (n, k) # (8,2),(9,2),
bBD(”? k) = q4(q - 1)2/ng<2, q— 1)7 (n7 k) = (87 2)7
¢*(¢* — (g —1)/2, (n, k) = (9,2).
Suppose x € Irr(G) and x(1) < bgp(n, k). Then [(x) < 3(k —1).

Proof. (i) We proceed by induction on k and use the formula for the smallest degree d(G) of
nontrivial complex irreducible characters of G as determined in [TZ1, Theorem 1.1]. For the
purposes of the inductive proof, we also define

bBD(4a 1) = (C] - 1)/ng(2v q— 1)7 bBD(E)a 1) = (q2 - 1)/2
(Note that n is assumed to be even when 2|q.) Suppose k =1 and n > 4. Then
x(1) <bep(n,1) <2(G).
If (n,q,€) # (4,2), then G is perfect, hence x = 1 and [(x) = 0. If (n,q,¢) = (4,2), then
bep(4,1) = 1 and so the statement is also vacuously true.

(ii) For the induction step, we assume k > 2. If n = 6 or 7, then [(x) < 3 < 3(k — 1)
by Lemma ii), and so we may assume n > 8. Likewise, if £ > 3 but n < 13, then again
[(x) <6 < 3(k—1) by Lemma [3.4]ii), and we are done. Thus we may assume that n > 14
when k > 3. It follows for the (n, k) in question that

bep(n, k)
" g—1)

Let A := [} be the natural module for G = Q(A), endowed with a non-degenerate quadratic

0 I ,J | with respect to a basis
Ir O

(3.8) <bgp(n —4,k—1).

form Q, whose bilinear form has Gram matrix diag <<

(u1, ug,v1, V2, W1, ..., Wn—4)
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(for a suitable invertible matrix J). We will assume that (u1,u2)r, is totally singular.
Consider the parabolic subgroup P = Stabg(U) where U := (u1,u2)r,, and its subgroup
P’ := Stabg(u1,us). Then, as shown in [MT), §§6, 7], Q := O,(P) is a p-group of order ¢?*~*
of extraspecial type, and P’ = Q x H, with

H := Stabg(ui,ug,v1,v2) = QW) = Qf _,(q),

where W := (w1, ws, . .., wn_4)F, is a quadratic space of the same type € as of A. Note that P
acts transitively on the ¢ — 1 non-identity elements of the elementary abelian p-group Z(Q),
and also on its ¢ — 1 nontrivial linear characters. Fix some A € Irr(Z(Q)) \ {1z}

Consider an irreducible CG-module M of dimension

. @ =-1)/(¢* -1, G = Qam+1(9),
dim M = { (@™ —e)(q™ " +eq) /(> — 1), G= Q%mZ_Q)'

As shown in [LBSTT] Proposition 5.7], when 2 { gn this module M can be taken to afford the

character 6 = Di’spzm, which is an irreducible constituent of 74. On the other hand, as seen in

[ST|, Table 1], when 2|n this module M can be taken with character 6 an irreducible constituent
of the rank 3 permutation character of G acting on the set of singular 1-dimensional subspaces
of A, which is again contained in 74.

As @ is of extraspecial type, @ has a unique irreducible CQ-module, say N, with central

character \, and dim Ny = ¢"*. Since Z(Q) does not act trivially on M, the A\-eigenspace
My of Z(Q) on M is nonzero. First we assume that ¢ > 3. Then

dim My, <(@)/(q—1) < 2¢" 4.

It follows that M) is irreducible over @, (My)|g = Ny. Consider the case ¢ = 2; in particular,
n = 2m. Then we embed G = Q(A) = Q5, (2) in G := Sp(A) = Sp,,,(2), and consider P :=
Stabg(U), with unipotent radical Q of order 24"~>. As shown in [GT2, §3], [Q,Q] = {1, s}
can then be identified with Z(Q), where s is a short-root element in G. By [LBSTT, Lemma
5.13],
(Bn)‘C% ife=+,

Ila= { (an)la, ife=-,
where oy, B, € Irr(G) are unitary-Weil characters of G of degree (2" — 1)(2"~! —1)/3 and
(2" + 1)(2"! + 1)/3, respectively, cf. [GT2, Table I]. Now computing 6(s) using [GT2,
Corollary 7.3], we see that dim M) = 22™~% and so we again have that (M))|g = Ny. We
have shown that Ny extends to P for all q. Let u denote the character of the P'-module M),
and note that we have now shown that (74)|ps contains p.

(iii)) We may assume that xy # lg and x is afforded by a CG-module X. Then the -
eigenspace X of Z(Q) on X is nonzero. The result of (ii) and Gallagher’s theorem [Is)
Corollary 6.17] show that the P’-module X is isomorphic to My ® Y, where @ acts trivially
on the P-module Y.

By the induction hypothesis applied to H = Q(W) = Qf_,(¢) and k —1 > 1, if ¢ is an
irreducible constituent of the H-character afforded by Y, then [(¢)) < 3(k —2). Thus ¢ is
contained in (7y)*~6 by Definition (ii).

Next, recall that 74 is the character of the CG-module R with basis (e, | a € A), where
g € G sends e, to €4(,). For any coset v =v +U in UL /U, we define

€y ‘= E Co+txy

zeU
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where the representative v can be chosen (uniquely) from W. Then the ¢"~* vectors e; with
v € UL/U are linearly independent, and so they span a subspace T = CT"" of R. As Q
acts trivially on U+/U, Q also acts trivially on 7. Furthermore, we can write U+ = U @& W,
with H = Q(W) acting trivially on U and naturally on W. Thus the H-module T" affords the
H-character 7. Since (74)|g = ¢*rw, we have shown that (74)|p/ contains a character v
with Q < Ker(v) and v|g = . Hence (74)375|p/ contains 1376 which in turn contains 1.

On the other hand, it was shown in (ii) that (74)|ps contains p. It follows that (74)375|p/
contains p. Hence,

[xler, (74)* 0 p]pr > 0.

This implies by Frobenius’ reciprocity that x is contained in

1udf ()% ) = () (1),

Recalling that P’ = Stabg(u1,u2), we see that Ind%, (1p/) is contained in the permutation
character (74)? of G acting on the point set of Ax A. Consequently, y is contained in (74)%¢73,
i.e. I[(x) <3k — 3, and the induction step is completed. O

Proof of Theorem|[1.5 By the choice of k, £ > 3(k — 1). Hence the lower bound on x(1)
follows from Theorems The upper bound in case (i) follows from the fact that any
irreducible constituent of w,, + w’ has degree at most (¢" + 1)/2. Likewise, in cases (ii) and
(iii), any irreducible constituent of 74 over GL,,(¢q) has degree at most (¢" —1)/(¢—1) and any
irreducible constituent of (4 over GUy(q) has degree at most (¢" +1)/(¢+1),if A=TFy. O

Note that Lemma[3.4] only lists a possible range for the level of any irreducible character of
classical groups. Next we work with dual pairs and the character w introduced in (3.4)), and
prove the existence of characters of relatively small levels.

Proposition 3.8. In the situation of (3.4))(a), assume that n > m(m —1)+3. Then for any
a € Irr(S), Dy, is a character of G = Spy,,(q). Furthermore, if one defines

Déy = [Daﬂ/}]Gwa
Yelrr(Q), (P)<m—1
then DS, := Do, — D., is a character of G, all of whose irreducible constituents have level m.
Proof. The statements are obvious for m = 1, so we will assume m > 2. For the first

statement, we apply (3.3)) to g = 1. For any 1 # s € S, note that gs as an element in I" has
the eigenvalue 1 with multiplicity at most 2n(m — 1). It follows from Proposition [3.1](i) that

jw(gs)| < g™ Y.
Also, note that

(3.9)

k(k— I)H ( ‘ )( T1)< §q (2k—1) — ,q m(m—1)/2 m = 2k
S = Goi = 3 3 b 9
18] =G0 = { T (0~ 1) < R0 — ghimb, m =2k +1,
Hence, (3.3]) implies that

a(l) 1) (1)qnm< |5) 9 a(l)g"™
3.10 Do(1)] > —2 (" — g™ 1|8 l——=)> = —%—,
( ) [Da(1)] E (q ’ |) S| qn 10 |S|

and so D, is a (true) character of G.
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To prove the second statement, it suffices to show that D/ (1) < D,(1). By Proposition
and Lemma [2.6] for any 0 < j < m we have that

[(wn)j (w;:)m—j, (wn)j (w;)m—j]a — [(wn@)j (w;;;)m—j]G — [(TA)m’ 1G]G < 6qm(m—1)/2‘
Since w|¢ is equal to some such w,(w*)*~J by Proposition (iii), we obtain by Lemma (1)
that

o(w,G) < [wle, wlele < 6qm(m—1)/2.
On the other hand, if £ < m—1 then any irreducible constituent of (w,, +w)* is an irreducible

constituent of some wﬁ_i(w;‘l)i with 0 < i < k, and so has degree at most ¢"* < ¢"(™~1_ Hence,

using (3.9) we get

Dla(l)|S| < 6qm(m71)/2qn(m71)(8/3)qm(m71)/2 _ 16qn(m71)+m(m71) < (9/10)qnm
since n > m(m — 1) + 3, and so we are done by (3.10)). O
Proposition 3.9. In the situation of (3.4)(b), assume that m > 2n(2n + 1) + 2. Also, let
g denote the permutation character of G = SO(B) = SO= (q) acting on the point set of the

natural module B = Fy*. Then for any o € Trr(S), Dy is a character of G. Furthermore, if
one defines

D= >, [Davlad,
Yelrr(G), (P)<n—1
then DS := D, — D!, is a character of G, all of whose irreducible constituents have level n.

Proof. We again apply to g = 1. For any 1 # s € S, note that gs as an element in '
has the eigenvalue 1 with multiplicity at most m(2n — 1), hence by Proposition (1) we have
that

jw(gs)| < gm 12,

Also, note that
(3.11) S| < gD,
Hence, (3.3]) implies that

a(l) nm _ m(n—1/2) _ a(l)qnm _ |S‘ % . a(l)qnm

and so D,, is a (true) character of G.

To prove the second statement, it again suffices to show that D/ (1) < D,(1). By Lemma
2.6l we have that

[(r8)". (7B)")e = [(78)*", 1c)a < 6",
Since w|g = (74)" by Proposition iii), we obtain by Lemma [2.3(i) that

o(w,G) < [wa wlele < 6",
On the other hand, if £ < n — 1 then any irreducible constituent of (75)* has degree at most
¢ < ™"~ Hence, using (3.11) we get
D/a(l)|8| < 6qn(2n+l)qm(n—1)qn(2m+l) _ qu(n—1)+2n(2n+1) < (26/27)qnm
since m > n(2n + 1) + 2, and so we are done by (3.12). O

For odd primes p, a strengthening of Proposition is given in Corollary (see below).
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4. CHARACTER LEVEL AND THE U-RANK

A local approach to stratify irreducible characters of finite classical groups G is via the
study of their restriction to “nice” subgroups, such as parabolic subgroups. This approach
has been used in [GMST], [GT2], [T2], [T3]. More recently, this approach has been taken in
[GHI], [GH2] to develop the U-rank theory. In this section, we prove some results concerning
the U-rank. Since these results will not be used in the subsequent sections of the paper, we
will mostly restrict ourselves to the case of orthogonal groups in odd characteristic.

Let G = SO(B) =2 SO3 (q), where ¢ is a power of a prime p > 2 and

B = (u1,...,up,v1,...,00)F,
is endowed with a non-degenerate symmetric bilinear form with Gram matrix < IO Ig) in
n

the given basis. Fix a primitive p*™ root ¢ of unity. Consider the subspace Wj = (u1,...,uj)r,
for any 1 < j < n and its stabilizer P; = U; x L; with unipotent radical U; and

I; 0 X
(4.1) Z(U;) = {[Ij,X] =10 Iom—g; 0| |XeM;F,)X+X= o}.

0 0 I;

Let IF be an algebraically closed field of characteristic £, where £ = 0 or a prime not dividing
q. Then any ¢-Brauer character A € IBr/(Z(U;)) can be written uniquely in the form

A=Ay [Ij,X] — GTrJFq/]FPtr(XY)

for some Y € M, ;(F,) with Y +% = 0, and the rank of Ay is defined to be r(Ay) := rank(Y")
(which in this case is always an even number).

In the case of complex characters, the following definition was given in [GH2, §4].

Definition 4.1. (i) For any complex, or ¢-Brauer, character x of SO3, (¢), the U-rank of
X, r(x), is defined to be the largest among all the ranks r(v), where v is any irreducible
constituent of X|Z(Uj) and 1 < j < n. Similarly, if ¢ is any complex, or ¢-Brauer,
character of P;, the U-rank r(1) is the largest among all the ranks r(v), where v is any
irreducible constituent of ¢‘Z(Uj)~

(ii) Let H := SO(B) = SO2,41(q) or SO5,,.5(q). Embed G = S0, (g) in H, as the point-
wise stabilizer of a 1-dimensional, respectively 2-dimensional, non-degenerate subspace
in the natural module B for H. Then for any character x of G, the U-rank of x, r(x),
is defined to be r(x|a)-

(iii) The same definitions as in (i) and (ii) apply to Q3,(¢), Q2n+1(q), and Q5. »(q).

Throughout this section, slightly abusing the notation, we will denote the restriction of
an ordinary character of a finite group G to its ¢'-classes (for a fixed prime ¢) by the same
notation. The next definition extends Definition [3.2] to the modular case:

Definition 4.2. Let g be a prime power and let £ = 0 or a prime not dividing q.

(i) Let ¢ be an odd and G = Spy,,(q). The level [(x) of an irreducible character x € IBry(G) is
defined to be the smallest non-negative integer k such that y is an irreducible constituent
of the ¢-Brauer character (w, + w;)*.

(ii) Let Q(A) < G < GO(A) with B =F}, or G = Sp(A) with A = F>" and 2|q. The level
[(x) of an irreducible character x € IBry(G) is defined to be the smallest non-negative
integer k such that  is an irreducible constituent of the /-Brauer character (74 4 4)*.
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Since any ¢ € IBry(G) is an irreducible constituent of some complex character x € Irr(G),
we note that Lemma [3.4] also holds for ¢-Brauer characters.

In what follows, a standard subgroup SO;m(q) with 1 < m < n means (any conjugate in
G of) the pointwise stabilizer Stabg (Umi1,- - - Un, Um1, - - -, Vn); and similarly for Q3 (q).
First we record some elementary properties of r(x).

Lemma 4.3. With the above introduced notation, the following statements hold.

(i) Suppose that I = r(x) for some x € IBr,(SO3,(q)). If H = SOJ(q) is a standard
subgroup of G, then r(x|g) = 1. Similarly, if P € {P,, P,} is a parabolic subgroup of G,
then r(x|p) = 1.

(ii) Suppose that r(x) =1 and r(0) = k for SO3, (q)-characters x,0 and that k+1 < n. Then
r(x0) =k +1L.

Proof. (i) First we prove the statement for H. By the definition, there is some ¢ with [ < i <n
such that x|z(y,) contains an irreducible constituent A = Ay with rank(Y) =1 = r(x). Note
that L; acts on the constituents of X‘Z(Ui) via conjugation, and conjugating A by a suitable

0 I O
element in L;, we may assume that Y = | —1j/9 6 0]. Now we take H to be the
0 0 0
pointwise stabilizer
Staba (U1, -« s Un, Vi1, - - -5 Un),
and consider the subspace W; := (u1,u2,...,u)r, and its stabilizer Py in H with abelian

unipotent radical Uy. Then it is easy to see that Uy < Z(U;) and My, = Az, with Z =
< ? Il(;2>. As rank(Z) = [, we have r(x|mg) > [. On the other hand, as Uy < Z(U;), we
—1i/2
have that r(x|g) < r(x) =1, and so r(x|g) = L.
Next, consider P, := Stabg(W;) with unipotent radical U;, and observe that Z(U;) can be
identified with Uy. Asrank(Z) = [, we have r(x|p,) > [. On the other hand, r(x|p,) < r(x) =1

by Definition hence r(x|p) = L.

Finally, consider P, := Stabg(<u1, U, . .. ,un>1gq) with unipotent radical U,,. Since Uy < U,
and rank(Z) = [, we have r(u) > [ for any p € Irr(U,,) lying above Az, and so r(x|p,) > 1. It
then follows from Definition [4.1| that r(x|p,) = L.

(ii) The arguments in (i) show that x|y, contains an irreducible constituent A = Ax of rank
[ and 0|y, contains an irreducible constituent p = Ay of rank k. Again conjugating A and p
by a suitable element in P,, we may assume that

0 Iy O 0 0 0
Y=|-Iy;, 0 0|, 2Z2=[0 0 Iy
0O 0 0 0 —Lyy O
It follows that (x0)|u, contains Ay = Ay 4z with rank(Y + Z) = k+1. Since the upper bound
r(xf) < k + 1 is obvious, the statement follows. O

Recall the character 7 = 75 from (3.1)).

Corollary 4.4. For any x € IBr,(SO3 (q)), 2[r(x) < min(2((x),n). The same statement
holds for irreducible (¢-Brauer) characters of SO(B) = SO2,41(q), SO3,,5(q), as well as for

QB) = 93,(q), and QB) = Qn11(), Q3y,49(9)-
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Proof. First we prove the statement for G = SO(B) = SO3, (q). Then the claim 2|r(x) < n
is immediate by the definition. By Definition |3.2| and Lemma X is a constituent of (15)7.
Arguing similarly as in [ST, §6.1], one can show that r(rg) = 2. It then follows by Lemma
4.3((ii) that r(y) < 2j.

Next consider H = SO(B), where B = Fév is a non-degenerate quadratic space, either
of dimension N = 2n + 1, or of type — of dimension N = 2n + 2. Then we can embed
G as the point-wise stabilizer of an (N — 2n)-dimensional non-degenerate subspace of B.
Since (75)|a = gV 2", it follows that every irreducible constituent x of the restriction of
@ € Irr(H) to B has level < [(¢). Hence the statement for ¢ follows from the statement for

all x in ¢|g.
The same arguments apply to Q(B) and Q(B). O

Lemma 4.5. Let G = SO(B) = SO3 (q) as above, and let j = 2r with 1 < r < n/2. If
A € Irr(Z(Uj)) has rank 2r, where U; is the unipotent radical of the ™ parabolic subgroup P;
of G, then the multiplicity of A in (7B)"|zw;) is ¢> (=27 |Sp,, (q)].

Proof. For any element [I;, X] € Z(U;), as given in (4.1)), we have 7([/;, X]) = G222
where 0 < ¢ < r. Hence, if we define

r—1
Y .— H(T o q2n72r+2i . 1G))
1=0

then X([I;, X]) is zero if X # 0, and ¢*" =27 |Z(U;)| - |Spa,(¢)] if X =0, i.e.
Ylzw,) = > 2" |Spy, ()] - regz ;)

In particular, the multiplicity of A in X[z, is ¢*"("=2)|Sp,, (q)|. Note that every irreducible
constituent of 7" — ¥ has level < r, and so r(7" — X) < 2r by Corollary It follows that A
is not a constituent of (7" — ¥)|z(y;), and we are done. O

Note that each character A of Z(U;) of rank r as in Lemma gives rise to an irreducible

character 1) of U; of degree ¢*"(=2")_ Hence the term [Sp,,(¢)| in the multiplicity of A in
(7B)"|z(v;) suggests that the 1)\-homogeneous component of (75)" may carry the structure of
a regular Spy, (¢)-module. This is clarified in the next statement.
Proposition 4.6. Let / = 0 and let q be any odd prime power. Consider the dual pairs
G xS — T = Spy,.(q) in (b), where G = SO(B) = SO;n(q) and S = Sp(A) = Sps,.(q),
with 1 < r < n/2. Also consider the Siegel parabolic subgroup P = P, = Stabg({(u1, ..., un)r,)
and its radical U = Uy,. Let \ € Irr(U) be any character of rank 2r. Then the restriction of
the complex character w|gxs to U x S contains the character A @ regg.

Proof. Fix a Witt basis (e1,..., ey, f1,..., fr) of the natural module A = Fg’" for S = Sp(A).
Also consider a pair of complementary maximal totally isotropic subspaces in V' = B ®p, A:

W= (—u; ® fj,u; ® €)r,, W = (v; ® e, ® f;)F,-
Recall that w is the character of a reducible Weil module of dimension ¢?* of I' = Sp(V).
We will fix the nontrivial character
i (Fg,+) = CF, > e™arm @),
and use the model given in [Grl §13] for such a representation, with I" acting on the space W
of complex-valued functions on W’. If §, denotes the delta-function for any point u € W/,
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then (0, | w € W') is a basis for W. The action of the Siegel parabolic subgroup Stabr (W)
in this basis is described in |Gzl (13.3)].

Now fix the following vector
w:=(v1®e; +v2® f1) + (V3R e + V4R fa) + ...+ (vVor_1 ® ep + Vo @ fr).

First we consider the action of any g = [I, X]| € U, given in the form of (4.1) (with j = n).
Using [Gr, (13.3)] we have

1
9(61}1®61+02®f1) = ¢<2((9 - 1)(1)1 ®er+v2® fl)a e +v2 f1)> = w(_x12)51)1®61+v2®f17

where X = (z;;) is anti-symmetric. The same computation shows that

9(0w) = Y(—x12 — X34 — ... — T2p—1,2r) 000

. 0 1 0 1 0 1
o (% ) (% Do () D)0t

n—2r times

Choosing

r times

we then have
9(0w) = Y(tr(XY))0w = Ay (9)dw,
for all g € U, and with r(A\y) = 2r.

On the other hand, if s € S = Sp(A), then s fixes both W and W', and moreover s(w) = w
if and only if s = 1. As the action of U x S on W is monomial in the basis (0, | u € W'), we
conclude that

W = <6s(w) | S € S>(C
is a U x S-module, with character InngS(Ay ®1lg) = Ay @ regg. Since P acts transitively

on the set of U-characters of any given rank, the statement follows. O

Now we can prove the promised strengthening of Proposition [3.9] which, in particular,
establishes the existence of characters of SOJ (q) of any level up to n/2 (when g is odd):

Corollary 4.7. Let { = 0 and let q be any odd prime power. Consider the dual pair G x S —
' = Spyn,(q) in (3.4)(b), where S = Sp(A) = Sp,,.(q), 1 <7 <n/2, and ecither

(a) N =2n and G =50(B) = SO3..(q), or
(b) N=2n+1 and G = SO(B) = 802,+11(q), or
(c) N=2n+2 and G = SO(B) = S0;,,_,,(q)-

Then for any a € Irr(S), Dy is a character of G. Furthermore, if one defines
D:)z = Z [Domy]éya
velr(G), (v)<r—1

then DS := D, — D!, is a character of G, all of whose irreducible constituents have level r.
In fact, at least one irreducible constituent of Dy, has U-rank 2r.

Proof. By Proposition (iii) and Corollary for any irreducible constituent v of w|z we
have that

(4.2) (v) <r r(v) <2r
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First we consider the case of (a), so that G = G, and consider the unipotent radical U of a
Siegel parabolic subgroup P of G and fix A € Irr(U) of rank 2r as in Proposition[d.6] As w|yxs
contains A ® regg, it follows that D, is a (true) character of G, and at least one irreducible
constituent y of D, must afford A on restriction to U. It follows that r(x) > r(\) = 2r,
whence r(y) = 2r by and [(y) = r by Corollary This in turn implies that y is a
constituent of Dg,, and so D, is a (true) character of G.

Now we consider the cases of (b) and (c). To distinguish between the dual pair G x S in
these cases and the one in (a), we will use the notations with ~ for the objects in (b) or (c),
and without for the ones in (a), with G embedded in G as in the proof of Corollary In
particular, © = wpy, and

(4.3) Blays= Y, Da®o

a€lrr(S)
respectively, w = wap,, and w|gxs = Zaehr@) D, ® . Given the embedding G < G and the
construction of the Weil representations affording w and @, it is not difficult to show that

(4.4) ©lgxs = (IG ®w1]ﬂv_2n) ‘Wlaxs = Z Do ® (w7]~v_2na)'
a€lrr(S)
Now, for any given « € Irr(S), we choose § € Irr(S) so that
0 < [wY¥?"a, s = [wY "B, als.

By the result for (a), we can find an irreducible constituent x € Irr(G) of Dg of level r and
U-rank 2r. Then implies that x ® « is an irreducible constituent of &|gxs. Restricting
@ down to G x S using ([4.3)), we see that there exists an irreducible constituent ¢ € Irr(G) of
D, such that ¢|g contains x. As r(x) = 2r, it then follows from that r(¢) = 2r. Again
using Corollary and (4.2)), we get I(¢) = r. This shows that both Dy and D;, are (true)
characters of G with ¢ as an irreducible constituent. 0

Now we can prove the second main result of the section, following in part the proof of
Theorem

Theorem 4.8. Let G := Qf (q) with ¢ = p! a fized power of an odd prime p, and € = +. Let
n > 6, and define k := 1 if (n,e,r(x)) = (8,—,2), and K := 0 otherwise. Let £ =0 or £ # p be
any prime and let x € IBry(G). Then

N W

((x) < 5r(x) + &

Proof. (i) We proceed by induction on r := r(x)/2 > 0. First assume that » = 0 and n > 5.
Then Ker(x) contains a nontrivial p-subgroup @ of G, where @ = Z(Uz) for some standard
subgroup Q2 (¢) of G. As G is quasisimple and p { |Z(G)|, it follows that y = 1g and so [(x) =
0. For later use, we note that the equality x = 1¢ also holds for (n,e,r) = (4,+,0). Indeed,
the identification [KL, Proposition 2.9.1(iv)] of Qf (¢) with the central product SLa(q)oSLa(q)
shows that @ = Z(Us) is a Sylow p-subgroup in one of the factors SLa(q). Varying the @, we
then see that Ker(x) contains 2 (¢) and so again x = 1¢.

(ii) For the induction step, we assume r > 1 and x # 1g. As noted above, Lemma also
applies to Brauer characters. Hence, if n < 6r + 1 + 2k, then we have [(x) < [n/2] < 3r + k.
Thus we may assume that

(4.5) n > 6r+ 2+ 2k.
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Let B :=Fy be the natural module for G = Q(B), endowed with a non-degenerate quadratic

form Q, whose bilinear form has Gram matrix diag << IO IOZ > s ) with respect to a basis
2
(u1, ug, v1,v2, W1, .., Wn—4)

(for a suitable invertible matrix J). We will assume that (u1,u2)r, is totally singular.
Consider the parabolic subgroup P = Stabg(U) where U := (u1,u2)r,, and its subgroup
P’ := Stabg(u1,uz2). As in the proof of Theorem we have that @ := O,(P) is a p-group

of order ¢?"~7 of extraspecial type, and P’ = Q x H, with
H := Stabg(u1,ug,v1,v2) = QW) = Qf _,(q),
where W := (w1, ws, . .., wy—4)F, is a quadratic space of the same type € as of B; moreover, P

acts transitively on the ¢ — 1 non-identity elements of the elementary abelian p-group Z(Q),
and also on its ¢ — 1 nontrivial linear /-Brauer characters. Fix some A € IBry(Z(Q)) ~{1z)}-
In what follows, we will also consider A as a complex character of Z(Q).

As @Q is of extraspecial type, @ has a unique irreducible FQ-module, say Ly, with central
character \, and dim Ly = ¢"~%. We can also view L) as obtained from the unique irreducible
CQ-module Ny with central character A\ by reducing modulo ¢. As shown in part (ii) of the
proof of Theorem N, extends to P, and so does Ly; moreover, there is an extension M)
of Ly to P’ such that the Brauer character u of M) is an irreducible constituent of (75)|p:.

(iii) Assume that x is afforded by an irreducible FG-module X, where F is algebraically
closed of characteristic £. As x # 1, the A-eigenspace X of Z(Q) on X is nonzero. The
result of (ii) and the modular version of Gallagher’s theorem [N, Corollary 8.20] show that
the P’-module X is isomorphic to M) ® Y, where Q acts trivially on the P’-module Y. Note
that r(M,) > 2. Hence, applying Lemma (ii) to the submodule My, ® Y C X of P/, we
obtain that ' :=r(Y)/2 <r — 1.

Now, if (r,7') = (1,0) then n — 4 > 4 + 2x by (L), whence the induction hypothesis
applies to (n — 4,7") by the results of (i). If r > 2, then n — 4 > 10 by , and so the
induction hypothesis applies to (n — 4,7’) as well. By the induction hypothesis applied to
H=Q(W) Q¢ 4(q) and 7/, if ¢ is an irreducible constituent of the H-character afforded
by a simple submodule Y’ of Y, then

(4.6) () < 3(r —1).

Next, as shown in part (iii) of the proof of Theorem 3.7, (7p)|ps contains a character v
with Q@ < Ker(v) and v|g = . It follows that (75)3 ~3|p/ contains v*" 3, which in turn
contains 1 because of (4.6). On the other hand, it was shown in (ii) that (75)|ps contains p. It
follows that (75)3"~2|ps contains ui). Recall that ui) is the Brauer character of the submodule
My ® Y’ of the P'-module X. By Frobenius’ reciprocity, X is a quotient of Ind% (MA ® Y’).
Hence, x is contained in

Indg, <((TB)3r_2) |P/> = (78)*" % - IndG (1p1).

Recalling that P’ = Stabg(u1,u2), we see that Ind%, (1p/) is contained in the permutation

character (75)? of G acting on the point set of B x B. Consequently, x is contained in (75)%,

i.e. I(x) < 3r, and the induction step is completed. O
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5. RESTRICTIONS TO NATURAL SUBGROUPS
In this section, by a standard subgroup GLy,(¢q) of GL,(q) = GL(V') we mean the subgroup

Stabar,vy((€1 - - - em)Fy) €mt1s - - -5 n) = GLpy(q)

for some basis (e1,...,e,) of V =TFy. Likewise, by a standard subgroup GU,,(q) of GUy,(q) =
GU(V) we mean the subgroup

StabGU(V)(<€1, ceey €m>15'q2 sCm4ls .-y en) = GUm(q)

for some orthonormal basis (eq,...,e,) of the Hermitian space V = IFZQ. We will also use the
notation GL{ (¢) to denote GLy,(¢) when € = + and GU,,(¢) when € = —.

Proposition 5.1. Let G = GL§,(¢) withn > 7, e = £, and let
X1y« s Xms X1s -+ s Xom € IrT(G)
be of degrees at most ¢" with 0 < L < n/5. Then the following statements hold.

(i) If 1 < r < n—[14L] and € = +, then the restriction of x; to a standard subgroup
GLS(q) contains a linear character of GLS.(q).

(ii) In general, if 2.8mL < n, then [x1X2--- Xm, X1Xa -+ - Xmla < 8q2m2L2.
Proof. (a) Since n > 7, we have that
xi(1) < ¢ < gt
It follows by [GLT, Theorem 1.1] that j := [(x;) < n/2 and so
(5.1) " = xi(1) = /"
Consider the polynomial f(t) = t> — nt + nL € C[t]. Then f(1.4L) < 0 and

n+vn? —4nlL - n+ L5
2 - 2

>n/2+1.1L.

It follows that
(5.2) If t <n/2+1.1L and £(t) > 0, then ¢ < 1.4L.
In particular, (5.1)) implies that j < k := [1.4L].

(b) Here we assume that ¢ = +. By the definition of the level [(x;) |[GLT| Definition 3.1],
there is some linear character a; € Irr(G) that y;q; is an irreducible constituent of 77, where
7 is the permutation character of G acting on the set of vectors of the natural module V' = Fy.
Propositions 3.3, 3.5, and Theorem 3.6 of [GLT] now imply that (i) holds. Furthermore, note
that 1¢ is a constituent of 7, so y;q; is also a constituent of 7%. This is true for all 1 < i < m.
It follows that

[X1X2 <o Xmy X1X2 - - -Xm]G

is at most [T G, which equals the number of G-orbits on the set Qo (in the notation
of Lemma [2.5). By Lemma the latter is at most

km’ Tkm]

qu2m2 < 8q2m2L2



CHARACTER LEVELS AND CHARACTER BOUNDS FOR FINITE CLASSICAL GROUPS 23

since 2km < 2.8mL < n. The same holds for x}x5...x},. It follows by the Cauchy—Schwarz
inequality that

1/2
[X1X2 - Xms XIX2 - - - Ximla < ([xm X XIX2 - - Xl G XX - Xons X1X2 - ~-xin]c>

S 8q2m2L2 .

(c) Now we assume that e = —. By the definition of the level [(x;) [GLT) Definition 4.2],
there is some linear character «; € Irr(G) that x;c; is an irreducible constituent of ¢7, where
¢ = (p is defined in [GLT} (4.1)] and ¢? is the permutation character of G acting on the set
of vectors of the natural module V = IF'ZQ. This is true for all 1 < i < m. It follows that

[X1X2 - -+ Xms X1X2 - - - Xm]G

is at most [(?, (%] for some a < km. Note that [(*, (*]¢ equals the number of G-orbits on
the set Qk,, (in the notation of Lemma. By Lemma the latter is at most

2qk2m2 S 2q2m2L2

since 2km < 2.8mL < n. Now we can finish as in (b). O

Corollary 5.2. Let G = GL{(q) with n > 7, € = £, and let x1,x2 be complex characters
of G of degree at most ¢"*' and g™ with L1,Ly > 0 and L1 + Ly > 1. Then the following
statements hold.

(ii) In general, o(x1Xx2,G) < U(XlaG)U(XQ,G)QS(LPFLQ)Z‘

Proof. (i) Let L := Ly + Lo and consider first the case L < n/5.

Assume that € = +. Then the proof of Proposition shows that, for each ¢ = 1,2, there
exist a linear character «; of G such that y;c; is a constituent of 7ki for k; 1= |1.4L5]. Hence
X1X20i1 g 18 a constituent of 7% with

k= L14LJ > k1 + ko.
By Lemma [2.5] we now have

2 2 2
o(xixe, G) < [7F, 78] < 8¢F < 8¢*" < L.

Next assume that e = —. Then the proof of Proposition [5.1] shows that, for each i = 1,2,
there exist a linear character o; of G and some k; < [1.4Ls| such that y;q; is a constituent
of ¢*i. Hence X1)X2Q1Qg is a constituent of ¢k with

k:=ki +ke <|14L|.
By Lemma [2.5] we now have
o(xix2, G) < [¢F,¢F < 20" <242 < P2
On the other hand, if L > n/5, then in both of the cases of ¢ = + and € = — we also have
o (x1x2,G) < (axa)(1) < ¢ < ¢

as well.
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(i) Write x1 = >, aics and x2 = >, b;8; with a;, 8; € Irr(G) being pairwise distinct.
Then a;(1) < ¢"* and B;(1) < ¢"*2, and so
o(0if;, G) < ¢
by (i). It follows that
o(xixz) = Y aibjo(aif,G) < (O a) (D b;)d* = o (x1,G)o(x2, G)g*".
]

i J
O

Corollary 5.3. Let G = GL{,(q) with n > 7, € = —, and let x be a complex character of
degree at most ¢"* with L > 1/2. Then for any integer m > 1 we have

(X", G) < ¢ oy, G)".
Proof. First we prove by induction on k£ > 0 that

k 2k+1_ok+1\72 k
(5.3) o(x*,G) <P T o (x, G)Y

The induction base k = 0 is trivial. Now, for any k£ > 0 we have by Corollary (ii) and the
induction hypothesis that

k+1 92k+2712 k 2k+3_ok+2 2 k+1
(x> G <PT T a(x, G <P T g (x,G)PT,

completing the induction step.

Now we prove the desired statement by induction on m > 1, again with the trivial induction
base m = 1. For m > 2, take a := 2* with k := [logy m|. According to (5.3) we have that

o(x% Q) < ¢ oy, G)

In particular, we are done if a = m. Suppose that b := m — a > 1 and apply the induction
hypothesis to b. Then by Corollary (ii) we have

c(X™,G) < "o (x, Qo (b, G) < PRI 5\ aym < B g (y, G,
since a > b. O

Proposition 5.4. Let V. = Fy be a non-degenerate symplectic or orthogonal space and let
G = Sp(V) or SO(V), respectively. Suppose that |Cy(g)| = ¢* for some g € G. Then

ICalg)| > ¢** 73072,

Proof. First we make the following observation that
(5.4) [Spak(@)] > ¢**F1 /2, SO (q)] = gD/ /2
for kK > 1 and m > 2. Indeed,

k
1Spor(@)| = ¢ [](a* - 1),
i=1

so the Sp-case follows from [GLT, Lemma 6.1(i)]. The same argument applies to the SO-case
with m = 2k + 1 since

k
1SO2k41(q)] = ¢* [ (¢ = V.
=1
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Consider the SO-case with m = 2k. If k£ < 3 then (j5.4]) can be checked directly. If £ > 4, then
by [GLT) Lemma 6.1(i)] we have

k—1
. 9 15
+ S (k=) 2 k1) > gk@2k=1) 2 k(2k=1) jo
1S03,.(9)] > q i||1(q (¢"—1)>q 6 16 Y /2

Let ¢ = su denote the Jordan decomposition of g, with s semisimple and u unipotent.
Then we can decompose V = A @ A+, where A = Ker(s — 1y/) is non-degenerate. Next, if .J;
denotes the Jordan block of size i x ¢ with eigenvalue 1, then we have

U‘A = @ZJZ-”
for some r; € Z>p and

(5.5) Y ri=k

)

We will view H := Sp(A), respectively H := SO(A), as H = HY | where H := Sp(A ®r, Fq),
respectively H := SO(A ®p, F,) and F : H — H a Frobenius endomorphism. The structure
of the connected component C := Cg(u)° is described in Theorems 3.1, 6.6, and Lemma 6.2
of [LSe]; in particular,

S22 + Doici ity + Yooy 1i/2 = 3o i, H =Sp,
SoiirE /24 Ycyirivy — Yo mi/2 — Yoy i, H =80,

(where the additional term } -, r; appears only when 2|q). Of course, if r; > 0 for some 2|z,
then

dimC > {

ir? > riz + 74,
and so ([5.5)) implies that
Zir?/2 + Zimrj > Zr?/2 + Zrirj + Zm/2 > k%2 + Zri/z
i i<j i i<j 2[i 2[i
It follows that
dimC > k2/2 = /2> (K - k)/2.
i

The structure of C¥" is described in Theorems 7.1 and 7.3 of [LSe]. Together with (5.4), this

implies that

Consequently,

Ca(9)] 2 [Cr(u)] > ¢**=2/2,

O

If V= Fy is endowed with a quadratic form, then we will call a subspace W of V' non-
degenerate if it is non-degenerate with respect to the associated bilinear form.

Proposition 5.5. Let n > 2 and let V = Fg” be endowed with a non-degenerate, symplectic
or quadratic form. Accordingly, we consider G = Sp(V') 2 Sp,,,(q) in the symplectic case,
and G = SO(V) =2 80%,(q) or G =Q(V) = QF,.(q) in the quadratic case. Let H = Sp,,,_5(q),

respectively Sogn_Q(q) or an_2(q), be the subgroup of G consisting of all elements that act
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trivially on a non-degenerate 2-dimensional subspace W of V', where a, 8 = + are fized. Let
x € Irr(G) be of degree at most q° for some D > 1. Then

x| X|m] < g?HVAmHI6D,

Proof. (i) For any element g € G, let g¢ denote the G-conjugacy class of g in G, and let N(g)
denote the number of non-degenerate 2-dimensional subspaces of V' (of fixed type af if V' is
quadratic) on which g acts trivially. Here we prove that

G
g"NH| |G
'|9G|'-,H'|s I(W)] - N(g),

where I(W) = Spy(q) if V' is symplectic, and I(W) = Gogﬁ(q) if V' is quadratic. Indeed, let
X=X, :={(h,r) € Hx G| h=z"'gx}.
First we consider the projection
mm:X = g“NH, (hyx)—~h
which is surjective, with fibers of size |Cg(g)| = |G|/|g%|. Tt follows that

(5.6)

g% N H|
X| =G| =———.
X =G| oC
Next, consider the map

Note that g = zhaz~! acts trivially on x( ) for any (h,z) € X. The fiber 7, ' (x(W)) consists
of pairs (h,y) = (y tgy,y) € X with 2~ 1y(W) = W, and so of size at most |H|-|I(W)|. Thus

X < N(g) - [H[-[I(W)],
and the claim follows.
(ii) Next we observe that if |Cy(g)| = ¢*, then
(5.7) [H(W)]- N(g) < (¢" = 1)g" " < ™.
Indeed, let (-, -) denote the bilinear form on V, and let W = (u, v)p, be a fixed non-degenerate
2-space (of type af if V' is quadratic) on which g acts trivially, where we choose v such that

(u,v) # 0. Then [I(W)]- N(g) is the number of linear isometries f : W — Cy(g), and for
each such f, we have at most ¢* — 1 choices for f(u). Next, (f(u), f(v)) = (u,v) # 0, and so

fv) €W f(u)t € Cylg) ~ flu)*.

It follows that Cy(g) + f(u)* = V and so dim(Cy(g) N f(u )l k — 1. Now one can see

|

that the number of choices for f(v) is at most |Cy (g) N f(u)*| = ¢* L.
(iii) We call g € G good if
991 Ix(9)* < ¢7"|H]|
and bad otherwise. Accordingly we can write
9" nH|- 9“ N H| - |x(9)]?
68  adala= 3 LC0H NP, P> " O H] - lg)
‘. |H| |H|
g“: g good : g bad

By Theorems 3.12, 3.13, 3.16, 3.18, 3.21, and 3.22 of [FGJ, IIrr(G)| < 15.2¢™. Tt follows that
the sum over good classes in (5.8)) is at most 15.2. If ¢ is bad, then we have

ICa(g)| < qn’X(g)‘Q[G cH] < q5n71+2D‘
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It follows from Proposition [5.4] that

3 / 1
k<— 1 4D + —
_2+ On + +4

if |Cy(g)| = ¢*. Also, (5.6) and (5.7) imply that
g N H| _ g% | I(W)[-N(9) _ or1_l9°]

q .
|H| |Gl |G|

> lo°. (@) = = S )P =1.
= |Gl G

geG
Applying the above estimates to the sum over bad classes in (5.8]), we obtain that
2+VA0n+16D+1 q2+\/41n+16D
)

Also note that

X|m XlE)le < 15244
as stated. .

We will also need the following variant of Proposition [5.5

Proposition 5.6. Let g be an odd prime power, V = Fg"“ be a non-degenerate quadratic
space with n > 3, and let G = SO(V) = SOgp+1(q) or QV) = Qapt1(q). Let H = SO;n(q),
respectively H =2 Q;n(q), be the subgroup of G consisting of all elements that act trivially on
a non-degenerate 1-dimensional subspace W of V.. Let x € Irr(G) be of degree at most q° for

some D > 1. Then

[X| > Xl ) < 2TV A0,

Proof. (i) For any element g € G, let N(g) denote the number of non-degenerate 1-dimensional
subspaces W of V on which ¢ acts trivially and such that W+ is of type +. First we prove
that

G
0| 1G] _

(5:9) el JH S

2N (g).

Indeed, let
X:={(h,x) e HxG|h= x_lgx}.
As in the proof of Proposition by considering the projection
m:X = g“NH, (hyx)—h

we see that
lg° N H|

l9¢|

o : (h,z) — z(W).
Note that g = zhaz ™" acts trivially on (W) for any (h,z) € X. The fiber 5 *(x(W)) consists
of pairs (h,y) = (y " 'gy,y) € X with 2~ 1y(W) = W, and so of size at most 2|H|. Thus

X < N(g) - 2|H|,

X[ = |G|

Next, consider the map

and the claim follows.
We also observe that if |Cy (g)| = ¢, then N(g) < ¢".
(i) Call g € G good if
9% - IX(9)” < a ™" |H]|
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and bad otherwise. Accordingly we can write

G .
(5.10) ol = 3 1 “ﬂ” “+ b3 9 ”ﬂ{"x@

gG: g good : g bad

By Theorems 3.17 and 3.19 of [EG], |Irr(G)| < 7.3¢". It follows that the sum over good classes
in (5.8) is at most 7.3. If g is bad, then we have

ICc(9)] < qm|x(g)|2[G . H] < q3n+2D+0,06
(where we have used the estimate (¢" + 1) < 1.04¢" < ¢""%%). Tt follows from Proposition

£.4] that

| 2

3
k§§+\/6n+4D+2.37

if |Cy(g)| = ¢*. Also, (5.6) and (5.7) imply that

9% N H| < 9] - 2N (9) < gFrost, ’LG|
H| G| G|

2 et ~[cl T

Applying the above estimates to the sum over bad classes in , we obtain that
2.14+V6n+4D+2.37 _ q2+\/7n+5D

Also note that

X|H, x5 HE <T7.34+¢q
as stated. O

Next we endow V = Fg” with a non-degenerate symplectic, respectively quadratic form
with a Witt basis (e1,...,en, f1,. .., fn), where we assume furthermore that (e1,...,e,)r, is
totally singular. Then let G;, := Sp(V)) 2 Sp,,,(q), respectively SO(V) = SOJ (g). Consider
the parabolic subgroup

P, := Stabg, ({(e1,...,en)r,) = Qnln
of G, with abelian unipotent radical @, and Levi subgroup L,, = GL,(q). If 2|q, then P, is
contained in Q(V'), and, abusing the notation, we will also consider the case G, := Q(V) =

03, (a)-
For any 1 < m < n, we will also consider the standard subgroup
G = Stabg, (em+1y -« s €ny fntls -y fn)
(which is isomorphic to Spa,,(q), respectively SO3. (q) if G, = SO(V), and Q3 (q) if G, =
Q(V) and 2|q), and its parabolic subgroup P, and Levi subgroup L, = GL,,(q).

Proposition 5.7. Letn > 7 and 0 < L < n/5. Let p € Irr(P,) be of degree at most . If
1 <m <n-—|14L|, then the restriction of ¢ to P,, contains a linear character of Py,.

Proof. (i) Let S,,(q) denote the set of symmetric n x n-matrices over F,, and let A,,(q) denote
the set of anti-symmetric n x n-matrices over F, with zero diagonal. Fix a primitive Pt root
e of 1 in C. First we consider the case G,, = Spy,,(¢). Then

o= {irxi= (5 1)ixesE}.

If 2 1 g, then any linear character of @, is of the form

Ap o I, X] s tFasmp (TH(BX))
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for some B € S,,(¢q). Any such B defines a quadratic form of rank j = j(B) and type € = =+,
and
(5.11) Jp = Stabr,, (Ag) = [¢/" )] x (GOS(q) x GL,—;(q)),

where [¢%] denotes an elementary abelian group of order ¢®. If ¢ is even, then any linear
character of @), is of the form

Ag ¢ [, X]— ¢'1eq /5 (TH(BX))

for some B € M, (q), and Ap = Ap/ if and only if B — B’ € A,,(q). Now, for each B = (b;;) €
M,,(q) we define the quadratic form gp on the space Fy = (f1,..., fu)r, such that gg(f;) = by
and the associated bilinear form has B + !B as Gram matrix in the given basis. Then
again holds with r being the rank of gp, see e.g. [GT2, Lemma 3.1].

Suppose now that G,, = SO3, (¢), or 2|¢ and G, = Q. (q). Then

I, X
Qn = {[I,X] - <5 In> X e An(Fq)}.
If ¢ is odd, then any linear character of ()., is of the form
A i (I, X] s eFa/mp(THBX)
for some B € A, (q). If ¢ is even, then any linear character of @,, is of the form
Ag ¢ [, X]— ¢t1eq /5 (TH(BX))

for some B € M,(q), and \g = Ap/ if and only if B — B’ € S,(¢q). Let the even integer
j = j7(B) denote the rank of B if 21 ¢, and of B —'B if 2|q. Then again we have

(5.12) Jp := Staby, (Ag) = [¢/""] x (Sp;(q) x GLn—;(q)).

(ii) Let O denote the P,-orbit of A with j = j(B). Here we show that

o) 5 | M@, g0 G, —Sp(v),

The statement is obvious for 0 < j < 2, so we will assume j > 3. If G,, = Sp(V), then the
bound |0 > ¢Z(=G=1/2)=3 > 4i(»=3) follows from (5.11)) and the estimates
n2 i n—i)2
IGLn(q)| > (9/32)¢", |GOF(q)| < 2¢’V"D/2 |GL,—;(q)| < ¢

(with the first one following [GLT, Lemma 6.1(i)]). If G;,, = SO(V) or Q(V), then the bound
10| > ¢?(*=0+1/2)=2 5 ¢i("=3) then follows from (5.11)) and the estimates

9 ¢-1 P?-1 .. i
|GLn<q>r>f-T-q2, Sp(a)l < =5 L PJUHD2 QL ()] < ¢

(5.13)

— 16
(with the first one following [GLT) Lemma 6.1(i)]).

(iii) Assume now that A = Ap occurs in ¢lg,. By Clifford’s theorem, ¢ = Indtr (A) for
some irreducible character A of

T := Stabpn()\) =Q, %X Jp

that lies above A. Let u be an irreducible constituent of the restriction of A\ to the subgroup
GL,—;(q) of Jp. Then we must have that

(5.14) 0] < |0]- u(1) < p(1) < g™ < ¢/,
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First note that if n/2 < j < n, then
min(j(n — (j —1)/2) = 3,j(n — (j + 1)/2) — 2) > n*/5.
Hence (5.13)) and (5.14) imply that j < n/2. This, together with (5.2)) and (5.14) actually

shows that
(5.15) j<14L.

In particular, n — j > 3.6n/5 > 4.
Writing (@) = 4, we aim to show that

(5.16) i+7 <14L.
Suppose first that i > (n — j)/2. Then u(1) > ¢"~9*/4=2 by [GLT], Theorem 1.1, and so by

(5.13) we have

o(1) > g/ n=4)?/4-2,
Note that h(t) := t(1 —¢) + (1 — t)?/4 — 1/5 — 2/49 > 0 on the interval [0,1/2]. Since
0 <j/n <1/2 by (5.1F), we see that
jn =)+ (n—35)2/4—2=n% h(j/n) +n?/5+2n%/49 — 2 > n?/5 + 2n? /49 — 2 > n? /5,
violating (5.14). We have shown that i < (n — j)/2, and so
i+j<n/24+j/2<n/2+4+0.7L
by . This, together with and , yields .

By O) for a suitable j x j-matrix By. Then

(iv) Without loss we may assume that B = < 0 0

we can choose G, ; to be the subgroup
Stabg, (e1,...,€ej5, fi,..., fj)
and the subgroup GL,_;(¢) in Jp to be a Levi subgroup L,_; of the parabolic subgroup
P,_j = Stabg,_,({ej11,---,en)F,)

of Gj,—;. As in the proof of Proposition the condition [(x) = 7 implies that the restriction of
p to a standard subgroup GL,,—;—;(¢q) of GL,—;(q) contains a linear character v of GL,,—;—;(q).
As above, we can choose G,—;—; to be the subgroup

Stabg,, (€1, ..., €itj, fi,- -, firj)
and the subgroup GL,—;—;(q) to be a Levi subgroup L,_;—; of the parabolic subgroup
Py—i—j = Stabg,_,_;({€itj+1,---s€n)F,)
of Gj,—;—j. Note that the unipotent radical @,—;—; of P,,_;_; is contained in @, and consists
of matrices [I,Y], where Y = <8 Y
F,, and so Qp—i—;j < Ker(A).

Now ¢|p,_,_, contains Al P,_;_;» and the latter has been shown to contain a linear character,
trivial at @Q,,—;—; and equal to v at GL,,—;—;(¢q). Asi+j < |1.4L] by (5.16), we are done. [

) for a suitable (n — i — j) x (n — i — j)-matrix Y7 over

Now we can prove the main result of this section:
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Theorem 5.8. There is an explicit absolute constant A > 0 (which can be taken to be 705)
such that the following statement holds. Let q be a prime power, n > 1, G,, = Sp,,(q) or
SO3.(q), or Q3. (q) with 2|q, and let L, = GLy(q) be a Levi subgroup of the parabolic subgroup
P, of G,,. Suppose that x is a complex character of G, of degree at most ™", where L > 1
and
n > max(7.6L,7+ 1.4L).
Then
o(x. Ln) < V"o (x,Gy).

Furthermore, for any m > 1 we have

O,(Xm Ln) < qm\/AnL3+15m2L20_(X Gn)m
Proof. (i) By Proposition [5.5] there is an absolute constant A; > 0 (which can be taken to
be 69) such that

U(@Z@Gm*l) < [¢|Gm717¢|Gmfl]Gmfl <q Ainl
for all 7 < n, 7<m < n, and for ¢ € Irr(G,,) of degree at most ¢"". Setting

k= |1.4L], Ay = (1.4)%A;(~ 135.3),
and applying Lemma (i), we see that
(5.17) o (X, Gnt) < gV "o (x, Gn),
Next we show that if n > max(7,5L) and x(1) < ¢"* then

(5.18) o(x, Pn) < ¢V oy, Gp).

For, if ¢ € Irr(P,) is any irreducible constituent of x|p,, then ¢|p,
stituent A € Irr(P,,_) by Proposition It follows that

O-(Xv Pn) < }‘(X’ Pn—k)'
On the other hand, by Lemma the multiplicity of each linear A € Irr(P,_j) is at most
\/‘Pn—k\Gn—k/Pn—k| < \/ﬁ
in the restriction to P,_j of any irreducible character of GG,,_r. Hence,
A Pak) SV o (x, Gni) < gV o (x, Gr)

by (5.17)), with A3 = 148, establishing (|5.18]).

(ii) Recall we have proved (5.18) for any (not necessarily irreducible) character of G, of
degree at most ¢™", provided that m > max(7,5L). Consider any irreducible constituent
a € Irr(Gp—i) of x|g,_,- Then

, contains a linear con-

01(1) < an — q(nfk)M

— )

where
nL

L
M = <
n—k~ 1—-14L/n

< 1.226L,

since n > 7.6L. Now we have
n—k > max(7,5M)
and so ([5.18) can be applied to « to yield

0'(047Pn—k) S q AS(nik)MS S q A47LL37
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with A4 < 1.504A43 can be taken to be 222.6. Using this together with ((5.17)) and Lemma
we get

(5.19) o (x, Pay) < gV VA 6 (v, @Gy) < gV o (x, Ga),
with As = 705.
(iii) By Lemma the multiplicity of each linear p € Irr(L,_x) is at most 1 in the
restriction to L,,_j of any irreducible characters of P,_; = Qn_g X Ly,_i. Hence,
A Lnk) < 0 (%, Pak) < gV o(x, G)

by (5.19). On the other hand, if v € Irr(L,) is an irreducible constituent of x|r,, then
(1) < x(1) < ¢"F, and so by Proposition i), its restriction to L,_j contains a linear
character of L,,_;. It follows that

O'(X, Ln) < )\(X’ Ln—k)’

and so we obtain the first statement of the theorem by taking A = A5 = 705. The second
statement then follows from Corollary O

For the next statement, we note that SO(V') = SOgp41(q) with 2 t ¢ contains a standard
subgroup H = SO3, (¢) which fixes a non-singular vector in V. Likewise, SO(V)) = SO, ,(q)
contains a standard subgroup H = SOF (¢) which acts trivially on a non-degenerate 2-
dimensional subspace of V. Furthermore, Q(V)) = Q;,,.,(¢) contains a subgroup H = SO3, (q),
which fixes an orthogonal decomposition V' = V; & Vs, where V5 is a non-degenerate 2-
dimensional subspace of type — and has [H, H] = Q0 (q) acting trivially on Va; we will refer
to any such subgroup H as a standard SO3, (q)-subgroup of Q5 40(a).

Corollary 5.9. There is an explicit absolute constant B > 0 (which can be taken to be 1216 )
such that the following statement holds. Let q be a prime power, n > 1, G := SOay,+1(q) with
214q, or G := S0y, ,(q), or G := Qy, ,,(q). Let L, = GL,(q) be a Levi subgroup of the
parabolic subgroup P, of a standard subgroup H = SO;n(q) < G. Suppose that x is a complex
character of G is of degree at most ¢"F, where L > 1 and

n > max(7.6L,7+ 1.4L).

Then
v Bn 3
o(x, Ln) < ¢V P a(x, Q).

Furthermore, for any m > 1 we have

U(meLn) < qmanL3+15m2L20_(X’ G)m

Proof. Set H := Q3 (q) if G = Q,,.9(q), and H := H otherwise. As in the proof of Theorem
Propositions and applied to the pair G > H imply that
o(x, H) < o(x, H) < ¢V""o(x, G),
where A; can be taken to be 69. On the other hand, by Theorem
o (0, GLu(g)) < ¢/

for any irreducible constituent « of x|z, where A can be taken to be 705. Hence the statement
follows from Lemma 2.3 O

We will also note the following consequence of Theorem [5.8 and Corollary
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Corollary 5.10. There is an explicit absolute constant C > 0 (which can be taken to be 1696 )
such that the following statement holds. Let q be any odd prime power, n > 1, G := SO2,+1(q)
or 8O3 (q), and let G := [G, G] = Qan41(q), respectively Q3 (q). Let L, = GLy,(q) be a Levi
subgroup of the parabolic subgroup P, of G. Suppose that x € Irr(G) is of degree at most ",
where L > 1 and

n > max(8.5L,7+ 1.6L).
Then

o(x, Ln N G) < ¢V

Proof. Let x € Irr(G) be lying above x, so that
X(1) < 2x(1) < " < gt
where L1 = (10/9)L. Applying Theorem and Corollary and to X, we see that

o(x. Ln N G) < 0(%, Ln N G) < 20(X, Ly) < 2¢V P07 < gVOnL7,
where B = 1216 and C can be taken to be 1696. O

6. NON-EXPLICIT BOUNDS ON CHARACTER VALUES

A triple (G, q,n) consists of a finite group and two positive integers. We say a set T of
triples is B-bounded for some B > 0, if for every (G,q,n) € T, every L > 1, every character
x of G with x(1) < ¢"F, and every positive integer m we have

m mnl/2 3/2 m2 2 m
o(X",G) < g7 T g ( G)
with o (+,-) as defined in ([2.1)).

Lemma 6.1. Fiz C > 0. Let T1 and Ty be sets of triples such that for all (G1,q,n) € Th
there exists a triple (Ga,q,n) for which either Go is isomorphic to a subgroup of G1 of index
< ¢ or G is isomorphic to a subgroup of Ga of index < ¢©. If Ty is Bo-bounded, then T is
B -bounded (for some By depending on Bs and C').

Proof. We will prove that 77 is Bi-bounded for By := By(C+1)24+C. Assume (G1,q,n) € T1,
L1 > 1, and x; is a character of G with y1(1) < g™,

Suppose G < Gy for some (G2,q,n) € To and [Gy : G1] < ¢©. Let Ly := (C + 1)L,
and yg = Indgf (x1), so that x2(1) < g*ltC < gnl2 Since a tensor product of induced
representations naturally contains the induced representation of the tensor product, by Lemma
2.3(ii) we have

O-(Xinle) < U(XTZna Gl) < U(Xgn7G2)[G2 : Gl]

Bz(mn1/2L§/2+m2L§)+Ca(X2 Ga)™
)

IN
Sy

1/273/2 272
Bi(mn'/?L{""+m Ll)U(Xl;Gl)m‘

A

q

Suppose, on the other hand, that G5 < G for some (Ga,q,n) € To and [G1 : Go] < ¢©. Then
again using Lemma (ii) we see that
U(XTa Gl) < U(XT? GZ)
< @Bl LI o oy

3/2
< qu(mnl/QLl +m2L?)U(X1,G1)m,
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so 71 is indeed Bj-bounded. O

Corollary implies that the set of triples of the form (GLg (¢),q,n) is Bi-bounded, with
By = 15. Using Theorem and Corollary as well, we see that the set of triples of the
form (Spy,(q),q,n), (SO3,(q),q,n), (SO2n11(q),q,n), or (SO3,.5(q),q,n), is By-bounded,
with By = 1216. By Lemma for a fixed a > 0, the set of triples (G, q,n), with G being
any (q,n,a)-classical group, is Bs-bounded for some Bs depending on a. It follows that all
classical groups belong to B-bounded triples, with B > 1 suitably chosen.

Theorem 6.2. For every € € (0,1), there exists an effective constant § = §(¢) > 0 such that
the following statement holds. If G is a classical group and g € G satisfies |Cq(g)| < |G/°,
then

Ix(g)] < x(1)°
for all x € Irr(G). In fact, § can be taken to be Ce3 for some effective constant C > 0.

Proof. By the above discussion, we can fix B > 1 so that (G, ¢,n) is B-bounded, if the classical
group G has parameter n. By choosing C' (and so ¢) small enough, we may assume n is as
large as we wish, since |Cg(g)| < |G|® never occurs for bounded n: the order of the centralizer
of any non-central element g € G is bounded below by max(2, (¢ — 1)/2), whereas the order
of G is bounded above by O(g"t)@ ). in fact, |G| < ¢ for some explicit C; > 0. By
choosing 0 < § < §;/2C}, we may also assume that |Cg(g)| < q‘smz/2 where 61 > 0 can be
taken as small as we wish.

We now choose §; and do so that
2
et 0
81B2 — 81B’

IN

€
3
We use the centralizer bound

p(9)] < [Cal)]'* < ¢
for every ¢ € Irr(G), and let
L = max(log,n x(1),1).
As the minimum dimension of any non-linear irreducible character of a classical group is
greater than ¢™/3 by the Landazuri-Seitz bound [[aSe], we have

(6.1) x(1) > g=n/3,
We may assume
(6.2) L S (527&/2,

since otherwise, the desired character estimate follows immediately from the centralizer bound.
Fix an integer m > 2 such that

(5277, < < 2(5277,
e m R
L — L

This is possible because of (6.2)). Then the B-boundedness implies
X(9)[™ = [X"™(9)] < o (x™, Q)1 /2 < @Bl PLY L) +on? /2

Hence, by (6.1)) it suffices to prove

2
B(n'2L3? + mL?) + on” < ELJ
2m 3
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We do this by combining the inequalities
1/273/2 eln
Bn'/“L°* = Ln(B L/n)gLnB\/(Sg/QgT,

deL
BmlI? < 2BéyLn < 21",

and
an®  6Ln _ eLn
< < .
2m 209 — 6

0

The following proposition shows that all representations of spin groups which do not arise
from representations of the corresponding orthogonal groups are of such high degree that our
character estimates are trivial. Our general references for Deligne-Lusztig theory are [C] and
[DM].

Proposition 6.3. Let ¢ be a power of an odd prime p and let ¢ = +. Then the following
statements hold.

(i) Suppose x is a faithful irreducible character of Spiny, 1(q) with n > 2. Then
X(l) > qn(n+1)/2/4‘

(ii) Suppose x is an irreducible character of Spins, (q) with n > 3, which is not obtained by
inflating an irreducible character of Q5,,(q). Then

X(1) > ¢"" D24,

Proof. (i) For G = Spiny, 1(g), the dual group G* is the projective conformal symplectic
group G* = PCSp,,,(¢), which is the quotient of G = CSp,,,(¢) by its center Z(G). Suppose
that x belongs to the rational Lusztig series labeled by the G*-conjugacy class of a semisimple
element s* € G*. By assumption, Ker(x)NZ(G) = 1. Hence s* ¢ [G*, G*] by [NT), Proposition

4.5], which means that the conformal coefficient of an inverse image s € G of s* is not a square
in F;'. Now the computations on p. 1188 of [Ng] shows that

X(1) > [G": Cax(5")]py > [G 1 Cils)]y /2 > " TD/2 /4,

(ii) Here we have that G = Spinj,,(¢) = Spin(V'), where V' = F2" be endowed with a non-
degenerate quadratic form (. We recall some basic facts from spinor theory, cf. [Ch]. The
Clifford algebra €(V) is the quotient of the tensor algebra T'(V') by the ideal I(V') generated
by v ® v — Q(v), v € V. The natural grading on T'(V') passes over to €(V') and allows one
to write €(V') as the direct sum of its even part €+ (V) and odd part €~ (V). We denote the
identity element of €(V') by e. The algebra €(V') admits a canonical anti-automorphism «,
which is defined via

(Vv ... Up) = UpUp_1 ... U]
for v; € V. The Clifford group I'(V) is the group of all invertible s € €(V) such that sVs~! C
V. The action of s € I'(V) on V defines a surjective homomorphism ¢ : T'(V) — GO(V)
if m is even, and ¢ : I'(V) — SO(V) if m is odd, with Ker(¢) > F;e. The special Clifford
group I't(V) is (V) N &€t (V). Let

Co(V):={se(V) | a(s)s =e}.
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The reduced Clifford group, or the spin group, is then defined to be
G = Spin(V) =TT (V)N Ty(V),

and the following sequence

1 — (—e) — Spin(V) -5 Q(V) — 1

is exact.

Now fix v € V with Q(v) # 0 and write V = A® (v)p, with A = v*. Let €4 the subalgebra
of €(V') generated by all a € A, and let €(A) denote the Clifford algebra of the quadratic
space (A, Q|4). Then, by [LBST3, Lemma 4.1}, there is a canonical isomorphism €(A) = €4
which induces a group isomorphism Spin(A) = €4 N Spin(V'), and the following sequence

1 — (—e) — €4 NSpin(V) -2 QA) — 1

is exact.

By assumption, —e ¢ Ker(x). It follows that the restriction of x to Spin(A) = Spiny,,_;(q)
contains an irreducible constituent p with —e ¢ Ker(p). By (i) we now have

X(1) = p(1) > """V /4.
Il
Proof of Theorem[1.5 We have already treated the classical groups G in Theorem[6.2] When
n is bounded, if § is chosen small enough, there are no elements g with |Cg(g)| < |G|°. When

n is sufficiently large in terms of J, the case of spin groups follows from Proposition [6.3| and
Theorem for QF (q). O

7. EXPLICIT BOUNDS ON CHARACTER VALUES

We begin with the following statement that handles the irreducible Weil characters of finite
symplectic groups, see eg. |[GMT]:

Lemma 7.1. Let g be an odd prime power, n > 9, and let G := Spy,,(q) with natural module
V= Fg". For any element g € G, let

e(g) := max(dim Ker(g — 1y ), dim Ker(g + 1v)).
Then the following statements hold for x any of the four irreducible Weil characters of G.

(i) If e(g) < 5, then |x(g)| < x(1)>™.
(ii) If e(g) > 6 and |Ca(g)| < g™ for some § > 0, then [x(g)| < x(1)°V/5.

Proof. Note that x(1) = (¢" £1)/2 > ¢"~! > ¢*/. Furthermore, for k := e(g) we have
by Theorem 2.1 and Lemma 3.1 of [GMT] that |x(g)| < ¢*/?, and (i) follows immediately.
Assume now that k > 6 and |Cg(g)| < ¢"*°. Then

qn25 > ‘CG(9)| > q(kaBk)/Z > qk2/4
by Proposition and so k < 2nv/3, and (ii) follows. U

Theorem 7.2. For every v with 4/5 < v < 1, there exists an explicit constant 6 > 0 such
that the following statement holds. Let q be any prime power, n > 9, and let

G € {Sp2,(q),503,(4),50%,42(0), 5,1 5(0)} U {SO2n11(q) with 21 q,93,(q) with 2|q}.
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Suppose that g € G satisfies |Cg(g)| < ¢"°. Then

IX(9)] < 4-x(1)?
for all x € Irr(G). In particular, if v = 0.99 then one can take 6 = 0.0011.

Proof. (i) For any fixed v € (4/5,1), we can find

(v 1=
. < L
(7.1) 0<(5mln<4, 14)
such that
(7.2) A—(s +75 +4(1—-7) <
: >t 1 7)<,

where A can be taken to be 1216. (For instance, one can take § = 0.00036 if v = 0.9, and
§ = 0.0011 if v = 0.99.) Let x(1) = ¢™* (so again L > 0 is not necessarily an integer), and
we aim to show that

Ix(g9)| < x(1)7.
First we note that
x(9)] < [Calg)M? < ¢/ < x(1)
if L > nd/2vy. So we may assume

(7.3) n>9, L<ni/2y<n/s.
Note that this implies
(7.4) n > max(7.6L,7+ 1.4L).

As the statement is obvious when x(1) = 1, we may assume that x(1) = ¢"* > 1, and so
L > 1/2 by [TZ1, Theorem 1.1]. In fact, L > 1 unless G = Spy,,(¢) with 2t ¢ and x is a Weil
character, in which case we can apply Lemma Henceforth we will therefore assume that
L>1.

(ii) We will choose some integer m > 1 later (see (7.9)). Decompose

t
(7.5) )™ = aixi,
i=1
where x; € Irr(G) and a; € Z~o. We will bound ), a; = o((xXx)™,G) by restricting x to
L, = GLy(q):
X‘Ln = Z baaa
a€lrr(Ly), a(l)<qgnl
so that
(76) (X}Z)m‘[m = Z bal ce ba2ma1 c O Qg - - Oy

o; €Irr(Ly,), 1<i<2m
The choice ([7.9) of m implies by (7.1)) that
5.6nd

56mL < —— <n.
41 =)

With o; € Irr(Ly,) of degree < ¢"F and

B:=m c O Qg - - - O,
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we then have by Proposition [5.1](ii) that

o(8,Ly) < 18,81, <8,

It now follows from (7.4), (7.6), and Theorem and Corollary (which are applicable
since L > 1) that

T (V)™ Ln) < 8% (3 ba)™ = 8¢5 F 5 (x, Ln)?™ < 8¢V AL +8mL2
o
Thus

> ai = ()™ G) < a(XX)™, Ln) < 8g2mVAnLH+8mILE

i

(iii) Now we rewrite (7.5 as
s t
(7.7) )™ =Y aiai+ Y b,
i=1 j=1

where a;,b; € Z~o, oy, f; € Irr(G), and
ai(1) < g™, B;(1) > ¢".
Then the result of (ii) can be written as
iai i ibﬁ < 8q2m\/m+8m2L2.
i=1 j=1
Using the bounds |a;(g)] < a;(1), 8/?™ < 3, and

18;(9)] < |Ca(g)|V? < ¢ < B;(1) /¢,

we have
E 1/2m S 1/2m . s s
i=1 i=1
(7.8) 1/2m
ol o (Eim kB _ X
Z i85 (9) > W > W.
j=1
Recall that we assume vy > 4/5. It follows that
Lo _m
2y S 8(1-7)
and so there exists an integer m > 1 such that
né no
7.9 —<mL < —.
(7 S i)
Our choice (7.9)) of m implies that nd/mL > 4(1 — v) and so

t
1
(7.10) 1> b;Bi(g)'*m < ngg/im < x(1)".
j=1
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Next, n26/2m < 4nL(1 — v) and mL? < nL&/4(1 — 7). It follows from (7.2) that

2
VAnL3—|—4mL2—|—n5§nL< A(S —|—L—|—4(1— ))SnLv.
2m 2v  1—v

Hence ([7.8)) implies that

(7.11) |Zaa )M < 3x(1)7.
Combining ([7.7)), (7.11)) and together, and recalling m > 1, we arrive at
< . 1/2m
X < [ 1D aias(g)l + 1 b;8i(9)
i=1 j=1
< |Zazaz ’1/2m+|zbjl8] |1/2m <4x(1)7,
7=1
as stated. O

Note that the following statement in fact also applies to irreducible ¢-Brauer characters
for any ¢ coprime to 2¢, with the proof in the modular case following the proof of [LBST2|
Theorem 3.9]. We restrict ourselves to the complex case (and also note that [LBST2, Theorem
3.9] needs the assumption that either £ =0 or £ 1 (¢ - ged(n, g + 1))).

Proposition 7.3. Let ¢ be a power of an odd prime p and let ¢ = +. Then the following
statements hold.

(i) Suppose x is an irreducible character of G = SOgp11(q) with n > 2 and x is reducible
over [G,G] = Qan+1(q). Then
x(1) > ¢/,
(ii) Suppose x is an irreducible character of G = SOS,,(q) with n > 4 and x is reducible over
G,G] = 9Q5,(q). Then

x(1) > (g — 1)g""=1/271,

Proof. (a) Assume that x belongs to the rational Lusztig series £(G, (s)) labeled by a semisim-
ple element s € G*, where the dual group G* is Sp,,,(¢), respectively SOS,,(¢). By assump-
tion, x is reducible over [G, G|, which has index 2 in G. It follows by Clifford’s theorem that
X = XA, where X is the unique non-principal irreducible character of G/|G,G|. Note that
A is the semisimple character corresponding to the central involution z € G*. Furthermore,
according to [DM, Proposition 13.30] and its proof, the tensor product with A defines a bi-
jection between the series £(G, (s)) and £(G, (sz)). Since x = xA, we conclude that s and sz
are conjugate in G. As x(1) is divisible by N := [G* : Cg=(s)]y, it suffices to show that N
satisfies the lower bounds mentioned in the statements.

(b) Consider the case G* = Sp,,(q). It is easy to see that the condition s and sz are
G*-conjugate implies that 1 and —1 should occur as eigenvalues of s with the same even
multiplicity say 2a > 0, and

Ce(8) = Spoy(q) X Spay(q) X H GLy, (%) X H GU,,(
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where a;,b; > 0 and ), kja; + Zj l;bj = n — 2a. It follows that

N > [Sp2,,(9) : (SP2a(q) X SP24(q) X GUn—24(q))]p'-
If a = n/2, then
"2 nio
q -1 n
(7.12) N > [Spy,(q) : SP, (@) = [ [ o1 2,
i=1
If 0 < a < n/2, then by [GLT, Lemma 6.1(iii)] we have

n—2a
: : (q2n—4a+2 _ 1) o (q2n _ 1) 3
(713) N > H (q + (*1) ) ’ ((qg — 1) o (qga — 1))2 > (C] - 1)qM 17

where

(n—2a)(n—2a+1) n? + (4a +1)(n — 2a)
2 2

Since ¢ — 1 > ¢*/? when ¢ > 3, we obtain that N > q”2/2 in this case as well.

M =

+ a(4n — 6a) = > (n? 4+ 1)/2.

(c) Suppose that G* = SO5,,(¢). The condition s € SO, (¢) and sz are G*-conjugate imply
that 1 and —1 should occur as eigenvalues of s with the same even multiplicity say 2a > 0.
First suppose that a = 0. Then

c d
Co-(s) = [ [ GLx, (¢*) x [ ] GU, (%),
i=1 j=1

where a;,b; > 0 and ), kja; + Zj ljbj = n. It follows that
(@1 +1)...(¢" +(=1)")
7" +1 '
Using [GLT, Lemma 6.1(iii)] and observing that (¢> + 1)(¢® — 1) > q(¢* + 1), it is easy to
check that

N > [SO3,(q) : GUy(q)]y >

N > (= 1)g"
in this case. Suppose that a = n/2. Then
Ca-(s) = (505 (q) x SO (q)) - C2
for some @ = £. Using we then get
(¢"* —1)?

n2/271‘
2(¢" +1)

N > [S03,(q) : SO, (¢)*]p /2 = - [SP2n () : SPu(0)?]y > g

Assume now that 1 < a < n/2. Then
c d
Ca+(s) 2 [ [ GLu (a™) x [ GU (¢"%) x (S03,(q) x SO3,(q)) - Ca,
i=1 j=1

where oo = %, a;,b; > 0 and ), kja; + Zj ljbj =n — 2a. It follows that

S03,,()], (g% —1)? '
= 2|S03,(¢)? i GU:_Qa(q)‘p, PR [SP2,(4) : (SP2a(@)? X GUp—24(q))]y-

Using (|7.13)) we obtain that

> (1 — 1/Q)3 qu(n72a)
—2(1+1/¢%)
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with
n? + (4a — 1)(n — 2a)
2
As q > 3, it follows that N > (0.76)¢""/2 in this case. O

M — (n—2a) = > (n? +3)/2.

Theorem 7.4. For every € with 4/5 < € < 1, there exists an explicit constant 6 > 0 such that
the following statement holds. Let q be any prime power, n > 9, and let G € C}(q). Suppose

that g € G satisfies |Ca(g)| < ¢*0. Then

IX(9)] < 4-x(1)°
for all x € Irr(G). For instance, if € = 0.99, one can take 6 = 0.0011.

Proof. First we show that the statement holds for all G with SLf,(¢) < G < GLf (q). Let
X € Irr(G) lie under an irreducible character 6 of GLS, (¢). If x = 6|¢, then we are done by
applying [GLT), Theorem 1.4] to 6. Otherwise 0|q is reducible, whence 6 is reducible over
SLs, (¢) and so x(1) is very large by [GLT) Lemma 8.3], in which case the statement holds by
the centralizer bound |x(g)| < |Ca(g)|"/2.

For all the remaining groups in C;:(q) but spin groups, we are done by Theorem It
remains to consider the case 2 f ¢ and G = Sping, (q) with m = 2n + 1, or (m,€) = (2n,+),
(2n + 2,—). By Proposition either y is obtained by inflating an irreducible character
of Qf (q), or x(1) is very large, in which case Theorem obviously holds, again by the
centralizer bound |x(¢)| < |Cq(g)|"/?. So we may assume that y € Irr(Q,(q)). Now, by
Proposition either y extends to SOf,(q), or x(1) is very large. In the former case, we
are done by applying Theorem to SO, (¢). In the latter case, we are again done by the
centralizer bound. O

Proof of Theorem[I.4} For any given e, we can choose some ¢* so that 4/5 < £* < £ (say,
e* =¢/2+2/5). In fact, for ¢ = 0.992, we will choose ¢* = 0.99. Now we apply Theorem
to get an explicit 6* > 0 (which can be taken to be 0.0011 if e* = 0.99), such that

(7.14) Ix(9)] < 4-x (1)

for all G € C(q), for all x € Irr(@), and for all g € G with |Cg(g)| < ¢"9".
Next we choose
16
(7.15) § := min (0", %5(5 —£")),
which is 0.0011 when (e,e*,6*) = (0.992,0.99,0.0011). Consider any g € G with |Cg(g)| <

¢"*% and any y € Irr(G). If x is linear then |x(g)| = x(1)5. Assume x(1) > 1. An application
of [TZ1, Theorem 1.1] shows that

(7.16) x(1) > ¢*"/>.
Now if n > 2.5/(e — €*), then
X(l)sfs* > 2(4n/5)(575*) > 4,

and so ([7.14) implies that |x(g)| < x(1)°. Finally, if n < 2.5/(¢ — &%), then the choice (7.15))

implies that
9 16 8¢
§< 2 ety =
W< ey BT T
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Combining with (7.16)), this yields
TL2 i
X(9)] < Ca(g)|'/* < g™ < ¢"/° < x(1)",
completing the proof. O

In the following application, for a finite group S and a fixed element g € S we consider the
conjugacy class C = ¢g° and random walks on the (oriented) Cayley graph I'(S,C) (whose
vertices are € S and edges are (z,zh) with x € S and h € C). Let P!(x) denote the
probability that a random product of ¢ conjugates of ¢ is equal to x € S, and let U(z) := 1/|S|
denote the uniform probability distribution on S. Also, let

[|1P! = Ulloo := |S| - max |P'(w) — U(x)].
xe

Corollary 7.5. There exists an absolute constant 1 > ~ > 0 such that the following statements
hold. Let S € C¥(q) be a quasisimple group with n > 9, and let C = ¢g° with g € S be such
that |Cs(g)| < |S].
(i) Ift > 3, then P converges to U in the || - ||oo-norm when |S| — oo; in particular, the
Cayley graph T'(S,C) has diameter at most 3 when |S| is sufficiently large.
(ii) The mizing time T'(S,C) of the random walk on T'(S, C) is at most 2 for |S| sufficiently
large.

Proof. We follow the proof of [BLST, Theorem 1.12]. Consider the Witten (-function
1
(7.17) Gls)=

<
x€Irr(S) X(l)

By [LS, Theorem 1.1], lim, 0, ¢°(s) = 1 as long as s > 2/h, where h is the Coxeter number,

i.e. h:=nif S =8Lj(q), h:=2nif S = Spy,(q), Spiny,1(q) or Spin,, , »(q), and h := 2n —2

if S = SpinJ (¢). Furthermore, when s > 0 is fixed, (°(s) — 1 when S has large enough rank

and |S| — oo by [LS, Theorem 1.2].

For (i), we apply Theorem with e = 1/4. Choosing v suitably, we can ensure that
ICs(9)| < ¢, and so |x(g)] < x(1)/* for all ¥ € Irr(S). Now we have by a well-known
result (see [AH, Chapter 1, 10.1]) that

. X\ 2 s
P!~ Ul < NI (192 < ¢S(3ta—2) - 1.
157&;@1:”(5) ( x(1) )

Now, as n > 9, if t > 3 then 3t/4 — 2 > 2/h, and so the statement follows.

For (ii), note that P!(x) is the probability that a random walk on the Cayley graph I'(S, C)
reaches x after t steps. Let

1P* = Ulls:= ) [P'(2) = Ulx)l.

zes
For (i), we apply Theorem [1.3| with ¢ = 1/3. Choosing 7 suitably, we can ensure that

ICa(g)] < ¢"°%, and so |x(g)| < x(1)/3 for all y € Irr(S). By the Diaconis-Shahshahani
bound [DS],

WP -vh2s 3 (‘X(g)‘)%xuf < Stz -2) 1
1s#x€lrr(S) X(l)

Asn>9,if t > 2 then 4¢/3 — 2 > 2/h, and the statement follows. O
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Lubotzky conjectured in [Lul p. 179] that, if S is a finite simple group and C' is a non-
trivial conjugacy class of S, then the mixing time of the random walk on I'(G, C) is linearly
bounded above in terms of the diameter of I'(G, C). Corollary confirms this conjecture
for the medium-size conjugacy classes C.

8. PRODUCT ONE VARIETIES

Let G be a simply connected simple algebraic group over an algebraically closed field F
of characteristic p > 0, of rank r. Let m > 3 be a positive integer and let C4,...,C,, be
nontrivial conjugacy classes in G. Let

X:X(Qh?Qm) :{(917agm)€Q1XXQm|ng:1}
=1

denote the closed subvariety of C; x --- x C,,, consisting of m-tuples with product 1 in G.

There is a substantial literature devoted to finding m-tuples of algebraic group elements, in
specified conjugacy classes and multiplying to 1. For instance, the Simpson-Deligne problem
[Si] is exactly this question, with an additional irreducibility condition. When ) . dim C; =
2dim G, dimension considerations suggest that there may be finitely many solutions up to
conjugacy, and this situation has been considered by various authors, see, for instance [FK|
Bel, [Kal, [SV]. We are interested in a regime where the g; are significantly underdetermined by
the constraint g1 - - g, = 1.

We will prove:

Theorem 8.1. There exists some absolute constant C' such that if either m > 7 orr > C,
the following statements hold for any simple simply connected algebraic group G of rank r
and any m > 3 non-central conjugacy classes Cy,...,C,, in G:

(i) dm X (Cy,...,C,,) < (m—1)dimG — mr.
(ii) Equality holds in (1) if and only if all the C; are regular classes.
(iii) If the equivalent conditions in (ii) hold, then X (C,,...,C,,) is irreducible.

We first see that it suffices work over the algebraic closure of a finite field. In fact, we
conjecture that the result holds for any m > 3 and r > 2.

Lemma 8.2. Let G be a group scheme of finite type over an irreducible base S of finite type
over Z. Let X denote a closed subscheme of G which maps isomorphically to S. Then there
exists a dense open subset U of S and a (locally closed) subscheme C of G such that for each
u € U, the fiber Cy is the conjugacy class of X, in G,.

Proof. Let m: W — S denote a morphism of finite type, and C a constructible subset of W.
Then the closure of the generic fiber C,, := C N7~ !(n) in W, coincides with (C),. Indeed,
we can reduce to the case that C is dense in W, in which case it contains all generic points
of W and in particular all generic points of W,,, so C, is dense in W),,.

By [EGATV] Corollaire 9.5.4], if the generic fiber of the constructible set C' is locally
closed, then there exists a dense open subset U; of & such that for all uw € Uy, the fiber C,
is locally closed. Moreover, if C' is a second constructible subset of W such that C, = 07’7,
then there exists a dense open subset Us of S such that for all u € Uy, C, = C!, [EGATV],
Corollaire 9.5.2]. Given C, we may define a locally closed set C’ as follows: C' := C'\ D,
where D := C'\ C. Since for constructible sets, Zariski closure commutes with passage to the
generic fiber, C’{? = (), and so C,, is locally closed for u € U := Uy N Us.
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We apply this to the image C' of the conjugation map 7: W := G xg X — G, which is
constructible by Chevalley’s theorem. The generic fiber C), is the conjugacy class of the point
A&, in the algebraic group G, and is therefore locally closed. Let U be the open subscheme of
S with underlying set U; replacing S by U, we may assume without loss of generality that
C = (' is locally closed. Let C denote the reduced closed subscheme of G whose underlying
set is C'in Gy, and let C denote the open subscheme of C whose underlying set is C\ D. Then
C, = Cy for all u € U, so the lemma holds. O

Proposition 8.3. Theorem holds over all algebraically closed fields F if it holds over ?p
for all p.

Proof. There exists a subfield Fy of [F, finitely generated over the prime field of F, such that
G and all the C; are defined over Fy. Passing to a finite extension if necessary, we assume
that G is split over Fy and each C; has a point z; defined over Fy. Thus, there exists a
finitely generated Z-algebra A, a split simple, simply connected group scheme G over A, and
A-valued points Z; in C;, such that the field of fractions of A is Fy, and extending scalars from
A to Fy takes G (resp. ;) to G (resp. x;). By Lemma replacing Spec A with a dense
open subscheme U, we may define locally closed subschemes C; of G such that the fibers of C,;
over any u € U are conjugacy classes in a split, simply connected, semisimple algebraic group
with the same root system as G. Let G,, (resp. C,,,) denote the fiber of u of G (resp. C;),
and let X, denote the product one subvariety of C; , x --- x C,, ,,. By [EGA TV, Corollaire
9.5.6] and [EGA _TV], Proposition 9.7.8], replacing &/ with a suitable open subscheme, we may
assume that the dimension of X, and the number of irreducible geometric components of X,
are the same as for X.

Replacing U with a smaller open subscheme if necessary, we may assume it is affine. Its
coordinate ring is finitely generated over Z so every closed point has finite residue field. Thus,
we may replace F with an algebraic closure of a finite field. O

Henceforth, we assume F = Fp.

We first point out the result for SLo(F) with F algebraically closed. See |[GM, [Sh]. The
result is a bit different, as is the proof.

Lemma 8.4. Let G = SLyo(F) and let C,, ..., C,, be non-central conjugacy classes of G with
m > 3. Then dim X = 2m — 3 and either X s irreducible or m = 3 and there ezist x; € C,
with product 1 fizing a unique line (and the C; are not all unipotent).

Proof. By Proposition [8.3], we may assume that FF is the algebraic closure of a finite field. We
can work in GLa(IF) (this does not change the variety). The advantage here is that there is a
connected center and it follows that there is an absolute bound on |x(g)| for g any non-central
element and y any irreducible character. If m > 4, Lemma follows from inspection of the
character tables of GLa(¢) and (a variation of) Lemma [8.7] below.

Assume that m = 3. A straightforward computation with 2 x 2 matrices shows that for
any (x1,x2,x3) € X either the x; generate an irreducible subgroup or there exist eigenvalues
a; of x; with aiasaz = 1. Moreover, if the latter case holds, then any triple in X fixes a line.

In the first case, as noted, any triple generates an irreducible subgroup of SLy(F). Then
by Katz’s rigidity theorem (which holds in arbitrary characteristic [Kal [SV] and goes back to
[FK] in characteristic 0), all triples are conjugate via an element of SLg, showing the variety
is irreducible of dimension 3.
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Otherwise any (1, x2,23) € X fixes a line. If B is a Borel subgroup, then X N B? has two
components (determined by the action of the z; on the fixed line) or is irreducible if the C; are
all unipotent. These components are two dimensional. Conjugation then gives the result. [

Lemma 8.5. For each integer i € [1,m], dim X <3 ., dimC;.

Proof. The projection map from X to [] ki C; is injective. O

Lemma 8.6. Suppose that dim X (C,,...,C,,) > (m —1)dim G — mr. Then

m2r

Y dimC; > mdimG -

7

m—1"

Moreover if x; € C;, then

m27”

m—1"

Z dim Cg(x;) <

Proof. Take the inequality above and sum over i. This gives
(m—1) Zdimgi > mdim X > m[(m —1)dim G — mr].

Thus,

m2r

Y dimC; > mdim G - :
; m—1

as claimed. The second inequality follows. O

Lemma 8.7. Suppose that there is some small € > 0 such that for all q sufficiently large we
have

(8.1) ’ > X(xl)'l'ﬁ(fm) ‘< €,
la#x€lr(G) X( )
for G = G(F,) when x; € C;(F,). Then X is an irreducible variety of dimension

e = —dimQ—i—Zdiin.

Proof. By the Lang-Weil estimate, |G| = (1 + o(1))¢g%™€ and |C,(F,)| = (1 + o(1))g4mE:.
Each C;(FF,) is a union of conjugacy classes in G, and if each C; is a conjugacy class inside
C,(F,), the Frobenius character formula asserts that the number of tuples (z1,...,xy) €
Cix---xCy, such that x1---2,,, = 1 is

C1 % - % Gl X(@1) - X ()
@l 2 T

x€lrr(G)

Summing over C1 X ---x Cy, € C(Fy) x---xC,, (F,), then shows that the number of F,-
points of X is (1+0(1))¢® whence by the Lang-Weil estimate, X consists of a single irreducible
component of dimension e, with all other irreducible components of lower dimension. On the
other hand, it follows by intersection theory that any component of X has dimension at least
e (see for example the argument in [GM] or [Sh]), whence the result. O

We now prove that for m > 7, Theorem [8.1] holds for any r.
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Lemma 8.8. Let e > r be such that the smallest degree of nontrivial characters of G(q) is at
least ¢°/3, cf. [LaSe]. Let mg > 4 be minimal such that
2
mgr 2

< -2 - —
2my —2 < clmo B
where h is the Coxeter number of G. Then if m > mg, Theorem holds. In particular,
Theorem [8.1] holds for every m > 7.

Proof. Let m > mg. Assume that

(8.2) dmX(Cy,...,C,,) > (m—1)dimG — mr,

and let x; € C;(q) for g large. By Lang—WEeil, there is an absolute constant ¢ > 0 such that
(@) < |C(a:)[V/? < g™ a2,

where C(z;) is the centralizer of z; in the group of F,-points of G. Applying Lemma we
have that

77L27"
(8.3) Ix(x1) ... x(zm)] < Mg2m—2.
Note that the quadratic polynomial e(m—2—2/h)(2m—2)—m?r in the variable m is increasing
when m > e(3+2/h)/(2e —r), in particular when m > mgy > 4 since e > r and h > 1. Hence
by the choice of mg, we can find some 2 > s > 2/h such that

m27"

2m — 2
Now for any 1¢ # x € Irr(G), since x(1) > ¢°/3 we have

<e(m—2-—s).

(m—2—5s) cmgm—2—s

‘ x(z1) .. x(zm) ‘< c"q° <
x(1)m=2 x@)m=2 T x(@)
It follows from [LS|, Theorem 1.1] for ¢ sufficiently large that
(mgm—2-s

Y Mmexmlle y S
Lo#xelrn(G) Lo#xelr(G)
By Lemma X is irreducible of dimension

Zdimgifdimgg (m—1)dim G — mr,

since dim C; < dim G — mr, with equality if and only if C; is regular. Recalling (8.2), we
now have that dim X = (m — 1) dim G — mr and that the C; are all regular.

Thus we have proved assertion (i) of Theorem We have also shown that equality in
8.1{(i) implies that X is irreducible and that the classes C; are all regular.

Suppose now that the C; are all regular, so that dim Cg(x;) = r for all i. Then
Ix(@:)] < |C(2:)]"? < e1q™?
for some absolute constant ¢; > 0, and so instead of (8.3) we now have

x(@1) .. X(@m)] < g7
Repeating the above arguments, but with m?r/(2m — 2) replaced by the smaller constant
mr/2, we conclude from Lemma that X is irreducible of dimension ), dim C; —dim G =
(m —1)dim G — mr. This completes the proof of Theorem for m > my.
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Finally, we note that, by Lemma [8.4] we may assume r > 2, so h > 3. In this case,

(2mgy — 2) (mo -2 - %) > (2mg — 2) (mO . 2) > (3mg — ;1)2 - 73

for mg > 7. O

2 2
+m0>m0

For most choices of G, more careful estimates of e and h give a somewhat better result. For
instance, if G = Eg, the lemma holds for any m > 3 since by [LaSe], e > 29. For rank r > 5,
we have h > 6, implying that Lemma holds also for m = 6. Thus, non-trivial character
estimates are needed mainly in the range 3 < m <5.

We can now prove that Theorem holds for any m > 3 for sufficiently large rank. Here
is where we use the preceding results of this paper.

Proof. We henceforth assume that G has rank > 9. It is therefore of classical type.
Suppose that dim X > (m — 1) dim G — mr. Then by Lemma

Zdimgj > (m—1)dimG — mr.

J#
This implies that dim C; > dim G — 2r. By the Lang-Weil estimate, |C;| > ¢@™E=2"/2 if ¢
is sufficiently large and so |Cg(x;)| < 2¢" for each i. If G is of sufficiently high rank, then
[GLT, Corollary 8.5] (in the case G is of type A) and Theorem [L.3| (for types B, C, and D),
imply that |x(z;)| < x(1)'/* for all irreducible characters y of G. This implies the sum in
(8.1) is bounded above by

> x(m

lg#xelr(G)
which goes to zero as |G| — 0o among groups of Lie type of sufficiently high rank [L.S, Theorem
1.1]. This proves the theorem for simple algebraic groups over I, and therefore for simple

algebraic groups over any algebraically closed field. O
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