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Abstract. The main results of the paper develop a level theory and establish strong char-
acter bounds for finite classical groups, in the case that the centralizer of the element has
small order compared to |G| in a logarithmic sense.
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1. Introduction

Let G be a finite group and χ an irreducible character. For all g ∈ G we have the trivial
bound |χ(g)| ≤ χ(1), but stronger bounds typically hold, at least for most elements and for

most characters. The centralizer bound |CG(g)|1/2, which follows immediately from Schur’s
lemma, is often much better than χ(1). In particular, good bounds are most easily obtained for

elements with |CG(g)| ≪ |G| and characters with χ(1) not too much smaller than |G|1/2. For
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symmetric groups, non-trivial bounds can be found in [LaS, RS, Ro]; see also the references
therein.

For finite groups of Lie type, the best general result, due to Gluck [Gl], is rather weak.
It was improved for all elements whose support is bounded below in [LST, Theorem 1.2.1].
At the opposite extreme, it is well known (see, e.g., [L, (4.26.1)]) that character values on
regular semisimple elements can be bounded above by a bound depending only on the rank
of G. Recently, [BLST] and [TT] gave new, exponential, character bounds for elements g ∈ G
whose connected centralizers in the underlying algebraic group G are contained in proper Levi
subgroups of G. These strong character bounds, which are optimal in the case CG(g) is a
proper Levi subgroup of G, do not however apply to elements in G with isolated semisimple
parts, including unipotent elements.

A number of applications (see e.g. [LST]) requires strong exponential character bounds for
elements of G in the case that |CG(g)| is small compared to |G| in a logarithmic sense. In
the case of finite groups of linear and unitary type, this task was completed in [GLT]. In this
paper, we strengthen the results of [GLT] and extend them to all groups of classical type.
Together these two papers can be regarded as giving the counterpart for groups of Lie type of
the main result of [LaS] for symmetric groups. We also note that the results of [GLT] and the
current paper are complementary to those of [BLST] and [TT], in that they cover a different
set of elements, namely all elements with small centralizer. As a result, the set of elements
not covered by our estimates is much smaller than the one not covered by [BLST] and [TT],
and this makes certain applications possible; indeed, our bounds played a key role in [LST].
Moreover, if we want exponential bounds of the form |χ(g)| ≤ χ(1)1−ϵ, where ϵ is uniform
and the rank of G goes to infinity, then one must necessarily avoid elements with really large
centralizers. Hence, in a different (but only qualitative) sense, our results are also optimal.

The idea behind our approach is that, starting with a larger than expected value |χ(g)|,
we replace χ by χm for a suitable positive integer m to amplify the effect. If χm decomposes
into a manageable number of irreducible factors, one can show that for at least one of these
factors, g violates the centralizer bound. One needs to show that if χ(1) is small compared to

|G|1/2 (and it is only when χ(1) is small that the centralizer bound is inadequate), for suitable
values of m, the total number of irreducible factors of χm is small.

In [GLT], we develop a theory of levels for irreducible representations for SLn(q) and SUn(q).
Low dimensional representations have low level, and the tensor product of two representations
of low level decomposes into a controllable number of irreducible factors. We then restrict
any low degree character χ of a symplectic or orthogonal group to a Levi subgroup of type
GLn(q) and show that the resulting character has a controllable number of irreducible factors.
We can then use results for GLn(q) to bound the number of irreducible factors in χm, and
subsequently derive the desired character bounds for all finite classical groups.

Extending [GLT], we also develop a level theory for representations of orthogonal and
symplectic groups. Note that in [GH1], [GH2] Gurevich and Howe describe a U -rank theory for
classical groups which has some parallels with our level theory. As shown in [GLT, Theorem
9.8], the U -rank is related to, but coarser than the level of irreducible characters. More
generally, our level theory allows us to prove several basic results relating the level, the
degree, and the U -rank, for classical groups not of type A (see §§3, 4).

To formulate our main results more precisely, it is convenient to start with some definitions.

Definition 1.1. Fix a constant a > 0, a prime power q, and an integer n ≥ 2.
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(i) A (q, n, a)-classical group is a finite group G such that the last term G(∞) of its derived
series satisfies the following two conditions.
(a) G(∞) is of the form G̃/Z where Z ≤ Z(G̃), and G̃ is one of the following groups:

SLn(q), SUn(q), Sp2n(q), Ω2n+1(q) with 2 ∤ q, Ω+
2n(q), or Ω

−
2n+2(q).

(b) [G : G(∞)] ≤ qa.
(ii) Cn(q) denotes the following collection of finite groups: GLn(q), SLn(q), GUn(q), SUn(q),

Sp2n(q), SO
±
2n(q), (the full orthogonal groups) GO±

2n(q), and SO2n+1(q) for odd q.
(iii) C∗

n(q) denotes the following collection of finite groups: GLn(q), SLn(q), GUn(q), SUn(q),
Sp2n(q), SO

+
2n(q), Spin

+
2n(q), SO

−
2n+2(q), Spin

−
2n+2(q), and SO2n+1(q) and Spin2n+1(q)

for odd q, and their quotients by central subgroups.

Definition 1.2. (i) A classical group (with parameter n ≥ 2) is a (q, n, a)-classical group
for some prime power q and a fixed a > 0, which will be taken to be 4 henceforth.

(ii) A spin group G is a finite group of the form Spin2n+1(q), n ≥ 3, or Spin±2n(q), n ≥ 4.

In particular, all finite simple groups S of Lie type An−1,
2An−1, Bn, Cn, Dn, and

2Dn+1,
and the almost simple groups G with S ◁ G ≤ Aut(S), as well as all members of C∗

n(q), are
classical groups (with parameter n) in our sense.

The main theorem of this paper is the following:

Theorem 1.3. For every ε > 0, there exists an effective constant δ = δ(ε) > 0 such that
the following statement holds. If G is a classical group or a spin group and g ∈ G satisfies
|CG(g)| ≤ |G|δ, then

|χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G).

The proof given could in principle yield explicit bounds but with very bad constants. In
the range 1 > ε > 4/5, we have an explicit version of this theorem with a somewhat different
proof, giving substantially better bounds, as follows:

Theorem 1.4. For every ε with 4/5 < ε < 1, there exists an explicit constant δ = δ(ε) > 0
such that the following statement holds. Let q be any prime power, n ≥ 9, and let G ∈ C∗

n(q).

Suppose that g ∈ G satisfies |CG(g)| ≤ qn
2δ. Then

|χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G).

For instance, if ε = 0.992, then one can take δ = 0.0011.

In fact, we deduce Theorem 1.4 from Theorem 7.4, which yields a slightly better constant
δ, but at the price of having an extra factor 4 in the character bound.

Our next main result bounds the degree of any irreducible character of any given level
(where the level l(χ) is defined below in Definition 3.2). See also Theorem 4.8 which bounds
the level of any complex character, more generally, any Brauer character in cross characteristic,
in terms of the U -rank.

Theorem 1.5. Let q be a prime power and let G be one of the following classical groups:
Sp2n(q) with 2 ∤ q and n ≥ 1, Sp2n(q) with 2|q and n ≥ 2, or Ω±

n (q) with n ≥ 6. Let χ ∈ Irr(G)
be of level ℓ = l(χ). Then the following statements hold for k := ⌊(ℓ+ 2)/3⌋.
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(i) If G = Sp2n(q) with 2 ∤ q, then

qnk−k(k+1)/2

(︃
q − 1

2

)︃k
≤ χ(1) ≤

(︃
qn + 1

2

)︃ℓ
.

(ii) If G = Sp2n(q) with 2|q, then

q2nk−k(2k+1)

(︃
(q − 1)2

2

)︃k
≤ χ(1) ≤

(︃
q2n − 1

q − 1

)︃ℓ
.

(iii) If G = Ω±
n (q) and (n, q) ̸= (8, 2), (9, 2), then

qnk−2k(k+1)(q − 1)k ≤ χ(1) ≤
(︃
qn − 1

q − 1

)︃ℓ
.

Theorems 1.3 and 1.4 are expected to be useful in a number of applications. They are
already used in [LST]. Theorem 4.8 will be explored (elsewhere) to classify low-dimensional
cross-characteristic representations of finite orthogonal groups. Here we offer two further
applications, one on random walks, see Corollary 7.5, and another on product one subvarieties
in simple algebraic groups, see Theorem 8.1.

2. Preliminaries

The following observation goes back (at least) to Burnside:

Lemma 2.1. [GLT, Lemma 2.2] Let Θ be a generalized character of a finite group G which
takes exactly N different values a0 = Θ(1), a1, . . . , aN−1 on G. Suppose also that Θ(g) ̸= Θ(1)
for all 1 ̸= g ∈ G. Then every irreducible character χ of G occurs as an irreducible constituent
of Θk for some 0 ≤ k ≤ N − 1.

Recall that, for a finite group G, the inner product [α, β]G of class functions α, β on G is
defined as

[α, β]G =
1

|G|
∑︂
x∈G

α(x)β(x).

Lemma 2.2. Let H be a subgroup of a finite group G and let λ ∈ Irr(H) be of degree 1. Then

[IndGH(λ), Ind
G
H(λ)]G ≤ [IndGH(1H), Ind

G
H(1H)]G = |H\G/H|.

Proof. An application of Mackey’s formula. □

For any (not necessarily irreducible) character ρ of a finite group G, let

(2.1) σ(ρ,G) :=
∑︂

χ∈Irr(G)

[ρ, χ]G

denote the sum of all multiplicities of irreducible constituents of ρ, where [·, ·]G is the usual
scalar product of (complex-valued) class functions on G. Also, let

(2.2) λ(ρ,G) :=
∑︂

χ∈Irr(G), χ(1)=1

[ρ, χ]G

denote the sum of all multiplicities of linear irreducible constituents of ρ. Then we have the
following elementary properties:

Lemma 2.3. Let H be a subgroup of a finite group G, and let ρ be a complex character of G
and φ be a complex character of H. Then the following inequalities hold.
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(i)
λ(ρ,G) ≤ σ(ρ,G) ≤ [ρ, ρ]G,

σ(ρ,H) ≤ σ(ρ,G) · max
α∈Irr(G), [ρ,α]G>0

σ(α,H),

λ(ρ,H) ≤ σ(ρ,G) · max
α∈Irr(G), [ρ,α]G>0

λ(α,H).

(ii)
σ(ρ,G) ≤ σ(ρ,H) ≤ σ(ρ,G)[G : H],

σ(φ,H) ≤ σ(IndGH(φ), G) ≤ σ(φ,H)[G : H].

Proof. We will prove only the non-obvious ones among these inequalities. For (ii), without
any loss we may assume that ρ ∈ Irr(G) and decompose ρ|H =

∑︁
i niαi, where αi ∈ Irr(H)

are pairwise distinct. Then

ni = [ρ|H , αi]H = [ρ, IndGH(αi)]G ≤ αi(1)[G : H]

ρ(1)

by degree consideration. Hence

σ(ρ,H) ≤
∑︂
i

n2i ≤
∑︁

i niαi(1)[G : H]

ρ(1)
= [G : H].

Next, without loss we may also assume that φ ∈ Irr(H) and decompose IndGH(φ) =
∑︁

imiβi,
where βi ∈ Irr(G) are pairwise distinct. Then

mi = [IndGH(φ), βi]G = [φ, (βi)|H ]H ≤ βi(1)

φ(1)

again by degree consideration. Hence

σ(IndGH(φ), G) ≤
∑︂
i

m2
i ≤

∑︁
imiβi(1)

φ(1)
= [G : H].

□

Lemma 2.4. Let G = A ⋊ H be a split extension of a normal abelian subgroup A and a
subgroup H. Then for any χ ∈ Irr(G) and any λ ∈ Irr(H) with λ(1) = 1, we have

[χ|H , λ]H ≤ 1.

Proof. The statement is obvious if A ≤ Ker(χ). Assume otherwise and consider a nontrivial
irreducible constituent α of χ|A. If T := StabG(α) = A⋊ J , then by Clifford’s theorem

χ = IndGT (α̂)

for some α̂ ∈ Irr(T ) lying above α. Note that G = TH, so applying Mackey’s formula we get

χ|H = (IndGT (α̂))|H = IndHT∩H(α̂|T∩H) = IndHJ (α̂|J).
Next, observe that Ker(α)◁ T , and

T/Ker(α) = (A/Ker(α))× J,

whence α̂|J is irreducible. It follows that

[χ|H , λ]H = [IndHJ (α̂|J), λ]H = [α̂|J , λ|J ]J ≤ 1

since λ(1) = 1. □
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Lemma 2.5. [GLT, Lemma 2.4] Let (G,Q) be either (GLn(q), q) or (GUn(q), q
2), and let

V = FnQ denote the natural module for G. Then, for any 1 ≤ j ≤ n, the number Nj of

G-orbits on the set Ωj of ordered j-tuples (v1, . . . , vj) with vi ∈ V is at most 8qj
2/4 in the first

case, and at most 2qj
2
in the second case.

Lemma 2.6. Let V = Fnq be endowed with either a non-degenerate symplectic form (·, ·), or
a quadratic form Q associated with a non-degenerate symmetric bilinear form (·, ·) (which is
assumed to be alternating if 2|q). Set ϵ = −1 in the former case, and ϵ = +1 in the latter
case. Let G = Sp(V ) be the full group of isometries of (·, ·) on V in the former case, and
G = GO(V ) be the full group of isometries of Q in the latter case. Then, for any 1 ≤ j ≤ n,
the number Nj of G-orbits on the set Ωj of ordered j-tuples (v1, . . . , vj) with vi ∈ V is less

than 6qj(j+ϵ)/2.

Proof. (i) Consider U = Fjq with a fixed basis (e1, . . . , ej). Then there is a natural bijection
between Ωj and Hom(U, V ): any ϖ = (v1, . . . , vj) corresponds to f = fϖ ∈ Hom(U, V ) with
f(ei) = vi. Suppose that ϖ′ = g(ϖ) for some g ∈ G. Then fϖ′ = gfϖ and Ker(fϖ′) =
Ker(fϖ). Furthermore, the bilinear form (·, ·) of V restricted to fϖ(U) and fϖ′(U) have
the same Gram matrices in the bases (fϖ(u1), . . . , fϖ(uk)) and (fϖ′(u1), . . . , fϖ′(uk)), if
(u1, . . . , uk) is a basis of U/Ker(fϖ). Moreover, in the case G = GO(Q,V ), we also have
Q(fϖ(ui)) = Q(fϖ′(ui)) for 1 ≤ i ≤ k. We will refer to this as fϖ and fϖ′ having the same
isometric data. For the Gram matrices in the basis (fϖ(u1), . . . , fϖ(uk)), there are at most

qk(k−1)/2 possibilities in the symplectic case, as well as in the quadratic case but with 2|q, and
at most qk(k+1)/2 possibilities in the quadratic case with 2 ∤ q. Multiplying by qk possibilities

for Q(fϖ(ui)), 1 ≤ i ≤ k, in the quadratic case with 2|q, we see that there are at most qk(k+ϵ)/2

possible isometric data when k is fixed.

Conversely, assume that fϖ and fϖ′ have the same kernel W for some ϖ,ϖ′ ∈ Ωj . Again
we fix a basis (u1, . . . , uk) of U/W , and assume in addition that fϖ and fϖ′ have the same
isometric data. By Witt’s lemma [A, p. 81], there is some g ∈ G such that g(fϖ(ui)) = fϖ′(ui)
for all 1 ≤ i ≤ k. Hence fϖ′ = gfϖ and so ϖ′ = g(ϖ).

(ii) We have shown thatNj is at most the sum over k of the total number of j−k-dimensional

subspaces W in U weighted by a factor of qk(k+ϵ)/2, i.e.

(2.3) Nj ≤
j∑︂
i=0

qi(i+ϵ)/2
(︃
j

i

)︃
q

.

Here
(︁
j
i

)︁
q
denotes the Gaussian binomial coefficient:(︃

j

i

)︃
q

:=

∏︁i−1
t=0(q

j − qt)∏︁i−1
t=0(q

i − qt)
,

and we have used the equality
(︁
j
i

)︁
q
=
(︁
j
j−i
)︁
q
. By [LMT, Lemma 4.1(i)] we have(︃

j

i

)︃
q

=

∏︁i−1
t=0(q

j − qt)∏︁i−1
t=0(q

i − qt)
= qi(j−i)

∏︁i−1
t=0(1− 1/qj−t)∏︁i−1
t=0(1− 1/qi−t)

<
32

9
qi(j−i)

for 0 ≤ i ≤ j. In particular,

qi(i+ϵ)/2
(︃
j

i

)︃
q

≤ 32

9
qi(j−(i−ϵ)/2) =

32

9
qj(j+ϵ)/2q−(j−i)(j−i+ϵ)/2
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when 0 ≤ i ≤ j − 2. We will give better bounds for i = j and i = j − 1. First, when i = j we
have

qi(i+ϵ)/2
(︃
j

i

)︃
q

= qj(j+ϵ)/2.

Next, when i = j − 1,
(︁
j
i

)︁
q
= (qj − 1)/(q − 1) < 2qj−1, and so

qi(i+ϵ)/2
(︃
j

i

)︃
q

< 2qj(j+ϵ)/2.

It now follows from (2.3) that

Nj < qj(j+ϵ)/2
(︃
3 +

32

9

j−2∑︂
i=0

1

q(j−i)(j−i+ϵ)/2

)︃
< qj(j+ϵ)/2

(︃
3 +

32

9

∞∑︂
i=2

1

qi(i+ϵ)/2

)︃
< 6qj(j+ϵ)/2,

since
∞∑︂
i=2

1

qi(i+ϵ)/2
≤

∞∑︂
i=2

1

qi(i−1)/2
<

1

q
+

1

q3
+

∞∑︂
t=6

1

qt
≤ 21

32
.

The argument above also shows that Nj ≥ qj(j+ϵ)/2 if j ≤ n/2, as G has at least qj(j+ϵ)/2

possible isometric data, hence orbits, on linearly independent j-tuples. □

3. Character level for finite classical groups

Let A = Fnq be endowed with a non-degenerate, symmetric or alternating, bilinear form
(·, ·), and possibly also with a quadratic form Q associated with (·, ·) if 2|q. The group of
isometries of either the form (·, ·) or of the quadratic form Q is a classical group on A, and
its action on the point set of A affords the permutation character

(3.1) τA : g ↦→ |CA(g)| = qdimFq Ker(g−1A).

Correspondingly, we can consider Sp(A) or GO(A), and throughout this section Sp(A) and
GO(A) will denote such a group. One can also embed such a classical group G in the unitary
group GUn(q) defined by a suitable Hermitian form on A⊗Fq Fq2 , and the restriction to G of
the reducible Weil character ζn of GUn(q), cf. [TZ2, §4], yields a (reducible) character

(3.2) ζA : g ↦→ (−1)n(−q)dimFq Ker(g−1A).

As in [LBST1] and [GLT], we will explore certain dual pairs G × S, where G and S are
certain finite classical groups. Given any character ω of a group Γ with a fixed homomorphism
G× S → Γ, we can decompose

ω|G×S =
∑︂

α∈Irr(S)

Dα ⊗ α,

where Dα is either zero or a G-character, and its value at any g ∈ G is given by the formula

(3.3) Dα(g) =
1

|S|
∑︂
s∈S

ω(gs)ᾱ(s),

see [LBST1, Lemma 5.5].

The quadruples (G,S,Γ, ω) we consider in this paper are as follows. We assume 2 ∤ q, and
endow A := F2n

q with a non-degenerate symplectic form (·, ·). Also, consider B := Fmq with a
non-degenerate symmetric bilinear form (·, ·). Then the formula

(a⊗ b, a′ ⊗ b′) = (a, a′)(b, b′)
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for a ∈ A and b ∈ B, extended by bilinearity, defines a non-degenerate symplectic form on
W := A⊗Fq B

∼= F2nm
q . This yields a homomorphism G× S → Γ := Sp(W ), where either

(3.4)
(a) G = Sp(A) ∼= Sp2n(q), S = GO(B) ∼= GO±

m(q), or
(b) G = SO(B) ∼= SO±

m(q), S = Sp(A) ∼= Sp2n(q).

Next, ω is one of the two reducible Weil characters ωnm and ω∗
nm of degree qnm of Γ ∼=

Sp2nm(q), see e.g. [GMT, §1] for their definition.
We recall the following properties of these Weil characters ωn and ω∗

n of Sp2n(q):

Proposition 3.1. Let q be an odd prime power and let ωn and ω∗
n be the two reducible Weil

characters of G := Sp2n(q), with natural module A := F2n
q . Then the following statements

hold.

(i) For any g ∈ G, |ωn(g)|2 = |ω∗
n(g)|2 = τA(g) = |CA(g)| = qdimFq Ker(g−1A).

(ii) If q ≡ 1(mod 4) then

ωn = ωn, ω
∗
n = ω∗

n, (ωn)
2 = (ω∗

n)
2 = τA, ωnω

∗
n = ζA,

and if q ≡ 3(mod 4) then

ω∗
n = ωn, (ωn)

2 = (ω∗
n)

2 = ζA, ωnω
∗
n = τA,

where τA and ζA are as defined in (3.1) and (3.2).
(iii) In the situation of (3.4)(a), the restriction of ω to G is ωmn or ωm−1

n ω∗
n. Furthermore,

the restriction of ω to SO(B) is (τB)
n, where τB denotes the permutation character of

SO(B) acting on the point set of B.

Proof. For (i), see Theorem 2.1 and Lemma 2.2 of [GMT]. Parts (ii) and (iii) were proved in
[T1], see also [MT, §5]. □

Definition 3.2. (i) Let q be an odd prime power and G = Sp2n(q). The level l(χ) of an
irreducible character χ ∈ Irr(G) is defined to be the smallest non-negative integer k such
that χ is an irreducible constituent of (ωn + ω∗

n)
k.

(ii) Let Ω(A) ≤ G ≤ GO(A) with A = Fnq , or G = Sp(A) with A = F2n
q and 2|q. The level

l(χ) of an irreducible character χ ∈ Irr(G) is defined to be the smallest non-negative
integer k such that χ is an irreducible constituent of (τA + ζA)

k.

Lemma 3.3. Let G = SO(A) = SO±
n (q) if 2 ∤ q and G = Ω(A) = Ω±

2m(q) if 2|q. Then
ζA = τA on G.

Proof. Let d(g) := dimKer(g − 1A) for any g ∈ G. Also, let s denote the semisimple part of
g. First we consider the case 2 ∤ q. Then we can decompose the s-module A as orthogonal
sum A+ ⊕ A− ⊕ A0, where A+ = Ker(s− 1A), A− = Ker(s+ 1A), and s has no eigenvalue 1
or −1 on A0. Since g ∈ SO(A), dimA− and dimA0 are both even, whence d ≡ n(mod 2) for
d := dimA+. Using the description of unipotent elements in [C, §13.4], one can show that the
total number e of Jordan blocks of the unipotent element g|A+ is congruent to d modulo 2.
Since d(g) = e, we conclude that d(g) ≡ n(mod 2) and so τA(g) = ζA(g) by (3.1) and (3.2),
as stated. In the case 2|q we have 2|d(g) for all g ∈ Ω(A) by [GT2, Lemma 5.8(ii)], and so we
are done. □

Lemma 3.4. The following statements hold.

(i) Let q be an odd prime power and G = Sp2n(q). Then 0 ≤ l(χ) ≤ 2n + 1 for any
χ ∈ Irr(G).
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(ii) Let 2|q and G = Sp2m(q). Then 0 ≤ l(χ) ≤ m+ 1 for any χ ∈ Irr(G).
(iii) Let q be any prime power, A = Fnq be endowed with a non-denegerate quadratic form as

above, Ω(A) ◁ G ≤ GO(A), and χ ∈ Irr(G). Then 0 ≤ l(χ) ≤ ⌊n/2⌋ + 1. Moreover,
0 ≤ l(χ) ≤ ⌊n/2⌋ if G ≤ SO(A) when 2 ∤ q and G = Ω(A) when 2|q.

Proof. For (i), we apply Lemma 2.1 to the character Θ := ωn + ω∗
n of G = Sp(A). By

Proposition 3.1(ii), Θ2 = 2(τA+ζA). It follows that Θ(g) = 0 if 2 ∤ d(g), and Θ(g) = ±2qd(g)/2

if 2|d(g), where d(g) := dimKer(g − 1A) for any g ∈ G. Thus

Θ(g) ∈ {0,±2,±2q, . . . ,±2qn−1, 2qn},

and moreover Θ(g) = Θ(1) = 2qn if and only if g = 1. Hence the statement follows.

For (ii) and (iii), we apply Lemma 2.1 to the character Θ := τA + ζA, where A = Fnq is the
natural module for G. Note that

Θ(g) ∈ {0, 2, 2q2, 2q4, . . . , 2q2m−2, 2q2m}

if n = 2m is even, and

Θ(g) ∈ {0, 2q, 2q3, . . . , 2q2m−1, 2q2m+1}
if n = 2m+ 1 is odd. Moreover, Θ(g) = Θ(1) = 2qn if and only if g = 1. Furthermore, if we
assume G ≤ SO(A) when 2 ∤ q and G = Ω(A) when 2|q, then Θ(g) = 2τA(g) ̸= 0 by Lemma
3.3. Hence the statements follow. □

Abusing the language, we will say that a character α of a finite group G contains another
character β of G, if α − β is zero or a character of G. Now we can prove the following three
key lower bounds on the degree of any irreducible character of given level:

Theorem 3.5. Let G = Gn := Sp2n(q) with q a fixed odd prime power. For any k ∈ Z≥1,
define

bC(n, k) := qnk−k(k+1)/2

(︃
q − 1

2

)︃k
.

Suppose χ ∈ Irr(G) and χ(1) < bC(n, k). Then l(χ) ≤ 3(k − 1).

Proof. We proceed by induction on k. If k = 1, then

χ(1) < qn−1(q − 1)/2 ≤ (qn − 1)/2,

hence χ = 1G (see e.g. [TZ1, Theorem 1.1]) and l(χ) = 0.

For the induction step, we assume k ≥ 2. If n = 1, then

χ(1) < bC(1, k) < (q − 1)/2,

again forcing χ = 1G and l(χ) = 0. So we will assume n ≥ 2. Consider the natural module
A = F2n

q for G so that G = Sp(A), and the stabilizer P ′ = Q⋊H of a nonzero v ∈ A, with Q

a group of extraspecial type of order q2n−1 and H ∼= Gn−1. We may assume that χ ̸= 1G and
χ is afforded by a CG-module X. Since Z(Q) ̸≤ Z(G), the λ-eigenspace Xλ of Z(Q) on X is
nonzero for some nontrivial linear character λ of Z(Q). As shown in [GMST, §5] and [MT,
§2], the P ′-module Xλ is isomorphic to Mλ ⊗ Y , where

(a) the P ′-module Mλ, with character say µ, is irreducible over Q;
(b) Q acts trivially on the P ′-module Y .
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As Q is normalized by P := StabG(⟨v⟩Fq) and the P -orbit of λ has length (q − 1)/2, we see
that

dimY ≤ dimX

(dimMλ) · (q − 1)/2
<

bC(n, k)

qn−1 · (q − 1)/2
= bC(n− 1, k − 1).

By the induction hypothesis, if ψ is an irreducible constituent of the H-character afforded by
Y , then l(ψ) ≤ 3(k−2). Thus ψ is contained in (ωn−1+ω

∗
n−1)

3k−6 by Definition 3.2(i). Next,
by [TZ2, Proposition 2.2(iii)] we have that (ωn + ω∗

n)|P ′ contains ν + µ, where Q ≤ Ker(ν)
and ν|H = ωn−1 + ω∗

n−1. It follows that (ωn + ω∗
n)

3k−5|P ′ contains µν3k−6, which in turns
contains µψ. We have shown that

[χ|P ′ , (ωn + ω∗
n)

3k−5|P ′ ]P ′ > 0.

This implies by Frobenius’ reciprocity that χ is contained in

IndGP ′

(︃(︁
(ωn + ω∗

n)
3k−5

)︁
|P ′

)︃
= (ωn + ω∗

n)
3k−5 · IndGP ′(1P ′).

Recalling that P ′ = StabG(v), we see that Ind
G
P ′(1P ′) is contained in the permutation character

τA of G acting on the point set of A, and the latter character is contained in (ωn + ω∗
n)

2 by
Proposition 3.1(ii). Consequently, χ is contained in (ωn+ω∗

n)
3k−3, i.e. l(χ) ≤ 3k− 3, and the

induction step is completed. □

Theorem 3.6. Let G := Sp2n(q) with q = 2f and n ≥ 2. For any k ∈ Z≥1, define

b′C(n, k) := q2nk−k(2k+1)

(︃
(q − 1)2

2

)︃k
.

Suppose χ ∈ Irr(G) and χ(1) < b′C(n, k). Then l(χ) ≤ 3(k − 1).

Proof. (i) We proceed by induction on k. If k = 1 and n ≥ 2, then

χ(1) < b′C(n, 1) ≤
(qn − 1)(qn − q)

2(q + 1)
= d(G),

by [TZ1, Theorem 1.1], and so χ = 1G and l(χ) = 0. For the purposes of the inductive proof,
we also observe that b′C(1, 1) = (q − 1)2/2q < q − 1 = d(Sp2(q)), and so the statement also
holds for n = 1.

(ii) For the induction step, we assume k ≥ 2. If n = 2, then l(χ) ≤ 3 ≤ 3(k− 1) by Lemma
3.4(ii), and so we are done. Likewise, if k ≥ 3 and n ≤ 5, then l(χ) ≤ 6 ≤ 3(k− 1) by Lemma
3.4(ii), and we are again done. If (q, k, n) = (2, 2,≤ 5), then

χ(1) < b′C(n, 2) = 24n−12,

and using [GAP] one can check that l(χ) ≤ 1. If (q, k, n) = (≥ 4, 2, 3), then

χ(1) < b′C(3, 2) = q2(q − 1)4/4,

and so l(χ) ≤ 1 by [GT2, Theorem 6.1]. Hence, we may assume that

(3.5) n ≥ 4, (n, q) ̸= (4, 2), (5, 2).

Consider the natural module A = F2n
q for G so that G = Sp(A), with a symplectic basis

(e1, e2, . . . , en, f1, f2, . . . , fn),

and the stabilizer P = P2 := StabG(U) = Q ⋊ L of the isotropic subspace U = ⟨e1, e2⟩Fq of

A, where |Q| = q4n−5, Z(Q) > [Q,Q], Z(Q) elementary abelian of order q3, [Q,Q] elementary
abelian of order q, and L ∼= GL2(q) × Sp2n−4(q), see [GT2, §3]. Moreover, each of the q − 1
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non-identity elements in [Q,Q] is conjugate to a (fixed) short-root element s ∈ G, and L acts
on Irr(Z(Q)) with four orbits: {1Z(Q)}, O1 consisting of all q2 − 1 nontrivial linear characters

of Z(Q)/[Q,Q], O+
2 of length q(q2 − 1)/2, and O−

2 of length q(q − 1)2/2.

We may assume that χ ̸= 1G and χ is afforded by a CG-module X. Since [Q,Q] ̸≤ Z(G),
there must be some ϵ = ± such that the λ-eigenspace Xλ of Z(Q) on X is nonzero for
some linear character λ ∈ Oϵ

2 of Z(Q). We also consider P ′ := StabG(e1, e2) = Q ⋊H with
H ∼= Sp2n−4(q). In fact, we can write U⊥ = U ⊕W such that H = Sp(W ), where

W = ⟨e3, e4, . . . , en, f3, f4, . . . , fn⟩Fq ,

Recall the linear-Weil characters ρ1n, ρ
2
n, τ

i
n, 1 ≤ i ≤ (q−2)/2, and the unitary-Weil characters

αn, βn, ζ
j
n, 1 ≤ j ≤ q/2, of Sp2n(q), see [GT2, Table I]. In particular,

τA = 2 · 1G + ρ1n + ρ2n + 2

(q−2)/2∑︂
i=1

τ in, ζA = αn + βn + 2

q/2∑︂
i=1

ζin.

As shown in [GT2, Lemma 9.2], there exists an irreducible CG-module M of G with the
following properties:

(a) M affords the character ρ1n of degree (qn + 1)(qn − q)/2(q − 1) when ϵ = + and the
character αn of degree (qn − 1)(qn − q)/2(q + 1) when ϵ = −; and

(b) the λ-eigenspace Mλ of Z(Q) in M is a P ′-module with character µ of degree q2n−4, and
furthermore, µ|Q is the unique irreducible character of Q that lies above the character λ
of Z(Q).

It follows by Gallagher’s theorem [Is, Corollary 6.17] that some irreducible constituent of the
character of the P ′-module Xλ can be written as µψ, where Q ≤ Ker(ψ) and ψ|H ∈ Irr(H).
As Q is normalized by P and the P -orbit Oϵ

2 of λ has length at least q(q− 1)2/2, we see that

ψ(1) ≤ dimX

dimMλ · |Oϵ
2|
<

b′C(n, k)

q2n−4 · q(q − 1)2/2
= b′C(n− 2, k − 1).

By the induction hypothesis applied to the character ψ|H of H = Sp(W ) ∼= Sp2n−4(q),

l(ψ) ≤ 3(k − 2). Thus ψ|H is contained in (τW + ζW )3k−6 by Definition 3.2(ii). Also, as ρ1n is
contained in τA and αn is contained in ζA, we also see that µ is contained in (τA + ζA)|P ′ .

(iii) In addition to P = P2, we also consider the parabolic subgroup

P1 := StabG(⟨e1⟩Fq = Q1 ⋊ L1,

with Levi subgroup L1 = Sp2n−2(q)× T1 fixing ⟨f1⟩Fq and T1 ∼= Cq−1. Recall the assumption
(3.5), we then have by [GT2, Proposition 7.4] that

(3.6) ∗RGL1
(αn) = αn−1 ⊗ 1T1 ,

∗RGL1
(βn) = βn−1 ⊗ 1T1 ,

∗RGL1
(τ in) = τ in−1 ⊗ 1T1 ,

if ∗RGL1
denotes the Harish-Chandra restriction from G to L1. Applying the same statement

to

K := [L1, L1] = StabG(e1, f1) ∼= Sp2n−2(q),

we obtain

(3.7) ∗RKL11
(αn−1) = αn−2 ⊗ 1T11 ,

∗RKL11
(βn−1) = βn−2 ⊗ 1T11 ,

∗RKL11
(τ in−1) = τ in−2 ⊗ 1T11 .

Here, L11 = Sp2n4
(q) × T11 = StabK(⟨f2⟩Fq is a Levi subgroup of the parabolic subgroup

P11 := StabK(⟨e2⟩Fq) = Q11 ⋊ L11 of K and T11 ∼= Cq−1.
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Consider any element g ∈ Q. Since g(e1) = e1, g(e2) = e2, and g acts trivially on U⊥/U ,
g ∈ Q1K and furthermore g projects onto an element h ∈ Q11 under QK → Q1K/Q1. It
follows that g acts trivially on ∗RKL11

((∗RGL1
(Z))|K) for any G-module Z. Hence, (3.6) and

(3.7) imply that (∗RGL (αn))|H contains αn−2. Arguing similarly with βn and ζin, we conclude
that (∗RGL (ζA))|H contains ζW . The same arguments, but using [GT2, Proposition 7.9] show
that (∗RGL (τA))|H contains τW .

(iv) The results of (ii) and (iii) imply that (τA+ ζA)
3k−5|P ′ contains µν3k−6, which in turns

contains µψ. We have shown that

[χ|P ′ , (τA + ζA)
3k−5|P ′ ]P ′ > 0.

This implies by Frobenius’ reciprocity that χ is contained in

IndGP ′

(︃(︁
(τA + ζA)

3k−5
)︁
|P ′

)︃
= (τA + ζA)

3k−5 · IndGP ′(1P ′).

Recalling that P ′ = StabG(e1, e2), we see that IndGP ′(1P ′) is contained in the permutation
character (τA)

2 of G acting on the point set of A × A. Consequently, χ is contained in
(τA + ζA)

3k−3, i.e. l(χ) ≤ 3k − 3, and the induction step is completed. □

Theorem 3.7. Let G := Ωϵn(q) with q = pf a fixed power of a prime p, ϵ = ±, and n ≥ 6.
For any k ∈ Z≥1, define

bBD(n, k) :=

⎧⎨⎩ qnk−2k(k+1)(q − 1)k, (n, k) ̸= (8, 2), (9, 2),
q4(q − 1)2/ gcd(2, q − 1), (n, k) = (8, 2),
q5(q2 − 1)(q − 1)/2, (n, k) = (9, 2).

Suppose χ ∈ Irr(G) and χ(1) < bBD(n, k). Then l(χ) ≤ 3(k − 1).

Proof. (i) We proceed by induction on k and use the formula for the smallest degree d(G) of
nontrivial complex irreducible characters of G as determined in [TZ1, Theorem 1.1]. For the
purposes of the inductive proof, we also define

bBD(4, 1) = (q − 1)/ gcd(2, q − 1), bBD(5, 1) = (q2 − 1)/2.

(Note that n is assumed to be even when 2|q.) Suppose k = 1 and n ≥ 4. Then

χ(1) < bBD(n, 1) ≤ d(G).

If (n, q, ϵ) ̸= (4, 2), then G is perfect, hence χ = 1G and l(χ) = 0. If (n, q, ϵ) = (4, 2), then
bBD(4, 1) = 1 and so the statement is also vacuously true.

(ii) For the induction step, we assume k ≥ 2. If n = 6 or 7, then l(χ) ≤ 3 ≤ 3(k − 1)
by Lemma 3.4(ii), and so we may assume n ≥ 8. Likewise, if k ≥ 3 but n ≤ 13, then again
l(χ) ≤ 6 ≤ 3(k − 1) by Lemma 3.4(ii), and we are done. Thus we may assume that n ≥ 14
when k ≥ 3. It follows for the (n, k) in question that

(3.8)
bBD(n, k)

qn−4(q − 1)
≤ bBD(n− 4, k − 1).

Let A := Fnq be the natural module for G = Ω(A), endowed with a non-degenerate quadratic

form Q, whose bilinear form has Gram matrix diag

(︃(︃
0 I2
I2 0

)︃
, J

)︃
with respect to a basis

(u1, u2, v1, v2, w1, . . . , wn−4)
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(for a suitable invertible matrix J). We will assume that ⟨u1, u2⟩Fq is totally singular.
Consider the parabolic subgroup P = StabG(U) where U := ⟨u1, u2⟩Fq , and its subgroup

P ′ := StabG(u1, u2). Then, as shown in [MT, §§6, 7], Q := Op(P ) is a p-group of order q2n−7

of extraspecial type, and P ′ = Q⋊H, with

H := StabG(u1, u2, v1, v2) = Ω(W ) ∼= Ωϵn−4(q),

whereW := ⟨w1, w2, . . . , wn−4⟩Fq is a quadratic space of the same type ϵ as of A. Note that P
acts transitively on the q − 1 non-identity elements of the elementary abelian p-group Z(Q),
and also on its q − 1 nontrivial linear characters. Fix some λ ∈ Irr(Z(Q))∖ {1Z(Q)}.

Consider an irreducible CG-module M of dimension

dimM =

{︃
(q2m − 1)/(q2 − 1), G ∼= Ω2m+1(q),
(qm − ϵ)(qm−1 + ϵq)/(q2 − 1), G ∼= Ωϵ2m(q).

As shown in [LBST1, Proposition 5.7], when 2 ∤ qn this module M can be taken to afford the
character θ = D◦

1Sp2(q)
, which is an irreducible constituent of τA. On the other hand, as seen in

[ST, Table 1], when 2|n this moduleM can be taken with character θ an irreducible constituent
of the rank 3 permutation character of G acting on the set of singular 1-dimensional subspaces
of A, which is again contained in τA.

As Q is of extraspecial type, Q has a unique irreducible CQ-module, say Nλ, with central
character λ, and dimNλ = qn−4. Since Z(Q) does not act trivially on M , the λ-eigenspace
Mλ of Z(Q) on M is nonzero. First we assume that q ≥ 3. Then

dimMλ ≤ d(G)/(q − 1) < 2qn−4.

It follows that Mλ is irreducible over Q, (Mλ)|Q ∼= Nλ. Consider the case q = 2; in particular,

n = 2m. Then we embed G = Ω(A) ∼= Ωϵ2m(2) in G̃ := Sp(A) ∼= Sp2m(2), and consider P̃ :=

StabG(U), with unipotent radical Q̃ of order 24n−5. As shown in [GT2, §3], [Q̃, Q̃] = {1, s}
can then be identified with Z(Q), where s is a short-root element in G̃. By [LBST1, Lemma
5.13],

θ + 1G =

{︃
(βn)|G, if ϵ = +,
(αn)|G, if ϵ = −,

where αn, βn ∈ Irr(G̃) are unitary-Weil characters of G̃ of degree (2n − 1)(2n−1 − 1)/3 and
(2n + 1)(2n−1 + 1)/3, respectively, cf. [GT2, Table I]. Now computing θ(s) using [GT2,
Corollary 7.3], we see that dimMλ = 22m−4, and so we again have that (Mλ)|Q = Nλ. We
have shown that Nλ extends to P for all q. Let µ denote the character of the P ′-module Mλ,
and note that we have now shown that (τA)|P ′ contains µ.

(iii) We may assume that χ ̸= 1G and χ is afforded by a CG-module X. Then the λ-
eigenspace Xλ of Z(Q) on X is nonzero. The result of (ii) and Gallagher’s theorem [Is,
Corollary 6.17] show that the P ′-module Xλ is isomorphic to Mλ ⊗ Y , where Q acts trivially
on the P ′-module Y .

By the induction hypothesis applied to H = Ω(W ) ∼= Ωϵn−4(q) and k − 1 ≥ 1, if ψ is an
irreducible constituent of the H-character afforded by Y , then l(ψ) ≤ 3(k − 2). Thus ψ is
contained in (τW )3k−6 by Definition 3.2(ii).

Next, recall that τA is the character of the CG-module R with basis (ea | a ∈ A), where
g ∈ G sends ea to eg(a). For any coset v̄ = v + U in U⊥/U , we define

ev̄ :=
∑︂
x∈U

ev+x,
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where the representative v can be chosen (uniquely) from W . Then the qn−4 vectors ev̄ with

v̄ ∈ U⊥/U are linearly independent, and so they span a subspace T ∼= Cqn−4
of R. As Q

acts trivially on U⊥/U , Q also acts trivially on T . Furthermore, we can write U⊥ = U ⊕W ,
with H = Ω(W ) acting trivially on U and naturally on W . Thus the H-module T affords the
H-character τW . Since (τA)|H = q4τW , we have shown that (τA)|P ′ contains a character ν
with Q ≤ Ker(ν) and ν|H = τW . Hence (τA)

3k−6|P ′ contains ν3k−6, which in turn contains ψ.

On the other hand, it was shown in (ii) that (τA)|P ′ contains µ. It follows that (τA)
3k−5|P ′

contains µψ. Hence,

[χ|P ′ , (τA)
3k−5|P ′ ]P ′ > 0.

This implies by Frobenius’ reciprocity that χ is contained in

IndGP ′

(︃(︁
(τA)

3k−5
)︁
|P ′

)︃
= (τA)

3k−5 · IndGP ′(1P ′).

Recalling that P ′ = StabG(u1, u2), we see that IndGP ′(1P ′) is contained in the permutation
character (τA)

2 of G acting on the point set of A×A. Consequently, χ is contained in (τA)
3k−3,

i.e. l(χ) ≤ 3k − 3, and the induction step is completed. □

Proof of Theorem 1.5. By the choice of k, ℓ > 3(k − 1). Hence the lower bound on χ(1)
follows from Theorems 3.5–3.7. The upper bound in case (i) follows from the fact that any
irreducible constituent of ωn + ω∗

n has degree at most (qn + 1)/2. Likewise, in cases (ii) and
(iii), any irreducible constituent of τA over GLn(q) has degree at most (qn−1)/(q−1) and any
irreducible constituent of ζA over GUn(q) has degree at most (qn +1)/(q+1), if A = Fnq . □

Note that Lemma 3.4 only lists a possible range for the level of any irreducible character of
classical groups. Next we work with dual pairs and the character ω introduced in (3.4), and
prove the existence of characters of relatively small levels.

Proposition 3.8. In the situation of (3.4)(a), assume that n ≥ m(m− 1)+ 3. Then for any
α ∈ Irr(S), Dα is a character of G = Sp2n(q). Furthermore, if one defines

D′
α :=

∑︂
ψ∈Irr(G), l(ψ)≤m−1

[Dα, ψ]G ψ,

then D◦
α := Dα −D′

α is a character of G, all of whose irreducible constituents have level m.

Proof. The statements are obvious for m = 1, so we will assume m ≥ 2. For the first
statement, we apply (3.3) to g = 1. For any 1 ̸= s ∈ S, note that gs as an element in Γ has
the eigenvalue 1 with multiplicity at most 2n(m− 1). It follows from Proposition 3.1(i) that

|ω(gs)| ≤ qn(m−1).

Also, note that
(3.9)

|S| = |GO±
m(q)| =

{︃
qk(k−1)

∏︁k−1
i=1 (q

2i − 1)(qk ∓ 1) ≤ 8
3q
k(2k−1) = 8

3q
m(m−1)/2, m = 2k,

qk
2∏︁k

i=1(q
2i − 1) < qk(2k+1) = qm(m−1)/2, m = 2k + 1,

Hence, (3.3) implies that

(3.10) |Dα(1)| >
α(1)

|S|
(︁
qnm − qn(m−1)|S|

)︁
=
α(1)qnm

|S|

(︃
1− |S|

qn

)︃
>

9

10
· α(1)q

nm

|S|
,

and so Dα is a (true) character of G.
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To prove the second statement, it suffices to show that D′
α(1) < Dα(1). By Proposition 3.1

and Lemma 2.6, for any 0 ≤ j ≤ m we have that

[(ωn)
j(ω∗

n)
m−j , (ωn)

j(ω∗
n)
m−j ]G = [(ωnωn)

j(ω∗
nω

∗
n)
m−j ]G = [(τA)

m, 1G]G ≤ 6qm(m−1)/2.

Since ω|G is equal to some such ωjn(ω∗
n)
n−j by Proposition 3.1(iii), we obtain by Lemma 2.3(i)

that

σ(ω,G) ≤ [ω|G, ω|G]G ≤ 6qm(m−1)/2.

On the other hand, if k ≤ m−1 then any irreducible constituent of (ωn+ω
∗
n)
k is an irreducible

constituent of some ωk−in (ω∗
n)
i with 0 ≤ i ≤ k, and so has degree at most qnk ≤ qn(m−1). Hence,

using (3.9) we get

D′
α(1)|S| ≤ 6qm(m−1)/2qn(m−1)(8/3)qm(m−1)/2 = 16qn(m−1)+m(m−1) < (9/10)qnm

since n ≥ m(m− 1) + 3, and so we are done by (3.10). □

Proposition 3.9. In the situation of (3.4)(b), assume that m ≥ 2n(2n + 1) + 2. Also, let
τB denote the permutation character of G = SO(B) = SO±

m(q) acting on the point set of the
natural module B = Fmq . Then for any α ∈ Irr(S), Dα is a character of G. Furthermore, if
one defines

D′
α :=

∑︂
ψ∈Irr(G), l(ψ)≤n−1

[Dα, ψ]G ψ,

then D◦
α := Dα −D′

α is a character of G, all of whose irreducible constituents have level n.

Proof. We again apply (3.3) to g = 1. For any 1 ̸= s ∈ S, note that gs as an element in Γ
has the eigenvalue 1 with multiplicity at most m(2n−1), hence by Proposition 3.1(i) we have
that

|ω(gs)| ≤ qm(n−1/2).

Also, note that

(3.11) |S| < qn(2n+1).

Hence, (3.3) implies that

(3.12) |Dα(1)| >
α(1)

|S|
(︁
qnm − qm(n−1/2)|S|

)︁
=
α(1)qnm

|S|

(︃
1− |S|

qm/2

)︃
>

26

27
· α(1)q

nm

|S|
,

and so Dα is a (true) character of G.

To prove the second statement, it again suffices to show that D′
α(1) < Dα(1). By Lemma

2.6 we have that

[(τB)
n, (τB)

n]G = [(τB)
2n, 1G]G ≤ 6qn(2n+1).

Since ω|G = (τA)
n by Proposition 3.1(iii), we obtain by Lemma 2.3(i) that

σ(ω,G) ≤ [ω|G, ω|G]G ≤ 6qn(2n+1).

On the other hand, if k ≤ n− 1 then any irreducible constituent of (τB)
k has degree at most

qmk ≤ qm(n−1). Hence, using (3.11) we get

D′
α(1)|S| ≤ 6qn(2n+1)qm(n−1)qn(2m+1) = 6qm(n−1)+2n(2n+1) < (26/27)qnm

since m ≥ n(2n+ 1) + 2, and so we are done by (3.12). □

For odd primes p, a strengthening of Proposition 3.9 is given in Corollary 4.7 (see below).
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4. Character level and the U-rank

A local approach to stratify irreducible characters of finite classical groups G is via the
study of their restriction to “nice” subgroups, such as parabolic subgroups. This approach
has been used in [GMST], [GT2], [T2], [T3]. More recently, this approach has been taken in
[GH1], [GH2] to develop the U -rank theory. In this section, we prove some results concerning
the U -rank. Since these results will not be used in the subsequent sections of the paper, we
will mostly restrict ourselves to the case of orthogonal groups in odd characteristic.

Let G = SO(B) ∼= SO+
2n(q), where q is a power of a prime p > 2 and

B = ⟨u1, . . . , un, v1, . . . , vn⟩Fq

is endowed with a non-degenerate symmetric bilinear form with Gram matrix

(︃
0 In
In 0

)︃
in

the given basis. Fix a primitive pth root ϵ of unity. Consider the subspaceWj = ⟨u1, . . . , uj⟩Fq

for any 1 ≤ j ≤ n and its stabilizer Pj = Uj ⋊ Lj with unipotent radical Uj and

(4.1) Z(Uj) =

{︃
[Ij , X] :=

⎛⎝Ij 0 X
0 I2n−2j 0
0 0 Ij

⎞⎠ | X ∈Mj,j(Fq), X + tX = 0

}︃
.

Let F be an algebraically closed field of characteristic ℓ, where ℓ = 0 or a prime not dividing
q. Then any ℓ-Brauer character λ ∈ IBrℓ(Z(Uj)) can be written uniquely in the form

λ = λY : [Ij , X] ↦→ ϵTrFq/Fp tr(XY )

for some Y ∈Mj,j(Fq) with Y + tY = 0, and the rank of λY is defined to be r(λY ) := rank(Y )
(which in this case is always an even number).

In the case of complex characters, the following definition was given in [GH2, §4].

Definition 4.1. (i) For any complex, or ℓ-Brauer, character χ of SO+
2n(q), the U -rank of

χ, r(χ), is defined to be the largest among all the ranks r(ν), where ν is any irreducible
constituent of χ|Z(Uj) and 1 ≤ j ≤ n. Similarly, if ψ is any complex, or ℓ-Brauer,

character of Pj , the U -rank r(ψ) is the largest among all the ranks r(ν), where ν is any
irreducible constituent of ψ|Z(Uj).

(ii) Let H := SO(B̃) = SO2n+1(q) or SO−
2n+2(q). Embed G = SO+

2n(q) in H, as the point-
wise stabilizer of a 1-dimensional, respectively 2-dimensional, non-degenerate subspace
in the natural module B̃ for H. Then for any character χ of G, the U -rank of χ, r(χ),
is defined to be r(χ|G).

(iii) The same definitions as in (i) and (ii) apply to Ω+
2n(q), Ω2n+1(q), and Ω−

2n+2(q).

Throughout this section, slightly abusing the notation, we will denote the restriction of
an ordinary character of a finite group G to its ℓ′-classes (for a fixed prime ℓ) by the same
notation. The next definition extends Definition 3.2 to the modular case:

Definition 4.2. Let q be a prime power and let ℓ = 0 or a prime not dividing q.

(i) Let q be an odd andG = Sp2n(q). The level l(χ) of an irreducible character χ ∈ IBrℓ(G) is
defined to be the smallest non-negative integer k such that χ is an irreducible constituent
of the ℓ-Brauer character (ωn + ω∗

n)
k.

(ii) Let Ω(A) ≤ G ≤ GO(A) with B = Fnq , or G = Sp(A) with A = F2n
q and 2|q. The level

l(χ) of an irreducible character χ ∈ IBrℓ(G) is defined to be the smallest non-negative
integer k such that χ is an irreducible constituent of the ℓ-Brauer character (τA + ζA)

k.
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Since any φ ∈ IBrℓ(G) is an irreducible constituent of some complex character χ ∈ Irr(G),
we note that Lemma 3.4 also holds for ℓ-Brauer characters.

In what follows, a standard subgroup SO+
2m(q) with 1 ≤ m ≤ n means (any conjugate in

G of) the pointwise stabilizer StabG(um+1, . . . , un, vm+1, . . . , vn); and similarly for Ω+
2m(q).

First we record some elementary properties of r(χ).

Lemma 4.3. With the above introduced notation, the following statements hold.

(i) Suppose that l = r(χ) for some χ ∈ IBrℓ(SO
+
2n(q)). If H = SO+

2l(q) is a standard
subgroup of G, then r(χ|H) = l. Similarly, if P ∈ {Pl, Pn} is a parabolic subgroup of G,
then r(χ|P ) = l.

(ii) Suppose that r(χ) = l and r(θ) = k for SO+
2n(q)-characters χ, θ and that k+ l ≤ n. Then

r(χθ) = k + l.

Proof. (i) First we prove the statement for H. By the definition, there is some i with l ≤ i ≤ n
such that χ|Z(Ui) contains an irreducible constituent λ = λY with rank(Y ) = l = r(χ). Note
that Li acts on the constituents of χ|Z(Ui) via conjugation, and conjugating λ by a suitable

element in Li, we may assume that Y =

⎛⎝ 0 Il/2 0
−Il/2 0 0
0 0 0

⎞⎠. Now we take H to be the

pointwise stabilizer

StabG(ul+1, . . . , un, vl+1, . . . , vn),

and consider the subspace Wl := ⟨u1, u2, . . . , ul⟩Fq and its stabilizer PH in H with abelian
unipotent radical UH . Then it is easy to see that UH ≤ Z(Ui) and λ|UH

= λZ , with Z =(︃
0 Il/2

−Il/2 0

)︃
. As rank(Z) = l, we have r(χ|H) ≥ l. On the other hand, as UH ≤ Z(Ui), we

have that r(χ|H) ≤ r(χ) = l, and so r(χ|H) = l.

Next, consider Pl := StabG(Wl) with unipotent radical Ul, and observe that Z(Ul) can be
identified with UH . As rank(Z) = l, we have r(χ|Pl

) ≥ l. On the other hand, r(χ|Pl
) ≤ r(χ) = l

by Definition 4.1, hence r(χ|Pl
) = l.

Finally, consider Pn := StabG
(︁
⟨u1, u2, . . . , un⟩Fq

)︁
with unipotent radical Un. Since UH ≤ Un

and rank(Z) = l, we have r(µ) ≥ l for any µ ∈ Irr(Un) lying above λZ , and so r(χ|Pn) ≥ l. It
then follows from Definition 4.1 that r(χ|Pn) = l.

(ii) The arguments in (i) show that χ|Un contains an irreducible constituent λ = λX of rank
l and θ|Un contains an irreducible constituent µ = λY of rank k. Again conjugating λ and µ
by a suitable element in Pn, we may assume that

Y =

⎛⎝ 0 Il/2 0
−Il/2 0 0
0 0 0

⎞⎠ , Z =

⎛⎝0 0 0
0 0 Ik/2
0 −Ik/2 0

⎞⎠ .

It follows that (χθ)|Un contains λµ = λY+Z with rank(Y +Z) = k+ l. Since the upper bound
r(χθ) ≤ k + l is obvious, the statement follows. □

Recall the character τ = τB from (3.1).

Corollary 4.4. For any χ ∈ IBrℓ(SO
+
2n(q)), 2|r(χ) ≤ min(2l(χ), n). The same statement

holds for irreducible (ℓ-Brauer) characters of SO(B̃) = SO2n+1(q), SO
−
2n+2(q), as well as for

Ω(B) = Ω+
2n(q), and Ω(B̃) = Ω2n+1(q), Ω

−
2n+2(q).
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Proof. First we prove the statement for G = SO(B) = SO+
2n(q). Then the claim 2|r(χ) ≤ n

is immediate by the definition. By Definition 3.2 and Lemma 3.3, χ is a constituent of (τB)
j .

Arguing similarly as in [ST, §6.1], one can show that r(τB) = 2. It then follows by Lemma
4.3(ii) that r(χ) ≤ 2j.

Next consider H = SO(B̃), where B̃ = FNq is a non-degenerate quadratic space, either
of dimension N = 2n + 1, or of type − of dimension N = 2n + 2. Then we can embed
G as the point-wise stabilizer of an (N − 2n)-dimensional non-degenerate subspace of B̃.
Since (τB̃)|G = qN−2nτB, it follows that every irreducible constituent χ of the restriction of
φ ∈ Irr(H) to B has level ≤ l(φ). Hence the statement for φ follows from the statement for
all χ in φ|G.

The same arguments apply to Ω(B) and Ω(B̃). □

Lemma 4.5. Let G = SO(B) ∼= SO+
2n(q) as above, and let j = 2r with 1 ≤ r ≤ n/2. If

λ ∈ Irr(Z(Uj)) has rank 2r, where Uj is the unipotent radical of the jth parabolic subgroup Pj
of G, then the multiplicity of λ in (τB)

r|Z(Uj) is q
2r(n−2r)|Sp2r(q)|.

Proof. For any element [Ij , X] ∈ Z(Uj), as given in (4.1), we have τ([Ij , X]) = q2n−2r+2i,
where 0 ≤ i ≤ r. Hence, if we define

Σ :=
r−1∏︂
i=0

(τ − q2n−2r+2i · 1G),

then Σ([Ij , X]) is zero if X ̸= 0, and q2r(n−2r)|Z(Uj)| · |Sp2r(q)| if X = 0, i.e.

Σ|Z(Uj) = q2r(n−2r)|Sp2r(q)| · regZ(Uj).

In particular, the multiplicity of λ in Σ|Z(Uj) is q
2r(n−2r)|Sp2r(q)|. Note that every irreducible

constituent of τ r −Σ has level < r, and so r(τ r −Σ) < 2r by Corollary 4.4. It follows that λ
is not a constituent of (τ r − Σ)|Z(Uj), and we are done. □

Note that each character λ of Z(Uj) of rank r as in Lemma 4.5 gives rise to an irreducible

character ψλ of Uj of degree q2r(n−2r). Hence the term |Sp2r(q)| in the multiplicity of λ in
(τB)

r|Z(Uj) suggests that the ψλ-homogeneous component of (τB)
r may carry the structure of

a regular Sp2r(q)-module. This is clarified in the next statement.

Proposition 4.6. Let ℓ = 0 and let q be any odd prime power. Consider the dual pairs
G × S → Γ ∼= Sp4nr(q) in (3.4)(b), where G = SO(B) ∼= SO+

2n(q) and S = Sp(A) ∼= Sp2r(q),
with 1 ≤ r ≤ n/2. Also consider the Siegel parabolic subgroup P = Pn = StabG(⟨u1, . . . , un⟩Fq)
and its radical U = Un. Let λ ∈ Irr(U) be any character of rank 2r. Then the restriction of
the complex character ω|G×S to U × S contains the character λ⊗ regS.

Proof. Fix a Witt basis (e1, . . . , er, f1, . . . , fr) of the natural module A = F2r
q for S = Sp(A).

Also consider a pair of complementary maximal totally isotropic subspaces in V = B ⊗Fq A:

W := ⟨−ui ⊗ fj , ui ⊗ ej⟩Fq , W
′ := ⟨vi ⊗ ej , vi ⊗ fj⟩Fq .

Recall that ω is the character of a reducible Weil module of dimension q2nr of Γ = Sp(V ).
We will fix the nontrivial character

ψ : (Fq,+) → C×, x ↦→ ϵTrFq/Fp (x),

and use the model given in [Gr, §13] for such a representation, with Γ acting on the space W
of complex-valued functions on W ′. If δu denotes the delta-function for any point u ∈ W ′,
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then (δu | u ∈ W ′) is a basis for W. The action of the Siegel parabolic subgroup StabΓ(W )
in this basis is described in [Gr, (13.3)].

Now fix the following vector

w := (v1 ⊗ e1 + v2 ⊗ f1) + (v3 ⊗ e2 + v4 ⊗ f2) + . . .+ (v2r−1 ⊗ er + v2r ⊗ fr).

First we consider the action of any g = [I,X] ∈ U , given in the form of (4.1) (with j = n).
Using [Gr, (13.3)] we have

g(δv1⊗e1+v2⊗f1) = ψ

(︃
1

2

(︁
(g− 1)(v1 ⊗ e1 + v2 ⊗ f1), v1 ⊗ e1 + v2 ⊗ f1

)︁)︃
= ψ(−x12)δv1⊗e1+v2⊗f1 ,

where X = (xij) is anti-symmetric. The same computation shows that

g(δw) = ψ(−x12 − x34 − . . .− x2r−1,2r)δw.

Choosing

Y := diag

(︃(︃
0 1
−1 0

)︃
,

(︃
0 1
−1 0

)︃
, . . . ,

(︃
0 1
−1 0

)︃
⏞ ⏟⏟ ⏞

r times

, 0, . . . , 0⏞ ⏟⏟ ⏞
n−2r times

)︃
,

we then have

g(δw) = ψ(tr(XY ))δw = λY (g)δw,

for all g ∈ U , and with r(λY ) = 2r.

On the other hand, if s ∈ S = Sp(A), then s fixes both W and W ′, and moreover s(w) = w
if and only if s = 1. As the action of U × S on W is monomial in the basis (δu | u ∈W ′), we
conclude that

W ′ := ⟨δs(w) | s ∈ S⟩C
is a U × S-module, with character IndU×S

U (λY ⊗ 1S) = λY ⊗ regS . Since P acts transitively
on the set of U -characters of any given rank, the statement follows. □

Now we can prove the promised strengthening of Proposition 3.9, which, in particular,
establishes the existence of characters of SO+

2n(q) of any level up to n/2 (when q is odd):

Corollary 4.7. Let ℓ = 0 and let q be any odd prime power. Consider the dual pair G̃×S →
Γ ∼= Sp2Nr(q) in (3.4)(b), where S = Sp(A) ∼= Sp2r(q), 1 ≤ r ≤ n/2, and either

(a) N = 2n and G̃ = SO(B) ∼= SO+
2n(q), or

(b) N = 2n+ 1 and G̃ = SO(B̃) = SO2n+1(q), or

(c) N = 2n+ 2 and G̃ = SO(B̃) = SO−
2n+2(q).

Then for any α ∈ Irr(S), Dα is a character of G̃. Furthermore, if one defines

D′
α :=

∑︂
ν∈Irr(G̃), l(ν)≤r−1

[Dα, ν]G̃ ν,

then D◦
α := Dα − D′

α is a character of G̃, all of whose irreducible constituents have level r.
In fact, at least one irreducible constituent of D◦

α has U -rank 2r.

Proof. By Proposition 3.1(iii) and Corollary 4.4, for any irreducible constituent ν of ω|G̃ we
have that

(4.2) l(ν) ≤ r, r(ν) ≤ 2r.
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First we consider the case of (a), so that G̃ = G, and consider the unipotent radical U of a
Siegel parabolic subgroup P of G and fix λ ∈ Irr(U) of rank 2r as in Proposition 4.6. As ω|U×S
contains λ⊗ regS , it follows that Dα is a (true) character of G, and at least one irreducible
constituent χ of Dα must afford λ on restriction to U . It follows that r(χ) ≥ r(λ) = 2r,
whence r(χ) = 2r by (4.2) and l(χ) = r by Corollary 4.4. This in turn implies that χ is a
constituent of D◦

α, and so D◦
α is a (true) character of G.

Now we consider the cases of (b) and (c). To distinguish between the dual pair G̃ × S in
these cases and the one in (a), we will use the notations with ˜ for the objects in (b) or (c),

and without for the ones in (a), with G embedded in G̃ as in the proof of Corollary 4.4. In
particular, ω̃ = ωNr and

(4.3) ω̃|G̃×S =
∑︂

α∈Irr(S)

D̃α ⊗ α;

respectively, ω = ω2nr, and ω|G×S =
∑︁

α∈Irr(S)Dα⊗α. Given the embedding G ↪→ G̃ and the

construction of the Weil representations affording ω and ω̃, it is not difficult to show that

(4.4) ω̃|G×S =
(︁
1G ⊗ ωN−2n

r

)︁
· ω|G×S =

∑︂
α∈Irr(S)

Dα ⊗
(︁
ωN−2n
r α

)︁
.

Now, for any given α ∈ Irr(S), we choose β ∈ Irr(S) so that

0 < [ωN−2n
r α, β]S = [ωN−2n

r β, α]S .

By the result for (a), we can find an irreducible constituent χ ∈ Irr(G) of Dβ of level r and
U -rank 2r. Then (4.4) implies that χ⊗ α is an irreducible constituent of ω̃|G×S . Restricting

ω̃ down to G×S using (4.3), we see that there exists an irreducible constituent φ ∈ Irr(G̃) of

D̃α such that φ|G contains χ. As r(χ) = 2r, it then follows from (4.2) that r(φ) = 2r. Again

using Corollary 4.4 and (4.2), we get l(φ) = r. This shows that both D̃α and D̃
◦
α are (true)

characters of G̃ with φ as an irreducible constituent. □

Now we can prove the second main result of the section, following in part the proof of
Theorem 3.7.

Theorem 4.8. Let G := Ωϵn(q) with q = pf a fixed power of an odd prime p, and ϵ = ±. Let
n ≥ 6, and define κ := 1 if (n, ϵ, r(χ)) = (8,−, 2), and κ := 0 otherwise. Let ℓ = 0 or ℓ ̸= p be
any prime and let χ ∈ IBrℓ(G). Then

l(χ) ≤ 3

2
r(χ) + κ.

Proof. (i) We proceed by induction on r := r(χ)/2 ≥ 0. First assume that r = 0 and n ≥ 5.
Then Ker(χ) contains a nontrivial p-subgroup Q of G, where Q = Z(U2) for some standard
subgroup Ω+

4 (q) of G. As G is quasisimple and p ∤ |Z(G)|, it follows that χ = 1G and so l(χ) =
0. For later use, we note that the equality χ = 1G also holds for (n, ϵ, r) = (4,+, 0). Indeed,
the identification [KL, Proposition 2.9.1(iv)] of Ω+

4 (q) with the central product SL2(q)◦SL2(q)
shows that Q = Z(U2) is a Sylow p-subgroup in one of the factors SL2(q). Varying the Q, we
then see that Ker(χ) contains Ω+

4 (q) and so again χ = 1G.

(ii) For the induction step, we assume r ≥ 1 and χ ̸= 1G. As noted above, Lemma 3.4 also
applies to Brauer characters. Hence, if n ≤ 6r+ 1+ 2κ, then we have l(χ) ≤ ⌊n/2⌋ ≤ 3r+ κ.
Thus we may assume that

(4.5) n ≥ 6r + 2 + 2κ.



CHARACTER LEVELS AND CHARACTER BOUNDS FOR FINITE CLASSICAL GROUPS 21

Let B := Fnq be the natural module for G = Ω(B), endowed with a non-degenerate quadratic

form Q, whose bilinear form has Gram matrix diag

(︃(︃
0 I2
I2 0

)︃
, J

)︃
with respect to a basis

(u1, u2, v1, v2, w1, . . . , wn−4)

(for a suitable invertible matrix J). We will assume that ⟨u1, u2⟩Fq is totally singular.
Consider the parabolic subgroup P = StabG(U) where U := ⟨u1, u2⟩Fq , and its subgroup
P ′ := StabG(u1, u2). As in the proof of Theorem 3.7, we have that Q := Op(P ) is a p-group
of order q2n−7 of extraspecial type, and P ′ = Q⋊H, with

H := StabG(u1, u2, v1, v2) = Ω(W ) ∼= Ωϵn−4(q),

whereW := ⟨w1, w2, . . . , wn−4⟩Fq is a quadratic space of the same type ϵ as of B; moreover, P
acts transitively on the q − 1 non-identity elements of the elementary abelian p-group Z(Q),
and also on its q−1 nontrivial linear ℓ-Brauer characters. Fix some λ ∈ IBrℓ(Z(Q))∖{1Z(Q)}.
In what follows, we will also consider λ as a complex character of Z(Q).

As Q is of extraspecial type, Q has a unique irreducible FQ-module, say Lλ, with central
character λ, and dimLλ = qn−4. We can also view Lλ as obtained from the unique irreducible
CQ-module Nλ with central character λ by reducing modulo ℓ. As shown in part (ii) of the
proof of Theorem 3.7, Nλ extends to P , and so does Lλ; moreover, there is an extension Mλ

of Lλ to P ′ such that the Brauer character µ of Mλ is an irreducible constituent of (τB)|P ′ .

(iii) Assume that χ is afforded by an irreducible FG-module X, where F is algebraically
closed of characteristic ℓ. As χ ̸= 1G, the λ-eigenspace Xλ of Z(Q) on X is nonzero. The
result of (ii) and the modular version of Gallagher’s theorem [N, Corollary 8.20] show that
the P ′-module Xλ is isomorphic to Mλ⊗Y , where Q acts trivially on the P ′-module Y . Note
that r(Mλ) ≥ 2. Hence, applying Lemma 4.3(ii) to the submodule Mλ ⊗ Y ⊆ X of P ′, we
obtain that r′ := r(Y )/2 ≤ r − 1.

Now, if (r, r′) = (1, 0) then n − 4 ≥ 4 + 2κ by (4.5), whence the induction hypothesis
applies to (n − 4, r′) by the results of (i). If r ≥ 2, then n − 4 ≥ 10 by (4.5), and so the
induction hypothesis applies to (n − 4, r′) as well. By the induction hypothesis applied to
H = Ω(W ) ∼= Ωϵn−4(q) and r′, if ψ is an irreducible constituent of the H-character afforded
by a simple submodule Y ′ of Y , then

(4.6) l(ψ) ≤ 3(r − 1).

Next, as shown in part (iii) of the proof of Theorem 3.7, (τB)|P ′ contains a character ν
with Q ≤ Ker(ν) and ν|H = τW . It follows that (τB)

3r−3|P ′ contains ν3r−3, which in turn
contains ψ because of (4.6). On the other hand, it was shown in (ii) that (τB)|P ′ contains µ. It
follows that (τB)

3r−2|P ′ contains µψ. Recall that µψ is the Brauer character of the submodule
Mλ ⊗ Y ′ of the P ′-module X. By Frobenius’ reciprocity, X is a quotient of IndGP ′

(︁
Mλ ⊗ Y ′)︁.

Hence, χ is contained in

IndGP ′

(︃(︁
(τB)

3r−2
)︁
|P ′

)︃
= (τB)

3r−2 · IndGP ′(1P ′).

Recalling that P ′ = StabG(u1, u2), we see that IndGP ′(1P ′) is contained in the permutation
character (τB)

2 of G acting on the point set of B×B. Consequently, χ is contained in (τB)
3r,

i.e. l(χ) ≤ 3r, and the induction step is completed. □
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5. Restrictions to natural subgroups

In this section, by a standard subgroup GLm(q) of GLn(q) = GL(V ) we mean the subgroup

StabGL(V )(⟨e1, . . . , em⟩Fq , em+1, . . . , en) ∼= GLm(q)

for some basis (e1, . . . , en) of V = Fnq . Likewise, by a standard subgroup GUm(q) of GUn(q) =
GU(V ) we mean the subgroup

StabGU(V )(⟨e1, . . . , em⟩Fq2
, em+1, . . . , en) ∼= GUm(q)

for some orthonormal basis (e1, . . . , en) of the Hermitian space V = Fnq2 . We will also use the

notation GLϵn(q) to denote GLn(q) when ϵ = + and GUn(q) when ϵ = −.

Proposition 5.1. Let G = GLϵn(q) with n ≥ 7, ϵ = ±, and let

χ1, . . . , χm, χ
′
1, . . . , χ

′
m ∈ Irr(G)

be of degrees at most qnL with 0 ≤ L ≤ n/5. Then the following statements hold.

(i) If 1 ≤ r ≤ n − ⌊1.4L⌋ and ϵ = +, then the restriction of χi to a standard subgroup
GLϵr(q) contains a linear character of GLϵr(q).

(ii) In general, if 2.8mL ≤ n, then [χ1χ2 . . . χm, χ
′
1χ

′
2 . . . χ

′
m]G ≤ 8q2m

2L2
.

Proof. (a) Since n ≥ 7, we have that

χi(1) ≤ qn
2/5 < qn

2/4−2.

It follows by [GLT, Theorem 1.1] that j := l(χi) < n/2 and so

(5.1) qnL ≥ χi(1) ≥ qj(n−j).

Consider the polynomial f(t) = t2 − nt+ nL ∈ C[t]. Then f(1.4L) ≤ 0 and

n+
√
n2 − 4nL

2
≥ n+ L

√
5

2
≥ n/2 + 1.1L.

It follows that

(5.2) If t ≤ n/2 + 1.1L and f(t) ≥ 0, then t ≤ 1.4L.

In particular, (5.1) implies that j ≤ k := ⌊1.4L⌋.

(b) Here we assume that ϵ = +. By the definition of the level l(χi) [GLT, Definition 3.1],
there is some linear character αi ∈ Irr(G) that χiαi is an irreducible constituent of τ j , where
τ is the permutation character of G acting on the set of vectors of the natural module V = Fnq .
Propositions 3.3, 3.5, and Theorem 3.6 of [GLT] now imply that (i) holds. Furthermore, note
that 1G is a constituent of τ , so χiαi is also a constituent of τk. This is true for all 1 ≤ i ≤ m.
It follows that

[χ1χ2 . . . χm, χ1χ2 . . . χm]G

is at most [τkm, τkm]G, which equals the number of G-orbits on the set Ω2km (in the notation
of Lemma 2.5). By Lemma 2.5 the latter is at most

8qk
2m2 ≤ 8q2m

2L2
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since 2km ≤ 2.8mL ≤ n. The same holds for χ′
1χ

′
2 . . . χ

′
m. It follows by the Cauchy–Schwarz

inequality that

[χ1χ2 . . . χm, χ
′
1χ

′
2 . . . χ

′
m]G ≤

(︃
[χ1χ2 . . . χm, χ1χ2 . . . χm]G · [χ′

1χ
′
2 . . . χ

′
m, χ

′
1χ

′
2 . . . χ

′
m]G

)︃1/2

≤ 8q2m
2L2

.

(c) Now we assume that ϵ = −. By the definition of the level l(χi) [GLT, Definition 4.2],
there is some linear character αi ∈ Irr(G) that χiαi is an irreducible constituent of ζj , where
ζ = ζn is defined in [GLT, (4.1)] and ζ2 is the permutation character of G acting on the set
of vectors of the natural module V = Fnq2 . This is true for all 1 ≤ i ≤ m. It follows that

[χ1χ2 . . . χm, χ1χ2 . . . χm]G

is at most [ζa, ζa]G for some a ≤ km. Note that [ζa, ζa]G equals the number of G-orbits on
the set Ωkm (in the notation of Lemma 2.5). By Lemma 2.5 the latter is at most

2qk
2m2 ≤ 2q2m

2L2

since 2km ≤ 2.8mL ≤ n. Now we can finish as in (b). □

Corollary 5.2. Let G = GLϵn(q) with n ≥ 7, ϵ = ±, and let χ1, χ2 be complex characters
of G of degree at most qnL1 and qnL2 with L1, L2 ≥ 0 and L1 + L2 ≥ 1. Then the following
statements hold.

(i) If χ1, χ2 ∈ Irr(G) then σ(χ1χ2, G) ≤ q5(L1+L2)2.

(ii) In general, σ(χ1χ2, G) ≤ σ(χ1, G)σ(χ2, G)q
5(L1+L2)2.

Proof. (i) Let L := L1 + L2 and consider first the case L ≤ n/5.

Assume that ϵ = +. Then the proof of Proposition 5.1 shows that, for each i = 1, 2, there
exist a linear character αi of G such that χiαi is a constituent of τki for ki := ⌊1.4L2⌋. Hence
χ1χ2α1α2 is a constituent of τk with

k := ⌊1.4L⌋ ≥ k1 + k2.

By Lemma 2.5, we now have

σ(χ1χ2, G) ≤ [τk, τk] ≤ 8qk
2 ≤ 8q2L

2 ≤ q5L
2
.

Next assume that ϵ = −. Then the proof of Proposition 5.1 shows that, for each i = 1, 2,
there exist a linear character αi of G and some ki ≤ ⌊1.4L2⌋ such that χiαi is a constituent
of ζki . Hence χ1χ2α1α2 is a constituent of ζk with

k := k1 + k2 ≤ ⌊1.4L⌋.

By Lemma 2.5, we now have

σ(χ1χ2, G) ≤ [ζk, ζk] ≤ 2qk
2 ≤ 2q2L

2 ≤ q5L
2
.

On the other hand, if L ≥ n/5, then in both of the cases of ϵ = + and ϵ = − we also have

σ(χ1χ2, G) ≤ (χ1χ2)(1) ≤ qnL ≤ q5L
2

as well.
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(ii) Write χ1 =
∑︁

i aiαi and χ2 =
∑︁

j bjβj with αi, βj ∈ Irr(G) being pairwise distinct.

Then αi(1) ≤ qnL1 and βj(1) ≤ qnL2 , and so

σ(αiβj , G) ≤ q5L
2

by (i). It follows that

σ(χ1χ2) =
∑︂
i,j

aibjσ(αiβj , G) ≤
(︁∑︂

i

ai
)︁(︁∑︂

j

bj
)︁
q5L

2
= σ(χ1, G)σ(χ2, G)q

5L2
.

□

Corollary 5.3. Let G = GLϵn(q) with n ≥ 7, ϵ = −, and let χ be a complex character of
degree at most qnL with L ≥ 1/2. Then for any integer m ≥ 1 we have

σ(χm, G) ≤ q15m
2L2

σ(χ,G)m.

Proof. First we prove by induction on k ≥ 0 that

(5.3) σ(χ2k , G) ≤ q5(2
2k+1−2k+1)L2

σ(χ,G)2
k
.

The induction base k = 0 is trivial. Now, for any k ≥ 0 we have by Corollary 5.2(ii) and the
induction hypothesis that

σ(χ2k+1
, G) ≤ q5·2

2k+2L2
σ(χ2k , G)2 ≤ q5(2

2k+3−2k+2)L2
σ(χ,G)2

k+1
,

completing the induction step.

Now we prove the desired statement by induction onm ≥ 1, again with the trivial induction
base m = 1. For m ≥ 2, take a := 2k with k := ⌊log2m⌋. According to (5.3) we have that

σ(χa, G) ≤ q10a
2L2

σ(χ,G)a.

In particular, we are done if a = m. Suppose that b := m − a ≥ 1 and apply the induction
hypothesis to b. Then by Corollary 5.2(ii) we have

σ(χm, G) ≤ q5m
2L2

σ(χa, G)σ(χb, G) ≤ q5(m
2+2a2+3b2)L2

σ(χ,G)m ≤ q15m
2L2

σ(χ,G)m,

since a > b. □

Proposition 5.4. Let V = Fnq be a non-degenerate symplectic or orthogonal space and let

G = Sp(V ) or SO(V ), respectively. Suppose that |CV (g)| = qk for some g ∈ G. Then

|CG(g)| ≥ q(k
2−3k)/2.

Proof. First we make the following observation that

(5.4) |Sp2k(q)| > qk(2k+1)/2, |SO±
m(q)| ≥ qm(m−1)/2/2

for k ≥ 1 and m ≥ 2. Indeed,

|Sp2k(q)| = qk
2

k∏︂
i=1

(q2i − 1),

so the Sp-case follows from [GLT, Lemma 6.1(i)]. The same argument applies to the SO-case
with m = 2k + 1 since

|SO2k+1(q)| = qk
2

k∏︂
i=1

(q2i − 1).
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Consider the SO-case with m = 2k. If k ≤ 3 then (5.4) can be checked directly. If k ≥ 4, then
by [GLT, Lemma 6.1(i)] we have

|SO±
2k(q)| ≥ qk(k−1)

k−1∏︂
i=1

(q2i − 1)(qk − 1) ≥ qk(2k−1) · 9

16
· 15
16

> qk(2k−1)/2.

Let g = su denote the Jordan decomposition of g, with s semisimple and u unipotent.
Then we can decompose V = A⊕A⊥, where A = Ker(s− 1V ) is non-degenerate. Next, if Ji
denotes the Jordan block of size i× i with eigenvalue 1, then we have

u|A = ⊕iJ
ri
i

for some ri ∈ Z≥0 and

(5.5)
∑︂
i

ri = k.

We will view H := Sp(A), respectively H := SO(A), as H = HF , where H := Sp(A⊗Fq Fq),
respectively H := SO(A⊗Fq Fq) and F : H → H a Frobenius endomorphism. The structure
of the connected component C := CH(u)◦ is described in Theorems 3.1, 6.6, and Lemma 6.2
of [LSe]; in particular,

dim C ≥
{︃ ∑︁

i ir
2
i /2 +

∑︁
i<j irirj +

∑︁
2∤i ri/2−

∑︁
2|i ri, H = Sp,∑︁

i ir
2
i /2 +

∑︁
i<j irirj −

∑︁
2∤i ri/2−

∑︁
2|i ri, H = SO,

(where the additional term
∑︁

2|i ri appears only when 2|q). Of course, if ri > 0 for some 2|i,
then

ir2i ≥ r2i + ri,

and so (5.5) implies that∑︂
i

ir2i /2 +
∑︂
i<j

irirj ≥
∑︂
i

r2i /2 +
∑︂
i<j

rirj +
∑︂
2|i

ri/2 ≥ k2/2 +
∑︂
2|i

ri/2.

It follows that

dim C ≥ k2/2−
∑︂
i

ri/2 ≥ (k2 − k)/2.

The structure of CF is described in Theorems 7.1 and 7.3 of [LSe]. Together with (5.4), this
implies that

|CH(u)| ≥ q
dim C−

∑︁
i:ri>0 1 ≥ qdim C−k.

Consequently,

|CG(g)| ≥ |CH(u)| ≥ q(k
2−3k)/2.

□

If V = Fnq is endowed with a quadratic form, then we will call a subspace W of V non-
degenerate if it is non-degenerate with respect to the associated bilinear form.

Proposition 5.5. Let n ≥ 2 and let V = F2n
q be endowed with a non-degenerate, symplectic

or quadratic form. Accordingly, we consider G = Sp(V ) ∼= Sp2n(q) in the symplectic case,
and G = SO(V ) ∼= SOα

2n(q) or G = Ω(V ) = Ωα2n(q) in the quadratic case. Let H ∼= Sp2n−2(q),

respectively SOβ
2n−2(q) or Ωβ2n−2(q), be the subgroup of G consisting of all elements that act
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trivially on a non-degenerate 2-dimensional subspace W of V , where α, β = ± are fixed. Let
χ ∈ Irr(G) be of degree at most qD for some D ≥ 1. Then

[χ|H , χ|H ]H ≤ q2+
√
41n+16D.

Proof. (i) For any element g ∈ G, let gG denote the G-conjugacy class of g in G, and let N(g)
denote the number of non-degenerate 2-dimensional subspaces of V (of fixed type αβ if V is
quadratic) on which g acts trivially. Here we prove that

(5.6)
|gG ∩H|

|gG|
· |G|
|H|

≤ |I(W )| ·N(g),

where I(W ) ∼= Sp2(q) if V is symplectic, and I(W ) ∼= GOαβ
2 (q) if V is quadratic. Indeed, let

X = Xg := {(h, x) ∈ H ×G | h = x−1gx}.
First we consider the projection

π1 : X → gG ∩H, (h, x) ↦→ h

which is surjective, with fibers of size |CG(g)| = |G|/|gG|. It follows that

|X | = |G| · |g
G ∩H|
|gG|

.

Next, consider the map
π2 : (h, x) ↦→ x(W ).

Note that g = xhx−1 acts trivially on x(W ) for any (h, x) ∈ X . The fiber π−1
2 (x(W )) consists

of pairs (h, y) = (y−1gy, y) ∈ X with x−1y(W ) =W , and so of size at most |H| · |I(W )|. Thus
|X | ≤ N(g) · |H| · |I(W )|,

and the claim follows.

(ii) Next we observe that if |CV (g)| = qk, then

(5.7) |I(W )| ·N(g) ≤ (qk − 1)qk−1 < q2k−1.

Indeed, let (·, ·) denote the bilinear form on V , and letW = ⟨u, v⟩Fq be a fixed non-degenerate
2-space (of type αβ if V is quadratic) on which g acts trivially, where we choose v such that
(u, v) ̸= 0. Then |I(W )| · N(g) is the number of linear isometries f : W → CV (g), and for
each such f , we have at most qk − 1 choices for f(u). Next, (f(u), f(v)) = (u, v) ̸= 0, and so

f(v) ∈W ∖ f(u)⊥ ⊆ CV (g)∖ f(u)⊥.

It follows that CV (g) + f(u)⊥ = V and so dim(CV (g) ∩ f(u)⊥) = k − 1. Now one can see
that the number of choices for f(v) is at most |CV (g) ∩ f(u)⊥| = qk−1.

(iii) We call g ∈ G good if

|gG| · |χ(g)|2 < q−n|H|
and bad otherwise. Accordingly we can write

(5.8) [χ|H , χ|H ]H =
∑︂

gG: g good

|gG ∩H| · |χ(g)|2

|H|
+

∑︂
gG: g bad

|gG ∩H| · |χ(g)|2

|H|
.

By Theorems 3.12, 3.13, 3.16, 3.18, 3.21, and 3.22 of [FG], |Irr(G)| ≤ 15.2qn. It follows that
the sum over good classes in (5.8) is at most 15.2. If g is bad, then we have

|CG(g)| ≤ qn|χ(g)|2[G : H] < q5n−1+2D.
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It follows from Proposition 5.4 that

k ≤ 3

2
+

√︃
10n+ 4D +

1

4

if |CV (g)| = qk. Also, (5.6) and (5.7) imply that

|gG ∩H|
|H|

≤ |gG| · |I(W )| ·N(g)

|G|
< q2k−1 · |g

G|
|G|

.

Also note that ∑︂
gG

|gG|
|G|

· |χ(g)|2 = 1

|G|
∑︂
g∈G

|χ(g)|2 = 1.

Applying the above estimates to the sum over bad classes in (5.8), we obtain that

[χ|H , χ|H ]H ≤ 15.2 + q2+
√
40n+16D+1 < q2+

√
41n+16D,

as stated. □

We will also need the following variant of Proposition 5.5:

Proposition 5.6. Let q be an odd prime power, V = F2n+1
q be a non-degenerate quadratic

space with n ≥ 3, and let G = SO(V ) ∼= SO2n+1(q) or Ω(V ) ∼= Ω2n+1(q). Let H ∼= SO+
2n(q),

respectively H ∼= Ω+
2n(q), be the subgroup of G consisting of all elements that act trivially on

a non-degenerate 1-dimensional subspace W of V . Let χ ∈ Irr(G) be of degree at most qD for
some D ≥ 1. Then

[χ|H , χ|H ]H ≤ q2+
√
7n+5D.

Proof. (i) For any element g ∈ G, letN(g) denote the number of non-degenerate 1-dimensional
subspaces W of V on which g acts trivially and such that W⊥ is of type +. First we prove
that

(5.9)
|gG ∩H|

|gG|
· |G|
|H|

≤ 2N(g).

Indeed, let
X := {(h, x) ∈ H ×G | h = x−1gx}.

As in the proof of Proposition 5.6, by considering the projection

π1 : X → gG ∩H, (h, x) ↦→ h

we see that

|X | = |G| · |g
G ∩H|
|gG|

.

Next, consider the map
π2 : (h, x) ↦→ x(W ).

Note that g = xhx−1 acts trivially on x(W ) for any (h, x) ∈ X . The fiber π−1
2 (x(W )) consists

of pairs (h, y) = (y−1gy, y) ∈ X with x−1y(W ) =W , and so of size at most 2|H|. Thus
|X | ≤ N(g) · 2|H|,

and the claim follows.

We also observe that if |CV (g)| = qk, then N(g) < qk.

(ii) Call g ∈ G good if

|gG| · |χ(g)|2 < q−n|H|
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and bad otherwise. Accordingly we can write

(5.10) [χ|H , χ|H ]H =
∑︂

gG: g good

|gG ∩H| · |χ(g)|2

|H|
+

∑︂
gG: g bad

|gG ∩H| · |χ(g)|2

|H|
.

By Theorems 3.17 and 3.19 of [FG], |Irr(G)| ≤ 7.3qn. It follows that the sum over good classes
in (5.8) is at most 7.3. If g is bad, then we have

|CG(g)| ≤ qm|χ(g)|2[G : H] < q3n+2D+0.06

(where we have used the estimate (qn + 1) < 1.04qn < qn+0.06). It follows from Proposition
5.4 that

k ≤ 3

2
+
√
6n+ 4D + 2.37

if |CV (g)| = qk. Also, (5.6) and (5.7) imply that

|gG ∩H|
|H|

≤ |gG| · 2N(g)

|G|
< qk+0.64 · |g

G|
|G|

.

Also note that ∑︂
gG

|gG|
|G|

· |χ(g)|2 = 1

|G|
∑︂
g∈G

|χ(g)|2 = 1.

Applying the above estimates to the sum over bad classes in (5.8), we obtain that

[χ|H , χ|H ]H ≤ 7.3 + q2.14+
√
6n+4D+2.37 < q2+

√
7n+5D,

as stated. □

Next we endow V = F2n
q with a non-degenerate symplectic, respectively quadratic form

with a Witt basis (e1, . . . , en, f1, . . . , fn), where we assume furthermore that ⟨e1, . . . , en⟩Fq is

totally singular. Then let Gn := Sp(V ) ∼= Sp2n(q), respectively SO(V ) ∼= SO+
2n(q). Consider

the parabolic subgroup
Pn := StabGn(⟨e1, . . . , en⟩Fq) = QnLn

of Gn, with abelian unipotent radical Qn and Levi subgroup Ln ∼= GLn(q). If 2|q, then Pn is
contained in Ω(V ), and, abusing the notation, we will also consider the case Gn := Ω(V ) =
Ω+
2n(q).

For any 1 ≤ m ≤ n, we will also consider the standard subgroup

Gm = StabGn(em+1, . . . , en, fm+1, . . . , fn)

(which is isomorphic to Sp2m(q), respectively SO+
2m(q) if Gn = SO(V ), and Ω+

2m(q) if Gn =
Ω(V ) and 2|q), and its parabolic subgroup Pm and Levi subgroup Lm ∼= GLm(q).

Proposition 5.7. Let n ≥ 7 and 0 ≤ L ≤ n/5. Let φ ∈ Irr(Pn) be of degree at most qnL. If
1 ≤ m ≤ n− ⌊1.4L⌋, then the restriction of φ to Pm contains a linear character of Pm.

Proof. (i) Let Sn(q) denote the set of symmetric n×n-matrices over Fq, and let An(q) denote

the set of anti-symmetric n× n-matrices over Fq with zero diagonal. Fix a primitive pth root
ε of 1 in C. First we consider the case Gn = Sp2n(q). Then

Qn =

{︃
[I,X] :=

(︃
In X
0 In

)︃
| X ∈ Sn(Fq)

}︃
.

If 2 ∤ q, then any linear character of Qn is of the form

λB : [I,X] ↦→ εtrFq/Fp (Tr(BX))
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for some B ∈ Sn(q). Any such B defines a quadratic form of rank j = j(B) and type ϵ = ±,
and

(5.11) JB := StabLn(λB) = [qj(n−j)]⋊ (GOϵ
j(q)×GLn−j(q)),

where [qa] denotes an elementary abelian group of order qa. If q is even, then any linear
character of Qn is of the form

λB : [I,X] ↦→ ϵtrFq/Fp (Tr(BX))

for some B ∈Mn(q), and λB = λB′ if and only if B −B′ ∈ An(q). Now, for each B = (bij) ∈
Mn(q) we define the quadratic form qB on the space Fnq = ⟨f1, . . . , fn⟩Fq such that qB(fi) = bii
and the associated bilinear form has B + tB as Gram matrix in the given basis. Then (5.11)
again holds with r being the rank of qB, see e.g. [GT2, Lemma 3.1].

Suppose now that Gn = SO+
2n(q), or 2|q and Gn = Ω+

2n(q). Then

Qn =

{︃
[I,X] :=

(︃
In X
0 In

)︃
| X ∈ An(Fq)

}︃
.

If q is odd, then any linear character of Qn is of the form

λB : [I,X] ↦→ ϵtrFq/Fp (Tr(BX))

for some B ∈ An(q). If q is even, then any linear character of Qn is of the form

λB : [I,X] ↦→ ϵtrFq/Fp (Tr(BX))

for some B ∈ Mn(q), and λB = λB′ if and only if B − B′ ∈ Sn(q). Let the even integer
j = j(B) denote the rank of B if 2 ∤ q, and of B − tB if 2|q. Then again we have

(5.12) JB := StabLn(λB) = [qj(n−j)]⋊ (Spj(q)×GLn−j(q)).

(ii) Let O denote the Pn-orbit of λB with j = j(B). Here we show that

(5.13) |O| ≥
{︃

max(qj(n−j), qj(n−(j−1)/2)−3), Gn = Sp(V ),

max(qj(n−j), qj(n−(j+1)/2)−2), Gn = SO(V ) or Ω(V ).

The statement is obvious for 0 ≤ j ≤ 2, so we will assume j ≥ 3. If Gn = Sp(V ), then the

bound |O| ≥ qj(n−(j−1)/2)−3 > qj(n−j) follows from (5.11) and the estimates

|GLn(q)| ≥ (9/32)qn
2
, |GO±

j (q)| < 2qj(j−1)/2, |GLn−j(q)| ≤ q(n−j)
2

(with the first one following [GLT, Lemma 6.1(i)]). If Gn = SO(V ) or Ω(V ), then the bound

|O| ≥ qj(n−(j+1)/2)−2 > qj(n−j) then follows from (5.11) and the estimates

|GLn(q)| ≥
9

16
· q − 1

q
· qn2

, |Spj(q)| ≤
q2 − 1

q2
· qj(j+1)/2, |GLn−j(q)| ≤ q(n−j)

2

(with the first one following [GLT, Lemma 6.1(i)]).

(iii) Assume now that λ = λB occurs in φ|Qn . By Clifford’s theorem, φ = IndPn
T (λ̂) for

some irreducible character λ̂ of

T := StabPn(λ) = Qn ⋊ JB

that lies above λ. Let µ be an irreducible constituent of the restriction of λ̂ to the subgroup
GLn−j(q) of JB. Then we must have that

(5.14) |O| ≤ |O| · µ(1) ≤ φ(1) ≤ qnL ≤ qn
2/5.
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First note that if n/2 ≤ j ≤ n, then

min(j(n− (j − 1)/2)− 3, j(n− (j + 1)/2)− 2) > n2/5.

Hence (5.13) and (5.14) imply that j ≤ n/2. This, together with (5.2) and (5.14) actually
shows that

(5.15) j ≤ 1.4L.

In particular, n− j ≥ 3.6n/5 > 4.

Writing l(µ) = i, we aim to show that

(5.16) i+ j ≤ 1.4L.

Suppose first that i ≥ (n− j)/2. Then µ(1) ≥ q(n−j)
2/4−2 by [GLT, Theorem 1.1], and so by

(5.13) we have

φ(1) ≥ qj(n−j)+(n−j)2/4−2.

Note that h(t) := t(1 − t) + (1 − t)2/4 − 1/5 − 2/49 > 0 on the interval [0, 1/2]. Since
0 ≤ j/n < 1/2 by (5.15), we see that

j(n− j) + (n− j)2/4− 2 = n2 · h(j/n) + n2/5 + 2n2/49− 2 > n2/5 + 2n2/49− 2 ≥ n2/5,

violating (5.14). We have shown that i < (n− j)/2, and so

i+ j < n/2 + j/2 ≤ n/2 + 0.7L

by (5.15). This, together with (5.2) and (5.14), yields (5.16).

(iv) Without loss we may assume that B =

(︃
B1 0
0 0

)︃
for a suitable j × j-matrix B1. Then

we can choose Gn−j to be the subgroup

StabGn(e1, . . . , ej , f1, . . . , fj)

and the subgroup GLn−j(q) in JB to be a Levi subgroup Ln−j of the parabolic subgroup

Pn−j = StabGn−j (⟨ej+1, . . . , en⟩Fq)

ofGn−j . As in the proof of Proposition 5.1, the condition l(µ) = i implies that the restriction of
µ to a standard subgroup GLn−i−j(q) of GLn−j(q) contains a linear character ν of GLn−i−j(q).
As above, we can choose Gn−i−j to be the subgroup

StabGn(e1, . . . , ei+j , f1, . . . , fi+j)

and the subgroup GLn−i−j(q) to be a Levi subgroup Ln−i−j of the parabolic subgroup

Pn−i−j = StabGn−i−j (⟨ei+j+1, . . . , en⟩Fq)

of Gn−i−j . Note that the unipotent radical Qn−i−j of Pn−i−j is contained in Qn and consists

of matrices [I, Y ], where Y =

(︃
0 0
0 Y1

)︃
for a suitable (n− i− j)× (n− i− j)-matrix Y1 over

Fq, and so Qn−i−j ≤ Ker(λ).

Now φ|Pn−i−j contains λ̂|Pn−i−j , and the latter has been shown to contain a linear character,
trivial at Qn−i−j and equal to ν at GLn−i−j(q). As i+ j ≤ ⌊1.4L⌋ by (5.16), we are done. □

Now we can prove the main result of this section:
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Theorem 5.8. There is an explicit absolute constant A > 0 (which can be taken to be 705)
such that the following statement holds. Let q be a prime power, n ≥ 1, Gn = Sp2n(q) or
SO+

2n(q), or Ω
+
2n(q) with 2|q, and let Ln = GLn(q) be a Levi subgroup of the parabolic subgroup

Pn of Gn. Suppose that χ is a complex character of Gn of degree at most qnL, where L ≥ 1
and

n ≥ max(7.6L, 7 + 1.4L).

Then

σ(χ,Ln) ≤ q
√
AnL3

σ(χ,Gn).

Furthermore, for any m ≥ 1 we have

σ(χm, Ln) ≤ qm
√
AnL3+15m2L2

σ(χ,Gn)
m.

Proof. (i) By Proposition 5.5, there is an absolute constant A1 > 0 (which can be taken to
be 69) such that

σ(ψ,Gm−1) ≤ [ψ|Gm−1 , ψ|Gm−1 ]Gm−1 ≤ q
√
A1nL

for all 7 ≤ n, 7 ≤ m ≤ n, and for ψ ∈ Irr(Gm) of degree at most qnL. Setting

k = ⌊1.4L⌋, A2 = (1.4)2A1(≈ 135.3),

and applying Lemma 2.3(i), we see that

(5.17) σ(χ,Gn−k) ≤ q
√
A2nL3

σ(χ,Gn).

Next we show that if n ≥ max(7, 5L) and χ(1) ≤ qnL then

(5.18) σ(χ, Pn) ≤ q
√
A3nL3

σ(χ,Gn).

For, if φ ∈ Irr(Pn) is any irreducible constituent of χ|Pn , then φ|Pn−k
contains a linear con-

stituent λ ∈ Irr(Pn−k) by Proposition 5.7. It follows that

σ(χ, Pn) ≤ λ(χ, Pn−k).

On the other hand, by Lemma 2.2, the multiplicity of each linear λ ∈ Irr(Pn−k) is at most√︁
|Pn−k\Gn−k/Pn−k| ≤

√
n

in the restriction to Pn−k of any irreducible character of Gn−k. Hence,

λ(χ, Pn−k) ≤
√
n · σ(χ,Gn−k) ≤ q

√
A3nL3

σ(χ,Gn)

by (5.17), with A3 = 148, establishing (5.18).

(ii) Recall we have proved (5.18) for any (not necessarily irreducible) character of Gm of
degree at most qmL, provided that m ≥ max(7, 5L). Consider any irreducible constituent
α ∈ Irr(Gn−k) of χ|Gn−k

. Then

α(1) ≤ qnL = q(n−k)M ,

where

M =
nL

n− k
≤ L

1− 1.4L/n
< 1.226L,

since n ≥ 7.6L. Now we have
n− k > max(7, 5M)

and so (5.18) can be applied to α to yield

σ(α, Pn−k) ≤ q
√
A3(n−k)M3 ≤ q

√
A4nL3

,



32 ROBERT M. GURALNICK, MICHAEL LARSEN, AND PHAM HUU TIEP

with A4 ≤ 1.504A3 can be taken to be 222.6. Using this together with (5.17) and Lemma 2.3,
we get

(5.19) σ(χ, Pn−k) ≤ q
√
A4nL3+

√
A2nL3

σ(χ,Gn) ≤ q
√
A5nL3

σ(χ,Gn),

with A5 = 705.

(iii) By Lemma 2.4, the multiplicity of each linear µ ∈ Irr(Ln−k) is at most 1 in the
restriction to Ln−k of any irreducible characters of Pn−k = Qn−k ⋊ Ln−k. Hence,

λ(χ,Ln−k) ≤ σ(χ, Pn−k) ≤ q
√
A5nL3

σ(χ,Gn)

by (5.19). On the other hand, if γ ∈ Irr(Ln) is an irreducible constituent of χ|Ln , then
γ(1) ≤ χ(1) ≤ qnL, and so by Proposition 5.1(i), its restriction to Ln−k contains a linear
character of Ln−k. It follows that

σ(χ,Ln) ≤ λ(χ,Ln−k),

and so we obtain the first statement of the theorem by taking A = A5 = 705. The second
statement then follows from Corollary 5.3. □

For the next statement, we note that SO(V ) = SO2n+1(q) with 2 ∤ q contains a standard
subgroup H ∼= SO+

2n(q) which fixes a non-singular vector in V . Likewise, SO(V ) = SO−
2n+2(q)

contains a standard subgroup H ∼= SO+
2n(q) which acts trivially on a non-degenerate 2-

dimensional subspace of V . Furthermore, Ω(V ) = Ω−
2n+2(q) contains a subgroupH

∼= SO+
2n(q),

which fixes an orthogonal decomposition V = V1 ⊕ V2, where V2 is a non-degenerate 2-
dimensional subspace of type − and has [H,H] ∼= Ω+

2n(q) acting trivially on V2; we will refer
to any such subgroup H as a standard SO+

2n(q)-subgroup of Ω−
2n+2(q).

Corollary 5.9. There is an explicit absolute constant B > 0 (which can be taken to be 1216)
such that the following statement holds. Let q be a prime power, n ≥ 1, G := SO2n+1(q) with
2 ∤ q, or G := SO−

2n+2(q), or G := Ω−
2n+2(q). Let Ln = GLn(q) be a Levi subgroup of the

parabolic subgroup Pn of a standard subgroup H ∼= SO+
2n(q) < G. Suppose that χ is a complex

character of G is of degree at most qnL, where L ≥ 1 and

n ≥ max(7.6L, 7 + 1.4L).

Then

σ(χ,Ln) ≤ q
√
BnL3

σ(χ,G).

Furthermore, for any m ≥ 1 we have

σ(χm, Ln) ≤ qm
√
BnL3+15m2L2

σ(χ,G)m.

Proof. Set H̃ := Ω+
2n(q) if G = Ω−

2n+2(q), and H̃ := H otherwise. As in the proof of Theorem

5.8, Propositions 5.5 and 5.6 applied to the pair G > H̃ imply that

σ(χ,H) ≤ σ(χ, H̃) ≤ q
√
A1nLσ(χ,G),

where A1 can be taken to be 69. On the other hand, by Theorem 5.8,

σ(α,GLn(q)) ≤ q
√
AnL3

for any irreducible constituent α of χ|H , where A can be taken to be 705. Hence the statement
follows from Lemma 2.3. □

We will also note the following consequence of Theorem 5.8 and Corollary 5.9:
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Corollary 5.10. There is an explicit absolute constant C > 0 (which can be taken to be 1696)

such that the following statement holds. Let q be any odd prime power, n ≥ 1, G̃ := SO2n+1(q)

or SO+
2n(q), and let G := [G̃, G̃] ∼= Ω2n+1(q), respectively Ω+

2n(q). Let Ln = GLn(q) be a Levi

subgroup of the parabolic subgroup Pn of G̃. Suppose that χ ∈ Irr(G) is of degree at most qnL,
where L ≥ 1 and

n ≥ max(8.5L, 7 + 1.6L).

Then

σ(χ,Ln ∩G) ≤ q
√
CnL3

.

Proof. Let χ̃ ∈ Irr(G̃) be lying above χ, so that

χ̃(1) ≤ 2χ(1) ≤ qnL+1 ≤ qnL1 ,

where L1 = (10/9)L. Applying Theorem 5.8 and Corollary 5.9 and 5.6 to χ̃, we see that

σ(χ,Ln ∩G) ≤ σ(χ̃, Ln ∩G) ≤ 2σ(χ̃, Ln) ≤ 2q
√
Bn(L1)3 ≤ q

√
CnL3

,

where B = 1216 and C can be taken to be 1696. □

6. Non-explicit bounds on character values

A triple (G, q, n) consists of a finite group and two positive integers. We say a set T of
triples is B-bounded for some B > 0, if for every (G, q, n) ∈ T , every L ≥ 1, every character
χ of G with χ(1) ≤ qnL, and every positive integer m we have

σ(χm, G) ≤ qB(mn1/2L3/2+m2L2)σ(χ,G)m,

with σ(·, ·) as defined in (2.1).

Lemma 6.1. Fix C > 0. Let T1 and T2 be sets of triples such that for all (G1, q, n) ∈ T1
there exists a triple (G2, q, n) for which either G2 is isomorphic to a subgroup of G1 of index
≤ qC or G1 is isomorphic to a subgroup of G2 of index ≤ qC . If T2 is B2-bounded, then T1 is
B1-bounded (for some B1 depending on B2 and C).

Proof. We will prove that T1 is B1-bounded for B1 := B2(C+1)2+C. Assume (G1, q, n) ∈ T1,
L1 ≥ 1, and χ1 is a character of G1 with χ1(1) ≤ qnL1 .

Suppose G1 ≤ G2 for some (G2, q, n) ∈ T2 and [G2 : G1] ≤ qC . Let L2 := (C + 1)L1

and χ2 := IndG2
G1

(χ1), so that χ2(1) ≤ qnL1+C ≤ qnL2 . Since a tensor product of induced
representations naturally contains the induced representation of the tensor product, by Lemma
2.3(ii) we have

σ(χm1 , G1) ≤ σ(χm2 , G1) ≤ σ(χm2 , G2)[G2 : G1]

≤ qB2(mn1/2L
3/2
2 +m2L2

2)+Cσ(χ2, G2)
m

≤ qB1(mn1/2L
3/2
1 +m2L2

1)σ(χ1, G1)
m.

Suppose, on the other hand, that G2 ≤ G1 for some (G2, q, n) ∈ T2 and [G1 : G2] ≤ qC . Then
again using Lemma 2.3(ii) we see that

σ(χm1 , G1) ≤ σ(χm1 , G2)

≤ qB2(mn1/2L
3/2
1 +m2L2

1)σ(χ1, G2)
m

≤ qB1(mn1/2L
3/2
1 +m2L2

1)σ(χ1, G1)
m,
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so T1 is indeed B1-bounded. □

Corollary 5.3 implies that the set of triples of the form (GLϵn(q), q, n) is B1-bounded, with
B1 = 15. Using Theorem 5.8 and Corollary 5.9 as well, we see that the set of triples of the
form (Sp2n(q), q, n), (SO+

2n(q), q, n), (SO2n+1(q), q, n), or (SO−
2n+2(q), q, n), is B2-bounded,

with B2 = 1216. By Lemma 6.1, for a fixed a > 0, the set of triples (G, q, n), with G being
any (q, n, a)-classical group, is B3-bounded for some B3 depending on a. It follows that all
classical groups belong to B-bounded triples, with B ≥ 1 suitably chosen.

Theorem 6.2. For every ε ∈ (0, 1), there exists an effective constant δ = δ(ε) > 0 such that
the following statement holds. If G is a classical group and g ∈ G satisfies |CG(g)| ≤ |G|δ,
then

|χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G). In fact, δ can be taken to be Cε3 for some effective constant C > 0.

Proof. By the above discussion, we can fix B ≥ 1 so that (G, q, n) is B-bounded, if the classical
group G has parameter n. By choosing C (and so δ) small enough, we may assume n is as
large as we wish, since |CG(g)| ≤ |G|δ never occurs for bounded n: the order of the centralizer
of any non-central element g ∈ G is bounded below by max(2, (q − 1)/2), whereas the order

of G is bounded above by O(q(n+1)(2n+1)); in fact, |G| ≤ qC1n2
for some explicit C1 > 0. By

choosing 0 < δ ≤ δ1/2C1, we may also assume that |CG(g)| < qδ1n
2/2 where δ1 > 0 can be

taken as small as we wish.

We now choose δ1 and δ2 so that

δ2 ≤
2ε2

81B2
≤ 2ε

81B
,
δ1
δ2

≤ ε

3
.

We use the centralizer bound

|φ(g)| ≤ |CG(g)|1/2 < qδ1n
2

for every φ ∈ Irr(G), and let

L = max(logqn χ(1), 1).

As the minimum dimension of any non-linear irreducible character of a classical group is
greater than qn/3 by the Landazuri-Seitz bound [LaSe], we have

(6.1) χ(1) > qLn/3.

We may assume

(6.2) L ≤ δ2n/2,

since otherwise, the desired character estimate follows immediately from the centralizer bound.

Fix an integer m ≥ 2 such that

δ2n

L
≤ m <

2δ2n

L
.

This is possible because of (6.2). Then the B-boundedness implies

|χ(g)|m = |χm(g)| ≤ σ(χm, G)qδ1n
2/2 ≤ qB(mn1/2L3/2+m2L2)+δ1n2/2.

Hence, by (6.1) it suffices to prove

B(n1/2L3/2 +mL2) +
δ1n

2

2m
<
εLn

3
.
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We do this by combining the inequalities

Bn1/2L3/2 = Ln(B
√︁
L/n) ≤ LnB

√︁
δ2/2 ≤ εLn

9
,

BmL2 < 2Bδ2Ln ≤ 4εLn

81
,

and
δ1n

2

2m
<
δ1Ln

2δ2
≤ εLn

6
.

□

The following proposition shows that all representations of spin groups which do not arise
from representations of the corresponding orthogonal groups are of such high degree that our
character estimates are trivial. Our general references for Deligne-Lusztig theory are [C] and
[DM].

Proposition 6.3. Let q be a power of an odd prime p and let ϵ = ±. Then the following
statements hold.

(i) Suppose χ is a faithful irreducible character of Spin2n+1(q) with n ≥ 2. Then

χ(1) > qn(n+1)/2/4.

(ii) Suppose χ is an irreducible character of Spinϵ2n(q) with n ≥ 3, which is not obtained by
inflating an irreducible character of Ωϵ2n(q). Then

χ(1) > qn(n−1)/2/4.

Proof. (i) For G = Spin2n+1(q), the dual group G∗ is the projective conformal symplectic

group G∗ = PCSp2n(q), which is the quotient of G̃ = CSp2n(q) by its center Z(G̃). Suppose
that χ belongs to the rational Lusztig series labeled by the G∗-conjugacy class of a semisimple
element s∗ ∈ G∗. By assumption, Ker(χ)∩Z(G) = 1. Hence s∗ /∈ [G∗, G∗] by [NT, Proposition

4.5], which means that the conformal coefficient of an inverse image s ∈ G̃ of s∗ is not a square
in F×

q . Now the computations on p. 1188 of [Ng] shows that

χ(1) ≥ [G∗ : CG∗(s∗)]p′ ≥ [G̃ : CG̃(s)]p′/2 > qn(n+1)/2/4.

(ii) Here we have that G = Spinϵ2n(q) = Spin(V ), where V = F2n
q be endowed with a non-

degenerate quadratic form Q. We recall some basic facts from spinor theory, cf. [Ch]. The
Clifford algebra C(V ) is the quotient of the tensor algebra T (V ) by the ideal I(V ) generated
by v ⊗ v − Q(v), v ∈ V . The natural grading on T (V ) passes over to C(V ) and allows one
to write C(V ) as the direct sum of its even part C+(V ) and odd part C−(V ). We denote the
identity element of C(V ) by e. The algebra C(V ) admits a canonical anti-automorphism α,
which is defined via

α(v1v2 . . . vr) = vrvr−1 . . . v1

for vi ∈ V . The Clifford group Γ(V ) is the group of all invertible s ∈ C(V ) such that sV s−1 ⊆
V . The action of s ∈ Γ(V ) on V defines a surjective homomorphism ϕ : Γ(V ) → GO(V )
if m is even, and ϕ : Γ(V ) → SO(V ) if m is odd, with Ker(ϕ) ≥ F×

q e. The special Clifford

group Γ+(V ) is Γ(V ) ∩ C+(V ). Let

Γ0(V ) := {s ∈ Γ(V ) | α(s)s = e}.
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The reduced Clifford group, or the spin group, is then defined to be

G = Spin(V ) = Γ+(V ) ∩ Γ0(V ),

and the following sequence

1 −→ ⟨−e⟩ −→ Spin(V )
ϕ−→ Ω(V ) −→ 1

is exact.

Now fix v ∈ V with Q(v) ̸= 0 and write V = A⊕⟨v⟩Fq with A = v⊥. Let CA the subalgebra
of C(V ) generated by all a ∈ A, and let C(A) denote the Clifford algebra of the quadratic
space (A,Q|A). Then, by [LBST3, Lemma 4.1], there is a canonical isomorphism C(A) ∼= CA
which induces a group isomorphism Spin(A) ∼= CA ∩ Spin(V ), and the following sequence

1 −→ ⟨−e⟩ −→ CA ∩ Spin(V )
ϕ−→ Ω(A) −→ 1

is exact.

By assumption, −e /∈ Ker(χ). It follows that the restriction of χ to Spin(A) ∼= Spin2n−1(q)
contains an irreducible constituent ρ with −e /∈ Ker(ρ). By (i) we now have

χ(1) ≥ ρ(1) > qn(n−1)/2/4.

□

Proof of Theorem 1.3. We have already treated the classical groups G in Theorem 6.2. When
n is bounded, if δ is chosen small enough, there are no elements g with |CG(g)| ≤ |G|δ. When
n is sufficiently large in terms of δ, the case of spin groups follows from Proposition 6.3 and
Theorem 6.2 for Ω±

m(q). □

7. Explicit bounds on character values

We begin with the following statement that handles the irreducible Weil characters of finite
symplectic groups, see eg. [GMT]:

Lemma 7.1. Let q be an odd prime power, n ≥ 9, and let G := Sp2n(q) with natural module
V = F2n

q . For any element g ∈ G, let

e(g) := max(dimKer(g − 1V ),dimKer(g + 1V )).

Then the following statements hold for χ any of the four irreducible Weil characters of G.

(i) If e(g) ≤ 5, then |χ(g)| < χ(1)3/n.

(ii) If e(g) ≥ 6 and |CG(g)| ≤ qn
2δ for some δ > 0, then |χ(g)| < χ(1)9

√
δ/8.

Proof. Note that χ(1) = (qn ± 1)/2 > qn−1 ≥ q8n/9. Furthermore, for k := e(g) we have

by Theorem 2.1 and Lemma 3.1 of [GMT] that |χ(g)| ≤ qk/2, and (i) follows immediately.

Assume now that k ≥ 6 and |CG(g)| ≤ qn
2δ. Then

qn
2δ ≥ |CG(g)| ≥ q(k

2−3k)/2 ≥ qk
2/4

by Proposition 5.4, and so k ≤ 2n
√
δ, and (ii) follows. □

Theorem 7.2. For every γ with 4/5 < γ < 1, there exists an explicit constant δ > 0 such
that the following statement holds. Let q be any prime power, n ≥ 9, and let

G ∈ {Sp2n(q),SO+
2n(q),SO

−
2n+2(q),Ω

−
2n+2(q)} ∪ {SO2n+1(q) with 2 ∤ q,Ω+

2n(q) with 2|q}.
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Suppose that g ∈ G satisfies |CG(g)| ≤ qn
2δ. Then

|χ(g)| ≤ 4 · χ(1)γ

for all χ ∈ Irr(G). In particular, if γ = 0.99 then one can take δ = 0.0011.

Proof. (i) For any fixed γ ∈ (4/5, 1), we can find

(7.1) 0 < δ ≤ min

(︃
γ

4
,
1− γ

1.4

)︃
such that

(7.2)

√︄
A
δ

2γ
+

δ

1− γ
+ 4(1− γ) ≤ γ,

where A can be taken to be 1216. (For instance, one can take δ = 0.00036 if γ = 0.9, and
δ = 0.0011 if γ = 0.99.) Let χ(1) = qnL (so again L ≥ 0 is not necessarily an integer), and
we aim to show that

|χ(g)| ≤ χ(1)γ .

First we note that

|χ(g)| ≤ |CG(g)|1/2 ≤ qn
2δ/2 ≤ χ(1)γ

if L ≥ nδ/2γ. So we may assume

(7.3) n ≥ 9, L ≤ nδ/2γ ≤ n/8.

Note that this implies

(7.4) n ≥ max(7.6L, 7 + 1.4L).

As the statement is obvious when χ(1) = 1, we may assume that χ(1) = qnL > 1, and so
L > 1/2 by [TZ1, Theorem 1.1]. In fact, L > 1 unless G = Sp2n(q) with 2 ∤ q and χ is a Weil
character, in which case we can apply Lemma 7.1. Henceforth we will therefore assume that
L > 1.

(ii) We will choose some integer m ≥ 1 later (see (7.9)). Decompose

(7.5) (χχ̄)m =
t∑︂
i=1

aiχi,

where χi ∈ Irr(G) and ai ∈ Z>0. We will bound
∑︁

i ai = σ((χχ̄)m, G) by restricting χ to
Ln := GLn(q):

χ|Ln =
∑︂

α∈Irr(Ln), α(1)≤qnL

bαα,

so that

(7.6) (χχ̄)m|Ln =
∑︂

αi∈Irr(Ln), 1≤i≤2m

bα1 . . . bα2mα1 . . . αmᾱm+1 . . . ᾱ2m.

The choice (7.9) of m implies by (7.1) that

5.6mL ≤ 5.6nδ

4(1− γ)
≤ n.

With αi ∈ Irr(Ln) of degree ≤ qnL and

β := α1 . . . αmᾱm+1 . . . ᾱ2m,
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we then have by Proposition 5.1(ii) that

σ(β, Ln) ≤ [β, β]Ln ≤ 8q8m
2L2

,

It now follows from (7.4), (7.6), and Theorem 5.8 and Corollary 5.9 (which are applicable
since L > 1) that

σ((χχ̄)m, Ln) ≤ 8q8m
2L2

(
∑︂
α

bα)
2m = 8q8m

2L2
σ(χ,Ln)

2m ≤ 8q2m
√
AnL3+8m2L2

.

Thus ∑︂
i

ai = σ((χχ̄)m, G) ≤ σ((χχ̄)m, Ln) ≤ 8q2m
√
AnL3+8m2L2

.

(iii) Now we rewrite (7.5) as

(7.7) (χχ̄)m =
s∑︂
i=1

aiαi +
t∑︂

j=1

bjβj ,

where ai, bj ∈ Z>0, αi, βj ∈ Irr(G), and

αi(1) < qn
2δ, βj(1) ≥ qn

2δ.

Then the result of (ii) can be written as

s∑︂
i=1

ai +
t∑︂

j=1

bj ≤ 8q2m
√
AnL3+8m2L2

.

Using the bounds |αi(g)| ≤ αi(1), 8
1/2m < 3, and

|βj(g)| ≤ |CG(g)|1/2 ≤ qn
2δ/2 ≤ βj(1)/q

n2δ/2,

we have ⃓⃓⃓⃓ s∑︂
i=1

aiαi(g)

⃓⃓⃓⃓1/2m
≤
(︃ s∑︂
i=1

aiαi(1)

)︃1/2m

≤ 3q
√
AnL3+4mL2+n2δ/2m,

⃓⃓⃓⃓ t∑︂
j=1

bjβj(g)

⃓⃓⃓⃓1/2m
≤

(︄∑︁t
j=1 bjβj(1)

qn2δ/2

)︄1/2m

≤ χ(1)

qn2δ/4m
.

(7.8)

Recall that we assume γ > 4/5. It follows that

L ≤ nδ

2γ
<

nδ

8(1− γ)

and so there exists an integer m ≥ 1 such that

(7.9)
nδ

8(1− γ)
≤ mL ≤ nδ

4(1− γ)
.

Our choice (7.9) of m implies that nδ/mL ≥ 4(1− γ) and so

(7.10) |
t∑︂

j=1

bjβj(g)|1/2m ≤ χ(1)

qn2δ/4m
≤ χ(1)γ .
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Next, n2δ/2m ≤ 4nL(1− γ) and mL2 ≤ nLδ/4(1− γ). It follows from (7.2) that

√
AnL3 + 4mL2 +

n2δ

2m
≤ nL

(︄√︄
A
δ

2γ
+

δ

1− γ
+ 4(1− γ)

)︄
≤ nLγ.

Hence (7.8) implies that

(7.11) |
s∑︂
i=1

aiαi(g)|1/2m ≤ 3χ(1)γ .

Combining (7.7), (7.11) and (7.10) together, and recalling m ≥ 1, we arrive at

|χ(g)| ≤

⎛⎝|
s∑︂
i=1

aiαi(g)|+ |
t∑︂

j=1

bjβj(g)|

⎞⎠1/2m

≤ |
s∑︂
i=1

aiαi(g)|1/2m + |
t∑︂

j=1

bjβj(g)|1/2m ≤ 4χ(1)γ ,

as stated. □

Note that the following statement in fact also applies to irreducible ℓ-Brauer characters
for any ℓ coprime to 2q, with the proof in the modular case following the proof of [LBST2,
Theorem 3.9]. We restrict ourselves to the complex case (and also note that [LBST2, Theorem
3.9] needs the assumption that either ℓ = 0 or ℓ ∤ (q · gcd(n, q + 1))).

Proposition 7.3. Let q be a power of an odd prime p and let ϵ = ±. Then the following
statements hold.

(i) Suppose χ is an irreducible character of G = SO2n+1(q) with n ≥ 2 and χ is reducible
over [G,G] = Ω2n+1(q). Then

χ(1) > qn
2/2.

(ii) Suppose χ is an irreducible character of G = SOϵ
2n(q) with n ≥ 4 and χ is reducible over

[G,G] = Ωϵ2n(q). Then

χ(1) > (q − 1)qn(n−1)/2−1.

Proof. (a) Assume that χ belongs to the rational Lusztig series E(G, (s)) labeled by a semisim-
ple element s ∈ G∗, where the dual group G∗ is Sp2n(q), respectively SOϵ

2n(q). By assump-
tion, χ is reducible over [G,G], which has index 2 in G. It follows by Clifford’s theorem that
χ = χλ, where λ is the unique non-principal irreducible character of G/[G,G]. Note that
λ is the semisimple character corresponding to the central involution z ∈ G∗. Furthermore,
according to [DM, Proposition 13.30] and its proof, the tensor product with λ defines a bi-
jection between the series E(G, (s)) and E(G, (sz)). Since χ = χλ, we conclude that s and sz
are conjugate in G. As χ(1) is divisible by N := [G∗ : CG∗(s)]p′ , it suffices to show that N
satisfies the lower bounds mentioned in the statements.

(b) Consider the case G∗ = Sp2n(q). It is easy to see that the condition s and sz are
G∗-conjugate implies that 1 and −1 should occur as eigenvalues of s with the same even
multiplicity say 2a ≥ 0, and

CG∗(s) ∼= Sp2a(q)× Sp2a(q)×
c∏︂
i=1

GLki(q
ai)×

d∏︂
j=1

GUlj (q
bj ),
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where ai, bj ≥ 0 and
∑︁

i kiai +
∑︁

j ljbj = n− 2a. It follows that

N ≥ [Sp2n(q) : (Sp2a(q)× Sp2a(q)×GUn−2a(q))]p′ .

If a = n/2, then

(7.12) N ≥ [Sp2n(q) : Spn(q)
2]p′ =

n/2∏︂
i=1

qn+2i − 1

q2i − 1
> qn

2/2.

If 0 ≤ a < n/2, then by [GLT, Lemma 6.1(iii)] we have

(7.13) N ≥
n−2a∏︂
i=1

(qi + (−1)i) · (q
2n−4a+2 − 1) . . . (q2n − 1)

((q2 − 1) . . . (q2a − 1))2
> (q − 1)qM−1,

where

M =
(n− 2a)(n− 2a+ 1)

2
+ a(4n− 6a) =

n2 + (4a+ 1)(n− 2a)

2
≥ (n2 + 1)/2.

Since q − 1 > q1/2 when q ≥ 3, we obtain that N ≥ qn
2/2 in this case as well.

(c) Suppose that G∗ = SOϵ
2n(q). The condition s ∈ SOα

2n(q) and sz are G∗-conjugate imply
that 1 and −1 should occur as eigenvalues of s with the same even multiplicity say 2a ≥ 0.
First suppose that a = 0. Then

CG∗(s) ∼=
c∏︂
i=1

GLki(q
ai)×

d∏︂
j=1

GUlj (q
bj ),

where ai, bj ≥ 0 and
∑︁

i kiai +
∑︁

j ljbj = n. It follows that

N ≥ [SO+
2n(q) : GUn(q)]p′ ≥

(q − 1)(q2 + 1) . . . (qn + (−1)n)

qn + 1
.

Using [GLT, Lemma 6.1(iii)] and observing that (q2 + 1)(q3 − 1) > q(q4 + 1), it is easy to
check that

N > (q − 1)qn(n−1)/2−1

in this case. Suppose that a = n/2. Then

CG∗(s) ∼= (SOα
n(q)× SOα

n(q)) · C2

for some α = ±. Using (7.12) we then get

N ≥ [SO+
2n(q) : SO

−
n (q)

2]p′/2 =
(qn/2 − 1)2

2(qn + 1)
· [Sp2n(q) : Spn(q)2]p′ > qn

2/2−1.

Assume now that 1 ≤ a < n/2. Then

CG∗(s) ∼=
c∏︂
i=1

GLki(q
ai)×

d∏︂
j=1

GUlj (q
bj )× (SOα

2a(q)× SOα
2a(q)) · C2,

where α = ±, ai, bj ≥ 0 and
∑︁

i kiai +
∑︁

j ljbj = n− 2a. It follows that

N ≥
|SO+

2n(q)|p′
2|SO−

2a(q)
2 ×GUn−2a(q)|p′

=
(qa − 1)2

2(qn + 1)
· [Sp2n(q) : (Sp2a(q)2 ×GUn−2a(q))]p′ .

Using (7.13) we obtain that

N ≥ (1− 1/q)3

2(1 + 1/q4)
qM−(n−2a)
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with

M − (n− 2a) =
n2 + (4a− 1)(n− 2a)

2
≥ (n2 + 3)/2.

As q ≥ 3, it follows that N > (0.76)qn
2/2 in this case. □

Theorem 7.4. For every ε with 4/5 < ε < 1, there exists an explicit constant δ > 0 such that
the following statement holds. Let q be any prime power, n ≥ 9, and let G ∈ C∗

n(q). Suppose

that g ∈ G satisfies |CG(g)| ≤ qn
2δ. Then

|χ(g)| ≤ 4 · χ(1)ε

for all χ ∈ Irr(G). For instance, if ε = 0.99, one can take δ = 0.0011.

Proof. First we show that the statement holds for all G with SLϵn(q) ◁ G ≤ GLϵn(q). Let
χ ∈ Irr(G) lie under an irreducible character θ of GLϵn(q). If χ = θ|G, then we are done by
applying [GLT, Theorem 1.4] to θ. Otherwise θ|G is reducible, whence θ is reducible over
SLϵn(q) and so χ(1) is very large by [GLT, Lemma 8.3], in which case the statement holds by

the centralizer bound |χ(g)| ≤ |CG(g)|1/2.
For all the remaining groups in C∗

n(q) but spin groups, we are done by Theorem 7.2. It
remains to consider the case 2 ∤ q and G = Spinϵm(q) with m = 2n + 1, or (m, ϵ) = (2n,+),
(2n + 2,−). By Proposition 6.3, either χ is obtained by inflating an irreducible character
of Ωϵm(q), or χ(1) is very large, in which case Theorem 7.4 obviously holds, again by the

centralizer bound |χ(g)| ≤ |CG(g)|1/2. So we may assume that χ ∈ Irr(Ωϵm(q)). Now, by
Proposition 7.3, either χ extends to SOϵ

m(q), or χ(1) is very large. In the former case, we
are done by applying Theorem 7.2 to SOϵ

m(q). In the latter case, we are again done by the
centralizer bound. □

Proof of Theorem 1.4. For any given ε, we can choose some ε∗ so that 4/5 < ε∗ < ε (say,
ε∗ = ε/2 + 2/5). In fact, for ε = 0.992, we will choose ε∗ = 0.99. Now we apply Theorem 7.4
to get an explicit δ∗ > 0 (which can be taken to be 0.0011 if ε∗ = 0.99), such that

(7.14) |χ(g)| ≤ 4 · χ(1)ε∗

for all G ∈ C∗
n(q), for all χ ∈ Irr(G), and for all g ∈ G with |CG(g)| ≤ qn

2δ∗ .

Next we choose

(7.15) δ := min
(︁
δ∗,

16

25
ε(ε− ε∗)

)︁
,

which is 0.0011 when (ε, ε∗, δ∗) = (0.992, 0.99, 0.0011). Consider any g ∈ G with |CG(g)| ≤
qn

2δ and any χ ∈ Irr(G). If χ is linear then |χ(g)| = χ(1)ε. Assume χ(1) > 1. An application
of [TZ1, Theorem 1.1] shows that

(7.16) χ(1) > q4n/5.

Now if n ≥ 2.5/(ε− ε∗), then

χ(1)ε−ε
∗
> 2(4n/5)(ε−ε

∗) > 4,

and so (7.14) implies that |χ(g)| ≤ χ(1)ε. Finally, if n < 2.5/(ε− ε∗), then the choice (7.15)
implies that

nδ <
5

2(ε− ε∗)
· 16
25
ε(ε− ε∗) =

8ε

5
.
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Combining with (7.16), this yields

|χ(g)| ≤ |CG(g)|1/2 ≤ qn
2δ/2 < q4nε/5 < χ(1)ε,

completing the proof. □

In the following application, for a finite group S and a fixed element g ∈ S we consider the
conjugacy class C = gS and random walks on the (oriented) Cayley graph Γ(S,C) (whose
vertices are x ∈ S and edges are (x, xh) with x ∈ S and h ∈ C). Let P t(x) denote the
probability that a random product of t conjugates of g is equal to x ∈ S, and let U(x) := 1/|S|
denote the uniform probability distribution on S. Also, let

||P t − U ||∞ := |S| ·max
x∈S

|P t(x)− U(x)|.

Corollary 7.5. There exists an absolute constant 1 > γ > 0 such that the following statements
hold. Let S ∈ C∗

n(q) be a quasisimple group with n ≥ 9, and let C = gS with g ∈ S be such
that |CS(g)| ≤ |S|γ.
(i) If t ≥ 3, then P t converges to U in the || · ||∞-norm when |S| → ∞; in particular, the

Cayley graph Γ(S,C) has diameter at most 3 when |S| is sufficiently large.
(ii) The mixing time T (S,C) of the random walk on Γ(S,C) is at most 2 for |S| sufficiently

large.

Proof. We follow the proof of [BLST, Theorem 1.12]. Consider the Witten ζ-function

(7.17) ζS(s) =
∑︂

χ∈Irr(S)

1

χ(1)s
.

By [LS, Theorem 1.1], limq→∞ ζS(s) = 1 as long as s > 2/h, where h is the Coxeter number,
i.e. h := n if S = SLϵn(q), h := 2n if S = Sp2n(q), Spin2n+1(q) or Spin

−
2n+2(q), and h := 2n−2

if S = Spin+2n(q). Furthermore, when s > 0 is fixed, ζS(s) → 1 when S has large enough rank
and |S| → ∞ by [LS, Theorem 1.2].

For (i), we apply Theorem 1.3 with ε = 1/4. Choosing γ suitably, we can ensure that

|CS(g)| ≤ qn
2δ, and so |χ(g)| ≤ χ(1)1/4 for all χ ∈ Irr(S). Now we have by a well-known

result (see [AH, Chapter 1, 10.1]) that

||P t − U ||∞ ≤
∑︂

1S ̸=χ∈Irr(S)

(︃
|χ(g)|
χ(1)

)︃t
χ(1)2 ≤ ζS(3t/4− 2)− 1.

Now, as n ≥ 9, if t ≥ 3 then 3t/4− 2 > 2/h, and so the statement follows.

For (ii), note that P t(x) is the probability that a random walk on the Cayley graph Γ(S,C)
reaches x after t steps. Let

||P t − U ||1 :=
∑︂
x∈S

|P t(x)− U(x)|.

For (i), we apply Theorem 1.3 with ε = 1/3. Choosing γ suitably, we can ensure that

|CG(g)| ≤ qn
2δ, and so |χ(g)| ≤ χ(1)1/3 for all χ ∈ Irr(S). By the Diaconis-Shahshahani

bound [DS],

(||P t − U ||1)2 ≤
∑︂

1S ̸=χ∈Irr(S)

(︃
|χ(g)|
χ(1)

)︃2t

χ(1)2 ≤ ζS(4t/3− 2)− 1.

As n ≥ 9, if t ≥ 2 then 4t/3− 2 > 2/h, and the statement follows. □
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Lubotzky conjectured in [Lu, p. 179] that, if S is a finite simple group and C is a non-
trivial conjugacy class of S, then the mixing time of the random walk on Γ(G,C) is linearly
bounded above in terms of the diameter of Γ(G,C). Corollary 7.5 confirms this conjecture
for the medium-size conjugacy classes C.

8. Product one varieties

Let G be a simply connected simple algebraic group over an algebraically closed field F
of characteristic p ≥ 0, of rank r. Let m ≥ 3 be a positive integer and let C1, . . . ,Cm be
nontrivial conjugacy classes in G. Let

X = X(C1, . . . ,Cm) := {(g1, . . . , gm) ∈ C1 × · · · ×Cm |
m∏︂
i=1

gi = 1}

denote the closed subvariety of C1 × · · · ×Cm consisting of m-tuples with product 1 in G.

There is a substantial literature devoted to finding m-tuples of algebraic group elements, in
specified conjugacy classes and multiplying to 1. For instance, the Simpson-Deligne problem
[Si] is exactly this question, with an additional irreducibility condition. When

∑︁
i dimCi =

2dimG, dimension considerations suggest that there may be finitely many solutions up to
conjugacy, and this situation has been considered by various authors, see, for instance [FK,
Be, Ka, SV]. We are interested in a regime where the gi are significantly underdetermined by
the constraint g1 · · · gm = 1.

We will prove:

Theorem 8.1. There exists some absolute constant C such that if either m ≥ 7 or r ≥ C,
the following statements hold for any simple simply connected algebraic group G of rank r
and any m ≥ 3 non-central conjugacy classes C1, . . . ,Cm in G:

(i) dimX(C1, . . . ,Cm) ≤ (m− 1) dimG−mr.
(ii) Equality holds in (i) if and only if all the Ci are regular classes.
(iii) If the equivalent conditions in (ii) hold, then X(C1, . . . ,Cm) is irreducible.

We first see that it suffices work over the algebraic closure of a finite field. In fact, we
conjecture that the result holds for any m ≥ 3 and r ≥ 2.

Lemma 8.2. Let G be a group scheme of finite type over an irreducible base S of finite type
over Z. Let X denote a closed subscheme of G which maps isomorphically to S. Then there
exists a dense open subset U of S and a (locally closed) subscheme C of G such that for each
u ∈ U , the fiber Cu is the conjugacy class of Xu in Gu.

Proof. Let π : W → S denote a morphism of finite type, and C a constructible subset of W.
Then the closure of the generic fiber Cη := C ∩ π−1(η) in Wη coincides with (C̄)η. Indeed,
we can reduce to the case that C is dense in W, in which case it contains all generic points
of W and in particular all generic points of Wη, so Cη is dense in Wη.

By [EGA IV, Corollaire 9.5.4], if the generic fiber of the constructible set C is locally
closed, then there exists a dense open subset U1 of S such that for all u ∈ U1, the fiber Cu
is locally closed. Moreover, if C ′ is a second constructible subset of W such that Cη = C ′

η,
then there exists a dense open subset U2 of S such that for all u ∈ U2, Cu = C ′

u [EGA IV,
Corollaire 9.5.2]. Given C, we may define a locally closed set C ′ as follows: C ′ := C̄ \ D̄,
where D := C̄ \C. Since for constructible sets, Zariski closure commutes with passage to the
generic fiber, C ′

η = Cη, and so Cu is locally closed for u ∈ U := U1 ∩ U2.
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We apply this to the image C of the conjugation map π : W := G ×S X → G, which is
constructible by Chevalley’s theorem. The generic fiber Cη is the conjugacy class of the point
Xη in the algebraic group Gη and is therefore locally closed. Let U be the open subscheme of
S with underlying set U ; replacing S by U , we may assume without loss of generality that
C = C ′ is locally closed. Let C̄ denote the reduced closed subscheme of G whose underlying
set is C̄ in GU , and let C denote the open subscheme of C̄ whose underlying set is C \D. Then
Cu = Cu for all u ∈ U , so the lemma holds. □

Proposition 8.3. Theorem 8.1 holds over all algebraically closed fields F if it holds over Fp
for all p.

Proof. There exists a subfield F0 of F, finitely generated over the prime field of F, such that
G and all the Ci are defined over F0. Passing to a finite extension if necessary, we assume
that G is split over F0 and each Ci has a point xi defined over F0. Thus, there exists a
finitely generated Z-algebra A, a split simple, simply connected group scheme G over A, and
A-valued points x̄i in Ci, such that the field of fractions of A is F0, and extending scalars from
A to F0 takes G (resp. x̄i) to G (resp. xi). By Lemma 8.2, replacing SpecA with a dense
open subscheme U , we may define locally closed subschemes Ci of G such that the fibers of Ci

over any u ∈ U are conjugacy classes in a split, simply connected, semisimple algebraic group
with the same root system as G. Let Gu (resp. Ci,u) denote the fiber of u of G (resp. Ci),
and let Xu denote the product one subvariety of C1,u × · · · ×Cm,u. By [EGA IV, Corollaire
9.5.6] and [EGA IV, Proposition 9.7.8], replacing U with a suitable open subscheme, we may
assume that the dimension of Xu and the number of irreducible geometric components of Xu

are the same as for X.

Replacing U with a smaller open subscheme if necessary, we may assume it is affine. Its
coordinate ring is finitely generated over Z so every closed point has finite residue field. Thus,
we may replace F with an algebraic closure of a finite field. □

Henceforth, we assume F = Fp.
We first point out the result for SL2(F) with F algebraically closed. See [GM, Sh]. The

result is a bit different, as is the proof.

Lemma 8.4. Let G = SL2(F) and let Ci, . . . ,Cm be non-central conjugacy classes of G with
m ≥ 3. Then dimX = 2m− 3 and either X is irreducible or m = 3 and there exist xi ∈ Ci

with product 1 fixing a unique line (and the Ci are not all unipotent).

Proof. By Proposition 8.3, we may assume that F is the algebraic closure of a finite field. We
can work in GL2(F) (this does not change the variety). The advantage here is that there is a
connected center and it follows that there is an absolute bound on |χ(g)| for g any non-central
element and χ any irreducible character. If m ≥ 4, Lemma 8.4 follows from inspection of the
character tables of GL2(q) and (a variation of) Lemma 8.7 below.

Assume that m = 3. A straightforward computation with 2 × 2 matrices shows that for
any (x1, x2, x3) ∈ X either the xi generate an irreducible subgroup or there exist eigenvalues
ai of xi with a1a2a3 = 1. Moreover, if the latter case holds, then any triple in X fixes a line.

In the first case, as noted, any triple generates an irreducible subgroup of SL2(F). Then
by Katz’s rigidity theorem (which holds in arbitrary characteristic [Ka, SV] and goes back to
[FK] in characteristic 0), all triples are conjugate via an element of SL2, showing the variety
is irreducible of dimension 3.
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Otherwise any (x1, x2, x3) ∈ X fixes a line. If B is a Borel subgroup, then X ∩B3 has two
components (determined by the action of the xi on the fixed line) or is irreducible if the Ci are
all unipotent. These components are two dimensional. Conjugation then gives the result. □

Lemma 8.5. For each integer i ∈ [1,m], dimX ≤
∑︁

j ̸=i dimCj.

Proof. The projection map from X to
∏︁
j ̸=iCj is injective. □

Lemma 8.6. Suppose that dimX(C1, . . . ,Cm) ≥ (m− 1) dimG−mr. Then∑︂
i

dimCi ≥ mdimG− m2r

m− 1
.

Moreover if xi ∈ Ci, then ∑︂
i

dimCG(xi) ≤
m2r

m− 1
.

Proof. Take the inequality above and sum over i. This gives

(m− 1)
∑︂
i

dimCi ≥ mdimX ≥ m[(m− 1) dimG−mr].

Thus, ∑︂
i

dimCi ≥ mdimG− m2r

m− 1
,

as claimed. The second inequality follows. □

Lemma 8.7. Suppose that there is some small ϵ > 0 such that for all q sufficiently large we
have

(8.1)
⃓⃓⃓ ∑︂
1G ̸=χ∈Irr(G)

χ(x1) . . . χ(xm)

χ(1)m−2

⃓⃓⃓
< ϵ,

for G = G(Fq) when xi ∈ Ci(Fq). Then X is an irreducible variety of dimension

e := −dimG+
∑︂

dimCi.

Proof. By the Lang-Weil estimate, |G| = (1 + o(1))qdimG and |Ci(Fq)| = (1 + o(1))qdimCi .
Each Ci(Fq) is a union of conjugacy classes in G, and if each Ci is a conjugacy class inside
Ci(Fq), the Frobenius character formula asserts that the number of tuples (x1, . . . , xm) ∈
C1 × · · · × Cm such that x1 · · ·xm = 1 is

|C1 × · · · × Cm|
|G|

∑︂
χ∈Irr(G)

χ(x1) . . . χ(xm)

χ(1)m−2
.

Summing over C1×· · ·×Cm ⊆ C1(Fq)×· · ·×Cm(Fq), (8.1) then shows that the number of Fq-
points ofX0 is (1+o(1))qe whence by the Lang-Weil estimate,X consists of a single irreducible
component of dimension e, with all other irreducible components of lower dimension. On the
other hand, it follows by intersection theory that any component of X has dimension at least
e (see for example the argument in [GM] or [Sh]), whence the result. □

We now prove that for m ≥ 7, Theorem 8.1 holds for any r.
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Lemma 8.8. Let e ≥ r be such that the smallest degree of nontrivial characters of G(q) is at
least qe/3, cf. [LaSe]. Let m0 ≥ 4 be minimal such that

m2
0r

2m0 − 2
< e(m0 − 2− 2

h
),

where h is the Coxeter number of G. Then if m ≥ m0, Theorem 8.1 holds. In particular,
Theorem 8.1 holds for every m ≥ 7.

Proof. Let m ≥ m0. Assume that

(8.2) dimX(C1, . . . ,Cm) ≥ (m− 1) dimG−mr,

and let xi ∈ Ci(q) for q large. By Lang–Weil, there is an absolute constant c > 0 such that

|χ(xi)| < |C(xi)|1/2 ≤ cqdimCG(xi)/2,

where C(xi) is the centralizer of xi in the group of Fq-points of G. Applying Lemma 8.6, we
have that

(8.3) |χ(x1) . . . χ(xm)| ≤ cmq
m2r
2m−2 .

Note that the quadratic polynomial e(m−2−2/h)(2m−2)−m2r in the variablem is increasing
when m ≥ e(3 + 2/h)/(2e− r), in particular when m ≥ m0 ≥ 4 since e ≥ r and h ≥ 1. Hence
by the choice of m0, we can find some 2 ≥ s > 2/h such that

m2r

2m− 2
< e(m− 2− s).

Now for any 1G ̸= χ ∈ Irr(G), since χ(1) ≥ qe/3 we have⃓⃓⃓ χ(x1) . . . χ(xm)
χ(1)m−2

⃓⃓⃓
≤ cmqe(m−2−s)

χ(1)m−2
≤ cm3m−2−s

χ(1)s
.

It follows from [LS, Theorem 1.1] for q sufficiently large that⃓⃓⃓ ∑︂
1G ̸=χ∈Irr(G)

χ(x1) . . . χ(xm)

χ(1)m−2

⃓⃓⃓
≤

∑︂
1G ̸=χ∈Irr(G)

cm3m−2−s

χ(1)s
< ϵ.

By Lemma 8.7, X is irreducible of dimension∑︂
i

dimCi − dimG ≤ (m− 1) dimG−mr,

since dimCi ≤ dimG −mr, with equality if and only if Ci is regular. Recalling (8.2), we
now have that dimX = (m− 1) dimG−mr and that the Ci are all regular.

Thus we have proved assertion (i) of Theorem 8.1. We have also shown that equality in
8.1(i) implies that X is irreducible and that the classes Ci are all regular.

Suppose now that the Ci are all regular, so that dimCG(xi) = r for all i. Then

|χ(xi)| < |C(xi)|1/2 ≤ c1q
r/2

for some absolute constant c1 > 0, and so instead of (8.3) we now have

|χ(x1) . . . χ(xm)| ≤ cmq
mr
2 .

Repeating the above arguments, but with m2r/(2m − 2) replaced by the smaller constant
mr/2, we conclude from Lemma 8.7 that X is irreducible of dimension

∑︁
i dimCi−dimG =

(m− 1) dimG−mr. This completes the proof of Theorem 8.1 for m ≥ m0.
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Finally, we note that, by Lemma 8.4, we may assume r ≥ 2, so h ≥ 3. In this case,

(2m0 − 2)
(︂
m0 − 2− 2

h

)︂
≥ (2m0 − 2)

(︂
m0 −

8

3

)︂
≥ (3m0 − 11)2 − 73

9
+m2

0 > m2
0

for m0 ≥ 7. □

For most choices of G, more careful estimates of e and h give a somewhat better result. For
instance, if G = E8, the lemma holds for any m ≥ 3 since by [LaSe], e ≥ 29. For rank r ≥ 5,
we have h ≥ 6, implying that Lemma 8.8 holds also for m = 6. Thus, non-trivial character
estimates are needed mainly in the range 3 ≤ m ≤ 5.

We can now prove that Theorem 8.1 holds for any m ≥ 3 for sufficiently large rank. Here
is where we use the preceding results of this paper.

Proof. We henceforth assume that G has rank ≥ 9. It is therefore of classical type.

Suppose that dimX ≥ (m− 1) dimG−mr. Then by Lemma 8.5,∑︂
j ̸=i

dimCj ≥ (m− 1) dimG−mr.

This implies that dimCi ≥ dimG − 2r. By the Lang-Weil estimate, |Ci| ≥ qdimG−2r/2 if q
is sufficiently large and so |CG(xi)| ≤ 2q2r for each i. If G is of sufficiently high rank, then
[GLT, Corollary 8.5] (in the case G is of type A) and Theorem 1.3 (for types B, C, and D),

imply that |χ(xi)| ≤ χ(1)1/4 for all irreducible characters χ of G. This implies the sum in
(8.1) is bounded above by ∑︂

1G ̸=χ∈Irr(G)

χ(1)−1/4,

which goes to zero as |G| → ∞ among groups of Lie type of sufficiently high rank [LS, Theorem
1.1]. This proves the theorem for simple algebraic groups over Fp and therefore for simple
algebraic groups over any algebraically closed field. □
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[RS] A. Rattan and P. Śniady, Upper bound on the characters of the symmetric groups for balanced
Young diagrams and a generalized Frobenius formula, Adv. Math. 218 (2008), 673–695.

[Ro] Y. Roichman, Upper bound on the characters of the symmetric groups, Invent. Math. 125 (1996),
451–485.

[Sh] A. Shalev, Almost independence and irreducibility in simple finite and algebraic groups, J. Algebra
500 (2018), 375–389.

[ST] A. Shalev and Pham Huu Tiep, Some conjectures on Frobenius’ character sum, Bull. Lond. Math.
Soc. 49 (2017), 895–902.

[Si] C. Simpson: Products of matrices. Differential geometry, global analysis, and topology (Halifax,
NS, 1990), 157–185, CMS Conf. Proc., 12, Amer. Math. Soc., Providence, RI, 1991.

[SV] K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math. 510 (1999), 57–62.
[T1] Pham Huu Tiep, Dual pairs and low-dimensional representations of finite classical groups, (preprint).
[T2] Pham Huu Tiep, Dual pairs of finite classical groups in cross characteristic, Contemp. Math. 524

(2010), 161–179.
[T3] Pham Huu Tiep, Weil representations of finite general linear groups and finite special linear groups,

Pacific J. Math. 279 (2015), 481–498.
[TT] J. Taylor and Pham Huu Tiep, Lusztig induction, unipotent supports, and character bounds, Trans.

Amer. Math. Soc. 373 (2020), 8637–8776.
[TZ1] Pham Huu Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups, Comm. Algebra

24 (1996), 2093–2167.
[TZ2] Pham Huu Tiep and A. E. Zalesskii, Some characterizations of the Weil representations of the

symplectic and unitary groups, J. Algebra 192 (1997), 130–165.

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532,
USA

Email address: guralnic@math.usc.edu

Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.

Email address: larsen@math.indiana.edu

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, U. S. A.

Email address: tiep@math.rutgers.edu


	1. Introduction
	2. Preliminaries
	3. Character level for finite classical groups
	4. Character level and the U-rank
	5. Restrictions to natural subgroups
	6. Non-explicit bounds on character values
	7. Explicit bounds on character values
	8. Product one varieties
	References

