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Production of η and η′ mesons in pp and pPb collisions
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The production of η and η′ mesons is studied in proton-proton and proton-lead collisions collected with
the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.02 and 13 TeV and
proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV. The studies are per-
formed in center-of-mass (c.m.) rapidity regions 2.5 < yc.m. < 3.5 (forward rapidity) and −4.0 < yc.m. < −3.0
(backward rapidity) defined relative to the proton beam direction. The η and η′ production cross sections are
measured differentially as a function of transverse momentum for 1.5 < pT < 10 GeV and 3 < pT < 10 GeV,
respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear
modification factors for η and η′ mesons agree at both forward and backward rapidity, showing no significant
evidence of mass dependence. The differential cross sections of η mesons are also used to calculate η/π0

cross-section ratios, which show evidence of a deviation from the world average. These studies offer new
constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η and η′ meson fragmentation.

DOI: 10.1103/PhysRevC.109.024907

I. INTRODUCTION

Light hadron production in heavy-ion collisions is a sen-
sitive probe of the structure of the colliding nuclei. Pion
production data from deuteron-gold (d-Au) collisions at the
BNL Relativistic Heavy Ion Collider (RHIC) have been used
to constrain nuclear parton distribution functions (nPDFs)
[1–5]. These nPDFs encode modifications of the partonic
structure of nuclei within the collinear factorization frame-
work [6]. In addition, light hadron production is also sensitive
to effects of the high energy densities produced in heavy-ion
collisions. Light hadron production was one of the original
tools used to study quark-gluon plasma (QGP) in heavy-
ion collisions. Measurements of angular correlations between
light hadrons in heavy-ion collisions at RHIC demonstrated
collective flow and were interpreted as some of the first evi-
dence for QGP production [7–10]. Similar correlations have
been observed in small-collision systems at the Large Hadron
Collider (LHC) and RHIC, pointing to possible QGP forma-
tion [11–17].

Nuclear effects on particle production can be quantified
using the nuclear modification factor, which is defined as

RpPb = 1
A

dσpPb/d pT

dσpp/d pT
, (1)

where A = 208 is the atomic mass of the lead nucleus, while
dσpPb/d pT and dσpp/d pT are the differential cross sections as
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a function of transverse momentum pT in pPb and pp colli-
sions, respectively. The LHCb experiment recently measured
the nuclear modification factors of inclusive charged particles
in proton-lead (pPb) collisions at

√
sNN = 5.02 TeV and π0

meson production at 8.16 TeV, observing enhancements in
the lead-going direction larger than those predicted by nPDF
calculations [18,19]. These enhancements could be produced
by effects such as hydrodynamic evolution of QGP created in
these collisions [20]. Understanding the origin of QGP-like
effects in small collision systems is one of the primary goals
of high-energy nuclear physics.

Studying the production of π0, η, and η′ mesons in heavy-
ion collisions allows for the isolation of the mass and isospin
dependence of nuclear effects, which can help reveal the
origin of QGP-like phenomena in small-collision systems.
Collective radial flow of the QGP, for example, is expected to
produce larger enhancements for heavier particles, as heavier
particles must receive a larger momentum boost in order to
comove with an expanding medium [21,22]. Studies of the
multiplicity dependence of identified particle production in
proton-proton (pp) collisions by the ALICE Collaboration
indicate a hardening of the pT spectra with increasing mul-
tiplicity that is more pronounced for baryons and strange
mesons than for pions [23,24]. The authors interpret these
results as a mass ordering consistent with radial flow. This
interpretation is further complicated, however, by differences
in the number and flavor of valence quarks between the hadron
species. The η and η′ mesons have similar masses to the
kaon and proton, respectively, but with different valence quark
content. As a result, studies of production of η and η′ mesons
can clarify the origin of these flow-like effects.

The production of η mesons has been studied extensively
in small-collision systems at central rapidity at RHIC and
the Large Hadron Collider (LHC) [5,25–30]. In addition, the
STAR and PHENIX Collaborations have studied η meson
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production at forward rapidity in polarized pp collisions at√
s = 200 GeV [31,32]. There are no studies, however, of η

meson production at forward or backward rapidity in colli-
sions involving heavy ions. Furthermore, η′ meson production
has only been studied in pp collisions at

√
s = 200 GeV by

the PHENIX Collaboration [25]. The η′ nuclear modifica-
tion factor has never been measured in heavy-ion collisions.
Studying both η and η′ production at forward and backward
rapidities helps reveal the mass and rapidity dependence of
nuclear effects in heavy-ion collisions.

This article presents measurements of η and η′ meson
production with the LHCb detector. The η and η′ cross sec-
tions are measured differentially in pT in pp collisions at√

s = 5.02 and 13 TeV, and in pPb collisions at 8.16 TeV.
The η meson cross sections are combined with previous LHCb
measurements of the π0 differential cross sections to calculate
the η/π0 cross-section ratio. Finally, the nuclear modification
factors are reported as a function of pT. Since LHCb col-
lected a relatively small sample of unbiased pp collisions at√

s = 8 TeV, the pp reference cross section is constructed
by interpolating between the

√
s = 5.02 and 13 TeV cross-

section measurements. The measurements are performed in
the center-of-mass (c.m.) rapidity (yc.m.) ranges 2.5 < yc.m. <
3.5 and −4.0 < yc.m. < −3.0, which correspond to the over-
lapping portions of the pp and pPb fiducial regions. The
center-of-mass rapidity is related to the laboratory-frame
rapidity ylab by yc.m. = ylab − 0.465 in pPb collisions and
|yc.m.| = ylab in pp collisions. The η meson measurements
are performed for 1.5 < pT < 10.0 GeV, while the η′ meson
measurements are performed for 3 < pT < 10 GeV (natural
units are used throughout this article).

II. DETECTOR AND DATA SET

The LHCb detector is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, described in
detail in Refs. [33,34]. The detector includes a high-precision
tracking system consisting of a silicon-strip vertex detector
(VELO) surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet,
and three stations of silicon-strip detectors and straw drift
tubes placed downstream of the magnet. Different types of
charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors. Photons are recon-
structed and identified by a calorimeter system consisting of
scintillating-pad (SPD) and preshower (PRS) detectors, an
electromagnetic (ECAL), and a hadronic (HCAL) calorimeter.
Muons are identified by a system composed of alternating lay-
ers of iron and multiwire proportional chambers. Particularly
important for this analysis is the ECAL, which consists of
alternating layers of lead and scintillator and has an energy
E resolution of 13.5%/

√
E/ GeV ⊕ 5.2% ⊕ (0.32 GeV)/E

[35]. Simulated data samples are used to model the detector
response to η and η′ reconstruction. In the simulation, pPb
collisions are generated using EPOS-LHC [20], while pp col-
lisions are generated using PYTHIA [36]. Decays of unstable
particles are described by EVTGEN [37], and final-state ra-
diation is generated using PHOTOS [38]. The interaction of
the generated particles with the detector, and its response, are

implemented using the GEANT4 toolkit [39,40], as described
in Ref. [41].

Proton-lead collisions are recorded in two configurations:
the forward configuration in which the proton beam travels
from the interaction region toward the spectrometer, and the
backward configuration in which the lead ion beam travels
toward the spectrometer. The forward configuration data are
used to perform measurements for positive yc.m., and the
backward data are used for negative yc.m.. The pPb data used
in this analysis were collected in 2016 and correspond to
an integrated luminosity of 350 ± 9 µb−1 (364 ± 9 µb−1) in
the forward (backward) direction [42,43]. All pPb events are
required to have at least one reconstructed track in the VELO.
The pp data were collected in 2015 and correspond to an
integrated luminosity of 3.49 ± 0.07 nb−1 (6.86 ± 0.14 nb−1)
for

√
s = 5.02 TeV (

√
s = 13 TeV).

Signal η candidates are reconstructed from pairs of
photons. Photons are reconstructed from energy deposits
(clusters) in the ECAL. The ECAL clusters are required to
have pT > 500 MeV and must be far from the extrapolated
trajectories of all reconstructed tracks to exclude clusters pro-
duced by charged particles. In addition, clusters produced by
hadrons are removed using a neural network classifier that
takes as input the significance of the cluster’s distance to
the nearest track, variables describing the ECAL and PRS
cluster shapes, and energy deposited in the SPD, PRS, ECAL,
and HCAL. Selected η candidates with a diphoton mass
M(γ γ ) satisfying 500 MeV < M(γ γ ) < 600 MeV are com-
bined with pairs of tracks to form the η′ candidates. The
tracks are required to be of good quality and to be consistent
with originating from the same primary collision vertex (PV).
The tracks also must be identified as charged pions and have
pT > 400 MeV.

III. CROSS-SECTION DETERMINATION

The differential cross section in a particular pT interval is
given by

dσ

d pT
= 1

LBε(pT)
N (pT)
&pT

, (2)

where L is the integrated luminosity of the sample, B is the
branching ratio of the η or η′ meson to the reconstructed
final state, and ε(pT) is a correction factor that accounts
for detector inefficiencies and migration between pT inter-
vals due to finite detector resolution. The signal yield in a
given pT interval is denoted N (pT), and &pT is the size of
the pT interval. The η meson is studied using its decay to
two photons and the η′ meson is studied using its decay to
π+π−η, which have branching fractions of (39.36 ± 0.18)%
and (42.5 ± 0.5)%, respectively [44]. The signal yields are
determined using binned maximum-likelihood fits to the mass
spectra of reconstructed signal candidates [45,46]. Exam-
ple fit results from pPb collisions with 2.5 < yc.m. < 3.5 for
1.5 < pT < 1.6 GeV and 3.0 < pT < 3.2 GeV are shown in
Fig. 1. The η meson signal is modeled using a two-sided
Crystal Ball function [47]. The parameters describing the tails
of the distribution are determined from fits to simulation,
which are used to impose Gaussian constraints in the fits to
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FIG. 1. Example reconstructed M(γ γ ) distributions in forward pPb collisions at
√

sNN = 8.16 TeV with 2.5 < yc.m. < 3.5. Distributions
are shown for (left) 1.5 < pT < 1.6 GeV and (right) 3.0 < pT < 3.2 GeV. Fit results are overlaid, including the mixed event and correlated
combinatorial background templates. The lower panels show the background-subtracted mass distributions with the fit results overlaid.

data. Most of the background consists of random combina-
tions of photons, which are modeled using an event mixing
technique in which reconstructed photons from different
events are combined. The mass distributions of the mixed-
event photon pairs are used to create background template
histograms. In addition to these uncorrelated combinations,
an additional background source arises from the correlated
production of photons nearby in the detector, such as the com-
bination of two photons from the same jet. These photon pairs
tend to be produced with small opening angles. As a result,
the background should be largest at the low edge of the mass
spectrum and monotonically decrease as a function of M(γ γ ).
This background is therefore modeled using a function of the
form

f (x) ∝ 1 −
(

x − m0

m1 − m0

)n

, (3)

where x = M(γ γ ), m0 = 300 MeV is the low edge of the
mass spectra used in the fit, m1 = 800 MeV is the high edge,
and n is a free parameter. This empirical function provides
a good description of the correlated background in simulated
samples of η meson decays.

The η′ candidate mass M(π+π−η) is determined using
a kinematic fit with the decay vertex constrained to a PV
and M(γ γ ) fixed to the world-average η meson mass [44].
Example fits from pPb collisions with 2.5 < yc.m. < 3.5 for
3 < pT < 4 GeV and 7 < pT < 10 GeV are shown in Fig. 2.
The η′ meson signal is modeled using two Gaussian func-
tions with a common mean. The widths of the two Gaussian
functions and their relative contributions to the signal peak
are determined from fits to simulation. The results of fits to
simulated events are used to impose Gaussian constraints in
the fits to data. The uncorrelated combinatorial background
is modeled using mixed-event combinations of dipion and η

FIG. 2. Example reconstructed M(π+π−η) distributions in forward pPb collisions at
√

sNN = 8.16 TeV with 2.5 < yc.m. < 3.5. Distribu-
tions are shown for (left) 3 < pT < 4 GeV and (right) 7 < pT < 10 GeV. Fit results are overlaid, including the mixed event and correlated
combinatorial background templates. The lower panels show the background-subtracted mass distributions with the fit results overlaid.
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TABLE I. Relative systematic and statistical uncertainties in dση/d pT, Rη
pPb, dση′

/d pT, and Rη′

pPb, where the superscript denotes the
hadron species. The uncertainties are reported in percent, and the ranges correspond to the minimum and maximum values of the associated
uncertainties across all pT intervals, yc.m. regions, and datasets. All sources of systematic uncertainty are approximately fully correlated across
pT intervals.

Source (%) dση/d pT Rη
pPb dση′

/d pT Rη′

pPb

Fit model 0.7–22.9 0.5–12.3 6.0–33.8 2.5–26.4
Unfolding 0.1–2.9 0.1–2.5 0.1–0.3 0.1–0.4
Interpolation ... 0.5–7.5 ... 0.1–9.1
Material budget 8.0 ... 10.8 ...
Photon efficiency 2.5–4.5 1.9–4.7 5.8–10.5 10.1–11.5
Tracking efficiency ... ... 0.2–0.5 0.2–0.4
Luminosity 2.0–2.6 2.2–2.3 2.0–2.6 2.2–2.3
Total systematic 9.1–24.6 3.4–14.8 16.4–36.6 10.8–29.1
Statistical 1.6–13.1 2.7–10.6 4.8–26.1 6.8–16.4

candidates. Correlated combinatorial background makes a
much smaller relative contribution to the η′ mass spectra
than to that of the η meson and is modeled using the func-
tional form of Eq. (3) with x = M(π+π−η) with n = 1, m0 =
900 MeV, and m1 = 1000 MeV.

The signal yields are corrected for the effects of the de-
tector response using simulation. The correction factors ε are
determined using an iterative unfolding procedure. First, cor-
rection factors are calculated for each pT interval. Hagedorn
functions are then fit to the corrected pT spectra in data and
the true pT spectra in simulation [48]. The ratio of these
distributions is used to weight the true signal pT spectrum in
simulation so that the true pT spectrum of the simulated data
matches the pT spectrum of the corrected data. The procedure
is then repeated using the weighted simulated data sample.
For the η meson spectra, the procedure consistently converges
after three iterations. Since the momenta of the η′ candidates
are carried partially by charged particles, these candidates
are reconstructed with better momentum resolution than the
η candidates. Furthermore, the η′ measurement is performed
in pT intervals that are much larger than the pT resolution.
Consequently, only one iteration is used to determine the η′

correction factors.
The η and η′ reconstruction efficiencies are calibrated

using data. The ECAL cluster reconstruction efficiency is
measured using a tag-and-probe method with photons that
convert to an e+e− pair in the detector material upstream of
the LHCb magnetic-field region [49]. These converted pho-
tons are reconstructed as pairs of tracks. The tag electron
must be matched to a cluster in the ECAL and identified
as an electron, and the cluster efficiency is the fraction of
probe electrons matched to an ECAL cluster. The photon
identification efficiency is studied using π0 decays to two pho-
tons, where one photon is a converted photon. The π0 yields
are extracted using a maximum-likelihood fit to the diphoton
mass spectrum following Ref. [19]. The photon identification
efficiency is then the fraction of π0 mesons for which the
ECAL photon passes the photon identification criteria. The
charged-pion reconstruction and identification performance
is studied using a tag-and-probe method with K0

S decays to
π+π− pairs.

The η and η′ differential cross sections in pp collisions at
8.16 TeV are estimated by interpolating between the measured
pp cross sections at

√
s = 5.02 and 13 TeV. The interpolation

is performed independently in each pT interval. The cross
section is interpolated using the functional form σ (

√
s) =

a(
√

s)b. This procedure is found to give the correct yields
to within 1% in simulated pp collisions at

√
s = 8.16 TeV

generated using PYTHIA . A linear interpolation in
√

s is also
considered and provides less accurate results in simulation.

IV. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are summarized in Table I.
The largest source of systematic uncertainty for the η differ-
ential cross section in most pT regions is the detector material
budget. The material budget is proportional to the photon con-
version probability, and uncertainties in the material budget
lead to uncertainties in the photon reconstruction efficiency.
The photon conversion probability has been measured with
an uncertainty of 4%. This uncertainty is fully correlated
between photons, resulting in a constant 8% uncertainty on
the differential cross section that fully cancels in the RpPb
measurement.

At low pT, the η differential cross-section uncertainty is
dominated by contributions from the mass fit model. A sys-
tematic uncertainty associated with the choice of background
model is estimated by replacing the uncorrelated background
model with an exponential function and taking the differ-
ence with the default fit. An uncertainty associated with the
choice of signal model is estimated by extracting the yield
by integrating the background-subtracted mass spectra from
the default fit in the range 450 MeV < M(γ γ ) < 700 MeV.
The difference in signal yields between the default result and
the background-subtracted result is taken as the signal model
uncertainty. The total fit-model uncertainty varies from greater
than 20% at low pT to less than around 5% for pT greater than
about 2 GeV. Where the fit-model uncertainty is dominant,
the background model uncertainty is typically much larger
than the signal model uncertainty. The fit-model uncertainty
partially cancels in RpPb.
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FIG. 3. Measured η and η′ differential cross sections in the (left) backward and (right) forward regions. The pp cross sections are scaled
by the atomic mass of the lead ion, A = 208. The η′ cross sections are scaled down by a factor of 10 for visual clarity. Statistical uncertainties
are shown as error bars, while systematic uncertainties are shown as error boxes.

An additional systematic uncertainty arises in the RpPb
measurement due to the pp interpolation procedure. The
interpolation uncertainty is estimated by repeating the proce-
dure using a linear interpolation model, as well as a relative
placement method [50]. In the relative placement procedure,
placement factors are calculated using simulation assuming
a linear or a power-law dependence of the cross section on√

s and then applied to data. The maximum variation of the
interpolation result using these different methods is taken as

the interpolation uncertainty. The resulting uncertainty varies
between about 2% and 5%.

Smaller sources of uncertainty come from unfolding, the
luminosity estimates, and the efficiency correction factors.
The unfolding uncertainty arises from differences in the pT
resolution of the η candidates between data and simulation, as
well as differences between the underlying pT distributions.
The pT resolution differences are estimated by comparing
the η signal peak widths in data and simulation, and the

TABLE II. Measured dσ/d pT of η production in pp collisions at
√

s = 5.02 TeV. Results and uncertainties are given in mb/GeV. The
first uncertainty is statistical and the second is systematic. The statistical uncertainty is uncorrelated between pT intervals, while the systematic
uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 3.0 < yc.m. < 4.0

1.5–1.6 2.34 ± 0.11 ± 0.32 1.65 ± 0.09 ± 0.21
1.6–1.7 1.68 ± 0.08 ± 0.17 1.41 ± 0.07 ± 0.16
1.7–1.8 1.48 ± 0.06 ± 0.17 1.23 ± 0.05 ± 0.13
1.8–1.9 1.09 ± 0.05 ± 0.13 0.90 ± 0.04 ± 0.10
1.9–2.0 0.928 ± 0.038 ± 0.090 0.742 ± 0.031 ± 0.069
2.0–2.2 0.731 ± 0.021 ± 0.071 0.572 ± 0.017 ± 0.053
2.2–2.4 0.505 ± 0.015 ± 0.049 0.400 ± 0.012 ± 0.037
2.4–2.6 0.348 ± 0.011 ± 0.033 0.265 ± 0.008 ± 0.025
2.6–2.8 0.254 ± 0.008 ± 0.023 0.186 ± 0.006 ± 0.017
2.8–3.0 0.172 ± 0.007 ± 0.017 0.136 ± 0.005 ± 0.012
3.0–3.2 0.139 ± 0.005 ± 0.013 (9.87 ± 0.36 ± 0.89) × 10−2

3.2–3.4 (9.42 ± 0.39 ± 0.99) × 10−2 (7.38 ± 0.32 ± 0.69) × 10−2

3.4–3.6 (7.33 ± 0.29 ± 0.67) × 10−2 (6.00 ± 0.24 ± 0.54) × 10−2

3.6–3.8 (6.06 ± 0.25 ± 0.55) × 10−2 (4.47 ± 0.19 ± 0.41) × 10−2

3.8–4.0 (4.67 ± 0.24 ± 0.43) × 10−2 (3.53 ± 0.19 ± 0.32) × 10−2

4.0–4.5 (2.84 ± 0.11 ± 0.26) × 10−2 (2.06 ± 0.08 ± 0.19) × 10−2

4.5–5.0 (1.67 ± 0.08 ± 0.16) × 10−2 (1.23 ± 0.06 ± 0.12) × 10−2

5.0–5.5 (1.05 ± 0.06 ± 0.10) × 10−2 (7.80 ± 0.43 ± 0.74) × 10−3

5.5–6.0 (5.97 ± 0.61 ± 0.58) × 10−3 (3.84 ± 0.29 ± 0.61) × 10−3

6.0–8.0 (2.49 ± 0.13 ± 0.24) × 10−3 (1.75 ± 0.11 ± 0.17) × 10−3

8.0–10.0 (5.67 ± 0.67 ± 0.74) × 10−4 (3.72 ± 0.49 ± 0.42) × 10−4
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FIG. 4. Measured η and η′ nuclear modification factors in the
(top) backward and (bottom) forward regions. Error bars show the
statistical uncertainties, while the boxes show the systematic uncer-
tainties except for the uncertainty associated with the luminosity,
which is fully correlated between measurements. The luminosity
uncertainty is shown as a dark gray shaded box. The η and η′ results
are compared with the π 0 data from Ref. [19].

resolution is varied in the unfolding accordingly. The effect
of differences in the underlying pT distribution is estimated by
weighting the simulated data to vary the initial pT distribution.
The resulting systematic uncertainty is around 1% or less in

every pT interval. The efficiency correction uncertainty arises
from the finite size of the simulated data samples and results
in global uncertainties of about 1%–2%. The luminosity has
been measured in pp collisions with a precision of 2% and in
pPb collisions with a precision of 2.6% in the forward con-
figuration and 2.5% in the backward configuration [43]. The
luminosity uncertainty is 50% correlated between datasets.

The fit model is the dominant source of uncertainty in
the η′-related measurements in most pT intervals. The back-
ground model uncertainty is estimated by repeating the fit
using a polynomial function to model the background and
taking the difference with the default result. The signal
model uncertainty is estimated by integrating the background-
subtracted mass spectrum between 940 and 980 MeV and
taking the difference with the default fit result. The resulting
total uncertainty varies between 6% and about 34%. This un-
certainty partially cancels in RpPb, resulting in uncertainties of
about 3%–26%. The next largest source of uncertainty is the
material budget. The material budget uncertainty is the same
as for the η measurement, with an additional 1.4% uncertainty
per charged pion in the final state. The resulting total uncer-
tainty is 10.8% across the full pT range. This uncertainty fully
cancels in the RpPb measurement. The photon reconstruction
and identification correction uncertainty is about 6%–10%.
Uncertainties associated with the track reconstruction and par-
ticle identification efficiencies are determined by varying the
tracking efficiency calibration factors according to their uncer-
tainties. The resulting uncertainty is less than 1% in every pT
interval. Additional uncertainties come from the luminosity
determination, unfolding, and interpolation. These sources of
uncertainty are estimated using the same methods used for the
η measurements and are subdominant.

V. RESULTS

The measured η and η′ differential cross sections are shown
in Fig. 3. Results for the η meson are tabulated in Tables II–
IV (these and subsequent tables are in the Appendix), and

FIG. 5. Measured Rη′

pPb/Rη
pPb in the (left) backward and (right) forward regions. Error bars show the statistical uncertainties, while the

boxes show the systematic uncertainties. The systematic uncertainties are approximately fully correlated in pT. The results are compared with
predictions from EPOS4 with and without QGP-like effects. The shaded and hatched regions show the statistical 68% confidence-level regions
of the predictions.
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FIG. 6. Measured η differential cross sections in the (left) backward and (right) forward regions. Results are shown for pp collisions at
(top)

√
s = 5.02 and (middle) 13 TeV and (bottom) for pPb collisions at

√
sNN = 8.16 TeV. Results are compared with predictions from EPOS4

and PYTHIA8. The lower panels show the ratios of the predictions to the measured results. The statistical uncertainties are shown by error bars,
while systematic uncertainties are shown by boxes.

the results for the η′ meson are tabulated in Tables V–VII.
The differential cross sections are used to calculate nuclear
modification factors, which are shown in Fig. 4 and tab-
ulated in Tables VIII and IX. In the forward region, the
η, π0, and η′ results all agree where their fiducial regions

overlap. The observed suppression is consistent with the
effects of nuclear shadowing of the gluon density seen in
global nPDF analyses [51–53]. In the backward region, the
π0 and η measurements deviate at low pT and converge for
pT > 3 GeV. In this region, the π0, η, and η′ measurements

024907-7



R. AAIJ et al. PHYSICAL REVIEW C 109, 024907 (2024)

FIG. 7. Measured η′ differential cross sections in the (left) backward and (right) forward regions. Results are shown for pp collisions at
(top)

√
s = 5.02 and (middle) 13 TeV and (bottom) for pPb collisions at

√
sNN = 8.16 TeV. Results are compared with predictions from EPOS4

and PYTHIA8. The lower panels show the ratios of the predictions to the measured results. The statistical uncertainties are shown by error bars,
while systematic uncertainties are shown by boxes.

all agree. The results show no significant evidence for mass
dependence of the nuclear modification factor of light neutral
mesons.

The measured nuclear modification factor ratio Rη′

pPb/Rη
pPb,

where the superscript denotes the meson species of the nuclear

modification factor, is shown in Fig. 5. Since the Rη′

pPb and
Rη

pPb measurements are performed in different pT regions, the
denominator of the ratio of nuclear modification factors is
constructed by fitting Rη

pPb using a Gaussian process regres-
sion [54]. A systematic uncertainty is obtained by repeating
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FIG. 8. Measured η/π 0 cross-section ratios in the (left) backward and (right) forward regions. Results are shown for pp collisions at (top)√
s = 5.02 and (middle) 13 TeV, and (bottom) for pPb collisions at

√
sNN = 8.16 TeV. Results are compared with predictions from EPOS4 and

PYTHIA8. The statistical uncertainties are shown by error bars, while systematic uncertainties are shown by boxes. The systematic uncertainties
are approximately fully correlated between pT regions. The black dashed line and the gray shaded region show the central value of Cη/π0

and
its uncertainty, respectively, where Cη/π0

is calculated for pT > 3 GeV.

the fit while varying the Rη
pPb by its systematic uncertainties,

assuming they are fully correlated in pT. The resulting un-
certainties are small relative to the Rη′

pPb uncertainties. The
results are compared with predictions from EPOS4 with and

without QGP-like effects. The forward results show better
agreement with predictions without QGP-like effects, while
the backward results are in agreement with both sets of
predictions.
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The differential cross sections are compared with calcula-
tions from PYTHIA8 and EPOS4 in Figs. 6 and 7. The EPOS4
predictions include the effects of hydrodynamic evolution and
statistical hadronization for both pp and pPb collisions and
use a preliminary tune for pPb collisions. The pPb PYTHIA8
predictions are calculated by scaling pp predictions at

√
s =

8.16 TeV by A = 208. The PYTHIA8 predictions provide a
good description of the η results at

√
s = 5.02 TeV and at√

s = 13 TeV in the forward region, but overestimate the η
meson yields at

√
s = 13 TeV in the backward region. The

PYTHIA8 calculations do not use nPDFs or include other nu-
clear effects, resulting in disagreement with the pPb data.
The EPOS4 predictions consistently overestimate the η cross
section in pp collisions but offer a good description of the
backward pPb results at low pT and the forward pPb results
over the entire pT range. The η′ results generally agree with
both the EPOS4 and PYTHIA8 predictions, although the mea-
surement uncertainties are large.

The measured η differential cross sections are combined
with π0 differential cross sections from Ref. [19] to cal-
culate η/π0 cross section ratios. These ratios are presented
in Fig. 8 and tabulated in Tables X and XI. The η mea-
surement was performed using only photons reconstructed
as ECAL clusters, while the π0 measurements were per-
formed using combinations of ECAL photons and converted
photons. Furthermore, the two measurements use different
selection criteria for ECAL photons. As a result, the sys-
tematic uncertainties between the two measurements are
treated as uncorrelated except for the luminosity uncertainty,
which cancels in the cross-section ratio. The measured η/π0

ratios are compared with predictions from PYTHIA8 and
EPOS4. PYTHIA8 generally describes the data well, while
EPOS4 generally overestimates the η/π0 ratio, especially at
high pT.

The η/π0 ratio tends to plateau at pT above a few GeV,
and the ratio is often characterized by its plateau height Cη/π0

,
which is calculated here as the average η/π0 ratio for pT >
3 GeV. This plateau height is illustrated in Fig. 8 and tabulated
in Table XII. Previous studies of the η/π0 ratio find Cη/π0

values of 0.45–0.50, regardless of the species of the colliding
nuclei and the center-of-mass energy of the collision [55].
This robustness to changes in experimental conditions illus-
trates the universality of fragmentation functions in hadron
collisions. The values of Cη/π0

from this study are lower
than the universal average, with Cη/π0

decreasing as absolute
rapidity increases and as √

s(NN) decreases. The ratio of the
η meson fragmentation function to that of the π0 meson
differs with the fragmenting parton species, so the variation
seen in this measurement can be explained by changes in the
flavor of produced partons due to the kinematic dependence
of parton distribution functions [56]. Furthermore, the ratio
of fragmentation functions varies with z, the momentum frac-
tion of the parton carried by the fragmentation product. The
data presented here occupy an extreme kinematic regime and
provide access to previously unexplored combinations of z
and initial-state parton densities. As a result, these data will
provide new constraints in future global analyses of the η
meson fragmentation function.

VI. SUMMARY

This article reports the η and η′ meson differential cross
sections at forward and backward rapidity in pp collisions at√

s = 5.02 and 13 TeV, as well as in pPb collisions at
√

sNN =
8.16 TeV collected by the LHCb experiment. This is the first
study of η meson production at forward and backward rapidity
at the LHC and the first study of η′ meson production in
high-energy proton-ion collisions. The measured differential
cross sections are compared with predictions from PYTHIA8
and EPOS4. Neither event generator successfully describes the
measurements for every dataset and rapidity region. This dis-
agreement reflects a lack of previously available light-hadron
production data at LHC energies and forward rapidity.

The η meson differential cross sections are used to cal-
culate the η/π0 cross-section ratio. The measured η/π0

ratios show evidence of deviation from the universal be-
havior observed at central rapidity. This deviation indicates
that these data are sensitive to the η fragmentation functions
in a complementary kinematic regime to previous studies
of η production in hadron collisions. The η and η′ nuclear
modification factors are also reported. The measured nuclear
modification factors of the π0, η, and η′ mesons all agree at
both forward and backward rapidity for pT > 3 GeV. These
data provide limits on the mass dependence of nuclear effects
such as radial flow in pPb collisions. Consequently, these
data will aid in the interpretation of baryon and strangeness
enhancement studies in small-collision systems.
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APPENDIX

TABLE III. Measured dσ/d pT of η production in pp collisions at
√

s = 13 TeV. Results and uncertainties are given in mb/GeV. The first
uncertainty is statistical and the second is systematic. The statistical uncertainty is uncorrelated between pT intervals, while the systematic
uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 3.0 < yc.m. < 4.0

1.5–1.6 3.76 ± 0.19 ± 0.76 3.17 ± 0.19 ± 0.68
1.6–1.7 2.95 ± 0.14 ± 0.42 2.66 ± 0.15 ± 0.46
1.7–1.8 2.56 ± 0.12 ± 0.38 2.18 ± 0.12 ± 0.39
1.8–1.9 2.05 ± 0.09 ± 0.29 1.61 ± 0.09 ± 0.34
1.9–2.0 1.62 ± 0.07 ± 0.22 1.40 ± 0.07 ± 0.20
2.0–2.2 1.30 ± 0.04 ± 0.17 1.03 ± 0.04 ± 0.17
2.2–2.4 0.88 ± 0.03 ± 0.11 0.70 ± 0.03 ± 0.11
2.4–2.6 0.719 ± 0.021 ± 0.083 0.531 ± 0.019 ± 0.069
2.6–2.8 0.508 ± 0.016 ± 0.059 0.397 ± 0.015 ± 0.050
2.8–3.0 0.387 ± 0.012 ± 0.043 0.297 ± 0.012 ± 0.034
3.0–3.2 0.294 ± 0.009 ± 0.032 0.221 ± 0.008 ± 0.025
3.2–3.4 0.230 ± 0.008 ± 0.025 0.175 ± 0.007 ± 0.021
3.4–3.6 0.171 ± 0.006 ± 0.019 0.128 ± 0.006 ± 0.014
3.6–3.8 0.127 ± 0.005 ± 0.013 (9.55 ± 0.51 ± 0.93) × 10−2

3.8–4.0 0.103 ± 0.004 ± 0.010 (7.36 ± 0.38 ± 0.83) × 10−2

4.0–4.5 (7.04 ± 0.20 ± 0.75) × 10−2 (5.09 ± 0.18 ± 0.53) × 10−2

4.5–5.0 (4.32 ± 0.15 ± 0.43) × 10−2 (3.01 ± 0.14 ± 0.32) × 10−2

5.0–5.5 (2.60 ± 0.11 ± 0.27) × 10−2 (2.01 ± 0.11 ± 0.23) × 10−2

5.5–6.0 (1.63 ± 0.08 ± 0.18) × 10−2 (1.05 ± 0.07 ± 0.14) × 10−2

6.0–8.0 (6.86 ± 0.31 ± 0.74) × 10−3 (4.72 ± 0.26 ± 0.65) × 10−3

8.0–10.0 (2.01 ± 0.21 ± 0.29) × 10−3 (1.50 ± 0.17 ± 0.27) × 10−3

TABLE IV. Measured dσ/d pT of η production in pPb collisions at
√

sNN = 8.16 TeV. Results and uncertainties are given in mb/GeV. The
first uncertainty is statistical and the second is systematic. The statistical uncertainty is uncorrelated between pT intervals, while the systematic
uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 −4.0 < yc.m. < −3.0

1.5–1.6 342 ± 10 ± 61 387 ± 12 ± 85
1.6–1.7 274 ± 7 ± 44 320 ± 9 ± 59
1.7–1.8 237 ± 6 ± 38 271 ± 8 ± 45
1.8–1.9 193 ± 5 ± 31 237 ± 7 ± 32
1.9–2.0 171 ± 4 ± 24 201 ± 5 ± 28
2.0–2.2 130 ± 2 ± 18 162 ± 3 ± 20
2.2–2.4 97 ± 2 ± 11 113 ± 2 ± 13
2.4–2.6 72.4 ± 1.2 ± 7.8 87.8 ± 1.6 ± 9.1
2.6–2.8 54.1 ± 0.9 ± 5.5 63.0 ± 1.2 ± 6.4
2.8–3.0 40.4 ± 0.7 ± 4.1 44.5 ± 0.9 ± 4.3
3.0–3.2 30.7 ± 0.6 ± 3.1 34.9 ± 0.7 ± 3.5
3.2–3.4 23.5 ± 0.4 ± 2.4 26.5 ± 0.6 ± 2.7
3.4–3.6 18.2 ± 0.4 ± 1.8 18.9 ± 0.4 ± 1.9
3.6–3.8 14.2 ± 0.3 ± 1.5 15.2 ± 0.4 ± 1.6
3.8–4.0 11.2 ± 0.3 ± 1.2 11.9 ± 0.3 ± 1.2
4.0–4.5 7.39 ± 0.13 ± 0.77 7.77 ± 0.15 ± 0.77
4.5–5.0 4.39 ± 0.09 ± 0.45 4.31 ± 0.10 ± 0.41
5.0–5.5 2.74 ± 0.07 ± 0.27 2.61 ± 0.07 ± 0.26
5.5–6.0 1.66 ± 0.06 ± 0.17 1.61 ± 0.05 ± 0.16
6.0–8.0 0.722 ± 0.021 ± 0.077 0.655 ± 0.018 ± 0.060
8.0–10.0 0.237 ± 0.016 ± 0.039 0.159 ± 0.010 ± 0.028
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TABLE V. Measured dσ/d pT of η′ production in pp collisions at
√

s = 5.02 TeV. Results and uncertainties are given in mb/GeV. The
first uncertainty is statistical and the second is systematic. The statistical uncertainty is uncorrelated between pT bins, while the systematic
uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 3.0 < yc.m. < 4.0

3–4 (2.64 ± 0.50 ± 0.84) × 10−2 (2.04 ± 0.32 ± 0.74) × 10−2

4–5 (9.0 ± 1.3 ± 1.9) × 10−3 (6.7 ± 0.9 ± 2.2) × 10−3

5–7 (1.95 ± 0.10 ± 0.45) × 10−3 (1.67 ± 0.24 ± 0.51) × 10−3

7–10 (3.75 ± 0.96 ± 0.85) × 10−4 (2.89 ± 0.76 ± 0.74) × 10−4

TABLE VI. Measured dσ/d pT of η′ production in pp collisions at
√

s = 13 TeV. Results and uncertainties are given in mb/GeV. The
first uncertainty is statistical and the second is systematic. The statistical uncertainty is uncorrelated between pT bins, while the systematic
uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 3.0 < yc.m. < 4.0

3–4 (5.7 ± 0.9 ± 1.5) × 10−2 (4.0 ± 0.6 ± 1.1) × 10−2

4–5 (2.05 ± 0.23 ± 0.58) × 10−2 (1.51 ± 0.15 ± 0.53) × 10−2

5–7 (6.5 ± 0.5 ± 1.3) × 10−3 (4.33 ± 0.39 ± 0.92) × 10−3

7–10 (1.61 ± 0.16 ± 0.41) × 10−3 (9.1 ± 1.2 ± 2.1) × 10−4

TABLE VII. Measured dσ/d pT of η′ production in pPb collisions at
√

sNN = 8.16 TeV. Results and uncertainties are given in mb/GeV.
The first uncertainty is statistical and the second is systematic. The statistical uncertainty is uncorrelated between pT bins, while the systematic
uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 −4.0 < yc.m. < −3.0

3–4 5.8 ± 0.5 ± 2.1 6.0 ± 1.0 ± 1.6
4–5 1.82 ± 0.12 ± 0.56 2.14 ± 0.2 ± 0.49
5–7 0.61 ± 0.03 ± 0.15 0.68 ± 0.04 ± 0.17
7–10 0.128 ± 0.009 ± 0.027 0.111 ± 0.008 ± 0.018

TABLE VIII. Measured η nuclear modification factor RpPb as a function of pT. The first uncertainty is statistical and the second is
systematic. The statistical uncertainty is uncorrelated between pT bins, while the systematic uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 −4.0 < yc.m. < −3.0

1.5–1.6 0.552 ± 0.025 ± 0.033 0.807 ± 0.041 ± 0.067
1.6–1.7 0.589 ± 0.025 ± 0.047 0.790 ± 0.038 ± 0.052
1.7–1.8 0.580 ± 0.024 ± 0.045 0.791 ± 0.036 ± 0.046
1.8–1.9 0.617 ± 0.025 ± 0.044 0.939 ± 0.043 ± 0.054
1.9–2.0 0.667 ± 0.026 ± 0.047 0.943 ± 0.040 ± 0.058
2.0–2.2 0.639 ± 0.017 ± 0.044 1.005 ± 0.031 ± 0.049
2.2–2.4 0.695 ± 0.019 ± 0.043 1.015 ± 0.031 ± 0.048
2.4–2.6 0.691 ± 0.018 ± 0.040 1.117 ± 0.033 ± 0.042
2.6–2.8 0.718 ± 0.020 ± 0.042 1.106 ± 0.034 ± 0.043
2.8–3.0 0.746 ± 0.023 ± 0.042 1.056 ± 0.035 ± 0.039
3.0–3.2 0.725 ± 0.022 ± 0.041 1.125 ± 0.038 ± 0.040
3.2–3.4 0.761 ± 0.025 ± 0.044 1.110 ± 0.040 ± 0.048
3.4–3.6 0.778 ± 0.026 ± 0.044 1.028 ± 0.038 ± 0.048
3.6–3.8 0.771 ± 0.028 ± 0.051 1.112 ± 0.046 ± 0.059
3.8–4.0 0.772 ± 0.031 ± 0.056 1.111 ± 0.050 ± 0.051
4.0–4.5 0.787 ± 0.023 ± 0.049 1.143 ± 0.038 ± 0.047
4.5–5.0 0.777 ± 0.028 ± 0.050 1.066 ± 0.042 ± 0.036
5.0–5.5 0.791 ± 0.034 ± 0.050 0.994 ± 0.046 ± 0.047
5.5–6.0 0.799 ± 0.053 ± 0.064 1.210 ± 0.072 ± 0.095
6.0–8.0 0.830 ± 0.037 ± 0.057 1.084 ± 0.053 ± 0.064
8.0–10.0 1.05 ± 0.11 ± 0.12 1.01 ± 0.11 ± 0.15
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TABLE IX. Measured η′ nuclear modification factor RpPb as a function of pT. The first uncertainty is statistical and the second is systematic.
The statistical uncertainty is uncorrelated between pT bins, while the systematic uncertainty is approximately fully correlated.

pT (GeV) 2.5 < yc.m. < 3.5 −4.0 < yc.m. < −3.0

3.0–4.0 0.71 ± 0.10 ± 0.08 1.00 ± 0.19 ± 0.18
4.0–5.0 0.639 ± 0.073 ± 0.079 1.01 ± 0.13 ± 0.18
5.0–7.0 0.814 ± 0.055 ± 0.093 1.21 ± 0.12 ± 0.15
7.0–10.0 0.78 ± 0.12 ± 0.15 1.02 ± 0.17 ± 0.30

TABLE X. Measured η/π 0 cross-section ratio for 2.5 < yc.m. < 3.5. The first uncertainty is statistical and the second is systematic. The
statistical uncertainty is uncorrelated between pT bins, while the systematic uncertainty is approximately fully correlated.

pT (GeV) 5.02 TeV pp 13 TeV pp 8.16 TeV pPb

1.5–1.6 0.281 ± 0.014 ± 0.047 0.279 ± 0.015 ± 0.060 0.246 ± 0.008 ± 0.049
1.6–1.7 0.253 ± 0.013 ± 0.035 0.275 ± 0.014 ± 0.045 0.248 ± 0.007 ± 0.045
1.7–1.8 0.297 ± 0.013 ± 0.038 0.311 ± 0.015 ± 0.050 0.270 ± 0.008 ± 0.047
1.8–1.9 0.274 ± 0.013 ± 0.036 0.308 ± 0.014 ± 0.047 0.273 ± 0.008 ± 0.046
1.9–2.0 0.295 ± 0.013 ± 0.036 0.297 ± 0.014 ± 0.045 0.293 ± 0.008 ± 0.044
2.0–2.2 0.331 ± 0.011 ± 0.039 0.331 ± 0.011 ± 0.048 0.309 ± 0.006 ± 0.046
2.2–2.4 0.343 ± 0.011 ± 0.040 0.332 ± 0.011 ± 0.046 0.325 ± 0.007 ± 0.043
2.4–2.6 0.345 ± 0.012 ± 0.039 0.387 ± 0.012 ± 0.048 0.348 ± 0.007 ± 0.040
2.6–2.8 0.356 ± 0.013 ± 0.040 0.371 ± 0.013 ± 0.048 0.367 ± 0.008 ± 0.043
2.8–3.0 0.340 ± 0.015 ± 0.039 0.388 ± 0.014 ± 0.048 0.377 ± 0.009 ± 0.043
3.0–3.2 0.370 ± 0.015 ± 0.042 0.390 ± 0.014 ± 0.047 0.381 ± 0.010 ± 0.044
3.2–3.4 0.345 ± 0.017 ± 0.043 0.402 ± 0.016 ± 0.051 0.380 ± 0.010 ± 0.045
3.4–3.6 0.378 ± 0.018 ± 0.045 0.410 ± 0.017 ± 0.053 0.395 ± 0.012 ± 0.047
3.6–3.8 0.380 ± 0.020 ± 0.042 0.381 ± 0.018 ± 0.046 0.382 ± 0.013 ± 0.047
3.8–4.0 0.400 ± 0.025 ± 0.045 0.410 ± 0.020 ± 0.050 0.409 ± 0.015 ± 0.049
4.0–4.5 0.357 ± 0.016 ± 0.042 0.410 ± 0.015 ± 0.050 0.382 ± 0.011 ± 0.046
4.5–5.0 0.364 ± 0.021 ± 0.046 0.422 ± 0.018 ± 0.053 0.412 ± 0.014 ± 0.050
5.0–5.5 0.439 ± 0.034 ± 0.064 0.397 ± 0.022 ± 0.053 0.394 ± 0.017 ± 0.049
5.5–6.0 0.385 ± 0.045 ± 0.047 0.423 ± 0.028 ± 0.062 0.414 ± 0.022 ± 0.053
6.0–8.0 0.398 ± 0.027 ± 0.051 0.467 ± 0.026 ± 0.064 0.388 ± 0.018 ± 0.056
8.0–10.0 0.329 ± 0.047 ± 0.057 0.444 ± 0.054 ± 0.079 0.475 ± 0.047 ± 0.092

TABLE XI. Measured η/π 0 cross-section ratio for −4.0 < yc.m. < −3.0. The first uncertainty is statistical and the second is systematic.
The statistical uncertainty is uncorrelated between pT bins, while the systematic uncertainty is approximately fully correlated.

pT (GeV) 5.02 TeV pp 13 TeV pp 8.16 TeV pPb

1.5–1.6 0.219 ± 0.012 ± 0.032 0.272 ± 0.016 ± 0.061 0.197 ± 0.007 ± 0.047
1.6–1.7 0.238 ± 0.013 ± 0.033 0.286 ± 0.017 ± 0.053 0.209 ± 0.007 ± 0.042
1.7–1.8 0.277 ± 0.013 ± 0.034 0.312 ± 0.018 ± 0.059 0.224 ± 0.007 ± 0.040
1.8–1.9 0.260 ± 0.012 ± 0.033 0.284 ± 0.016 ± 0.062 0.248 ± 0.007 ± 0.037
1.9–2.0 0.266 ± 0.012 ± 0.029 0.300 ± 0.016 ± 0.047 0.256 ± 0.007 ± 0.039
2.0–2.2 0.299 ± 0.010 ± 0.033 0.315 ± 0.013 ± 0.055 0.276 ± 0.006 ± 0.038
2.2–2.4 0.317 ± 0.011 ± 0.035 0.308 ± 0.012 ± 0.051 0.286 ± 0.006 ± 0.036
2.4–2.6 0.306 ± 0.011 ± 0.034 0.342 ± 0.013 ± 0.048 0.314 ± 0.007 ± 0.037
2.6–2.8 0.316 ± 0.012 ± 0.034 0.364 ± 0.015 ± 0.049 0.323 ± 0.007 ± 0.038
2.8–3.0 0.325 ± 0.014 ± 0.035 0.371 ± 0.016 ± 0.047 0.320 ± 0.008 ± 0.036
3.0–3.2 0.325 ± 0.014 ± 0.035 0.373 ± 0.016 ± 0.047 0.336 ± 0.009 ± 0.038
3.2–3.4 0.336 ± 0.017 ± 0.038 0.387 ± 0.017 ± 0.053 0.345 ± 0.009 ± 0.041
3.4–3.6 0.372 ± 0.019 ± 0.043 0.391 ± 0.020 ± 0.048 0.337 ± 0.010 ± 0.040
3.6–3.8 0.348 ± 0.019 ± 0.040 0.363 ± 0.022 ± 0.042 0.357 ± 0.011 ± 0.046
3.8–4.0 0.382 ± 0.026 ± 0.043 0.373 ± 0.022 ± 0.048 0.359 ± 0.012 ± 0.043
4.0–4.5 0.329 ± 0.017 ± 0.035 0.387 ± 0.017 ± 0.048 0.364 ± 0.009 ± 0.042
4.5–5.0 0.373 ± 0.023 ± 0.044 0.402 ± 0.022 ± 0.050 0.352 ± 0.011 ± 0.044
5.0–5.5 0.377 ± 0.029 ± 0.047 0.409 ± 0.027 ± 0.056 0.357 ± 0.014 ± 0.050
5.5–6.0 0.322 ± 0.032 ± 0.056 0.365 ± 0.030 ± 0.054 0.335 ± 0.017 ± 0.048
6.0–8.0 0.350 ± 0.028 ± 0.047 0.400 ± 0.027 ± 0.063 0.346 ± 0.014 ± 0.047
8.0–10.0 0.248 ± 0.040 ± 0.045 0.437 ± 0.061 ± 0.093 0.281 ± 0.025 ± 0.065
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TABLE XII. Measured Cη/π0
for each dataset and rapidity region. The first uncertainty is statistical and the second is systematic. The

systematic uncertainties are approximately 90% positively correlated between datasets.

−4.0 < yc.m. < −3.0 2.5 < yc.m. < 3.5

5.02 TeV pp 0.344 ± 0.006 ± 0.040 0.371 ± 0.006 ± 0.045
13 TeV pp 0.385 ± 0.006 ± 0.050 0.407 ± 0.006 ± 0.052
8.16 TeV pPb 0.346 ± 0.004 ± 0.043 0.386 ± 0.004 ± 0.047
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