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Abstract. In this paper we consider which families of finite simple groups G have
the property that for each ϵ > 0 there exists N > 0 such that, if |G| ≥ N and S, T
are normal subsets of G with at least ϵ|G| elements each, then every non-trivial
element of G is the product of an element of S and an element of T .

We show that this holds in a strong and effective sense for finite simple groups
of Lie type of bounded rank, while it does not hold for alternating groups or groups
of the form PSLn(q) where q is fixed and n → ∞. However, in the case S = T and
G alternating this holds with an explicit bound on N in terms of ϵ.

Related problems and applications are also discussed. In particular we show
that, if w1, w2 are non-trivial words, G is a finite simple group of Lie type of
bounded rank, and for g ∈ G, Pw1(G),w2(G)(g) denotes the probability that g1g2 = g
where gi ∈ wi(G) are chosen uniformly and independently, then, as |G| → ∞, the
distribution Pw1(G),w2(G) tends to the uniform distribution on G with respect to
the L∞ norm.
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1. Introduction

In the past two decades there has been considerable interest in the products of
subsets of finite groups, especially (nonabelian) finite simple groups. The so-called
Gowers trick (see [Go] and [NP]), which is part of the theory of quasi-random groups,
shows that the product of three large subsets of a finite group G is the whole of
G (where large is defined in terms of |G| and the minimal degree of a non-trivial
irreducible representation of G). See Section 7 below for details and consequences.

The celebrated Product Theorem of [BGT] and [PS], which is part of the deep
theory of approximate subgroups originating in [He] and [Hr], shows that for finite
simple groups G of Lie type and bounded rank there exists ϵ > 0 (depending only
on the rank of G) such that for every subset A ⊆ G which generates G, either
|A3| ≥ |A|1+ϵ or A3 = G.
Note that both the Gowers trick and the Product Theorem deal with products of

three (or more) subsets. Much less is known about products of two subsets, which
is the main topic of this paper.

There has been substantial interest in products of two normal subsets. A long-
standing conjecture of Thompson asserts that every finite simple group G has a
conjugacy class C such that C2 = G. In spite of considerable efforts (see [EG] and
the references therein) and the proof of the related Ore Conjecture (see [LBST]),
Thompson’s Conjecture is still open for groups of Lie type over fields with q ≤ 8
elements. A weaker result, that all sufficiently large finite simple groups G have
conjugacy classes C1, C2 such that C1C2 ⊇ G ∖ {e} is obtained in [LST1]; this was
improved in [GM], where the same conclusion is proved for all finite simple groups.
See also [Sh1], where it is shown that, for finite simple groups G and random ele-
ments x, y ∈ G, the sizes of xGyG and of (xG)2 are (1−o(1))|G|. This may be viewed
as a probabilistic approximation to Thompson’s Conjecture.

For normal subsets S (not equal to ∅, {e}) of arbitrary finite simple groups G,
the minimal k > 0 such that Sk = G is determined in [LiSh2] up to an absolute
multiplicative constant. In [LSSh] it is shown that the product of two small normal
subsets of finite simple groups has size which is close to the product of their sizes.
However, this says nothing about products of two large normal subsets.

An interesting context in which the products of normal subsets of finite simple
groups play a role is the Waring problem for finite simple groups; see for instance
[Sh2, LS1, LS2, LBST, LST1, GT, GLBST, LST2], the references therein, and the
monograph [Se] on word width.

By a word we mean an element w of some free group Fd. A word w and a group
G give rise to a word map w : Gd → G induced by substitution; its image, denoted
by w(G), is a normal subset of G (hence a union of conjugacy classes). The main
result of [LST1] is that, for non-trivial words w1, w2 ∈ Fd, and all sufficiently large
finite simple groups G we have

(1.1) w1(G)w2(G) = G.
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There are various results showing that word maps w ̸= 1 on finite simple groups
G have large image, see [La, LS1, LS2, NP]. In particular, it is shown in [La] that
|w(G)| ≥ |G|1−ϵ for any ϵ > 0 provided |G| ≥ N(ϵ), and that for G of Lie type and
bounded rank, there exists ϵ > 0 (depending only on the rank of G) such that for all
words w ̸= 1 we have |w(G)| ≥ ϵ|G|. We would like to understand to what extent
(1.1) can be extended to products of arbitrary large normal subsets of finite simple
groups.

Let ϵ > 0 be a constant. Let G be a finite simple group and S and T normal
subsets of G such that |S|, |T | > ϵ|G|. We are particularly interested in the following
questions:

Question 1. Does every element in G∖ {e} lie in ST if |G| is sufficiently large?

Question 2. Does the ratio between the number of representations g = st with

(s, t) ∈ S × T for each g ∈ G∖ {e} and |S| |T |
|G| tend uniformly to 1 as |G| → ∞?

Question 3. What happens in the special case S = T?

We exclude the identity in Questions 1 and 2 because every conjugacy class C in

a non-trivial finite group G satisfies |C| = |G|
n

for some n ≥ 2, and therefore each

such group has a normal subset S with |G|
3

≤ |S| ≤ 2|G|
3
. Setting T = G ∖ S−1, we

have |T | ≥ |G|
3
, and e ̸∈ ST .

If G is non-trivial and we do not assume that S, T ⊆ G are normal subsets, then

we may choose S, T ⊆ G of size at least
⌊︁ |G|

2

⌋︁
such that ST ̸⊇ G ∖ {e}; indeed, fix

g ∈ G∖ {e}, choose S of the specified size, and let T = G∖ S−1g.
Our results about these questions are summarized below. An affirmative answer

to Question 2 implies an affirmative answer to Question 1 (and, of course, the same
holds in the special case S = T ).

Theorem A. (i) The answers to Questions 1 and 2 are negative if G is allowed
to range over all finite simple groups, or even just over the alternating groups,
or just over all projective special linear groups.

(ii) In the S = T case, the answer to Question 2 is still negative for alternating
groups.

(iii) In the S = T case, the answer to Question 1 is positive for alternating groups.
(iv) If G is a group of Lie type of bounded rank, then the answers to Questions 1

and 2 are both positive.

Our proof of part (iv) depends on a result which may be of independent interest,
concerning the number of points in a finite product set inside a product variety which
lie on a subvariety of the product variety. See Theorem 3.3 below.

We give an application of Theorem A to word maps. A more substantial appli-
cation, to the question of whether every element in a finite simple transitive per-
mutation group is a product of two derangements, is given in a companion paper
[LST3].

Our paper is organized as follows. Sections 2 and 3 are devoted to algebro-
geometric results that are needed in the proof of part (iv) of Theorem A, which
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is carried out in Section 4. In Section 5 we prove part (i) of Theorem A for spe-
cial linear groups. Section 6 is devoted to alternating groups and contains proofs
of parts (i), (ii) and (iii) of Theorem A. In Section 7 we discuss products of three
normal subsets. An application to word maps is presented in Section 8.

2. The Lang-Weil estimate

By a variety X over a field k, we mean a separated geometrically irreducible
scheme of finite type over k. By the Lang-Weil theorem, if k = Fq, then

(2.1)
⃓⃓
|X(Fqm)| − qmdimX

⃓⃓
≤ Bqm(dimX−1/2)

for some constant B depending on X but not on m. We will need a number of
variants of this statement; the reader who is willing to accept them can skip the
remainder of this section.

For any separated scheme of finite type, the left hand side can be computed using
the Lefschetz trace formula [SGA 41

2
, Rapport, Théorème 3.2]:

(2.2) |X(Fqm)| =
2 dimX∑︂
i=0

(−1)iTr(Frobqm|H i
c(X̄,Qℓ)).

Let d := dimX. We fix an embedding ι : Qℓ → C. A well-known theorem
of Deligne [De, Théorème 3.3.4] asserts that each eigenvalue of Frobq acting on
H i
c(X̄,Qℓ) has absolute value qw/2 for some non-negative integer w ≤ i. In particu-

lar, the only i for which H i(X̄,Qℓ) has an eigenvalue of absolute value ≥ qd is i = 2d.
If these eigenvalues are α1q

d, . . . , αkq
d (with repetitions allowed), then each αi has

absolute value 1, and (2.1) implies

lim
m→∞

(︁
αm1 + · · ·+ αmk

)︁
= 1,

which implies k = 1 and α1 = 1. (In fact, geometric irreducibility implies that
HdimX(X̄,Qℓ) is 1-dimensional and the trace map is an isomorphism.) Thus, in
(2.1), the qm dimX term cancels the contribution of i = 2dimX in (2.2), and B can
be taken to be the sum of the compactly supported Betti numbers of X̄. Note that
B depends only on X̄, so this estimate holds uniformly for all Galois twists of X.

If X ranges over the (geometrically irreducible) fibers of a morphism π : X → S
between schemes of finite type over Z, then B is bounded uniformly among all such
fibers. This is a consequence of the proper base change theorem [SGA 41

2
, Arcata, IV,

Théorème 5.4] (which identifies the ith étale cohomology group with compact sup-
port of a geometric fiber with the corresponding fiber of Riπ!Qℓ), Nagata’s compact-
ification theorem ([SGA 41

2
, Arcata, IV, (5.3)]), and the constructibility [SGA 41

2
,

Finitude, Théorème 1.1] of the sheaves Riπ′
∗j!Qℓ = Riπ!Qℓ for a compactification

X j →→

π ↘↘

X ′

π′
↙↙

S
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As a consequence, there exists B such that for all q, all points s ∈ S with finite
residue field k(s) = Fq, all varieties X of the form X = X ×S k(s), and all positive
integers m,

(2.3)
⃓⃓
|X(Fqm)| − qm dimX

⃓⃓
≤ Bqm(dimX−1/2).

Given any integer r, there are only finitely many root systems of rank r, and
for each root system Φ, there exists a Chevalley group scheme G over Z, that is, a
smooth group scheme over SpecZ, whose fiber over each field F is the connected,
simply connected, split semisimple algebraic group over F with root system Φ. Thus,
we can uniformly bound the sum of compactly supported Betti numbers for all
semisimple groups of rank r over all algebraically closed fields.

Suppose X is a variety over Fq and F : X → X is an endomorphism of varieties
over Fq such that F 2 = Frobq. Then for f ∈ N sufficiently large,

(2.4)
⃓⃓
|X(F̄q)F

2f+1| − q(f+1/2)dimX
⃓⃓
< Bq(f+1/2)(dimX−1/2).

This follows from Fujiwara’s extension of the Lefschetz trace formula [Va]. This
allows us to treat Suzuki and Ree groups on the same footing as the other finite
simple groups of Lie type.

If Z is a variety and W is a proper closed subvariety, then dimW ≤ dimZ − 1, so

|W (Fq)| ≤ BqdimZ−1,

where B is the sum of Betti numbers of W . As Z and W range over the fibers of a
morphism of finite type over Z, the constant B can be bounded uniformly as before.

If π : Z → S is a dominant morphism of Fq-varieties whose generic fiber is geo-
metrically irreducible, then there exists a proper closed subscheme W of Z such that
the restriction of π to the complement of W is geometrically irreducible [EGA IV3,
Corollaire 9.7.9]. If B denotes the maximum sum of Betti numbers of any fiber of
π|Z∖W , B′ denotes the sum of Betti numbers of W , and B′′ denotes the sum of Betti
numbers of S, then for all S ⊂ S(Fqm),⃓⃓

|π−1(S)| − |S|qm(dimZ−dimS)
⃓⃓
≤ B|S|qm(dimZ−dimS)−1/2 +B′qm(dimZ−1)

≤ (B +BB′′ +B′)qm(dimZ)−1/2.

3. Morphisms which respect products

If π : Z → S is a morphism of varieties over Fq, we denote by πm the function
Z(Fqm) → S(Fqm) that it determines. Let Sm ⊂ S(Fqm). We have seen that if π has
geometrically irreducible generic fiber, then

|π−1
m (Sm)| = qm(dimZ−dimS)|Sm|+O(qm((dimZ)−1/2)).

Applying Lang-Weil for S and Z, this estimate can be expressed equivalently as

(3.1)
|π−1
m (Sm)|

|Z(Fqm)|
=

|Sm|
|S(Fqm)|

+O(q−m/2).
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All we actually need from the estimate (3.1) is the weaker version

(3.2)
|π−1
m (Sm)|

|Z(Fqm)|
=

|Sm|
|S(Fqm)|

+ o(1),

or, equivalently,

(3.3)
|π−1
m (Sm)|
qm dimZ

=
|Sm|
qm dimS

+ o(1).

We remark that in principle we have effective bounds for all the relevant Betti num-
bers if π is an explicit morphism of quasi-projective varieties, so we could replace
o(1) here and in what follows by an explicit multiple of an explicit negative power
of qm.

Conversely, if (3.2) holds for all Sm, then π is generically geometrically irreducible
[LST2, Proposition 2.1].

Now, let X, Y , and Z denote varieties over Fq and π : Z → X × Y a morphism of
Fq-varieties. By Lang-Weil for X, Y , or Z, we mean the o(1) form of the error term
rather than the O(q−m/2) form.

Definition 3.1. We say π respects products if, as m → ∞, for all Xm ⊂ X(Fqm)
and Ym ⊂ Y (Fqm), we have

(3.4)
|π−1
m (Xm × Ym)|
qm dimZ

=
|Xm × Ym|
qm dimX×Y + o(1).

Alexis Chevalier pointed out to us that this definition and Theorem 3.3 below are
very much in the spirit of Tao’s algebraic regularity lemma [Ta].

It is clear that π respects products if it has geometrically irreducible generic fiber.
The converse is not true, but we have the following weaker statement. Let πX and
πY denote the compositions of π with the projection morphisms from X × Y to X
and Y respectively.

Lemma 3.2. If π respects products, then πX and πY are generically geometrically
irreducible.

Proof. By specializing to the case Xm = X(Fqm), (3.4) becomes (3.3), which implies
that πY is generically geometrically irreducible. By symmetry, the same is true for
πX as well. □

Note that just because πX and πY are generically geometrically irreducible, it is
not necessarily the case that π respects products. For example, if X = SpecFq[x],
Y = SpecFq[y], and

Z = SpecFq[x, y, z]/(z2 − xy),

π corresponds to the obvious homomorphism

Fq[x]⊗ Fq[y] → Fq[x, y, z]/(z2 − xy),

and Xm = Ym is the set of squares of elements of F×
qm , then the left hand side of

(3.4) approaches 1/2, while the right hand side is 1/4 + o(1).
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However, in many cases, the converse of Lemma 3.2 does hold. Suppose that πY
is flat with geometrically irreducible generic fiber. As flatness is preserved by base
change and the composition of flat morphisms is flat, Z×Y Z is flat over Y , and this
remains true after base change from Fq to F̄q. By [EGA IV2, 2.4.6], therefore, every
geometric component of Z ×Y Z dominates Y ×SpecFq Spec F̄q. However, the generic
fiber of Z ×Y Z is geometrically irreducible [EGA IV2, Corollaire 4.5.8], so there is
only one geometric component, and Z ×Y Z is therefore a variety.

Theorem 3.3. Assume Z is flat over Y . Let ψ : Z ×Y Z → X × X denote the
morphism of varieties given by ψ(z1, z2) = (πX(z1), πX(z2)). If ψ respects products
and πX and πY have geometrically irreducible generic fiber, then π respects products.

Proof. Let Xm ⊂ X(Fqm) and Ym ⊂ Y (Fqm) be subsets, Y c
m the complement of Ym

in Y (Fqm), and
Zm := π−1

X (Xm) = π−1
m (Xm × Y (Fqm)).

As πX has geometrically irreducible generic fiber,

(3.5)
|Zm|

qm dimZ
=

|Xm|
qm dimX

+ o(1).

Since Xm ⊂ X(Fqm),

(3.6)
|Zm|2

q2m dimZ
=

|Xm|2

q2m dimX
+ o(1).

Let

∆m := |π−1
m (Xm × Ym)| |Y c

m| − |π−1
m (Xm × Y c

m)| |Ym|
= |π−1

m (Xm × Ym)| |Y (Fqm)| − |π−1
m (Xm × Y (Fqm))| |Ym|

= |π−1
m (Xm × Ym)| |Y (Fqm)| − |Zm| |Ym|.

We aim to prove an o(1) bound for

|π−1
m (Xm × Ym)|
|Z(Fqm)|

− |Xm × Ym|
|(X × Y )(Fqm)|

=
|π−1
m (Xm × Ym)| |(X × Y )(Fqm)| − |Xm × Ym| |Z(Fqm)|

|(X × Y × Z)(Fqm)|

=
∆m|X(Fqm)|+ |Ym|(|X(Fqm)| |Zm| − |Xm| |Z(Fqm)|)

|(X × Y × Z)(Fqm)|

=
∆m

|(Y × Z)(Fqm)|
+

|Ym|
|Y (Fqm)|

(︂ |Zm|
Z(Fqm)|

− |Xm|
|X(Fqm)|

)︂
.

(3.7)

By (3.5) and Lang-Weil for Y and Z, this expression can be written

∆m

qm(dimY+dimZ)
+ o(1).
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It suffices, therefore, to prove that

(3.8) ∆m = o
(︁
qm(dimY+dimZ)

)︁
.

We have

ψ−1
m (Xm ×Xm) = {(z1, z2, y) ∈ Zm × Zm × Y (Fqm) | πY (z1) = πY (z2) = y},

so the cardinality of the left hand side is∑︂
y∈Y (Fqm )

|π−1
m (Xm × {y})|2

=
∑︂
y∈Ym

|π−1
m (Xm × {y})|2 +

∑︂
y∈Y c

m

|π−1
m (Xm × {y})|2

≥

(︂∑︁
y∈Ym |π−1

m (Xm × {y})|
)︂2

|Ym|
+

(︂∑︁
y∈Y c

m
|π−1
m (Xm × {y})|

)︂2

|Y c
m|

=
|π−1
m (Xm × Ym)|2

|Ym|
+

|π−1
m (Xm × Y c

m)|2

|Y c
m|

=
(|π−1

m (Xm × Ym)|+ |π−1
m (Xm × Y c

m)|)2 +
∆2

m

|Ym| |Y c
m|

|Ym|+ |Y c
m|

=
|Zm|2 + ∆2

m

|Ym| |Y c
m|

|Y (Fqm)|

=
q2m(dimZ−dimX)|Xm|2 + ∆2

m

|Ym| |Y c
m|

qm dimY
+ o(qm(2 dimZ−dimY )),

(3.9)

by Cauchy-Schwarz, (3.6), and Lang-Weil for Y . As ψ respects products,

(3.10)
|ψ−1
m (Xm ×Xm)|
qm(2 dimZ−dimY )

=
|Xm|2

q2m dimX
+ o(1).

Thus (3.9) implies

∆2
m

|Ym| |Y c
m|

= o(q2m dimZ),

which, by Lang-Weil for Y , gives (3.8). □

Note that the implicit bound of (3.7) can be expressed in terms of the implicit
bounds in the Lang-Weil estimates of X, Y , and Z and those in (3.5) and (3.10).
The uniformity (2.3) in Lang-Weil estimates for families over a scheme of finite type
over Z implies the following. Let

Z π →→

↘↘

X × Y

↙↙
S
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be a morphism of schemes of finite type over Z for which the corresponding morphism
πY : Z → Y is flat. For each point s with finite residue field k(s) = Fq, we consider
the specialization Z → X×Y of π. Assuming that for some family of such morphisms
we have a uniform o(1) error bound for (3.10), then we have a uniform o(1) error
bound in (3.4) for all members of the family of morphisms. As Betti numbers depend
only on cohomology after base change to F̄q, we also have a uniform o(1) error bound
in (3.4) for morphisms obtained from members of the family by Galois twisting.

The estimate (2.4) gives a uniform o(1) bound of type (3.4) in the setting of
Suzuki and Ree groups. Explicitly, let π : Z → X×Y be a morphism of Fq-varieties,
and let ψ : Z ×Y Z → X × X be defined as before. Suppose FX , FY and FZ are
endomorphisms of X, Y , and Z as Fq-varieties such that F 2

X , F
2
Y , and F 2

Z are the
q-Frobenius morphisms on X, Y , and Z respectively. Suppose further that the
diagram

Z →→

FZ

↓↓

X × Y

FX×FY

↓↓
Z →→ X × Y

commutes. For f a non-negative integer, let

πf : Z(F̄q)F
2f+1 → X(F̄q)F

2f+1 × Y (F̄q)F
2f+1

,

denote the obvious restriction of π, and likewise for

ψf : (Z ×Y Z)(F̄q)F
2f+1 → X(F̄q)F

2f+1 ×X(F̄q)F
2f+1

.

Let X and Y denote subsets of X(F̄q)F
2f+1

and Y (F̄q)F
2f+1

. Then

|ψ−1
f (X ×X)|

q(f+1/2) dimZ×Y Z
=

|X ×X|
q(f+1/2) dimX×X + o(1)

implies

(3.11)
|π−1
f (X × Y )|
q(f+1/2) dimZ

=
|X × Y |

q(f+1/2) dimX×Y + o(1).

In applying Theorem 3.3 and its variants, we are always in the situation that πY
is a projection map from a product variety to one of its factors. It is therefore flat
(since every morphism to the spectrum of a field is flat, and flatness respects base
change.)

4. Equidistribution for bounded rank groups of Lie type

In this section, we show that Questions 1 and 2 have an affirmative answer if one
restricts to finite simple groups of bounded rank. Throughout the section, G denotes
a simply connected simple algebraic group over Fq.
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Theorem 4.1. If c ∈ G(Fqm) is not central then for every integer n ≥ 2 dimG, the
morphism

ϕ : G2n → G

given by
ϕ(x1, y1, . . . , xn, yn) = x1cx

−1
1 y1c

−1y−1
1 · · ·xncx−1

n ync
−1y−1

n

has geometrically irreducible generic fiber.

Proof. It suffices to prove that, fixing n,

(4.1) |ϕ−1
m (g)| = (1 + o(1))qm(2n−1) dimG

for all g ∈ G(Fqm) as m → ∞. A well-known theorem of Frobenius asserts that if
C1, . . . , Ck are conjugacy classes in a finite group G and g ∈ G, then the number of
elements in the set

{(g1, . . . , gk) ∈ C1 × · · · × Ck | g1 · · · gk = g}
is

(4.2)
|C1| · · · |Ck|

|G|
∑︂
χ

χ(C1) · · ·χ(Ck)χ̄(g)
χ(1)k−1

,

where the sum is taken over irreducible characters χ of G. Thus, if C is a conjugacy
class in G(Fqm), the number of representations

|{(x1, y1, . . . , xn, yn) ∈ C2n | x1y−1
1 · · ·xny−1

n = g}|
is given by

|C|2n

|G(Fqm)|
∑︂
χ

|χ(C)|2nχ̄(g)
χ(1)2n−1

,

Therefore,

|ϕ−1
m (g)| = |G(Fqm)|2n−1

(︃
1 +

∑︂
χ ̸=1

|χ(C)|2nχ̄(g)
χ(1)2n−1

)︃
.

By a theorem of Gluck [Gl], for every non-central element x ∈ G(Fqm) and every
non-trivial irreducible character χ, we have

|χ(x)|
χ(1)

≤ aq−m/2,

where a is an absolute constant. As

|χ(1)χ̄(g)| ≤ χ(1)2 ≤ |G(Fqm)| = (1 + o(1))qm dimG,

we have
|χ(C)2nχ̄(g)|
χ(1)2n−1

≤ (1 + o(1))a2nqm dimG−mn.

The total number of irreducible characters is

o(|G(Fqm)|) = o(qm dimG),

so n ≥ 2 dimG implies (4.1). □
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Corollary 4.2. With notations as above, If θ(n) : G2n ×G→ G×G is defined by

θ(n)(x1, y1, . . . , xn, yn, g) = (ϕ(x1, y1, . . . , xn, yn)g, g),

then θ(n) has geometrically irreducible generic fiber.

Proof. We have
|(θ(n)m )−1(g1, g2)| = |ϕ−1

m (g1g
−1
2 )|.

By (4.1), the right hand side is always

(1 + o(1))qm(2n−1) dimG = (1 + o(1))qm(dimZ−dimX×Y ).

The corollary follows from (3.1). □

Theorem 4.3. Let X = Y = G and Z = G×G. Let π : Z → X × Y be defined by
π(x, g) = (xcx−1g, g). Then π respects products.

Proof. The isomorphism ω : Z ×G Z → G2 ×G defined by

ω((x1, g), (x2, g)) = (x1, x2, x2cx
−1
2 g)

makes the diagram

Z ×G Z
ω →→

ψ

↘↘

G2 ×G

θ(1)

↙↙
G×G

commute. By Theorem 3.3, if π does not respect products, then θ(1) does not respect
them either.

For n ≥ 1, we define

ξ(n) : (G2n ×G)×G (G2n ×G) → (G4n ×G)

by

ξ(n)((x1, y1, . . . , xn, yn, g), (xn+1, yn+1 . . . , x2n, y2n, g))

= (x1, y1, . . . , x2n, y2n, ϕ(xn+1, yn+1, . . . , y2n)g)

and
η(n) : (G2n ×G)×G (G2n ×G) → G×G

by

η(n)((x1, y1, . . . , xn, yn, g),(xn+1, yn+1 . . . , x2n, y2n, g))

= (ϕ(x1, y1, . . . , yn)g, ϕ(xn+1, yn+1, . . . , y2n)g),

the diagram

(G2n ×G)×G (G2n ×G)
ξ(n)

→→

η(n)

→→

G4n ×G

θ(2n)

↙↙
G×G
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commutes. Applying Theorem 3.3 in the case X = Y = G, Z := G2n × G, and
π = θ(n), so πX and πY are both given by composing θ(n) with projection to the
first coordinate, and therefore ψ is η(n), we deduce that if θ(n) does not respect
products, θ(2n) does not respect them either. Thus if θ(1) does not respect products,
by induction θ(2

i) does not respect them either.
By Corollary 4.2, for i sufficiently large, θ(2

i) is generically geometrically irreducible
and therefore does respect products. The theorem follows. □

Theorem 4.4. Given a simply connected simple algebraic group G over Fq and
ϵ > 0, there exists M such that if m > M , S and T are subsets of G(Fqm) with at
least ϵqm dimG elements, and C is a non-central conjugacy class of G(Fqm), then the
number of pairs (s, t) ∈ S × T with st−1 ∈ C satisfies

(4.3) 1− ϵ <
|{(s, t) ∈ S × T | st−1 ∈ C}| |G(Fqm)|

|S| |T | |C|
< 1 + ϵ.

Proof. If c ∈ C, the number of such pairs is |G(Fqm)|−1|C| times the number of
solutions of st−1 = xcx−1, s ∈ S, t ∈ T , x ∈ G(Fqm). Theorem 4.3 implies the
the number of such solutions is asymptotic to |S| |T | as m → ∞, which gives the
theorem. □

Note that T−1 is normal, and |T | = |T−1|, so the theorem gives equivalently

1− ϵ <
|{(s, t) ∈ S × T | st ∈ C}| |G(Fqm)|

|S| |T | |C|
< 1 + ϵ.

Note also that as the error o(1) in Theorem 3.3 is uniform over all finite simple
groups of bounded rank and all choices of c, the same is true for Theorem 4.4.

By the comments following the proof of Theorem 4.3, we have the following
“Suzuki-Ree” version of Theorem 4.4:

Theorem 4.5. Given a simply connected simple algebraic group G over Fq and an
endomorphism F of G such that F 2 = Frobq, for all ϵ > 0, there existsM such that if

f > M , S and T are subsets of G := G(F̄q)F
2f+1

with at least ϵq(f+1/2) dimG elements,
and C is a non-central conjugacy class of G, then the number of pairs (s, t) ∈ S × T
with st−1 ∈ C satisfies

(4.4) 1− ϵ <
|{(s, t) ∈ S × T | st−1 ∈ C}| |G|

|S| |T | |C|
< 1 + ϵ.

Theorem 4.6. Let r and ϵ > 0 be fixed. If G is the universal central extension of
a finite simple group of Lie type of rank r and S and T are normal subsets with at
least ϵ|G| elements each, the number of representations of any non-central element c
as st, s ∈ S and t ∈ T , is

(1 + o(1))
|S| |T |
|G|

.

Proof. With finitely many exceptions, the universal central extension G of a finite
simple group of Lie type is either of the form G(Fqm), where G is a simply connected
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simple algebraic group over Fq, or is a Ree or Suzuki group. In the former case, the
theorem is just Theorem 4.4; in the latter case, it is Theorem 4.5. □

Theorem 4.7. Questions 1 and 2 have an affirmative answer for finite simple groups
G of Lie type of bounded rank.

Proof. Let G̃ denote the universal central extension of G, so we may assume either
G̃ = G(Fq) for some simply connected simple algebraic group of bounded rank, or

G̃ = G(F̄q)F
2f+1

. Let π : G̃ → G be the quotient map by the center of G̃. Let z

denote the order of ker π. If S and T are normal subsets of G, S̃ = π−1(S) and
T̃ = π−1(T ) are normal subsets of G̃ of cardinality z|S| and z|T | respectively. For
any c ∈ G, the total number of representations of c as st, s ∈ S and t ∈ T is z−2

times the sum over the elements c̃ ∈ π−1(c) of the number of representations of c̃ as s̃t̃
with s̃ ∈ S̃, t̃ ∈ T̃ . For each of these z elements, the number of such representations
is

(1 + o(1))
|S̃| |T̃ |
|G̃|

= (1 + o(1))z
|S| |T |
|G|

,

which gives the theorem. □

In principle, these o(1) bounds are effective.

5. Behavior of PSLn(q) for fixed q

In this section we prove that for q fixed and n → ∞, the answer to Question 1
(and therefore also Question 2) is negative for the set of groups {PSLn(q) | n ≥ 2}.

For 0 ≤ m ≤ n, let SLn(Fq)[≥m] denote the set of elements g ∈ SLn(Fq) such

that the dimension of the subspace (Fnq )⟨g⟩ of g-fixed points is at least m, and let
SLn(Fq)[m] denote the set of elements g for which the dimension of the g-fixed-point
subspace is exactly m. Let Gk,m denote the Grassmannian of m-dimensional Fq-
subspaces of a k-dimensional Fq-vector space W . Its cardinality is the number of
ordered linearly independent m-tuples in W divided by the number of ordered bases
for a given m-dimensional subspace V , i.e.,

(5.1)
(qk − 1)(qk − q) · · · (qk − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)
<

qm(k−m)

(1− q−1) · · · (1− q−n)
< 4qm(k−m)

since
∞∏︂
i=1

1

1− q−i
≤

∞∏︂
i=1

1

1− 2−i
< 4.

On the other hand, there is an obvious lower bound, |Gk,m| ≥ qm(k−m).

Lemma 5.1. For 1 ≤ m ≤ n− 1, the cardinality of SLn(Fq)[≥m] is less than

16q−m
2|SLn(Fq)|.
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Proof. As SLn(Fq) acts transitively on linearly independentm-tuples in Fnq , the index
of the stabilizer of an ordered linearly independent m-tuple is

(qn − 1)(qn − q) · · · (qn − qm−1) >
qnm

4
,

so the number of elements of SLn(Fq) in the pointwise stabilizer Stab(V ) of a given
m-dimensional subspace V satisfies

(5.2)
|SLn(Fq)|
qmn

≤ |Stab(V )| < 4|SLn(Fq)|
qmn

.

The lemma follows by combining the upper bound with (5.1). □

Note that this lemma does not cover the casem = n, but the bound 16q1−m
2|SLn(Fq)|

works also for m = n since it is greater than 4 > 1 in this case.

Lemma 5.2. The number of elements in SLn(Fq)[m] is at least

(5.3) (1− 128q−m)q−m
2|SLn(Fq))|.

Proof. Let Stab(V ) denotes the pointwise stabilizer in SLn(Fq) of V ∈ Gn,m. Then,∑︂
V ∈Gn,m

|Stab(V )| =
n∑︂

k=m

|SLn(Fq)[k]| |Gk,m|

= |SLn(Fq)[m]|+
n∑︂

k=m+1

|SLn(Fq)[k]| |Gk,m|

≤ |SLn(Fq)[m]|+ 4
n∑︂

k=m+1

|SLn(Fq)[k]|qm(k−m)

≤ |SLn(Fq)[m]|+ 64|SLn(Fq)|
n∑︂

k=m+1

q1−k
2

qm(k−m)

= |SLn(Fq)[m]|+ 64q1−m
2 |SLn(Fq)|

n∑︂
k=m+1

qk(m−k)

≤ |SLn(Fq)[m]|+ 128q−m
2

q−m|SLn(Fq)|.

By the lower bound in (5.2) and the trivial lower bound for the cardinality of a
Grassmannian,

q−m
2|SLn(Fq)| ≤

∑︂
V ∈Gn,m

|Stab(V )|.

Combining these inequalities, we get (5.3). □

We can now answer Question 1 for fixed q.
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Theorem 5.3. If q is fixed, there exist normal subsets Sn, Tn ⊂ SLn(Fq) such that
SnTn does not contain any transvection, and

(5.4) lim inf
n

|Sn|
|SLn(Fq)|

, lim inf
n

|Tn|
|SLn(Fq)|

> 0.

Proof. For small n, we can take Sn = Tn = {e}, so without loss of generality, we may
assume n ≥ 10. Let Sn = SLn(Fq)[8] and Tn = SLn(Fq)[10]. By (5.3),

lim inf
n

|Sn|
|SLn(Fq)|

, lim inf
n

|Tn|
|SLn(Fq)|

> 0.

Let σ ∈ Sn and τ ∈ Tn. If ρ := στ were a transvection, then it would fix a
codimension 1 subspace V ′ ⊂ Fnq pointwise, while τ fixes a 10-dimensional subspace
V ⊂ Fnq pointwise. This implies that σ fixes V ∩ V ′, which is of dimension ≥ 9
pointwise, contrary to the definition of Sn. □

Corollary 5.4. For each fixed prime power q, Question 1 has a negative answer for
the set of groups {PSLn(q) | n ≥ 2, gcd(n, q − 1) = 1}.

Proof. For n relatively prime to q− 1, we have an isomorphism SLn(Fq) → PSLn(q),
so the corollary follows. □

6. Alternating groups

For alternating groups, we can prove an even stronger negative result.

Theorem 6.1. If 0 ≤ s, t ≤ 1 then there exists an infinite sequence of pairs of
normal subsets Sn, Tn ⊂ An, n ≥ 3, such that

(6.1) lim
n→∞

|Sn|
|An|

= s, lim
n→∞

|Tn|
|An|

= t,

and SnTn contains no 3-cycle if and only if s+ t ≤ 1. In particular, Question 1 has
a negative answer for alternating groups.

We begin with two lemmas. For σ ∈ Sn, let cyc(σ) denote the total number of
cycles of σ, i.e., the number of orbits of ⟨σ⟩ on {1, 2, . . . , n}.

Lemma 6.2. If σ, τ ∈ An and στ is a 3-cycle, then

(6.2) cyc(τ)− cyc(σ) ∈ {−2, 0, 2}.

Proof. For all elements σ ∈ An, n− cyc(σ) is even. Thus, it suffices to prove that

|cyc(τ)− cyc(σ)| ≤ 3.

Every cycle of σ which is disjoint from the support of στ is also a cycle of τ . There
are at most three cycles of σ which meet the support of στ , so

cyc(τ) ≥ cyc(σ)− 3.
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By the same argument,

cyc(σ) = cyc(σ−1) ≥ cyc(τ−1)− 3 = cyc(τ)− 3.

□

Lemma 6.3. Let m be a fixed positive integer. For any integer a, the number of
elements σ ∈ Sn such that cyc(σ) ≡ a (mod m) is (m−1 + o(1))n!.

Proof. Let Pn,m,a denote the number of such elements, and let ω ∈ C satisfy ωm = 1.
Then,

Qn,m,ω :=
m−1∑︂
a=0

ωaPn,m,a =
n∑︂
k=0

ωks(n, k),

where s(n, k) is the Stirling number of the first kind, which by [St, Proposition 1.3.7]
is the xk coefficient of x(x+ 1) · · · (x+ n− 1). Thus,

Qn,m,ω = ω(ω + 1) · · · (ω + n− 1) =
Γ(ω + n)

Γ(ω)
,

where Γ(·) is the gamma-function. Stirling’s approximation [WW, 12.33] gives

log Γ(z) = (z − 1

2
) log z − z +

log 2π

2
+O(|z|−1)

for arg(z) ∈ [ϵ − π/2, π/2 − ϵ] for each fixed ϵ > 0. In particular, taking ϵ < π/3,
this estimate holds for ω + n for all ω on the unit circle and all n ≥ 2. As

log(ω + n) = log n+O(n−1),

log Γ(ω + n) = (n+ ℜ(ω)− 1

2
) log n− log n+O(1),

so

|Γ(ω + n)| = O(nℜ(ω)−1Γ(n+ 1)).

Together with the functional equation Γ(z + 1) = zΓ(z), Stirling’s approximation
implies that Γ has no zeroes, so

Qn,m,ω = O(Γ(ω + n)) = O(nℜ(ω)−1Γ(n+ 1)).

In particular, for ω ̸= 1, we have

Qn,m,ω = o(Qn,m,1),

so

(6.3) Pn,m,a =
1

m

∑︂
{ω|ωm=1}

ω−aQn,m,ω = (m−1 + o(1))Qn,m,1 = (m−1 + o(1))n!.

□

We can now prove Theorem 6.1.
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Proof. A permutation σ ∈ Sn is even if and only if cyc(σ) ≡ n (mod 2). Therefore,
if m is odd,

|{σ ∈ An | cyc(σ) ≡ a (mod m)}| = (m−1 + o(1))|An|.

If s + t ≤ 1, by (6.3), we can choose for each n, an odd integer mn in such a way
that mn → ∞ as n→ ∞ and

(6.4) sup
a

|mnPn,mn,a − n!|
n!

→ 0.

Now we can choose kn < ln ≤ mn such that kn/mn → s and (ln − kn)/mn → t,
and let Sn ⊂ An consist of all even permutations σ with cyc(σ) congruent to any
element of {2, 4, . . . , 2kn − 2} (mod mn), and Tn consist of all even permutations τ
with cyc(τ) congruent to any element of {2kn + 2, 2kn + 4, . . . , 2ln − 2} (mod mn).
Then by (6.2), SnTn does not contain any 3-cycle. By construction, (6.4) implies
(6.1).

If s+ t > 1 then |Sn|+ |Tn| > n!
2
for all n≫ 0, so SnTn = An follows immediately.

□

In the case S = T , Question 1 has a positive answer for alternating groups.

Theorem 6.4. If 0 < ϵ < 1, n > e1000/ϵ, and S is a normal subset of An containing
at least ϵ|An| elements, then S2 = An.

To prove this we need two preliminary lemmas. The first is an explicit special case
of a theorem of Müller and Schlage-Puchta [MSP1, Corollary 2], which is concerned
with the Witten zeta-function of finite groups, studied in [LiSh1, LiSh2, LiSh3].
Recall that for a finite group G, the zeta-function ζG : R → R is defined as

(6.5) ζG(s) =
∑︂

χ∈Irr(G)

χ(1)−s.

Lemma 6.5. If n > e1000/ϵ, then

(6.6) ζSn(0.01)− 2 <
ϵ

4
.

Proof. We follow the argument in [LiSh1]. Let λ ⊢ n be a partition and χλ the
corresponding character of Sn. If λ

′ denotes the transpose, then χλ and χλ′ have the
same degree, so writing Λn for the set of λ ⊢ n such that λ′1 ≤ λ1 < n, it suffices to
prove ∑︂

λ∈Λn

χλ(1)
−1/100 <

ϵ

8
.
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By [LiSh1, Proposition 2.5], if λ′1 ≤ λ1 < (1− 1
8e
)n, then χλ(1) ≥ 2n/8e−1 > 2n/16e as

n > 16e. By the same proposition, if λ1 > 2n/3, then χλ(1) ≥
(︂

2n
3

)︂n−λ1
. Thus,∑︂

λ∈Λn

χλ(1)
−1/100 =

∑︂
{λ∈Λn|λ1≤2n/3}

χλ(1)
−1/100 +

∑︂
{λ∈Λn|λ1>2n/3}

χλ(1)
−1/100

< p(n)2−n/1600e +
∑︂

1≤l<n/3

p(l)
(︂2n
3

)︂−l/100
,

(6.7)

where p(·) denotes the partition function.

By a well known bound [Ap, Theorem 14.5], p(x) ≤ eπ
√

2/3
√
x < 16

√
x ≤ 16x. As

2n

3
> 10899(e1/ϵ)100 > 10300ϵ−100,

we have 16l(2n/3)−l/100 < (ϵ/50)l, so the second summand on the right hand side of
(6.7) is less than ϵ/10. On the other hand, n > (4 · 3200e)2, so 4

√
n < n/3200e, and

the first summand on the right hand side of (6.7) is less than

2−n/3200e = e−n log 2/3200e < e−e
900/ϵ

< e−900/ϵ <
ϵ

900
,

proving (6.6). □

Next we need an explicit version of a result of Erdős-Turán.

Lemma 6.6. If n > e1000/ϵ, then the number of elements σ ∈ Sn with more than
2 log n cycles is less than n−0.3|Sn|.

Proof. Setting x = 2 in x(x+ 1) · · · (x+ n− 1), we obtain

22 logn
∑︂

k≥2 logn

s(n, k) <
∑︂
k≥0

2ks(n, k) = (n+ 1)!.

Thus, ∑︂
k≥2 logn

s(n, k) <
n+ 1

n2 log 2
n! =

1 + n−1

n2 log 2−1
n!.

As n > e1000 and 2 log 2 > 1.38, the lemma holds. □

We can now prove Theorem 6.4.

Proof. The number of elements σ ∈ An such that σAn ̸= σSn is less than

2|An|
log n/e

<
2|An|

1000/ϵ− 1
<

ϵ

400
|An|,

so, in particular, this is true for the number of elements σ ∈ S for which σAn ̸= σSn .
For any irreducible character χ, the number of elements σ ∈ Sn such that

|χ(σ)| > χ(1).01
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is less than |Sn|χ(1)−.02. By (6.6), the number of elements σ ∈ Sn for which this
holds for any irreducible character χ of degree > 1 is less than

|Sn|
∑︂
χ(1)>1

χ(1)−.02 < |Sn|
∑︂
χ(1)>1

χ(1)−.01 <
ϵ|An|
2

,

so the same holds for the number of elements σ ∈ S satisfying |χ(σ)| > χ(1).01 for
some irreducible character of degree > 1.

By Lemma 6.6, the number of elements of An consisting of more than 2 log n cycles
is less than

e−300/ϵ|Sn| <
ϵ

300
|Sn| =

ϵ

150
|An|.

Therefore, there exists σ ∈ S with less than 2 log n cycles, such that

(6.8) |χ(σ)| ≤ χ(1).01

for all irreducible characters of Sn, and such that σAn = σSn . We claim that every
element of An is the product of two elements of σAn or, equivalently, that every even
element of Sn is a product of two elements of σSn .

Let τ be any even permutation. Suppose that τ has less than 14 log n < n1/13

fixed points. By a theorem of Müller and Schlage-Puchta [MSP2, Theorem B],

(6.9) |χ(τ)| ≤ χ(1)31/32 ≤ χ(1).97.

for every irreducible character χ of Sn, since n > e14.
Applying the Frobenius formula (4.2) with C1 = C2 = σSn and g = τ , to conclude

that τ ∈ σSnσSn , it suffices to know that∑︂
χ∈Irr(Sn), χ(1)>1

|χ(σ)|2|χ(τ)|
χ(1)

< 2.

By (6.8) and (6.9), it suffices to show∑︂
χ∈Irr(Sn), χ(1)>1

χ(1)−0.01 < 2,

and that follows immediately from (6.6).
Finally, we consider the case that τ has at least 14 log n fixed points. Then it has

at least 7 times as many fixed points as σ has cycles, and the fact that τ is a product
of two conjugates of σ follows from [LS1, Proposition 6.1]. □

On the other hand, we have the following theorem.

Theorem 6.7. Even in the case S = T , Question 2 has a negative answer for
alternating groups.

Proof. We prove that if, for each n, Sn = Tn denotes the set of derangements in An,
then |Sn| = |Tn| ∼ n!

2e
and the number of representations of any 3-cycle as st, s ∈ Sn

and t ∈ Tn, is also asymptotic to n!
2e
.

The first claim is an analogue of a well-known fact about derangements in Sn, and
the argument is the same. As An acts (n− 2)-transitively on Xn = {1, 2, . . . , n}, for
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each subset Σ of Xn with ≤ n− 2 elements, the number of elements in An which fix
Σ pointwise is

n!

2(n− |Σ|)!
.

Therefore, ∑︂
|Σ|=r≤n−2

|StabAnΣ| =
n!

2r!
.

By the Bonferroni inequalities, the number of derangements in An lies between any
two consecutive values of the sequence

n−3∑︂
r=0

(−1)rn!

2 r!
,

where r = 1, 2, . . . , n− 2, implying the first claim.
For the second claim, it suffices to prove that in the limit n→ ∞, the probability

approaches 1 that the product of a given 3-cycle in An and a uniformly distributed
random element should again be a derangement approaches 1. Without loss of
generality, we take our fixed 3-cycle to be σ = (123) and let τ denote a random
derangement in An. Then τσ can fix only 1, 2, or 3. It fixes 1 if and only if τ(2) = 1,
and likewise for 2 and 3. By symmetry, the probability that τ(2) = 1 is the same as

the probability that τ(2) takes any other value in Xn ∖ {2}, i.e., 1

n− 1
. Thus, the

probability that τσ is a derangement is at least 1− 3

n− 1
. □

7. Products of three normal subsets

While Questions 1 and 2 have negative answers for general finite simple groups, the
analogous questions for products of three normal subsets of arbitrary finite simple
groups G have a positive answer. This follows easily and effectively from existing
results, even without assuming the normality of the subsets.

By the so-called Gowers trick (see Gowers [Go] and Nikolov-Pyber [NP]), if G
is a finite group, m(G) is the minimal degree of a non-trivial character of G, and
A,B,C ⊆ G satisfy

|A| |B| |C| ≥ |G|3

m(G)
,

then ABC = G. Thus Question 1 for three arbitrary subsets has a positive answer,
with ϵ = m(G)−1/3; this holds also for general quasi-random families of non-simple
groups, that is, provided m(G) → ∞ as |G| → ∞.

Question 2 for t ≥ 3 subsets is solved in[BNP, 2.8], which we quote below.



PRODUCTS OF NORMAL SUBSETS 21

Theorem 7.1. Let G be a finite group, t ≥ 3 an integer, and α > 0. Let C1, . . . , Ct
be subsets of G which satisfy

t∏︂
i=1

|Ci| ≥ α
|G|t

m(G)t−2
.

For g ∈ G let Ng denote the number of solutions to the equation x1 · · ·xt = g with
xi ∈ Ci (i = 1, . . . , t). Set

E =

∏︁t
i=1 |Ci|
|G|

.

Then, for every g ∈ G we have

|Ng − E| ≤ α−1/2E.

For a group G and subsets C1, . . . , Ct of G, denote by PC1,...,Ct the probability
distribution onG such that, for g ∈ G, PC1,...,Ct(g) is the probability that x1 · · · xt = g
where xi ∈ Ci (i = 1, . . . , t) are randomly chosen, uniformly and independently.

We also denote by UG the uniform distribution on G.
Theorem 7.1 for t = 3 yields the following.

Corollary 7.2. For finite groups G, and subsets A,B,C ⊆ G satisfying

m(G)|A| |B| |C|/|G|3 → ∞

as |G| → ∞, we have

∥PA,B,C −UG∥L∞ → 0 as |G| → ∞.

In particular we have ABC = G for |G| ≫ 0.
These two conclusions hold when G is a finite simple group and A,B,C ⊆ G are

subsets of sizes ≥ ϵ|G| > 0 for any fixed ϵ > 0.

For finite simple classical groups G and normal subsets R, S, T ⊆ G we can obtain
RST = G under asymptotically weaker assumptions. The proof uses character
methods.

Suppose Ci above are conjugacy classes of G. Then (4.2) implies that

PC1,C2,C3(g) = |G|−1
∑︂

χ∈Irr(G)

χ(C1)χ(C2)χ(C3)χ(g
−1)

χ(1)2
,

where χ(Ci) is the common value of χ on elements of Ci.
Since |χ(g−1)|/χ(1) ≤ 1, this yields

(7.1) |PC1,C2,C3(g)− |G|−1| ≤
∑︂

1̸=χ∈Irr(G)

|χ(C1)| |χ(C2)| |χ(C3)|
χ(1)

.

Denote by Cln(q) the set of finite simple classical groups over Fq with an n-dimensional
natural module. We need the following slight extension of [GLT, 7.5] and its proof.
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Proposition 7.3. There exists an absolute constant 0 < γ < 1 such that the fol-
lowing holds. Suppose n ≥ 9, G ∈ Cln(q), and for i = 1, 2, 3 let gi ∈ G satisfy
|CG(gi)| ≤ |G|γ. Set Ci = gGi (i = 1, 2, 3). Then we have

(i) lim|G|→∞ ∥PC1,C2,C3 −UG∥∞ = 0.
(ii) There exists an absolute constant N such that, if |G| ≥ N , then C1C2C3 = G.

Proof. By Theorem 1.3 of [GLT] we may choose 0 < γ < 1 such that, if g ∈ G
satisfies |CG(g)| ≤ |G|γ, then |χ(g)| ≤ χ(1)1/4 for all χ ∈ Irr(G).

Let gi, Ci be as in the statement of the proposition. Then |χ(gi)| ≤ χ(1)1/4, and
therefore inequality (7.1) above shows that

|PC1,C2,C3(g)− |G|−1| ≤ |G|−1
∑︂

1̸=χ∈Irr(G)

χ(1)−1/4 = |G|−1(ζG(1/4)− 1);

recall (6.5) for the definition of ζG. By [LiSh3, 1.1] and our assumptions on G, it
follows that ζG(1/4)− 1 → 0 as |G| → ∞. This completes the proof of part (i).

Part (ii) follows from part (i) and the effective nature of the proof of [LiSh3,
1.1]. □

We note that the results [Sh2, 2.4, 2.5] provide a weaker version of Proposition
7.3. More specifically, these results show that the conclusions of Proposition 7.3 hold
if we assume

|CG(gi)| ≤ q(4/3−δ)r, i = 1, 2, 3

for any fixed δ > 0 and N = N(δ).
Proposition 7.3 easily implies the following.

Theorem 7.4. There exist an absolute constant δ > 0 and an integer N such that
the following holds. Suppose n ≥ N , G ∈ Cln(q), and R, S, T ⊆ G are normal subsets
satisfying |R|, |S|, |T | ≥ |G|1−δ. Then RST = G.

Proof. Let γ be as in Proposition 7.3, and define, say, δ = γ/2.
Suppose G above has rank r. Then, by [FG], we have k(G) ≤ cqr, for a small abso-

lute constant c > 0. Clearly, R, S, T contain conjugacy classes C1, C2, C3 respectively
satisfying

|Ci| ≥
|G|1−δ

k(G)
≥ c−1q−r|G|1−δ ≥ |G|1−γ/2−or(1) ≥ |G|1−γ,

provided N is large enough and r ≥ N .
It follows from Proposition 7.3 that (enlarging N if needed) C1C2C3 = G and

hence RST = G. □
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8. An application to word maps

Probabilistic Waring problems for finite simple groups are studied [LST2]. For a
word w ∈ Fd and a finite group G, let Pw,G denote the probability induced by the
corresponding word map w : Gd → G, namely

Pw,G(g) = |w−1(g)|/|G|d

for g ∈ G.
It is shown in [LST2, Theorem 4] that for every ℓ ∈ N there exists N = N(ℓ) such

that, if w1, . . . , wN ∈ Fd are non-trivial words in pairwise disjoint sets of variables,
all of length at most ℓ, then

∥Pw1···wN ,G −UG∥∞ → 0 as |G| → ∞,

where G ranges over the finite simple groups. The dependence of N on ℓ in that
result is genuine and explicit: N(ℓ) = 2 · 1018 · ℓ4.

It turns out that, if we change the probabilistic model, let G be a finite simple
group of Lie type, choose random elements gi ∈ wi(G) (i = 1, . . . , N) and study
the distribution of g1 · · · gN , we obtain an almost uniform distribution in L∞ much
faster, namely in three steps.

We would like to thank Saveliy Skresanov for pointing out an error in the statement
of the following theorem in the published version of this paper.

Theorem 8.1. Let w1, w2, w3 ∈ Fd be non-trivial words and let G be a finite simple
group of classical type. Then

∥Pw1(G),w2(G),w3(G) −UG∥L∞ → 0 as |G| → ∞.

Proof. Suppose G is of Lie type and its rank r is bounded. By [La], there exist N
and ϵ > 0 such that if |G| ≥ N then |wi(G)| ≥ ϵ|G| for i = 1, 2. Therefore,

Pw1(G),w2(G)(e) = O(|G|−1),

and by part (iv) of Theorem A,

Pw1(G),w2(G)(g) = (1 + o(1))|G|−1

for g ̸= e. This implies the theorem for bounded r.
We may therefore assume that r tends to infinity. Theorem 1.12 of [LS1] shows

that, if G is symplectic or orthogonal, then |wi(G)| ≥ cr−1|G| (i = 1, 2, 3), where
c > 0 is an absolute constant. Since m(G) ≥ bqr for fixed b > 0 (see [FG]) we have

(8.1)
m(G)|w1(G)| |w2(G)| |w3(G)|

|G|3
→ ∞ as |G| → ∞.

In the case where G is PSLn(q) or PSUn(q), Propositions 1.7 and 1.8 of [NP] show
that |wi(G)| ≥ q−n/4+on(1)|G| (i = 1, 2, 3), which implies (8.1) for n≫ 0.

The desired conclusion now follows from Theorem 7.2. □
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