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A B S T R A C T

Crystal structure prediction (CSP) is now increasingly used in the discovery of novel materials with applications
in diverse industries. However, despite decades of developments, the problem is far from being solved. With
the progress of deep learning, search algorithms, and surrogate energy models, there is a great opportunity for
breakthroughs in this area. However, the evaluation of CSP algorithms primarily relies on manual structural
and formation energy comparisons. The lack of a set of well-defined quantitative performance metrics for CSP
algorithms makes it difficult to evaluate the status of the field and identify the strengths and weaknesses
of different CSP algorithms. Here, we analyze the quality evaluation issue in CSP and propose a set of
quantitative structure similarity metrics, which when combined can be used to automatically determine the
quality of the predicted crystal structures compared to the ground states. Our CSP performance metrics can
then be utilized to evaluate the large set of existing and emerging CSP algorithms, thereby alleviating the
burden of manual inspection on a case-by-case basis. The related open-source code can be accessed freely at
https://github.com/usccolumbia/CSPBenchMetrics.

1. Introduction

Deep learning-based AlphaFold has been revolutionizing the field of
molecular biology by predicting tens of thousands of protein structures
from sequences [1], which can accelerate the understanding of protein
structures and functions. In the realm of computational chemistry,
quantitative metrics like RMSD(N) which are evaluated using the COM-
PACK algorithm [2] and X-ray powder diffraction pattern differences
(POWDIFF) using through deGelder’s cross-correlation function [3] are
commonplace for comparing molecular crystal structures. However, a
pressing challenge in materials science, specifically in the domain of
inorganic crystal structure prediction, remains unresolved. This chal-
lenge seeks to determine the stable crystal structure based solely on the
composition of an inorganic material. If successfully addressed, it has
the potential to significantly expedite the discovery of novel functional
materials, as key material properties such as thermal conductivity, band
gap, and elastic constants can be conveniently computed using first-
principle methods like Density Functional Theory (DFT) with tools like
VASP [4].

Traditionally, the inorganic CSP algorithms are mainly based on the
DFT calculation of energies combined with global search algorithms,
such as the global landscape exploration [5,6], the minima hopping
procedure search for minima on the energy landscape [7], and the
KLMC method presented by Woodley [8], which has been instrumental
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in modeling kinetic processes within the realm of crystal structure
prediction. However, the complexity and demanding computing re-
sources of DFT make it challenging to develop new CSP algorithms.
Nowadays, although the formation energy can be efficiently predicted
by graph neural networks (GNNs) [9–11], there is a good amount of
accuracy-computing trade-off in this approach. Recent advancements
in deep neural network-based energy potentials [12] have showcased
the possibility of efficiently predicting formation energy through po-
tential energy functions derived from neural networks [13]. It can be
expected that an increasing number of CSP algorithms will emerge,
as has happened in the protein structure prediction field with the
CSP competitions organized annually since 1994. In that case, large-
scale benchmark studies and objective quantitative evaluation of CSP
prediction performances will be needed to illuminate the progress and
weaknesses of different algorithms, as has been done in CASP history.

In order to obtain new potential crystal structures, we usually
utilize three main categories of crystal structure prediction algorithms,
including search-based, template-based, and deep learning-based CSP
algorithms. The global search-based CSP algorithms such as USPEX and
CALYPSO combine search algorithms with DFT energy calculations for
structure search. There are also several open sourced algorithms such
as CrySPY [14], XtalOpt [15], GASP [16], and AIRSS [17,18]. However,
the most widely used and well-established leading software for de novo
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CSP are GA-based USPEX and particle swarm optimization (PSO)-based
CALYPSO. Despite their closed source code, their binary programs
can be easily obtained and both come with several advanced search
techniques such as symmetry handling, crowding niche, and so on.
Global search has also been combined with universal neural potentials
for crystal structure prediction as done by the GN-OA algorithm in [13]
and AGOX [19]. With the many possible search algorithms [20], the
family of such algorithms can keep growing. The second category of
CSP algorithms is template-based element substitutions combined with
relaxation including TCSP [21] and CSPML [22], in which they use
rules and machine learning models to guide the selection of structure
templates. For a given composition, the template-based element sub-
stitution method first selects a structure with a similar composition or
prototype and then replace some of the atoms in the template structure
with atoms of different element types in the given composition. E.g.,
SrTiO3’s structure can be found by replacing the Ba atoms of the BaTiO3

structure with Sr and then doing structure relaxation. The last category
of CSP algorithms is based on deep learning-based algorithms inspired
by the Alphafold [23].

With these emerging CSP algorithms, it is critical to benchmark
and evaluate their performances in predicting structures of varying
complexity so that strengths and obstacles can be identified. However,
upon a thorough examination of the relevant literature, it is surprising
to find that most of the CSP prediction results are manually verified
by authors on a case-by-case basis. This verification process typi-
cally involves structure inspection, comparison of formation enthalpies,
DFT-calculated energy analysis, examination of property distributions,
computation of distances between structures, or a combination of these
methods. There has been a severe lack of quantitative measures for
the objective evaluation of CSP prediction performance. In one of the
earliest reports of USPEX (Universal Structure Predictor: Evolutionary
Xtallography), which used evolutionary algorithms to identify stable
and novel crystal structures that may not be easily discovered through
traditional experimental or theoretical methods [24], the authors com-
pared the energy difference of the predicted structures and ground state
and then compared the structural similarity by manually inspecting the
predicted structures against the experimentally determined structures.
Similar approaches have been used for assessing predicted crystal
structures in related CSP works [25,26] using evolutionary algorithms.
In a related study by Hofmann et al. [27], the authors used the largest
distance between the unit cell edges and the nearest grid point of the
experimental structure to evaluate CSP performance. Another widely
used method for generating predicted crystal structures is CALYPSO
(Crystal Structure Analysis by Particle Swarm Optimization), which
was developed by Wang et al. [28]. In this work, energy distributions
and the distance against distortion for graphite and diamond structures
were utilized to evaluate and analysis the predicted structures. Addi-
tionally, in the work by Tong et al. [29] on accelerating CALYPSO
using data-driven learning of a potential energy surface, the authors
employed the evolution of the root mean square errors (RMSEs) of the
predicted energy and force by the Gaussian Approximation Potential
(GAP) for the testing set to evaluate the CALYPSO structure search for
a specific cluster. A vector-type structure descriptor distance has also
been used for comparing the predicted structures against the ground
states [30].

The metrics used in validating the predicted structures against
ground states were usually set by the authors with a certain arbi-
trariness. So far there is not a set of quantitative indicators of the
quality of the predicted crystal structures with easy-to-use calculation
code despite the existence of several structure similarity metrics as
summarized in [31]. Table 1 provides an overview of the evaluation
methods currently used in state-of-the-art CSP works. The abbreviations
M-i, M-o, M-e, M-s, and M-d represent manual structural inspection,
comparison with experimentally observed structures, comparison of
energy or enthalpy values, success rate analysis, and computation
of distances between structures, respectively. It is noteworthy that

computational methods such as DFT-energy or enthalpy calculations
are commonly employed in many studies. However, manual structural
similarity inspection methods continue to be widely used even today,
which leads the casual reader to wonder how exactly a predicted crystal
structure is evaluated in terms of its prediction quality, especially
when the predicted structure does not exactly match the ground state.
Additionally, energy or enthalpy calculations for structure similarity
evaluation using DFT can be time-consuming. Furthermore, perfor-
mance evaluation methods such as success rates, and ad hoc distance
calculations between structures present challenges in standardizing,
validating, and comparing the CSP results.

Inspired by the variety of quantitative metrics used in evaluat-
ing molecule generation algorithms by the benchmark MOSES [46],
here we aim to address the challenges in defining good structure
distance/similarity scores to measure the quality of CSP algorithms.
We evaluated a series of energy and structure-based performance met-
rics for crystal structure prediction algorithms. For each metric, we
check how their values correlate with the formation energy differ-
ences and perturbation deviations between the predicted structures
and the ground state structures. We tested their correlations for both
random perturbations (applied to each atomic site independently) and
symmetric perturbations [43] (applied only to Wyckoff sites without
disrupting the symmetry), both of which have been adopted in CSP
algorithms. We also showed that while every single metric cannot be
used to fully characterize the quality of a predicted structure against the
ground state, together they can capture the key structural similarity.
Applications of these metrics were additionally used to compare the
performance of CSP algorithms based on different search algorithms.
We have also used these metrics to visualize the search trajectories
of the structures for the GN-OA algorithms and explained their key
limitations.

2. Method

2.1. Evaluation metrics

Evaluation metrics play a crucial role in materials science research,
as they provide a quantitative way to assess the performance and effec-
tiveness of different material structure prediction algorithms. Currently,
there are many evaluation benchmark metrics in the molecule research
area, such as RDKit [47] and MOSES [46]. However, in the field of
materials informatics, we do not have a unified standard for evaluating
the similarity between two crystal structures that arise during the
crystal structure prediction process. Here we introduce a set of bench-
mark metrics for CSP by combining the energy distance along with
several common distance metrics, including M3GNet energy distance,
minimal Wyckoff RMSE distance, minimal Wyckoff MAE distance, RMS
distance, RMS anonymous distance, the Sinkhorn distance, the Chamfer
distance, the Hausdorff distance, superpose RMSD distance, edit graph
distance, XRD spectrum distance, fingerprint distance to standardize
the comparison of material structure prediction algorithms.

The structure similarity in CSP has a unique property: the candidate
structure and the ground state structure compared have the same
number of atoms within the given unit cell. Then the key step is
to match atoms of one structure to the corresponding atoms of the
other structure to minimize the MAE error. There are several desirable
characteristics for a good structure similarity measure: (1) correlation:
the structure difference should correlates well with the distance met-
ric; (2) convergence: when the predicted structures during the CSP
search approach to the ground state, the distance metric scores should
converge to 0; (3) applicability: the distance metric should be used
to not just evaluate very similar structures, but also relative distant
intermediate structures, which lacks in the success rate metric. Here
we introduce eleven distance metrics that may be used in evaluating
the prediction performance of CSP algorithms.
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Table 1
Overview of state-of-the-art CSP works for validating predicted structures. Abbreviations M-i, M-e, M-s, M-d stand for different validation
methods, where M-i, M-e, M-s, M-d represent manual inspection, comparison of the energy or enthalpy, success rate, and computation of
distances between structures.

Author Algorithm Year M-i M-e M-s M-d

J.C. Schön, M. Jansen [32] Simulated annealing 1995 ✓

H. Putz [33] Simulated annealing 1999 ✓ ✓

Hofmann DWM [27] Data Mining 2003 ✓

Scott M. Woodley [34] Evolutionary Algorithm 2004 ✓ ✓

R. Oganov [24] Evolutionary Algorithm 2006 ✓ ✓

R. Oganov [25] Evolutionary Algorithm 2006 ✓ ✓

Christopher C. Fischer [35] Data Mining 2006 ✓

Kuo Bao [36] Hopping method 2009 ✓

Giancarlo Trimarchi [37] Evolutionary Algorithm 2009 ✓ ✓

R. Oganov [26] Evolutionary Algorithm 2010 ✓

David C. Lonie [15] Evolutionary Algorithm 2011 ✓

Yanchao Wang [28] Particle swarm optimization (PSO) 2012 ✓ ✓

S Q Wu [38] Evolutionary Algorithm 2013 ✓

Anton O. Oliynyk [39] Data-Driven: ML 2017 ✓

Qunchao Tong [29] Particle swarm optimization (PSO) 2018 ✓ ✓

Maximilian Amsler [40] Hopping method 2018 ✓

Asma Nouira [41] Data-Driven: ML 2018 ✓ ✓

Evgeny V. Podryabinkin [42] Evolutionary Algorithm 2019 ✓

Lai Wei [21] Template-Based Substitution 2022 ✓

Xuecheng Shao [43] A symmetry-orientated method 2022 ✓ ✓

Xiangyang Liu [44] Evolutionary Algorithm 2022 ✓

Yanchao Wang [45] Particle swarm optimization (PSO) 2022 ✓

Guanjian Cheng [13] Data-Driven: ML 2022 ✓ ✓

2.1.1. Energy distance (ED)
The formation energy is the energy required to form a material

from its constituent elements in their reference states, which can pro-
vide information regarding the stability and reactivity of materials.
While DFT calculation of formation energy is ideal for its accuracy,
it is too slow in many applications. As a result, machine learning-
based energy models have become an important topic with significant
progress recently for materials discovery and design. Here we use the
M3GNet [12], a graph neural network-based surrogate potential model,
to calculate the formation energies of the ground state structure and
the predicted structure and then their energy distance. The formula is
shown in the following equation:

ED = |Ep − Eg|, (1)

where Ep is the energy of the predicted structure while the Eg is the
ground state structure.

It should be noted that zero of small energy distance of two struc-
tures does not mean they have identical structures. For example dia-
mond and graphite have small energy difference but the structures are
very different.

2.1.2. Wyckoff position fraction coordinate distance (WD)
The Wyckoff position fraction coordinate distance is used to com-

pare two structures that have the same Wyckoff position configurations
and the same space group in the symmetrized structures. It is useful to
measure the similarity of a candidate structure and the ground state
structure for those CSP algorithms that can search structures while
preserving symmetry (space groups). We used both RMSE and MAE to
calculate the Wyckoff position fraction coordinate distances.

RMSE stands for Root Mean Square Error, which can be calculated
as the square root of the average of the squared differences between
the predicted and actual values. Let X = {p1, p2,… , pn} and Y =

{q1, q2,… , qn} be two sets of n data points. Then their RMSE error can
be calculated as:

WDRMSE =

√√√√1

n

n∑
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)
are the coordinates of the ith point qi from set Y. n is the

number of data points in each set. To calculate this distance, the input

structures have to be symmetrized first e.g. using Pymatgen’s Space-
GroupAnalyzer module and their space group and Wyckoff position
configuration must be the same. The related algorithms FINDSYM,
SFND, and RGS can be found in [48–50].

The MAE Distance is the mean absolute error (MAE) distance be-
tween two sets of data points. The MAE distance is calculated by
taking the absolute difference between corresponding data points in
the two sets of data, summing these absolute differences, and dividing
by the total number of data points. Let X = {p1, p2,… , pn} and Y =

{q1, q2,… , qn} be two sets of n data points. The mean absolute error
(MAE) Wyckoff distance between X and Y is defined as:

WDMAE =
1
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where
(
xi, yi, zi
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are the coordinates of the ith point pi from set X.(

x′
i
, y′

i
, z′

i

)
are the coordinates of the ith point qi from set Y. n is the

number of data points in each set.
Note that the above calculations assume that the Wyckoff positions

are selected correspondingly for the given two compared structure.
Otherwise, one need to calculate the minimal RMSE/MAE distance
between each pair of Wyckoff positions, which is the smallest possi-
ble RMSE/MAE distance that can be obtained between X and Y by
permuting the equivalent data points for each Wyckoff position in X

and Y since the Wyckoff coordinates in the cif file can be any point
of all the equivalent positions. The WD distance is also applicable for
the results of global optimizations that were performed in spacegroup
P1 where the symmetries can be assigned afterward optimization using
Pymatgen routine.

2.1.3. Adjacency matrix distance (AMD)

The adjacency matrix (AM) is widely used to represent the connec-
tion topology of atoms for a given crystal structure. The value ofM(i, j)

is set to 1 if there exists a bond between the atom i and atom j or set to
0 if otherwise. Here we use the canonical distance as the cutoff distance
for a pair of element types to define the connection status. Given two
structures S1 and S2 with adjacency matricesM1 andM2, the adjacency
matrix distance is defined as:

AMD = 1 −
2n

n1 + n2
(4)
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where n is the number of matrix cells that both matrices have the value
of 1. n1 is the number of matrix cells of M1 with the value of 1 and n2
is the number of matrix cells of M2 with the value of 1.

The AMD can be used to measure the topological similarity between
two compared structures, which are assumed to have an equal number
of atomic sites. However, there have been longstanding discussions in
the chemical and crystallographic literature since the 1960s, concern-
ing the choice of a cutoff radius for defining atomic connections. The
use of a canonical distance as a uniform cutoff might oversimplify the
nuanced nature of interatomic relationships within crystal structures.
This oversimplification could potentially impact the accuracy of the
adjacency matrix and the subsequent evaluation of topological simi-
larity between structures. We also find that the correlation between
the perturbation magnitude and the AMD distance is weak (see Sup-
plementary Figure S3 and S4). Our findings underscore the potential
limitations of relying solely on a canonical distance as a cutoff measure
for defining atomic connections within crystal structures, but our pri-
mary objective is to enable equitable and precise comparisons among
diverse structures, thereby enhancing the overall quality assessment.
This standardization not only ensures fairness in our evaluations but
also fosters the reliability and robustness of our findings, allowing us
to draw meaningful conclusions from our analyses.

2.1.4. Pymatgen RMS distance (PRD) and RMS anonymous distance
(PRAD)

We calculate RMS Anonymous Distance using the structure_matcher
module of the PyMatGen (Python Materials Genomics) package [51],
which allows distinct species in one structure to map to another. It also
calculates the root-mean-square error (RMSE) between two structures
according to Eq. (2), but its atomic site matching process does not
consider the difference of atom types before calculating the RMSD. It
is useful in cases where one wants to compare the overall structural
similarity between two structures, without being concerned with the
differences in atom types.

2.1.5. Sinkhorn distance (SD)
The Sinkhorn Distance (SD) [52] is a distance metric commonly

used to compare two probability distributions or point clouds, partic-
ularly in high-dimensional spaces. In the context of crystal structures,
we can represent them as point clouds by considering their constituent
atomic sites. Given two structures as S1 = {p1, p2,… , pm} and S2 =

{q1, q2,… , qn} where pi and qi are atomic sites (point clouds) of struc-
ture S1 and S2, respectively. The Sinkhorn Distance (SD) does not rely
on relative coordinates and remains independent of the simulation cell
used. Formally, the SD is defined as follows:

SD
(
S1, S2

)
=

1

�

(
∑

i,j

Ti,j log
Ti,j

uivj
− logC

)
(5)

In Eq. (5), S1 and S2 correspond to the crystal structures being
compared. The terms u and v refer to the marginals of S1 and S2,
respectively. These marginals represent the total mass assigned to each
atomic site within their respective distributions, shedding light on
how mass is distributed across the atomic positions in each crystal
structure. Additionally, � is a regularization parameter, and C serves
as a normalization constant. T is the transport plan which quantifies
how mass is efficiently redistributed between atomic sites in S1 to align
it with S2. The transport plan can be computed using the equation
that follows, revealing the optimal mass transfer strategy between the
crystal structures.

Ti,j = exp(−�ℎi,j )uivj (6)

In Eq. (6), ℎi,j denotes the transport cost of transporting one unit of
mass from site i in S1 to site j in S2.

SD can be thought of as a regularized version of the Earth Mover’s
Distance (EMD), also referred to as the Wasserstein Distance, where
the smoothness of the transport plan is controlled by the regularization
parameter �. The transport plan gets quite sparse and the SD approaches

the EMD when � is very large. The transport plan becomes very dense
and the SD approaches the Euclidean Distance when � is very tiny.

2.1.6. Chamfer distance (CD)

The Chamfer Distance (CD) [53] is defined as the average distance
of the summed-up squared distances between two point clouds’ nearest
neighbor correspondences. Similar to SD, we also represent two crystal
structures as atomic sites to define it. Given two structures as S1 =

{p1, p2,… , pm} and S2 = {q1, q2,… , qn} where pi and qi are atomic sites
of structure S1 and S2, respectively, we can formally define CD as:

CD
(
S1, S2

)
=

1

m

∑

p∈S1

min
q∈S2

‖p − q‖2 +
1

n

∑

q∈S2

min
p∈S1

‖q − p‖2 (7)

In Eq. (7), ‖p−q‖2 is the squared Euclidean Distance between sites p and
q. It is relatively fast and easy to compute, can handle large point sets,
and is less sensitive to outliers and noise in the data. However, it also
has some drawbacks, such as being dependent on the metric used to
measure distances between points and being insensitive to the relative
ordering of the points.

2.1.7. Hausdorff distance (HD)

The Hausdorff Distance (HD) [54] measures the maximum distance
between any point in one set and its nearest point in the other set,
or vice versa. We represent two crystal structures as atomic sites to
define them. Given two structures as S1 = {p1, p2,… , pm} and S2 =

{q1, q2,… , qn} where pi and qi are atomic sites of structure S1 and S2,
respectively, we can formally define HD as:

HD(S1, S2) = max
{
sup
p∈S1

inf
q∈S2

‖p − q‖, sup
q∈S2

inf
p∈S1

‖q − p‖
}

(8)

In Eq. (8), ‖p − q‖ is the distance between sites p and q, which can
be any distance metric such as the Euclidean Distance, the Manhattan
Distance, or the Minkowski Distance. The sup function takes the supre-
mum or the least upper bound of the distances overall points in the
set, and the inf function takes the infimum or the greatest lower bound
of the distances overall points in the other set. The max function takes
the maximum of the two supremum, which ensures that the Hausdorff
distance is a symmetric metric.

2.1.8. Superpose Distance (SPD)

The Superpose Distance (SPD) is a measure of the structural sim-
ilarity between two 3D protein structures, which is very similar to
the CMPZ algorithm used to compare the similarity of periodic struc-
tures [31]. SPD is essentially a variation of the RMSE, which is a
commonly used metric for quantifying the structural similarity between
two protein structures. We again represent two crystal structures as
atomic sites to define them. Given two structures as S1 = {p1, p2,… , pn}

and S2 = {q1, q2,… , qn} where pi and qi are atomic sites of structure
S1 and S2, respectively. We use the Superpose3D [55] package which
takes these two structures as input representing two sets of atomic sites
of the same length N . It attempts to superimpose them using rotations,
translations, and optionally scale transformations while treating them
as rigid objects in order to reduce the RMSE across corresponding sites.
The RMSE of the paired sites is calculated as SPD following alignment.
It can be defined by the following equation:

SPD =

√√√√√ 1

N

N∑

n=1

sl∑

i=1

||||||
S1ni

−

(
sl∑

j=1

ℎRijS2nj
+ Ti

)||||||

2

(9)

In Eq. (9), sl denotes the dimension of the atomic sites, Rij denotes
rotation matrix (a sl × sl sized array representing the rotation), where
|R| = 1, Tj denotes a translation vector, and ℎ denotes a scalar. One lim-
itation of this distance measure is that their superimposing/alignment
does not consider the atomic types of the points.
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2.1.9. Graph Edit Distance (GED)
The Graph Edit Distance (GED) [56] is a distance metric used to

compare two graphs with possibly different numbers of nodes and
edges. It measures the minimum number of operations needed to con-
vert one graph into another. The permitted operations are insertions,
deletions, and substitutions of nodes and edges. GED is defined by the
following equation:

GED(G1, G2) = min
�

(∑

i∈V1

�� (i) +
∑

(i,j)∈E1

�� (i, j)
)

(10)

In Eq. (10), G1 = (V1, E1) and G2 = (V2, E2) are the two input graphs
to be compared, � is a graph edit path that maps nodes and edges
from G1 to G2, �, and � are the cost of editing a node and an edge,
respectively.

Here, we use a measure of the similarity between two crystal
structures represented as graphs based on the differences in the connec-
tivity and bonding patterns of the atoms in the structures. We use the
atomic number difference as the node substitution cost and the length
difference of two edges as the edge substitution cost. Then the GED
uses the linear sum assignment algorithm, also known as the Hungarian
algorithm [57] to find an assignment of nodes in structure A to nodes
of structure B that minimizes the total substitution cost. The algorithm
works by iteratively constructing a dual feasible solution, which is
then used to generate an alternating path in a bipartite graph. This
alternating path is used to update the current assignment and improve
the overall cost. We use the implementation in [58] package for this
distance calculation.

This GED distance considers the atomic site element types during
its site alignment process, which can complement the shortcoming of
the Superpose distance SPD. However, we found that the correlation
between the perturbation magnitude and the GED distance is weak (see
Supplementary Figure S1 and S2).

2.1.10. X-ray diffraction spectrum distance (XD)
X-ray diffraction (XRD) is a technique used to determine the atomic

and molecular structure of a material by analyzing the diffraction
patterns resulting from X-ray interactions with a crystal. In our investi-
gation, we utilize Pymatgen’s diffractionPatternCalculator to compute
the XRD features, which manifest as intensity values, for a specified
structure. In order to quantitatively assess the resemblance between
two material structures based on their XRD features, we calculate the
Euclidean distance, referred to as the X-ray diffraction (XRD) Spec-
trum Distance. Given two crystal structures S1 = (px1 , px2 ,… , pxn

) and
S2 = (qx1 , qx2 ,… , qxn

), where pxi
and qxi

represents the XRD features
of structures S1 and S2, respectively, in an n-dimensional space, the
Euclidean XRD spectrum distance XD between the two structures can
be represented as follows:

XD
(
S1, S2

)
=

√√√√
n∑

i=1

(
qxi

− pxi

)2

(11)

2.1.11. Orbital Field Matrix distance (OD)
The Orbital Field Matrix (OFM) is calculated for each site in the

supercell by considering the valence shell electrons of neighboring
atoms. Each crystal structure is transformed into a supercell, which
prevents sites from coordinating with themselves. And then the average
of the orbital field matrices at each site is found to characterize a
structure. The Orbital Field Matrix (OFM) distance is determined by
calculating the Euclidean distance between the OFM features [] of two
structures.

Given two crystalline structures S1 = (po1 , po2 ,… , pon
) and S2 =

(qo1 , qo2 ,… , qon
), where poi

and qoi
represents the OFM features of

structures S1 and S2, respectively, in an n-dimensional space, the
Euclidean OFM distance OD between two structures can be defined as
the following equation:

OD
(
S1, S2

)
=

√√√√
n∑

i=1

(
qoi

− poi

)2

(12)

2.1.12. CrystalNN Fingerprint distance (CFD)
CrystalNN Fingerprint distance (CFD) is defined over the CrystalNN

fingerprint representation of crystal structures [59]. It is a type of fin-
gerprint used in materials science and chemistry to represent the local
environment around each atom in a crystal structure. It is based on the
concept of coordination number, which refers to the number of neigh-
boring atoms that are closest to a particular atom in a crystal structure.
The CrystalNN fingerprint calculates the coordination number of each
atom in a crystal structure using a nearest-neighbor algorithm called
CrystalNN, which is based on the Voronoi tessellation of the crystal
lattice. The algorithm takes into account the sizes and charges of the
atoms involved and can distinguish between different coordination en-
vironments, such as tetrahedral, octahedral, and trigonal bipyramidal.
The resulting fingerprint is a vector of 244 numbers that represents the
coordination environment around each atom in the crystal structure.
The fingerprint can be used to compare different crystal structures and
identify similarities and differences in their local environments. It can
also be used as input for machine learning algorithms to predict the
properties of materials based on their crystal structures.

2.2. Evaluation procedure

We used three ways to evaluate the utility of the selected distance
metrics for CSP study including: (1) studying how the structure distance
metrics change with the structure perturbation; (2) comparing the CSP
performances of three CSP algorithms over a set of test structures; (3)
understanding the search dynamics or behavior of the optimization
algorithms using the trajectories of the search process.

3. Results

3.1. Evaluation of performance metrics

To evaluate how different performance metrics reflect the actual
closeness of the predicted structures to the ground state structures, we
use two perturbation methods to generate two sets of perturbed crystal
structures with varying magnitudes for a given stable structure. We
then calculate how their formation energy differences correlate with
the performance metric distances as well as the perturbation magni-
tudes. The first perturbation method directly changes the coordinates
of all sites by a random uniform p percentage (from 1 to 50% with
1000 points) without considering the space group symmetry. So the
resulting structures may lose their space symmetry. By perturbing a
given stable crystal structure with an increasing series of perturbation
magnitudes, we can simulate the search process of CSP algorithms to a
certain degree. The second perturbation method comes from the PyxTal
package [60], which can do two types of perturbations over a given
structure: one is changing the lattice parameters by a given percentage;
the other is perturbing the atomic coordinates of the Wyckoff sites with
a given magnitude in Å. These perturbation strategies serve as con-
trolled means to assess how performance metric distances correspond
with the differences in formation energies, as well as the magnitudes of
the perturbations themselves. Throughout these perturbation processes,
the periodicity and integrity of the unit cell remain unaffected despite
the alterations applied to the atomic coordinates or lattice parameters.
Here we focus on this symmetry-preserving Wyckoff site coordinate
perturbation with a 2% lattice perturbation.

Fig. 1(a) shows the parity plot of perturbation magnitude and the
formation energy distances of the structures compared to the ground
state structure SrTiO3. Here the formation energy is predicted using the
universal machine learned M3GNet potential [12]. It can be found that
as the perturbation percentage goes up, the energy difference between
the perturbed structures and the stable structure also goes up. We can
also find that the range of energy distances for a given perturbation
percentage increases as the perturbation magnitude goes up, indicating
the fact that highly disrupted structures tend to have diverse energy
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Fig. 1. Structure distances vs perturbation size evaluated over the random perturbation structures of SrTiO3. The units for XRD Spectrum distance and OFM distance are counts
per second and the number of valence shell electrons, respectively.

values. Fig. 1(b)–(l) shows the correlation between perturbation magni-
tude and eleven performance metrics. It has three types of correlations.
Fig. 1(b)–(i) show the linear correlation of perturbation with respect to
the following distance metrics, including Wyckoff RMSE, Wyckoff MAE,
Anonymous RMS, RMS distance, Sinkhorn distance, Chamfer distance,
Hausdorff distance, and Superpose RMSD. Out of the eleven metrics,
Wyckoff RMSE, RMS distance, and Hausdorff distance (Fig. 1(b)(e)(h))
show a higher degree of linearity. The units for XRD Spectrum distance
and OFM distance are counts per second and the number of valence
shell electrons, respectively. Relatively speaking, the remaining metrics
demonstrate a certain degree of nonlinear correlation, including XRD
Spectrum distance, OFM distance, and FingerPrint distance sorted by
the degree of nonlinearity. All eleven metrics can be used to mea-
sure the similarity between candidate structures and the ground state
structure.

While the eleven performance metrics show a good correlation
with the structure perturbation in Fig. 1, they are evaluated over the
randomly perturbed structures which neglect the symmetry relation-
ships among equivalent Wyckoff atomic sites. However, many efficient
CSP algorithms use symmetry-obeying search operators which do not
violate the atomic symmetry relationship during the coordinate search.
To simulate this situation, we generate a second set of symmetry-
preserving perturbed structures from the ground state structure ZrSO.
Fig. 2 shows the correlations of performance metrics with respect to
the perturbation magnitude. Compared to the random perturbation
structures of SrTiO3, symmetrical perturbations, in which the pertur-
bation is applied to the coordinates of Wyckoff sites, may lead to more
pronounced structural changes. It can be found that the correlation
between perturbation magnitude and performance metrics is weaker
(Fig. 2). Because symmetrical structures possess internal repetition
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Fig. 2. Structure distances vs perturbation size over the symmetrically perturbation structures of ZrSO. The dataset is generated by applying lattice a/b/c perturbation with small
5% changes while fraction coordinates are perturbed with 2% to 100%. Space group remains unchanged. (e) The units for XRD Spectrum distance and OFM distance are counts
per second and the number of valence shell electrons, respectively.

and symmetry, a perturbation at one point can propagate equivalent
perturbations in other points. Consequently, accurately describing the
perturbation based solely on its magnitude becomes challenging. In
such scenarios, the influence of perturbations can extend beyond their
immediate vicinity, impacting a broader range of elements or variables
within the system. Therefore, to fully comprehend and analyze the
effects of symmetrical perturbations, it is crucial to possess a com-
prehensive understanding of the system’s dynamics and interactions.
From Fig. 2(a), we can find that the perturbations quickly lead to
high variations of the energies of the perturbed structures despite that
the pattern is similar to random perturbation when the perturbation
magnitude/percentage is small. For the distance metrics in Fig. 2 (b,
c, f, g, h, i), we all observe regular patterns at the bottom which are
similar to the trends in the random perturbation results (Fig. 1). The

top right overhead dots show the impact of symmetric perturbation: a
relatively small perturbation can also cause big distance changes. We
also find that Figs. 2(j, k, l) have much higher variation than those in
Figs. 1(j, k, l) respectively. These results show that our selected distance
metrics tend to have higher variation when used to evaluate the struc-
ture similarity for symmetrically perturbed structures. As shown in 2(e),
due to the relatively large changes in the structure of the symmetric
perturbation, the distance metric of the RMS could not be calculated.

In order to better assess and analyze our metrics, we selected
a subset of 200 structures with the lowest energy distances to plot
the correlation between energy distances and structure distances over
the random and symmetrically perturbation structures of SrTiO3 and
ZrSO. Fig. 3 shows the correlation of Wyckoff RMSE, Wyckoff MAE,
Anonymous RMS, Sinkhorn distance, Chamfer distance and Hausdorff
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Fig. 3. Energy distances vs structure distances evaluated over the 200 random perturbation structures of SrTiO3.

Fig. 4. Energy distances vs structure distances evaluated over 200 symmetrically perturbation structures of ZrSO.

distance of the random perturbation. All R-squared (R2) values exceed
0.85, indicating a strong correlation between energy distances and
structural distances. As depicted in Fig. 4(a)(b)(e), the R2 values are
0.3706, 0.3524 and 0.3699, respectively. For the Sinkhorn distance,
Chamfer distance and Hausdorff distance, the R2 values are all above
0.51.

3.2. Using distance metrics to compare CSP algorithms

From the Material Project Database [61], we individually choose
five crystal structures for each type of composition encompassing bi-
nary, ternary, and quaternary, which generates a total of fifteen test
structures. We also added Ca4S4 (mp-1672) as one additional target.
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Table 2
A metrics table generated by comparing the ground state structure of Ca4S4 with
the best structures predicted by only the global minimum energy found by three
different optimization algorithms from GN-OA: Random Acceleration Search (RAS),
Particle Swarm Optimization (PSO), and Bayesian Optimization (BO). The units for
XRD Spectrum Distance and OFM Distance are counts per second and the number of
valence shell electrons, respectively.

Ca4S4

Algorithm RAS BO PSO

Formation Energy (eV) −38.323 −38.809 −38.781
Energy Distance (eV) 3.407 2.922 2.949
Wyckoff RMSE (Å) N/A N/A N/A
Wyckoff MAE (Å) N/A N/A N/A
Anonymous RMS (Å) N/A N/A N/A
RMS Distance (Å) N/A N/A N/A
Sinkhorn Distance (Å) 3.2478 2.9730 2.9888
Chamfer Distance (Å) 0.8120 0.7432 0.7472
Hausdorff Distance (Å) 0.6268 0.5738 0.5768
Superpose RMSD (Å) 1.8412 2.3290 1.8412
Edit Graph Distance 0 0 0
FingerPrint Distance 0 0 0
XRD Spectrum Distance 2.8915 2.8651 2.8636
OFM Distance 0.1535 0.1419 0.1425

To compare the performance of three GN-OA algorithms [13] based
on three optimization methods including random searching (RAS),
Bayesian optimization (BO), and particle swarm optimization (PSO), we
applied these three algorithms (GN-OA-RAS, GN-OA-BO, GN-OA-PSO)
to the 16 targets, all of which use MEGNet neural network potential
for energy calculation. For RAS and BO, we set the init population
size to 200 and the total number of iterations to 20,000. For the PSO
algorithm, we set the init population size to be 200 and the generation
number is 100. All predicted structures should be locally optimized
using a relaxer before comparing with the ground state structures,
which is a requisite condition for calculating our proposed performance
metrics. However, the GN-OA algorithm does not conduct local op-
timization for their output structures. So we follow their practice in
our evaluation. We use M3GNet potential to evaluate the performance,
which means the values of the formation energy and energy distance
for Table 2 through Table 5 are computed by M3GNet. The formation
energy signifies the M3GNet-predicted energy of the best minimum
structure discovered by all three algorithms rather than the exact
formation energy. As can be seen from the table and the corresponding
crystal diagrams, the smaller the value of formation energy, the higher
the similarity between the predicted crystal structure and the ground
state structure.

Table 2 shows the distance metrics between the ground state struc-
ture of Ca4S4 and its predicted structures by three CSP algorithms,
two of which (GN-OA-RAS and GN-OA-BO) successfully predict the
ground-state structures within 5000 iteration steps. The computed
distance metrics demonstrate similar performance across all measures.
The energy distances for RAS, BO, and PSO are 3.407 eV, 2.922 eV,
and 2.949 eV, respectively. Additionally, the XRD spectrum distance
values of 2.8915 counts per second, 2.8651 counts per second, and
2.8636 counts per second, along with the corresponding OFM distance
values of 0.1535, 0.1419, and 0.1425 for RAS, BO, and PSO, indicate
highly consistent results. Notably, both the edit graph distance and the
fingerprint distance exhibit perfect matches with the ground state with
the values of 0 for each algorithm. Fig. 5 shows the comparison of the
ground state with the predicted crystal structures of Ca4S4 by the RAS,
BO, and PSO algorithms. Figs. 5(b), 5(c), and 5(d) exhibit a striking
similarity in structure to Fig. 5(a).

As shown in Table 3, the distances to the ground structure for
both BO and PSO results are nearly identical, with energy distances
of 5.695 eV and 5.697 eV, respectively, compared to 68.721 eV for
RAS. The structures of BO and PSO in Fig. 6(c) and Fig. 6(d) are more
similar than the structure of RAS because they have almost the same

Fig. 5. Comparison of the ground state and predicted crystal structures of Ca4S4 by
the RAS, BO, and PSO algorithms.

Fig. 6. Comparison of the ground state and predicted crystal structures of Li4Zr4O8 by
the RAS, BO, and PSO algorithms.

values of formation energy and structure distances. Fig. 6(b) shows a
higher symmetry compared to Figs. 6(c) and 6(d), which may also be
the reason why the Sinkhorn distance, the Chamfer distance, and the
Hausdorff distances indicate better performance for RAS.

For the quaternary material Li3Ti3Se6O3 (Table 4), the BO algorithm
achieves better performance in terms of most distance metrics. Among
all the distance metrics, BO shows the best performance for the energy
distance with a value of 19.227 eV compared to 93.858 eV and 106.608
eV of RAS and PSO respectively. In addition, BO outperforms RAS and
PSO in terms of the more challenging indicators including Wyckoff
RMSE and Wyckoff MAE, with values of 0.3464 Åand 0.2458 Å, re-
spectively. Similarly, it has the best results in terms of the Sinkhorn
distance, the Chamfer distance, and the Hausdorff distance metrics
which are 23.6450 Å, 2.8741 Å, and 2.6054 Å. Fig. 7(c) shows the
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Fig. 7. Comparison of the ground state and predicted crystal structures of Li3Ti3Se6O3

by the RAS, BO, and PSO algorithms.

Table 3
Metric table generated by comparing the ground state structure of Li4Zr4O8 with
the best structures without relaxation, as predicted by three different optimization
algorithms in GN-OA: Random Acceleration Search (RAS), Particle Swarm Optimization
(PSO), and Bayesian Optimization (BO). The units for XRD Spectrum Distance and OFM
Distance are counts per second and the number of valence shell electrons, respectively.

Li4Zr4O8

Algorithm RAS BO PSO

Formation Energy (eV) −54.335 −117.361 −117.359
Energy Distance (eV) 68.721 5.695 5.697
Wyckoff RMSEE (Å) N/A N/A N/A
Wyckoff MAEE (Å) N/A N/A N/A
Anonymous RMSE (Å) N/A N/A N/A
RMS DistanceE (Å) N/A N/A N/A
Sinkhorn DistanceE (Å) 31.7423 37.2488 37.0778
Chamfer DistanceE (Å) 3.0679 3.5888 3.6062
Hausdorff DistanceE (Å) 3.5578 4.4537 4.6748
Superpose RMSDE (Å) 2.9837 2.8446 2.9019
Edit Graph Distance 33 36 36
FingerPrint Distance 3.5050 2.8482 2.8482
XRD Spectrum Distance 1.7977 2.0243 2.0243
OFM Distance 0.4376 0.2690 0.2691

predicted structure of BO, which has a more symmetrical structure
compared to Figs. 7(b) and 7(d) predicted by RAS and PSO. The
figures and tables presented above effectively demonstrate that our
distance metrics accurately capture the differences between crystal
structures with the ground states, highlighting that more symmetrical
and stable structures tend to allow the CSP algorithms to achieve better
performance.

Table 5 shows the distance metrics between the predicted structures
by three algorithms and the ground state for the binary target structure
ScBe5. Generally, the generated structure needs local optimization re-
laxation before performance evaluation. Since GN-OA does not include
this relaxation step, we showed their results in the Unrelaxed columns
while also calculated distance metrics with M3GNet relaxation for final
structures. For unrelaxed structures, we find that the PSO algorithm
achieves the highest performance for all distance metrics. The energy
distances are 12.495 eV, 23.614 eV, and 4.772 eV for RAS, BO, and
PSO, respectively. The Sinkhorn distance, Chamfer distance, and Haus-
dorff distance of PSO are also significantly smaller than those of RAS
and BO, which are 2.7904 Å, 0.9301 Å, and 1.2743 Å, respectively.
For the predicted structures with M3GNet based relaxation, the quality
of most of the structures is improved (see numbers in parentheses),
meaning that most of the distance metrics to the ground truth structure
are decreased. In particular, the relaxed predicted structure by the BO
algorithm shows a decrease in formation energy from −2.633 eV to

Table 4
Metric table generated by comparing the ground state structure of Li3Ti3Se6O3 with
the best structures without relaxation, as predicted by three different optimization
algorithms in GN-OA: Random Acceleration Search (RAS), Particle Swarm Optimization
(PSO), and Bayesian Optimization (BO). The units for XRD Spectrum Distance and OFM
Distance are counts per second and the number of valence shell electrons, respectively.

Li3Ti3Se6O3

Algorithm RAS BO PSO

Formation Energy (eV) 14.146 −60.487 26.896
Energy Distance (eV) 93.858 19.227 106.608
Wyckoff RMSE (Å) 0.3658 0.3464 0.3958
Wyckoff MAE (Å) 0.2669 0.2458 0.3240
Anonymous RMSE (Å) N/A N/A N/A
RMS Distance (Å) N/A N/A N/A
Sinkhorn Distance (Å) 31.9493 23.6450 30.4329
Chamfer Distance (Å) 3.3169 2.8741 3.5282
Hausdorff Distance (Å) 3.2332 2.6054 2.8125
Superpose RMSD (Å) 6.7413 7.3776 7.1555
Edit Graph Distance 12 15 14
FingerPrint Distance 2.6597 2.0178 2.1986
XRD Spectrum Distance 1.9977 1.2185 1.7125
OFM Distance 0.4486 0.6285 0.4263

−25.849 eV, and a decrease in the energy distance from 23.614 eV to
0.397 eV. For the RAS algorithm, the structure after relaxing also shows
smaller distance values. The energy distance for RAS is reduced from
12.495 eV to 5.561 eV. It should be noted that without relaxation, PSO
showed the best performance by all metrics. However with relaxation,
BO algorithm showed the best performance in terms of most metrics
except Sinkhorn distance, Chamfer distance, Hausdorff distance and
edit graph distance. Performance evaluation metrics of additional the
12 targets are shown in the Supplementary file Table S1 to S12.

Fig. 8(a) shows the ground state structure of ScBe5, Fig. 8(b)–(d)
are the unrelaxed structures by the algorithms RAS, BO and PSO and
Fig. 8(e)–(g) are the predicted structures by algorithms RAS, BO and
PSO with M3GNet relaxation, respectively. Fig. 8(d) demonstrates a
more symmetrical and similar structure compared to Figs. 8(b) and
8 (c), which implies that the structure in Fig. 8(d) exhibits a more
balanced distribution of atoms with reasonable pairwise atomic dis-
tances compared to the structures in Fig. 8(b–c). This higher similarity
between the structure presented in Fig. 8(d) and the ground state
structure 8(a) is reflected in all the distance values in Table 5 for
unrelaxed structures. We also compared the structures with relaxation
(Fig. 8(e,f,g)) and without relaxation (Fig. 8(b,c,d)). We find that the
structures have all become more aggregated: for example, the relaxed
structure in Fig. 8(e) to the relaxed structure in Fig. 8(b), which
indicates that the structure tend to be fine-tuned into a more stable
state after relaxation. The smaller values of Sinkhorn distance, Chamfer
distance and Hausdorff distance of the structures predicted by PSO,
Figs. 8(d) and 8(g) here indicate the higher similarity of the predicted
structures against the ground state structure. Overall, we find it is
desirable to add the relaxation operation to the predicted structures by
the GN-OA algorithms.

It should be noted that there are situations in there exist multiple
low-energy polymorph structures around or even away from the ground
state structure for a given composition. In this case, an algorithm may
predict a structure that has low energy with high structure distances.
In this case, the structure is still a successful prediction. So it is advised
that one should use the energy distance along with structure distances
to holistically evaluate the quality of a given predicted structure.

3.3. Trajectory studies of the GN-OA search algorithms in CSP of targets
without polymorph structures

Here we exploit the multi-dimensional CSP performance metrics to
investigate the search behavior of three optimization algorithms used
in the GN-OA CSP package [13]. These algorithms incorporate MEG-
NET global optimizations for structural relaxation. We applied their
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Table 5
Metric table generated by comparing the ground state structure of ScBe5 with the best structures without relaxation (Unrelaxed) and with
relaxation (local optimization of) by M3GNet (Relaxed), as predicted by three different optimization algorithms in GN-OA: Random Acceleration
Search (RAS), Particle Swarm Optimization (PSO), and Bayesian Optimization (BO). The units for XRD Spectrum Distance and OFM Distance
are counts per second and the number of valence shell electrons, respectively.

ScBe5

Algorithm Unrelaxed Relaxed

RAS BO PSO RAS BO PSO

Formation Energy (eV) −13.752 −2.633 −21.474 (−20.685) (−25.849) (−25.317)
Energy Distance (eV) 12.495 23.614 4.772 (5.561) (0.397) (0.930)
Wyckoff RMSE (Å) N/A N/A N/A N/A N/A N/A
Wyckoff MAE (Å) N/A N/A N/A N/A N/A N/A
Anonymous RMSE (Å) N/A N/A 0.4535 N/A (0.4405) 0.4558
RMS Distance (Å) N/A N/A 0.4535 N/A (0.4405) 0.4558
Sinkhorn Distance (Å) 45.1382 47.2978 2.7904 (38.7643) (13.8632) (2.2861)
Chamfer Distance (Å) 9.3233 10.9360 0.9301 (7.9629) (3.4503) (0.7620)
Hausdorff Distance (Å) 13.9499 11.3823 1.2743 (11.7346) (3.2524) 1.6396
Superpose RMSD (Å) 1.6628 1.6343 1.6952 (1.6014) (1.5719) 1.7038
Edit Graph Distance 7 8 3 (6) (6) 3
FingerPrint Distance 2.3392 2.4184 1.7783 2.5490 1.2869 (1.6103)
XRD Spectrum Distance 2.2394 1.9878 1.6491 (2.0843) (1.4924) 1.8258
OFM Distance 0.9898 1.1039 0.4494 (0.9719) (0.0877) (0.3971)

Fig. 8. Comparison of the ground state and predicted crystal structures of ScBe5 by the RAS, BO, and PSO algorithms for Table 5. (a) Ground state structure. (b) Unrelaxed
structure by the RAS. (c) Unrelaxed structure by the BO. (d) Unrelaxed structure by the PSO. (e) M3GNet relaxed structure by the RAS. (f) M3GNet relaxed structure by the BO.
(g) M3GNet relaxed structure by the PSO.

random search (RAS), Bayesian optimization (BO), and particle swarm
optimization (PSO) to search the structures of Ca4S4 and Ba3Na3Bi3.
The readability of a structure by Pymatgen package serves as a crucial
determinant of its quality and suitability for further analysis using our
neural network potential. Therefore, structures exhibiting overlapping
or excessively crowded atomic arrangements may not only present
issues in processing with Pymatgen but also render them unsuitable
for energy calculations using our neural network model. Therefore,
we define the structures that can be read by the Pymatgen package
to be called valid structures. For Ca4S4, we allocated 5000 structure
generations for the random search algorithm which generated 147 valid
structures. We allocated 1000 structure generation steps for the BO
algorithm which traversed 140 valid structures. For PSO, we used 5000
structure generation steps which created only 100 valid structures over
the search process. For all the valid structures during a search, we
calculated their distance metrics to the ground state structure and then
mapped the distance features using t-SNE [62] to 2D dimension points.
The purpose of using t-SNE is to map all data points from the high-
dimensional space to the low-dimensional space while preserving the
pairwise distances between the points. We then plot the trajectory of
the structure search over time by connecting two consecutive points if

the newer structure has lower energy than the previous one. The results
are shown in Fig. 9. Note the green triangles indicate the starting points
while the red stars represent the ground state structures, and the blue
lines represent the routes of the search process. The x, y axes in the
trajectory figures represent different dimensions (1D and 2D space).

First, we found that for all three algorithms, it is challenging for
them to generate valid structures during their search. Both random
search and PSO generated less than 150 structures for a total of 5000
structure generations. In comparison, the BO algorithm generated 140
valid structures with only 1000 structure generations. This is consistent
with the authors’ observation of GN-OA that the BO has better perfor-
mance in their CSP experiments. From Fig. 9(a) and (c), we found that
the Random search and PSO algorithms tend to jump around in a larger
design space. In contrast, the BO algorithm is more focused during its
search (Fig. 9(b)).

We further applied the three search algorithms to the structure pre-
diction of a ternary compound Ba3Na3Bi3, which is more challenging
than Ca4S4. Fig. 10 shows the three trajectories of the algorithms. First,
we found that all three algorithms are much more difficult to generate
valid structures, especially for the Random algorithm, which generates
only 121 valid structures during its 50,000 tries. In contrast, the BO and
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Fig. 9. Trajectories of three search algorithms in crystal structure prediction of Ca4S4: (a) Random search with 5000 structure generation steps. 147 valid structures found; (b)
Bayesian Optimization with 1000 structure generations. 140 valid structures found; (c) PSO with 5000 structure generations with 100 valid structures. The green triangles indicate
the starting points while the red star indicates the ground states, and the blue lines represent the routes of the search process.

Fig. 10. Trajectories of three search algorithms in crystal structure prediction of Ba3Na3Bi3: (a) Random search with 50,000 structure generation steps. 121 valid structures found;
(b) Bayesian Optimization with 3000 structure generations. 195 valid structures found; (c) PSO with 6000 structure generations with 177 valid structures. The green triangles
indicate the starting points while the red star indicates the ground states, and the blue lines represent the routes of the search process.

PSO both generate 195 and 177 valid structures during their 3000 and
6000 structure generation steps, though the success rates of structure
generation are still very low. The search trajectory patterns of the
Random search and PSO are still more similar by jumping around a
large area while the BO algorithm is more focused on their structure
search. But compared to Fig. 9(b), the structure range in Fig. 10 is larger
due to the higher complexity of the target structure Ba3Na3Bi3. Our CSP
metrics based trajectory analysis shows that current algorithms need to
significantly improve their structure generation success rate to achieve
higher efficiency in CSP.

4. Conclusion

Due to the complexity of structural changes during the search
process of crystal structure algorithms, it is very difficult to measure
the similarity of the candidate structures to the ground state, especially
when the algorithms cannot find the exact solution. This is especially
challenging when the candidate structure and the target structure can
have different spatial symmetries (space groups). We find that it is
infeasible to use a single structure similarity measure to describe the
CSP prediction quality of different algorithms. By evaluating a set
of thirteen structure distance measures (which we call CSPMetrics),
we find that using them together allows us to achieve a quantitative
method to measure the prediction quality of predicted crystal structures
compared to the ground states. Application of our CSPmetric set has
allowed us to gain interesting analysis of the structures during the
search process of different CSP algorithms. While there are definitely

rooms to further improve the metrics so that they can capture the pre-
diction errors happening during CSP algorithm search, we believe our
current CSPMetrics can be used as a good starting point to characterize
benchmark different CSP algorithms. The availability of the source code
additionally makes it easy for such evaluations.
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